
Clemson University
TigerPrints

All Theses Theses

8-2017

Kingdom Rush Tribute: Porting a 2D Tower
Defense Game to a 3D World using Unreal Engine
4
Christian Stith
Clemson University, cstith@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Stith, Christian, "Kingdom Rush Tribute: Porting a 2D Tower Defense Game to a 3D World using Unreal Engine 4" (2017). All Theses.
2736.
https://tigerprints.clemson.edu/all_theses/2736

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2736?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

KINGDOM RUSH TRIBUTE: PORTING A 2D TOWER DEFENSE
GAME TO A 3D WORLD USING UNREAL ENGINE 4

A Thesis
 Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Fine Arts
Digital Production Arts

by
Christian Stith
August 2017

Accepted by:
Dr. Brian A. Malloy, Committee Chair

David Donar
Dr. Eric Patterson

Abstract

Video game remakes are a popular modern phenomenon in which an existing game is

remade to target a different platform, a higher resolution, or simply a different audience.

Seldom, however, are video games remade into a different genre altogether. In this paper,

we describe the process of remaking Kingdom Rush, a popular top-down 2D tower defense

game, into a 3D third-person shooter in Unreal Engine 4. In addition to recreating all visual

components of the game in 3D, this process revealed several challenges that arose related

to transferring the gameplay from a 2D screen to a 3D world. We describe these challenges

and their solutions and describe the results of our work: a playable, single-level prototype

that mimics the original game in aesthetics and functionality while also incorporating a

controllable hero character.

iii

Table of Contents

Page

Title Page . i

Abstract . iii

List of Figures . vi

1 Introduction and Motivation . 1

2 Background . 4
2.1 Unreal Engine . 4
2.2 Camera Placement . 5

2.3 Video Game Genres . 7

3 Project Overview . 10

4 Project Implementation . 12

4.1 Fidelity to the Original Kingdom Rush Series 12

4.2 Characters in Kingdom Rush: Tribute . 12

4.3 Towers . 23

4.4 Architecture . 31

5 Asset Development . 36

5.1 Environment . 36

5.2 Characters . 38

5.3 VFX . 41

iv

Table of Contents (Continued)

Page

6 New Challenges: 2D to 3D . 47

6.1 Predictive Aiming . 47

6.2 Interaction . 49

6.3 Pathfollowing . 49

7 Playtesting . 53

8 Conclusions and Future Work . 55

8.1 Conclusions . 55

8.2 Future Work . 56

Bibliography . 58

v

List of Figures

Figure Page

1.1 The original Kingdom Rush game. 2

2.1 A UE4 Blueprint. 5
2.2 An overhead camera view from the game Kingdom Rush. 6
2.3 A third-person view from the upcoming game Zelda: Breath of the Wild. 7
2.4 A first-person view from the classic shooter game Doom. 8

4.1 KR Goblins, left, and Tribute Goblins. 16
4.2 KR Bandits, left, and a Tribute Bandit. 16
4.3 KR Brigands, left, and a Tribute Brigand. 17
4.4 KR Shadow Archers, left, and Tribute Shadow Archers. 17
4.5 KR Gargoyles, left, and a Tribute Gargoyle. 18
4.6 The KR Juggernaut, left, and the Tribute Juggernaut. 18
4.7 KR Golem Heads, left, and Tribute Golem Heads. 19
4.8 KR Militia, left, and Tribute Militia. 20
4.9 KR Footmen, left, and Tribute Footmen. 20
4.10 KR Knights, left, and Tribute Knights. 21
4.11 KR Paladins, left, and Tribute Paladins. 21
4.12 The Tribute Hero character. 22
4.13 The interaction decal in Kingdom Rush: Tribute. 23
4.14 Kingdom Rush Archer Towers and their corresponding Tribute Archer Towers. 24
4.15 Kingdom Rush Mage Towers and their corresponding Tribute Mage Towers. . . 26
4.16 Kingdom Rush Barracks and their corresponding Tribute Barracks. 28
4.17 Kingdom Rush Bombards and their corresponding Tribute Bombards. 30
4.18 The Rusher class and its descendants. 33
4.19 The Tower class and its descendants. 34
4.20 The Payload class and its descendants. 35
4.21 The EnemySpawner struct with Wave and Spawn struct member relationships. . 35

5.1 Tribute in action. 37
5.2 An early draft of Kingdom Rush characters. 38
5.3 Kingdom Rush auxiliary source material. 39
5.4 The Juggernaut collapses to the ground in a pre-computed Alembic

rigid body simulation. 42
5.5 Dual Houdini pyro simulations with smoke and fire toon shaders com-

bine to form the final explosion spritesheet. 43

vi

List of Figures (Continued)

Page

5.6 Radial burst particle simulation is remeshed and rendered with a toon
shader to create the blood spatter spritesheet. 44

5.7 The Biped rig. 45
5.8 The Goblin rig. 45
5.9 The Golem Head rig. 45
5.10 The Juggernaut rig. 46
5.11 The Winged rig. 46

6.1 2,000 Bandits fight for space. 52

vii

Chapter 1

Introduction and Motivation

For the king!

The Reinforcements

The video game industry has grown from a curiosity to a full fledged entertainment

industry to the extent that in 2016, video game revenues surpassed both music and movie

industry revenues [5]. The gaming industry has grown so quickly that by the end of 2017,

global video game revenues are projected to exceed 91 billion dollars [2]. During much of

its history, video game play has been dominated by hard core gamers who were willing to

spend hours crafting a large empire or honing their hand-eye coordination for high speed

first person shooters [3]. However, recently a new class of video game, the casual game,

has found immense appeal among a vast audience that would not be characterized as hard

core gamers. For example, games such as Bejeweled, Plants and Zombies, Angry Birds,

Slotomania, and more recently, Pokemon Go, have become attractive to casual gamers. One

genre of casual games that has appealed to a wide audience is the Tower Defense genre,

where the goal of the Tower Defense game is to defend the player’s territories or possessions

by obstructing or terminating the enemy attackers, usually achieved by placing defensive

structures along their path of attack.

A feature common to most Tower Defense video games is that most of these games use

side scrolling, isometric, or top-down perspective graphics, and are characterized by 2D or

2.5D game play [7]. However, in October of 2010, Dungeon Defenders was released as

one of the first tower defense games to incorporate the third person perspective to the tower

defense genre. Dungeon Defenders achieved sales of over 250,000 copies in the first two

weeks of release [1] and over 600,000 copies by the end of 2011 [6], illustrating the tremen-

dous potential for attracting casual gamers to the genre when ported to a 3D environment.

Dungeon Defenders was followed in 2011 by the popular tower defense game Orcs Must

1

Figure 1.1: The original Kingdom Rush game.

Die!, which shifted the tower defense game to a first person perspective. Nevertheless, the

majority of tower defense games remain 2D. One such game is Kingdom Rush, a very pop-

ular tower defense game published by Ironhide Studios. A screen capture of a typical level

in the original Kingdom Rush genre is illustrated in Figure 1.1, showing fourteen towers

and a curved path traveling from the entrance at the bottom to the exit at the top of the

figure.

In this thesis we describe our adaptation of a popular 2D tower defense game, King-

dom Rush, to a 3D platform using the Unreal Game Engine. We call the resulting proto-

type Kingdom Rush: Tribute. In Tribute, the player controls an in-game hero who travels

throughout the map building towers and fighting enemies. We describe the architectural

and artistic design processes of this adaptation, and discuss some new challenges that ap-

pear in the development of a 3D version that would not have appeared in the 2D version. In

2

the next chapter we define terminology and describe tools and applications that we use in

this thesis. In Chapter 3 we provide an overview of our work and in Chapter 4 we provide

some implementation details in using the Unreal Game Engine. In Chapter 5 we describe

our design and development of Tribute assets, and in Chapter 6 we describe some of the

challenges in translating a game from a 2D environment to a 3D world, and the correspond-

ing solutions. In Chapter 7 we describe some anecdotal feedback that we received from

playtesting and the changes that were informed by this feedback. Finally, in Chapter 8 we

provide concluding remarks and describe our future work.

3

Chapter 2

Background

Prepare for glory!

Sir Gerald Lightseeker

In this chapter, we provide background information and describe terminology that we

use in this thesis. In the next section we describe the video game framework that we use,

the Unreal Engine, referred to as UE4. In Section 2.2 we describe camera placement in

various game genres, and in Section 2.3 we describe the various genres.

2.1 Unreal Engine

Unreal Engine is a professional game development engine produced by Epic Games. The

engine is best known for its deferred renderer and its Blueprints visual scripting system. A

sample Blueprint is provided in Figure 2.1, which illustrates the visual nature of Blueprint.

Beginning in 2014, Epic Games released the full version of its engine as freeware, which

catapulted the engine’s popularity and versatility with indie and student developers. Unlike

many game engines, UE4 is unique in that it can be used extensively without comprehensive

use of computer programming. While the engine does have full support for C++ coding,

UE4 users can also design and implement games using the Blueprints visual scripting sys-

tem. While the logical functionality of this system is not as powerful as pure coding, using

Blueprints nevertheless permits artists and designers to quickly develop and preview visual

changes to in-game assets.

For this project, we make use of Unreal Engine version 4.13. The choice of Unreal was

driven primarily by the option to use the Blueprints system. The version was chosen primar-

ily for its support of the Alembic file format, which allows for complex vertex animations

such as precomputed rigid body simulations.

4

Figure 2.1: A UE4 Blueprint.

2.2 Camera Placement

While video games are most commonly differentiated based on their genre, another differ-

entiating factor is the placement of the render camera. We describe several of the relevant

setups below.

2.2.1 Fixed Overhead

In the fixed overhead approach, video games make the entire field of play visible at all

times, and make use of a stationary, downward facing camera. In these systems, the camera

is placed high above the playspace and provides the player with a comprehensive birds-eye

view of the game. Aside from brief cinematic montages, the camera usually does not move

during gameplay. This style of camera is used in the original Kingdom Rush game, as can

be seen in Figure 2.2.

5

Figure 2.2: An overhead camera view from the game Kingdom Rush.

2.2.2 Third Person

The third person approach to camera placement is commonly implemented in action and

shooter games, third person camera placement involves a dynamic camera that follows

the player’s controllable character around the playspace from a set distance. This camera

position allows the player to see their entire character and the general area around it in all

directions. Such cameras are often include spring arm functionality that allows the camera

to automatically react to geometry that blocks the player character from the camera’s view

by moving into a better position. An example of this camera view is shown in Figure 2.3.

2.2.3 First Person

Similar to the third person camera setup, first person cameras follow the player character

around the map. Instead of following the player character via a spring arm, however, a first

6

Figure 2.3: A third-person view from the upcoming game Zelda: Breath of the Wild.

person camera is mounted on the character’s neck, providing the player with a view that

simulates what the character would see in the game. An example of this camera view can

be seen in Figure 2.4. Using a first person camera often necessitates developing a different

character model, rig, and animation system in order to present a convincing and appealing

point-of-view frame. Many action games offer the option to toggle between third-person

and first-person camera setups.

2.3 Video Game Genres

Like any form of media, video games are often classified into different genres, based mainly

on the style of gameplay. These main genres often encompass other more specialized sub-

genres, and video games often blur the lines between genres by mixing different aspects

of gameplay from different genres. While the original Kingdom Rush game has a clearly

defined genre, Kingdom Rush: Tribute is best described as a hybrid of several video game

genres, each of which we will describe here.

7

Figure 2.4: A first-person view from the classic shooter game Doom.

2.3.1 Real-Time Strategy

Real-Time Strategy, or RTS, is a subgenre of strategy video games in which the gameplay

does not occur in alternating turns. Instead, actions occur on the part of the players con-

currently, and each player must decide how to best make use of limited resources in their

attempt to defeat their opponents.

2.3.2 Tower Defense

Tower defense, or TD, is a real-time strategy video game genre in which the player tries to

stop a group of enemies from reaching a target by building functioning towers that impede

and destroy them. Players typically gain resources by destroying enemies, allowing them to

upgrade existing towers and build more towers to combat increasingly more frequent and

powerful enemies. In most such games, enemies occur in a predetermined pattern for each

8

level, and travel down fixed paths toward the target. Popular games in this genre include

Bloons, Frozen Islands, Desktop Tower Defense, and Flash Element Tower Defense.

2.3.3 Shooter

Shooter games are a subgenre of action games in which the player’s character is armed with

a ranged weapon. Shooter games can be third or first person, and usually feature fast-paced

gameplay that requires the player to battle a set of aggressive enemies. War games such as

the Quake, Doom, Half-Life, Call of Duty, and Halo franchises fall into this category.

2.3.4 Kingdom Rush: Tribute

Tribute blends elements from each of the genres described above. Despite the shift in

gameplay style, the majority of the tower defense features remain in the game, and build-

ing strong towers is still essential to defeat the attackers. However, the camera has been

modified from an overhead view, featuring first and third person cameras: both hallmarks

of action games. The addition of a controllable character with ranged weapon and melee

combat abilities also place the game in the tradition of action/shooter games. We believe

that Tribute is best defined as a crossover game that combines the tower defense and action

genres.

9

Chapter 3

Project Overview

Have at thee!

The Soldiers

Kingdom Rush is a series of tower defense games developed by Ironhide Studios. Orig-

inally released as a Flash game on the website ArmorGames.com, the game quickly became

the highest-rated game in the history of the website. Following the success of the original

Kingdom Rush game, Ironhide released a sequel, Kingdom Rush: Frontiers, and a prequel,

Kingdom Rush: Origins. Both games were released for iPhone and Android, and Kingdom

Rush and Frontiers were later released on Steam. [8]

While Kingdom Rush and both of its sequels are highly rated, enjoyable games, expe-

rienced players will be familiar with several frustrating aspects of gameplay. In particular,

the inability to directly control the hero character results in this character’s powerful melee

abilities often being wasted against weaker enemies. We can recount many instances in

which the hero character ignored a powerful boss in favor of a much weaker goblin, al-

lowing the boss to pass by and resulting in a much lower final score. It is these instances

which inspired us to create a new version of the game - one that allowed the player complete

control over the hero while still maintaining the original Kingdom Rush gameplay.

Kingdom Rush: Tribute is a three-dimensional first-person prototype remake of the

original Kingdom Rush game. Tribute is built in Unreal Engine 4.13 and uses assets devel-

oped in Maya 2016, Houdini 15, and Photoshop CC. In Tribute, rather than playing from

a birds-eye-view position, the player directly controls a Hero character who can engage

enemies in battle, fire ranged weapons, and purchase, upgrade, and sell towers. The player

controls his character through the use of standard PC action keyboard and mouse controls

rather than using the point and click interaction method of the KR games.

Tribute takes place in the Citadel level, and implements all of the towers and most of

10

the enemies that occur in that level in the original game. While the Citadel is currently the

only developed level, the game design architecture places a strong emphasis on scalability,

and adding new levels and enemies is simply a matter of generating the assets themselves.

We describe some of the necessary improvements we hope to achieve in Chapter 8.

11

Chapter 4

Project Implementation

Want some? Get some!

The Dwarves

In this chapter we describe the implementation of our prototype of Kingdom Rush:

Tribute. In the next section we describe our effort to maintain fidelity to the original King-

dom Rush series while porting the 2D series to a 3D platform. In Section 4.2 we review the

design and implementation of the characters that we have incorporated into the prototype.

In Section 4.3 we describe the towers that we have incorporated into the prototype. Finally,

in Section 4.4 we present our architecture and class hierarchy.

4.1 Fidelity to the Original Kingdom Rush Series

In order to create a convincing Kingdom Rush experience, it is necessary to stay as true

to the original game as possible. This involves matching both the visual aesthetic of the

game as well as the statistical and functional aspects of the gameplay. To address the visual

aesthetic aspect, we take a derivative approach to the development of the assets, treating the

original game sprites as source material and concept art. To address the statistical element

of gameplay, we draw from gameplay knowledge, in-game information, and game wikis

to ensure that the characters, towers, and interaction are as close to the original game as

possible. The following sections describe this process in further detail.

4.2 Characters in Kingdom Rush: Tribute

Kingdom Rush features a wide array of characters, the bulk of which are either defend-

ers or enemies. The original game implements seventy different types of enemies, eleven

of which are bosses. The other fifty-nine are regular enemies that spawn in large numbers

12

throughout levels and are equipped with a variety of mechanics, including walking, running,

flying, idling, melee attacks, area attacks, ranged attacks, healing, dodging, and dying. To

implement these mechanics, KR makes use of sprite sheets, allowing each character to be

represented by a sequence of still images corresponding to the current state of the charac-

ter. A new enemy can be created by selecting the mechanics needed for the character and

creating the appropriate sprite sheets. As 2D sprites are not an effective way of rendering

characters in 3D, it is necessary to develop a 3D character system to transfer the enemy

system into the 3D world. To achieve this, we modeled, textured, rigged, and animated 3D

versions of each character using Maya 2016 and Photoshop CC. This process is described

in more detail in Chapter 5.

Once each character’s artistic assets were created, it was necessary to provide the char-

acter with a controller system that would drive its behavior as it interacted with the game

world. In order to accommodate the high number of enemy types, the system needed to

be highly scalable and allow for interchangeable elements. We implemented this charac-

ter controller system using an object-oriented hierarchical class structure that is based on

the UE4 Pawn class, which provides basic character movement functionality. We created a

single base class, Rusher, which inherits directly from the Pawn class. All Kingdom Rush:

Tribute characters are descendants of this Rusher class, which includes universal function-

ality such as goal seeking, ranged projectile firing, damage taking, health, a skeletal mesh,

clothing, and weapons. Immediate children of the Rusher class include the Defender and

Attacker classes. All Tribute soldiers and the player’s hero character are descendants of the

Defender class, while all attacking enemy characters are descendants of the Attacker class.

4.2.1 Rusher Class

The Rusher class implements the functionality common to all KR characters, including

navigation, animation, health, combat, and ranged weaponry. These functions can be cus-

tomized for individual characters by overriding the default values of the Rusher variables.

For example, Defender classes override the ShouldRespawn variable from false to true,

13

causing those classes’ Die function to trigger a delayed respawn event. Any additional

functionality implemented by a character occurs in that character’s class. Examples of

additional functionality include special attacks such as the Paladin’s Holy Strike or the Jug-

gernaut’s Golem Bomb Launch. Rather than supply an exhaustive list of the class variables

and functions common to all Rushers, we describe the primary class functionality in the

following list:

• Skeletal Mesh: the rigged model of the Rusher. To this skeletal mesh we can attach a

variety of components such as a sword, a bow, a helmet, a vest, and other accessories

as each character requires. The skeletal mesh is controlled by an animation blueprint.

• Animation Blueprint: controls the skeletal mesh’s animation. By polling the current

state of the Rusher’s variables, the animation blueprint determines what animation

should be playing, and transitions the skeletal mesh to that animation appropriately.

The animation blueprint also triggers certain events, such as applying damage to a

target at the appropriate point in the attack animation cycle. Tribute has one unique

animation blueprint for each type of rig.

• Update: this function is called every frame, and updates the Rusher’s health bar,

checks to see if the Rusher should be dying, orients the Rusher to face its opponent

when appropriate, and performs other housekeeping functions.

• Give Damage: this function sends the appropriate amount and type of damage to the

Rusher’s opponent. This function is usually called by the animation blueprint when

the Rusher’s melee weapon is swung.

• Take Damage: this function processes incoming damage. This function does a switch

on the incoming damage type, decreases the incoming damage value by the Rusher’s

magical or physical armor values as appropriate, and subtracts the resulting value

from the Rusher’s health. If the health reaches 0 or less, the Die function is called.

• Die: this function kills the Rusher, usually as a result of the Rusher’s health reaching

14

zero. In most cases, this results in the Rusher’s skeletal mesh playing its death ani-

mation, followed by the destruction of the actor. If the Rusher is killed by explosive

damage, it is destroyed instantly, and a blood spatter decal is spawned at the Rusher’s

location on the map.

• Check Range: if the Rusher is equipped with a ranged weapon and is currently not

engaged in melee combat, this function polls the Rusher’s range sphere to see if any

opposing Rushers are within range. If so, one of these Rushers will be chosen as the

RangedTarget, and the Rusher will begin firing its ranged weapon.

• Fire Ranged Weapon: this function calculates the appropriate trajectory needed to hit

the RangedTarget opponent and fires a ranged projectile at that trajectory. It is usually

called by the animation blueprint at the appropriate point in the skeletal mesh’s firing

animation sequence.

• Set Opponent: this function sets the Rusher’s current melee opponent, engaging them

in combat. It is usually called by a Defender seeking to initiate combat.

• Take Wrath: This function initiates the Rusher’s Wrath of the Forest struggle anima-

tion. It is usually called by an Archer Tower of level 4 when the Wrath of the Forest

special attack is fired.

4.2.2 Enemies

Attacker

In addition to the functionality of the Rusher class, the Attacker class features path fol-

lowing ability. This functionality is achieved by adding a child Goal actor and overriding

the Rusher Update function to ensure that the Attacker is always following the Goal. The

Attackers implemented in Tribute are described in the following paragraphs.

15

Figure 4.1: KR Goblins, left, and Tribute Goblins.

Goblin

The Goblin class includes the Goblin skeletal mesh, rig, and animation blueprint. Goblins

have an HP of 20, deal physical damage in the range of 1-4, have no physical or magical

armor, run at medium speed, earn 3 gold when killed, and cost 1 life if they reach the goal

point. They have no special abilities and do not respawn. In-game screenshots of Goblins

can be seen in Figure 4.1.

Bandit

Figure 4.2: KR Bandits, left, and a Tribute Bandit.

The Bandit class includes the Biped skeletal mesh and rig and the BipedAttacker ani-

mation blueprint. Bandits have an HP of 70, deal physical damage in the range of 20-30,

have no physical or magical armor, run at medium speed, earn 8 gold when killed, and

cost 1 life if they reach the goal point. They have no special abilities and do not respawn.

In-game screenshots of Bandits can be seen in Figure 4.2.

16

Brigand

Figure 4.3: KR Brigands, left, and a Tribute Brigand.

The Brigand class includes the Biped skeletal mesh and rig and the BipedAttacker ani-

mation blueprint. Brigands have an HP of 160, deal physical damage in the range of 6-10,

have medium physical armor and no magical armor, run at medium speed, earn 15 gold

when killed, and cost 1 life if they reach the goal point. They have no special abilities and

do not respawn. In-game screenshots of Brigands can be seen in Figure 4.3.

Shadow Archer

Figure 4.4: KR Shadow Archers, left, and Tribute Shadow Archers.

The Shadow Archer class includes the Biped skeletal mesh and rig and the BipedAt-

tacker animation blueprint. Shadow Archers have an HP of 180, deal physical damage in

the range of 10-20, have no physical armor and medium magical armor, run at medium

speed, earn 16 gold when killed, and cost 1 life if they reach the goal point. They have

a ranged arrow attack, and will stop marching to destroy any defenders from long range

17

before continuing. They do not respawn. In-game screenshots of Shadow Archers can be

seen in Figure 4.4.

Gargoyle

Figure 4.5: KR Gargoyles, left, and a Tribute Gargoyle.

The Gargoyle class includes the Winged skeletal mesh, rig, and animation blueprint.

Gargoyles have an HP of 90, have no physical armor and no magical armor, fly at medium

speed, earn 12 gold when killed, and cost 1 life if they reach the goal point. Gargoyles are

flying creatures, so they cannot be engaged by barracks troops and do not deal any damage.

They have no special abilities and do not respawn. In-game screenshots of Gargoyles can

be seen in Figure 4.5.

Juggernaut

Figure 4.6: The KR Juggernaut, left, and the Tribute Juggernaut.

The Juggernaut class includes the Juggernaut skeletal mesh, rig, and animation blueprint.

18

The Juggernaut has an HP of 10,000, deals physical damage in the range of 150-250, has

no physical armor and no magical armor, walks at slow speed, does not earn gold when

killed, and costs 20 lives if it reaches the goal point. The Juggernaut is a boss enemy who

appears only on the final wave of The Citadel. Defeating this enemy automatically wins the

level for the player, while letting him reach the goal point automatically loses the level. The

Juggernaut has a unique ranged weapon that can hit any path location, dealing area damage

and spawning several Golem Heads upon impact. In-game screenshots of The Juggernaut

can be seen in Figure 4.6.

Golem Head

Figure 4.7: KR Golem Heads, left, and Tribute Golem Heads.

The Golem Head class includes the Mini skeletal mesh, rig, and animation blueprint.

Golem Heads have an HP of 125, give physical damage in the range of 10-20, have no

physical or magical armor, run at slow speed, earn 10 gold when killed, and cost 1 life if

they reach the goal point. They have no special abilities and do not respawn. Golem Heads

appear only when spawned by The Juggernaut, and never enter the map from on their own

like other enemies. In-game screenshots of Golem Heads can be seen in Figure 4.7.

4.2.3 Defenders

In addition to the functionality of the Rusher class, the Defender class features health re-

generation, which occurs any time the Defender is idling. Defenders also have an Army to

19

which they can belong, which allows groups of three defenders to move as a single unit.

Further Defender logic is described in section 4.3.3. The defenders implemented in Tribute

are described in the following paragraphs:

Militia

Figure 4.8: KR Militia, left, and Tribute Militia.

The most basic of KR defenders, Militia spawn from Militia Barracks in groups of 3.

Milita deal damage in the range of 1-3, have an HP of 50, a respawn time of 10 seconds, and

have no physical or magical armor. In addition to inhabiting the lowest level of barracks

tower, Militia are also spawned in pairs when the Hero calls for reinforcements. Militia

have no special abilities and no ranged attack. In-game screenshots of Militia can be seen

in Figure 4.8.

Footman

Figure 4.9: KR Footmen, left, and Tribute Footmen.

20

The second level of defender, Footmen spawn from Footmen barracks in groups of 3.

Footmen deal damage in the range of 3-4, have an HP of 100, a respawn time of 10 seconds,

and have low physical armor and no magical armor. Footmen have no special abilities and

no ranged attack. In-game screenshots of Footmen can be seen in Figure 4.9.

Knight

Figure 4.10: KR Knights, left, and Tribute Knights.

The third level of defender, Knights spawn from Knights barracks in groups of 3. Foot-

men deal damage in the range of 6-10, have an HP of 150, a respawn time of 10 seconds,

and have low physical armor and no magical armor. Knights have no special abilities and

no ranged attack. In-game screenshots of Knights can be seen in Figure 4.10.

Paladin

Figure 4.11: KR Paladins, left, and Tribute Paladins.

The first of the two highest levels of defender, Paladins spawn from Holy Orders in

21

groups of 3. Paladins deal damage in the range of 12-18, have an HP of 200, a respawn

time of 14 seconds, and have medium physical armor and no magical armor. Paladins

features the Holy Strike special attack, which is described in section 4.3.3. Paladins do not

have a ranged weapon. In-game screenshots of Paladins can be seen in Figure 4.11.

Hero

The Hero class includes the Biped skeletal mesh and rig and the Hero animation blueprint.

Unlike other Rusher implementations, the Hero’s controller does not implement any au-

tomatic functionality. Instead, the Hero’s motion is controlled by the player, who inputs

directional commands through the WASD keys, jumping commands by pressing the space-

bar, and weapon usage by clicking the right and left mouse buttons. An in-game screenshot

of the Hero character can be seen in Figure 4.12. In addition to providing character move-

Figure 4.12: The Tribute Hero character.

ment and battle functionality, the Hero character also provides the player with the means to

build, upgrade, and sell towers. We accomplish this through a new method of interaction

detection that is not present in the original game. In addition to the basic rusher collision

capsule, the Hero class also includes a small collision sphere directly ahead of the skeletal

mesh that identifies what object the player is currently interacting with. If the collision

sphere overlaps an interactable object, a KRInteraction decal object appears a that object’s

position, highlighting that object for the player, as shown in figure 4.13 .

22

(a) The player can pull this lever to build a Tower. (b) The player can attack this Brigand.

Figure 4.13: The interaction decal in Kingdom Rush: Tribute.

If the player wishes to interact with this object they do so by clicking the left mouse

button. If the chosen object is a building lever, the lever is pulled and the appropriate

action occurs. If the chosen object is an Attacker, the Hero engages the Attacker in melee

combat. The player can also switch between third-person and first-person view in order

to fire ranged projectiles instead of using a melee weapon. The Tribute Hero is loosely

based on Gerald Lightseeker, a hero from the original KR game. Before leveling up his

stats, Gerald Lightseeker has 400 HP, deals 11-18 damage, has low physical armor and no

magical armor, and has no special abilites. Once leveled up, he unlocks the special abilites

Courage and Shield of Retribution. As we have not yet implemented a player progress

system, we have chosen not to implement these special attacks.

4.3 Towers

Kingdom Rush features four main tower types: Archer Towers, Mage Towers, Barracks,

and Dwarven Bombards. Each of these towers features a different attack type, and each

can be upgraded twice before a final upgrade into one of two Advanced Towers. The vi-

sual aspects of the towers in Kingdom Rush: Tribute are based heavily off of the original

game, with creative liberties taken as needed or desired. In particular, details such as idle

animations and particle emitters are added where source detail is found to be lacking. To

23

represent KR towers in Tribute, meshes were modeled in Maya 2016 and textured in Pho-

toshop CC. The Mage Towers and Archer Towers were built as static meshes, while the

Barracks and Dwarven Bombards were given skeletal components to accommodate the ani-

mations associated with their respective action sequences. Each tower is manned by a set of

characters represented by animated skeletal meshes. To replicate the sprite sheet animation

of the original towers, each tower is given an action sequence. These sequences involved

a range of effects, from skeletal animation to particle emitters. In addition to the basic at-

tack featured by the basic towers, the Advanced towers each feature two or three Special

Attacks. These specialized attacks have a longer cooldown time, but greatly enhance the

ability of the towers to impede and destroy enemies. A crucial aspect of Kingdom Rush

strategy is deciding which Advanced towers will be most effective at defeating a particular

set of enemies. The four basic towers, their visual effects, their attack types, their special

attacks, and their relative strengths and weaknesses are outlined in the sections below.

4.3.1 Archer Tower

Figure 4.14: Kingdom Rush Archer Towers and their corresponding Tribute Archer Towers.

24

Overview

The archer tower has a base cost of 70 gold, and features a fast ranged attack that deals

physical damage and targets both ground and flying enemies. The projectiles launched by

the attack do not deal area damage and are not homing. The damage dealt by archer tower

arrows is fairly low, but the rate of fire of this tower is the highest in the game. In-game

screenshots of archer towers can be seen in Figure 4.14.

Action Sequence

Each iteration of the archer tower features two biped archers which are responsible for the

tower’s attack function. When an Attacker comes within range of the tower, the first archer

initiates his firing sequence. At the appropriate point in the firing animation cycle, an Arrow

projectile is spawned at the front of the bow with an initial horizontal velocity of 20 meters

per second. The arrow is aimed by the predictive aiming function described in section 6.1,

and will miss its target if the target Attacker is banking significantly. At the halfway point in

the first archer’s firing cycle, the second archer initiates his firing sequence, resulting in an

alternating series of fired arrows. If an arrow collides with an Attacker, it is destroyed, and

passes the appropriate amount of physical damage to the Attacker’s TakeDamage function.

VFX

The basic levels of the archer tower feature no visual effects. The Ranger’s Hideout ad-

vanced tower features one leaf emitter to enhance the visual appearance of the tower, an

aspect which is not present in the original game.

Special Attacks

The Ranger’s Hideout tower features Wrath of the Forest, a timer-based special attack that

briefly traps a set of enemies in place, dealing them up to 45 damage over 3 seconds. This

attack is implemented in KR with a briar skeletal mesh. When the special attack is triggered,

25

a briar will spawn directly beneath up to five enemies within range of the tower, along with

a particle leaf burst for effect. Each chosen Attacker enters into a struggling animation

that matches the briar’s attack animation, and takes physical damage throughout the attack.

Once the attack ends, the briar retreats into the ground, and the Attacker returns to his

previous behavior.

4.3.2 Mage Tower

Figure 4.15: Kingdom Rush Mage Towers and their corresponding Tribute Mage Towers.

Overview

The Mage Tower has a base cost of 100 gold, and features a slow ranged attack that does

magical damage and targets both ground and flying enemies. Projectiles fired by this tower

do not deal area damage but do home to their target. The base damage for mage towers is

relatively high. In-game screenshots of Mage Towers can be seen in Figure 4.15.

Action Sequence

The Mage Tower is manned by a single wizard at all levels. When an Attacker comes

within range of the tower, the wizard begins the spellcasting animation sequence, spawning

26

a MageBolt from the tip of his wand. The MageBolt is a homing projectile, and cannot miss

its target. If the target Attacker is destroyed before the bolt reaches him, the bolt will crash

harmlessly into the ground. Otherwise, the bolt spawns an explosion upon colliding with

the Attacker, and passes appropriate magic damage to the Attacker’s TakeDamage function.

VFX

The mage tower meshes feature magical gems that pulse in intensity prior to the wizard’s

attack, an effect achieved with a dynamic scalar parameter piped to the gem shader emission

attribute. Both the wizard’s wand tip and the MageBolt feature a noisy displacement shader

that is colored via cross panning noise piped into a stepped blue ramp to achieve a magical

toon look. The MageBolt features the same shader, as well as a tapering particle trail system

to mimic the comet trail look of the original game sprites. The impact explosion features a

toon sprite sheet created in Houdini 15.

Special Attacks

The Arcane Wizard advanced tower features a different basic attack that involves a magic

beam in a straight line from the tower tip to the Attacker. This effect is preceded by a

set of electric purple sprites crawling up the tower spires. These sprites were procedurally

generated using Houdini 15. Once the sprites reach the top of their respective spires, four

beam particles are emitted that meet in the center of the spires, and a fifth beam spawns

between the center point and the target Attacker. The beam particles are given a noisy

displacement to mimic the electric look of the original game sprites.

4.3.3 Barracks

Overview

The Barracks tower has a base cost of 70 gold, and unlike the other three towers, features no

ranged attack. Instead, a barracks spawns three soldiers which center around an adjustable

27

Figure 4.16: Kingdom Rush Barracks and their corresponding Tribute Barracks.

rally point and engage enemies that try to pass them in combat. When killed, each soldier

will respawn after a brief recharge period (10-14 seconds). In their base form, barracks

soldiers cannot target or engage flying enemies, have relatively low health, and deal low

amounts of physical damage to attackers. In-game screenshots of Barracks can be seen in

Figure 4.16.

Action Sequence

The animation sequence of the barracks is straightforward, since it has no attack function,

and presents a trigger that opens the door to release any new soldiers that spawn within.

Once the barracks is empty, the door closes. The rest of the barracks functionality is per-

formed by the three soldiers who spawn inside it. The barracks soldiers are instances of

the Defender class and are spawned by an Army, which assigns them both a spawn point

and a rally point. Once spawned, Defenders return to the rally point unless an Attacker is

found within range of the Army. When an Attacker is found within range, all three De-

fenders immediately navigate to it and begin attacking it. The Attacker will choose one of

the defenders and begin to fight back. When another Attacker enters within range, a De-

fender who is not mutually engaged (being attacked by the Attacker he is attacking) will

28

disengage his current opponent and engage the new Attacker. Once an Attacker is killed,

the Defenders who were attacking that Attacker will choose a new unengaged Attacker if

one is available. If no such Attacker is within range, the Defenders will attack any engaged

Attacker in range. If no enemies at all are within range, all Defenders return to the Army

rally point. If a Defender is killed, he will trigger a respawn to occur at the Army respawn

point after a brief recharge period.

VFX

The Defender sword slash animation features a white slash anim trail effect that mimics the

sprites of the original game.

Special Attacks

The Holy Order tower spawns Paladin Defenders with a Holy Strike attack. This attack

occurs randomly, and involves the Defender striking the ground with his sword. Upon

impact, the sword spawns an animated sprite decal, generated in Houdini 15, which expands

outward over the ground and applies radial true damage to any enemies it touches.

4.3.4 Dwarven Bombard

Overview

The Dwarven Bombard has a base cost of 125 gold and features a slow ranged attack that

does area physical damage and targets only ground enemies. Bombard projectiles are not

homing. Area damage is affected the distance of the enemy from the point of impact,

and while the tower does not target flying enemies, any flying enemies within range of an

explosion will receive damage. The base damage dealt by bombard projectiles is lower than

that of mage towers, but is capable of dealing much more damage when used against a tight

crowd of enemies. In-game screenshots of Dwarven Bombards can be seen in Figure 4.17.

29

Figure 4.17: Kingdom Rush Bombards and their corresponding Tribute Bombards.

Action Sequence

The Dwarven Bombard is manned by a pair of dwarves, one of whom loads the bombard

with bombs while the other pulls the trigger to launch them. When an Attacker comes within

range of the tower, the trigger dwarf pulls the trigger and the tower skeletal mesh plays its

stylized firing animation. Midway through this animation, a Bomb projectile spawns from

within the launch tube, with a horizontal velocity of 20 meters per second and a vertical

velocity determined by the predictive aiming function described in section 6.1. Unlike

Arrow projectiles, the Bomb projectiles travel a very high arcing mortar path to their target.

As these projectiles are not homing, it is possible for them to miss. Once the bomb collides

with the floor, it triggers an animated explosion spritesheet, spawns shrapnel pieces, and

flashes a brief orange light at the point of impact. All enemies within the blast radius of the

Bomb receive radial physical damage.

VFX

While flying, the Bomb projectile emits stylized sparks and smoke puffs, leaving an arc of

smoke behind it. The animated explosion sprite sheet is a stylized toon render of a Houdini

pyro explosion. The shrapnel from the Bomb is pre-modeled and does not result from a

30

dynamic fracture.

Special Attacks

Kingdom Rush: Tribute does not currently implement the advanced levels of the Bombard

tower type.

4.4 Architecture

Due to the iterative nature of the Kingdom Rush games and the limited scope of this project,

it is necessary to develop a highly scalable architecture to allow future expansion. To fa-

cilitate this approach, an object-oriented, inheritance-based approach is taken to the system

design. All classes are developed in UE4’s Blueprints system, and inherit from the Actor

class or a more specific child class.

4.4.1 Characters

All characters are descendants of the Rusher class, which includes universal variables such

as health, walking speed, etc. All enemies are descendants of the Attacker class, while all

soldiers and the KRHero are descendants of the Defender class. This class hierarchy can be

seen in Figure 4.18.

4.4.2 Towers

All towers are descendants of the Tower class, which includes mesh, character, and targeting

functionality. This class hierarchy can be seen in Figure 4.19.

4.4.3 Projectiles

All projectiles are descendants of the Payload class, which includes a static mesh, a collider,

an optional trailing particle system, and the amount and type of damage to be dealt. In addi-

tion, the Payload class includes a ProjectileMovement component, an Unreal Engine feature

31

that provides basic movement logic used by projectiles, including velocity, gravity, and for-

ward orientation. Forward orientation is used by the Arrow and Missile classes, while the

other classes implement a random constant amount of rotation. This class heirarchy can be

seen in figure 4.20.

4.4.4 Waves and Spawns

A Kingdom Rush level consists of six to twenty-one waves of enemies, each of which

spawns a predetermined set of enemies in sequence. To accommodate this system, Tribute

implements a hierarchy of structs for the Wave and Spawn information. The Spawn struct

contains essential spawn information such as enemy type, spawn location, spline to travel

down, and spawn time offset. The Wave struct contains an array of Spawns and a wave

duration. The Wave logic and implementation is handled by an EnemySpawner class, which

contains an array of Waves, spawns each Wave’s Spawns when the Spawn’s time offset is

reached, and iterates to the next wave as the level progresses and the current wave’s duration

expires. A diagram showing the relationships between these classes can be seen in figure

4.21.

32

Figure 4.18: The Rusher class and its descendants.

33

Figure 4.19: The Tower class and its descendants.

34

Figure 4.20: The Payload class and its descendants.

Figure 4.21: The EnemySpawner struct with Wave and Spawn struct member relationships.

35

Chapter 5

Asset Development

It’s a kind of magic.

The Mage

5.1 Environment

5.1.1 Map and Environment Modeling

Environment design for this project is minimal, allowing us to focus on the aesthetic de-

velopment of the more functional aspects of the game. Where possible, we stay true to the

original level design, placing trees and castle walls in similar positions to keep the player

in the main field of play. The map floor itself is a flat plane to which we apply the original

map level texture. We found this simplistic design to provide less distraction from gam-

pelay than more detailed approaches such as sculpted terrain and painted vegetation, both

of which were implemented and discarded. We hope to revisit this portion of the visual

design in future work and provide a more visually detailed solution that does not distract

the player.

5.1.2 Lighting

Level lighting for this project is also fairly simplistic, and includes two basic lights. The

first of these lights is a directional sun light, which signifies a specific position for the sun

and creates a visible bright sun in the sky. The second of these lights is a sky light, which

captures the appearance of the skydome and uses this information to compute realistic am-

bient light. To support these effects, Tribute includes a bright blue skydome with simple

toon white clouds that was created by modifying the default UE4 skydome in the starter

content package with a custom toon cloud created in Photoshop CC.

36

Figure 5.1: Tribute in action.

In addition to these global lighting effects, individual Tribute effects contribute small

local lighting. Effects such as exploding bombs and mage bolts make use of point lights,

which provide additional colored light in the small area around their respective effects.

Mage gems, eplosion sprites, and other effects make use of emmissive materials, which act

similarly to point lights by adding glow color to the surrounding geometry.

5.1.3 Sound FX

As Kingdom Rush: Tribute focuses primarily on converting the visual aspects of the original

Kingdom Rush game to 3D, the sound used in the 3D game is the same sound used in the

original game. All sound FX, music, and dialogue is the property of Ironhide Studios, and

no claim is made by us to its authorship.

37

Figure 5.2: An early draft of Kingdom Rush characters.

5.2 Characters

5.2.1 Design and Modeling

As with many other aspects of this project, the most difficult part of developing the char-

acters in Tribute is in exploiting the increased screen space the characters inhabit while

maintaining the simplistic, cartoonish look of the original KR characters. An early draft

of character development can be seen in Figure 5.2, showing an excessive level of skeletal

detail that fails to capture the spirit of the original characters. Characters in the original

game seldom consume more space than a 32x32 sprite, providing fairly little detail to de-

sign from. As a result, our character design process relied not only on the in-game assets

but also on auxiliary material such as game loading and title screens, hero profiles, and the

Kingdom Rush comic series. Drawing from this material allowed us to see a more high-

resolution version of the original game design, and provided us with such detailed images

as those in figure 5.3 from which to base our character design.

While the stylistic choices made for each character varied between models, several de-

cisions remained constant among all characters. These included covering up eyes whenever

possible, a lack of facial details such as noses or ears, and stubby arms and legs with no

38

Figure 5.3: Kingdom Rush auxiliary source material.

fingers or toes. Implementing such a simplistic design scheme also allowed us to devote

additional time to the rigging and animation of the characters.

5.2.2 Rigging

Models are rigged using the skeletal system in Maya 2016. Where possible, the heat map

smooth bind system is used, as this approach greatly simplified the need for further ad-

justment of bind weights. However, considerable adjustment is still needed, and is ac-

complished using the paint weights tool. One rig is created for each class of character, with

different skeletal meshes created where appropriate. In our implementation, the only shared

39

use of rig was in the Biped rig, which supplied the skeleton for the Bandit, Brigand, Shadow

Archer, Militia, Footman, Knight, Paladin, Driver, and KRHero classes. The Gargoyle and

Goblin classes were the only classes to make use of their respective rigs, but these rigs could

easily be reused in future enemies such as Orcs, Shamans, and Demon Imps. As the Jug-

gernaut and Golem Head rigs were unique enemies, their rigs were not intended for reuse.

Joint movement was controlled through a set of NURBS curves which were connected to

the skeleton via parent, point, and orientation constraints. IK handles were used to control

the motion of arms and legs, with pole vector constraints incorporated to attain appropriate

knee and elbow positioning. IK/FK blending was not incorporated in these rigs, as IK alone

was found to be more than sufficient to achieve the desired poses. The set of character rigs

used in Tribute is displayed in figures 5.7-5.11.

5.2.3 Animation

Animations created for Tribute are based off of the animated spritesheets used by characters

in the original game. Studying these original animations was quite effective at allowing us

to determine what functionality the characters needed to attain, but the small screen size

and relatively low frame count of the animations rendered them unhelpful in terms of pro-

viding direct poses to emulate. As a result, the animations were used as general inspiration

for their corresponding 3D animations in Tribute. The final animations range from 18-72

frames in length and are looped in the game to create the appearance of continuous motion.

For the biped rig, the animations created included idling, walking, fighting, firing arrows,

struggling, and dying. The driver characters were also given high and low spellcasting,

bomb throwing, and lever pulling sequences. The hero character was given a flag planting

animation in addition to making use of the biped animations. The gargoyle rig was given

a single flapping animation, as Gargoyles have no other functionality and simply disappear

when they are killed. The Juggernaut and Golem Head rigs were given walking, attack, and

death animations, and the Juggernaut was also given a rigid body collapse simulation as

described in the VFX section.

40

Animation logic and transition is handled via UE4’s Animation Blueprint system. Each

character’s animation blueprint polls its AnimState variable, updating its own copy accord-

ingly. When a change in animation state is detected, the animation blueprint initiates a

transition from the previous animation to the ensuing one. In most cases, animation blend-

ing is handled by UE4’s default blending function. The exception to this is the KRHero

character, which features a custom animation blending developed in UE4’s Montage sys-

tem that allows the character’s arms and legs to move independently of one another. This

allows the character to run, jump, and stand still while his arms either follow along, fire

arrows, or slash with a sword.

5.3 VFX

5.3.1 Rigid Body Dynamics

Rigid body fracture simulations are used in two effects in Tribute. The first of these is in the

Rain of Fire spell, which results in several meteors crashing into the ground and spreading

hot coals in a circle. While a similar effect could have been achieved with a deferred decal,

we believe that a rigid body simulation is a more effective method of displaying this effect.

Creating 3D debris for the characters to walk across provides a sense of depth to the effect

that could not be created with a deferred decal. To create this effect, we modeled a simple

meteor in Houdini 15 and applied a Voronoi fracture to the lower half of the meteor. We

then simulated the meteor crashing into a ground plane, applying heavy drag to the fractured

pieces to keep them from scattering too far. The resulting simulation was exported as an

Alembic file and imported into UE4. When the player casts the Rain of Fire spell, several

falling instances of this alembic are spawned high above the map. Once each meteor strikes

the ground, the downward motion is paused and the alembic animation is played.

The second rigid body fracture simulation occurs during the death of the Juggernaut

boss character. This effect is very similar to the character’s death animation in KR, in which

the Juggernaut pauses before collapsing into a set of fractured pieces rather than entering

41

Figure 5.4: The Juggernaut collapses to the ground in a pre-computed Alembic rigid body
simulation.

a simple death animation. To create this effect, we imported the posed Juggernaut model

into Houdini 15, extruded slightly inward to create thickness on the character, and applied a

Voronoi fracture to the character’s torso and limbs. The head was left unfractured to create

a more dramatic visual. The resulting fractured pieces were simulated collapsing to the

ground, and the simulation was exported to an Alembic file. Once imported into UE4, the

simulation replaces the Juggernaut’s skeletal mesh at the moment of death with no change

in position, resulting in a smooth transition to the collapsing pieces. Selected frames from

this effect can be seen in Figure 5.4.

5.3.2 Pre-rendered Spritesheets

KR’s visual effects are extremely cartoonish and stylized, and it is easiest to imitate this

aesthetic by making use of pre-rendered spritesheets whenever possible. Using spritesheets

allows us to check every frame of every effect and ensure that the final animation is ex-

actly in line with our vision. As a result, we make heavy use of pre-rendered spritesheets

throughout Tribute,

To create the explosive projectile spritesheet, we implemented two pyro simulations in

Houdini 15. The first simulation represented the yellow fire, and was given a lower buoy-

ancy and turbulence. The second simulation represented the gray smoke, and was given

a higher buoyancy and turbulence. Each simulation was converted to a VDB, remeshed,

and given a discrete ramp shader that mapped each range of particle temperatures to an

appropriate color tone. When combined, these two simulations appear to form a single ex-

42

plosion. The resulting orthographic render was laid out in a spritesheet and imported into

a UE4 shader with a subUV animation. A visual breakdown of this process can be seen in

Figure 5.5.

Figure 5.5: Dual Houdini pyro simulations with smoke and fire toon shaders combine to
form the final explosion spritesheet.

To create the mage bolt burst effect, we created a radial impulse burst of particles in

Houdini 15, converted the resulting particle simulation to a VDB field, and remeshed this

field. We then modified the toon pyro shader to accommodate blue and white colors, and ap-

plied this shader to the remeshed simulation to achieve our final render. A similar approach

was taken to create the Holy Strike blast and arrow impact blood spatter spritesheets, with

appropriate changes to particle spawn rates, noise fields, and final toon shaders. A visual

breakdown of the blood spatter effect can be seen in Figure 5.6.

A different approach was used to create the mage beam powerup spritesheet. Instead of

particles, Houdini geometry was used as a starting point. Several circles were fed through a

noise VOP, which varied the position of the individual vertices in the circle based on time.

In addition, distinct groups of points were connected by similarly noisy arcs over a longer

period of time, resulting in distinct "jumping" arcs of electricity. The circles and arcs were

then converted to tubes and rendered from an orthographic view with a purpler toon ramp

shader. The resulting render was given a glow effect in Nuke 8 and the final frames were

43

compiled into a spritesheet for use with a UE4 subUV animation.

Figure 5.6: Radial burst particle simulation is remeshed and rendered with a toon shader to
create the blood spatter spritesheet.

5.3.3 Decals

The art assets in Kingdom Rush consists of two-dimensional sprites, and many of these

sprites are used to represent materials and effects which are flat on the ground. Several of

these effects have been replicated in Tribute using Unreal Engine’s Deferred Decal material

mode. Unlike most material modes in Unreal Engine, the deferred decal mode is not applied

to a particular piece of geometry or particles. Instead, a deferred decal occupies a portion of

3D space inside the game and projects its color values onto whatever geometries overlap its

bounds. This material mode is particularly useful for dynamic effects such as blood spatter,

scorch marks, bullet holes, and other effects which appear on relatively flat surfaces. The

effects in Tribute which use deferred decals include the blood spatter which occurs when

an attacker is killed by explosive damage, the blue spritesheet that appears when a Paladin

activates Holy Strike, and the current selection indicator that appears under the player’s next

target.

44

Figure 5.7: The Biped rig.

Figure 5.8: The Goblin rig.

Figure 5.9: The Golem Head rig.

45

Figure 5.10: The Juggernaut rig.

Figure 5.11: The Winged rig.

46

Chapter 6

New Challenges: 2D to 3D

Mmmh! I don’t think that will work!

Vez’nan

Many challenges arose in our port of Kingdom Rush from a 2D top-down tower defense

game to a 3D third person shooter; moreover, several of these challenges that arose were

unique in that they were created entirely by the dimensional change from 2D to 3D. As

a result, solving these challenges was not a question of faithful technical replication, but

rather one that required creative design. We describe several of these challenges and their

solutions below.

6.1 Predictive Aiming

In Kingdom Rush, most fired projectiles follow an unguided trajectory and do have a chance

of missing their target. However, despite their relatively slow speed and interaction with

gravity, these projectiles are fairly accurate, due to their implementation of 2D predictive

aiming. If the targeted enemy does not significantly alter their velocity after the projectile

is fired, the projectile is guaranteed to score a direct hit. This fact is particularly evident

while observing fast-moving enemies curving around an archer tower, as the rapid banking

of the moving enemies causes each arrow to miss widely. Once the enemies re-enter a

straightaway, however, the archer shots return to perfect accuracy.

When replicating this functionality, we first tried to make use of UE4’s built-in Sug-

gestProjectileVelocity function. As this function provided no predictive functionality, we

attempted to account for the motion of the target enemy by setting the target location to

a fixed distance in front of the enemy. While this method proved adequate for explosive

projectiles due to their forgiving area damage, we found it to be much less effective when

47

used with arrow projectiles, which only deal damage when scoring a direct hit. To address

this issue we found it necessary to implement our own predictive aiming function.

Tribute’s implementation of predictive aiming uses an algorithm that calculates the ap-

propriate intercept velocity given a fixed target speed and zero gravity. Once this velocity

is calculated, the algorithm adjusts the vertical component of the projectile launch veloc-

ity in order to account for gravity. This results in fairly realistic projectile aiming that is

guaranteed to hit its target when the enemy is moving at a constant speed in a straight line.

The algorithm used was taken from Kain Shin’s blog post Predictive Aim Mathematics

for AI Targeting and was implemented in a UE4 blueprint [4]. The algorithm implements

the following system of equations:

Vb = Vt +
Pti − Pbi

t

t =
−2DSt cos(θ)±

√
(2DSt cos(θ))2 + 4(S2

b − S2
t)D2

2(S2
b − S2

t)

where:

• Vb is the launch velocity of the projectile

• Vt is the velocity of the target at time of launch

• Pti is the position of the target at time of launch

• Pbi is the position of the muzzle at time of launch

• D is the distance from the muzzle to the target at time of launch

• St is the speed of the target at time of launch

• θ is the angle between the line from the muzzle to the target and the direction of the

target’s velocity.

48

This algorithm is utilized by Shadow Archers, The Juggernaut, Bomb Towers, and

Archer Towers each time a projectile is fired. While the algorithm is fairly complex, we

have found that the relative infrequency of its use does not result in a significant increase in

frame calculation time.

6.2 Interaction

The original Flash release of Kingdom Rush is controlled exclusively through a mouse

interface. Players can click once on objects to open a relevant menu, and selecting an op-

tion from the menu would execute an action and return the player to regular gameplay. Our

early implementations of Tribute mimicked this approach, allowing players to open context-

based menus by clicking on objects in the screen. However, early playtesting showed that

this method created a jarring transition between player control and cursor movement, and

players had difficulty switching between the two modes. It became apparent that we would

need to develop a more intuitive system for interaction. We developed a more intuitive

system that makes use of the player’s current location and orientation to determine which

object the player is interacting with. This process, and the iterative development process

used to create it, is described in more detail in Chapter 7. If the interaction chosen still re-

quires further input, such as when the player approaches a tower, a set of levers appears in

3D space within range of the player, with each lever corresponding to a contextually appro-

priate action the player can take. Initial playtesting showed that this method of interaction

could be a satisfactory replacement for the 2D context menus in Kingdom Rush.

6.3 Pathfollowing

The most challenging aspect of this project involved developing a path following system for

the Attackers to use while progressing through the game. While the motion of the sprites

in the original game is fairly simple, converting it to 3D posed a unique set of challenges.

When the enemies in the original game enter a crowded area of the path, the 2D sprites

49

representing the characters are able to slide past one another without a negative impact on

the visual appearance. When ported to 3D, however, the characters are not able to do this,

and must resolve the collision either by waiting for the path to clear, taking another path to

the goal point, or traveling through the obstacle. A number of methods we considered are

described below.

Spline Placement

The simplest and most straightforward method of path movement is to define the position

of the character as the location at a percentage of the spline that increases with time. Imple-

menting this method results in very simple and functional movement of the character down

the path as desired. However, while it is straightforward to have the character stop and

interact with characters in the level, it is less trivial to incorporate avoidance of characters

with whom the path-following character is not currently interacting. Our implementation

of this method resulted in many characters clipping through each other, greatly detracting

from the visual appearance and believability of the game.

AI Navigation

A better option, and one fairly easily implemented, was to make use of Unreal Engine’s

built-in artificial intelligence pathfinding system to allow the characters to find their own

way through the map. This would enable path-following characters to dynamically avoid

travelling through other characters and their environment. Our implementation of this sys-

tem found that if an adequate AI navmesh was created, the path-following enemies per-

formed extremely well, following efficient paths and ultimately reaching their goal through

sometimes ingenious ways. However, the behavior exhibited was not a good match for the

original Kingdom Rush path-following system. Characters did not stay in the middle of

the path, but traveled directly toward the inside corner. Characters also did not stay in for-

mation relative to each other as they do in the original game. Most importantly, characters

took the most efficient path to the goal point at all times, a behavior not exhibited by origi-

50

nal Kingdom Rush enemies, who make predetermined decisions at road forks that are often

inefficient in terms of path optimality. In order to successfully replicate the Kingdom Rush

style of play, it was necessary for us to develop an improved solution.

Checkpoints

One proposed solution was to develop a system of checkpoints for Enemies to pathfind

to in sequence. By defining a series of checkpoints, we could force the Enemies to not

travel directly to the goal point but instead move along the path in a more natural manner.

However, multiple weaknesses were found with the system. Functionally, enemies might

be unable to reach a certain checkpoint if it was surrounded by other characters, which

could result in an enemy circling a checkpoint and traveling backward in an attempt to

reach it. This behavior would be completely incorrect. Aesthetically, it would result in

enemies suddenly changing direction on the spot rather than gradually turning, a departure

from the original game. Rather than implement this solution, we chose to implement the

more effective solution described below.

Spline Goal Following

Our final system is a hybrid of the spline placement and AI pathfinding systems. Due to

their inheritance of the Pawn class functionality, Tribute enemies are all equipped with AI

pathfinding ability, which they make use of to move about the map. However, instead of

directing the goal point, each Enemy moves toward a unique Goal actor that moves along

a spline. The Goal moves faster than Enemies, but is not allowed to move more than 300

units ahead of the Enemy. If the enemy is engaged by a Defender or encounters an obstacle,

the Goal actor will pause its motion until the Enemy finds its way to within the acceptable

distance. As a result, the Enemies travel down the path normally, but will make small

deviations from the path to avoid any crowded areas. In addition, providing each Goal with

a distance offset allows us to arrange groups of enemies in predetermined formation, an

iconic feature of KR enemies. The final result is an effective implementation that avoids the

51

Figure 6.1: 2,000 Bandits fight for space.

problems of the earlier solutions and results in KR style gameplay. This system performed

very well in stress testing, allowing over two thousand Bandits to enter the map without

leaving the path or stacking up single file, as shown in figure 6.1.

52

Chapter 7

Playtesting

Back to the shadows of hell!

The Sorcerer

We have designed and implemented a prototype that we call Kingdom Rush: Tribute.

This prototype is playable, and can be run on most Windows computers. As a result of

the playable nature of the prototype, we were able to recruit a group of gamers who were

willing to install and run the game, producing an informal alpha test. After playing the game

a few times, each player was asked to complete a brief survey about the game. Existing

bugs and glitches were not a focus of this survey. Instead, players were asked to discuss

the playability of the game, including what worked and did not work, what was easy to

understand and what was confusing, and to provide any suggestions for improving game

play. This feedback facilitated several improvements to the basic interactive style of the

game.

One player reported dismay about the fact that his character would not continue to attack

his chosen enemy after the first blow, but instead had to be re-directed after every attack

animation cycle. To address this issue, we implemented an attack-lock system, by which

the player’s character will continue attacking his chosen enemy until the enemy is dead,

the player is dead, or the player disengages by navigating away from the battle. Another

player reported confusion when trying to determine which lever or enemy his character

would interact with when the mouse was clicked. This player suggested implementing an

indicator system to explain which object was the current candidate for interaction. As a

result of this feedback, we implemented the current object highlighting system, in which

a spinning circle with inward-pointing arrows appears under whatever object the player

is facing. When functional, this system was very effective at clarifying confusion for the

players, to the point that testers as young as ten years old were able to play the game quite

53

easily with no instructions given.

A common observation, independent of the playability feedback, was that the degree of

difficulty of the game was not properly balanced. Players commented that in one version of

the game, the player was too weak and that it took too long to manage resources and build

towers. In another version, in which the player was given the ability to fire both arrows and

missiles, players commented that the hero character was far too strong, and that the game

was too easy as a result. This feedback showed us that the game would need to be carefully

balanced when finished. In particular, the feedback about resource management, and the

increased difficulty involved in having to navigate to a tower’s location before interacting

with that tower or tower slot, showed us that perfectly duplicating the original Kingdom

Rush game balance might not be the ideal solution. Further work will include testing out

different variations of enemy strength, player melee strength, and player walking speed in

order to address these concerns.

In addition to comments on the playability of the game, players were also asked to give

some feedback on the visual fidelity of the game in regards to how well it matched the

Kingdom Rush aesthetic. The majority of these responses focused on the use of the low-

resolution screenshot of the original map as the game floor, and requested more detail there

in addition to the inclusion of houses, sheep, and other props from the original games to

increase the sense of immersion. Much of the future work for this game will focus on these

aspects.

54

Chapter 8

Conclusions and Future Work

I see dead people.

The Archers

8.1 Conclusions

8.1.1 Changes in Gameplay

We began this project with the goal of completely replicating the original gameplay of

Kingdom Rush in a 3D world. However, as our prototype reached completion, we became

aware of several difficulties in reaching this goal that could not be easily addressed. The

results of our informal playtesting showed that while the functional aspects of the game

had been replicated effectively, the essential changes unique to the 3D aspect of Tribute

had made much of the in-game action difficult to observe. Playing on the test map of The

Citadel proved much more difficult than anticipated, as enemies entering from alternate

paths behind the camera proved difficult to notice, and Golem Heads frequently spawned

behind the player, catching him unawares. The new camera’s positioning also made it

harder for the player to watch his towers in action, and to know when special attacks or

player spells were appropriate. Despite these weaknesses, however, players reported greatly

enjoying the time spent playing the game, and described new strategies they would not have

tried in the original game such as using the player character to distract Shadow Archers so

that Dwarven Bombards could attack them more effectively. While we are surprised by

the unwanted results that our transition created, we believe that they are natural products

of transitioning the game into 3D space. At the same time, we are encouraged by the

unexpected positive results, and look forward to further improving the gameplay and overall

experience of this project.

55

8.2 Future Work

8.2.1 Additional Characters

The primary goal of our work entailed the design and implementation of a playable pro-

totype of Kingdom Rush: Tribute. To achieve this goal we focused on bipedal and flying

characters. We have not implemented the more difficult Kingdom Rush characters that

are characterized by non-bipedal locomotion. These characters include quadrupeds such

as Wulves and Worgs, and the many forms of spiders that make up a large percentage of

attackers on many levels of the Kingdom Rush series. Since the spiders’ ability to quickly

lay and hatch eggs mid-wave is one of the most challenging aspects in Kingdom Rush, im-

plementing these characters and the accompanying mechanics is essential to the completion

of a full game.

8.2.2 Multiple Levels

Even though this project has focused on the implementation of a single level in sandbox

mode, developing a complete set of levels and implementing a system to track player

progress is the ultimate goal. Like many video games, Kingdom Rush features a com-

pelling story, and the narrative of an army of honorable defenders journeying through dif-

ferent environments and battling progressively more frightening enemies is fundamental to

the Kingdom Rush gameplay experience. While it would not be necessary to develop the

same fifteen levels of the original Kingdom Rush game, developing a similar campaign of

levels with unique environments and wave structures is the ultimate goal for this project,

and one that we hope to achieve in our future work.

8.2.3 Player Progress

In addition to providing support for multiple levels, implementing a player progress tracker

would allow for the inclusion of Kingdom Rush’s star-based upgrade and achievements

systems. At the end of each KR level, the player earns one to three stars, depending on

56

how few enemies make it through the goal gate before the level ends. These stars can be

cashed in for a variety of tower and spell upgrades, which range from decreased costs of

construction of new towers to unlocked ranged attacks for reinforcements. Linking the

purchase of upgrades to the player’s progress allows the game to feature more difficult

enemies as the player progresses, a common feature in tower defense and other games.

In addition to this star system, KR also features an achievement tracking system, which

rewards the player for such feats as killing 100 spiders or defeating a certain level without

losing any soldiers. Implementing this system is another way in which the original KR

experience could be replicated.

57

Bibliography

58

[1] John Andrews. Dungeon Defenders Exceeds More than a Quarter of a Million in Sales,
2012.

[2] Trevir Nath. Gaming will hit $91.5 billion this year - Newzoo, 2016.
http://www.nasdaq.com/article/
investing-in-video-games-this-industry-pulls-in-more-revenue-
than-movies-music-cm634585.

[3] BBC News. Casual games make a serious impact, 2017. http://news.bbc.co.
uk/2/hi/technology/7301374.stm.

[4] Kain Shin. Predictive Aim Mathematics for AI T argeting, 2009.
http://www.gamasutra.com/blogs/KainShin/20090515/83954/
Predictive_Aim_Mathematics_for_AI_Targeting.php.

[5] Brendan Sinclair. Investing in Video Games: This Industry Pulls In More Revenue Than Movies,
Music, 2017. http://www.gamesindustry.biz/articles/
2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo.

[6] Alexander Sliwinski. "Dungeon Defenders picks up gold from 600K sales, 2013.

[7] Tower defense, 2017. https://en.wikipedia.org/wiki/Tower_
defense#A_new_breed_of_3D_games.

[8] Luis Wong. Making Kingdom Rush: an Uruguyan Tale, 2014.
http://www.polygon.com/features/2014/9/10/6045757/
kingdom-rush-uruguay.

http://www.nasdaq.com/article/investing-in-video-games-this-industry-pulls-in-more-revenue-than-movies-music-cm634585
http://www.nasdaq.com/article/investing-in-video-games-this-industry-pulls-in-more-revenue-than-movies-music-cm634585
http://news.bbc.co.uk/2/hi/technology/7301374.stm
http://news.bbc.co.uk/2/hi/technology/7301374.stm
http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathematics_for_AI_Targeting.php
http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathematics_for_AI_Targeting.php
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
http://www.gamesindustry.biz/articles/2015-04-22-gaming-will-hit-usd91-5-billion-this-year-newzoo
https://en.wikipedia.org/wiki/Tower_defense#A_new_breed_of_3D_games
https://en.wikipedia.org/wiki/Tower_defense#A_new_breed_of_3D_games
http://www.polygon.com/features/2014/9/10/6045757/kingdom-rush-uruguay
http://www.polygon.com/features/2014/9/10/6045757/kingdom-rush-uruguay

	Clemson University
	TigerPrints
	8-2017

	Kingdom Rush Tribute: Porting a 2D Tower Defense Game to a 3D World using Unreal Engine 4
	Christian Stith
	Recommended Citation

	Title Page
	Abstract
	List of Figures
	Introduction and Motivation
	Background
	Unreal Engine
	Camera Placement
	Fixed Overhead
	Third Person
	First Person

	Video Game Genres
	Real-Time Strategy
	Tower Defense
	Shooter
	Kingdom Rush: Tribute

	Project Overview
	Project Implementation
	Fidelity to the Original Kingdom Rush Series
	Characters in Kingdom Rush: Tribute
	Rusher Class
	Enemies
	Defenders

	Towers
	Archer Tower
	Mage Tower
	Barracks
	Dwarven Bombard

	Architecture
	Characters
	Towers
	Projectiles
	Waves and Spawns

	Asset Development
	Environment
	Map and Environment Modeling
	Lighting
	Sound FX

	Characters
	Design and Modeling
	Rigging
	Animation

	VFX
	Rigid Body Dynamics
	Pre-rendered Spritesheets
	Decals

	New Challenges: 2D to 3D
	Predictive Aiming
	Interaction
	Pathfollowing

	Playtesting
	Conclusions and Future Work
	Conclusions
	Changes in Gameplay

	Future Work
	Additional Characters
	Multiple Levels
	Player Progress

	Bibliography

