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Abstract 

     Unintended side-channel leaks can be exploited by attackers and achieved 

quickly, and using relatively inexpensive equipment. Cloud providers aren’t 

equipped to provide assurances of security against such attacks.  One most well-

known and effective of the side-channel attack is on information leaked through 

power consumption. Differential Power Analysis (DPA) can extract a secret key 

by measuring the power used while a device is executing the any algorithm. 

This research explores the susceptibility of current implementations of Circuit 

Garbling to power analysis attacks and a simple variant to obfuscate 

functionality and randomize the power consumption reusing the garbling keys 

and the garbled gates. AES has been chosen as an example. The first task is to 

implement the garbled variants of basic logic gates in hardware (RTL design) 

using Circuit Garbling.  The second task is to use the above created gates and 

create an RTL implementation of AES using Verilog HDL. The next task is to 

perform a Differential Power Analysis(DPA) on this circuit and evaluate its 

resilience to attack.  
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Chapter 1 

Introduction 

      Power analysis is a form of side channel attack in which the attacker studies the power 

consumption of a cryptographic hardware device (such as a smart card, tamper-resistant 

"black box", or integrated circuit). The attack has been proven to extract cryptographic 

keys and other secret information non-invasively from the device. If the device is in the 

attacker's possession, the attacker may exploit physical side-channels such as power 

consumption [1], emitted radiation [2], timing, vibration, and sometimes the memory cache 

[3]. Even when there is no computation being performed, cold boot attacks may be 

performed [4]. Hence, security requires more than algorithmic soundness. Circuit garbling 

has been proposed to render hardware leakage resilient; however, until recent years it has 

been viewed as being of limited practical significance [5] due to the size of hardware 

produced. This research focuses on hardware reusability and an intuitive method of reusing 

garbling keys to increase the resistance to reverse engineering and side-channel analysis.   

https://en.wikipedia.org/wiki/Side_channel_attack
https://en.wikipedia.org/wiki/Smart_card
https://en.wikipedia.org/wiki/Tamper_resistance
https://en.wikipedia.org/wiki/Integrated_circuit
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Figure 1.1: Power analysis attacks. [6] 

1.1 Secure Function Evaluation 

      Efficient Secure Function Evaluation (SFE) in a significantly untrusted environment is 

a longstanding goal for modern security. The goal of two-party SFE is to let two 

(polynomially bounded) parties that don’t trust each other compute an arbitrary function 

on their private inputs without revealing information about the inputs, beyond the output 

of the function.  SFE has a variety of applications, particularly in settings with strong 

security and privacy demands. Deployment of SFE has been very limited and believed to 

be expensive until recent improvements in algorithms, code generation, computing 

platforms and networks. [6] 

Example of SFE: The Millionaires’ problem. 
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Figure 1.2: Secure Function Evaluation illustration [5] 

1.2 Preliminaries on Garbled Circuit 

      Let’s discuss the circuit garbling algorithm in this section, Yao's Garbled Circuit (GC) 

enables two parties, a sender S with private input y and receiver a R with private input x, 

to securely compute a Boolean circuit C on (x, y) without revealing any information other 

than the result z = C (x, y) of the computation. Even the intermediate values are not 

revealed.  

1.2.1 Garbled Circuit Protocol 

      The sender is the circuit constructor S and creates a garbled circuit GiGi from the circuit 

C: for each wire 𝑤𝑖 𝑤𝑖 of C, two garblings: 𝑤𝑖
0 , 𝑤𝑖

1 where  𝑤𝑖
𝑗
 is the garbled value wi wi’s

value j are chosen randomly. Also, for each gate 𝐺𝑖, S creates a garbled table 𝑇𝑖  with the 

following property: given a set of garbled values of 𝐺𝑖𝐺𝑖 's inputs, 𝑇𝑖 allows to recover the 

garbled value of the corresponding 𝑇𝑖 's output, but nothing else. Sender S sends these 
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garbled tables, called garbled circuit 𝐺𝑖GC to receiver R. Hence unless and until S informs 

him, R does not know the functionality of  𝐺𝑖. 

      Then, R gets the garbled inputs wiwi corresponding to the inputs of both parties: the 

garbled inputs corresponding to the inputs y of S are sent directly𝑦~𝑖 = 𝑦𝑖
𝑦𝑘𝑦~𝑖 = 𝑦𝑖

𝑦𝑘. For 

each of R's inputs𝑥𝑖, both parties run a 1-out-of-2 Oblivious Transfer (OT) protocol, where 

S inputs y and R inputs  𝑥𝑖. 𝑥𝑖The OT protocol ensures that R receives only the garbled 

value corresponding to his input bit while S learns nothing about𝑥𝑖. 𝑥𝑖Now, R evaluates the 

garbled circuit  GC on the garbled inputs to obtain the garbled output z by evaluating GC 

gate by gate, using the garbled table𝑇𝑖 . 𝑇𝑖Finally, R determines the plain value z 

corresponding to the obtained garbled output value using an output translation table sent 

by S. [7] 

 

Figure 1.3: Yao’s garbled circuit for AND gate. [7] 

 

1.2.2 Algorithm Construction 

 

 Randomly choose a global key 𝑅 ∈ {0,1}𝑁. 

 For each input wire 𝑊𝑖 of C,  
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Randomly choose its garbled value 𝑤𝑖
0 = ⟨𝑘𝑖

0, 𝑝𝑖
0⟩ ∈ {0,1}𝑁+1 

Set the other garbled value 𝑤𝑖
1 = ⟨𝑘𝑖

1, 𝑝𝑖
1⟩ = ⟨𝑘𝑖

0𝑥𝑜𝑟𝑅, 𝑝𝑖
0𝑥𝑜𝑟1⟩ 

 For each gate 𝐺𝑖 of C in topological order 

Label it with index i. 

If  𝐺𝑖is a 2-input gate 𝑊𝑐 = 𝑔⟨𝑊𝑎 , 𝑊𝑏⟩ with garbled input values  𝑤𝑎
0 =

⟨𝑘𝑎
0, 𝑝𝑎

0⟩, 𝑤𝑎
1 = ⟨𝑘𝑎

1 , 𝑝𝑎
1⟩, 𝑤𝑏

0 = ⟨𝑘𝑏
0, 𝑝𝑏

0⟩, 𝑤𝑏
1 = ⟨𝑘𝑏

1, 𝑝𝑏
1⟩ : 

- Randomly choose the garbled value 𝑤𝑐
0 = ⟨𝑘𝑐

0, 𝑝𝑐
0⟩ ∈ {0,1}𝑁+1 

- Randomly choose garbled output  𝑤𝑐
1 = ⟨𝑘𝑐

1, 𝑝𝑐
1⟩ = ⟨𝑘𝑐

0𝑥𝑜𝑟𝑅, 𝑝𝑐
0𝑥𝑜𝑟1⟩ 

- Create garbled table for each of 2^2 possible combinations of 𝐺𝑖
′𝑠 

input values 𝑣𝑎 , 𝑣𝑏 ∈ {0,1}, set   

𝑒𝑣𝑎,𝑣𝑏
= 𝐻(𝑘𝑎

𝑣𝑎|𝑘𝑏
𝑣𝑏|𝑖)𝑥𝑜𝑟𝑤𝑐

𝑔𝑖(𝑣𝑎,𝑣𝑏)
 

𝑠𝑜𝑟𝑡𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ∈ 𝑡ℎ𝑒𝑡𝑎𝑏𝑙𝑒𝑏𝑦𝑖𝑛𝑝𝑢𝑡𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 

 for each circuit-output wire 𝑊𝑖 of the gate 𝐺𝑗  with garblings 𝑤𝑖
0 = ⟨𝑘𝑖

0, 𝑝𝑖
0⟩and 

𝑤𝑖
1 = ⟨𝑘𝑖

1, 𝑝𝑖
1⟩: 

create garbled output table for both the possible output values 𝑣 ∈ (0,1). 

Set 𝑒𝑣 = 𝐻(𝑘𝑖
𝑣|𝑜𝑢𝑡|𝑗)𝑥𝑜𝑟𝑣 

sort entries e in the table by the input pointers, i.e., place entry 𝑒𝑣in 

position 𝑝𝑖
𝑣 . 

 

1.2.3 Algorithm Evaluation 

 

for each circuit wire 𝑊𝑖of C 
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receive corresponding garbled value 𝑤𝑖 = ⟨𝑘𝑖, 𝑝𝑖⟩ 

 for each gate 𝐺𝑖 

𝐺𝑖is a 2-input gate 𝑊𝑐 = 𝑔⟨𝑊𝑎 , 𝑊𝑏⟩ with garbled input values  𝑤𝑎
0 =

⟨𝑘𝑎
0, 𝑝𝑎

0⟩, 𝑤𝑎
1 = ⟨𝑘𝑎

1 , 𝑝𝑎
1⟩, 𝑤𝑏

0 = ⟨𝑘𝑏
0, 𝑝𝑏

0⟩, 𝑤𝑏
1 = ⟨𝑘𝑏

1, 𝑝𝑏
1⟩: 

- Decrypt garbled values from garbled table entry e in position 

⟨𝑝𝑎 , 𝑝𝑏⟩: 𝑤𝑐 = ⟨𝑘𝑐 , 𝑝𝑐⟩ = 𝐻(𝑘𝑎
𝑣𝑎|𝑘𝑏

𝑣𝑏|𝑖)𝑥𝑜𝑟𝑒. 

For each circuit‘s output wire 𝑊𝑖(output of gate 𝐺𝑗) with garbling 𝑤𝑖 =

⟨𝑘𝑖 , 𝑝𝑖⟩ 

- Decrypt the output value 𝑓𝑖 from garbled output table entry e in row 

𝑝𝑖: 𝑓𝑖 = 𝐻(𝑘𝑖|𝑜𝑢𝑡|𝑗)𝑥𝑜𝑟𝑒. [8] 

-  

1.2.4 GC Example 

 

      Consider an example of evaluating a black box device made of AND gate. The device 

has been fabricated as a garbled AND gate: the functionality remains the same but the 

implementation differs based on garbling keys. In this case, the manufacturer is the 

sender S and the customer is the receiver R. S creates garbling keys and garbling table T 

for the gate and the garbling key for its input.  
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Figure 1.4: Original AND gate 

 

          Table 1.1: Garbling table T sent by S to R 

Where ka0, ka1, kb0, kb1 are the keys for input wires A and B and ky0, ky1 are the keys 

for the output wires. R is given keys corresponding to his inputs and S’s garbled input: 

either ka0 or ka1. R then feeds them to the table and will be able to decode the row 

corresponding to the input keys he has. S can either embed a de-garbling function at the 

end for R to understand the outputs or may inform R about the interpretation of the output. 

The following observations should be noted from the above example: 

 R has no access to S’ inputs or garbling keys.  

 Functionally, the black box device is an AND gate, but the presence of garbling 

keys and encoding E of the keys obfuscates the functionality. Hence it makes 

reverse engineering a bigger challenge. 

 Randomized power consumption: changing garbling keys would change the 

encoding, contents of the table and hence power consumption of the device. This 

property is explored further in Chapters 3 and 4 of this thesis.  

Input values Encoding output 

A=0, B=0 E(ka0, kb0) ky0 

A=0, B=1 E(ka0, kb1) ky0 

A=1, B=0 E(ka1, kb0) ky0 

A=1, B=1 E(ka1, kb1) ky1 
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 R can be an adversary or a vulnerable user. Since R has no access to garbling keys 

and he isn’t aware of the algorithm used by the device to generate the outputs, he 

cannot tamper the device. 

 In this research, AES key and the input plain text are both considered to be R’s inputs. The 

inputs are garbled in the circuit after they are fed by the user. The attacker is assumed to 

have access to the device and to the power consumed by the device.  

 

1.3 Side Channel attacks: Power Analysis Attacks 
 

      In a typical cryptosystem utilizing a block cipher, the cryptanalysis will typically 

start with a focus on the primary inputs and outputs as potential sources of information 

for an attack. These include the plaintext input, the secret key, and the resulting 

ciphertext output. When the device is used in real world, side channels come in to 

existence and they might leak information about the device’s operation states or might 

also correlate with the secret key which can be exploited by an attack. The following 

figure illustrates the typical side channels in a system. [9] 
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Figure 1.5: Side channels in a system [9] 

 

Power analysis attack are the most common and power side-channel analysis attack that 

utilizes information leaked by the power supply of a system during its operation. These 

attacks intend to find a correlation between the instantaneous power consumption and the 

internal state of a system.  

It can be decomposed into the following steps:  

1. Identify and establish a relationship between secret key and the instantaneous power 

consumption. Also need to determine the required inputs to the system, the output values 

to be measured, and when to capture them.  

2. Try to Extract the state of the system by measuring and recording the items identified in 

the previous step including the power consumption the measurements called the traces can 

be collected in a non-invasive manner when the operation is performed by the device. [10] 
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3. Evaluate the relationship between the measured items by processing the extracted 

information.  

       At an algorithm level, execution of different operations consumes different amounts 

of power. This difference is generally independent of the data being manipulated. Hence, 

by examining the power trace, it might be possible to infer what operations are being 

performed. For instance, Figure below shows the instantaneous power consumption of a 

device while it performs the Data Encryption Standard (DES) operation. The 16 individual 

rounds of DES are clearly visible from the repetitive patterns. However, the individual data 

bits being manipulated in the cipher cannot be visually determined. 

 

Figure 1.6: Power Tarce of DES[1] 

 

       Despite not being able to directly ascertain data values, this form of analysis can be 

still be useful. It can be used to setup more powerful attacks by identifying the point within 

a cryptographic operation at which to attack.  

Differences in instantaneous power consumption can be related to the bits that are being 

manipulated as well. When the bit values change the hardware consumes different amounts 
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of power but at a lower scale [12]. These variations can be monitored and the bit values 

can hence be determined and therefore, the secret keys in the ciphers get compromised. 

However, owing to the subtle the power variations, detection is more difficult. It would 

require modifications to the hardware and some statistical techniques to find and correlate 

the individual bit values. It should be noted that unlike physical attacks, power analysis 

attacks are non-invasive, easily-automated, and can be mounted without any prior 

knowledge of the design of the target device also, these attacks cannot generally be detected 

by a device since the adversary can also be passive.  

 

1.3.1 Simple Power Analysis (SPA) 

       

      The most basic form of power analysis is the Simple Power Analysis (SPA). This 

consists of a process of examining power traces for large scale differences which are 

caused by the operations being performed.  

      It has been shown that in some applications, it is possible to determine which software 

instructions are occurring or possibly which data bits are being changed [1]. In a worst 

case, situation, it may be even be possible to determine the data bit values of secret 

information. Implementations where these differences are dependent on data values being 

manipulated are more vulnerable to an attack. This attack is very effective when an attacker 

has unlimited access to perform many encryption or decryption operations a device and 

also when the algorithm is known. 
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1.3.2 Differential Power Analysis (DPA) 

 

        Our computers and microchips on smart cards leak information about their 

functionality while they execute their processes. Modern cryptographic devices are realized 

in hardware using semiconductor logic gates, which are made from transistors. When 

charge is applied to or removed from transistor’s gate, electrons flow in the silicon substrate 

consuming power and also produced electromagnetic radiation. To measure a circuit's 

power consumption, a small resistor is inserted in series with the power or ground input. 

The voltage difference across the resistor divided by the resistance yields the current which 

depends on the operation being performed and the bit values being manipulated. [9]  

                                              

      In addition to large-scale power variations due to the instruction sequence, there are 

effects correlated to data values being manipulated. These variations tend to be smaller and 

are sometimes overshadowed by measurement errors and other noise. In such cases, it is 

still often possible to break the system using statistical functions tailored to the target 

algorithm. [10]The DPA selection function  D(C, b, Ks) is the value of an AES intermediate 

state which is noted before it is fed to the next state for ciphertext  C, K is the AES key 

used for that computation and  b is the bit being used for separating sets. The attacker then 

observes m operations and captures 𝑇1:𝑚[1:k] and also notes down the cipher texts 𝐶1:𝑚.  

 

      Given the 𝑇1:𝑚[1:k] power traces and corresponding ciphertext values C1:m two groups 

of traces are constructed: one where D(C, b, Ks) = 0 and another where D(C, b, Ks) = 1. 

Next the attacker computes a k-sample differential trace ΔD[j] by finding the difference 



13 
 

between the average of traces for which D(C, b, Ks) = 1 and the average of traces for which 

D(C, b, Ks) = 0. Therefore ΔD[j] is the average over 𝐶1:𝑚of the effect due to the value 

represented by the selection function on the power consumption measurements at point j. 

The DPA algorithm is shown in in the below equation.[9] 

 

 

 

      If the key guess Ks is correct, the average trace for D(C, b, Ks) = 1 will be slightly 

higher at the point of correlation and the average trace for D(C, b, Ks) = 0 will be slightly 

lower. Therefore the bit computed by the selection function D(C, b, Ks) will equal the 

actual value of target bit b with probability P = 1. It is effectively correlated in this case to 

what was computed by the target device. If the key guess Ks is incorrect, the bit computed 

by the selection function D(C, b, Ks) will equal the correct bit value with probability P = 

½ or half the ciphertexts. It is effectively uncorrelated in this case to what was computed 

by the target device. [9] 

 

      Hence it is imperative from this section that the dependence of the device’s power trace 

on the bit values being manipulated and the function(C) being implemented in the 

hardware. Therefore, to make the analysis complex, the circuit C can be garbled so that the 

function is now dependent on the garbling keys which can be changed using a simple 
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hardware like LFSR at requisite periods. In the presence of garbling the power trace at any 

state for a given set of inputs to the garbled circuit GC of C would depend on the garbling 

keys and the bit values being manipulated in the current state hence if the garbling keys are 

manipulated even by a single bit the above analysis would fail. This has been proved in 

chapter 4 of this research. 

 

1.4 Advanced Encryption Standard(AES) 

      AES is a symmetric-block-cipher algorithm that accepts 128-bit input plain text and 

outputs a 128-bit encrypted text. The data is arranged and processed in a 4x4 matrix each 

field of the matrix is comprised of 8 bits. 

 

Figure 1.7: input 128-bit text to 4x4 state matrix [9] 

 

The encryption process is broken in to 4 steps: sub-bytes, shift-rows, mix-columns and 

add-Round-key.  Each round also needs a unique key generated by the key generation logic. 
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Figure 1.8: AES algorithm flow [13] 

      The arithmetic corresponding to various operations of the algorithm are performed in 

the finite field GF(2^8). Hence the addition and subtraction are performed modulo 2 [9]. 

Sub-bytes: It’s a non-linear transformation in which each byte in the state matrix is 

replaced by the corresponding byte from an S-box table [9]. The S-box is as shown below: 

Figure 1.9: AES S-box [14] 

128-bit

Plain text
128-bit

encrypted text
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Shift-rows: This step shifts the rows of state to provide a horizontal diffusion. The first 

row is left as it is, second row is shifted left by one position, the third row is shifted left by 

two positions and the fourth row is shifted left by 3 positions. 

Figure 1.10: Shift-rows transformation [13] 

Mix-Columns: The Mix-Columns transformation treats each word as a four term 

polynomial in a Galois Field GF(2^8) to provide vertical diffusion. Each polynomial is 

multiplied modulo x^4 + 1 with a fixed polynomial (3x^3+x^2+x+2). This is the most 

processing intensive transformation in AES since it involves a multiply operation. [9] 

Figure 1.11: Mix-Columns Step [13] 
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Add-Round-Key: It is a bit wise OR operation between the key generated for that round 

and the output of that round. 

Key generation schedule: the input 128 bit cipher key w[0] to w[3] is used to generate the 

round key 1 which is used in the add round key operation and then used to generate round 

key 2. This process is continued till round key 10 is generated. [2] 

Figure 1.12: Key generation schedule [13] 

Hence, for a 128-bit input plain text and cipher key, AES has 10 rounds and every round 

undergoes the steps described in this section. The repetitive operations establish a pattern 
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in the computation which help an adversary to identify the algorithm from its power trace 

using SPA.   

      In this research, the iterative property of AES is exploited to adopt a pipelined approach 

to its garbled circuit implementation in hardware making it practically usable and more 

leakage resilient.  The detailed implementation is explained in chapter 3 and the results 

have been discussed in chapter 4.   
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Chapter 2 

Literature Review 

In Chapter 1 the preliminaries of Garbled Circuits and DPA algorithms have been 

discussed. This chapter focuses on peculiar aspects and limitations of the previous work 

on the implementation of Garbled Circuits in hardware.  

2.1 Token implementations 

      Fig 2.1 illustrates a token based client-server system. The client must authenticate itself 

with the access token every time it needs to access the server.   

Figure 2.1: Token implementation in a typical client-server system [15] 
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The refresh token is a request placed by the client to the authentication server which then 

responds with a access token. The client uses access token to communicate with the server. 

Without the correct access token, the server wouldn’t identify the client as a legitimate user. 

 Majority of the previous works on cryptographic primitives focus on use of AES-128 or 

DES as the function (C) to be garbled. Other circuits considered relate to higher level 

applications, like database search or bioinformatics, rather than tasks required of a 

cryptographic token. [pinkas] provide the first software based feasibility results of GC 

constructions. Let’s delve further in to some token based implementations.   

2.1.1 One-time Programs(OTP) 

      In section 1.2 (GC protocol description), it has been stated that to provide the receiver 

R with garbling keys for his inputs, an Oblivious Transfer(OT) is run between sender S 

and receiver R. The OT is hence considered to be the only interaction between S and R. In 

further research, it has been suggested to extend Trusted Platform Module(TPM) to 

implement non-interactive OT for non-interactive Circuit garbling. Hence One-Time 

Programs(OTP) were introduced. Instead of a semi-honest R, this approach considers 

malicious receivers and can be viewed simply as Yao's Garbled Circuit (GC), where the 

oblivious transfers (OT) are implemented with One- Time Memory (OTM) tokens. An 

OTM token 𝑇𝑖 is a simple tamper-proof hardware, which allows only a single query of one 

of the two stored garbled values. A tamper-proof one-time-settable bit bi which is set as 

soon as the OTM is queried can also be used. OTM-based GC execution can be non-
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interactive; the sender can send the GC and corresponding OTMs to the receiver, who will 

be able to execute one instance of SFE on any input of his choice. Finally, GC with OTP 

is inherently a one-time execution object (generalizable to k-time execution by repetition). 

[7] 

        The advantage of this approach is that very little protection against side-channel attacks 

is required in the circuit’s implementation and the disadvantage is the limited number of 

GC executions: consider a real-fife use-case where the token is a credit card rendered 

unusable after k number of uses; this is not practical. [15]. 

2.1.2 Out sourcing 

     Consider E, a cloud computing provider; the role of sender is split between a secure 

hardware token GS and some other party GU (e.g., a desktop workstation). The idea is for 

GU to generate Bf, which is passed to GS and translated (securely) into a garbled 

circuit(GC). The GC can then be evaluated by E, with the overall effect of securely out-

sourcing computation from GU to E. This scenario is advantageous in the sense it allows a 

flexible choice of f (wrt. the token) and is very speed- and memory-efficient. However, it 

has a relatively high hardware requirement. [15] 

2.1.3 Observation 

      To the best of our knowledge almost all the previous implementations are either semi-

honest models or included interaction between S and R between protocol execution [276], 

which precluded the receiver R from choosing his input adaptively, based on given (and 
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even partially evaluated) garbled circuit. This possibility of adaptively chosen inputs 

results in possible real attacks by a malicious receiver R in the non-interactive setting. In 

our implementation, S and R are assumed to be non-interactive and R can be semi-honest 

or malicious. S is the manufacturer who makes the device and gives it to R. R can be either 

a naïve user who can be exploited by an adversary who is trying to guess his AES key. R 

does m encryption operations with his AES key and the adversary tries to apply the DPA 

algorithm on the power traces of the operations. In Chapter 4 this scenario is replicated and 

it is concluded that the current implementation though allows R to choose his inputs but is 

leakage resilient. 

2.2 Memory Utilization and Design Process 

      One of the major limitations of previous garbled-circuit implementations is the memory 

required to store the entire garbled circuit in the memory, not to forget which includes the 

encoding logic and keys for each gate. However, there is no need, for either the circuit 

generator or evaluator to hold the entire circuit in memory. The garbled circuit generation 

and evaluation processes can be overlapped in time (pipelined), eliminating the need to 

store the entire GC in memory. In this research, the iterative property of AES is used to 

create pipelined states and reuse the existing hardware. Also, since the operations done in 

each round are also redundant, we can also create more pipelines along the design process 

to reduce the hardware density further.  However, it should be noted that pipelining and 
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hardware reuse decreases the latency of the hardware but would deteriorate the throughput. 

The designer should consider this trade-off during the design process.  

      Majority of the previous works [16] unlike [17] are software implementations of GC 

but this research uses Verilog HDL and is compiled and synthesized for a cyclone IV 

FPGA. We have adopted an intuitive power analysis procedure that uses a combination of 

3 tools in the Quartus II software to generate the power trace for analysis. The details of 

the implementation are discussed in chapter 3.  
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Chapter 3 

Proposed Methodology 

      Following the deficiencies mentioned in the last chapter, this thesis focuses on 

reusing the garbling keys at various levels of the circuit. Also, from the iterative 

property of AES (discussed in chapter 1) it is intuitive that it is unnecessary to 

generate and store the entire circuit at once, the circuit generation is pipelined and 

reused which decreases the total logic elements required for implementation on an 

FPGA, the critical path and the latency of the execution of the algorithm and the 

power consumed by the FPGA; this has also been explored in [5]; however, we 

pipeline the individual iterations as well.  

       The above two approaches might seem to compromise the resilience of the 

implementations against DPA attacks but the concept of red and blue gates discussed in the 

following section intended to make it resilient to the attacks. 
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3.1 Concept of Red and Blue gates 

      From the discussion in section 1.2 of this thesis, it is imperative that the hardware 

implementation of garbled circuits requires 6 keys to implement each 2 input gate in 

hardware (2 for each input wire and 2 for the output wire).  The bank of gates required to 

implement AES algorithm is divided in two sets of gates named as the red and the blue 

gates. Let us assume we have a 32-bit garbling key(k) for implementing a simple circuit 

shown below: 

Figure 3.1: Sample circuit for implementation 

key k is divided in to 4 keys k1, k2, k3, k4 of 8 bits each. Blue gates have their inputs 

garbled with keys k1 and k2, outputs garbled with keys k3 and k4 as shown below: 

Figure 3.2: Garbled Blue gate 

In the above figure, key k1 is used as the garbled representation of the bit ‘0’ and k2 is used 

to represent bit ‘1’ in both in1 and in2. Key k3 is used to represent bit ‘0’ in the output wire 
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and k4 is used to represent bit ‘1’. Red gates have their inputs garbled with keys k3 and k4, 

outputs garbled with keys k1 and k2 as shown below: 

Figure 3.3: Garbled Red gate 

In the above figure, key k3 is used as the garbled representation of the bit ‘0’ and k4 is used 

to represent bit1 in both in1 and in2. Key k1 is used to represent bit 0 in the output wire 

and k2 is used to represent bit ‘1’.  let’s call k1 and k2 as blue keys and k3 and k4 as red 

keys since they represent the inputs of corresponding garbled gates. 

      The output of every blue gate in the circuit is fed to the input of a red gate vice-versa. 

Let us consider the example of garbling the sample circuit in fig 3.1. 



27 

Figure 3.4: Sample circuit implemented using Garbling technique 

From the above explanation of blue and red gates it should be noted that if the circuit 

alternates between blue and red gates, there is no conversion between red and blue input 

keys would be required. 

3.2 AES implementation with blue and red gates 

     In Section 1.4, all the steps involved in AES algorithm implementation were 

discussed. To summarize; substitution, row transformation, mix-columns, add key were the 

steps that were being repeated in the first 9 rounds. Their garbled implementation is 

discussed in this section. 

3.2.1 Process Flow 

      Fig 3.5 depicts the process flow of this thesis and it is followed by a brief explanation 

of the design procedure. 
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Figure 3.5: Process flow followed in this research 

      The underlying algorithms have been discussed in detail in chapter 1. A flow diagram 

was first designed for control and datapaths of the design: a Finite State Machine (FSM) 

was created for the design with requisite number of states. The FSM design and FSM state 

logic was then coded using Verilog HDL in Quartus II editor. The FSM initially had 4 

states; but the multiplier being a complicated operation, created a high critical path and 

area as compared to the other operations, this unnecessarily increased the interconnect 

length and the frequency of operation of the design. Hence, to reduce the critical path and 

number of logic elements required for the design, area intensive components like 

multipliers have been reused; which means that the design has been pipelined in the 

mixcolumns step.  This has increased the number of states in the FSM to 40.   Pipelining is 

discussed in section 3.2.2. 
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       As discussed in chapter 2, the entire circuit need not be created when the device has 

been manufactured. The same hardware module can be reused at different instances(states) 

of the device operation with the inputs corresponding to that state. For Example: An xor 

module (hardware component) can be used in the mixcolumns step and then reused in the 

add-round-key step with different inputs. This insight reduces the hardware utilization but 

increases the number of FSM states and decreases the throughput the device. This should 

be noted by the designer and he must make sure his design meets the timing constraints 

placed by the consumer. Initially the xor gates and multiplier components were designed 

(discussed in section 3.2.3): separate .v files are created, compiled and verified. The .v files 

for each module should be included in the Quartus project to be able to instantiate the 

components whenever required. This essentially reduces the over-head of repeating the 

same code snippet in the main design and makes the code legible.  

      The main design (called the top-level module) along with all the sub modules ( .v files) 

is then compiled (analysis and synthesis, EDA netlist generation) for Cyclone IV GX FPGA 

device using quartus_map and quartus_eda. The next step is to perform a functional 

verification and generate a .vcd file using Modelsim simulator. A testbench file 

corresponding to the top-level module is written; the ‘dumpvars’ command is used in 

testbench file to dump all the signal activities for the current simulation in to a .vcd file 

which is used as an input to the Power analysis. Refer [18] for Altera-Quartus and 

Modelsim flow. The power analysis procedure is discussed in section 3.4 of this chapter.  
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3.2.2 Pipelining and Design reuse 

      Fig 3.6 and Fig 3.7 depict how the area and interconnect length of a design decrease 

with pipelining. Since the inputs and outputs are registered, at different FSM states we give 

different inputs and get different outputs, which means that though the component has been 

instantiated only once it has been reused decreasing the area, increasing the frequency of 

the design and the critical path. 

Fig 3.6: Before Pipelining [19] 

Figure 3.7: After Pipelining [19] 

3.2.3Preliminaries 

      The modules for garbled blue xor gate(G(B(xor)), garbled red xor (G(R(xor)) gates are 

created to reuse them when ever needed. AES has GF (2) multiplication operations which 

can be implemented using xor gates and shift operations. The next task is to create 
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multipliers using the above created xor gates and shifting operations. For multiply by 0x02 

operation, Garbled blue(G(B(m2)) and red (G(R(m2)) components are created. For 

multiply by 0x03 Garbled blue (G(B(m3)) and red (G(R(m3)) components are created. 

3.2.4AES rounds 

       AES is a block cipher, the plain text divided in to 16 plain text is garbled using keys 

k1 and k2. The garbled text is then divided in to 16 blocks and stored in a 4x4 matrix like 

the original AES implementation. Each block is of 64-bit. 

a00 a01 a02 a03 

a10 a11 a12 a13 

a20 a21 a22 a23 

a30 a31 a32 a33 

Figure 3.8: Output after row transformation 

• Round 1 to round 9

The AES sbox is used to carry out the substitution operation followed by a row 

transformation. The output at this point, a 4x4 matrix garbled with keys k1 and k2 is fed as 

an input to the mixcolumns step. The above matrix is to be multiplied by AES 
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multiplication matrix. In every column one block is multiplied by 0x02; (G(B(m2)) is 

instantiated for this operation and one block is to be multiplied by 0x03, (G(B(m3)) is 

instantiated for this operation. Multiplication by 0x01 returns the same block. Now, a00 is 

replaced by m00 and  a01 by  m01  and so on. 

Figure 3.9: Summarizing the operations on column 1 
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Similarly, other parts of the matrix are also updated with m values which are garbled 

in keys k3 and k4. 

m00 m01 m02 m03 

m10 m11 m12 m13 

m20 m21 m22 m23 

m30 m31 m32 m33 

Figure 3.10: Output of mix columns step matrix m. 

Key generation: 

User’s key is used to generate key for each round as discussed in chapter2. 

The key matrix is garbled with red keys (k3 and k4) and is xored using G(R(xor)) 

with the above m matrix to give the sate matrix s; this matrix is the input to the next 

round. 

• Round 10

In round 10, the mixcolumns step output matrix m is the desired output. So, it is ungarbled 

and the output is made available at the output register. 

3.3 Power Analysis 
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      This section focuses on various factors effecting the power consumption and then the 

effect of our methodology described in the previous section is discussed. The two major 

sources of power consumption in FPGAs are: 

• Static power: It is due to leaking currents when the device is standby. It increases

with a decrease in size of the transistors used to build the device. Changing the

inputs wouldn’t impact static power much because area of the design isn’t effected.

• Dynamic Power: Dynamic power dissipation during charging and discharging of

internal capacitances in the logic array and interconnect networks of an active

device. Hence this depends on the design implemented o the device and the signal

activity during its execution. Hence this research is uses dynamic power

consumption to perform the analysis. [20]

3.3.1 Signal Activities 

        In estimating power consumption, the behavior of each signal involved the design is 

a primary factor. The two vital statistics used for estimation are the toggle rate and the 

static probability. 

        The toggle rate of a signal can be defined as the average number of times that signal 

changes its value per unit of time. The units for toggle rate being transitions per second, 

where a transition is a change from 1 to 0 or 0 to 1. The static probability is the fraction of 

time the signal hold logic 1 during the period of device is being analyzed. 
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3.3.2 PowerPlay Power Analyzer: Power Analysis 

      When the FPGA design is complete, accurate device power consumption can be 

estimated with the PowerPlay Power Analyzer tool in Quartus II software. The 

PowerPlay Power Analyzer tool provides a flexible interface for specifying signal 

activities, which reflects the critical importance of using representative signal activity 

data from the .vcd files during power analysis. Therefore, data sources used are 

simulation results (.vcd files); user-entered node, entity and clock assignments, user-

entered default toggle rate assignment. 

Figure 3.11: High-level Power Analyzer Flow [20] 

       The Power Analyzer lets designers mix and match signal activity data sources on a 

signal-by-signal basis. Intel-Altera claims that using simulation results is the most accurate 

way to generate signal activities [20]. This, in turn, is used to accurately estimate the power 

consumed by the device during its operation. This flow provides the highest accuracy, as 

all node activities reflect actual design behavior, provided that supplied-input vectors are 

representative of typical design operation. 
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      The .vcd file is added as an input file for the Power analyzer. However, analyzer at this 

point will only report the average power consumption for the entire simulation time; to 

perform a power analysis a data set with high sampling rate is required. Quartus II provides 

an option to limit the vcd period in the power play settings dialogue box. A screen shot is 

shown below: 

Figure 3.12: Powerplay .vcd period limit screen shot 

In this research, the .vcd period is limited to 1 ns interval, the power analyzer report is 

generated and the dynamic power consumption values are noted. 

3.3.3 Trace generation 

      It has been discussed in chapter 1 that for DPA, power traces T for m input plain text 

samples and the process is repeated with different AES keys and garbling keys for the 

analysis. Generating power reports for every ns interval is indeed a herculean task and 

hence in this research the process was automated and this section provides an insight on 

the process automation.  
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      An Ubuntu 16.04 system has been used with Quartus and Modelsim installed in it. 

Quartus also has a command line interface and tcl scripting option. However, the power 

analyzer command line doesn’t have command line option for limiting the .vcd period. 

Therefore, keyboard and mouse automation has been done to using an in-built tool called 

the ‘xdotool’; a bash script is written to automate the .vcd file selection, .vcd time period, 

starting the power analysis process, entering the power consumption values in to the 

spreadsheet, incrementing the vcd period in the dialogue box shown in figure and starting 

the analysis again. The start time and end time of the vcd period are incremented by 1ns in 

every repetition till the end time is equal to the end of vcd period. The values stored in the 

spreadsheet are then plotted to generate the power traces for that simulation. If a windows 

system is to be used, the automation can be done in python using the pywinauto package.      

      The above procedure has been used to generate power traces T for m input plain text 

samples with different AES input keys and Garbling keys as required. The traces are then 

used for analysis and the analysis and results are described in section 5. 
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Chapter 4 

Results and Discussion 

      This chapter focuses on the Differential Power Analysis (DPA) results generated using 

the methodology described in chapter 3, the basic idea of DPA has been discussed in 

chapter 1 The following section discusses the implementation. 

4.1 Differential Power Analysis on AES key 

      DPA analysis has the following steps:  Simple Power Analysis, Record encryption m 

Power traces, align traces based on Selection bit, Calculate and store the differential trace, 

use an AES key guess and record m Power traces again with this key, sort the traces in to 

their respective sets marked in the previous analysis.  If the key guess was correct, the 

differential of the differential traces would look like the actual trace else there would be 

unexpected spikes in the aforementioned trace. 

Simple Power Analysis(SPA): Most basic form of Power Analysis. The attacker would be 

able to identify the algorithm being used in the encryption based on the SPA trace. The 
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presence of garbling makes SPA almost impossible, but in this research, it is assumed that 

the attacker has a knowledge of the algorithm being used(malicious Receiver R). 

Differential Power Analysis(DPA): This is a more powerful and detailed attack and uses 

a statistical approach as discussed in chapter1. m samples of random input plain texts have 

been used for analysis (m=10 in this research). In each analysis, the output matrix of the 

1st round of AES is monitored. As mentioned in chapter 1, a bit b is monitored form the 

output state matrix to sort the traces in to set 0 and set 1, the DPA selection function D(C, 

b, Ks) is used to calculate the value of a bit b for a given circuit C and AES key Ks; the 

96th bit of the output state matrix (a random assumption) has been used as bit b in this 

research. However, the simulation software Modelsim has an option called the wave 

window where the values stored in a register/wire during any point of the simulation 

process can be viewed. Hence instead of calculating a function D(C, b, Ks), the values of 

bit b have been noted at the end of each simulation. 

4.1.1 Power trace with Original keys 

      AES key K1(original AES key) and garbling key gk1 are used in this step. For each of 

the ten inputs keys K1 and gk1 and generate power traces.(T1...T10). Based on the bit b 

the traces are sorted in to two sets: set 1 (T1, T4, T6, T8) where the bit was ‘1’ during the 

computation and set 0 (T2, T3, T5, T7, T9, T10) where the bit was ‘0’ during the 

computation. Then average the traces in each set and generate average trace for set 0 and 

average trace for set 1. 



40 

Figure 4.1: Set 0 average Power trace (gk1 and K1) keys 

Figure 4.2: Set 1 average Power trace (gk1 and K1) keys 

Differential trace for set 0 (Fig: 4.1) and set 1 (Fig: 4.2) traces is plotted 
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Figure 4.3: Differential Trace of Fig: 4.1 and Fig: 4.2 traces for (gk1 and K1) keys 

4.1.2 Power trace for AES key guess 

       The above analysis is repeated with AES key K2 and garbling key gk1 to generate 

power traces, T`1, T`2 …. T`10.  Note that K2 and K1 differ in just one bit (108th bit) which 

is a random choice. This time the bit is not used to sort them in to sets: they are placed in 

to the same sets as in step 1.  The average power traces for set 0 and set 1 are calculated. 
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Figure 4.4: Set 0 average Power trace (gk1 and K2) keys 

Figure 4.5: Set 1 average Power trace (gk1 and K2) keys 
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Differential trace for set 0 (Fig: 4.4) and set 1 (Fig: 4.5) traces is plotted. 

Figure 4.6: Differential Trace of Fig: 4.4 and Fig: 4.5 traces with (gk1 and K2) keys 

It would be difficult to observe and analyze the difference in Fig 4.3 and Fig 4.6 at a glance; 

therefore, a differential trace of the above two differential traces is plotted in Fig: 4.7 to 

observe the difference in the instantaneous power values. Ideally if K2 and K1 were 

identical, this differential (Fig: 4.7) should have no peaks since the trace then corresponds 

to the difference of identical values. 
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Figure 4.7: Differential of differential traces K1, K2 AES keys and gk1 garbling key 

The peaks indicate that the keys K1 and K2 were different it would be an easy guess for an 

attacker to know that his key guess was wrong and when he toggles the 108th bit which he 

was trying to guess, the differential trace wouldn’t have those peaks and hence he gets to 

guess the correct key value. For a comparison, the above analysis has been repeated with 

another key K3 where K3 and K1 differ in two bits (108th bit and 126th bit again a random 

choice). The differential of the differential traces is plotted in Fig:4.8 and these peaks are 

evidently higher than the peaks in Fig: 4.7. Hence, an intelligent attacker would toggle his 

126th bit, re-do the analysis and then he would have a differential similar to Fig: 4.7 and 

toggles the 108th bit to get the AES key even without having access to the device. 
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Figure 4.8: differential for differential traces K1, K3 AES keys and gk1 garbling key 

4.2 Differential Power Analysis on Garbling key 

      This section explores a possibility of the attacker trying to guess the garbling key. 

4.2.1 DPA on garbling key without reusability 

      In 4.2.1 and 4.2.2, we assume the scenario of a malicious user, he knows his AES key 

(worst case scenario) and is trying to guess garbling key to get a fair idea of the system 

implementation and may be reverse engineer! Also, it should be noted that garbling has 

been implemented without OTPs. 
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      In 4.2.1, we consider the scenario where the red and blue gate concept is not used, i.e., 

no reusability and the circuit construction is similar to the concept in Fig 11. In this case a 

long garbling key is used and each wire in the circuit has unique garbling keys. Changing 

the design to remove reusability might create arbitrary results in a comparative analysis 

with our original DPA trace (fig 20). In our approach to key reusability, we have a garbling 

key gk1 that repeats itself to garble every gate in the circuit hence the garbling key for the 

circuit we used in section A is actually a large key which has 32-bit gk1 being repeated 

periodically ({gk1, gk1, gk1...gk1}). In thisanalysis, we need a garbling key whose 

hamming distance is 1 from the original long key. We hence replace gk1 with gk2 in the 

last operation (add-round key), the first 3 operations have gk1. Essentially the analysis is 

now between the traces generated with key1= {gk1, gk1,…gk1} and key2 ={gk1, 

gk1,…gk2} where key2 and key1 differ only by 1 bit. Fig 22 is the differential trace for 

the current scenario and Fig 20. It is evident that the spikes are only in the last part of the 

trace where gk2 is used for garbling. IT would be an easy guess to attacker to know the 

ambiguity and replace the corresponding bit in key2 to make it similar to key 1. 

Figure 4.9: Differential trace for key 2 and key 1 
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      A spike would be seen where ever the key is used and the attacker would know that 

the hamming distance between GK1 and GK2 is > 0 and he toggles the corresponding 

bit. Hence in this case, attack has been successful. 

4.2.2 DPA on garbling key with reusability: using red-blue concept 

     In 4.2.2, we use our red blue gates for reusability and change garbling key by 1-bit: we 

use gk2 to garble the circuit. Hence, AES key K1 (original AES key) and garbling 

key guess gk2 are used in this step (reusability requires us to use gk2 for all the 

operations rather than using it in 1 operation). For each of the ten inputs, keys K1 and 

gk2 and generate power traces. (T``1, T``2…T``10). The traces are sorted in to set 1 

and set 0 based on section 4.1.1; 1.e., set 1 (T``1, T``4, T``6, T``8) and set 0 (T``2, 

T``3, T``5, T``7, T``9, T``10). Then average the traces in each set and generate average 

trace for set 0 and average trace for set 1. 

      AES key K1(original AES key) and garbling key guess gk2 are used in this step. For 

each of the ten inputs, keys K1 and gk2 and generate power traces. (T``1, T``2...T``10). 

The traces are sorted in to set 1 and set 0 based on section 4.1.1; 1.e., set 1 (T``1, T``4, 

T``6, T``8) and set 0 (T``2, T``3, T``5, T``7, T``9, T``10). Then average the traces in each 

set and generate average trace for set 0 and average trace for set 1. It should be noted that 

gk2 differs from gk1 by just 1-bit (LSB). 
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Figure 4.10: Set 0 average Power trace (gk2 and K1) keys 

Figure 4.11: Set 1 average Power trace (gk2 and K1 ) keys 
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Figure 4.12: Differential Trace of the set 0 and set 1 traces (gk2 and K1) keys 

A differential trace of the above two differential traces 4.11 and original differential 4.3 is 

plotted in Fig: 4.12 to observe the difference in the instantaneous power values. 
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Figure 4.13: differential for differential traces K1 AES key and gk1 and gk2 garbling 

keys 

       It is evident that for a 1-bit change the peaks are all scattered owing to the reusability 

of the garbling key amongst the red and blue gates. A similar analysis is repeated with gk3 

which differs from gk1 by 3 bits (random choice). It can be observed that the plot is again 

scattered and there is no correlation with the number of bits changed.  Hence, even a 

statistical analysis like DPA fails to identify which key is closer to the actual key. 

      In the current analysis, it has been assumed that the attacker has a knowledge of the 

AES key and must guess the garbling key. However, in real world the problem would be 

to guess the AES key as well as the garbling key; from the above analysis, it is imperative 

that the presence of a garbling key that is varied periodically would result in an arbitrary 
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differential trace.  This adds up a new level of complexity to DPA: to guess the garbling 

key and then guess the AES key.  

Figure 4.14: differential for differential traces K1 AES key and gk1 and gk3 garbling 

keys 
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Figure 4.15:  Differential trace set 0 and set 1 for gk2 and gk1 garbling keys AES key K1 

Figure 4.16: Differential of the differential traces in figure 4.14 and figure 4.3 
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4.3 Conclusion and Future Work 

      This research hence establishes a proof of concept that the garbling key when changed 

at run-time, randomizes the power trace, owing to its reusability in accordance with the 

concept of red and blue gates. 

      Parameterized Verilog modules have been used and the garbling keys were manually 

changed in the testbench file before every simulation to generate the value change dump 

( .vcd) files. But a key generation circuit needs to be added to the system that would 

automatically refresh the garbling key periodically. There are several ways to implement 

this in a simple hardware which can be inferred from [21]. 

       This research was focused on the implementing the idea and generating the functional 

simulation results. Its performance in hardware over a period of time is yet to be validated. 

The process of generating power traces was software-based. Though Altera-Quartus claims 

the tool to be accurate, it is recommended to perform the analysis using actual devices 

(FPGA)s and Oscillospes to observe and capture the power trace as explained in [22]. 



54 

Bibliography 

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis.  Proceedings of

CRYPTO ’99, Lecture Notes in Computer Science, vol. 1666, Springer, pp. 388–

397, 1999.’

[2] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete results.

In    Cryptographic Hardware and Embedded Systems (CHES'01), volume 2162 of

LNCS, pages 251{261. Springer, 2001.

[3] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of

product ciphers. In European Sumposium on Research in Computer Security

(ESORICS '98), volume 1485 of LNCS, pages 97{110. Springer, 1998.

[4] C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation

and secure autonomous mobile agents. In International Colloquium on Automata,

Languages and Programming (ICALP'00), volume 1853 of LNCS, pages 512{523.

Springer, 2000.

[5] Yan Huang. Faster Secure Two-Party Computation Using Garbled Circuits.

[6] Elisabeth Oswald. Power analysis attacks. Crypto Group, University of Bristol.

[7] Kimmo Jarvinen and Vladimir Kolesnikov. Garbled Circuits for Leakage-

Resilience: Hardware Implementation and Evaluation of One-Time Programs. In

Cryptographic Hardware and Embedded Systems. CHES, 2010.

[8] Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR

Gates and Applications. Bell Laboratories.

[9] Kevin Meritt. Differential Power Analysis Attacks on AES. Cryptography II.

VCSG-706, May, 2012.



55 

[10] F.-X. Standaert, Introduction to Side-Channel Attacks.  In Secure Integrated

Circuits and Systems, pp. 27–44, Springer, 2009.

[11] K. Tiri, M. Akmal, I. Verbauwhede. A Dynamic and Differential CMOS Logic with

Signal Independent Power Consumption to Withstand Differential Power Analysis

on Smart Cards. In Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), Florence,

Italy, 2002, pp. 403–406.

[12] K. Smith Jr., Methodologies for power analysis attacks on hardware

implementations of AES.  Master's thesis, Rochester Institute of Technology, 2009.

[13] National Institute of Standards and Technology (NIST) of U.S. Department of

Commerce. FIPS 197: Advanced Encryption Standard, Nov. 2001.

[14] [online] https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-

them/

[15] S. Hoerder, K. Jarvinen and D. Page. On secure embedded token design. In 
Information Security Theory and Practice (WISTP), 2013.

[16] Dahlia Malkhi, Nosam Nisan, Benny Pinkas and Yaron Sella. Fairplay- Secure 
Two-Party Computation system. In USENIX Security, pages 287-302. USENIX, 
2004.

[17] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider 
and Farinaz Koushanfar. Tinygarble: Highly compressible and scalable sequential 
Circuits.

[18] Altera. Getting Started with Quartus II Simulation Using the ModelSim-Altera 
Software. User-guide. June,2011.

[19] [online] http://web.mit.edu/6.111/www/f2016/handouts/L09.pdf

[20] [online] https://www.altera.com.cn/zh_CN/pdfs/literature/hb/qts/qts_qii53013.pdf

[21] William H; Teukolsky, Saul A; Flannery, Brian P; Vettering, William T. Numerical 
recipes in C++: the art of scientific computing. Cambridge University Press, 2002. 

https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
https://www.altera.com.cn/zh_CN/pdfs/literature/hb/qts/qts_qii53013.pdf
http://clemson.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED9EEERwTgXnBwQRX0a2dkn6AWMyhsMX97T3kU8mrHM49_97adp1guDb5eNKmrv0jtz1dwBPaWIHkR4wapyMKE8cpzLX6MhhE-VtU2P47yK2-_sOs8LHFGUEX1cY1T3tCh8tRUVJkxKsVGReoceT9324wBePCCDejHr8kRpMk4u-ZxNRL3B7E6SLAxN01nwipy2YNRcoIYkEJVf4nJ4mufoApfHftV7AeeVVknFQgzYc2fUltOqKDaQ6wFfwEkIB5NORx-FyNNuFeM1q2F-OCHZ4qIuN3dbNjzXxJFKTbtdT1zCfvs4nb7QqoUAlemo0znKjdGZsbnPNGVfKpIJrJ4VDV8F6_0klJlbYmSqtbCyzyHHNHBMOh3J2A0TxgZVxLL1t57H2iH5SsUgJYyOhGe9AG7dhsQngGIvw6h14rrd4PxJ-gRaLIJFq4u1f3HdwWubMlale93D8_bWzD3BSSeMHxYKoaA
http://clemson.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED9EEERwTgXnBwQRX0a2dkn6AWMyhsMX97T3kU8mrHM49_97adp1guDb5eNKmrv0jtz1dwBPaWIHkR4wapyMKE8cpzLX6MhhE-VtU2P47yK2-_sOs8LHFGUEX1cY1T3tCh8tRUVJkxKsVGReoceT9324wBePCCDejHr8kRpMk4u-ZxNRL3B7E6SLAxN01nwipy2YNRcoIYkEJVf4nJ4mufoApfHftV7AeeVVknFQgzYc2fUltOqKDaQ6wFfwEkIB5NORx-FyNNuFeM1q2F-OCHZ4qIuN3dbNjzXxJFKTbtdT1zCfvs4nb7QqoUAlemo0znKjdGZsbnPNGVfKpIJrJ4VDV8F6_0klJlbYmSqtbCyzyHHNHBMOh3J2A0TxgZVxLL1t57H2iH5SsUgJYyOhGe9AG7dhsQngGIvw6h14rrd4PxJ-gRaLIJFq4u1f3HdwWubMlale93D8_bWzD3BSSeMHxYKoaA
http://clemson.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED9EEERwTgXnBwQRX0a2dkn6AWMyhsMX97T3kU8mrHM49_97adp1guDb5eNKmrv0jtz1dwBPaWIHkR4wapyMKE8cpzLX6MhhE-VtU2P47yK2-_sOs8LHFGUEX1cY1T3tCh8tRUVJkxKsVGReoceT9324wBePCCDejHr8kRpMk4u-ZxNRL3B7E6SLAxN01nwipy2YNRcoIYkEJVf4nJ4mufoApfHftV7AeeVVknFQgzYc2fUltOqKDaQ6wFfwEkIB5NORx-FyNNuFeM1q2F-OCHZ4qIuN3dbNjzXxJFKTbtdT1zCfvs4nb7QqoUAlemo0znKjdGZsbnPNGVfKpIJrJ4VDV8F6_0klJlbYmSqtbCyzyHHNHBMOh3J2A0TxgZVxLL1t57H2iH5SsUgJYyOhGe9AG7dhsQngGIvw6h14rrd4PxJ-gRaLIJFq4u1f3HdwWubMlale93D8_bWzD3BSSeMHxYKoaA


56 

[22] Michal Varchola and Milos Drutarovsky. The Differential Power Analysis

Laboratory Setup. IEEE Brno Czech Republic. June, 2012.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Michal%20Varchola.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Milos%20Drutarovsky.QT.&newsearch=true

	Clemson University
	TigerPrints
	8-2017

	Reusable Garbled Circuit Implementation of AES to Avoid Power Analysis Attacks
	Venkata Lakshmi Sudheera Bommakanti
	Recommended Citation


	Abstract
	Dedication
	Acknowledgements
	List of Figures
	Chapter 1
	Introduction
	1.1 Secure Function Evaluation
	1.2 Preliminaries on Garbled Circuit
	1.2.1 Garbled Circuit Protocol
	1.2.2 Algorithm Construction
	1.2.3 Algorithm Evaluation
	1.2.4 GC Example

	1.3 Side Channel attacks: Power Analysis Attacks
	1.3.1 Simple Power Analysis (SPA)
	1.3.2 Differential Power Analysis (DPA)


	Chapter 2
	Literature Review
	2.1 Token implementations
	2.1.1 One-time Programs(OTP)
	2.1.2 Out sourcing
	2.1.3 Observation

	2.2 Memory Utilization and Design Process

	Chapter 3
	Proposed Methodology
	3.1 Concept of Red and Blue gates
	3.2 AES implementation with blue and red gates
	3.2.1 Process Flow
	3.2.2 Pipelining and Design reuse
	3.2.3Preliminaries
	3.2.4AES rounds

	3.3 Power Analysis
	3.3.1 Signal Activities
	3.3.2 PowerPlay Power Analyzer: Power Analysis
	3.3.3 Trace generation


	Chapter 4
	Results and Discussion
	4.1 Differential Power Analysis on AES key
	4.1.1 Power trace with Original keys
	4.1.2 Power trace for AES key guess

	4.2 Differential Power Analysis on Garbling key
	4.2.1 DPA on garbling key without reusability
	4.2.2 DPA on garbling key with reusability: using red-blue concept

	4.3 Conclusion and Future Work

	Bibliography

