
Clemson University
TigerPrints

All Theses Theses

8-2017

Abundance Modeling and Movement of
smallmouth bass in a Regulated Section of the
Broad River, SC
Seth Mycko
Clemson University, seth.mycko@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mycko, Seth, "Abundance Modeling and Movement of smallmouth bass in a Regulated Section of the Broad River, SC" (2017). All
Theses. 2743.
https://tigerprints.clemson.edu/all_theses/2743

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268659779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2743&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2743?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2743&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


ABUNDANCE MODELING AND MOVEMENT OF SMALLMOUTH BASS IN A 

REGULATED SECTION OF THE BROAD RIVER, SC 

A Thesis  

Presented to 

the Graduate School of

Clemson University 

In Partial Fulfillment  

of the Requirements for the Degree 

Master of Science 

Wildlife and Fisheries Biology 

by  

Seth Mycko 

August 2017 

Accepted by: 

Dr. Yoichiro Kanno, Committee Chair 

Dr. Patrick Jodice 

Mr. Jason Bettinger 



ABSTRACT 

Dams and altered flow regimes impact riverine fish. In addition to ecological 

impacts, unpredictable changes in flow influence the ability to access rivers and effectively 

sample fish populations. Fisheries management practices are often influenced by water 

regulation and hydropower generation, thus designing distinct methods of monitoring 

populations in regulated rivers is critical for effective management. Recurrent changes in 

river flow also influence behavior of fish inhabiting the flow-regulated portions of rivers, 

and such individual behavior may ultimately have population-level effects (e.g. fish 

abundance). 

I investigated population abundance and movement of smallmouth bass 

(Micropterus dolomieu) within a regulated portion of the Broad River, SC, located below 

a small hydropower dam. In Chapter 1, I developed a novel approach to estimating bass 

abundance within a 4.2-km section immediately below the dam where fluctuations in 

discharge might influence capture efficiency over different sampling days. The number of 

smallmouth bass was estimated based on mark-recapture data utilizing two gears, angling 

and electrofishing. The closed population assumption was confirmed using radio telemetry, 

and closed population capture-mark-recapture models were fit in the Bayesian hierarchical 

modelling framework with an estimated number of 2,380 bass (95% Credible Interval: 

1,578-3,693) over 200 mm TL. Integrating the two gear types into a mark-recapture study 

can be an effective method for assessing abundance in spatially or temporally 

heterogeneous habitats where changing conditions can cause variable sampling 

environments.  
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In Chapter 2, to inform the sampling strategy to detect a temporal trend in bass 

abundance, I implemented a power analysis comparing the ability to detect a 2.5% or 5% 

annual declining trend in abundance after 5, 10, and 15 years based on various levels of 

sampling effort. The primary interest was to optimize the allocation of effort in terms of 

number of survey occasions within a year and intensity of effort for each survey occasion.  

Results indicated that increased effort intensity of each survey occasion (e.g. more boats to 

be used on each survey to increase capture probability) was more important than adding 

more occasions with lower effort/bass detection levels within each. In general, power 

increased with the larger decline (5%) and more sampling effort. 

In the third and final chapter, I evaluated the effects of river discharge variation on 

diurnal fish movement every 30 minutes during daylight hours to establish linkage between 

hydro-power generation and fish behavior. Generalized additive mixed models (GAMMs) 

suggested that movement distances slightly increased with river discharge associated with 

hydro-power generation in winter, but not in summer.  The physiological impacts of this 

altered behavior was not known, but if rapid and major changes in flow magnitude act as a 

stressor to individual bass, then population-level effects could follow and impact fisheries 

resources within the study area.   
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CHAPTER ONE 

Using angling and electrofishing to estimate smallmouth bass abundance
in a regulated river

Introduction 

Abundance estimation is a fundamental aspect of fisheries management. 

Sufficient knowledge of fish population size is critical to informing management 

decisions such as length limits and stocking rates. Assessment of abundance is 

accomplished through various methods. Catch per unit effort (CPUE) from 

standardized sampling is commonly used (Copeland, Orth, & Palmer 2006; Balcombe 

& Arthington 2009). Depletion and removal techniques are often employed by blocking 

off a habitat section in streams (Rosenberger & Dunham 2005; Habera, Kulp, Moore, & 

Henry 2010) and rivers (Odenkirk & Smith 2005). Mark-recapture methods exist for 

abundance estimation in closed-populations (i.e. no births, deaths, immigration or 

emigration). The two-sample Lincoln-Petersen and multiple-sample Schnabel methods 

require batch mark data over a short period to satisfy population closure (Modde, 

Burnham, & Wick1996). Mark-recapture data of unique individuals provide the 

richest data for estimating abundance of a closed population because they record 

individual capture histories over sampling occasions (Pine et al. 2003). 

Despite the availability of various methods, abundance estimation is complicated 

in flow-regulated rivers due to their large size and fluctuating discharge (i.e. spatial and 

temporal heterogeneity). Multiple gears are often used to sample populations and 

assemblages across many different lentic (Weaver, Magnuson, & Clayton 1993; Jackson 
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& Harvey 1997; Rogers, Hansen, & Beard 2005; Ruetz, Uzarski, Krueger, & Rutherford 

2007) and lotic (Arab, Wildhaber, Wikle, & Gentry 2008; Pregler, Vokoun, Jensen, & 

Hagstrom 2015) habitat types in a single sampling location. Flow regulation can produce 

different sampling environments subject to rapid changes in discharge. Changes in flow 

condition could prevent the use of a single gear even within the same habitat types on 

different days (Casselman, et al. 1990). Spatial and temporal heterogeneity of regulated 

rivers necessitates a creative approach to combining sampling methods to estimate 

abundance. 

There is a lack of information available on how data from multiple gears could be 

combined to inform abundance estimation. Gears have inherent sampling biases 

(Beamsderfer & Rieman 1988) and abundance estimation is further complicated by 

variable sampling efficiency resulting from spatial and temporal heterogeneity in rivers. 

Thus, CPUE, a common method for assessing abundance, cannot be applied reliably 

because it measures the product of true abundance and capture probability. Changes in 

CPUE can result solely from varying capture probability due to sampling conditions. Mark-

recapture surveys require several days of sampling and capture efficiency may be affected 

by varying discharge conditions during the sample period. Characterizing this temporal 

variation in capture efficiency should result in more accurate abundance estimates, which 

may be accomplished through the integration of multiple gear types.  

Abundance estimation in regulated rivers is a global challenge. Dams and other 

water control structures have been constructed extensively in rivers (Dynesius & Nilsson 

1994), and additional projects are proposed in many parts of the world (Grill et al. 2015). 
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Although dams affect native lotic fishes (Jager et al. 1997; Osmundson, Ryel, Lamarra, & 

Pitlick 2002; Murchie et al. 2008), regulated rivers still provide recreational angling 

opportunities for a number of species. Thus, maintaining fisheries as well as other 

recreational river uses should be among the major management objectives for flow-

regulated rivers (Babel, Gupta, & Nayak 2005). 

In this study, abundance of smallmouth bass, Micropterus dolomieu L., was 

estimated in a 4.2 km section of the Broad River, a flow-regulated river located in South 

Carolina, USA, using a mark-recapture method. Angling and boat electrofishing were used 

on different sampling days to correspond to fluctuating river discharge conditions 

characteristic of a flow-regulated river. Imperfect and variable capture of individuals was 

addressed in a Bayesian state-space model. Simulations were used to explore the behavior 

of these abundance models integrating two different gears that likely had differing 

sampling biases, and the key assumption of population closure was validated utilizing radio 

telemetry to monitor bass movement.    

Methods 

Study area 

This study was conducted in the Broad River (South Carolina, USA) between the 

Ninety-Nine Islands and Lockhart dams (Fig. 1-1). Abundance sampling was performed in 

the 4.2 km section immediately below the Ninety-Nine Islands Hydroelectric Station, but 

telemetry efforts were expanded to include the 13.4 km portion of the river to maximize 

the chance of detecting any potential emigration from the 4.2 km abundance section. The 
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river has a total drainage area of 9,819 km2, and flows approximately 240 km through the 

lower Blue Ridge and northern Piedmont regions of North and South Carolina. Lotic 

habitats consist primarily of larger boulders, cobble/gravel riffles, and scoured sandy pools. 

Large shoals coupled with temporally variable discharge create difficult sampling 

situations. River discharge is variable and regulated via several run-of-the-river dams. 

During the last 15 years, mean annual discharge ranged between 774 – 4200 ft3/s (USGS 

Gage 02153551). Surrounding land use is dominated by pasture lands with mixed forest 

and a few industrial complexes. 

Smallmouth bass (hereafter ‘bass’) are a recreationally important game fish native 

to the Ohio/Mississippi River and Ozark mountain drainages. These bass have been 

introduced outside of the native range to improve fishing opportunities (Brewer & Orth 

2015). Monitoring the size and trend of both native and non-native bass populations is an 

important management objective throughout the USA, in order to infer predation impacts 

on native fish populations (Fritts & Pearson 2004) and justify stocking resources (Buynak, 

Kornman, & Surmont 1991; Weidel, Josephson, & Kraft 2007). Within the Broad River, 

smallmouth bass have been stocked since 1984 to enhance recreational fishing 

opportunities and natural reproduction does occurs in the river (Bettinger 2013). 

Mark-recapture sampling 

A mark-recapture survey was conducted on five days (hereafter ‘occasions’) 

between October 20 and November 11, 2015. Sampling was completed over 22 days to 

conform to the population closure assumption. Two gear types were chosen due to 
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fluctuations in river discharge during the study. At lower discharges (<1,500 ft3/s), boat 

electrofishing is difficult as many shallow areas of the river are inaccessible with motor 

boats. During periods of higher discharge (>1,500 ft3/s), angling is ineffective because of 

swift currents. Angling was utilized during the first two occasions when 11 anglers floated 

downstream from the Ninety-Nine Islands dam in kayaks and canoes (Fig. 1-1). Anglers 

were supplied with and instructed to use at least one of three lures (in-line spinners, jigged 

grubs, and soft plastic minnows). Anglers got out of their kayaks or canoes at shallow 

shoals to wade and sample the entire width of the channel. All captured bass were held in 

livewells or soft mesh bags, and transported to the closer of two tagging teams. To 

minimize handling time and stress, bass were tagged and released as quickly as possible. 

The small, light (<4 g) lures used for angling were best suited for shallower, slower 

flowing, habitats. Deeper pools and fast flowing riffles were sampled less intensively in 

order to spend additional time in shallower runs with higher capture potential.  

Electrofishing was conducted during higher flow conditions (>1,500 ft3/s) when 

anglers could not wade safely. A single boat sequipped with a Smith-Root GPP 2.5 

electrofisher (Smith-Root Inc., Vancouver, WA) was used during three subsequent 

sampling occasions working downstream from the upper extent of the study section. The 

sample section was divided into four sub-sections using three large shoal areas as breaks 

where sampling was stopped and captured bass were transferred to another boat for 

measuring total length [TL in mm] and tagging. After handling, the bass were released at 

the mid-point of each sub-section.  
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All bass >100 mm TL were held in an aerated livewell of river water until an 8 mm 

passive integrated transponder (PIT) tag (Oregon RFID Inc., Portland, Oregon) was 

injected intracoelomically using a Biomark MK165 implanter and N165 needle. Tags were 

implanted ventrally approximately 20 mm posterior to the pelvic girdle (Roussel, Haro, & 

Cunjak 2000). To aid in the identification of recaptured bass, the left pectoral fin was also 

clipped on all bass after their initial capture. All recaptured bass were measured, scanned 

for a tag number using either an Avid Identification Systems Power Tracker (Avid 

Identification Systems Inc., Norco, California) or Oregon RFID Easy Tracer II scanner. 

The tag number was then recorded, and the bass were promptly released.  

Abundance Modeling 

Capture-recapture data were analyzed using Bayesian state-space models (Kéry and 

Schaub 2012). Capture histories of all individuals (i) across sampling occasions (j) were 

created as a two-dimensional array, yi,j, where 1’s represent captures and 0’s non-captures. 

Of the bass that were tagged, eight suffered excessive handling and were omitted from all 

analyses. We assumed that no handling mortality occurred for all other bass. Only bass 

>200 mm TL were included in analyses because no bass under this size threshold were

recaptured. In the Broad River, 200 mm is the body length that is likely to be the minimum 

size of bass targeted and pursued by anglers, and fish of this size are typically age 1+ based 

on otolith reading (J.M. Bettinger, unpublished information). 

Capture-recapture models for closed populations infer how many more unique 

individuals (unobserved) should have been observed based on capture probabilities of 
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observed individuals. In this regard, 7,000 rows of all 0 entries were added to the data, yi,j, 

in order to represent individuals that were potentially part of the population but never 

observed (Royle and Dorazio 2011). The objective of capture-recapture models for 

abundance is then to estimate the proportion (Ω) of individuals within this augmented data 

set, y’i,j, which should belong to the population. The following general form of capture-

recapture models was fit on the augmented dataset y’i,j: 

zi ~ Bernoulli(Ω) 

y’i,j ~ Bernoulli(zi*p) 

where zi is the latent state of the membership in the population (zi = 1 if a true member of 

the population; zi = 0 otherwise), and p is the capture probability of individuals. Three 

different hypotheses of capture probability were tested: capture probability was constant 

over five occasions (M0), varied by occasion (Mt), and varied by sampling gear (Mg). 

Models were compared using Deviance Information Criterion (DIC) values; the model with 

the lowest DIC value was selected as the top-ranked model. Capture-recapture models can 

accommodate more complex structures such as behavior or individual variation (Otis, 

Burnham, White, & Anderson 1978), but convergence of these models was not achieved 

with our data presumably due to low recapture probabilities.     

Models were analyzed through Markov-Chain Monte Carlo (MCMC) sampling 

methods in JAGS (Plummer 2012) called from Program R (R Development Core Team 

2015). Uninformative priors were used in all models (i.e., Ω ~ Uniform(0,1), p ~ 

Uniform(0,1)).  Posterior distributions of parameters were estimated by keeping the 
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hundredth sample from 30,000 iterations of three chains after a 20,000 iteration burn-in 

period. Model convergence was assumed by examining plots of MCMC chains and visually 

ensuring mixture of all three chains. Gelman and Rubin diagnostics provided potential 

scale reduction factors for model parameters. Convergence of MCMC chains was assumed 

when values of all were parameters <1.1 (Brooks & Gelman 1998). 

Model validation 

The models above assume that sampling is from a single homogenous population 

(Otis et al. 1978). However, there was a statistically significant difference in body length 

between individuals captured by angling and electrofishing based on a Kolmogorov-

Smirnov test (see Results). Thus, it was likely that the two gears targeted different groups 

of individuals (i.e., a sample of the heterogeneous population in the 4.2 km mark-recapture 

section). To assess model performance when the assumption of homogeneity is violated, 

simulations were conducted in which two groups of individuals were targeted by different 

sampling gears, but data from both gears were analyzed simultaneously as a single data set. 

The top ranked model, Mt (time varying; see Results), was used in simulations to 

investigate if known abundance can be estimated accurately. Five possible sampling 

scenarios were simulated, with three sampling occasions each, by varying abundance and 

capture probability among population segments. Abundance was set to be equal between 

the two segments in scenarios one and two, but the population of one segment was twice 

that of the other in other scenarios (Table 1-1). Abundance of each segment was set at 1000 

or 2000 individuals, so that the sum of these values (2000 or 3000) was comparable to the 
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empirical abundance estimate obtained from the study area (see Results). Capture 

probability was similarly set equal in some simulations or varying in others between two 

segments (Table 1-1). Ranges of capture probability (10-30%) were higher than the 

empirical estimates (see Results), but these settings were chosen to speed computational 

time. A sixth scenario was also simulated, as a control, in which a single homogenous 

population was assumed. In all scenarios, a range of capture probabilities was specified 

(Table 1-1) and a capture probability was randomly drawn from the range on each sampling 

occasion. Each scenario was simulated 1,000 times. Distributions of posterior mean values 

of estimated abundance across 1,000 replicates were compared to the true known 

abundance, which is the sum of abundance of the two population segments. Simulations 

were completed using Clemson University’s Palmetto Cluster supercomputer. 

Tagging & Tracking 

Closed-population capture-recapture models used in this study assume no birth, 

death, immigration or emigration. Given the short period of time (22 days) over which 

mark-recapture data were collected, it was plausible that births and deaths were negligible. 

Assumption of no immigration and emigration was validated by tracking individuals. In 

May 2015, boat mounted electrofishing gear was used to collect nine bass downstream of 

the Ninety-Nine Islands dam, (mean: 374 mm; range: 299-476 mm TL). These fish were 

surgically implanted with Advance Telemetry Systems Inc. (ATS, Isanti, Minnesota) 

model F1580 radio transmitters. Transmitters weighed 3.6 grams in air, and the minimum 

(250 mm TL) tagging length was used so as not to exceed the recommended threshold of 

2% of the total body mass (Winter, Kuechle, Siniff, & Tester 1978). Bass were electro-
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anesthetized before surgery. After recovery in a holding tank, fish were released in slow 

water along the bank in close proximity (<100 m) to the point of capture. 

To validate the assumption of population closure, transmitter-implanted bass were 

located daily during early summer (June 16-July 1, 2015). The summer tracking period (15 

days) was intended to match a three-week time frame of the mark-recapture study. Mark-

recapture surveys were originally planned to immediately follow daily tracking; however, 

timing of the two efforts did not overlap due to logistical constraints and weather events. 

Bass were located monthly between September 2015 and July 2016 to assess seasonal 

movements and identify seasons in which fish may move most and be likely to violate the 

closure assumption. In October, an additional five fish (mean: 436 mm; range: 365-490 

mm TL) were implanted with transmitters to compensate for tag loss and increase sample 

size for seasonal comparisons of movement. Body size of transmitter-implanted bass did 

not significantly differ between May and October (t = -1.70, df = 10.60, p = 0.12). 

A four-element Yagi antenna and ATS R2000 scanning receiver was used to locate 

transmitter-implanted fish by canoeing a 13.4 km section of the river, which included the 

4.2 km mark-recapture section (Fig. 1-1). Once a strong signal was located, the coaxial 

cable was disconnected from the antenna. The exposed end of the cable was used to identify 

the locations by slowly approaching the area of the strongest signal while reducing gain 

(Niemela, Layzer, & Gore 1993). Where applicable, fish locations were triangulated using 

exposed habitat features (large boulders and exposed logs). After a transmitter location was 

acquired, the canoe was anchored, GPS position was noted using a handheld Dakota 10 
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receiver (Garmin Ltd. Olathe, KS), and water depth was measured to the nearest tenth of a 

meter using a wading rod (Rickly Hydological, Columbus, OH). 

Movement Analyses 

A total of 14 tracking events were used to calculate the daily riverine distances 

traveled by each bass during the 15-day summer tracking period (June 16–July 1, 2015). 

The riverine distances between each successive location were measured to the nearest 

meter for each transmitter-implanted fish to attain the minimum displacement (‘summer 

minimum displacement distance’ hereafter). Distances between fish locations were 

calculated in ArcGIS 10.3 (ESRI, Redlands, CA) using the distance along route tool based 

on the United States Geological Survey National Hydrography Dataset (NHDPlus V2) 

flowline. 

Monthly minimum displacement distances were calculated as the distance traveled 

between two consecutive monthly tracking events, divided by the number of days between 

the events (Goclowski, Kaeser, & Sammons 2013). Monthly tracking intervals were 

grouped into four seasons based on the mean daily river temperature: summer; >20oC (June 

– September), fall; 20oC decreasing to 10oC (October – December), winter; <10oC (January

– February), and spring; 10oC increasing to 20oC (March – May) (Todd and Rabeni 1989).

River temperatures were monitored hourly in the middle of the 13.4 km telemetry section 

using a HOBO U22-001 data logger (Onset Computer Corp. Bourne, MA). A linear mixed 

effect model with random effects of transmitter-implanted bass was fit to test for 
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differences in minimum displacement distance among seasons (a fixed effect). Distance 

data were cube-root transformed prior to analysis to improve normality. 

Results 

Abundance estimate 

A total of 468 unique individuals were captured on the five sampling occasions 

(141 individuals ≤ 200 mm TL and 327 individuals >200 mm TL). Because the smallest 

recaptured individual was 208 mm TL, the analysis focused on fish >200 mm for the 

abundance estimate. Of the fish >200 mm, angling captured 175 unique individuals during 

the first two occasions, and electrofishing collected 156 unique individuals during the 

subsequent three occasions. Across the five total sampling occasions, one individual was 

captured three times, 16 individuals twice, and 331 only once. All recaptures were recorded 

from electrofishing surveys and no bass were recaptured on the single angling recapture 

occasion (i.e., the second occasion).  Electrofishing captured larger bass than angling (Fig. 

1-2) (a two-sample Kolmogorov-Smirnov test; D(352) = 0.221, p <0.0005). The largest

bass captured via angling was 416 mm TL, and 520 mm with electrofishing (Fig. 1-2). 

The time varying model (Mt) was the top ranked of the three abundance models and 

no competing models were identified based on ΔDIC values; the next supported model 

(M0) had a ΔDIC = 736.77 relative to the top ranked model (Table 1-2). Capture 

probabilities differed by sampling occasion and were generally low. Mean detection 

probability during two angling occasions were 0.04 (4%) whereas detection probabilities 

during electrofishing occasions were 0.025, 0.034, and 0.013. Based on model Mt, 2,380 
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individuals (95% CI: 1,578-3,693) >200 mm TL were estimated to be present in the 4.2 

km section (Table 1-2).  

Simulations 

Abundance was consistently over-estimated in all five scenarios in which two 

different population segments were simulated but analyzed simultaneously as if they were 

a single sample (Fig. 1-3).  Posterior mean abundance was over-estimated between 8-20% 

among each scenario, with the most biased estimates observed in the scenario with unequal 

abundance (1,000 and 2,000 individuals) and equal capture probability of both segments 

(0.1-0.3). The control scenario without two population segments only slightly (2%) over-

estimated abundance (Table 1-1). 

Bass movement 

Five out of the nine initially tagged bass were available for summer daily tracking. 

Movement of these transmitter-implanted bass was limited during the 15-day summer 

tracking period. The median summer minimum displacement distance was 0.10 m (range: 

0-476) (Fig. 1-4). Importantly, these five bass remained within the 4.2 km mark-recapture

study section for the duration of the summer tracking period, indicating that the population 

closure assumption was likely met for abundance estimation. 

Monthly minimum displacement distance of all bass was greatest in spring (mean 

= 42.62 m per day; median = 2.84 m per day), and smallest in summer by mean (20.89 m 

per day) and in fall by median (1.45 m per day) (Table 1-3). However, there was no 

significant difference in minimum displacement distance among seasons based on a linear 
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mixed-effects model (p >0.14), due likely to large variation in movement among 

individuals (Table 1-3). On one hand, an individual (482 mm TL at the onset of tracking) 

was located within a single pool area for 12 months (Fig. 1-5). On the other hand, another 

individual bass (299 mm TL initially) moved 13.0 km downstream between October-

November and moved back upstream 13.4 km in 36-day period (February-March) (Fig. 1-

5).  

Discussion 

The dual gear sampling technique was employed in this study to accommodate 

varying flow conditions in a regulated river. The top-ranked abundance model (Mt) 

indicated that capture probability varied by sampling occasion and ranged between 1-4%. 

Varying capture probability highlighted the importance of quantifying capture efficiency 

for unbiased abundance estimates and lends support for field-intensive mark-recapture 

surveys. In the Broad River, the range of capture probabilities observed (1-4%) suggested 

that catch could vary four-fold depending on sampling conditions even if abundance 

remains unchanged. 

Despite the overall success of our dual gear approach to abundance estimation, 

simulations suggested that our abundance estimate of bass in the Broad River was likely 

an over-estimate to an unknown but modest degree. Electrofishing selected for larger 

individuals compared to angling, which probably reflected efficiency of the former method 

in deeper sections of the river (Anderson 1995; Buckmeier & Schlechte 2009). In contrast, 

angling appeared best suited for shallower, more wadeable parts of the river. It is 
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reasonable to suspect that this gear bias resulted in two partially overlapping population 

segments, each of which was best sampled by one of the two gears used. Our scenarios 

simulated two completely different population segments to assess the potential extent of 

bias in abundance estimates. Thus, the upward bias in abundance estimate in the Broad 

River can be assumed smaller than those considered in the simulation scenarios (i.e. 8-20% 

over-estimation), although uncertainties still remain as to relative abundance of two 

population segments and the degree of overlap between two segments in their susceptibility 

to a single gear type.  

Potential upward bias with the dual gear approach should not immediately discredit 

its application in population monitoring. Assessment of spatial and temporal trends in 

abundance is of great interest in fisheries management and conservation, and in the case of 

the Broad River, assessing a temporal trend of bass abundance to inform future stocking 

efforts and angler success. The trend assessment is ideally conducted with unbiased 

estimates; however, biased estimates could identify such trends accurately as long as the 

magnitude and directions of bias remain consistent (Rosenberger & Dunham 2005). In this 

regard, standardized sampling protocols are important in minimizing variation in bias. For 

example, annual sampling with the dual gear approach may employ two days of sampling 

with each gear to maximize the likelihood for characterizing a temporal trend of bass 

abundance. It is still foreseeable that a standardized sampling protocol cannot be applied 

consistently from year to year due to varying river conditions (i.e. only angling is possible 

in a drought year in the Broad River). Such additional noise would decrease statistical 

power to detect population trends (Dauwalter et al. 2009). 
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Summer daily telemetry data indicated that movement of bass was limited and 

population closure could be reasonably assumed for the duration of 2-3 weeks. Limited 

movement of smallmouth bass in rivers has been reported in summer (Langhurst & 

Schoenike 1990; Lyons & Kanehl 2002) and fall (Todd & Rabeni 1999). Based on monthly 

telemetry data, median movement distance was shortest in fall and highest in spring (Table 

1-3), suggesting that the assumption of population closure may be season dependent. Thus,

timing of surveys needs to be assessed when applying closed-population mark-recapture 

methods in rivers. When it is necessary to conduct mark-recapture in seasons when fish are 

likely to move farthest, studies may need to ensure population closure by other aspects of 

study designs such as shortening the study period and extending the study area. Seasonal 

telemetry data also suggested that movement distance varied by individual, with one 

individual documented in a local pool area for the entire 12-month duration of seasonal 

tracking and yet another individual moving approximately13 km twice in two separate 

months (Fig. 1-5). 

Estimating abundance in large water bodies such as regulated rivers and large lakes 

remains challenging but also provides opportunities for further studies. Standardized 

protocols are less common in such habitats and variable among researchers and managers 

(Bonar, Hubert, & Willis 2009). Efficient sampling is particularly important for mark-

recapture methods. Kéry & Royle (2016) states that the first law of capture-recapture 

methods is that “things become more difficult when p (capture probability) gets small (p. 

246)”. Improvements in analyses of abundance data are another important area for further 

studies and innovative approaches can lead to more accurate estimates of fish abundance 
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(Korman, Schick, & Mossop 2016; Mollenhauer & Brewer 2017). Simultaneous analysis 

of multiple-gear data is becoming more common (Arab et al. 2008; Carrier et al. 2009), 

but warrants further investigations. Integrating multiple gears can be an effective and is 

probably a needed method for assessing abundance in spatially and temporally 

heterogeneous habitats. 
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Tables 

Table 1-1. Six simulation settings used to assess performance of the abundance estimation 

model when two groups of individuals were targeted by different sampling gears, but data 

from both gears were analyzed as a single data set. 

Scenario 
Abundance of each 

group 

Range of capture 

probability for each 

group* 

Posterior mean 

estimate of total 

abundance 

Percent 

upward 

bias 

A 1,000/1,000 0.10-0.20 / 0.20-0.30 2,164 8.20 

B 1,000/1,000 0.10-0.30 / 0.10-0.30 2,364 18.20 

C 1,000/2,000 0.10-0.30 / 0.10-0.30 3,609 20.30 

D 1,000/2,000 0.10-0.20 / 0.20-0.30 3,268 8.93 

E 1,000/2,000 0.20-0.30 / 0.10-0.20      3,422 14.06 

F 3,000** 0.20-0.30 3,068 2.26 

*For each iteration, capture probabilities were randomly drawn from a uniform distribution.

**Control assuming a single population segment. 
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Table 1-2. Estimated abundance of smallmouth bass, and Bayesian DIC rankings of three 

models to estimate smallmouth bass abundance in a 4.2-km section of the Broad River.  

Model Estimate (95% CI)  DIC 

Mt 2,380 (1,578-3,693) 14,495.86 

M0 2,933 (1,868-3,264) 15,232.63 

Mg 2,792 (1,755-4,520) 17,849.65 

Table 1-3. Mean, median, and rage of monthly minimum displacement distances (m) and 

overall number of smallmouth bass tracked within each season.  

Season Mean Median  Min  Max 

No. of fish 

located 

Summer 2015 20.89 2.46 0.00 238.29 9 

Fall 2015 24.98 1.45 0.03 422.03 12 

Winter 2015-16 31.27 2.08 0.02 380.69 12 

Spring 2016 42.62 2.84 0.05 380.69 12 
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Figures 

Figure 1-1. Major rivers of South Carolina with expanded study area of the Broad River 

between Ninety-Nine Islands and Lockhart Dams depicting the upper mark-recapture 

section (4.2 km) within the radio tracking reach (13.4 km). The river flows from the north 

to the south.  
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Figure 1-2. Length frequency histograms of all bass captured using angling (A) and 

electrofishing (B). 
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Figure 1-3. Distributions of posterior means of 1000 replicate simulations of the time 

varying, Mt, models for six different scenarios: (A) Equal detection of two equal 

population segments of 1000 individual fish each. (B) Unequal detection of two equal 

size segments of the population. (C) Equal detection of unequal size segments of the 

population. (D) Larger detection of a larger segment of the population. (E) Larger 

detection of a smaller segment of the population. (F) A control simulation estimating a 

single population size of 3000 individuals (F). See Table 1-1 for a detailed description of 

each scenario. Dashed vertical lines indicate the true total abundance. 
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Figure 1-4. Locations of five smallmouth bass tracked daily with radio telemetry below 

the Ninety-Nine Islands Dam tailrace between June 16 and July 1, 2015. Different 

symbols indicate different individuals. Perpendicular lines crossing river channel 

designate boundaries of large shoals. 
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Figure 1-5. Monthly locations of four transmitter-implanted smallmouth bass that 

survived for 12 months of the study. Perpendicular lines crossing river channel designate 

boundaries of large shoals. 



CHAPTER TWO 

Power analysis of mark-recapture population monitoring designs to detect a temporal 

decline in smallmouth bass abundance. 

Introduction 

Long-term population monitoring informs fisheries management. Identifying a 

temporal trend in abundance is a vital goal in many federal and state agencies’ management 

programs (Butowski & Morin 2016). This information can be used to establish creel limits, 

evaluate angler exploitation (Beard et al.1997; Sullivan 2003) and assess the need for 

stocking (Post 2013). Thus, it is imperative to ensure that a population trend is readily 

detected over time (Dauwalter et al. 2009). 

The statistical power (1 – β, where β is the probability of type II error) to detect 

such trends in abundance is influenced by a multitude of factors such as precision of 

abundance estimates, the sample sizes obtained (Gerow 2007), temporal fluctuations in 

population size, and the amount of harvest (Peterman 1990). With additional data, declines 

within a certain area could be linked to causes of declines such as disease (Lafferty & Holt 

2003), and changes in water quality (McClelland et al.2012).  

The amount of resources (i.e. equipment, workers, and time) devoted to a fish 

population survey will affect the ability to accurately estimate population size. These costs 

of sampling will often constrain the ability to effectively monitor fish populations 

(Possingham et al.2001) and sampling designs dictated by resource/cost constraints can 

affect our ability to detect a temporal trend (Urquhart & Kincaid 1999). Identifying an 
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optimal long-term population monitoring plan which incorporates constraining factors (e.g. 

inter-annual changes in crew size, availability of sampling equipment, fuel costs, etc.) is 

important for maximizing the effectiveness of a long-term monitoring strategy (Hauser et 

al.2006; Marsh and Trenham 2008). When creating an effective monitoring program, it is 

integral to identify the point at which using additional resources may no longer improve 

estimates and produce only minimal gains in the precision and accuracy of population 

estimates through time (Bailey and Gerow 2005; Gwinn et al.2011).  

The objective of this chapter is to compare the power to detect temporal population 

declines using the population estimation model developed in chapter 1. Specifically, I 

simulated 2.5% and 5% annual declines in Broad River smallmouth bass abundance and 

compared statistical power to detect the declines by nine different sampling scenarios of 

varying sampling efforts after 5, 10 and 15 years. This power analysis was intended to help 

inform the South Carolina Department of Natural Resources on the most appropriate 

allocation of limited resources to monitor smallmouth bass abundance in the Broad River 

over time.  

Methods 

Nine sampling plans of varying effort were considered in the simulation and their 

statistical power to detect a population decline was quantified. The initial bass abundance 

was set at 2,500 individuals which corresponded to the empirical abundance estimate of 

smallmouth bass (>200mm TL) obtained in chapter 1. Two annual population decline 

trends (2.5% and 5%) were simulated, and fish sampling and abundance estimation was 
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assumed to take place under the initial condition (current year) and then at five-year 

intervals (i.e., 5, 10 and 15 years). 

The top empirical Broad River smallmouth bass mark-recapture model (Mt) was 

used in this simulation study where an augmented dataset of captured bass was used to 

estimate annual abundance (see chapter 1). The model is described as: 

zi ~ Bernoulli(Ω) 

y’i,j ~ Bernoulli(zi*pt) 

where zi is the latent state of the membership of individual i in the population (zi = 1 if a 

true member of the population; zi = 0 otherwise), and pt is the detection probability of 

individual bass on sampling occasion t. 

I considered that those who would implement this model could control sampling 

effort in two ways. Specifically, one can control the number of sampling occasions per year 

(‘annual effort’ hereafter) and the number of electrofishing boats per occasion which would 

affect capture probability of individuals (‘occasion effort’ hereafter). Thus, three levels of 

effort (low, medium and high) were simulated for both annual and occasion effort, resulting 

in nine (3×3) different sampling protocols.   

For annual effort, three levels corresponded to 3, 5 and 7 sampling occasions per 

year (Table 2-1). The low effort (3 occasions annually) was the minimum number needed 

to adequately estimate abundance using the closed-population approach (Otis et al.1978), 

and effort was increased by two additional occasions for the medium and highest levels. 
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For occasion effort, three levels corresponded to capture probability (p) equal to 3-8% (low 

effort), 8-13% (medium) and 13-18% (high). The low effort was intended to represent 

sampling using a single electrofishing boat; this was the sampling method used in my 

fieldwork and mean capture probability of individuals was 4% across three electrofishing 

occasions (chapter 1). However, more than one electrofishing boat can sample the study 

area simultaneously and up to five boats were operated at the same time in a pilot study 

conducted in Broad River. Assuming that detection would be additive based on the number 

of electrofishing boats, the medium effort was set at 8-13% (2 to 3 boats) and 13-18% (4 

to 5 boats). In simulations, detection probability for each sampling occasion was derived 

by a random draw from a uniform distribution given the range specified for each effort 

level. All simulations were performed on Clemson University’s Palmetto Cluster 

supercomputer and each of the nine sampling plans was simulated 500 times.  

Statistical power to detect a temporal decline was assessed by comparing initial 

abundance to that in years 5, 10, and 15 using Bayesian one-tailed t-tests (Kery 2010) and 

three different significance levels (α = 0.05, 0.15, and 0.25). Specifically, statistical 

significance was declared in each iteration by comparing posterior abundance values 

between the initial year and each successive sampling interval (∆ = abundance in the initial 

year - abundance in a subsequent year). For example, using α = 0.05, a temporal decline 

was considered to be detected when >95% of ∆ values were negative. Statistical power of 

each sampling plan was then the proportion of statistically significant iterations among the 

500 individual runs. 
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Results 

Increasing sampling effort resulted in less biased (Fig. 2-1a) and more precise (Fig. 

2-1b) abundance estimates. Higher occasion effort (i.e. higher detection probability) and

annual effort (i.e. more sampling occasions per year) led to posterior mean estimates 

consistent with the simulated abundance value of 2,500 individuals (Fig. 2-1a). Precision 

similarly increased with higher occasion and annual effort (Fig. 2-1b). However, posterior 

95% CI of abundance estimates were wide. Even in the high occasion and high annual 

simulation, 95% CI of abundance covered a range of 2195 - 2770 individuals (Fig. 2-1b), 

which would decrease statistical power to detect a temporal trend.      

Not surprisingly, statistical power to detect a trend increased with sampling effort, 

as well as years passed between samples, the severity of annual decline and increasing α 

levels (Fig. 2-2 & 2-3). Most importantly, occasion effort (detection probability per 

occasion) was more influential than annual effort (number of sampling occasions per year) 

in affecting statistical power. In both 2.5% (Fig. 2-2) and 5% (Fig. 2-3) scenarios of annual 

decline, simulations with high detection probability resulted in power >0.95 regardless of 

number of occasions per year (annual effort) and the number of sampling years passed. 

Power declined as detection probability decreased. For example, in simulations assuming 

three sampling occasions per year, 2.5% annual decline and α = 0.05, power was 1.00 with 

high detection, 0.32 with medium detection and 0.07 with low detection (Fig. 2-2).      

The number of years passed between samples was another key driver of statistical 

power. After 15 years, power to detect a trend was high ranging from 0.65-1.00 with many 
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scenarios achieving power of 1.00 (Table 2-1). However, power varied with smaller 

numbers of years between samples, particularly after 5 years (Fig. 2-2 & 2-3). In other 

words, sampling designs were crucial when attempting to detect a temporal trend over a 

short period, but were less important for trend detection over a long period. 

Finally, relaxing α levels increased power (Fig. 2-2 & 2-3). For example, in the 

scenario with a 2.5% annual decline, 3 sampling occasions annually, and medium detection 

probability, power to detect a trend after 10 years increased from 0.51 with α = 0.05 to 0.70 

(α = 0.15) and 0.78 (α = 0.25) (Table 2-1; Fig. 2-2). 

Discussion 

Statistical power to detect trends increased with sampling effort. A notable finding 

of the simulations was that occasion effort (detection probability) was more important than 

annual effort (number of sampling occasions annually) in influencing statistical power. 

That is, high detection ensured high power in all scenarios considered in this chapter. I 

propose that this result was due to the low overall detection probability levels used in the 

simulations. Kéry & Royle (2016) stated that the first law of capture-recapture methods 

was that “things become more difficult when p (capture probability) gets small (p. 246)”. 

The mean empirical estimate of detection probability was 4% for smallmouth bass in Broad 

River (chapter 1) and our three detection probabilities were set at 3-8 % (low), 8-13 % 

(medium) and 13-18 % (high). In one sense, the low detection probability was a ‘limiting 

factor’ in abundance estimates and simulations (Chapter 1), and increasing this value even 

slightly should aid in deriving less biased and more precise estimates of abundance, which 
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would then increase statistical power. In the meantime, three occasions (low annual effort) 

are frequently used in occupancy and abundance estimation for closed populations 

(MacKenzie et al.2002; Royle 2004). While increasing number of sampling occasions 

should increase statistical power, the range of annual effort settings was likely not as 

‘limiting’ as detection probabilities. Based on the simulations, I recommend that future 

monitoring effort prioritize maximizing occasional effort over annual effort. In other 

words, high detection probability (e.g. using multiple electrofishing boats) should be 

prioritized with a trade-off of fewer sampling occasions annually.     

Our results of higher power with increasing sampling effort are in concordance with 

previous studies of power analyses. Power of trend detection typically increases with 

number of annual samples and rate of annual decline (Ham and Pearsons 2000; Dauwalter 

et al.2009; Russell et al.2012). It is important to note that sampling designs mattered most 

when attempting to detect a short-term decline (i.e., after 5 years) in this study, and once 

again occasion effort was more important than annual effort in achieving high statistical 

power.  

Although detecting a trend over a short period is typically challenging (Dauwalter 

et al.2009; Russell et al.2012), this could be overcome by relaxing α levels at the cost of 

being prone to more likely committing type I errors (i.e. falsely identifying a trend when 

such a trend does not truly exist). Three different α levels (0.05, 0.15 & 0.25) were used in 

this study using a Bayesian approach, which indicated that one would be 95%, 85% & 75% 

confident that a negative trend existed given the data. Thus, it was no surprise that relaxing 

α levels (i.e. lowering the threshold for trend detection) resulted in higher statistical power. 
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Statistical significance is typically set at α = 0.05, but this threshold should be evaluated 

case-by-case based on management actions and implications. In maintaining a recreational 

fishery of smallmouth bass in the Broad River, falsely identifying a negative trend using 

relaxed α levels could trigger management actions such as stocking or fishing restrictions 

earlier than they should occur. However, this type of error would not further jeopardize 

fisheries resources (the error here is that fisheries resources are protected too early). 

Statistical significance (α levels) should be carefully examined particularly when the goal 

of the monitoring plan is to detect a short-term trend. 

One caveat of the simulation approach in this study was that temporal variation in 

abundance was not accounted for. Population abundance naturally fluctuates over time and 

the magnitude of the temporal variation is large in many populations of freshwater fishes 

(Stevens et al. 1985; Gibbs 2000; Rose 2000; Dauwalter et al.2009). This temporal 

fluctuation functions as a ‘noise’ to blur the temporal pattern, thus negatively affecting 

power to detect a temporal trend. Given the lack of long-term monitoring data of 

smallmouth bass in Broad River, temporal variation in abundance could not be quantified 

and incorporated in the simulations. This means that power in my simulations represents 

the most optimistic level, and would be lower to an unknown degree if temporal noise had 

been present. Still, the major conclusions about sampling designs (e.g. occasional effort is 

more important than annual effort) should hold true and due consideration should be given 

when drafting a monitoring plan for detecting smallmouth bass abundance trend in the 

Broad River. 
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Tables 

Table 2-1. 

Statistical power to detect a 2.5 and 5% annual decline in a smallmouth bass population at significance levels (α) = 0.05, 0.15, 

and 0.25 under nine possible simulation scenarios. Years passed between sampling events are shown by t+5 (5 years later), 

t+10 (10 years later) and t+15 (15 years later).  

Power 

(α = 0.05) 

Power 

(α = 0.15) 

Power 

(α = 0.25) 

Sampling 

Occasions 

Detection 

Probabili

ty 

Annual 

Decline 

Annual 

Effort 

Occasion 

Effort 

t+5 t+10 t+15 t+5 t+10 t+15 t+5 t+10 t+15 

3 3-8% 2.5% Low Low 0.07 0.12 0.65 0.24 0.39 0.81 0.40 0.61 0.88 

3 8-13% 2.5% Low Medium 0.32 0.51 0.65 0.58 0.70 0.99 0.74 0.78 1.00 

3 13-18% 2.5% Low High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 3-8% 2.5% Medium Low 0.01 0.61 1.00 0.06 0.89 1.00 0.19 0.96 1.00 

5 8-13% 2.5% Medium Medium 0.91 1.00 1.00 0.97 1.00 1.00 0.99 1.00 1.00 

5 13-18% 2.5% Medium High 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 3-8% 2.5% High Low 0.87 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

7 8-13% 2.5% High Medium 0.86 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

7 13-18% 2.5% High High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

3 3-8% 5% Low Low 0.02 0.62 0.86 0.10 0.80 0.91 0.20 0.88 0.93 

45
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3 8-13% 5% Low Medium 0.32 1.00 1.00 0.67 1.00 1.00 0.86 1.00 1.00 

3 13-18% 5% Low High 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 

5 3-8% 5% Medium Low 0.47 1.00 1.00 0.73 1.00 1.00 0.89 1.00 1.00 

5 8-13% 5% Medium Medium 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 13-18% 5% Medium High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 3-8% 5% High Low 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 8-13% 5% High Medium 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7 13-18% 5% High High 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Figures 

 A 

B 

Figure 2-1. Distributions of posterior means (A) and 95% credible intervals (B) across 

500 iterations for nine simulation scenarios of varying combinations of occasion and 

annual sampling effort levels. Dots indicate mean values and ranges are 95 % quantiles. 

Dashed line indicates the simulated abundance of 2500 individuals. 

A 
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Figure 2-2. Statistical power to detect a 2.5% annual decline at significance (α) levels = 

0.05, 0.15, and 0.25 under nine variants of sampling designs. Sampling was simulated 

under three different levels of occasions per sampling year with three levels of individual 

bass detection per occasion. 
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Figure 2-3. Statistical power to detect a 5% annual decline at significance (α) levels = 

0.05, 0.15, and 0.25 under nine variants of sampling designs. Sampling was simulated 

under three different levels of occasions per sampling year with three levels of individual 

bass detection per occasion. 
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CHAPTER THREE 

Influence of discharge on diurnal movement of smallmouth bass: 

A time series analysis of fish movement. 

Introduction 

The flow regime is a major driver of the function and productivity of the river 

system. Riverine species have adapted to specific flow regimes, and alterations of the 

natural flow patterns can result in more frequent changes in the magnitude of both high and 

low river flow (Poff et al.  1997). Changes to the natural flow regime include dam releases 

and water management practices which influence fish populations and behavior in both 

positive and negative ways (Taylor & Cooke 2012). Flow alterations due to dams and 

channelization can lead to ecological changes throughout the entire river system, and affect 

fish abundance, community structures, and individual feeding behaviors (Lagarrigue et al. 

2002; Osmundson, Ryel, Lamarra, & Pitlick 2002; Haxton & Findlay 2008). 

Species specific studies have produced understandings into the influence of 

hydrological modifications on fish distributions through time (Earley 2012). Natural 

flooding events influence fish movement in the seeking of flow refugia (David & Closs 

2002), but artificial fluctuations in river flow (i.e. dam releases and lack thereof) can also 

affect movement patterns (Armstrong, Braithwaite, & Fox 1998). There are different levels 

of flow modification which may influence the movements of fish through time. For 

example, peaking hydropower generation can cause very large and rapid changes in flow, 
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or decreased releases from water control structures can lead to diminished base flow during 

drought conditions.  

Dam releases and flow regime fluctuations produce variations in river discharge 

that can influence both the timing and length of long-distance migrations (i.e. spawning 

runs) (Miller & Scarnecchia 2008), and also impact behavior over much shorter time scales 

(Poff & Zimmerman 2010). It is the shorter-term variations in discharge (those changes 

which occur over a period of hours) (Miller & Scarnecchia 2008) that can affect non-

migratory fish movement (the daily activities that are not associated with spawning or 

seasonal changes) (Taylor & Cooke 2012). If these short-term temporal changes in 

discharge influence fish movement, then it is important to assess the impact of the short-

term variations in discharge on non-migratory movement. Frequent changes in river 

discharge have short-term effects on feeding frequency (Snedden, Kelso, & Rutherford 

1999) and foraging patterns (Bartumeus, da Luz, Viswanathan, & Catalan 2005). Frequent 

high discharge increases energetic costs of feeding which can reduce fish growth rates 

(Paragamian & Wiley 1987; Zorn & Seelbach 1995). Discharge acting as such a ‘stressor’ 

can then lead to subsequent population level effects through reduced body growth and 

survival (Hunter 1992; Taylor & Cooke 2012).  

Non-migratory fish movements are often regarded as an indicator of habitat 

preferences or selection of different areas which have more favorable conditions (i.e. 

moving from a riffle to a pool with deeper water) (Bolland, Cowx, & Lucas 2008). River 

discharge fluctuations could act as an additional factor affecting behavior, resulting in more 

or less movement than during periods with stable flow patterns. The additional indirect 
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impact could then be that short-term fluctuations of discharge further stimulate movement 

in addition to the behavior of simply selecting different habitats (Hunter 1992). Habitat 

selection is an important objective of studying fish movement, but it is also important to 

quantify environmental drivers that may influence the behavior of fish in altered habitats 

such as regulated rivers (Facey & Grossman 1992). 

Here, we consider the effect of river discharge on fine-scale diurnal fish movement 

by following single bass throughout an entire daylight period. Hourly changes in discharge 

are common in this study area of the Broad River as electricity is generated at the Ninety-

Nine Islands Hydroelectric Station (see Fig. 1-1 of Chapter 1). Specifically, the Ninety-

Nine Islands Hydroelectric station is a hydropower dam which impounds a small reservoir 

of 358 hectares and produces flow alterations with various magnitudes throughout the year. 

Potentially negative effects of hydropower generation on bass movement could affect bass 

populations that support a sizeable recreational fishery in the Broad River. Thus, this study 

would provide key information on balancing power generation and fisheries conservation. 

Using regression analysis, I report that bass movement and discharge were weakly 

correlated in winter, but not in summer.  
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Methods 

Tracking 

I investigated diurnal movement of the radio-tagged smallmouth bass by locating 

them every 30 minutes for an entire daylight period. Six radio-tagged bass (mean: 414 mm 

TL; range: 299-490) were tracked up to a maximum of 1 km downstream of the Ninety-

Nine Islands dam (Fig. 1-1 of Chapter 1). Bass were located using the same zero-point gain 

reduction telemetry methods as previously described in Chapter 1 (Nimela et al.  1993). 

Bass were tracked during two seasons, summer (July and August) and winter (December-

February). In summer, individual bass were tracked over the course of two consecutive 

days where individual fish point locations were recorded from 6:30a.m.-2:00 p.m. on the 

first day and 2:00 p.m.-9:00 p.m. on the second. During winter, shorter photoperiods 

allowed for fish to be followed during a single day long period (7:00a.m. – 6:00p.m.). 

Once a bass was relocated, water depth was measured to the nearest tenth of a meter 

using a wading rod (Rickly Hydrological Co., Columbus, OH) and the point location was 

recorded using a Garmin Dakota 10 receiver (Olathe, KS). A total of 392 bass relocations 

were obtained on 26 individual tracking days (20 during summer and six during winter). 

Bass movement between consecutively recorded distances was computed by measuring the 

straight-line distances using ArcGIS 10.3 (ESRI, Redlands, CA). Lateral movement was 

treated the same as up/down stream directions. Thus, a change in any direction within the 

river channel was simply considered a linear movement.  

Statistical Analyses 
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To examine day-time movement of bass in response to changes in discharge, 

movement distances were analyzed in regression analyses using all individuals 

simultaneously. The primary interest lied in understanding the overall patterns of bass 

movement in relation to discharge fluctuation while accounting for individual differences. 

While the main objective was to investigate the effects of discharge on bass movement, 

seven other variables that were hypothesized to affect bass movement were considered: 

water depth, period of daylight (twilight: prior to 6:30a.m./after 9:00 p.m. during summer, 

prior to 6:30 a.m./after 7:00p.m during winter; dawn: 6:30-7:00a.m. during summer, 7:00-

7:30a.m. during winter; morning: 8:00-11:30a.m., afternoon: 12:00-5:00p.m, evening: 

5:00-8:30p.m. during summer, 5:00-6:30p.m. during winter, and dusk 8:30-9:00p.m. 

during summer, 6:30-7:00p.m. during winter), river discharge, difference in discharge from 

the previous detection ([ΔDischarge] = Discharget – Discharget-1), percent change in 

discharge from the previous detection (%ΔDischarge = ΔDischarge / Discharget-1*100), 

and body size (total length in mm). Discharge data was obtained from USGS Gage 

02153551. Period of day and fish size were included since they can influence bass activity 

(Reynolds & Casterlin 1976; Todd & Rabeni 1989). Both summer and winter data was first 

analyzed together as a global model. However, due to drought conditions during summer 

and increased precipitation during winter, summer and winter discharge levels differed 

greatly: winter median discharge during tracking dates (3070 ft.3/sec.) was much higher 

than that of summer (576 ft.3/sec.). To remove a potentially confounding effect of season, 

summer and winter were analyzed independently. On a few occasions during summer 

tracking, tagged bass had seemed to move with increasing discharge levels, thus I 
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hypothesized that fish movement distances would be positively correlated with increases 

in river discharge.  

Model development 

I used a two-step approach to quantify the effect of discharge on daylight bass 

movement within summer and winter seasons. Since bass movements did not reflect an 

obvious linear trend in response to discharge levels, I implemented Generalized Additive 

Mixed Models (GAMMs) to accommodate the non-linear responses. First, models were 

developed with individuals as a random effect and were used to address bass movement 

with variation in river discharge levels over time. Temporal correlation structure in 

recorded bass locations was not yet accounted for in the first step, before model 

development, I used variance inflation factors (VIF) to assess collinearity between the 

predictor variables. All variables had a VIF value less than three and were retained for 

further model development (Zuur et al.  2009). GAMMs were employed using package 

mgcv (Wood 2006) in Program R and a cubic regression spline was applied, allowing for 

a non-linear curve based on smother regression (Zuur et al.  2009). Initially, smoothing 

terms were added to all variables, but were removed from bass body size which did not 

have enough unique values to include as a smoother (Zuur et al.  2009). The optimal set of 

covariates to be included in the subsequent time-series analysis was selected by dropping 

non-significant covariates until all remaining covariates were significant (α ≤ 0.05). 

Time Series Analysis 
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Since movement data were essentially a time series of individual movement events, 

the second step in the regression analysis was to add a correlation structure to the optimal 

GAMMs to account for the possibility of serial autocorrelation of the tracking observations 

through time. Final time series GAMMs used the optimal set of predictor variables 

identified above and the correlation structure observed in their residual plots. To 

accomplish this, the correlation lag structure of residuals was visually evaluated for the top 

initial GAMMs. Based on the significant partial autocorrelations at lags one and four (Figs. 

3-1), and AR-1 and ARMA(4,1) were fit to summer movement. Winter showed an

oscillating autocorrelation, a significant lag-1 partial autocorrelation, and a significant lag 

six autocorrelation; an ARMA(2,1) and MA(6) model structure was fit to winter data in an 

attempt to account for these lag cycles (Fig. 3-2). To select the best fitting of the time series 

correlation structures, Akaike information criterion (AIC) was used to rank each model for 

each season and the model with the lowest AIC score for each season was considered the 

top model. No competing models were identified based on ΔAIC rankings (ΔAIC >2 from 

the top-ranked model).  

Results 

The mean consecutive (30 minute interval) distance traveled by all of the bass 

during both seasons was 30 m. Summer mean distance was 31 m (range: 2-172 m) and 

winter was comparable with a mean of 26 m (range: 1-170 m). Median movement was 22 

m in summer and 15 m in winter. Movement distances did not differ significantly by season 

(Kolmogorov-Smirnov Test; D = 0.19, p = 0.01). All bass that were tracked remained 

within pool/run habitats (<1000 m2) during a single diurnal tracking period. 
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Discharge Predictor variables retained in the final GAMMs included discharge, 

water depth, and bass total length as the optimal parameter set to use for time series 

analyses. Period of day was not significant during model development, and was thus 

dropped prior to time series AIC rankings. Absolute discharge was the only significant 

discharge variable in the final set of time series models (Table 3-1). Discharge was not 

significant for summer (p = 0.51), but was significant in winter (p = 0.04). The final time 

series GAMM for both seasons incorporated two different correlation structures based on 

the lag significances seen in the autocorrelation plots (Figs. 3-1 & 3-2). The top time series 

models were as follows: 

Summer: 

Movementi,t =  s(Deptht)  + Body Sizei + CorARMA(ϕ4 – θεi,t-1) 

Winter: 

Movementi,t = s(Discharget) + Body Sizei + CorARMA(θεi,t-6) 

Where movement of individual i at time (t) is influenced by ϕ, the t – t-t (lag) difference in 

observations and εi,t - t (the lag difference in errors and random effect of individual bass) 

correlation structures observed in the residual plots for the summer and winter models 

respectively, and cubic regression shrinking terms (denoted by the letter ‘s’) were included 

on discharge and depth variables. 

For summer, the final time series model indicated that bass movement increased 

slightly more at both shallower and deeper depths. Depth was however weakly correlated 
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with bass movement (F = 0.041, p = 0.058) (Fig. 3-3). The curvilinear relationship between 

summer depth and the influence on movement during summer indicated slightly more 

movement at both higher and lower than average discharge levels (Fig. 3-3).  

The top winter time series GAMM showed that movement exhibited a linear 

positive trend with increasing discharge levels (Fig. 3-4). The winter analysis showed that 

movement was correlated with both discharge (F = 4.226, p = 0.042) and depth (F =0.031, 

p = 0.050) (Fig. 3-4). Body size of the bass was significantly positive for the winter series 

only (summer: p = 0.160; winter: p = 0.020). 

Discussion 

Taylor & Cooke (2012) report that non-migratory fish movements increased with 

changes in river discharge. My investigation of the effects of river discharge on smallmouth 

bass movement also support this general trend discovered in their meta-analysis, although 

correlation was weak in my study (R2 = 0.04 for summer and 0.03 for winter). Correlation 

was slightly stronger in winter most likely due to the increased discharge levels during that 

season. ##. The positive relationship seen for winter discharge (Fig. 3-4) indicated that 

movement was influenced more during a period of higher discharge from the dam. The 

increased response during winter can be attributed to a physiological response where fish 

are likely seeking areas with lower flows to save energy and lessen the costs of swimming 

(Flore & Keckeis 1998), especially during times with the coldest water temperatures (< 

20oC). 
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Bass response to changing flows is also noted by summer depths. Smallmouth bass 

exhibited longer movements when location depths were less than 0.4 m or greater than 1.2 

m (i.e. bass are more likely to move under higher flow conditions versus more stable base 

levels) (Fig. 3-3). This type of movement pattern at the lowest discharges points toward a 

lack of water available within the channel (Fig. 3-5a), but more movement during the 

highest discharges and water levels lends to the growing knowledge of the effects of 

peaking power generation discharge levels on black bass movement (Earley 2012) where 

bass could be seeking flow refuge (Sammons & Earley 2015). Or, fish could perhaps be 

moving toward areas of higher flow for additional feeding opportunities. Higher flows 

could cause substrate disturbance and thus feeding opportunities (Kemp, Gilvear, & 

Armstrong 2006).The latter is probably less plausible, but a diet study of stomach contents 

taken from bass after above average discharge events could bring insights into which exact 

behavior may be happening during highest magnitude flows (Valentine, Sabaton, Breil, & 

Souchon 1996).   

Studying fish movement in relation to varying discharge levels over a short time 

period (within a single day) allowed me to quantify fine-scale behavior of smallmouth bass 

over time. Night tracking to obtain an entire diel period would have been ideal in the 

investigation of how Broad River smallmouth respond to discharge changes (Todd & 

Rabeni 1989), but tracking at night was not safe due to the numerous exposed shoals within 

the river channel in Broad River.  

Assuming that lower peak flows could result in easier feeding opportunities for 

individual fish, managing discharge in an optimal ‘feeding range’ could be an important 



60 

tactic for Broad River fishery managers to work with dam operators in order to maximize 

individual bass growth and angler satisfaction. Managing a regulated river for both power 

generation and a productive fishery is a daunting task, but could result in an optimal 

situation for both power generation and non-consumptive uses such as sport fishing (Gore 

& Petts 1989). Repeated hydraulic stress could create diminished fish conditions and hinder 

population growth rates as a result (Earley 2012). More data at the extreme discharge levels 

(e.g. those time periods when river discharge is <400 and >5000 ft3/sec. in this reach), is 

needed to completely parse out the nuances of how discharge affects top predator 

physiology and behavior. More effort is also needed to scale individual-level movement 

responses to discharge to population-level effects (Taylor & Cooke 2012). 

These data do not support a strong effect of discharge on bass behavior. Here, 

smallmouth bass movement was influenced by increased discharge, and based on this 

analysis of discharge and depth, there is limited evidence to support the influence of both 

lower and higher discharge events on the overall pattern of bass movement in response to 

changing river conditions (Fig. 3-4). With additional efforts to quantify the impact of flow 

regulation on the physiological responses of highly active predators like smallmouth bass, 

we could consider new regulations that will benefit below-dam fish communities as a 

whole (i.e. both the specialized and generalist species) (Poff & Zimmerman 2010). 

Hydropower generation should remain a priority, but also maintaining fish communities 

should enhance angler opportunities by maximizing the invertebrate abundance and the 

overall food web structure (Malmqvist 2002).  
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It is also important to note that in many places outside of the native range, 

smallmouth bass have become a naturalized top predator (Brewer & Orth 2015) which may 

be able to exploit optimal conditions and maximize population growth. Management 

practices which maximize population growth would need to have monitoring protocols (see 

Chapters 1 & 2) to either ensure a minimum impact on native species (Zimmerman 1999), 

or maximize bass recruitment for the sport fishery (Smith et al.  2005; Zipkin et al.  2008) 

depending on specific management goals. 
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Tables 

Table 3-1. Summary Statistics, significance of variables, and AIC values for each time series correlation model fit to summer and winter 

bass movement data. 

p-value (α = 0.05)

  Model 

Correlation 

Structure AIC Discharge Depth 

Period 

of 

Day %ΔDischarge ΔDischarge 

Body 

Size 

Summer R2 0.04 ARMA(4,1) 245.7 -- 0.058 -- -- -- 0.16 

AR(1) 253.6 

Winter R2 0.03 MA(6) 139.7 0.04 0.05 -- -- --  0.02 

ARMA(2,1) 142.4 
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Figures 

Figure 3-1. Autocorreltation plots of summer movement GAMM normalized residuals 

correlation lag structure. 
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Figure 3-2. Autocorreltation plots of winter movement GAMM normalized residuals 

correlation lag structure. 
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Figure 3-3. Estimated influence of log10 transformed summer depth (m) and bass total 

length (mm) on diurnal bass movement based on the summer time series GAM. 

Approximate 95% pointwise confidence intervals are given by the dashed lines. Depth 

influence is scaled and mean-centered. River Discharge was not significant in the model. 
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Figure 3-4. Estimated influence of log10 transformed winter discharge (ft.3/sec.), depth (m), 

and bass total length (mm) on diurnal bass movement based on the summer time series 

GAM. Approximate 95% pointwise confidence intervals are given by the dotted lines. 

Discharge and depth influence is scaled and mean-centered. 
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Figure 3-5. Photos of the Ninety-Nine Islands tailrace during low discharge (A) and high 

discharge (B) conditions. 
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