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Abstract 23 

 The southern Appalachian Mountains have experienced large population growth and a 24 

change in land use in the past 30 years. The majority of development has been low density, 25 

suburban land, known as exurban development. The long-term effects of exurbanization on 26 

riparian vegetative communities in the southeastern Appalachian Mountains are not well known. 27 

We sought to determine if vegetative community composition and structure change as a function 28 

of watershed–level variables such as time since neighborhood development or percent 29 

impervious surface within the watershed. We also assessed local–scale measures of disturbance 30 

such as canopy cover and basal area. Over two years we sampled a total of 27 streams in exurban 31 

watersheds ranging in age from four to forty-four years, along with eight forested streams. 32 

Watershed–scale variables such as neighborhood age and impervious surface cover did not 33 

influence the aspects of riparian vegetation community we measured. Canopy cover, a measure 34 

of local habitat disturbance, offered better predictions of vegetation community metrics. Exurban 35 

neighborhoods and their landowners may have the potential to manage for riparian vegetation 36 

through the use of maintained stream buffer zones along the entire length of the stream. 37 

Keywords: Appalachian, Invasive plants, Stream, Tsuga candensis, Urban  38 
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Introduction 39 

The United States is experiencing increases in population size and urbanization. Between 40 

2000 and 2010 the population of the United States increased by 9.7%, and 83.7% of the 41 

population resides in metropolitan areas (Mackun and Wilson 2011). Land use practices are 42 

shifting and forests are being converted into residential land (Wear and Bolstad 1998). The 43 

majority of development has been low density, suburban land that is decentralized from any 44 

urban center, especially in the Southeast (Mcdonald et al. 2010), where population growth was 45 

16.6% between 2000 and 2010 (Pollard and Jacobson 2011). Such development is often termed 46 

exurbanization. Theobald (2004) highlighted the absence of a single definition for the term; 47 

however, exurban areas typically fall somewhere between the urban and rural areas in terms of 48 

population density (0.025 – 5 people per ha). Low density developments are projected to increase 49 

in future decades (Wear and Bolstad 1998; Theobald 2010) and they are often near highly 50 

biodiverse areas (Gagne and Fahrid 2010); both of these factors suggests the developments may 51 

pose a serious threat to many species and ecosystems. 52 

 Stream systems and their associated riparian zones are especially susceptible to changes 53 

following exurbanization. Impervious surfaces associated with buildings and roads alter the rates 54 

and movement of water flow such that less percolation of water occurs into the soil, leading to a 55 

reduction in base flow, but an increase in flow during rain events (Paul and Meyer 2001). These 56 

hydrologic changes not only modify stream and riparian morphology, but can also alter soil 57 

moisture (Gold et al. 2001), water table depth, organic matter, root density, and soil pH in 58 

adjacent riparian areas (Gift et al. 2010).  59 

 Riparian vegetation is integral in determining both composition and function of stream 60 

ecosystems (Warner and Hendrix 1984) and it serves as a buffer zone between upland areas and 61 
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streams (Hill 1996; Lowrance 1998). Streamside vegetation helps maintain stream temperature, 62 

provides woody debris for habitat along and within the stream, and assists in the uptake of NO3
- 63 

from shallow groundwater (Sweeney 1992; Tabacchi et al. 2002). Riparian vegetation also 64 

stabilizes banks and provides cover for many species of wildlife. Plants provide detritus material 65 

within the stream, creating both a food source and habitat for aquatic organisms (Warner and 66 

Hendrix 1984). Urbanization has greatly reduced vegetation at a global scale (McKinney 2002), 67 

and riparian forests are particularly sensitive to land use change (Malanson 1993). Urbanization 68 

directly alters vegetative community composition and structure through replacement of 69 

vegetation by urban infrastructure and fragmentation. Species diversity, tree basal area, and 70 

native plant density have been shown to decrease near urban areas (Porter et al. 2001; Moffatt et 71 

al. 2004). Loss of canopy cover can increase algal growth, thereby changing low-order stream 72 

systems from allochtonous- to autochthonous-based systems (Doi et al. 2007; Hall et al. 2000; 73 

and Sobczak et al. 2002). A decrease or a change in detrital inputs may yield lower 74 

macroinvertebrate biomass or altered macroinvertebrate community composition (Sobczak et al. 75 

2002), which can have implications for higher trophic levels (Johnson and Wallace 2005). 76 

Furthermore, stream temperatures increase with canopy loss, which alters habitat suitability for 77 

many organisms (Bozinovic et al. 2011). Sediment loading in streams can increase with riparian 78 

vegetation loss, and decrease water quality (Osborne and Kovacic 2006).  79 

Urbanization causes a shift in vegetative communities and reduces native plant diversity 80 

while increasing the number of exotic and invasive species (Burton et al. 2005; Burton et al. 81 

2008; King and Buckney 2001; McKinney 2001; McKinney 2002; Warren et al. 2015). A study 82 

by Loewenstein and Loewenstein (2005) found significantly more exotic plant species at urban 83 

sites along a rural-to-urban gradient in the Piedmont ecoregion of Georgia. Pennington et al. 84 
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(2010) identified similar trends in Ohio, but also found an increase in early successional native 85 

plant species in urbanized riparian areas. Shifts in vegetation may often be driven by “hydrologic 86 

drought” that develops from lowered water tables in urban areas (Groffman et al. 2003). A 87 

review by Groffman et al. (2003) identified twice as many upland plant species in urban 88 

floodplains relative to non-urbanized floodplains (Brush et al. 1980) in Maryland, and suggested 89 

this assemblage shift was the result of altered hydrology. 90 

Pennington et al. (2010) argued that previous studies on urbanization and stream response 91 

are too broad in scope and need to focus on local-scale variables like riparian vegetation. The 92 

authors showed that local vegetative community changed in response to urbanization, and that 93 

these local scale changes drove alterations of urban streams and riparian areas. The authors make 94 

a final argument that future conservation efforts in the face of urbanization should focus on 95 

maintaining wide riparian forests and limiting impervious surface development within riparian 96 

areas. Wang et al. (2001) found similar results while studying urban fish populations, noting that 97 

impervious surface within the riparian area or within a 1.6–km radius upstream had a stronger 98 

influence on fish populations and hydrology than comparable levels of impervious surface that 99 

were further away. Allan et al. (1997) found no correlation between local riparian vegetation and 100 

landscape scale factors. Other studies have argued that watershed-scale conservation, as opposed 101 

to protection of just the riparian zone, is necessary to protect stream organisms (von Behren et al. 102 

2013; Sarr and Hibbs 2007; Willson and Dorcas 2003); however, the fact remains that 103 

Pennington et al. (2010) suggest an important hypothesis that may apply to some aspects of 104 

stream ecosystems. Increased riparian forest buffers may then lead to reduced exotic plant 105 

invasions and maintenance of hydrological function in riparian areas, even if they do not protect 106 

all stream species from declines. The take away is that both local– and landscape–scale factors 107 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

are of importance, but more work needs to be done to assess the relative role that factors at these 108 

scales play in shaping riparian vegetation within urban areas. 109 

Riparian vegetation response to exurban development may be similar to areas of timber 110 

management (a common land use in Southern Appalachia) because both land uses entail the 111 

removal of large quantities of forest cover. The life history traits of herbaceous understory plants 112 

vary, and as a result so does their recovery following timber harvest. Duffy and Meier (2003) 113 

compared herbaceous understory of old growth forests to secondary forests ranging in 45 to 87 114 

years since clear-cutting. They found that neither cover nor species richness increased with age 115 

in these secondary forests. The authors argue that 87 years is insufficient time for understories to 116 

recover and that these species will never recover to primary forest states due to climatic 117 

differences today relative to when the old growth forests were established and landscape level 118 

changes like habitat fragmentation that prevent dispersal of seed from some species. Duffy and 119 

Meier (2003) also argue that a near complete recovery to pre-disturbance conditions will not 120 

occur until large trees have had time to grow, and then fall. This slow recovery with time may be 121 

dependent on amount and proximity of propagules, and it has been argued that recovery can 122 

actually occur over time and that Duffy and Meier failed to fairly represent pre disturbance 123 

conditions in their chronosequence study (Johnson et al. 1993). 124 

 While the response of riparian vegetation to timber harvest has been evaluated at various 125 

time steps following disturbance, no such knowledge exists for the same communities in the 126 

context of exurban housing developments (Pennington et al. 2010). It is unknown if riparian 127 

communities surrounded by exurban housing developments will undergo a process of recovery 128 

with time toward pre-disturbance conditions, or if they will remain altered in the long-term. To 129 

address this data gap we evaluated the influence of impervious surface, neighborhood age, and 130 
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other landscape–scale variables on several measures of the riparian plant community. We also 131 

evaluated the ability of surrogate measures for local habitat management to predict plant species 132 

richness, diversity, and the number of non-native species. We hypothesize that stream riparian 133 

zones will exhibit signs of recovery (more similarity to forested sites) in areas with older and 134 

less–developed neighborhoods. We also hypothesize that changes in vegetation communities will 135 

be influenced partially by local scale variables.  136 

Methods 137 

Study Area 138 

 Our study sites were within the Southern Blue Ridge Ecoregion (Fig. 1), which spans 139 

over 3,804,045 ha and covers sections of Georgia, South Carolina, North Carolina, Tennessee, 140 

and Virginia. The mountains are between 450 and 2040 m in elevation. There are over 400 141 

species of plants and animals endemic to this region, more endemics than any other North 142 

American ecoregion (The Nature Conservancy and Southern Appalachian Forest Coalition 143 

2000). Parts of the southern Appalachians along the Blue Ridge Escarpment receive the highest 144 

level of rainfall in the United States east of the Cascades, and the climate of these mountains 145 

ranges from temperate to boreal.  146 

Site Selection 147 

 To select focal streams we evaluated 2014 aerial images from the region to identify 148 

watersheds with exurban development (i.e., residential development with < 17% impervious 149 

surface). Within these watersheds, we used ARCGIS 10.1 (ESRI, Redlands, CA) to overlay a 150 

high resolution stream layer from the National Hydrography Dataset and a tax parcel data layer 151 

derived from Sevier County, TN and Macon County, NC. From these overlays we identified 80 152 

potential locations that were streams in watersheds containing only exurban development (i.e., 153 
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only low-intensity residential development). We attempted to contact the property owners along 154 

each stream by phone or in person. Once permission was obtained to access the property we 155 

traveled to each site in an attempt to standardize stream size and development to the extent 156 

possible. Following ground validation we were left with 27 first– or second–order exurban 157 

streams across the two counties in Western North Carolina and Eastern Tennessee. We selected 158 

eight additional streams that contained no impervious surface within the watershed. Four of these 159 

forested sites were located within the Coweeta Hydrologic Laboratory property in Otto, North 160 

Carolina, and four were within Walker Valley in the Great Smoky Mountain National Park, TN 161 

(Fig. 1). All forested sites were presumed to have been logged, but the harvest was greater than 162 

75 years ago. We assume that all of the exurban sites were logged around the same time. 163 

Reference sites that had never been logged would not be adequate for comparison with our 164 

exurban sites. 165 

To calculate the age of development in each exurban watershed, we used tax parcel 166 

information. We extracted the age of each individual structure within the study area, and 167 

averaged those ages across all buildings in the watershed. Exurban housing ranged in age from 168 

four to forty-two years (mean = 25.99 yrs) across the 27 watersheds with development. We also 169 

calculated impervious surface coverage for each watershed by obtaining 2014 leaf off aerial 170 

imagery (0.65 meter resolution) from the counties containing our study areas. Percent forest 171 

cover within our watersheds would be nearly the inverse of percent impervious surface, and thus 172 

was not used in the study. This was done by hand-delineating polygons around all impervious 173 

surfaces and calculating the percent of the watershed they covered. We calculated distance to 174 

impervious surface using the “near” tool in ARCGIS 10.1, measuring the distance from stream 175 

sample plots to the nearest impervious surface polygon. 176 
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Field Methods 177 

We established a 45–m transect along the length of each stream and established 178 

vegetation plots in the summer of 2014, similar to methods used by Surasinghe and Baldwin 179 

(2015). Transects were selected by maximizing the amount of exurban development within the 180 

watershed by having a study site as far downstream as possible, without including other forms of 181 

land use, but were limited by where we could get access to private property. These transects were 182 

broken into three five meter sections, each ten meters apart. Along each of the five meter 183 

sections, we measured 10 m from the bank of the stream to establish a 50 m2 plot (Fig. 2). The 184 

plot was measured on the right side of the first section, the left side of the second section, and the 185 

right side of the third section. Within each plot we identified all vegetation to species. If an 186 

identification could not be made on site, we took photos and identified them later 187 

(plants.usda.gov; USDA, NRCS 2003). If a positive ID to species–level could not be made, we 188 

identified it to the lowest possible taxonomic level (Family or Genus) and added a unique 189 

numeric identifier. We counted all trees within a plot; however we only recorded incidence data 190 

for herbaceous and shrubby vegetation. We measured percent canopy cover three times in the 191 

middle of the stream using a convex spherical densiometer. We estimated percentage of ground 192 

covered by coarse woody debris (CWD), vegetation, and bare ground (defined as rock or soil not 193 

covered by vegetation) within each plot to the nearest 5% (Table 1). We considered any fallen 194 

limb or tree larger than 10 cm in diameter to be CWD. We recorded basal area (m2/ha) of each 195 

section using a 10BAF basal area prism.  196 

Analysis 197 

We evaluated both species richness of all vegetation and Shannon diversity of tree 198 

species between forested sites (no impervious surfaces in the watershed) and exurban sites (1–199 
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17% watershed impervious surface) in Microsoft Excel (Redmond, WA). Shannon diversity was 200 

estimated for trees because we had counts of individuals for this group, but not for all vegetation 201 

types. Using the iNEXT package (Hsieh et al. 2014) in Program R (R Core Team 2013), we 202 

created species accumulation curves for both the number of sites sampled and the number of 203 

individuals sampled for the forested and the exurban sites. Because of the differences in the 204 

number of sites, we used rarefication to estimate diversity after eight samples for both land cover 205 

categories as this was the total number of forested sites. To assess differences in vegetative 206 

community composition as a function of neighborhood age and percent impervious surface, we 207 

used a canonical correspondence analysis (CCA). This type of ordination analysis is appropriate 208 

when the goal is to understand the structure of community data in the context of a specific set of 209 

environmental variables (McCune and Grace 2002). We examined all vegetation (using only 210 

incidence data) and tree species (using count data) in two separate CCA analyses. We conducted 211 

these analyses using only data from sites with development, since neighborhood age was not 212 

applicable to fully forested sites. A second CCA of all vegetation was run using only plants that 213 

were detected at least 3 times across all sites. We used the vegan package (Oksanen et al. 2015) 214 

in Program R (R Core Team 2013) to run the CCAs. 215 

We used multivariate multiple regression to examine the influence of percent impervious 216 

surface, neighborhood age, and distance to impervious surface on a suite of uncorrelated 217 

(R<0.75) plant-related response variables. Specifically, we examined the influence of our 218 

selected predictors on basal area, canopy cover, vegetative cover, CWD, Shannon-Wiener 219 

diversity (for trees), tree species richness, total plant species richness, exotic species richness, 220 

non-woody vegetation species richness, annual and perennial plants, growth form category (forb, 221 

forb/subshrub, subshrub, subshrub/vine, subshrub/tree, vine, shrub/tree, graminoid, fern, shrub, 222 
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forb/vine), and wetland associated plants. Because almost all of our sites have a relatively high 223 

proportion of forested area within the watershed, we also wanted to examine the influence of 224 

habitat structure within the riparian zone on vegetation. We used basal area, canopy cover, and 225 

coarse woody debris to quantify differences in forest structure at the local scale. Sites with higher 226 

basal area, canopy cover, and CWD were considered less disturbed or have experience a longer 227 

period since a previous disturbance. We again used multivariate multiple regression to test for 228 

relationships between local site characteristic predictors and the same response variables used for 229 

landscape-level predictors. A model was also run using only forested sites to test for the 230 

influence of local scale variables on assemblage structure in forested communities without 231 

exurban influence. 232 

We used logistic regression models to examine the influence of hypothesized predictor 233 

variables on the presence or absence of selected species. Eastern hemlock (Tsuga candensis) and 234 

yellow-poplar (Liriodendron tulipifera) were chosen because they each made up more than 10% 235 

of all trees identified. We also evaluated great rhododendron (Rhododendron maximum) because 236 

it was the most common species and indicative of a climax riparian ecosystem in this region 237 

(Keever 1953). We evaluated the presence of ericaceous shrubs [great rhododendron, mountain 238 

laurel (Kalmia latifolia), and mountain doghobble (Leucothoe fontanesiana)] based on their 239 

importance in these ecosystems in terms of pH regulation and soil nutrients (Monk et al. 1985). 240 

We evaluated red maple (Acer rubrum) and species not native to the United States because both 241 

are commonly associated with disturbance and human activities (Burton and Samuelson 2008; 242 

King and Buckney 2000; Tift and Fajvan 1999). 243 

Results 244 

Descriptive characteristics 245 
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There were a total of 36 tree species found across all sites. Mean species richness and 246 

Shannon diversity were higher in forested sites relative to exurban sites; however, there was 247 

considerable overlap in the range of these measures between site categories (Table 2). Sample-248 

based rarefaction (n = 8) revealed no significant difference (95% confidence intervals 249 

overlapped) between exurban and forested sites in the accumulation of tree species, based on 250 

abundance data (Fig. 3a), however, the shape of the accumulation curve suggest that richness in 251 

both categories of sites is not fully represented by our sample. Across all sites, we identified 151 252 

species of herbaceous and shrubby plants. Individual-based species accumulation curves for 253 

herbaceous plants again showed no significant difference between forested and exurban sites 254 

(Fig. 3b). Exotic plants were found at 16 out of 27 exurban sites, and at one of the forested sites. 255 

A total of 19 wetland indicator plants were identified across all sites, with an average of 3.4 and 256 

2.4 plants per site at forested and exurban sites respectively. Many different growth forms were 257 

identified, but the most common growth form across sites in both land cover categories was forb. 258 

The most common tree (i.e. found at the greatest number of sites) was the yellow-poplar, 259 

occurring at 22 sites (5 of 8 forested sites and 17 of 27 exurban sites). The most frequently 260 

counted tree across all sites was the eastern hemlock, occurring at 22 sites (7 of 8 forested sites 261 

and 14 of 27 exurban sites). It is of note that of the 67 hemlocks identified, 45 were dead, 262 

presumably from the hemlock woolly adelgid (Adelges tsugae). In sites where eastern hemlock 263 

stems (live and/or dead) were present, it was nearly 2.5 times more abundant in forested sites 264 

relative to exurban ones (5.1 vs. 2.1 stems per site; F = 13.32, P = 0.0016). However, there was 265 

no difference in live hemlock stem counts between forested and exurban sites (1.3 vs. 0.9 stems 266 

per site).The most frequently counted living tree was the yellow-poplar. The most common mid 267 

or understory plant across all sites was great rhododendron. A total of 19 exotic species were 268 
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found at exurban sites and one species at forested sites. The most common exotic species was 269 

stilt grass (Microstegium vimineum). Red maple and exotic species were present at more than 270 

fivefold as many exurban sites as forested sites. 271 

Vegetation community response to urbanization 272 

In a CCA using only tree abundance data, 5% and 4% of variance was explained by age 273 

and impervious surface, respectively. When incidence data were used for a CCA with all plants, 274 

4.3% and 4% of the variance was explained by age and impervious surface respectively (Fig. 4). 275 

A second CCA using plants detected within at least 3 plots provided showed similar results for 276 

age and impervious surface, 4.3% and 3.9% respectively. 277 

Multivariate multiple regression revealed no significant relationships between 278 

neighborhood age, impervious surface, or distance from impervious surface and most of our 279 

vegetation community response variables. Impervious surface did positively influence the 280 

number of exotic species (R2 = 0.09, P < 0.05). Multivariate multiple regression using canopy 281 

cover and basal area (local environmental variables) as predictor variables showed that canopy 282 

cover was a significant predictor for at least some of the response variables. Because canopy 283 

cover was the only significant local site predictor, linear regressions were used to evaluate 284 

bivariate relationships with response variables. Canopy cover negatively influenced herbaceous 285 

cover (R2 = 0.38, P < 0.001),the number of exotic species (R2 = 0.33, P < 0.001), and the amount 286 

of annual plants (R2 = 0.14, P = 0.02), while having a positive influence on Shannon diversity of 287 

trees (R2 = 0.26, P < 0.001).  288 

Predictors of presence varied widely across target species. Presence of red maple and 289 

yellow-poplar were not significantly related to any of the selected predictors (P > 0.05 for all 290 

logistic regressions). Higher basal area increased the probability of eastern hemlock (P = 0.02), 291 
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great rhododendron (P = 0.03), and other ericaceous shrub (P = 0.01) presence, and decreased 292 

the likelihood that exotic species would be present (P = 0.02). Areas of higher canopy cover 293 

increased the likelihood of great rhododendron [(P = 0.02 (all sites) and P = 0.03 (exurban sites)] 294 

and other ericaceous shrub presence (P < 0.01) and decreased the likelihood that exotics were 295 

present (P = 0.04 across all sites). For every five percent increase in canopy cover there was a 296 

four percent decrease in the likelihood of exotic species presence, and an increase in the percent 297 

likelihood of great rhododendron presence by ~ 6% at all sites and 7% at exurban sites. 298 

Neighborhood age did increase likelihood of great rhododendron presence (P = 0.04 across 299 

exurban sites) and the presence of other ericaceous shrubs (P < 0.01). For every five-year 300 

increase in neighborhood age there was a 6.1% increase in the likelihood of great rhododendron 301 

presence, which at least for this one species, is a result consistent with recovery toward more 302 

forested conditions. 303 

Discussion 304 

When forested and exurban sites were considered categorically, there were no differences 305 

between the estimated richness or diversity values for trees or understory vegetation. The mean 306 

accumulation curve generated from exurban areas is slightly higher than that from forested 307 

streams, which is most likely due to the lower number of individuals sampled in any one forested 308 

plot. Trees from forested plots tended to be larger and thus more distantly spaced (on average 309 

basal area was 50% higher in forested riparian plots). The decline of eastern hemlocks appears to 310 

be occurring at a faster rate in forested sites. This pattern could be a function of density 311 

dependence, as hemlock woolly adelgids typically disperse short distances (McClure 1990) and 312 

hemlock stems were less abundant in exurban sites. Human intervention may also play a role. 313 

Many homeowners and homeowner’s associations treat hemlocks with systemic pesticides to 314 
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keep them from succumbing to hemlock woolly adelgid infection. Dead and dying hemlocks in 315 

an exurban setting are also more likely to be removed since they pose a safety hazard. 316 

Further evaluation of exurban sites focused on the continuous variation within this 317 

category as a function of neighborhood age and impervious surface. CCA results suggest that 318 

neither age nor the amount of impervious surface (across the range of values we evaluated) 319 

structure vegetation communities. Linear regression analyses further revealed all watershed–320 

scale variables to be poor predictors of the selected measures of community response other than 321 

a slightly positive relationship between the amount of impervious surface and the number of 322 

exotic species. An increase in invasive species in watersheds with more impervious surface could 323 

occur from increased transport of seeds from vehicular traffic, more exotic planting due to the 324 

presence of more land owners, or increased canopy gaps allowing for the proliferation of many 325 

disturbance dependent exotics. Other studies have noted a negative relationship between 326 

impervious surface and tree species richness (Burton et al. 2008, Moffatt et al. 2004, and Porter 327 

et al. 2001); however, our data show no evidence to support that relationship. 328 

Pennington et al. (2010) argued for the importance of local scale predictor variables, and 329 

our results support their findings. Reduced canopy cover predictably led to an increase in the 330 

amount of ground cover by understory vegetation, however, exotic species were often prominent 331 

members of the understory community. For example, an exurban site in East TN with little 332 

canopy cover had riparian plots that were 100% covered by herbaceous vegetation, in the form of 333 

kudzu (Pueraria lobata). This observation is likely due to increased light availability (Parendes 334 

and Jones 2001, Setterfield et al. 2005, Vidra and Shear 2008, Warren et al. 2015). Sites with 335 

lower canopy cover also contained more species of annual plants Taken together, these trends 336 

could indicate the maturation of a forest from having an abundance of ruderal, annual, non-337 
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woody plants, to a more stable community of perennial, woody vegetation. Future studies might 338 

consider examining the abundance herbaceous species, as we only collected incidence data. 339 

Increased canopy cover is often characteristic of more mature forests; however, our results 340 

suggest this variable does not necessarily increase as neighborhoods age, perhaps due to local 341 

land use practices in that neighborhood. 342 

Our results show that canopy cover was positively correlated with Shannon diversity of 343 

trees. This result was not simply a function of increased tree abundance, because basal area did 344 

not correlate with Shannon diversity. Higher levels of diversity promote increased primary 345 

productivity of plant communities (Nijis and Roy 2003; Wilsey and Potvin 2000) and in the 346 

Southern Appalachians overall diversity relates positively with canopy cover and primary 347 

productivity (Belote et al. 2011; Elliot et al. 1998) as these ecosystems are some of the most 348 

biodiverse in the world (Elliot et al. 1998; Hodkinson 2010). Increasing riparian ecosystem 349 

primary production, and consequently the detrital inputs, is very important for southern 350 

Appalachian headwater stream ecosystems; they have detritus based food webs that are 351 

composed primarily of foliage from nearby trees (Hall et al. 2000). Reduced canopy cover 352 

reduces detritus input (Wallace et al. 1997) and decreases food chain length (Jenkins et al. 1992). 353 

Changes in detrital food base are linked to forest cover along the entire length of the stream, not 354 

the immediately present forest cover at the site, and can occur from minimal forest cover loss 355 

(England and Rosemond 2004). For example, if Chinese privet (Ligustrum sinense) becomes 356 

abundant in a riparian area because of a disturbance like urbanization it can alter the form of 357 

detritus that enters the stream. Privet detritus decomposes at a faster rate and can alter nutrient 358 

cycling and decomposition in riparian areas and within the stream. Chinese privet is found to 359 

decompose at a faster rate than native tree leaves (Mitchell et al. 2011). Similar results were 360 
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found by Fargen et al. (2015) in a study on Amur honeysuckle (Lonicera mackii); an invasive 361 

plant within the same genus of one of our most common exotic plants, Japanese honeysuckle. 362 

The authors found that the leaves of L. mackii decomposed two weeks faster and had fewer 363 

macroinvertebrates than the native sugar maple (Acer sacharum). Likewise, Swam et al. (2008) 364 

found that litter from the the exotic, invasive tree of heaven (Ailanthus altissima) also broke 365 

down more quickly than that of native plants. The authors noted that the presence of native plant 366 

leaf litter could help “armor” and slow the decomposition of the non-native tree of heaven. 367 

Predictors of individual species presence or absence varied considerably among species. 368 

Exotic plants were almost entirely found in exurban neighborhoods, but the probability of 369 

finding exotics within exurban neighborhoods was not linked to any of our watershed–scale 370 

variables. Eastern hemlock and great rhododendron were associated with increasing basal area, 371 

and likely represent species indicative of intact riparian zones. The likelihood of other ericaceous 372 

shrubs also increased with increasing forested riparian area. These species are an integral 373 

component of southern Appalachian stream ecosystems and have influences on ecosystems 374 

characteristics like soil pH, leaf litter depth, and nutrient retention (Monk et al. 1985). Exotic 375 

invasion has been linked directly to local vegetative structure in terms of the amount of canopy 376 

cover (Vidra and Shear 2008). Stream buffers to development provide increased basal area and 377 

canopy cover, which may encourage the persistence of native and climax community species 378 

during and after development of an exurban neighborhood. While higher basal area was 379 

associated with a higher probability of hemlock presence, it is unclear which drives which. 380 

Eastern hemlock is a shade tolerant tree, and therefore persistence likely increases in areas with 381 

high basal area, but a large number of hemlocks obviously contribute to high basal area. In 382 

reality a positive feedback loop likely exists between intact forests and hemlock recruitment 383 
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(Kobe et al. 1995), at least before the introduction of hemlock wooly adelgid (Adelges tsugae) 384 

that decimated Eastern hemlock populations and as a result modified soil moisture and detritus 385 

quality (USDA Forest Service 2005). 386 

Conclusion 387 

Our work suggests that riparian vegetative composition in watersheds containing exurban 388 

developments is not primarily driven by the amount of impervious surface (at ranges from 1 – 389 

17%) or the age of the exurban development. Instead, local site variables such as canopy cover 390 

and basal area provided the best predictors of exotic species and other vegetative characteristics. 391 

These local-scale measures can be influenced by riparian management practices. In Macon and 392 

Jackson County, North Carolina there are ordinances requiring 30 foot buffer zones along 393 

streams, but from our observations exurban developments allow impervious surface closer to the 394 

stream. During construction of a neighborhood, basal area and canopy cover can be reduced from 395 

clear-cutting, or land owners may clear vegetation after acquiring the property, then continue to 396 

clear through mowing or trimming over time. Furthermore, once the property is privately owned 397 

there is little enforcement of buffer regulations. On multiple occasions we met land owners with 398 

concerns about the neighbors removing trees along the stream bank, or observed it ourselves. 399 

The absence of a correlation between basal area and CWD could also mean that landowners are 400 

removing snags and fallen trees. Much of the southern Appalachians is privately owned, and 401 

there is a fast-growing wildland-urban interface (Macie and Hermansen 2002). This means that 402 

cooperation with private land owners is integral to maintaining the biodiversity and function of 403 

these ecosystems. Future studies that assess the minimum forest buffer width required to 404 

maintain vegetative communities similar to forested sites would provide land owners and 405 

neighborhoods more specific target objectives for sustainable management of riparian habitats. 406 
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Table 1. Mean (and range) of environmental variables for each site, classified for all sites (n = 572 

35) and only urban sites (n = 27) within the Blue Ridge Mountain region of North Carolina and 573 

Tennessee. Values for neighborhood age, impervious surface, and distance to impervious surface 574 

are not shown for the all sites columns as reference sites did not have values for these variables. 575 

  All Sites Urban Sites 

Variable Mean Range Mean Range 

Neighborhood Age (years) N/A N/A 25.99 (4-42.4)  

% Impervious Surface N/A N/A 8.31 (0.8-17.7)  

Distance to Road (meters) N/A N/A 54.30 (1.89-419.3) 

Basal Area (m2/ha) 21.69 (5.35-78.82) 19.11 (5.35-78.82) 

% Canopy Cover 89.34 (57.4-96.5) 88.14 (57.4-96.5) 

% Vegetation Cover 50.74 (15-96.7) 51.89 (15-96.7) 

% Coarse Woody Debris Cover 7.70 (0-28.3) 5.74 (0-25) 

 576 

  577 
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Table 2. Mean (and range) of Shannon index and species richness values for riparian vegetation 578 

community data collected from forested (n = 8) and exurban (n = 27) sites within the Blue Ridge 579 

Mountain region of North Carolina and Tennessee, U.S.A. 580 

 581 

Parameter Forested sites  Exurban sites 

Shannon Index 1.73 (1.43 – 2.19) 1.32 (0 – 2.13) 

Species Richness 7.4 (5 – 11) 4.6 (0 – 10) 

  582 
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Figure legends 583 

Figure 1. The 35 riparian vegetation sample plots were located in or near Sevier County, 584 

Tennessee (dashed) and Macon County, North Carolina (solid). 585 

Figure 2. A graphic of the sample transect and vegetation plots for each of the 35 field sites used 586 

to sample riparian vegetation in western Tennessee and eastern North Carolina. 587 

Figure 3. Species accumulation curves for (a) abundance data on trees and (b) incidence data on 588 

plants for exurban and forested sites for riparian vegetation community data within the Blue 589 

Ridge Mountain region of North Carolina and Tennessee, U.S.A. 590 

Figure 4. Canonical Correspondence Analysis (CCA) for (a) abundance data on trees and (b) 591 

incidence data on plants for exurban and forested sites for riparian vegetation community data 592 

within the Blue Ridge Mountain region of North Carolina and Tennessee, U.S.A. 593 
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The reviewers’ comments appear below (regular text) along with our responses to their 

suggestions and edits (bold text). Line numbers represent position in the revised draft.   

 

Summary 

 

The goal of this study was to evaluate the relationship between exurban development and 

riparian vegetation structure, as well as evaluate the relative importance of local vs. landscape 

features.  Vegetation was measured in plots adjacent to 27 streams in watersheds with exurban 

development and 8 streams in watersheds with no development.  Results showed no relationship 

with vegetation diversity and neighborhood age and vegetation metrics.  Non-native cover and 

tree diversity was correlated with site-scale canopy cover.  While there is some useful 

information here, I don’t think the data and discussions presented are sufficient to address the 

impacts of exurban development or to evaluate the impact of landscape vs. local features.  It is 

unclear from the existing description if the site selection methods are sufficient to address the 

stated question.  The description of results is incomplete and the figures presented are not helpful 

for demonstrating key findings.  Further analysis, considering other vegetation metrics and other 

types of land cover may yield interesting results.   

 

Title 

This title describes only one aspect of land use considered, leaving out the key finding of the role 

of local-scale canopy cover.  

We have changed the title to more accurately represent our experimental design and 

analysis.  

 

Introduction 

There is some good information here about the impact of development on streams and riparian 

areas, but it does not provide the specific information necessary to understand the study that was 

performed.  A definition and discussion of exurban development is needed.  It is unclear from the 

information provided in what ways this type of development differs from suburban or timber 

management.  Are there thresholds in imperviousness or density to be considered one type of 

development or another?  Testing the impact of local vs. landscape features is a major aspect of 

this study, but there is only one study cited that addresses these issues.  Hypotheses should be 

presented in this section and follow logically from the literature review. 

 

Lines 45-47: What are imperviousness thresholds for rural, exurban, and suburban categories?  

This is a crucial piece of information for the reader. 

Lines 46 – 48: We have edited the text to better highlight our message here, which is that 

the term exurban is loosely defined in the literature, but generally means areas that are 

neither intensely developed nor undeveloped. The revised portion now reads: “Such 

development is often termed exurbanization. Theobald (2004) highlighted the absence of a 

single definition for this term; however, exurban areas typically fall somewhere between 

the urban and rural areas in terms of population density (0.025 – 5 people per ha).” 

 

Response to Reviewer Comments



Lines 55 and 59: Urban riparian soils are described as having reduced soil moisture in 55-56, but 

being more hydric in 59.  Please clarify. In an effort to shorten the manuscript we’ve 

removed this text, which presented a tangential issue. 

 

Lines 91-109: This section needs to be greatly expanded.  Only one study on local factors is 

cited.  The following could be considered: 

Added several other studies and expounded upon these ideas. Our study focuses on 

response to disturbance by urbanization and articles cited are associated with this issue 

specifically. 

 

Baker, M.E. and M.J. Wiley. 2009.  Multiscale control of flooding and riparian forest 

composition in lower Michigan, U.S.A. Ecology 90:145-159. 

 

Sarr, D.A. and D.E. Hibbs. 2007. Woody riparian plant distributions in western Oregon, USA: 

Comparing landscape and local scale factors. Plant Ecology 190:291-311. 

 

von Behren, C., A. Dietrich, and J.A. Yeakley. 2013. Riparian vegetation assemblages and 

associated landscape factors across and urbanizing metropolitan area. EcoScience 20:373-382. 

 

Line 96: Wording is very confusing here. Reworded to emphasize that local scale factors 

influence these streams in the Pennington study, and that these local changes are caused by 

urbanization. “The authors showed that local vegetative community changed in response to 

urbanization, and that these local scale changes drove alterations of urban streams and 

riparian areas” 

 

Lines 107-109: Couldn’t both local and landscape features be important? Absolutely. I’ve made 

that more clear towards the end of the paragraph. “The take away is that both local– and 

landscape–scale factors are of importance, but more work needs to be done to assess the 

relative role that factors at these scales play in shaping riparian vegetation within urban 

areas” 

 

Line 133: No hypotheses are stated! Hypothesis stated at the conclusion of the Introduction 

 

Methods 

More information is needed here to clearly explain what was done in this study.  It is not clear 

what criteria were used to select sites.  Without more information here it is unclear if the 

methods properly address the stated question.  Map (Figure 1) is not referenced in description of 

study sites.  In inset map at the state level for context would make this fig much more useful. 

Inset map is now referenced in the study site description (Line 139) and has been updated 

to be more clear (Fig. 1). 

 

Lines148-163: How was exurban development identified?  Was total imperviousness or density 

of structures, any other metric used? Exurban developments were identified in that they were 



in areas around Gatlinburg, TN and Highlands, NC, which is primarily vacation and resort 

towns. All streams are within subdivisions containing mountainside housing with no other 

forms of development. Exurbanization by definition isn’t a strict amount of impervious 

surface, but it just a moderately populated residential area somewhere between rural and 

suburban, that is location away from urban centers and cities and is usually associated 

vacation or retirement housing. 

 

Line 153: What made a spot a potential location? Added that they were “fishless streams in 

watersheds containing only exurban development (i.e., only low-intensity residential 

development)” 

 

Line 159: These 8 streams had no impervious cover within the delineated watershed?  Or some 

other area? “We selected eight additional streams that contained no impervious surface 

within the watershed” 

 

Line 162: Based on your lit review, logging over 75 years ago may not be sufficient for forest 

sites to be considered reference sites (lines 119-120).  Need rationale for their use. Added “All 

forested sites were presumed to have been logged, but the harvest was greater than 75 

years ago. We assume that all of the exurban sites were logged around the same time. 

Reference sites that had never been logged would not be adequate for comparison with our 

exurban sites.” 

 

Lines166-175: Were other landscape metrics, like canopy cover, agriculture, or open water 

measured? We selected watersheds without agriculture or open water. %forest (or canopy 

cover) at landscape scale was directly the inverse of what impervious surface was. “Percent 

forest cover within our watersheds would be nearly the inverse of percent impervious 

surface, and thus was not used in the study.” 

 

Line 178: Why 45m? Methods were largely drawn from those of Thilina Surasinghe and are 

cited appropriately. 

 

Lines 181: How was exurban development maximized? “by having a study site as far 

downstream as possible” 

 

Figure 2: The veg plots are shown to extend into the stream.  This is confusing. Removed lines 

that indicated there were veg. plots in the stream. 

 

Line 188: Need to reference sources used for species identification. (Referenced the USDA 

webpage) 

 

Line 219: What about other vegetation categories that might be relevant, like wetland indicator 

status, sun/shade tolerance, ruderal species?  Categories other than richness and diversity may be 

more meaningful response variables. Added additional variables you now mention in 

paragraph 2 under “analysis” 



 

Line 198: This is the first time a level of imperviousness is mentioned.  This should be stated 

much earlier.  Also, there should be some citation to justify use of this level of imperviousness. 

We now invoke impervious surface as part of our description under “Site selection.” In the 

introduction we describe broadly how exurbanization is defined as low-intensity residential 

development. All impervious surface values were < 17%... NLCD considers low intensity 

development to be 20-49% impervious surface. Ours are below this threshold in the 

“Developed, open space” category. https://www.mrlc.gov/nlcd06_leg.php 

 

Were differences in canopy cover in forested and developed sites looked at? Yes, canopy cover 

was measured at each stream.  

 

Results 

This section is incomplete.  An indication of imperviousness, canopy cover, and other land cover 

across sites is needed. Figures in this section are not very helpful for showing meaningful results.  

Perhaps a CCA map showing the lack of relevance of measured landscape variables, along with a 

figure showing the relevance of canopy cover. 

 

Lines 246-248: Somewhere in here should include the range of canopy cover and basal area 

across sites.  Also, what did the distribution of imperviousness across sites look like?  Were most 

sites closer to 1%, 17%, evenly distributed within that range? 

We created a table that shows a column of environmental variables, mean (range). Table 1 

is referenced in the methods section. 

 

Line 283: Canopy cover was a significant predictor, but how much did it vary from site to site?  

Were some sites completely open?  Was there a developed-forested difference in canopy cover? 

Table 1 was created to show variation across sites in environmental variables 

 

Lines 258-261: What about diversity or richness of understory vegetation in relation to canopy 

cover? 

Our results in the paper show only significant results 

#Methods and Results were rerun. We were able to supplement the analysis by identifying 

more plant species and further classifying them into groups that could be analyzed.  

 

 

Discussion 

There is some discussion of the importance of local vs. landscape features, but results are not 

really framed in the broader context of this topic.  As in the introduction, more studies on the 

importance of local vs. landscape features should be referenced here. The lack of detail on site 

selection methods and patterns of canopy cover and imperviousness across sites make it difficult 

to justify conclusions presented in this section.  A discussion of findings of this study compared 

with studies of suburban and urban development would also be useful.  Is this level of 

development perhaps below a threshold for measurable changes? 

 



 

Line 328: I don’t think described results adequately support this statement.  Did you have a real 

gradient of ages and imperviousness of sites? 

We have added a caveat that this result pertains to “the range of values we evaluated…” 

 

Line 296: How do your data suggest this? 

“however, our data shows no evidence to support that relationship” 

 

Lines 329-342: Much more canopy description is needed.  Was lower canopy cover due to 

encroaching development?   

All we can do at this point is speculate within reason that it has to do with local land 

management. We initially evaluated canopy cover response to landscape variables, but did 

not find strong trends. Land owner activities like mowing and tree felling have more 

influence over canopy cover at the stream. Our canopy cover values are for the canopy 

cover directly adjacent to the stream, using a densitometer device. 

 

 

Line 340: What about light increasing in mature forests due to tree-fall gaps? 

We’ve softened the language to acknowledge that increased canopy cover is not always 

characteristic of mature forests 

 

Lines 345-367: Productivity overall increases with canopy cover, but understory density and 

diversity decrease.  How are these important for food webs? 

Added that southern Appalachian riparian areas are some of the most diverse in the world, 

and can be more diverse when left undisturbed. Also discussed how changes in canopy 

cover and the type of detritus can influence nutrient cycling and in stream habitat. 

 

Lines 390-398: More discussion of disturbance immediately adjacent to the stream would be 

helpful.  You measured distance to imperviousness, but was there deforestation or other 

disturbance other than the addition of impervious surface that could be important?  Were 

unimproved included in your imperviousness calculations?  If not, might they be important?  

Other types of land cover? 

Canopy cover and basal area are direct reflections of local management practices. It was 

not possible to quantify or qualify all land use changes for all sites, and be able to compare 

them adequately. Riparian areas could be manicured lawn, mowed, paved, clearcut, an 

actual building, or multiple other forms of management practice. We felt that canopy cover 

and basal area were great ways to quantify and qualify the various forms of land use and 

riparian management into a metric that could be compared across sites. “…land owners 

may clear vegetation after acquiring the property, then continue to clear through mowing 

or trimming over time. Furthermore, once the property is privately owned there is little 

enforcement of buffer regulations. On multiple occasions we met land owners with 

concerns about the neighbors removing trees along the stream bank, or observed it 

ourselves.” 
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