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ABSTRACT 

Arsenic is found as a contaminant of drinking water, rice, and other crops. 

Epidemiological studies have shown that embryonic exposure to arsenic can cause 

changes in behavior and reductions in growth, but the mechanisms for these effects are 

not well understood.  So, we were interested in examining potential mechanisms by 

which arsenic could be affecting growth.  Additionally, while many studies have looked 

at higher levels of arsenic exposure, we wanted to focus on environmentally-relevant 

levels to see if these concentrations could have lasting consequences on growth, even 

after the exposure had ended.  

 Killifish (Fundulus heteroclitus) were used as the model organism for this 

investigation for two reasons.  First, they produce a large number of eggs, which can 

increase statistical power when observing affects over multiple time points.  Second, 

earlier studies have shown effects on developmental processes at arsenic levels similar to 

human exposures.  In rodent or zebrafish models, investigators typically need to use 

arsenic concentrations that are 100X higher to see similar effects.  Thus, killifish were 

exposed to 0, 10, 50, and 200ppb arsenic (as sodium arsenite) as embryos, and after 

hatching were reared in clean water until adulthood at 28 weeks.  The study was designed 

to represent a full embryonic/fetal arsenic exposure in utero, and then to examine whether 

effects persisted, worsened, or resolved into early adulthood.  We found that growth, 

assessed by condition factor (weight/length3), was significantly reduced by 24% in the 

200 ppb embryonic exposure groups at 8 weeks, with a dose dependent decrease in the 10 

and 50 ppb groups.  These trends persisted up to 28 weeks, although variability was much 
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higher. As we had seen similar reductions in growth in a previous embryonic arsenic 

exposure study that used higher arsenic concentrations, we therefore investigated three 

potential mechanisms responsible for the growth reduction.  

First, we analyzed feeding behavior, as it has been found to correlate to amount of 

nutrient intake.  Embryonic arsenic exposure did indeed reduce the percentage of fish 

initially responding to food and increased the amount of time it took for the fish to start 

their response, particularly at the 28 week time period.  So, one possibility is that arsenic 

reduces activity or alters olfaction, thus reducing their response to food.  The second 

mechanism examined was whether embryonic arsenic exposure altered the morphology 

of the intestine, or altered several specific cell types needed for nutrient uptake.  There 

was a slight, but statistically significant reduction in intestinal villus height at 16 weeks, 

this change did not persist.  Intestinal enterocytes and Goblet cell number, as measured 

by immunohistochemistry, did not change with arsenic concentration or time.  However, 

the number of PCNA-positive intestinal cells, indicating cell proliferation, was reduced in 

a dose-response manner at all sampling time points.  This may indicate that embryonic 

arsenic exposure permanently altered the ability of intestinal stem cells to proliferate. 

The third possibility we examined was whether embryonic arsenic exposure 

altered the expression of skeletal and hepatic insulin like growth factor (IGF-1), its 

receptor (IGFR-1) on skeletal muscle cells, and its associated binding proteins (IGFBP-1 

& -5) in the muscle and liver.  We hypothesized that changes in their levels might alter 

growth and muscle body weight, since epidemiological studies have found an inverse 

relationship between arsenic and IGF-1 in plasma levels, which correlate to reductions in 
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birth weight.  Reductions of hepatic IGF1 and IGFBP-1 are highly correlated with 

condition factor reductions in the 8 week old fish.  However, by 28 weeks, hepatic IGF-1 

and IGFBP-1 still remain tightly correlated, but are actually increased in a statistically 

significant, dose-response manner.  This might be a compensatory response to potentially 

making up for any growth deficits seen in earlier stages.  

Overall, the results from this study show that embryonic-only arsenic exposure 

can alter growth factor expression, such as hepatic IGF-1, which correlates with a 

reduction in condition factor during an essential growth period such as the juvenile stage.  

As the fish reach sexual maturity, it appears that by increasing levels of IGF-1 and 

restoring a consistent intestinal environment, they are able to compensate for early 

growth deficits after embryonic exposure to lower levels of arsenic. 
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CHAPTER ONE 

LITERATURE REVIEW 

Purpose of the study 

In this study, our main objective is to determine whether arsenic exposure (10, 50, 

and 200ppb) during early life stages reduces growth and alters feeding behavior long 

after the exposure has ended, using killifish (Fundulus heteroclitus) as a model organism. 

Arsenic species and occurrence in the environment 

Arsenic (As) is a naturally occurring element found all over the world that has 

known toxic effects on animals1. The degree of toxicity can depend on the As species, 

since studies have shown that inorganic iAs (arsenite AsIII & arsenate AsV) as well as 

GSH-mediated methyl organic metabolites (methylarsonate and dimethlyarsinate)2 can be 

toxic 3,4. Arsenite and arsenate are most commonly found in aqueous environments due to 

the weathering of rocks with arsenic sulfides, mining activity, combustion of fossil fuels, 

which then interconvert from AsIII & AsV in an aqueous environment depending on pH 

and redox conditions3,5. Since arsenite predominates in reducing anaerobic environments, 

it is the form commonly found in groundwater6.  Other organic arsenic species include 

arsenobetanine, arsenosugars, and arsenocholine.  Exposures to them are typically 

through the diet, as they are commonly found in fish, shellfish, and poultry growth feed 

additives (Rocxarsone)4,7,8.  These forms have been found to be generally nontoxic2. In 

addition, arsenic can form mono-, di-, and trimethylated metabolites. The different 

oxidation states and chemical structure of arsenic species can correlate to its 
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cytotoxicity9.  For example, one study found that some human cells (hepatocytes, 

keratinocytes, and bronchial epithelial cells) are more sensitive to cytotoxic effects of 

MMAIII10 compared to inorganic AsIII 11.  Another study found that DNA damage in 

human hepatocytes and urotheial cells is induced primarily induced by MMAIII and 

DMAIII 12. 

 

Geographic arsenic water exposure  

Throughout history and in the present day, arsenic has been used for industrial 

and agricultural purposes such as the manufacturing of car batteries, alloyed 

semiconductor materials, and as a pesticide13, as well as being, used as an effective drug 

for treatment of acute promyelocytic leukemia (APL) 9.  However, the major source of 

human exposure to arsenic is through drinking water.  In the past 10 years, China alone 

has experienced at least 4 major arsenic water contamination accidents through ill-

managed industrial waste discharge in the following water sources:  620 µg/L in 

Xinqiang River, 570 µg/L in Duliu Creek, 180 µg/L in Yangzonghai Lake and 530 µg/L 

in Dashahe River3.  While the U.S. EPA drinking water standard is 10ppb (10µg/L), 

higher levels can be found in private wells, which are often unregulated.  These higher 

levels of arsenic raise concern for roughly 13 million U.S households14.  It was estimated 

that 42.7 % of aquifers in the southwestern part of the U.S had greater than 10µg/L15.  

Other parts of the U.S also have elevated arsenic levels.  For example, 8% of wells 

measured in Pennsylvania had concentrations > 10 µg/L 16, New England found that 30% 

of wells had > 10 µg/L 17, North Carolina found around 1,436 wells out of 63,000 with 
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levels higher than 10µg/L (maximum was 806µg/L) 15 and well water in Arizona can be 

up to 61µg/L18. Additionally, arsenic pollution of water has been reported in 

epidemiological studies in other countries including Chile (up to 110 µg/L As) 19, 

Bangladesh (0.1-864 µg/L As) 20, Taiwan (<0.1-347.43 µg/L As) 21, and Hungary (0-50< 

µg/L As)22 to list a few.  

 

Dietary arsenic exposure  

Not only are people exposed through their water supply, but arsenic has been 

found in dietary sources.  According to the European Food Safety Authority, the main 

competent to the dietary exposure to iAs comes from grain-based processed products 

such as wheat bread and rolls in adults, while infant and toddler exposures were from 

rice, milk, and dairy products23. The mean dietary exposure in infants and toddlers ranged 

from 0.20-2.09 µg/kg body weight/day, while adults ranged from 0.09-0.64 µg/kg body 

weight/day21.  In fish and seafood, there are usually greater amount of arsenobetaine and 

arsenocholine, both of which have a lower potential for toxicity to humans23.  Arsenic is 

easily taken up into major food sources such as rice, which has been shown to accumulate 

inorganic arsenic at a 10-fold high rate than other grains 24.  One study examining arsenic 

concentrations in various types of rice found levels of 200 µg /kg in brown rice, 130 µg 

/kg in white rice, and 70 µg /kg in other color rice 25,26.  Another study conducted a 

product test investigating arsenic content in 9 different rice-based infant snacks found 

ranges from 36.5-568 ng/g total As27.  
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A report in the U.S looking at dietary consumption patterns found that in some 

infant formulas, infants could be exposed on average to 9.4-14 µg/day iAs when 

consuming formulas using brown rice syrup as a healthy alternative to sugar. This study 

also found adults consuming rice could be exposed to an average to 11 µg/day iAs28.  

Based on epidemiology studies, arsenic exposure between 0.3 and 8 µg/kg body 

weight/day was estimated to result in a 1% increased risk of lung skin and bladder tumors 

in humans23.  A recent European study looking at the need for arsenic risk reduction 

deduced that based on a daily consumption of 2L of water a day at 10 µg/L arsenic by a 

person weighing 70 kg equals 0.3µg/kg body weight/day which is in the 1% benchmark 

does range for carcinogenesis23.  Additionally, the U.S. Agency for Toxic Substances and 

Disease Registry’s (ATSDR) Minimal Risk Levels (MRLs) for acute oral consumption at 

5µg/kg/day and chronic oral consumption at 0.3µg /kg/day arsenic as safe doses for 

infants28. In order to reduce the risk of cancer later in life for infants’ minimizing and 

regulating the amount of arsenic exposure through diet and water is essential. 

 

Naturally-occurring and anthropogenically-introduced arsenic sources continue to 

raise the need for further investigation not only for arsenic remediation efforts but also 

the mechanisms behind its toxic effects on animals. Furthermore, since studies have 

shown that arsenic exposure in animals can contribute to cancer, behavior and cognitive 

dysfunction, as well as impaired growth and development, it is extremely important to 

investigate arsenic’s effects at early life stages29. It is also essential to understand the 
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metabolism of arsenic and what species could potentially increase harmful developmental 

effects.  

 

Arsenic biotransformation in animals 

In animals, arsenic (iAsV and iAsIII) is absorbed from the intestine and is typically 

metabolized through a specific biotransformation pathway usually occurring in the liver.  

It can enter a cell via aquaporins and is later exported, in part, through membrane bound 

efflux transporters (MRPs) 5. The metabolism of iAs happens through a series of 

oxidative methylation and reduction reactions that promotes As excretion in urine5.  For 

example, inorganic arsenic AsIII goes through oxidative methylation along with 

conjugation of GSH to convert it into monomethyl arsenic or MMAv.  MMAv is reduced 

to MMAIII which undergoes oxidative methylation to form dimethylated arsenic or DMAv 

by an S-adenosylmethionine -dependent enzyme termed arsenic methyltransferase 

(As3MT) 4,30,31.  The reduction of pentavalent As to trivalent As is usually mediated by 

an arsenate reductase enzyme with the addition of a methyl group5. Figure A. shows a 

general arsenic biotransformation pathway.   

 

 

 

 

 

 

Figure A. General arsenic biotransformation pathway. Modified from Casarett and 

Doull’s Toxicology 8th edition.  
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All forms of arsenic - Asv, AsIII, MMA, and DMA can be detected in urine, with 

DMA being the most commonly detected species5,32. These methylation pathways have 

been seen in aquatic animals such as fish with metabolism usually occurring in the gills 

and liver, but they have a greater tendency to accumulate arsenobetanine and 

arsenocholine which are thought to be less toxic forms5. While methylation of iAs is an 

attempt at detoxification, it can also be a bioactivating pathway that leads to greater 

toxicity as studies have found that the intermediate trivalent methylated arsenicals 

(MMAIII and DMAIII) can be more effective inhibitors of enzymes, and cause more 

cytotoxicity and genotoxicity than iAs5,33.  

 

Growth and intestinal development in mammals 

As previously mentioned, arsenic and its metabolites can impair growth and 

development.  In order to understand these effects, it is first important to understand 

normal animal development. In mammals after sperm entry into the egg, the first 

cleavage begins about a day later and the two nuclei produced by this cleavage are the 

first to contain the entire genome.  During cleavage events, the zygotic genome is 

activated at different times depending on the species; human zygotic genes, genes 

transcribed by the zygote’s DNA, are activated at the 8- cell stage, whereas mouse and 

goat zygotic genes can be activated in late zygote stage and continue through 2-cell stage. 

In order for zygotic genes to be activated, parental chromatin undergoes changes and 

gamete-specific methyl groups on DNA are removed unless imprinted, and new DNA 

methylation patterns are established. By the 8-cell stage, the genome of each cell is 
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hypomethylated and appear to be pluripotent which sets the stage for cell differentiation 

to occur34. 

 

The blastocyst contains trophoectoderm cells which will give rise to 

extraembryonic tissues like the chorion around day 10-12 in humans, and an inner cell 

mass with pluripotent cells which will give rise to the embryo. The inner cell mass then 

delaminates into the epiblast, which becomes the three germ cell layers during 

gastrulation. Around day 12-15, the primitive streak is formed, which goes on to form 

embryonic mesoderm (giving rise to muscles, skeleton, connective tissue, reproductive 

organs, kidneys, and circulatory structures) and endoderm (gives rise to the 

gastrointestinal tract, lining of respiratory tract, and organs like the liver and pancreas) 

while the embryonic epiblast forms the embryonic ectoderm (gives rise to the nervous 

system)34. After the completion of gastrulation, organogenesis begins around 5 weeks in 

humans.  

 

As previous studies in our lab have noticed a reduction in growth of killifish 

exposed to arsenic as embryos, we wanted to determine if arsenic might have an effect on 

intestinal development, potentially leading to a reduction in nutrient uptake and growth.  

The endodermal function in the embryo is to construct the linings of the digestive tube, 

which is signaled by the Sox17 transcription factor that is necessary for gut endoderm 

morphogenesis35.  The digestive tube constricts to form the esophagus followed by the 

stomach, small intestine, and large intestine, and then puts out branches that become the 
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thyroid, thymus, pancreas, and liver36. Gut tissue forms by reciprocal interactions 

between endoderm and mesoderm. Signals playing a role in specification of the gut tube 

are typically in gradients and Wnt is thought to be important in this process36. Wnt 

signals, which are instructed by RA (retinoic acid) and FGF gradients from posterior 

mesoderm, induce the posteriorizing transcription factors Cdx1, Cdx2 as well as 

paracrine factor Indian hedgehog that play a role in intestine formation. At high 

concentrations, Cdx1 and 2 induce the formation of the large intestine, and at low 

concentrations, they induce the formation of the small intestine36. In the anterior region of 

the gut tube, which forms thymus, pancreas, stomach, and liver, Wnt signaling is 

blocked.  In the stomach forming area, the gut tube mesenchyme lining expresses 

transcription factor Barx1 which turns on Frzb-like Wnt-blocking proteins. In a study 

observing intestinal development in mice showed that villi form around embryonic day 

15 and the crypts, where stem cells reside, were set up shortly after birth due to the 

expression of Hedgehog. Growth of the villus is promoted by BMP2 and 437. The 

morphogenesis of villi and crypts occur by folding of the endodermal epithelium and 

depends on the decreased expression of ephrin B1 in villi and increased ephrin B2 and 3 

in the crypts where β-catenin plays a role in repression and up regulation of these 

proteins, respectively37. Additional studies on mice have found that cells expressing adult 

intestinal stem cell markers such as Lgr5, Ascl2, and Olfm4 appear around embryonic 

day 15 and reside in the inter-villus region, suggesting that Wnt-dependent progenitors of 

adult intestinal stem cells are established prior to birth38. In this study, they found that 

Lgr5 progenies give rise to all differentiated intestinal epithelial cell types including; 
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enterocytes, enteroendocrine, goblet, and Paneth cells38. The enterocytes are the most 

abundant intestinal epithelial cells, making up to about 80% of all epithelia cells. They 

function in increasing the absorptive surface, and have hydrolytic and absorptive 

functions to take up and degrade nutrients39. In mice, the turnover rate for enterocytes is 

estimated to be around 3 days. Goblet cells represent about 5% of the epithelial cells and 

contain mucus that constitutes a barrier against the intestinal contents. Turnover for 

goblet cells is around 3 days as well. Enteroendocrine cells make up a much smaller 

percentage of the intestinal epithelial cells and they produce hormones that help in 

regulating gastrointestinal motility. Paneth cells function mostly in antimicrobial defense 

of the intestine, roughly 10 Paneth cells are present per crypt, and they and have a slower 

turnover rate of about 20 days39.  

 

The rapid cell division in crypts is dependent upon Wnt/β-catenin signaling37. The 

stem cells divide rapidly into progenitor cells in the intestine then take on their fate based 

on signals from genes such as Math1 (aka Atoh1)40, which promotes the fate of secretory 

(goblet and endocrine) cells along with a decrease in Notch41. Whereas the Notch ligand 

Delta turns on transcription factors such as Hes-1 to specify enterocyte fate41.  Below is a 

general diagram of these signals and the fate of the stem cell in Figure B. 
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As embryonic development is complete and the fetus is growing, in utero 

signaling pathways such as insulin-like growth factor (IGF-1) is extremely important for 

growth. In humans serum IGF-1 concentration from 15-37 weeks of gestational age there 

is a positive correlation with IGF-1 concentration and fetal weight and bone length42. 

Similarly, umbilical cord IGF-1 levels reflect fetal IGF-1 levels at birth and decreased 

IGF-1 levels correlate with a decrease birth weight in humans. There has also been 

evidence that IGF-1 is detectable in fetal tissue in the first trimester suggesting IGF-1 

might play a role in early development42.  Similar to mammals, IGF-1 signaling plays a 

Figure B. Signals involved in the intestinal crypt based columnar cell (CBC) and 

Lgr5 marked stem cell fate. Modified image from (Boaz et al., 2014) 
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role in juvenile fish development, providing evidence of its significance for normal 

growth43.   A general diagram of IGF-1 signaling pathway located in Figure C.  

 

Growth and development in fish 

My work uses killifish (Fundulus heteroclitus) as model organisms.  Fish eggs are 

telolecithal meaning the majority of the egg cell cytoplasm is occupied by yolk44. 

Cleavage can only occur in a thin region of the yolk free cytoplasm called the blastodisc. 

The first cell divisions after fertilization have a reproducible pattern of meridional and 

equatorial cleavage. Fish embryos undergo mid-blastula transition, which is when zygotic 

gene transcription begins around the 10th cell division.  At this time three distinct cell 

populations develop: the yolk syncytial layer (role in directing cell movements of 

gastrulation), the enveloping layer which is a protective covering that allows the embryo 

to develop in hypotonic solutions, and the deep cells which give rise to the embryo 

proper44.  

During gastrulation, all three layers undergo epiboly, the movement of epithelial 

layers that spread to enclose the deeper layers of the embryo, and progress through it until 

the entire yolk cell is covered by the blastoderm44. Once the blastoderm has covered 

about half the yolk cell, a thickening occurs referred to as the germ ring which is made of 

the epiblast (later to be the ectoderm) and the hypoblast (later to be the endoderm and 

mesoderm). The endoderm expresses casanova (Sox 32) and spiel-ohne-grenzen (Oct 4) 

genes controlled by nodal which will become intestine, liver, and pharynx.  Mesoderm 

expresses genes like notail (brachyury) and spadetail (Tbx6 and VegT) which will 
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Figure C. IGF-1 Signaling pathway to 

promote cell proliferation.  

become heart, muscle, head, blood, and fins45.  Ectoderm expresses BMPs and certain 

Wnt proteins which will become epidermis, brain, nose, 

eye, and spinal cord.  Once organogenesis is complete and 

the fish continues to grow to adulthood, signaling 

pathways such as IGF play a role in growth by promoting 

proliferation and differentiation of growing tissue, similar 

to fetal growth in humans. As shown in Figure 2, IGF 

binds to specific receptors on the cell surface of growing 

tissue to mediate proliferation.  It can also bind to IGF 

binding proteins (IGFBPs) that have various functions, 

depending on the tissue type and the health status of the 

organism46. The binding proteins can aid in the control of 

IGF distribution between extracellular environments and cell surface binding sites, and 

may also regulate IGF bioactivity by modulating its interaction with the receptor46.  For 

example, like growth factor binding protein-1 (IGFBP-1) is found predominantly in the 

liver and inhibits the bioavailability of IGF typically under stressful conditions47. In one 

study in zebrafish, they found that under times of starvation, IGFBP-1 was significantly 

increased47. In contrast, IGFBP-5 located primarily in the muscle is considered pro-

myogenic and increases the bioavailability of IGF during myoblast differentiation playing 

an important role in fish muscle growth48. Additionally, other factors related to the 

gastrointestinal systems play a role in fish growth such as peptide transporters located on 

enterocytes and part of the brush border membrane. They play a major role in animal 
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growth through amino acid transport and availability.  Peptide transporter 1 (PEPT1) is 

primarily involved in the uptake of dietary protein degradation products and fish 

growth49. In studies using PEPT1 knockout mice, body weight was reduced and 

microvilli were shortened50.  

 

Intestinal development and stem cell signals in fish 

Intestinal development in fish is like that of mammals. While not much 

investigation has been done on killifish intestinal development, its development in 

zebrafish has been thoroughly investigated. One study found that the intestinal tract has 

undergone extensive remodeling around the fourth day of development, along with 

compartmentalization into three main segments: the intestinal bulb, mid-intestine, and 

posterior intestine, which will be composed of cells that will perform specialized 

functions51.  These specialized cells consist of enteroendocrine cells, which are hormone 

secreting cells observed 52-76 hours post fertilization, goblet cells, which secrete 

mucous, and enterocytes, which are absorptive cells, both observed 76-126 hours post 

fertilization.  After 5 days of development, epithelial folding is more extensive in the 

intestinal bulb while mid- and posterior intestine remain unfolded and the presence of 

goblet cells and enterocytes is restricted to the mid-intestine. The folding processes 

proceeds rostrocaudally, as it does in mammals, with folding in the mid-intestine 

appearing around 8 days and folding in the posterior intestine appearing around 12 

days51. The morphological characteristics of the intestinal bulb represent tall fold (plicae) 

or villus like extensions, which become progressively shorter through the mid to posterior 
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intestine.  Although zebrafish and other minnows lack crypts where stem cells reside, 

they do have proliferative compartments at the base of the villus-like folds 51.   

 

Differentiation of intestine stem cells in zebrafish is dependent on the same 

pathways and signals seen in mammals.  Delta, the Notch ligand, accumulates in 

secretory cells of zebrafish gut and activates the Notch cascade in neighboring cells, 

which turns on transcription factors (Hes-1) specifying enterocyte fate, in part due to the 

repression of Ascl1a.  Ascl1a is a gene that plays a role in specification of goblet and 

enteroendocrine cells52.  Like mammals, epithelial cells in zebrafish migrate from the 

base of the intestinal folds to the tip of the fold within 5-7 days in the anterior intestine 

and 7-10 days in the mid intestine. Mechanisms driving differentiation of epithelial cells 

towards the secretory lineage (goblet cells or enteroendocrine) seems to be highly 

conserved in vertebrates and dependent on Delta-Notch signaling41, 53, 54.  Interestingly, 

previous studies in our lab looking at arsenic’s effects on neuronal cell differentiation 

found that arsenic exposure decreased Ascl1 expression by 2.5-, 7-, and 4-fold on days 5, 

7 and 9 of stem cell differentiation.  An increase in Ascl1 expression has been shown to 

promote neuronal differentiation, so decreased expression could be a mechanism by 

which arsenic inhibits stem cell differentiation55.  As stated above, Ascl1a also plays role 

in intestinal stem cell differentiation, which suggests that it may also be reduced in the 

intestine of embryonically exposed killifish, and therefore reduce intestinal cell 

development. Therefore, arsenic exposure during development is a major concern. 
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Arsenic’s effect on growth and development 

It is known that arsenic can easily cross the placental barrier 29.  A study in 

Bangladesh investigated levels of arsenic in maternal and cord blood of pregnant women 

who were drinking water with of 90.5μg As/L which is much higher than the 10μg/L 

standard set by the WHO56. They found that arsenic levels in the maternal blood 

(11.7μg/L) and cord blood (15.7μg/L total arsenic) were similar, indicating that the fetus 

was also readily exposed to arsenic levels that could interfere with growth and 

development56.  A mass poisoning event occurred in 1955 in Japan where bottle-fed 

infants were exposed to about 500μg arsenic/kg body weight through their formula 

(Morinaga milk powder) and led to more than 100 infant deaths. Infants less than 12 

months of age had symptoms of anorexia, skin pigmentation, diarrhea, vomiting, fever, 

and abdominal distention which was first misdiagnosed as bronchitis or pneumonia until 

the link between patient’s dried milk brand and arsenic content was made57,58. This event 

raised a need to investigate arsenic’s long term effects following an early life-stage 

exposure.  Another study followed the arsenic exposed infants 50 years later, and found 

among 50 individuals their average height was 6.5 cm below the control group indicating 

there might be potential for abnormalities in proper skeletal growth due to early life 

arsenic exposure59. Another study looked at neurological issues in these patients and 

found that the group exposed as infants to arsenic exhibited neuropsychological deficits 

such that they showed an average performance of at least 1.2 standard deviations below 
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the average for the control unexposed group in memory tests57, had drastically reduced 

IQs, and increases in central nervous disorders like epilepsy and mental retardation58 

Other studies have found reductions in birth weight and gain following in infants exposed 

in utero to arsenic.  For example, a study in Bangladesh examining low level arsenic 

exposure (<100ppb) during pregnancy found a significant decrease in birth weight, with 

each 1µg/L increase in urinary being associated with a 1.68 g reduction in birth weight60.  

A European study looking at prenatal exposure to chemical mixtures found that arsenic 

was the only chemical in the mixture to have a significant inverse correlation to babies’ 

birth weight, declining 90g as arsenic increased in cord blood samples61. Additionally, a 

study in Bangladesh found that with increasing arsenic levels, IGF-1 plasma levels were 

significantly decreased and correlated with reduced birth weight62.  Long term, in utero 

arsenic exposure has been associated with reductions in weight gain.  For example, a 

study in Bangladesh followed pregnant woman exposed to arsenic and cadmium. They 

found that the children at 5 years of age had a reduction in weight gain and height with 

41% of the children being underweight and 33% were stunted, and that these effects were 

most apparent in girls63.  

 

Similar findings have been seen in animal models.  In a study looking at the 

effects of dietary arsenic exposure in juvenile rainbow trout found that there was a 

significant 15 and 34% decrease in weight gain in fish that fed on oligochaetes exposed 

to 4.5mg/L and 8.2mg/L As respectively. The uptake of arsenic into these oligochaetes 

ranged from 35- 58µg As/g dry weight 64. A study looking at mice found that drinking 
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water arsenic exposure (10 ppb & 42.5 ppm) from gestational day 10 until birth was 

correlated with significantly greater body weight gain, fat content, and glucose 

intolerance through young adulthood65.  Moreover, a study looking at rats exposed to 100 

ppb arsenic during development plus a western style diet found an increase in body 

weight beginning at week 5 until the end of the study at week 15 66.  Not only are studies 

finding a reduction in weight at birth but they are also finding an increase in body weight 

later in life which some studies think this could be a result of diet66. As a handful of 

studies have shown that arsenic was correlated with a reduction in weight gain, it is 

crucial to begin to discover some of the underlying mechanisms involved. Arsenic has 

been analyzed in studies of weight gain and IGF-1 which could be a potential pathway of 

concern as IGF-1 is a major factor in growth and cell proliferation but it would also be 

interesting to investigate arsenics effects on the intestine as it is the primary organ of 

nutrient uptake which is essential for proper growth.  

 

Arsenic exposure and behavior 

Arsenic has also been shown to influence animal behavior, and alterations in 

feeding and the ability to detect and recall food in the environment could lead to changes 

in nutritional uptake, and decrease growth and survival.  A study discovered that 

weanling rats exposed to arsenic displayed an impairment in spatial memory after putting 

them through hidden platform acquisition tests and visible platform trials67. In this study, 

both adult and infant rats exposed to arsenic were tested using a variety of operant 

condition tests. The study found learning deficits and time required to learn a new task 
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was increased in rats exposed as infants compared the unexposed controls 67.  Another 

study looking at photo motor response as a behavioral assay in zebrafish embryos 

exposed to 900-1,000µM As found that the arsenic exposed embryos exhibited 

hypoactivity68. Additionally, a study reported that As at 0.75 mM impaired long term 

memory in avoidance training behavioral tasks, providing more evidence that arsenic 

could be affecting normal brain development and function as a neurotoxicant69.  

 

For fish, olfaction is crucial to behaviors such as finding food, selecting mates, 

migratory routes, and evaluating the risk of predation. An olfaction study in rainbow trout 

showed that metals, such as cadmium and copper, reduced the ability of rainbow trout 

olfactory epithelium to L-alanine and taurocholic acid70.  L-alanine mimic’s food 

detection and taurocholic acid should elicit a social response via olfaction70. This study 

demonstrates that exposure to metals can cause impairments of the olfactory response in 

fish, which could result in a variety of behavioral deficits such as food detection.   

We hypothesize that changes in feeding behavior in fish exposed to arsenic could be 

another potential mechanism for weight gain reductions.  

 

In humans, behavior related studies have focused more on arsenics effects on 

memory, IQ, learning, anxiety and depression. A meta-analysis study focused on 

arsenic’s effects on intelligence in children (5-15 years old) found that increases in 

urinary arsenic reduced IQ71, 72.  Additionally, a study in India looking at children (5-15 
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yrs) with an average lifetime arsenic exposure of 147µg/L found a 12-20% decrease in 

vocabulary, object assembly, and picture completion test score73.  

 

Hypothesis and rationale 

I hypothesize that arsenic exposure during embryogenesis results in a reduction in 

weight gain in our model species, killifish. The potential mechanisms that I will be 

examining are:  1) changes in feeding behavior 2) alterations in IGF signaling pathway 

expression, and 3) changes in intestinal morphology possibly interfering with nutrient 

uptake.  I hope the results from these data could help elucidate if the arsenic standard 

drinking water limit (10 ppb) is protective of proper embryo growth and development, 

and if there are any long-term consequences to exposures of environmentally relevant 

arsenic levels (50 and 200ppb).  
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Abstract 

Arsenic is found as a contaminant of drinking water, rice, and other crops. 

Epidemiological studies have shown that embryonic exposure to arsenic can cause 

changes in behavior and reductions in growth, but the mechanisms for these effects are 

not well understood. Thus, killifish were exposed to 0, 10, 50, and 200ppb AsIII as 

embryos, and after hatching, were reared in clean water for up to 28 weeks. Growth, 

assessed by condition factor (weight/length3), was significantly reduced in the 200 ppb 

groups at 8 weeks by 24% with a dose dependent increase in 10 and 50 ppb. Significant 

behavioral changes were also noticed at 16 and 28 weeks, including reduced response to 

food.  Additionally, there was a reduction in intestinal villus area and absorptive 

intestinal surface area at 16 weeks. A decrease in liver IGF1 and IGFBP-1 transcript 

levels were observed, particularly a decrease at 8 weeks when there was a reduction in 

condition factor as well and an increase in muscle IGF1 and IGFBP-5.  By 16 and 28 

weeks, there is a shift in that IGF-1 liver and IGFBP-1 increase with arsenic exposure, 

and are highly correlated to one another.  We hypothesize that embryonic exposure to 

arsenic impairs fish’s ability to maximize nutrient intake due to a decreased feeding 

response and reduced numbers of intestinal enterocytes, ultimately causing compensatory 

changes in key proteins of the IGF signaling pathway.   
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1. Introduction 

Arsenic (As) is a naturally occurring element found in water, sediments, and soils, 

with the main route of exposure being drinking water. The most commonly found arsenic 

species in aqueous environments are the inorganic forms, arsenite (AsIII) and arsenate 

(AsV) with arsenite being the predominate species in groundwater1-3. Currently, the 

World Health Organization (WHO) has set the standard for arsenic in drinking water at 

10 ppb, although higher levels of arsenic are found all over the world in countries like 

China, Bangladesh, Hungary, Chile, and Japan2,4-8.  Even in the U.S., arsenic levels above 

10ppb can be found in unregulated wells, exposing roughly 13 million households to high 

arsenic concentrations in their drinking water9. The 10 ppb standard was set to help 

protect people from chronic exposures that can cause cancer and cardiovascular diseases, 

as well as potential developmental problems10,11. Not only is water a concern, but arsenic 

has been found in dietary sources such as wheat bread, rice, milk and dairy products12.  

Arsenic levels in rice, a staple crop for many people, pose a particular problem, as a study 

found levels of 200 µg/kg in brown rice, 130 µg/kg in white rice, and 70 µg/kg in other 

color rice13, 14. Another study investigated arsenic content in 9 different rice-based infant 

snacks and found ranges from 36.5-568 ng/g total as15. These high levels of arsenic 

content in rice and other snacks is alarming considering families that rely on rice a staple 

crop can consume 0.4 kg of rice per day per person and dietary arsenic exposure between 

0.3 and 8 µg/kg body weight/day was estimated to result in a 1% increased risk of lung 

skin and bladder tumors in humans12.  
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Studies have often focused on arsenic as a carcinogen, but less is known about 

embryonic arsenic exposure and its effects on development and growth.  It is known that 

arsenic can cross the placental barrier exposing a developing fetus to this toxicant16, as 

studies have found levels of arsenic in maternal (11.7μg/L) and fetal (15.7μg/L total 

arsenic) blood to be similar17.  A Bangladesh study found that exposure to arsenic (<100 

ppb) during pregnancy was associated with a significant decrease in birth weight with 

each 1µg/L increase in urinary As concentration being associated with a 1.68 g reduction 

in birth weight18. A European study looking at prenatal exposure to chemical mixtures 

found that arsenic was the only chemical in the mixture to have a significant inverse 

correlation to babies’ birth weight, declining 90g as arsenic increased in cord blood 

samples19. Additionally, a study in Bangladesh found that with increasing arsenic levels, 

IGF-1 plasma levels were significantly decreased and correlated with reduced birth 

weight20. In an animal model, mice exposed to 10 ppb As in utero and postnatally 

weighed 18-23% less than the controls up to 42 days of age in female mice21. 

In addition to changes in weight, other studies have found correlations between 

arsenic exposure and behavioral changes, particularly in children. In Bangladesh, a study 

looking at two cohorts of children at age 6 and age 10 found reduced intellectual function 

and performance, and reduced processing speed with arsenic exposures between 5-

50 μg/L during development22.  Even studies on adults in India found that 19% of 

patients aged 18-65 years old who were exposed to 25-900 μg/L arsenic exhibited 

depression and/or anxiety-like behavior23.  Animal models have also supported the trend 

in behavioral alterations. A study found that both adult and juvenile rats exposed to 
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arsenic had increased learning deficits and time required to learn a new task compared the 

unexposed controls24. Additionally, a study looking at photomotor response as a 

behavioral assay in zebrafish embryos exposed to 900-1,000µM As found that the 

arsenic-exposed embryos exhibited hypoactivity25.  Changes in behavior could potentially 

reduce feeding activity, and therefore reduce growth.  

While arsenic’s effects on growth and behavior have been investigated, very little 

is known about its effects on the intestine, a key organ involved in the uptake of arsenic 

from drinking water and food. One study using the HT-29 human intestinal epithelial cell 

line did find that arsenic increased superoxide levels, causing dysregulation of barrier 

functions in epithelial cells26.  Additionally other metals, such as copper, induce oxidative 

stress in fish intestinal enterocytes after in vivo and in vitro exposures27.  

Intestinal development is similar in mammals and fish, although most fish lack 

true crypts and instead have proliferative compartments at the base of the villus28.  The 

morphogenesis of villi and crypts occur by folding of the endodermal epithelium, and 

stem cell markers such as Lgr5 and Ascl1 start to appear in the intervillus region29.  The 

Wnt/β-catenin and Notch signaling pathways are important in the differentiation of the 

intestinal stem cells 29, 30. Like mammals, epithelial cells in zebrafish migrate from the 

base to the tip of the intestinal fold within 5-7 days.  Mechanisms driving intestinal cell 

differentiation appear to be highly conserved in vertebrates, and produce the same main 

cell types:  enterocytes, Goblet cells, and enteroendocrine cells31-33.  Cell division in 

crypts is dependent upon Wnt/β-catenin signaling, in which the Lgr5+ stem cells 

differentiate into progenitor cells.   From the progenitor cells, the Notch ligand Delta 
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turns on transcription factors such as Hes-1 to specify enterocyte fate31, 34 while the Ascl1 

transcription factor plays a role in specification of goblet and enteroendocrine cells35.  

Interestingly, a previous study in our lab found that arsenic exposure decreased 

Ascl1 expression by ~ 4-fold during embryonic stem cell differentiation in vitro, thereby 

reducing the formation of sensory neurons36, 37. Since Ascl1a also plays a crucial role in 

intestinal stem cell differentiation, we hypothesize that arsenic may also impact intestinal 

development in vivo.  Thus, the goal of the current study is to determine the mechanisms 

by which arsenic exposure during embryogenesis permanently impairs growth using 

killifish (Fundulus heteroclitus) as the animal model.  Potential mechanisms that we will 

examine include changes in intestinal stem cell differentiation and structure, changes in 

feeding behavior, and changes in growth factors needed for skeletal muscle proliferation. 

 

2. Methods 

2.1 Killifish collection 

Adult killifish (Fundulus heteroclitus) were collected from the National Estuarine 

Research Reserve (NERR) site in Georgetown, SC using baited minnow traps, and 

housed at Clemson University for the collection of eggs and milt. All fish throughout this 

study were kept on a 16:8 light/dark cycle at 26oC in 18ppt salt water (CoraLife). Adult 

killifish were fed Ziegler Zebrafish food twice a day and maintained until egg and milt 

collection.  
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2.2 Exposure of killifish embryos to arsenic 

Eggs were stripped from 3-4 females and milt collected from 1-2 males to fertilize 

~300 eggs. Fertilized eggs were randomly placed in one of 28 Petri dishes, and the 

process of fertilization continued until each Petri dish contained 80 eggs.  The fertilized 

eggs were continuously exposed to 0, 10, 50, and 200ppb arsenic, as sodium arsenite, 

with 7 replicate petri dishes per concentration. Water changes were done every other day, 

and embryos monitored for viability and hatching daily.  After hatching, the fry were 

placed in 10 gallon tanks with arsenite-free 18 ppt salt water within 24hr of hatching, and 

fed 5% of their estimated body weight per day. Juveniles were fed brine shrimp until ~4 

weeks of age, then were transitioned to pellet food (Zeigler Brothers).  Sampling time 

points were at 8, 16, and 28 weeks of age. 

 

2.3 Assessing arsenic metabolite formation 

          Using the process described above, additional eggs were fertilized and juveniles 

grown up in clean water for 16 weeks to assess arsenic uptake and metabolism.   Fish 

were exposed to 0, 5, or 10ppm arsenic as sodium arsenite (n= 6 tanks per exposure level; 

each tank had 2-3 killifish) for 5 days in a static renewal system.  Fish were fed twice per 

day, and water changes were conducted once a day. Fish were euthanized in buffered 

MS-222, rinsed in clean water, patted dry, and frozen whole at -80oC.  In order to have 

enough tissue mass for speciation, fish from 3 tanks were combined per exposure group, 

giving n=2 replicates per concentration.    The arsenic species in our adult fish food 

(Ziegler Brothers zebrafish pellets) was also determined.  
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All processing and arsenic analyses were conducted by Brooks Applied Labs 

(Bothell, WA).  Fish and food samples were homogenized and digested in nitric acid 

(modified EPA Method 3050B), and total recoverable arsenic performed by inductively 

coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS).  Arsenic species 

examined include arsenite, arsenate, monomethylarsonic acid (MMAs), dimethylarsinic 

acid (DMAs), trimethyl arsine oxide, arsenocholine, and arsenobetaine.  Analyses were 

conducted by ion chromatography coupled to an inductively coupled plasma collision 

reaction cell mass spectrometer (IC-ICP-CRC-MS).  Results are presented as the amount 

of each arsenical species per whole body kg wet weight. 

 

2.4 Killifish feeding behavior and growth measurements 

Sampling time points were at 8, 16, and 28 weeks of age.  Two weeks prior to the 

sampling points, feeding behavior was assessed by videotaping fish movement on two 

separate days.  A grid with 5cm rows was placed in the back of each home tank one week 

prior to the start of the test.  Shielding was used to hide the observer from the fish, and 

fish were not fed for 15 hrs prior to the test.  On the day of the test, the normal position of 

fish within the tank was recorded for 15 seconds using a video camera mounted to a 

tripod.  To start the test, zebrafish food pellets (Ziegler) were gently placed in the top of 

the water column, and response of the fish to the food was videoed for 60 seconds. Using 

the recordings, the following parameters were quantified: 1) time for 10% of the fish to 

start moving in response to the stimuli and 2) percentage of fish within each tank 

responding.  The trials were conducted on two separate days, and averaged per tank.   
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At each sampling time point (8, 16, and 28 weeks of age), 5-6 fish per tank were 

euthanized in 1g/L buffered MS-222.  Fish were patted dry, and weight, body length and 

intestinal length measured.  Condition factor (weight/ length3) for each fish was 

calculated, and averaged per tank.  At the 28 week sampling point, when we were able to 

visually determine sex, 3 males and 3 females were sampled per tank, tissue was 

collected, labeled with sex, and kept separate.  Muscle, liver, and anterior intestine were 

collected from 3 of the 6 fish per tank. Tissue samples were stored in RNAlater at -80oC.  

Additional anterior intestine sections taken from the other 3 fish per tank for histology 

were fixed overnight in 10% buffered formalin, dehydrated in graded ethanol, embedded 

in paraffin, cut into 7 µm transverse sections, and placed on slides. 

2.5 Intestinal morphology  

         Morphological changes in the intestines of embryonically exposed fish were 

examined by hematoxylin and eosin (H&E) staining (n=4 fish per exposure per sampling 

time point).  Once gender could be visually confirmed at 28 weeks of age, 2 males and 2 

females per exposure was collected for histology.  Sections were stained with H&E and 

imaged using a Leica ICC50 HD light microscope. ImageJ software (National Institute of 

Health) was used to determine height and width (mm) of 5 villi per field of view. 

2.6 Immunohistochemistry 

      Paraffin embedded intestinal sections (7µm) were examined for markers of absorptive 

enterocytes (gut absorptive cell epitope antibody; Biorbyt, # orb324078), while the 

number of proliferating cells were examined by the expression of proliferating cellular 
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nuclear antigen (PCNA) (Abcam, #ab29).  Sections underwent antigen retrieval in Tris-

EDTA buffer, pH9, and were then quenched with 3% hydrogen peroxide for 10 minutes. 

Blocking was in avidin- biotin (Vector Labs, Burlingame, CA) for 30 minutes and then 

10% horse serum (Vector ABC Elite Kit) for 17 minutes.  After washes, the appropriate 

dilution of primary antibody (PCNA 1:750; absorptive cells 1:400) was added and 

incubated overnight at 4oC.  Tissues sections were then washed and biotinylated 

secondary antibody was added for 30 minutes. Then Vectastain ABC reagent 

(Biotinylated horseradish peroxidase + Avidin DH) was applied to the sections.  

Antibody labeling was detected with Nova Red, and sections were counter-stained with 

hematoxylin if the primary was not nuclear.  Using these antibodies, Goblet cells can be 

clearly identified based upon morphology.  PCNA positive cells were counted per 2 

intervillus regions within field of view at 40X and averaged per villus.  Absorptive 

surface area was quantified by outlining 4 villi per field of view at 10X for absorptive 

surface and determining the percentage of stained cells using ImageJ.  The colors were 

converted to a black and white image so only cytoplasmic staining of the enterocytes 

would be determined. Goblet cells were counted from each of the 4 villi and averaged per 

villus. All sections were averaged within the group, and statistical significance was 

determined by ANOVA followed by Tukey’s.  

2.7 qPCR  

RNA was extracted from liver, muscle, and intestines using TRIZol (Sigma-

Aldrich, St. Louis, MO).  Purity and RNA concentration were determined using a 

NanoDrop Lite ,and 2µg RNA was reverse-transcribed to cDNA using MMLV-RT.  To 
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conduct qPCR, 40ng cDNA, RT2 SYBR Green mix (Qiagen, Alameda, CA), and gene-

specific primers (Table 1) were run in triplicate on a iQ5 thermocycler (BioRad).  For 8 

and 16 weeks, 5 fish per exposure group were randomly selected to run on one plate per 

gene.  At 28 weeks, 5 fish per gender were examined. A 5-point standard curve (10-3 to 

10-7 ng) for each gene was used to determine the efficiency and linearity of each reaction. 

In muscle, levels of insulin-like growth factor-1 (IGF-1), insulin-like growth factor-1 

receptor (IGF-1R),  and insulin-like growth factor binding protein 5 (IGFBP-5) were 

examined.  In the liver, expression of insulin-like growth factor-1 (IGF-1) and insulin-

like growth factor binding protein 1 (IGFBP-1) were examined.   In the intestine, levels 

of the solute carrier SCL15A1b were examined.  Samples were run in triplicate and gene 

expression data was normalized with 18S rRNA as the housekeeper using the 

comparative threshold (Ct) method38.  All comparative threshold averages were 

compared to the control, which was set at a value of 1. 

Primer Forward Reverse           ºC 

18s 5’-TTT CTC GAT TCT GTG GGT GGT GGT-3’ 5’-TAG TTA GCA TGC CGG AGT CTC GTT-3’           60 

IGF-1 5’- AAA CAG ATA AAC CAACAG GCT ATG-3’ 5’-GCA GCT CAC AAC TCT GGA A-3’           54 

IGF-1R 5’-CGT CTT TGA CCA CAC CCT T-3’ 5’-CGC AGA AAT GTA CGT ACC AGA-3’           55 

IGFBP-5 5’GAA GGA CAC TTC TCG GGT TAT G-3’ 5’ TTG CAC TGT TTG CGC TTG-3’           56 

IGFBP-1 5’ CAT GGC TCT GTG CAC TAC AT-3’ 5’ ATC GCG TTA ACT CTG GCT TT-3’           59 

SLC15Alb 5’-CTC CAC AAC CAT CTA CCA CAC-3’ 5’-CTC ATG GCT CGG AAA GTT CA-3’           52 

Table 1. Killifish qPCR primers  
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2.8 Statistical analysis  

         To analyze differences in arsenic metabolites, condition factor, feeding behavior, 

intestinal morphology, SCL15A1b gene expression, number of PCNA+ cells, and the 

number of goblet cells, an ANOVA followed by a Tukey’s (JMP) was used to compare 

differences between exposure groups.  In all cases, a fit model showed there was no 

effect of day, tank, or sex.  For transcript expression in the liver and skeletal muscle, 

multivariate ANOVA was used to test equality of the two variables across the doses.  If 

MANOVA suggested differences in the four doses, multivariate contrasts were used to 

determine significances of the two variable between specific sets of doses. This allowed 

us to determine the exact nature of the dose impact of the two variables being analyzed at 

a given time point.  Data was consider significant if p<0.05.  

3. Results 

 

3.1 DMA and MMA make up a high percentage of arsenic species in killifish 

First, we wanted to 

determine whether killifish 

could metabolize arsenic into 

mono- and dimethylated 

metabolites in a manner similar 

to humans.  Sixteen-week old 

killifish were exposed to 0, 5, or 

10ppm arsenite, and levels of As (III), As (V), monomethylarsonic acid (MMA), 
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dimethylarsinic acid (DMA), and arsenobetaine (AsB) quantified.  AsB was the only 

arsenical species present in the control fish, and its levels did not change due to arsenic 

exposure (average = 417+62g/kg; data not shown).  DMA, MMA, As (III), and As (V) 

were below the detection limits in control fish, and their values increased in a dose-

responsive manner in the 5ppm and 10ppm exposure groups (Figure 1) with DMA 

accounting for 45-61% and MMA accounting for 15-17% of the total arsenicals.  These 

percentages are similar to paired maternal and newborn blood samples exposed to 90ppb 

arsenic in their water, in which 43+9% of total arsenic was as DMA and 31+6% was as 

MMA17.  Note that in (Figure 1) we are looking at whole body levels, rather than blood 

levels, which accounts for some of the variation in MMA and DMA percentages.  The 

adult fish food contains arsenical species, but >98% of them are arsenobetaine and 

arsenocholine, with As (III) levels below the detection limit.  Arsenite in our water is also 

below detection limits (data not shown).  These data indicate that killifish readily 

metabolize arsenic, and can be used as models for human exposures. 

 

3.2 Embryonic arsenic exposure reduces condition factors in 8 week old killifish 

To assess whether embryonic-only arsenic exposure altered growth in juvenile 

and adult killifish, condition factors (CF; weight/length3) were determined.  Killifish 

were exposed as embryos, and after hatching, were grown out in clean water.  No 

differences in hatchling success or survival up to 28 weeks of age were seen (data not 

shown).  At 8 weeks of age, condition factor was significantly reduced at 200ppb by 20% 

compared to the control (Figure 2A).  No difference was found at 16 or 28 weeks among 
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 any of the exposure groups, but there was a slight trend in condition factor reduction at 

16 weeks (Figure 2A).  At 28 weeks, when male and females were combined, there were 

no differences in condition factor (Figure 2C), although decreases can be seen in the 

females when separated from the males.  
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3.3 Embryonic arsenic exposure alters feeding behavior 

Since reductions and trends in condition factors were seen after embryonic arsenic 

exposure, similar to previous studies39, 40, we wanted to examine potential mechanisms 

for the lack of growth.  Since one possibility is that the arsenic-exposed embryos were 

not actively seeking enough food, we assessed differences in feeding behavior.   At 8 

weeks of age, the arsenic-exposed fish appear to take longer to respond to food, with the 

control fish taking an average of 23 seconds to respond to food placed in their tanks and 

the arsenic exposed fish taking an average of 33 seconds, but there were no significant 

differences 

compared to the 

control (Figure 3).  

At 16 weeks of age, 

there was a 

significant 1.7-fold 

increase in the 

average time to start 

a response in the 10 

ppb embryonically-

exposed fish (Figure 

3).  While the 50 and 

200ppb exposure groups also had start time increases of 1.4- to 1.6-fold, there were no 
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significant differences (Figure 3).  At 28 weeks of age, there was a significant 2-fold 

increase in the start time for 200 ppb group, and increases of 1.2- to 1.6-fold time to start 

for the other groups.  Similarly, the percentage of fish responding to food within the first 

minute at 28 weeks of age was decreased in the arsenic exposed groups, ranging from a 

7% to a 20%t decrease (Figure 3).  These data indicate that embryonic arsenic exposure 

can inhibit responsiveness to feeding which could therefore be a potential reason for 

reductions in growth.  

 

 

3.4 Embryonic arsenic exposure reduces intestinal villus height  

Another possible mechanism for the reductions in growth was that embryonic 

arsenic exposure reduced the number of enterocytes or otherwise altered the ability of the 

intestine to absorb nutrients.  To first examine morphometric changes, hematoxylin and 

eosin (H&E) staining was used to quantify average intestinal villus area by multiplying 

height and width (Figure 4A).   No significant differences were found at 8 weeks of age.  

At 16 weeks of age, there is some reduction in villus area, but these differences do not 

persist at 28 weeks of age (Figure 4B).  The reduction in villus area at 16 weeks does 

follow similar trends with reduced SCL15A1b peptide transporter expression (Figure S1. 

supplemental data), which was examined since other studies in mice have seen 

correlations between reduced SCL15A1b peptide transporter expression, reduced villus 

height, and reduced weight gain2 
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3.5 Embryonic-only arsenic exposure reduces number of PCNA (+) cells and 

absorptive surface 

Immunohistochemistry was used to examine the number of proliferating cells 

(Figure 5A), enterocytes, and goblet cells (Figure 5B).  Since a fit model indicated there 

was no significant effect of sex, all data were combined.  The data show that embryonic 

arsenic exposure 

appears to reduce the 

number of 

proliferating cells up 

to 28 weeks after 

exposure, but only a 

trend was found 

(Figure 6).  Similarly, 

the percentage of cells 

labeled as enterocytes, 

were reduced, 

although this was only 

statistically significant 

in the 50ppb exposure 

group at 28 weeks 

(Figure 6B).   There were no differences in the numbers of Goblet cells, which averaged 

3.5-5 cells per villus (Figure 6C). 
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Figure 7. Muscle IGF-1 and IGFBP-5 increase at 8 and 16 

weeks then are reduced by 28 weeks. At each time point 
muscle IGF-1 and IGFBP-5 were quantified using the 

comparative threshold method (2^ddCt). Averages were analyzed 

for significant difference (p<0.05) indicated by (*) using the one-

way ANOVA method (n=5 per exposure per time point).  

A

. 
B

. 

3.6 Embryonic arsenic exposure alters skeletal muscle IGF-1 and IGFBP-5 

transcript expression  

Since few changes were seen in intestinal cells types or morphology, we wanted 

to see if there were changes in genes involved in the IGF-1 pathway as it is a major 

promotor of growth, especially during the juvenile stage. In a previous study, we had 

seen that embryonic arsenic 

exposure at higher 

concentrations and later time 

periods resulted in increased 

expression of muscle IGF-1 and 

IGF-1R39. We wanted to expand 

upon this earlier study by 

examining a more 

comprehensive set of genes, and 

assess whether lower arsenic 

concentrations also resulted in 

the same effect.  Thus, in 

addition to examining muscle 

IGF-1 mRNA levels, we also 

assessed levels of the pro-myogenic 

retention protein IGF binding protein 

-5 (IGFBP-5)41.   At 8 and 16 weeks of grow-out in clean water, muscle IGFBP-5 and 
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Figure 8.  Liver IGF-1 and IGFBP-1 decrease at 8 

weeks and then increase at 16 and 28 weeks. At each 

time point liver IGF-1 and IGFBP-1 were quantified using 
the comparative threshold method (2^ddCt). Averages 

were analyzed for significant difference (p<0.05) indicated 

by (*) using the MANOVA and multivariate contrast. 
 

method (n=5 per exposure per time point). (n= 5 per 

exposure)  

IGF-1 levels increased in the 50 ppb group compared to the control (Figure 7). 

Additionally there was a notable increase in IGFBP-5 at 16 weeks in the 10 ppb.  

However, by 28 weeks, there is a decrease in IGFBP-5 expression in the 10 ppb group, 

along with a trend such that muscle IGF and IGFBP-5 levels are reduced in all exposures 

(Figure 7). No real trends were seen at any time points with IGF-R (data not shown). 

 

3.7 Arsenic exposure alters the correlation between hepatic IGF-1 and IGFBP-1  

Since the liver is the primary 

organ for IGF-1 synthesis, we analyzed 

hepatic IGF-1 levels as well as the 

IGFBP-1 binding protein, which 

sequesters IGF-1 under stress making it 

less bioavailable42.  When the 

relationship between hepatic IGF and 

IGFBP-1 was compared, there is a 

significant correlation between the two at 

the 8 and 28 week time points (r2=0.93 

and 0.98, respectively).  At 16 weeks, the 

correlation is still apparent, but is not 

statistically significant (r2=0.80).  At 8 

weeks, there is a significant reduction in 

IGF-1 and its binding protein at all 
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arsenic exposure groups compared to the control (Figure 8).  At 16 and 28 weeks, the 

comparisons have changed such that hepatic IGF-1 and IGFBP-1 are significantly 

increased at the 200ppb group, and a trend towards increasing expression exists at 10 and 

50ppb at both time points (Figure 8). The pattern in decreasing liver IGF-1 correlates 

with a decreasing condition factor at 8 weeks of age therefore, indicating embryonic 

arsenic exposure could reduce liver IGF-1 in correlation with a reduction in growth 

(Figure 9).  
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Figure 9.  Liver IGF-1 and condition factor decrease at 8 At each 

time point liver IGF-1 quantified using the comparative threshold 

method (2^ddCt). Condition factor and IGF-1 liver Averages were 
analyzed for significant difference (p<0.05) indicated by (*) using the 

MANOVA and multivariate contrast method (n=5 per exposure per 

time point).  
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4. Discussion 

 The results of this study indicate that embryonic arsenic exposure reduces growth 

of killifish early on during juvenile stages. Reductions in feeding behavior and changes in 

IGF signaling pathway transcript levels might be underlying mechanisms as to why 

arsenic can reduce growth long after the exposure has ended.  

 

4.1 Embryonic arsenic exposure reduces growth at early time points  

 A previous study examining embryonic-only arsenic exposure and long term 

growth found that at 16 and 28 weeks, condition factor was reduced in the arsenic-

exposed groups (50 , 200, and 800ppb) and the reduction persisted up to 52 weeks39. 

Additionally, a study looking at earlier time points, but at much higher exposure 

concentrations, found that 800-5000ppb embryonic arsenic exposure reduced weight in 8 

and 16 week old juvenile fish40.  The current study was conducted to assess the 

mechanisms responsible for these changes in growth at more environmentally relevant 

embryonic arsenic exposures.  After analyzing condition factor at 8 weeks, there were 

dose-dependent reductions in all exposure groups, but a significant reduction (24%) was 

only found in the 200 ppb embryonic exposure group.  At 16 weeks, there is a dose-

dependent trend for reduced condition factor.  These findings were expected and indicate 

that embryonic exposure to arsenic can reduce growth and weight gain during the 

juvenile period.  However, by 28 weeks, the females show a reduction in condition factor 

in a dose-dependent manner, but the males actually had an increase in condition factor in 

the exposure groups.  
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These findings are not entirely consistent with our previous study.  However, 

when the food from the previous study was analyzed for specific arsenic species, we 

found it contained small amounts of trivalent arsenic such that a fish at 16 weeks of age 

weighing an average of 0.3g would have received a continuous arsenic exposure 

equivalent to 2.25ppb arsenic, while a 28 week old fish weighing ~1g would have 

received an exposure equivalent to 7.5ppb continuously.  The zebrafish food used in our 

current study had trivalent arsenic levels below the detection limit.  Thus, the earlier 

study may have had more pronounced growth reductions because of continuous exposure 

to arsenite through the diet.   

 In addition, studies have shown that gender differences can impact the toxicity of 

arsenic43, 44.   A recent study looked at gene expression differences in males and females 

in utero exposed to 0.36 µg/L arsenic on average through household tap water.  

Aquaporin 9 (AQP9), a known transporter of trivalent arsenic, was positively correlated 

with maternal urinary arsenic (U-As) levels in female offspring, but not in male 

offspring45.  Additionally, this study examined expression of developmental genes 

involved in the Wnt, Notch, and stem cell regulator pathways and found that genes such 

as LGR5, HES1, GLI3 were negatively associated and IGFBP6 was positively associated 

with AQP9 levels in females. This study suggests that AQP9 transport of inorganic 

arsenic could be a mediator of arsenic’s sex-specific birth weight reductions in females, 

and the investigators hypothesized that estrogen might play a role in facilitating 

transcription of AQP9 in liver cells 45.  Another study found a reduction in birth weight in 

females by 1.5 g per 1µg/L increase in urinary arsenic concentrations, but only a 
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reduction of 0.15 g birth weight in males.  Only female birth weight was positively 

associated with GLI3 and LGR5 and negatively associated with urinary arsenic levels46. 

These finding indicate that exposure to arsenic during early developmental time points 

can have sex- specific outcomes that relate to reductions in birth weight. The reduction in 

condition factor in females in our study is similar to an epidemiology study that looked at 

children exposed in utero to arsenic, and found that 5 years later, there was a significant 

reduction in weight gain and height with 41% of the children being underweight and 33% 

were stunted, and that these effects were most apparent in girls47. Therefore, arsenic 

might inhibit proper growth in females more than it does in males.  

 As growth was reduced at early time points in embryonic-arsenic exposed 

killifish, it was interesting to observe the reduced feeding behavior.  In our study, we 

noticed an increase in time to feed and a decrease in the number of fish actively feeding, 

particularly at 16 and 28 weeks of age.  An increase in the time it takes to start feeding 

could potentially indicate a lack of interest in feeding, decreased olfactory ability to 

detect the food, or hypoactivity. Previous studies have shown that embryonic arsenic 

exposure reduced feeding behavior in killifish at 28 and 40 weeks of age following an 

embryonic exposure of 200 and 800 ppb asrenic39, which is in line with our findings.  

Similarly, a study in rainbow trout found that exposure to cadmium and copper reduced 

the ability of the fish to detect L-alanine, an amino acid that mimics food48, while 

exposure to copper induced apoptosis in salmon olfactory sensory neurons, thereby 

inhibiting behaviors critical to salmon survival such as food detection49.  Indeed, a 

number of investigations have determined that the olfactory epithelium is a target of 
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metal toxicity.  Additionally, a study found that zebrafish embryos exposed to arsenic 

exhibit hypoactivity during embryonic tail flexions from a photomotor response25. While 

we did not quantify normal activity in the embryonically-exposed killifish, we 

hypothesize that arsenic exposure either alters their ability to detect food or reduces their 

normal swimming activity.  These changes in behavior as a result of exposure to 

toxicants can affect the fish’s capacity to feed25, 50, and therefore reduce growth. 

In addition to feeding behavior changes, intestinal morphology and numbers of 

specific cell types might play a role in the ability to uptake nutrients. Indeed, we found a 

reduction in intestinal area in all exposure groups at 16 weeks of age. Intestinal villus 

height was a part of the area calculation and height plays an important role in increasing 

absorptive surface area, which could help increase growth51. Furthermore, proliferating 

cells are essential in the intestine as the cell turnover is typically 5-7 days, at least in 

zebrafish32. In this study, we found a decreasing trend in the number of PCNA cells in a 

dose dependent manner at 8, 16, and 28 weeks. A decreasing trend in PCNA could 

indicate a decreased ability for intestinal cellular proliferation, which is needed to 

maintain the different cell types in the intestine.   

One type of cell is the enterocyte, which make up ~80% of the intestinal epithelial 

cells, and have absorptive functions to take up nutrients53. In our study, we found a 

significant decrease in absorptive surface which is primarily made up of enterocytes, at 

16 weeks of age, but not any other time points. This could be associated with the 

reduction in villus area at 16 weeks as well as a reduction in PCNA cells. If the number 

of cells is decreased from 8-16 weeks, this could indicate that intestinal cells are not 
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proliferating at a sufficient rate, therefore decreasing the size of the villus and 

subsequently the absorptive surface area of enterocytes.  Arsenic has been found to cause 

oxidative damage leading to necrosis in intestinal epithelial tissue in rats exposed to 600 

ppb in the drinking water54.  Overall, the trend in decrease villus height and decrease in 

absorptive surface at 8 and 16 weeks could be a mechanism involved in reducing 

condition factor.  

 

4.3 Arsenic exposure alters insulin-like growth factor (IGF) pathway transcript 

levels 

IGF-1 is an important signaling pathway involved in growth of mammals as well 

as fish that can act in an autocrine, paracrine, and endocrine manner56, 57. IGF-1 mRNA 

expression is modulated by nutrition in a number of fish, and there are strong arguments 

for IGF-1 as a biomarker of growth in fish58.  In several fish studies, IGF-1 mRNA 

expression is directly related to plasma IGF-1 levels59.  Production of IGF-1 protein is 

stimulated by growth hormone (GH) produced by the anterior pituitary gland, which then 

binds to its receptor in the liver to signal hepatic cells to synthesize IGF-1 through the 

JAK/STAT pathway59,60.  Then IGF-1 is distributed to tissue types with IGF-1 receptors 

(IGF-1R) that activate the PI3K-AKT-TOR signaling pathway in the target tissue to 

increase the expression of genes such as myogenic regulator factors, PCNA, and 

myostatin61.  Additionally, in vitro or in vivo treatment of tilapia with estradiol decreased 

IGF-1mRNA in the liver, which could help explain why there might be sex differences in 

growth in the presence of steroid hormones62.  IGF-1 is bound by binding proteins 
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(IGFBP) that either transport IGF-1 to its receptors on target tissue, or bind and sequester 

IGF-1 under stressful conditions such as malnutrition41, 42, 63.  The interesting correlation 

in this study is that at 8 weeks, when there is a dose-dependent decrease in condition 

factor, there is also a significant decrease in liver IGF-1.  Another study found that pre-

pubertal mice exposed to arsenic had reduced circulating levels of IGF-1 64.  While 

hepatic IGF-1 levels follow growth patterns at 8 weeks, when we analyzed 16 and 28 

weeks, there was a shift in the hepatic IGF-1 and IGFBP-1 levels where it was 

upregulated in a dose dependent manner, potentially as a compensatory mechanism to 

catch up in normal growth.   

Our previous study examining embryonically-exposed killifish at 52 weeks of age 

noticed an increase in muscle IGF-1 levels39.  We hypothesized that arsenic had reduced 

liver IGF-1 levels and the fish were compensating by producing more IGF-1 in the 

skeletal muscle.  While the liver is the primary organ of IGF-1 synthesis, other tissues, 

such as skeletal muscle, can produce IGF-1 if under stress or ablation of the primary 

hepatic source of IGF-165.  For muscle IGFBP-5, the promyogenic binding protein in 

muscle that increases IGF bioavailability by greatly increasing IGF-1 half life41, 66, there 

were increases in its transcript levels at 8 weeks in the fish embryonically exposed to 

arsenic. While growth was reduced at 8 week and liver IGF-1 levels were decreased, the 

killifish could have been increasing IGFBP-5 as a compensatory growth mechanism.  By 

28 weeks of age, we noticed a complete shift in that all exposure groups had reduced 

muscle IGF-1 and IGFBP-5 levels and increased liver IGF-1 and IGFBP-1 levels. 

Therefore, this supports the idea that when the main organ of IGF production, the liver, is 
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not synthesizing or producing IGF in adequate amounts, the other tissue trying to grow 

such as muscle will produce it in order to compensate for growth deficits67. Studies have 

shown that in utero arsenic exposure can decrease birth weight which correlates to 

reduced IGF levels20. While we see reduction in growth and hepatic IGF-1 levels early 

on, it appears that embryonic arsenic effects are remediated potentially by compensating 

through increasing local production of muscle IGF until normal hepatic IGF levels are 

restored.   

 

5. Conclusion  

 Embryonic only arsenic exposure can produce reductions in growth during 

juvenile life stages.  Reductions in growth might be due to alterations in feeding 

behavior, reductions in intestinal villus height and absorptive surface, and alterations in 

IGF-1, IGFBP-1, and IGFBP-5 in liver and skeletal muscle at early time points.  This 

could indicate that while arsenic can impair growth early on, the fish may be able to 

overcome its effects at these lower levels of arsenic exposure by increasing the 

production of IGF-1 and IGFBP-5 in skeletal muscle as a growth compensatory 

mechanism.  
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While there is a good amount of literature on arsenic’s effects on growth, there is 

still a need for research on arsenic’s effects during the embryonic and fetal period, along 

with its long term consequences. It is already known that arsenic exposure in utero via 

mother’s ingestion of contaminated water is correlated with reductions in IGF-1 plasma 

levels and weight gain even 4.5 years after exposure 1, 2.  Reductions in plasma IGF-1 

have even been found in other animal models where female rats were exposed to 10 

mg/kg AsIII, which resulted in an average daily intake of 575µg/day per female rat which 

be the equivalent to human daily intake of 57.5 µg based on a 10 fold difference due to 

differences in metabolism of arsenic between humans and rodents 3.  This study found 

that arsenic exposure suppressed circulating levels of IGF-1 and authors hypothesized 

that arsenic exposure reduced hepatocyte viability3.  As IGF-1 regulates growth during 

fetal and postnatal periods, if the liver is damaged through oxidative stress, the secretion 

of hepatic IGF-1 might be impaired3.  Studies have shown that arsenic exposure increased 

levels of MDA in hepatic tissue in brown trout indicating lipid peroxidation from 

oxidative damage4. 

Since arsenic is found all over the world in groundwater at levels that exceed the 

WHO safe drinking water standard of 10 ppb8,9 and can easily cross the placental 

barrier10 exposure to arsenic is of great concern11-14.  A previous study found that arsenic 

levels in the maternal blood (11.7μg/L) and cord blood (15.7μg/L total arsenic) were 

similar when pregnant mothers were exposed to drinking water containing 90.5μg As/L, 

which indicates that the fetus might be readily exposed to arsenic levels that could 

CHAPTER THREE 

CONCLUSION 
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interfere with growth and development15.  Similar metabolism and methylation pathways 

of arsenic occur in aquatic animals and mammals, but fish tend to accumulate higher 

levels of arsenobetanine and arsenocholine5. Our body burden study removed 

arsenobetanine, which is non-toxic16, and found that when 16 week-old killifish were 

exposed to 5 and 10 ppm arsenic, they accumulate 1429 and 2832 μg/kg respectively.  

Using linear regression, exposures of 10, 50, and 200ppb would result in body burdens 

ranging from 48 – 101.8 μg/kg.  While these levels are of whole body accumulation 

instead of plasma or urine, it still indicates a fairly high body burden.  Typically, a 10-

fold safety factor is used in risk assessment when extrapolating from a surrogate species 

to humans, and another 10-fold safety factor added to account for variability in a 

population.  So, if adverse effects are seen at a 10ppb exposure, and safety factor of 100-

fold is included, the body burden levels which are considered to be protective are in the 

range of 0.4g/kg.  Using the maternal-fetal study above, an exposure of 90μg As/L 

results in 12 μg/L arsenic in the blood, or that approximately 13% of the ingested arsenic 

is accumulated.  Then you can assume if an adult consumes about 3L of 10ppb arsenic 

contaminated water a day, this might yield levels of 4 -5μg/L per kg in both the mother 

and fetus.  Studies have estimated that arsenic exposure between 0.3 and 8 µg/kg body 

weight/day results in a 1% increased risk of lung, skin, and bladder tumors in humans17.  

Additionally, the U.S. Agency for Toxic Substances and Disease Registry’s (ATSDR) 

Minimal Risk Levels (MRLs) for acute oral consumption at 5µg/kg/day and chronic oral 

consumption at 0.3µg /kg/day arsenic as safe doses for infants18. However, our data 
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suggests that these values might not really be protective enough and that drinking water 

standards for arsenic may need to be lowered.  
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APPENDIX A 

Supplementary Figure 1. Arsenics increases SCL15A1b at 8 weeks, a peptide transporter in the 

intestine, after 10ppb embryonic exposure. 

Figure S1. Average SCL15A1b 2^ddCt is compared at 8, 16, and 

28 weeks. 8 week time point show significant increase in the 10 ppb 

when on-way ANOVA was run * p<0.05 compared to control. (n=5 

per exposure for each time point)  
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