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ABSTRACT 

Greenhouse gas (GHG) inventories have become a popular means for colleges and 

universities to better understand their environmental impact and quantify sustainability 

efforts. Clemson University is one of the many institutions that signed the American 

College & University Presidents Climate Commitment, which explicitly calls for a 

comprehensive inventory of GHG emissions to be created. In the past, Clemson 

University has contracted an external consulting firm to quantify Clemson’s GHG 

emissions, however, a transparent method of calculating emissions is needed. Carbon 

footprinting is an effective method to measure GHG emissions, and carbon footprinting 

of higher education institutions is currently an underdeveloped research area.  

As a contribution to efforts on the subject, this research presents the carbon 

footprint for Clemson University’s main campus. This footprint was built using a 

consumption-based, hybrid life cycle assessment approach and included scope 1 (direct), 

2 (indirect from electricity), and 3 (other indirect) GHG emissions. The scope 1 

emissions include steam generation, refrigerant usage, univeristy owned vehicles, 

univeristy owned aircraft, fertilizer application, and wastewater treatment. Scope 2 is 

electricity generation. Then, scope 3 includes electricity life cycle, transmission and 
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distibution losses, commuting, univeristy related travel, paper usage, waste and recycling 

transportation, wastewater treatment chemicals, and water treatment.  

The total carbon footprint of Clemson University’s main campus in 2014 was 

calculated to be 95,000 metric tons CO2-e, sources of uncertainty include data quality and 

the streamlined life cycle assessment approach. This research found that 49% of GHG 

emissions were from electricity related activities, while fossil fuel dependent activities 

such as automotive commuting (18%), steam generation (16%), and university related 

travel (13%) added significantly to the footprint. Overall, creating a reproducible baseline 

carbon footprint can be used to compare Clemson against other higher education 

institutions, while helping develop goals, strategies, and policies to reduce emissions. The 

high emissions related to electricity could be decreased through increased renewable 

energy sourcing. Therefore, as a further component of this research, LiDAR data was 

utilized in GIS to demonstrate campus rooftop photovoltaic potential. 
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1 INTRODUCTION 

1.1 Problem Statement 

Rising greenhouse gas (GHG) emissions from human activities have created 

international concern due to their global warming implications. This has sparked a 

movement to reduce emissions that has been joined by nations, cities, corporations, and 

higher education institutions. Clemson University is one such intuition that has pledged 

to reduce its emissions, and to do this they need to build a comprehensive GHG 

inventory.  

1.2 Motivation 

In 2007 Clemson University President James Barker signed on to the American 

College & University Presidents Climate Commitment (ACUPCC), the most widespread 

movement higher education institutions have adopted to address GHG emissions. This 

commitment challenges institutions to measure and report their GHG emissions, take 

immediate actions to reduce them, and to develop and implement a plan to become 

climate neutral [1]. To accept this challenge, institutions must commit to: (1) creating 

institutional structures to guide the implementation of a plan; (2) complete a 

comprehensive inventory of all GHG emissions; and (3) develop a plan to become 

climate neutral, including benchmark targets and dates [2]. This research was motivated 

to focus on (2) creating a transparent inventory of GHG emissions from Clemson 

University, which can serve as the foundation so that the other objectives can be met. 
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Clemson has also set long term goals to increase their renewable energy sourcing to 10% 

by 2025, and to become carbon neutral by 2030. In the past, Clemson University has 

contracted Sightlines, a consulting firm which quantified Clemson’s GHG emissions and 

compared them to other research institutions. However, their method of calculating 

emissions is proprietary, and cannot be reproduced to incorporate new data or compare 

strategies to reduce emissions. Therefore, this research is motivated to create a foundation 

to assess the current state of Clemson’s GHG emissions. Then, this research may be used 

as a baseline to compare alternatives to the system, and to compare Clemson against 

other universities. 

1.3 Goals and Objectives  

Clemson University has set goals with a firm timeline, therefore a baseline for 

GHG emissions must be created to develop improvement strategies and monitor progress. 

The primary goal of this research is to calculate a transparent carbon footprint of 

Clemson University’s main campus. Carbon footprints measure the amount of GHG 

emissions associated with human activities. Carbon footprinting of higher education 

institutions is currently an underdeveloped research area despite a growing movement to 

reduce GHGs from these systems. As a contribution to efforts on the subject, and to 

address Clemson’s GHG reduction efforts, this research evaluates Clemson’s operational 
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activities that emit GHGs. The cumulative contribution of these activities creates 

Clemson’s carbon footprint. From this, a secondary goal of this research is to identify 

which products and processes are the greatest contributors to the carbon footprint, and 

then provide recommendations are offered to decrease emissions. One such 

recommendation is the implementation of a renewable electricity source. Accordingly, a 

third goal of this study is creating a map to depict campus rooftops suitable for solar 

photovoltaic arrays.  

Objectives 

• Identify GHG emission sources associated with Clemson University's campus 

operations 

• Quantify GHG emissions from each source  

• Recommend strategies to decrease emissions from each source 

• Sum emissions from all sources to calculate carbon footprint 

• Create map to demonstrate solar photovoltaic potential for campus rooftops 



 

4 

 

 

1.4 Organization of Thesis 

This thesis will be organized to give the reader background to the concerns with 

GHG emissions, and then describe the methodology used to quantify emissions from 

Clemson University’s campus. Chapter 2 will introduce Clemson University, and disclose 

the background regarding rising GHG emissions and the action this is inspiring.  Chapter 

2 also discusses what a carbon footprint is, describes the various types of life cycle 

assessment, and reviews previous life cycle assessments conducted to carbon footprint 

higher education institutions. The life cycle assessment design for the study is then 

described in Chapter 3. The methods and results of the study are broken down in Chapter 

4, with each activity contributing to the campus carbon footprint having its own section. 

The final conclusions and recommendations are presented in Chapter 5. Supplemental 

figures are shown in the Appendix. 

2 BACKGROUND  

2.1 Overview 

This chapter introduces the information necessary to understand the significance of 

GHG emissions. First Clemson University is described, then the GHG effect and global 

warming are explained. Further subsections then outline the actions resulting from the 

rise in GHG emissions, including movements by higher education institutions. Then, this 
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chapter will describe what a carbon footprint is, and the decisions that are involved in 

defining the footprint. Next, life cycle assessment will be described, along with its 

methodological approaches. This chapter will then review previous carbon footprints of 

higher education institutions that were conducted using a life cycle assessment approach.   

2.2 Clemson University 

Clemson University resides in the northwest corner of South Carolina, in the 

foothills of the Blue Ridge Mountains. Clemson was founded in 1889 after Thomas 

Green Clemson bequeathed his home and fortune to the state of South Carolina. From 

this action, the Clemson Agricultural College was established, with its trustees made 

custodians of the Morrill Act and Hatch Act funds [3]. Thus, Clemson University remains 

a public land-grant university [3]. Clemson’s campus sits on 1,400 acres bordering 

Hartwell Lake, and owns an additional 17,500-acre experimental forest that is dedicated 

to education, research and demonstration [4]. The forest also has many trails and 

recreational opportunities that are available to the public. According to Clemson 

Facilities, the main campus has 6,607,060 square feet of building area. Over the years, 

the university also has expanded to include remote facilities throughout the state in 

Greenville, Greenwood, Columbia, and Charleston [5]. Clemson is the second largest 

university in South Carolina, and recently, Clemson University has been classified as a 
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"highest research activity" university. In 2014, the year of this study’s scope, there were 

21,857 total students with 17,260 undergraduates and 4,597 graduate students [6]. In this 

year, Clemson employed 1,388 faculty, 208 administrators, and 3,304 staff. [7]. Clemson 

has a 17:1 student-to-faculty ratio, and offers students over 80 majors, and more than 75 

minors [5]. 

2.3 Greenhouse Gas Effect 

The Earth's temperature is maintained by a balance of incoming and outgoing 

energy. Solar radiation from the Sun is absorbed by the Earth, then reemitted into the 

atmosphere where it is partly reflected to Earth. Greenhouse gases (GHGs) in the 

atmosphere absorb and emit radiation in random directions, so when this radiation is 

reflected downward it intensifies warming of the Earth’s atmosphere. This is called the 

greenhouse effect, as the atmosphere acts in the similar manner of the glass of a 

greenhouse trapping in heat. This temperature balance is disrupted when high 

concentrations of GHGs are added to the atmosphere.  

GHGs include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), ozone 

(O3), water vapor (H2O), and fluorinated gases. The atmospheric concentrations of CO2, 

CH4, and N2O have increased to levels that haven't been measured in the last 800,000 

years [8]. Specifically, CO2 concentrations have increased by 40% since pre-industrial 
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times, primarily from fossil fuel combustion [8].  Combustion occurs when fossil fuels 

react with oxygen (O2) to give off heat. Fossil fuels are made up of carbon and hydrogen 

and are consequently considered hydrocarbons. When burned, hydrocarbons produce 

CO2 and H2O as their products. The reactions for CH4, ethane (C2H6), propane (C3H8), 

and hexane (C6H14) are shown below and will be used in later analysis.                             

CH4(g) + 2O2(g) →  CO2(g) + 2H2O (g) (1) 

2C2H6(g) + 7O2(g) →  4CO2(g) + 6H2O(g) (2) 

C3H8 (g) + 5O2(g) →  3CO2(g) + 4H2O(g) (3) 

2C6H14 (g) + 19O2(g) →  12CO2(g) + 14H2O(g) (4) 

Since the beginning of the Industrial Revolution, atmospheric concentrations of 

CO2 have risen rapidly from about 280 parts per million (ppm) to over 408 ppm [9] [10]. 

Anthropogenic GHG emissions have steadily increased, spurred by growing economies, 

technology, and population growth. Between 1750 and 2011, cumulative anthropogenic 

CO2 emissions to the atmosphere grew to about 2,040 gigatonnes [11]. Of this, about half 

of the anthropogenic CO2 emissions between 1750 and 2011 have occurred in the last 40 

years [11]. Since, emissions from fossil fuels and cement alone have grown from 9.6 

gigatonnes CO2 in 2012, to nearly 9.8 gigatonnes CO2 in 2014 [12]. About 40% of these 
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emissions stayed in the atmosphere, while the rest has been removed from the atmosphere 

and stored on the ocean, or land based plants and soil [11]. Thus, these GHGs that 

wouldn’t otherwise be in the atmosphere trap heat, causing a change in the Earth’s 

climate. This swift rise in GHGs from human activity and the associated rise in global 

temperature is known as the “enhanced greenhouse effect” [13]. The Intergovernmental 

Panel on Climate Change (IPCC) stated that these increased GHGs emissions coupled 

with other anthropogenic drivers are extremely likely to have been the dominant cause of 

the observed global warming since the mid-20th century [8]. 

2.4 Global Warming Effect 

Further GHG emissions will cause continued global warming and changes in the 

climate system. This increases the likelihood of severe and irreversible impacts for 

people and ecosystems [8].  The IPCC Fifth Assessment Report found with very high 

confidence that observational evidence from all continents and most oceans show that 

many natural systems are being affected by regional climate changes, particularly 

temperature increases [8]. The change in climate has caused loss of sea ice, accelerated 

sea level rise, and more extreme climate related events such as heat waves, droughts, 

floods, cyclones, and wildfires. These events will have severe impacts on ecosystems, the 

environment, and human health. Left unchecked, some consequences of climate change, 
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such as sea level rise, can be irreversible [9]. These events may alter the habitats of many 

animal and plant species.  

Humans will be affected in a variety of ways. An increase of 2 oC of warming will 

increase drought in the mid-latitudes and semiarid low latitudes, displacing 1 to 2 billion 

additional people, decrease low-latitude crop productivity, and bleach and eventually kill 

most ocean corals [14]. If the ocean continues to warm, it will induce the melting of 

Antarctica and Greenland’s ice shelves, and eventually it will be impossible to avoid 

large scale ice sheet disintegration and several meters of sea level rise [15]. These rising 

sea levels, extreme weather, and flooding threaten infrastructure. Agriculture may also be 

threatened by changing weather patterns, rising temperature, and inconsistent water 

supplies. Areas dependent on hydropower for energy may also have to find alternative 

power sources if they don’t have a consistent water supply.  

Socially, middle and low income countries are at immediate and disproportionately 

high risk of being adversely affected by global warming [13]. This may endanger the 

United Nations “Sustainable Development Goals” that include ending poverty and hunger 

[16]. Economically, the global impacts from climate change are difficult to estimate as 

the climate system is complex to model. The latest United Nations Environment Program 

(UNEP) Adaptation Finance Gap Report declared that the costs of global adaptation 
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could range from $280 billion and $500 billion by 2050 [17]. Another analysis by the 

Natural Resources Defense Council examined the cost of damage from hurricanes, real 

estate losses, increased demand for energy, and water stress in the U.S. If present trends 

continue, the projected cost from climate change impacts on the U.S. alone is almost $1.9 

trillion annually, or 1.8 percent of the country's GDP per year by 2100 [18].  

2.5 Global Change 

In 2008, one of America's foremost climatologists, NASA scientist James Hansen 

stated, "If humanity wishes to preserve a planet similar to that on which civilization 

developed and to which life on Earth is adapted, CO2 will need to be reduced to at most 

350 ppm" [19]. According to the National Oceanic & Atmospheric Administration 

(NOAA) measurements at Mauna Loa, levels of CO2 have already surpassed 408 ppm 

[10]. To limit the increase of future global warming to 2 °C above pre-industrial levels, it 

is necessary to stabilize the atmospheric concentration of CO2 equivalent to about 450 

ppm [20]. For this to be achieved, global emissions would need to peak around 2015 and 

decrease 40 to 45 percent by 2050 compared to 1990 levels [9]. If this reduction target is 

met, there is more than an 85% likelihood that global average temperature will remain 

under 2 oC [9].  
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A global effort is needed to address and limit global warming. If GHG emissions 

are decreased and monitored in the next few decades, this could reduce future climate 

risks and the associated costs and challenges of mitigation [8]. The importance of GHG 

emissions reduction was first internationally recognized in 1992 by the United Nations 

Framework Convention on Climate Change (UNFCCC). In 1997, the Kyoto Protocol was 

established to set national and regional reduction targets. Industrialized countries were 

expected to have higher reductions than countries that had economies in transition, 

however all parties committed to reducing their emissions by an average of 5 percent 

against 1990 levels over the five-year period from 2008 to 2012 [21]. This protocol did 

not obtain equal support from all the nations and some countries such as the United States 

and Australia did not accede it, claiming that their economies may suffer [13]. 

Furthermore, there were issues such as major emitters China and India having no 

emission limits under the protocol [20]. 

More recently, the UNFCCC drafted the Paris Agreement which seeks to bring 

nations together to combat climate change and adapt to its effects. This agreement builds 

upon the convention that GHG concentrations must be stabilized "at a level that would 

prevent dangerous anthropogenic interference with the climate system" [22]. For this 

agreement, each country made an intended nationally determined contribution. As of July 
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2017, 153 of the 197 parties that signed the agreement have ratified the Convention [23]. 

Many major GHG emitters signed the agreement, including the U.S., China, Russia, 

India, Japan, the European Union, Brazil, Canada, and South Korea. While the U.S. 

originally adopted the agreement through an executive order by President Obama, 

President Trump has since decided that the U.S. would withdraw from the agreement. 

2.6 U.S. Emissions  

The United States have the highest cumulative GHG emissions. In 2000, total 

emissions reached 6,928 million metric tons of carbon dioxide equivalent, which 

accounted for 20.6% of the world’s cumulative emissions [9]. In the U.S., electric power 

production, transportation and several manufacturing industries including petroleum 

refining, iron and steel manufacturing, and cement production are estimated to generate 

around 80% of GHG emissions [24]. The failure of the U.S. to ratify the Kyoto Protocol 

and continued reluctance to regulate GHG emissions has caused concern both 

internationally and domestically [25].  

One step forward nationally has been the Consolidated Appropriations Act in 2008, 

which instructed the U.S. Environmental Protection Agency (EPA) to require mandatory 

reporting of GHG emissions from appropriate sources in all sectors of the U.S. economy 

[26]. Then, in 2014, the EPA proposed the Clean Power Plan under the Obama 
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administration, which was a policy that required individual states to meet specific 

standards to reduce CO2 emissions from existing power generation [27]. This plan aimed 

to have carbon emissions from the power sector reduced 32% from 2005 levels by 2030, 

and allowed states to submit their own plan for reductions. There was a varied response 

to this plan; a coalition of 27 states filed lawsuits against the EPA to block the plan, while 

other states stayed on track to meet targets. In 2015, the Obama administration continued 

its policy to combat anthropogenic climate change when President Obama signed the 

Paris Agreement. With this agreement, the U.S. submitted to the UNFCCC that they 

intend to make their best efforts to reduce their GHG emissions by 28% below its 2005 

level by 2025 [28].  

Then, on January 20th, 2017, Donald Trump became the 45th president of the United 

States. On March 28, 2017, President Trump issued an Executive Order that established a 

national policy to favor energy independence, economic growth, and the rule of law [27]. 

With this he signed an executive order directing the EPA to review the Clean Power Plan 

[27]. Then, on June 1st, 2017 President Trump announced that the U.S. would withdraw 

from the Paris Climate Agreement. President Trump’s declaration to abandon the 

agreement has inspired mayors, governors, university presidents, and businesses across 

the country to declare their support to meet the standards set in the Paris Accord. 
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Governors of Washington, New York, and California have formed the United States 

Climate Alliance, which is a coalition for states committed to taking climate change 

action. Furthermore, many local and regional governments have already created their 

own policies for GHG emissions. For example, the California Global Warming Solution 

Act in 2006 planned to lower the state's GHG emissions to the level of 1990 by 2020 

[13]. Additionally, more than 150 U.S. cities participate in the Cities for Climate Change 

Protection and almost 700 mayors have enrolled in the U.S. Mayors Climate Protection 

Agreement [25]. Now, hopefully even more regional and local organizations will take 

their own initiative to combat GHG emissions and changing climate. 

Another method GHG emissions may lower is through corporate initiative. 

Corporate ecological response is mostly driven by legislation, stakeholder pressures, 

economic opportunities, and ethical motives [29]. However, there has also been an 

increased motivation for businesses, organizations, and governmental institutions to track 

their environmental performance and manage it over time [30]. Executives are concerned 

they will soon face a 'carbon-constrained' economy in which greenhouse-gas emissions 

are taxed, capped or under some other form of regulation [31]. There is also added 

incentive to improve revenues through green marketing [29]. Globally, many 

corporations have already begun calculating their carbon footprint to cut down their 
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emissions and gain a competitive economic advantage in the future [31]. In January 2007, 

a group of U.S. corporations including Lehman Brothers, Alcoa, and Pacific Gas and 

Electric, appealed for mandatory, economy-wide regulatory programs that support a 10% 

to 30% reduction of GHGs over 15 years [32]. More than 40 Fortune 500 companies have 

also announced their support for mandatory federal regulation of GHGs [32]. Walmart 

met and surpassed its commitment to reduce 22 million metric tons of GHG emissions 

from its global supply chain in 2015, meanwhile companies like Coca-Cola and Unilever 

have set ambitious goals to cut their emissions by 25% and 50% respectively [33]. 

However, until legislation or stakeholder pressure exists many companies may not decide 

to curb GHG emissions.  

2.7 Higher Education Institutions 

2.7.1 Motivation 

The movement to lower GHG emissions has also trickled down to higher education 

institutions (HEIs). There are more than 4,000 post-secondary schools in the U.S. that 

enroll approximately 25 million students [34]. Universities can influence students' 

personal and professional decisions and future environmental impacts though their 

education and also by using the university as a role model [35]. Large univerities have 
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emissions profiles similar to those of small cities [25] and if society is moving towards an 

emissions reduction, universities should play an active role [36].  

2.7.2 Greening Programs 

Through the 1990’s, campus greening efforts focused mainly on topics such as 

increased recycling, more efficient lighting, water conservation, and waste reduction [37]. 

More recently, campus greening initiatives have shifted their focus to energy and climate 

[37]. Currently, programs for the HEI sector have focused mainly on two issues: (i) 

reducing energy consumption and waste on university and college campuses (so-called 

‘campus greening’) and (ii) on ‘greening the curriculum’ [38]. In recent years, campus 

greening projects are growing at an exponential rate [39]. Many colleges and universities 

have already responded to global warming concerns through curriculum changes that 

target sustainability awareness and design [2]. This is important, as universities can 

influence the direction of society by teaching environmental education, modeling 

environmental operations, and researching environmental solutions in their curricula [35]. 

The greening of curricula has also been addressed at the American Society for 

Engineering Education National Symposium, where the development of new 

undergraduate majors, graduate programs, course sequences, and experiential learning 

activities related to sustainability and energy were discussed [2].  
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2.7.3 Climate Commitments  

Universities exert a form of bureaucratic control over their emissions, therefore 

they can respond to concerns about climate change with their own climate commitments. 

Internationally, HEIs have participated in several declarations such as the Talloires, 

Halifax, and Kyoto Declarations which address sustainable development and GHG 

emissions reduction [40]. Nationally, over 650 schools have joined the American College 

& University Presidents Climate Commitment (ACUPCC), which is now also known as 

the Carbon Commitment [1]. In this commitment, signatories pledge to measure and 

report their GHG emissions and incorporate resilence into their carbon neutrality efforts. 

Other colleges and universities have joined organizations such as the Association for the 

Advancement of Sustainability in Higher Education, and Second Nature, which create 

programs that challenge HEIs to become more sustainable [39]. Overall, more than 1,000 

campuses have utilized the “Clean Air‐Cool Planet Campus Carbon Calculator” to 

produce a GHG inventory to the unique scale and character of their university [41]. 

Beyond that, over 20 universities have partnered with Clean Air Cool Planet to initiate 

climate change mitigation, while regionally six universities have signed on with the 

Chicago Climate Exchange, and 11 have signed on to the California Climate Action 

Registry [25].  
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2.7.4 Future Efforts 

Once a climate commitment or another plan is made, an institution must develop 

and implement a plan to follow through on their goals. James & Card (2012) found six 

key factors for institutions achieving environmental sustainability; (1) green campus 

operation measures, (2) campus administration, organization and leadership, (3) teaching, 

research, and service; (4) campus wide actions and activities, (5) institutional assessment 

of campus sustainability measures, and (6) established methods for overcoming barriers 

[42].  Greening campus operations needs administration and leadership to implement. 

Most universities address environmental imperatives by establishing an environment 

committee or employing an individual to decide on and implement programs [43]. When 

greening a univeristy, it’s important that the faculties, staff members, students, and 

stakeholders must be considered together [36]. There have been a variety of approaches 

used by HEIs to implement sustainability programs. Ball State University used a whole 

systems approach that tracked the ‘greening of the campus’ history, evaluated the 

progress, and modified the approach where needed to and constantly refocus efforts [44]. 

The University of Southampton distributed a staff and student questionnaire, and its 

results suggested increasing awareness on impacts of energy usage will promote a 

cultural shift towards becoming more energy efficient [45]. Yale University created a 

program that aimed to meet their GHG reduction target, while also increasing student 
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participation and awareness of the target by challenging students to reduce their 

collective energy use, and for every 5% reduction in energy, the university matched a 

third of the university's electrical use with the purchase of renewable energy credits [46]. 

This program is a good example of a measure to green the campus while including 

students in a campus wide action. Making plans and tracking progress on climate 

commitments is an important consideration for HEIs moving forward. 

2.8 Background Significance to Research 

Overall, there are many reasons why organizations are monitoring and reducing 

their GHG emissions. This chapter has thus far outlined the implications of rising GHG 

emissions, and described a range of political initiatives that have arose to address these 

emissions. The U.S. is a world leader, and a leading GHG emitter, therefore they have the 

potential to set an example of how emissions can be reduced. Implementing policies to 

reduce emissions on the federal level have been challenging, and decreasing emissions 

will require commitment from all entities that emit GHGs. Already, many regional 

governments, corporations, and HEIs have adopted their own commitments to curb their 

emissions. However, to decrease emissions, they must first be quantified before plans can 

be made to strategically reduce and monitor emissions. Now that the movement to 



 

20 

 

 

address rising GHGs has been discussed, the next section will outline how GHG 

emissions can be quantified with a carbon footprint.  

2.9 Carbon Footprint 

2.9.1 What is a Carbon Footprint? 

Carbon footprinting has proven to be an effective measure of direct and indirect 

GHG emissions in a wide range of studies, ranging from global, regional, national to the 

sub-national level [30]. A carbon footprint is an indicator of the contribution made to 

climate change by a product, activity or population, and it can be treated as a decision-

assisting tool [47]. The concept of carbon footprinting stems from “ecological 

footprinting,” or a measure of the biologically productive land and sea area required to 

sustain a given human activity [13]. The common definition for a carbon footprint is "a 

certain amount of gaseous emissions that are relevant to climate change and associated 

with human production or consumption activities" [48]. In literature, this term is also 

used interchangeably with other phrases such as ‘carbon accounting’ or ‘carbon 

inventory’ [47]. Other terms used associated or sometimes as a synonym of carbon 

footprint are embodied carbon, carbon content, embedded carbon, carbon flows, virtual 

carbon, GHG footprint, and climate footprint [13].  
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There is currently no consensus on how to measure or quantify a carbon footprint, 

or the spectrum of GHGs that should be included in the analysis [48]. The carbon foot-

print is simply the sum of GHGs emitted that can be attributed to an activity, process, 

organization, or entity [49]. Despite its limited scope, a GHG inventory can be used to 

establish a baseline for policy and as a planning tool for goal setting [39]. Considerations 

on how to measure and quantify the carbon footprint are discussed in the following 

sections. 

2.9.2 Scopes 

The World Resources Institute (WRI) and World Business Council for Sustainable 

Development (WBSCD) Greenhouse Gas Protocol Corporate Standard is a commonly 

used standard for GHG emissions. This standard presents guidelines to help compile 

carbon footprints by classifying emission sources falling under three scopes [50]. Scope 1 

emissions are direct GHG emissions that occur from sources that are owned or controlled 

by the organization [50]. Some examples of these emissions on a university campus 

might be steam generation, refrigerant usage, campus vehicles, and fertilizer application. 

Scope 2 consists of the upstream emissions from the generation of purchased electricity 

[50]. Scope 3 emissions are the indirect emissions that come from sources owned or 

controlled by another entity [50]. For example, this would include emissions from 
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commuter transportation, paper manufacture, and off-site waste and recycling operations. 

Only recently have carbon footprints been widely accepted to apply to various 

applications, so very few papers have focused on emissions from higher education 

institutions and their management approach. Most studies focus on scope 1 and 2 

emissions with fewer studies including scope 3. However, it has been suggested that in 

some cases Scope 3 might account for 80% of an organization’s carbon footprint [45]. 

Thus, this reseach will contribute to the growing subject of carbon footprinting higher 

education institutions with scope 3 emissions included. 

2.9.3 Greenhouse Gas Selection 

There are a wide range of opinions on what GHGs should be included in a carbon 

footprint. Wiedmann and Minx (2008) suggest that a carbon footprint is a measure of the 

exclusive total amount of only CO2 emissions directly and indirectly caused by an activity 

or accumulated over the life cycle stages of a product [48]. They support only using CO2 

in this measurement since the other GHGs are not carbon-based and are more difficult to 

quantify due to data availability [48]. Furthermore, they argue that the term carbon 

footprint refers specifically to a carbon (only) metric. This concept is shared by the 

European Emissions Trading Scheme, which only requires reporting of CO2 emissions 

[47]. However, the boundaries continue to be argued. Wright, Kemp, & Williams (2011) 
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suggest that a carbon footprint is most easily calculated through the inclusion of CO2 and 

CH4, and propose that the inclusion of all GHGs should adopt the term ‘climate footprint’ 

[47]. Wiedmann and Minx (2008) also share a similar view, stating that if other GHGs 

are included in a carbon footprint the indicator should be termed 'climate footprint’ [48].  

While the name for a carbon footprint is a topic of debate, the major GHGs that 

should be included is also disputed. The IPCC lists a total of 18 GHGs with different 

global warming potentials, but under the UNFCCC and its Kyoto Protocol, only six 

gases; carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons 

(HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6) are considered in the 

carbon accounting [51]. Chlorofluorocarbons (CFCs) are not included in the Kyoto 

Protocol because they were phased out under the terms of the Montreal Protocol, and 

their emissions have reduced substantially. There are other gases such as water vapor, 

carbon monoxide, ozone, and aerosols like black carbon that also have radiative forcing 

impacts. However, these are more complicated to quantify since they are short lived in 

the atmosphere and vary spatially. Biogenic carbon dioxide and carbon monoxide 

emissions (e.g. from burning bio-fuels) are also not included in most GHG accounting. 

The ACUPCC signatories are expected to track and report emissions of the six GHGs 

consistent with GHG standards from the Kyoto Protocol [52]. The ACUPCC 
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implementation guide further states that the focus should be on CO2 since, “emissions of 

PFCs or SF6 are unlikely to originate on campus, and emissions of CH4, N2O, and HFCs 

are likely to represent only a small percentage of an institution's total emissions” [52]. 

Accordingly, the case study of Clemson University will include these six GHGs and with 

the addition of hydro-chlorofluorocarbon (HCFC), since it is a widely-used refrigerant on 

campus and has a high global warming potential.  

2.9.4 Impact Metrics 

GHGs trap heat at different rates and have different lifetimes in the atmosphere. For 

instance, the lifetime for CO2 depends on the processes that remove it from the 

atmosphere, while atmospheric CH4 is usually oxidized to produce carbon dioxide and 

water vapor. Despite the differing characteristics of the emitted gases, there is often a 

requirement to place their impacts on a common scale to directly compare the substances 

emitted [53]. Calculation of GWP integrates the radiative forcing of an emitted substance 

over a chosen time horizon, relative to that of CO2 [8]. The First Assessment Report of 

the IPCC in 1990 tentatively embraced the concept of GWP, but has since retained the 

GWP as its metric of choice [54].  

However, there has been continuous debate for the use of GWP as the metric for 

global warming [54]. GWP is based on the time integrated radiative forcing due to a 
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pulse emission of a unit mass, but one criticism relates to the fact that GWP does not 

indicate the impact of gas emissions on temperature [55]. Two gases that are identical in 

mass could cause a different temperature change at a given future time, but have the same 

GWP because one is a strong GHG with a short lifetime and the other is a weaker GHG 

with a longer lifetime [55].  

Shine, Fuglestvedt, Hailemariam, & Stuber (2005) propose alternatives to the GWP 

with metrics that represent the global-mean surface temperature change. The Global 

Temperature change Potential (GTP) is the ratio of change in global mean surface 

temperature at a chosen point due to an emitted substance relative to that from CO2. The 

proposed GTP metric has two variants: GTPP which compares the temperature effect 

from pulse emissions, and GTPS which compares the effect of sustained emission 

changes [55]. While GWP measures the heat GHGs trap in the atmosphere, GTP are not 

integrated over time, so they indicate a temperature change at a specific time in the 

future. There are significant uncertainties related to both GWP and GTP, however the 

relative uncertainties are larger for GTP [8]. Therefore, the IPCC continues to use GWP 

as its metric of choice. GWP also seems to have retained its attractiveness and 

widespread use due to the simplicity of its definition, the small number of required input 

parameters and the relative ease of calculation, compared to some of the alternatives. 
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Additionally, its transparency and ease of application appear to be important aspects of 

acceptability amongst policymakers [55]. Therefore, in the Clemson University study, 

GWP will be applied. 

2.9.5 Time Horizon 

The GWP for GHGs are given for yearly time horizons of 20, 100, and 500 years. 

The application of different time horizons is influenced by how far in the future impacts 

are being considered. The Kyoto Protocol uses a 100-year time horizon. To public 

knowledge, this is not based on any published conclusive discussion or IPCC assessments 

about the three time horizons [53], and it is widely believed that the Kyoto Protocol chose 

this horizon since it was the middle one of the three choices [54]. In the IPCC Fifth 

Assessment Report, only the 20 and 100-year GWP were given [8]. However, when 

assessing a HEI, the ACUPCC implementation guide states that GWPs should be 

calculated over a 100-year time horizon [52]. Therefore, the 100-year time horizon was 

chosen for the Clemson University study. 
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Table 2-1. Global Warming Potentials for major Greenhouse Gases 

Greenhouse gas 
Chemical 

formula 

GWP20  

(kg CO2-eq/kg) 

GWP100  

(kg CO2-eq/kg) 

Carbon dioxide CO2 1 1 

Methane CH4 84 28 

Nitrous oxide N2O 264 265 

[8] 

To calculate carbon footprints, the GHGs emitted over the life cycle of the product 

or activity of interest must be quantified. This can be achieved by examining the entire 

life cycle of the product or activity from its conception to its disposal. This process is 

known as life cycle assessment (LCA). LCA can create a collective picture of inputs and 

outputs for a product activity with respect to pollution generated, energy consumed, water 

used, wastewater produced, and other similar environmental parameters of interest. The 

LCA methodology is outlined in the following section.   

2.10 Life Cycle Assessment  

Life cycle assessment (LCA) is a technique to evaluate the environmental aspects 

and potential impacts associated with a product, process, or service [56]. The LCA 

method assesses systems from “cradle-to-grave” and has been described by the 
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International Organization for Standardization (ISO) in their 14040 standards. By 

collecting the energy and material inputs and environmental releases for a product, 

process, or service the environmental impacts associated with these inputs and outputs 

can be evaluated. There are four stages to conduct an LCA, which are executed 

iteratively. These stages are (1) goal and scope definition; (2) inventory analysis; (3) 

impact assessment; and (4) interpretation as depicted in Figure 1. 

 

Figure 1. Model of Life Cycle Assessment  

 

Goal and scope definition describe the product, process or activity being evaluated, 

and defines its functional unit. This stage also defines which life cycle phases will be 

included in the study. The life cycle phases are the activities performed to manufacture 
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and use a product, process, or service. The life cycle starts with materials acquisition, and 

may include transportation, materials processing, manufacturing, distribution, operation, 

and disposal. A generalized life cycle is shown in Figure 2.  

 

Figure 2. Life Cycle Assessment Phases 

 

For each phase in the life cycle, the energy, water, raw materials, and emissions (to 

air, soil, and water) are identified and quantified in the inventory analysis. There are two 

approaches to perform an LCA for GHG estimation. The first approach is known as 

“bottom up” or “process analysis” (PA), and the alternative method is known as “top 

down” or “input–output analysis” (IO) [13]. Both methods aim to quantify the direct and 

indirect impacts of activities or products and are discussed in the following sections.  
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2.10.1 Process Analysis LCA 

Process analysis (PA) uses detailed unit process data for goods and services to 

build a model of the physical production system. This method is usually used in 

traditional LCAs since it provides more detail and a deeper understanding of the nature of 

activities at the product level [57]. For this reason, this type of LCA is more accurate for 

small entities, and it is a useful tool to identify areas of process improvement [13]. 

Universities have commonly used this method of LCA to compare specific items (e.g. 

packaging material options) [58]. 

However, data and time requirements limit process-based LCAs in their ability to 

accurately assess the environmental impacts of purchased services [59]. Thus, applying 

this method is limited as it becomes too complex for large firms [13]. One significant 

drawback is that the approach is very laborious, so it isn’t as feasible to perform for cost-

conscious organizations [59]. Another complication is that process LCA is determined in 

the terms of energy and mass units (i.e. kWh, kg, etc.), however most of the companies’ 

material and energy inputs and outputs are primarily collected and expressed in monetary 

terms rather than energy and mass units [59]. Since these studies require more detailed 

information, this approach can also be impractical if an organization is trying to assess 

many items simultaneously [58]. Also, since all economic activities are fundamentally 
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related, an accurate description of a supply chain would require that the entire economy 

be inventoried. As such, the analyst must decide where to draw the boundary of which 

upstream processes to include, an issue known as the truncation problem. In this regard, 

process-based LCAs fail to account for all of the activities associated with a final 

demand, which systematically underestimates environmental impacts [57].  

2.10.2 Input-Output LCA 

Input–output (IO), or “top-down” LCA applies economic tables of industry sector 

monetary flows by adding a vector of exchanges between the industries and the 

environment [57]. This approach can calculate a carbon footprint by using these 

economic input–output (EIO) models extended to accept and perform operations on 

specific environmental variables (e.g. GHG emissions) [13]. There are also 

Environmental Extended Input–Output models which also includes environmental 

information and considers non-physical flows [30]. The IO approach is often faster and 

easier for companies to use because material, energy, and services need to be defined 

only in terms of monetary value, and all the supply chain information is already included 

in the IO tables [59]. This method is practical for companies since it can assess goods and 

services produced within the economy consistently [59]. IO based carbon footprint 
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modeling has been applied in studies to focus on universities overall design, operation, 

and supply chain strategies [49].  

However, with this technique there are some inherent drawbacks. First, applying an 

aggregated model of industry sectors, there is no way to differentiate between products 

within a single sector other than using differences in price [58]. Therefore, all goods and 

services within a sector are considered identical in terms of GHG emissions per dollar, 

regardless of their physical makeup, functionality, or the location where they were 

produced [58]. This could be problematic when the carbon footprint of university 

purchases is calculated. For example, if a university chooses to purchase more 

environmentally-friendly paper at a higher price, the EIO model will determine this 

purchase has a higher carbon footprint. As such, the level of aggregation of most input-

output models is too high for company purposes as its not adequate for detailed LCA 

studies [59]. Most IO tables are a few years old since they are time-consuming and 

complex to construct [60]. Therefore, changes in production technology from year to year 

are not sufficiently captured [30], and furthermore the detailed input-output tables 

utilized in these models are only issued on average every five years [61]. This method is 

also limited since it depends only on monetary flows, which are inexact proxies for 

physical flows, so that if a company is able to negotiate a lower price for an item, then the 
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impacts of that purchase will be calculated as lower even though its carbon footprint has 

not changed [58]. Additionally, since the EIO-LCA method is country-specific, imported 

goods are assumed to have the same production characteristics as if it were made in the 

company’s native country [58].  

2.10.3 Hybrid LCA 

Production and consumption systems are best represented by a combination of 

bottom-up and top-down perspectives [57]. Several authors now apply combinations of 

EIO-LCAs and process-based LCAs to compensate for the weaknesses of both LCA 

methods [30]. This merge of the two LCA methods is known as a hybrid-LCA (HLCA). 

In some HLCA studies, PA is used to quanitfy the main inputs to the environmental 

inventory while additional upstream inputs are assessed using IO analysis [62]. In other 

hybrid methods, smaller emissions are quantified with PA-LCA, while rest is taken up by 

EIO-LCA [13]. Hybrid LCA methods are appropriate to calculate organizational 

footprints because they produce complete results whilst being application-specific [62]. 

This combination of methods increases completeness, flexibility, and reliability of 

estimates [13]. For these reasons, this methodology will be used in the Clemson 

University case study.  
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2.10.4 Productions vs Consumption Accounting  

When assigning responsibility for GHG emissions either a production or 

consumption approach can be taken. Production accounting assigns responsibility to the 

producer of emissions, in this method emissions are located to the actual site of the 

emitting process [47]. For example, if a computer is manufactured in China and shipped 

for use in the U.S., China is responsible for the emissions associated with the 

manufacture. This method estimates GHG emissions occurring within a geographically 

defined area [60]. This method can apply top-down modeling where national GHG 

emissions are allocated to specific areas or bottom-up modeling that utilizes local 

emissions data [30].  

On the other hand, a consumption based inventory is defined by Larsen & Hertwich 

(2009) to be “the life-cycle GHG emissions caused by the production of goods and 

services consumed by a geographically defined population or activity, independent of 

whether the GHG emissions occur inside or outside the geographical borders of the 

population or activity of interest” [60]. Therefore, if the computer manufactured in China 

is shipped for use in the U.S., then the U.S. is responsible for the emissions associated 

with the manufacture. With this method, the final consumption of goods and services is 

assigned responsibility for the emissions associated with the manufacture and 
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transportation [47]. The carbon footprint using a consumption based inventory can be 

calculated using IO or PA LCA [60]. Larsen & Hertwich (2009) found that a 

consumption-based perspective gives a more insightful indicator after they studied a 

GHG emissions inventory related to the provision of municipal services, and found that 

that approximately 93% of the total carbon footprint is indirect emissions [60].  

2.10.5 Streamlined LCA 

Performing a LCA covering all stages of the life cycle requires comprehensive data 

and may require a prolonged period of time. For these reasons, they are not often used as 

a routine assessment tool. One method to expedite this process is to streamline the LCA. 

This can be done by limiting the life cycle phases included in the study. Companies 

streamline LCA to reduce costs, and to analyze the phases they have control over in their 

products. A common streamlined LCA is “cradle to gate” which examines a product from 

the raw materials acquisition phase through its manufacturing until it reaches the “factory 

gate.” Other options to streamline an LCA include omitting life cycle stages (e.g. 

interpretation), including only select environmental impacts (e.g. GWP), using surrogate 

data, or using specific inventory parameters. By reducing the complexity of the LCA, the 

efficiency of the process can be improved while still evaluating many of the impacts of a 

full LCA. Most carbon footprints using LCAs apply a streamlined methodology to 
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capture the phases with the most impact. In the Clemson University case study, a 

streamlined LCA approach will be used to quantify the impacts from specific phases of 

activities in the carbon footprint, this is further outlined in Table 3-1 of section 3.5.  

2.11 Previous Carbon Footprints of Higher Education Institutions 

Carbon footprints have been performed for several institutions of higher education 

applying methods and activities for each scope. Table 2-2 lists higher education 

institutions that have performed carbon footprints using either process analysis (PA), 

hybrid life cycle assessment (HLCA), or input-output analysis (IO). Some studies have 

self-identified their method of LCA, such as Institute of Engineering at Universidad 

Nacional Autónoma de México, De Montford University, University of Sydney, The 

Norwegian University of Technology & Science, Yale University, and University of 

Leeds. Other studies used a life cycle approach, but did not explicitly state their type of 

LCA, so this was gathered from their methodology description. All these studies included 

Scope 1, 2, and 3 emissions in their carbon footprint. However, while PA and HLCA 

were selective in choosing their emissions sources, the IO studies could use procurement 

records to include a wider breadth of activities, products, and services.  
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Table 2-2. Published Case Studies of Carbon Footprints for Higher Education 

Institutions  

Case Study Method 

Institute of Engineering at Universidad Nacional Autónoma de México, 

Mexico 
PA 

University of Illinois at Chicago (UIC), USA PA 

The University of Cape Town (UCT), Africa PA 

Tongji University, China PA 

University of Sydney (USyd), Australia HLCA 

University of Maribor (Engineering Campus only), Slovenia HLCA 

De Montfort University (DMU), England HLCA 

Rowan University, USA HLCA 

The Norwegian University of Technology & Science (NTNU), Norway IO 

Yale University (YU), USA IO 

University of Leeds (UoL), England IO 

 

 

2.11.1 Process Analysis Studies 

The emission sources of the PA studies varied depending on the HEI. The Institute 

of Engineering at Universidad Nacional Autónoma de México used a consumption based 

methodology integrating LCA approach for the GHG inventory. Their inventory included 

electricity, the vehicle fleet, purchased electricity, commuting, air travels, courier 

shipments, paper consumption and solid waste. In this study 42% of the GHG emissions 

were from electricity use, and 50% from transportation including the campus fleet and 

commuting vehicles [20]. University of Illinois at Chicago (UIC) created a GHG 

inventory for 2004–2008 and included a similar range of emission sources. They included 
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production of electricity, hot water or steam, solid waste, and commuting of faculty, 

students, and staff [39]. This study found that UIC’s carbon footprint in 2008 was was 

not significantly higher than in 2004, and also found that buildings accounted for 83% of 

emissions, followed by commuting, which contributed 16% of emissions [39]. 

Meanwhile, the University of Cape Town in South Africa included more processes and 

products in their analysis. Their carbon footprint included electricity consumption for the 

main campus and satellite residences, direct combustion from liquefied petroleum gas 

and acetylene, and transportation emissions from commuting and University owned 

vehicles [51]. This study also included emissions from goods and services, photocopying 

paper, toilet paper, paper towels, waste removal and recycling, and wastewater [51]. 

Tongji University took a different approach to their PA to determine their carbon 

footprint. They estimated carbon footprints via student's personal carbon footprints. They 

conducted an extensive online survey of consumption and behaviors and combined it 

with utility data to determine student’s average carbon footprint [49]. However, this study 

only included personal GHG emissions, so upstream and downstream emissions were not 

considered [49]. All these studies included varying scopes of emissions sources in their 

carbon fooprints.  The studies did not state which phases were included in the lifecycle 

for each emissions source. This may also have had a significant effect on the final carbon 

footprint.  
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2.11.2 Hybrid Life Cycle Assessment Studies 

The HLCA studies included many of the same emission sources as the PA studies, 

however their methodology adopted top-down approaches to create the carbon footprint. 

The University of Sydney used a hybrid approach called Path Exchange method to 

allocate expenses and revenues using IO tables. This study quantified life-cycle 

environmental impacts from cradle to gate for on-site consumption of water, natural gas 

and electricity, materials such as paper plastic, glass and chemical products, 

transportation, and many other procured items [62]. The University of Maribor used a 

different method. They found their carbon footprint using the LCA software package 

GaBi and Ecoinvent databases. These databases contain lifecycle assessments for 

thousands of products, energy systems, and materials that can be adopted. Since these 

databases are usually based on an average product, and not the specific product being 

examined, studies applying this method are considered a HLCA. This study performed a 

HLCA for its engineering departments, and included the construction and demolition of 

buildings, operations such as heating, lighting, electricity, and water consumption, and 

maintenance such as cleaning and painting [63]. The consumption of PET water bottles 

and printing paper was also included. Another HLCA method is to use primary data from 

emission sources (bottom up), while emissions factors data orginated from top down data 

(i.g. national average) for the analysis. This method was used by De Montfort University. 
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Their consumption based carbon footprint evaluated the lifycle and supply chain 

emissions for on-site natural gas and biomass combustion, grid electricity, student 

commuting, business travel, university owned fleet diesel consumption, and procuremnt 

of goods and services [64]. Rowan University used a methodology similar to used De 

Montfort University, as they applied top-down emission coefficients from the Energy 

Information Administration (EIA) and other sources to their process based data. Their 

carbon footprint considered electricity from the electric grid, on campus generation of 

steam, direct combustion of natural gas for heat and cogeneration plants, and HVAC [2].  

2.11.3 Input-Output Analysis Studies 

IO is the top down method that is used to calculate carbon footprints based on 

monetary flows. The Norwegian University of Technology & Science (NTNU) used 

more than 200 financial account entities in their environmental extended input-output 

(EEIO) study. In their study, they corresponded the combustion of fuel and heating oil, 

the purchase electricity and district heating, and other purchases of goods and services to 

58 domestic EEIO sectors [30]. Similarly, Yale University created a GHG inventory 

using procurement of goods and services over a one-year period with the goal to pinpoint 

the financial expenditures with the greatest indirect GHG emissions [46]. This study 

utilized the economic input-output (EIO) LCA tool developed by the Green Design 
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Institute at Carnegie Mellon University. The calculations using this tool included Yale’s 

power plants, electricity, the university vehicle fleet, employee commuting, business air 

travel, and non-power plant fuel purchases such as diesel fuel and natural gas [46]. Yale 

also quanitified impacts from construction, food and beverages, air travel, lab/software 

supplies and other procurements [46]. The University of Leeds also used IO Analysis to 

find its carbon footprint. Applying financial data, they quantified impacts from gas, steam 

and hot water, electricity, food and drink, paper and publishing, machinery and 

computers, utilities and construction, transportation, communication, and public services 

[61].  

3 Life Cycle Assessment Design 

3.1 Overview 

In 2007 Clemson University signed the ACUPCC. Part of this commitment is 

creating a transparent inventory of GHG emissions from Clemson University, which can 

serve as the baseline to set goals and develop strategies to decrease emissions. This 

chapter will discuss the LCA approach used to assess the entire system, and will also 

describe uncertainty associated with data quality.  
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3.2 LCA Approach 

In this research, an LCA was conducted for each major GHG emission source on 

Clemson University’s campus to build a GHG inventory for the carbon footprint. For this 

analysis, a carbon footprint may be defined as “the quantity of GHGs expressed in terms 

of CO2 equivalents (CO2-e), emitted into the atmosphere by an individual, organization, 

process, product, or event from within a specified boundary” [13]. A carbon footprint is 

an indicator of the contribution made to climate change by a product, activity or 

population, but is not a full LCA [47]. Keeping with the ACUPCC guidelines, this 

report’s focus will be CO2, but it will also include the six Kyoto gases and hydro-

chlorofluorocarbon (HCFC) which is still being used on campus. These gases will be 

examined using IPCC defined GWPs with a 100-year time horizon. To build the carbon 

footprint, a series of LCAs for each activity was streamlined based on data availability 

and what activities pose the greatest potential impact. Weighing the pros and cons of the 

various LCA approaches, this study applied a hybrid LCA methodology to conduct LCAs 

and create the carbon footprint. The main justification for this decision is the way data are 

collected for Clemson University’s campus. In order to use the EIO LCA method, the 

university’s financial expenditure data would need to be expressed in monetary flows and 

organized into categories that match the sectors used by the Bureau of Economic 

Analysis (since these are used in the EIO-LCA tool). Most of the data available from 
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campus facilities were recorded in the terms of energy and mass units, except for 

university-related travel which is reported in monetary terms. For this reason, it was more 

practical to apply a PA LCA method to most of the campus activities.  

However, this study adopted an HLCA approach similar to Ozawa-Meida, 

Brockway, & Letten (2013), who used a consumption based LCA approach to study 

emissions from De Montfort University [64]. In a similar manner, this study combined a 

top-down approach for the estimation of emission factors, while using a bottom-up 

approach for the accounting of activity intensities. Due to data availability, the LCAs 

were streamlined to include the phases of the life cycle for which data was attainable, and 

for the phases that have the highest potential GHG contribution. Each activity in Scope 1 

and Scope 2 will consider the operation phase, while Scope 3 emissions will include 

operation and any other upstream phases with high contributions to the GHG inventory. 

This will be described in more detail for each section. There is uncertainty in LCA 

stemming from parameters, the model, choices, temporal variability, spatial variability, 

and variability between objects or sources. Much of this uncertainty can be related to the 

inventory phase of LCA, but also applies to the characterization and weighting of the 

analysis [65]. Since this analysis will use IPCC values to characterize life times of GHGs, 
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and results will not be weighted, only uncertainty in the inventory phase will be 

discussed.  

There are several reasons why a HLCA approach was preferred over the use of a 

tool such as the Clean Air‐Cool Planet Campus Carbon Calculator. This tool considers 

Scope 1, 2, and 3 emissions, and inputs are put into a spreadsheet that has formulas, 

conversion factors, and emission factors are already built-in and adapted from IPCC 

values to find the GHG emissions [66]. For electricity, it uses the EPA Emissions & 

Generation Resource Integrated Database (eGRID) sub-region rather than the specific 

utility, so the electricity generation mix is not as accurate. The quantities inputted still 

need to be calculated by the user, such as fuel for vehicles, refrigeration, fertilizer, and 

wastewater. Thus, many assumptions would still have to be made before inputs could be 

found, such as how much fuel was used by commuters. However, some estimations 

would have used emissions factors rather than the site specific information. For example, 

natural gas used in steam generation accounted for the specific gas composition and plant 

efficiency factors. There were also several things that were not an option to be inputted 

into the calculator such as bathroom tissue and paper towels. Campus owned aircraft is 

also not available in the calculator. While it can calculate emissions from air miles flown, 

the approach outlined in this assessment uses more specific fuel economy and distance 
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traveled for the aircrafts. Another issue is that university related travel data for Clemson 

is recorded in monetary terms rather than distances, so there would not be a method to 

input these data unless distances were calculated.  

3.3 Goal  

The goal of this study was to build a carbon footprint for the operations of Clemson 

University that focuses on CO2, CH4, N2O, HFCs, PFCs, SF6, and HCFCs. This analysis 

included both direct emissions from campus-owned operations (Scope 1), such as steam 

generation and indirect emissions from upstream processes or processes not owned by 

Clemson (Scope 2 & 3). Overall, this resulted in a more complete understanding of the 

impact of Clemson’s operations, as well as identify significant emission sources. This 

information can help educate and inform stakeholders within Clemson University about 

the global warming impact of their activities. The analysis will also establish a baseline 

for future improvements and comparative assessments.  

Increasing renewable energy sourcing to 10% by 2025 is one of Clemson 

University’s long term goals, and this action will also help the University reach its goal of 

the campus reaching carbon neutrality. This research recommends possible strategies to 

decrease GHG emissions and increase renewable energy sourcing. One strategy is to 

implement solar photovoltaic (PV) panels within the current campus. Therefore, as part 
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of this research, a map was created using geographic information system (GIS) and light 

detection and ranging (LiDAR) data to determine possible locations to integrate solar 

panels on campus rooftops. Rooftop solar PV panels are a safe and renewable method for 

campuses to increase renewable energy sourcing by using space not being utilized on 

roofs. This map demonstrates the potential for future solar development and provide 

timely access to areas where solar PV is suitable. This is also a further component to 

distinguish this research from prior carbon footprint studies conducted for HEIs.  

3.4 Scope  

Function of the System 

In this study the system analyzed was Clemson University’s main campus, whose 

function is to provide educational and research services and extension activities. Some of 

the activities included in this function are supplying the campus with electricity, water, 

and heat. Other activities include transporting students around campus, policing the 

campus, and disposal of campus waste. The activities selected for the study are based on 

their relative significance to campus operation and potential for global warming impacts. 

This was based on services that prior studies have chosen in their carbon footprints. 
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Functional Unit 

The functional unit allows for comparative performance between other HEIs. In 

this study, the functional unit is a year’s worth of educational and research services for 

Clemson University’s main campus.  

Activities Included  

This LCA will include a novel combination of major emission sources that have not 

been published. These sources are listed in Figure 3. Previous HLCA studies have looked 

at heating from natural gas, [63] [64] [2] and emissions from University owned vehicles 

in their Scope 1 emissions [62] [64]. However, none have included emissions from 

fertilizer application and only one considered refrigeration in their analysis [2]. For Scope 

2, this study included the emissions associated with electricity from the grid in a manner 

similar to other studies. In Scope 3, this study included life cycle emissions from 

electricity, electricity transmission and distribution losses, commuting, paper usage, 

transporting waste and recycling, water used, and wastewater treated. Emissions 

associated with water used and wastewater treatment have not been included in prior 

HLCA studies. 
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Initial Flow Diagram 

The following diagram displays how the main services relate to Clemson 

University’s operations.  

 

Figure 3. Overview of Campus Activities 

 

System Boundaries 

The Clemson University LCA investigated all life cycle stages. However, as a 

streamlined LCA, only emissions from specific life cycle phases (e.g. manufacturing, 

distribution, operation) were quantified. When specific data were not available for a life 

cycle phase, estimates gathered from the literature or generic data were used.  
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Geographic boundaries 

The systems investigated were limited to activities and buildings on or related to 

Clemson’s main campus. Therefore, the Madren Center and Clemson Wastewater 

Treatment Plant will be included in the analysis. However, buildings outside Clemson’s 

main campus, such as the research park in Anderson were not included. Any surrogate 

data used in the LCA were representative of the U.S. market, however if no data for the 

U.S. were available (e.g. for wastewater chemicals), data from the European or global 

market were used.  

Figure 4. Boundary of Clemson University’s Main Campus 
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Technological boundaries  

 

As stated previously, the reference year is 2014. The principal data provided by 

Facilities pertains to systems operating in 2014. In cases where data were not available 

for 2014, it was assumed that newer data within the past three years could be used to 

characterize the system.  

Time boundaries  

 

The LCA investigated represented the services provided by Clemson University in 

2014. The principal data provided by Facilities all pertains to systems operating in 2014.  

Allocation 

Allocation is needed when a service is provided to multiple entities outside the 

functional unit. This can be performed by dividing the total environmental impact of the 

process between the system outputs. The ISO standard states that allocation should only 

be used when the product system cannot be divided and the system boundary cannot be 

expanded [67]. In this study, this allocation approach was used to determine the 

emissions associated with electricity generation since Clemson receives electricity from a 

larger system that cannot be divided or expanded. One method of allocation is 

partitioning, which distributes impacts from the system among flows of interest. 
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Partitioning can be based on economic, mass, or energy values. For electricity, impacts 

will be allocated based on energy flows from a larger system (e.g. GHGs attributed to 1 

kWh electricity). The ISO states that this allocation method based on underlying physical 

relationships between the inputs and outputs of a system is preferable to allocation based 

on other relationships, such as economic value [67]. 

3.5 Inventory Analysis 

The inventory analysis creates an inventory of flows to and from the system being 

analyzed. Inventory flows include inputs of water, energy, raw materials, and outputs to air, 

land, and water. Each activity that contributes to Clemson University operations has 

inputs and outputs to and from the environment as seen in Figure 5. This demonstrates 

how the life cycle for each service was considered.  

Figure 5. Elementary Flows in Life Cycle Assessment 
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This study focused on emissions to air; specifically, GHGs. The GHGs examined 

were CO2, CH4, N2O, HFCs, PFCs, SF6, and HCFCs. Thus, the flows of interest and the 

phases examined are listed below for each service that contribute significant GHGs. The 

main focus was on CO2, and overall on campus there were no sources of PFCs or SF6. 

The following page contains a table describing the services and phases considered for 

emissions generation. 
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Table 3-1. Services and Phases Considered in LCA 

Service Flow of Interest Phase 

Scope 1 

Steam Generation Natural gas combustion Use 

Refrigerants HFCs and HCFC releases Use 

University Owned 

Vehicles 
Gasoline & diesel combustion Use 

University Owned Aircraft Jet fuel combustion Use 

Fertilizer application 
Fertilizer nitrification and 

denitrification 
Use 

Wastewater Treatment Aerobic digestion of sludge Use 

Scope 2 

Electricity Generation 
Coal, Gas, & Oil combustion in 

power plant 
Manufacturing 

Scope 3 

Electricity 
Plant, construction, operation, 

materials, and decommissioning 
All phases 

Transmission and 

Distribution Losses 

Coal, Gas, & Oil combustion in 

power plant 
Distribution 

Automotive Commuting Gasoline combustion Use 

Clemson Area Transit 
Electricity use & diesel 

combustion 
Use 

University Related Travel Gasoline and jet fuel combustion Use 

Paper Usage 
Office paper, paper towels, & 

bathroom tissue 
Manufacturing 

Waste and Recycling Gasoline combustion Use 

Water Treatment Chemicals & operation Manufacturing and Use 

Wastewater Treatment Chemicals Manufacturing 
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Data coverage 

The primary data collected from this study were from a variety of departments and 

facilities within Clemson University. Secondary data were gathered from literature and 

public databases. The data were evaluated based on its reliability, temporal boundary, 

technological correlation, and completeness. By assessing the appropriateness and 

completeness of the data a qualitative assessment of the data was created.  

Cutoff Criteria 

Preferably, phases should be cut off based on their relevant environmental impact. 

However, data must be first collected to fully understand the impact of a specific phase. 

In this study, cutoff criteria were based on accessible data and the phase deemed to have 

the most significant impact based on inclusion in previous studies.  

3.5.1 Uncertainty in Data Quality 

Data quality pertains to data uncertainty, reliability, completeness, age, 

geographical area, and technological level for which the data are representative [68]. The 

overall uncertainty in inventory data refers to the spread and pattern of distribution of 

these data quality indicators [68]. There are improving initiatives to understand, 

incorporate, and reduce uncertainty in LCA [69]. Several approaches to quantifying 
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uncertainty in LCA have been proposed and implemented. A limited number of LCA 

studies apply uncertainty, though some methods used include intervals, scenario 

modeling, fuzzy data sets, analytical uncertainty propagation, probabilistic simulation, 

and Bayesian statistics [69]. Stochastic modelling has become a popular technique for 

making data inaccuracy in life cycle inventories operational, and can be performed using 

a Monte Carlo simulation [70]. Thus, some LCA software platforms are now offering the 

ability to calculate uncertainty using Monte Carlo [69]. In Monte Carlo simulations, each 

uncertain input parameter must be specified as an uncertainty distribution [68]. 

Characterizing the uncertainty ranges for these enormous number of parameters involved 

can be a very difficult and time-consuming exercise [70]. However, in this study, the 

specific and limited nature of the data points (e.g. monthly averages) provided meant that 

an uncertainty distribution could not be created with Monte Carlo methods.  

The life cycle inventory data for this research consists of the processes of interest 

includes data representing the flows of raw materials and energy, and data related to 

system performance and environmental impacts. Data gaps regarding flows between 

economic processes and the environment are usually set to zero, resulting in a systematic 

bias towards lower emissions [70]. Most uncertainty studies in LCA quantify only input 

data uncertainty [68]. However, uncertainties can also arise from uncertainty in the 
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functional unit, characterization factors, scenario uncertainty, and model uncertainty [68]. 

Due to available information and time considerations, this study will focus on 

characterizing input data uncertainty in the inventory. 

The existing data quality should be understood and considered before conducting 

an LCA. Weidema and Wesnaes (1996) considered five independent data quality 

indicators to describe the aspects of data quality which influence the reliability of the 

result; reliability, completeness, and correlations temporally, geographically, and 

technologically. Reliability depends on the methods used for measurements, calculations, 

assumptions, and quality control of data, while completeness is judged based on the 

number of data collection points and periods and their representativeness of the total 

population [68]. Temporally, the year of the original measurement is important, the 

geographical area for of the data must correlate with the defined area, and the 

technological indicator is concerned with all other aspects of correlation than the 

temporal and geographical considerations [68]. These data quality indicators can be used 

to create a pedigree matrix as seen in Table 3-2. 

The scores given in the pedigree matrix are semi-quantitative identification 

numbers, so they should not be aggregated or taken to represent a certain ‘amount’ of 

data quality [68]. Their purpose is to serve as a data quality management tool, which can 
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expedite the survey of data quality and highlight area for improvements in uncertainty 

[68]. While a quantitative assessment of the uncertainty related to the use of 

unrepresentative data within an LCI is preferable, it is also extremely difficult due to a 

lack of knowledge about actual uncertainty of data on inputs to and outputs from 

industrial processes [70]. For each activity analyzed in this study, this pedigree matrix 

will be applied to rate data quality. 
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Table 3-2. Pedigree Matrix of Data Quality Indicators from Weidema and Wesnaes (1996)

Indicator Score 1 2 3 4 5 

Reliability 
Verified data based 

on measurements 

Verified data partly 

based on assumptions 

or non-verified data 

based on 

measurements 

Non-verified data partly 

based on assumptions 

Qualified estimate (e.g. 

by industrial expert) 
Non-qualified estimate 

Completeness 

Representative data 

from a sufficient 

sample of sites over 

an adequate period to 

even out normal 

fluctuations 

Representative data 

from a smaller number 

of sites but for 

adequate periods 

Representative data 

from an adequate 

number of sites but 

from shorter periods 

Representative data but 

from a smaller number 

of sites and shorter 

periods or incomplete 

data from an adequate 

number of sites and 

periods 

Representativeness 

unknown or incomplete 

data from a smaller 

number of sites and/or 

from shorter periods 

Temporal 

correlation 

Less than three years 

of difference to year 

of study 

Less than six years 

difference 

Less than 10 years 

difference 

Less than 15 years 

difference 

Age of data unknown or 

more than 15 years of 

difference 

Geographical 

correlation 

Data from area under 

study 

Average data from 

larger area in which 

the area under study is 

included 

Data from area with 

similar production 

conditions 

Data from area with 

slightly similar 

production conditions 

Data from unknown area 

or area with very different 

production conditions 

Further 

technological 

correlation 

Data from 

enterprises, 

processes, and 

materials under 

study 

Data from processes 

and materials under 

study but from 

different enterprises 

Data from processes 

and materials under 

study but from different 

technology 

Data on related 

processes or materials 

but same technology 

Data on related processes 

or materials but different 

technology 
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3.6 Impact Assessment 

The impact central to this study is global warming, for which GHG emissions were 

inventoried. Thus, the output of each activity in the scope of the study was assessed for 

its GHG contribution and global warming impact. Global warming causes climate 

change, which has significant effects on ecosystems, human health, agriculture, and 

infrastructure. The global warming impact of each activity in Clemson was assessed 

using global warming potential (GWP) characterization factors as recommended in the 

latest version of the IPCC Fifth Assessment Report (as detailed in Section 2.9.4). The 

100-year time horizon was applied and expressed in kilograms of carbon dioxide

equivalents (CO2-e) per kilogram of emission, as discussed in Section 2.9.5. However, 

this method offers a broad screening approach to predict potential global warming 

impacts from emissions [71]. The impact for each activity in the scope are described in 

the Methods and Results Section.  

3.7 Interpretation 

The interpretation stage of LCA is where the findings from the inventory analysis 

and the impact assessment are combined. The results of individual studies of Clemson 

University activities were interpreted separately. Therefore, conclusions and potential 

improvements were presented on an individual basis. However, a synthesis of overall 

observations and potential improvements for the whole system are presented and 

discussed in Section 5. This included an examination of all activities and their cumulative 



60 

carbon footprint. The ISO 14040 recommends that the LCA report should allow the 

results and interpretation be used in a way consistent with the goals of the study. 

Therefore, this final report will be made public through the Clemson Library. 

4 METHODS AND RESULTS 

4.1 Overview 

This section describes the Scope 1, 2, and 3 emissions for Clemson University’s 

main campus. For each scope, activities are explained individually, and a LCA approach 

is used to determine their contribution to the carbon footprint. Then, each section 

explains background information, data, calculation methods, and the conclusions and 

recommendations. After results from the three scopes are presented, there is also a 

section illustrating where best to install solar PV panels on campus to increase renewable 

energy sourcing. The following figure displays locations of interest that will be discussed 

in the upcoming sections.  
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Figure 6. Clemson University Locations of Interest 

The Scope 1 emissions considered will be the operational phase of steam 

generation, refrigerant usage, university owned vehicles and aircraft, fertilizer use, and 
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wastewater treatment. In Figure 6, the steam generation plant is labeled (1), the 

TigerTransit and Clemson University Police headquarters (university owned vehicles) are 

labeled (2) and operate throughout campus, the wastewater treatment plant is labeled (3), 

and the Walker golf course (which receives the majority of fertilizer) is labeled (4). 

Electricity generation is considered a Scope 2 emission, and used throughout campus. 

The wastewater treatment plant and Madren Center (labeled 5) have their own electricity 

meters so their specific emissions will be discussed. Then, upstream emissions related to 

electricity generation and losses from transmissions and distribution are discussed in 

Scope 3 emissions. Scope 3 also includes commuting via personal vehicles and Clemson 

area transit, university related travel, paper usage, waste and recycling transportation, 

chemicals used in wastewater treatment, and emissions from water treatment. Two of the 

campus’s larger commuter and employee parking lots are labeled (6). 

4.2 Scope 1 

Scope 1 emissions are direct GHG emissions that occur from sources that are 

owned or controlled by the organization [50]. For this assessment, emissions will be 

analyzed from the operational phase for steam generation, refrigerant use, university 

owned vehicles and aircraft, fertilizer, and wastewater treatment. 



63 

4.2.1 Steam Generation 

Background 

The system analyzed in this section is the Clemson steam generation plant. Since 

this system is producing emissions directly from Clemson’s campus it is considered a 

Scope 1 emission source. Clemson’s steam generation plant was constructed in 1948 with 

additions to the plant occurring in 1953. The purpose of the plant is to create steam for 

space heating, domestic hot water, dehumidification, and other miscellaneous processes. 

Historically, the plant used coal fired boilers to generate steam, however they have now 

been replaced with more efficient natural gas technology and heat recovery systems. 

While the current boilers have the capacity to use an oil and gas mixture, Clemson 

Facilities are choosing to use natural gas since it is currently cheaper. The heat from the 

combustion of natural gas in the boilers converts water to steam. The steam generated is 

then conveyed across Clemson’s campus through an underground tunnel system, 

meanwhile a heat recovery steam generator (HRSG) is used to generate steam using 

water collected from the condenser loop. 
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Data 

Clemson Facilities provided data regarding boilers use, amount of steam generated, 

natural gas consumption, water use, and electricity use. The outside temperature was also 

collected on hourly intervals every day for the year of 2014.  

Boilers 

Since 2014, four new Miura boilers have been phased in. The Miura boilers now 

make up 25% of the capacity of the steam generation while the Cleaver-Brooks boiler 

sustains the remaining 75%. Clemson Facilities reported that the Cleaver-Brooks boiler 

has an 83% efficiency, while the Miura operate at an 85% efficiency. Since the Miura 

boilers have a higher efficiency they are used initially for the steam generation needs, 

then supplemented by the Cleaver-Brooks as needed. Since these data are from 2014 it 

only relates information for the Cleaver-Brooks boiler and the heat retention steam 

generator. Since this time, the annual natural gas use and associated emissions may have 

decreased slightly due to the increased efficiency of the boilers. 

Natural Gas 

Daily, the Cleaver-Brooks boiler consumes a natural gas flow averaging 1,071 

cubic meters per hour. This natural gas comes from the Transco transmission pipeline 
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system operated by Williams Companies. They regularly have the quality of their natural 

gas feed analyzed to determine its exact mixture. An average composition was calculated 

using daily chromatography data over 3 months (Table 4-1). Methane, ethane, and 

propane together make up around 98.23%. The remaining 1.77% of the natural gas feed 

consists of trace amounts of various butanes, pentanes, and hexanes. Since this 

composition varies, it was assumed that this remaining proportion was entirely made up 

of hexane as a ‘worst case’ scenario since it has the highest carbon content.  

Table 4-1. Main Composition of Natural Gas feed for Steam Generation 

Elements Formula Molecular Weight (g/mol) Composition (%) 

Methane CH4 16.04 94.60 

Ethane C2H6 30.07 3.43 

Propane C3H8 44.10 0.20 

Hexane C6H14 86.18 1.77 

Water 

The Cleaver Brooks boiler uses water sourced from the Anderson water authority 

for steam generation with an unspecified amount of water from nearby Lake Hartwell for 
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condenser loop cooling. Each day, the condenser loops returns approximately 12,300 

gallons of water to the steam generation plant. 

Electricity 

Electricity is used to power the monitors and computers related to the boilers and 

for lighting and other general functions within the plant. The electricity use for this 

system is included in the total electricity calculations in the Electricity Section (4.3.1). 

Data Quality 

Table 4-2. Data Quality for Steam Generation Data 

Indicator Score Score Explanation 

Reliability 1 
Data was collected hourly by Facilities or 

natural gas provider 

Completeness 1 
Data was collected over an adequate period to 

balance fluctuations 

Temporal 

correlation 
1 

Boiler data are from 2014 and natural gas 

composition is from 2017, which is less than three 

years difference to year of study 

Geographical 

correlation 
1 Data are from area under study 

Further 

technological 

correlation 

1 Data are specific to the processes under study 
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 Methods 

Resource Usage 

The total usage of natural gas and steam production was calculated by summing up 

the daily recorded hourly flow rates. The total quantities found are shown in Table 4-3. 

Table 4-3. Annual Inputs and Outputs of Steam Generation Plant 

Boiler 

Natural Gas 

Consumption (m3/yr) 

Stream Generation 

(kg/yr) 

Cleaver-Brooks 9,378,547 155,839,978 

HRSG 167,980 10,247,103 

Total 9,546,527 166,087,081 

The total quantity of natural gas consumed for steam generation was converted to 

grams so that the CO2 from combustion can be calculated. To convert natural gas from 

the recorded unit of cubic feet, the density had to be applied to this quantity. The density 

(ρ) of natural gas according to the Transco transmission data was 0.59 kg/m3. When 

burned, hydrocarbons produce CO2 and H2O as their products. Therefore, for these 

calculations CO2 is the only GHG to examine. In properly tuned boilers nearly all the 

carbon fuel in the natural gas (99.9%) is converted to CO2 during combustion [72]. Any 

incomplete combustion will cause trace amounts of fuel carbon to be converted to CH4, 
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carbon monoxide (CO), or volatile organic compound emissions [72]. For these 

calculations, it will be assumed that the natural gas is completely combusted.  

The balanced stoichiometric equations can be used to determine the CO2 produced 

from combustion. In the stoichiometric equation for methane (see equation 1 in Section 

2.3) each molecule of methane reacts with two molecules of O2 to produce one molecule 

of CO2 and two molecules of H2O. Similarly, in two molecules of ethane react with seven 

molecules of O2 to create four molecules of CO2, in propane one CO2 molecule combusts 

to create three molecules of CO2, and two molecules hexane combust to create 12 

molecules CO2. Using these stoichiometric relations and the total amount of natural gas 

used, the total CO2 emissions from combustion was calculated.  

Emissions 

First, the total amount of natural gas used over the year 2014 was determined using 

the data provided by Clemson facilities. Then, this data was converted from its initial 

flow rate of cubic feet to grams of natural gas. Applying the percent composition of each 

hydrocarbon that makes up the mixture (Table 4-1) can determine the grams of each 

hydrocarbon combusted. Then the molecular weight of each hydrocarbon can be used to 

find the equivalent number of moles. Once the moles of each hydrocarbon are known, the 
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stoichiometric relations to CO2 can be put into use to determine the moles of CO2 from 

combustion. To do this the following equation was used. 

𝐺𝑃𝑁𝐺𝑐𝑀𝑊𝐺𝑀𝐹𝐺𝑀𝑊𝐶𝑂2 (5) 

In this equation, GP is the percent composition of a specific gas in the natural gas 

feed (e.g. 94.6% methane), NGC is the total natural gas consumption by the University, 

MWG is the molecular weight of the specific gas, MFG is the stoichiometric mole fraction 

of the specific gas to CO2, and MWCO2 is the molecular weight of CO2. The results of 

these calculations can be seen in Table 4-4. Annually, it was determined that combustion 

at the steam plant produces 15,522 metric tons of CO2. 

Table 4-4. Combustion Reaction Results 

Element 
Emissions 

(g/yr) 

Moles of 

Element 
Moles CO2 g CO2 

Metric 

tons CO2 

Methane 5,328,289,929 332,136,713 332,136,713 14,617,170,660 14,617 

Ethane 193,192,753 6,424,972 12,849,945 565,519,649 566 

Propane 11,264,884 255,465 766,395 33,728,649 34 

Hexane 99,694,220 1,156,814 6,940,883 305,464,801 305 

Total - - - - 15,522 
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Efficiency of system 

The efficiency of the underground tunnel delivery system at Clemson has not been 

measured, so the amount of steam lost during delivery is unknown. To address this 

limitation a steam distribution loss factor of 15% was adopted from Cornell University 

who have quantified the losses in their system [73]. Cornell’s system over 60,000 feet of 

underground steam, condensate, and hot water lines to provide heat to its campus to serve 

nearly 22,000 students [73]. Clemson’s system is 41,560 feet, and serves a comparable 

population. Facilities have calculated the efficiency of the boilers to be 83%. With these 

losses in mind, the figure below displays the amount of steam lost to the inefficiencies of 

the system. 

Figure 7. Steam Generation Losses (metric tons steam/year) 

28,235 

137,852 

20,678 

117,174 

Losses from boiler From boiler after losses
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Trends in Steam Generation 

As previously stated, steam is used for heating water, dehumidification, and space 

heating. Hot water and dehumidification demand is consistent year-round, with 

dehumidification being especially essential in the summer. However, space heating 

primarily occurs in the colder months. The figure below displays the inverted relationship 

between the average outside temperature, and the demand for steam. During colder 

months, Facilities aims to keep the room temperature maintained at 69°F in occupied 

rooms, and when possible temperatures are dropped to 55°F during unoccupied periods 

[74]. During the air-conditioning season, room temperatures are maintained at 76°F when 

occupied and allowed to warm to 85°F when unoccupied [74]. The demand for steam is 

at its highest in the winter months, therefore carbon emissions from steam generation are 

also highest during these months. As seen in Figure 8, the highest emissions in 2014 were 

during the month of January, with 1,694 metrics tons of CO2 produced from steam 

generation. Meanwhile, emissions were lowest in June and July producing about 940 

metric tons of CO2 per month. These lower emissions may be due to the absence of 

students and lower heating and dehumidification needs. The total monthly emissions can 

be seen in Table 4-5. 
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Table 4-5. Monthly Average CO2 Emissions from Steam Generation in 2014 

Month 

Total Natural Gas 

(m3) 

Steam Generated 

(kg) CO2 (metric tons) 

January 1,041,667 16,497,340 1,694 

February 954,607 16,066,858 1,552 

March 973,951 16,452,023 1,584 

April 754,874 12,842,596 1,227 

May 637,477 10,790,587 1,037 

June 578,168 9,632,978 940 

July 578,579 9,546,041 941 

August 584,877 9,269,513 951 

September 652,672 10,176,410 1,061 

October 772,178 12,207,506 1,256 

November 994,913 15,922,257 1,618 

December 1,022,563 16,449,727 1,663 
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Figure 8. Monthly Average Steam and Natural Gas Flow compared to Outside 

Temperature 

This figure shows that the steam and natural gas flow rates are closely correlated to 

outside temperature. The flow rates are shown in imperial units so that they could be 

shown to scale together on a graph. These flow rates are averages for the month, so it 

should be noted that the total monthly natural gas used and steam production varied, thus 

in January natural gas and steam produced was higher than in February, even though its 

average flow rates were lower. This may have been due to varying temperatures in these 

months. 
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Figure 9. Monthly CO2 Emissions compared to Outside Temperature 

Conclusions and Recommendations 

Steam is essential for the comfort of students at Clemson University to provide hot 

water, heating, and dehumidification services. Steam generation in 2014 produced 15,522 

metric tons of CO2 from natural gas combustion. Steam generation needs could be 

reduced by reducing hot water use, dehumidification, and space heating. Hot water use 

could be reduced with low-flow showerheads, faucet aerators, shortening showering 

times (e.g. by installing metering shower valves), or reducing temperatures on clothes 

washers. Adjusting set temperatures in buildings can also reduce dehumidification and 
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heating needs. Applying passive heating strategies to new building design could further 

help to reduce future heating loads. To meet the university’s increasing heating needs, a 

natural gas combined heat and power plant is under consideration. Future studies could 

also analyze the potential impact to reduce carbon emissions of supplement natural gas 

used for steam generation biogas or solar thermal panels. Analysis could also be done on 

replacing the steam lines with hot water lines. There was some uncertainty with the 

estimation of losses in the underground delivery tunnel, since Clemson has not performed 

an evaluation on their tunnel system. Therefore, a better estimation for losses in the 

underground delivery tunnel is recommended for future studies. 

4.2.2 Refrigerant Usage 

Background 

Refrigerants are used in air conditioning systems for buildings at Clemson 

University. Refrigeration is responsible for GHGs both through its electricity use and 

from refrigerant fluid leaking into the atmosphere. Refrigeration units are built to 

minimize fluid leakage, however it is nearly impossible to produce a completely sealed 

system. Over time a leak may result from a weld fracture, a speck of dirt on a gasket, or 

even from a small groove between fittings. Significant leaks are reported and fixed, 

however often leaks aren’t extensive enough to repair so the refrigerants are “topped off” 
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periodically. The refrigerant most commonly used by Clemson University is R-22 which 

is a hydro-chlorofluorocarbon (HCFC), also known as HCFC-22. UNFCCC and its 

Kyoto Protocol include hydro-fluorocarbons (HFCs) in their carbon accounting, and in 

this analysis HCFCs will also be included. As of 2010, HCFC-22 was discontinued for 

use in new air conditioning systems in accordance with terms and agreement reached in 

the Montreal Protocol. In new systems, this refrigerant has been replaced by HFCs which 

do not contribute to ozone depletion, but still have high GWP. Thus, the Kigali 

Amendment of the Montreal Protocol has set controls to phase down their production and 

consumption due to their global warming effect. Clemson University uses smaller 

quantities of HFC-404A (R-404A), and HFC-410A (R-410A), however most of the 

systems still use HCFC-22. Since refrigerant use and its leakage is a direct emission 

produced from a source controlled by Clemson University, it is considered a Scope 1 

emission.   

 Data 

Refrigerants 

Clemson University Facilities provided refrigerant ‘top-off’ data for 2014. 

Refrigerant logs for the East and West areas of campus were given along with refrigerant 

logs for HVAC and Clemson Utilities. These logs listed the weight of the drums before 
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refrigerant was added to top it off, the volume of fluid needed, and the final weight of the 

drum to determine the mass of refrigerant added. For each log entry, the time, location, 

unit, and type of refrigerant were recorded. Refrigerant location data was broken to East, 

West, and HVAC refrigerants, so the exact unit location was not always clear. 

Data Quality 

Table 4-6. Data Quality for Refrigerants 

Indicator Score Score Explanation 

Reliability 1 Data based on measurements 

Completeness 1 
Data are from all refrigerant sites included in 

study 

Temporal 

correlation 
1 Data are from 2014 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data are specific to enterprises under study 

 Methods 

Emissions  

If there are no leaks in the system, refrigerants will last indefinitely. Therefore, it 

was assumed that any refrigerant added during 2014 represented the amount of 
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refrigerant leaked out of the unit and into the atmosphere during the same period. Most 

leakage was refrigerant type R-22. There were also small leakages of HFC-404A and 

HFC-410A. By summing the recorded refrigerant added to all the campus units over 

2014, the total amount of leaked refrigerant was determined. Then, the GWP for each 

substance was applied using the following equation.  

CO2 emissions = (l)(GWP) (6) 

Here, l is the quantity of refrigerants leaked, and GWP is the global warming 

potential of the refrigerant. 

Table 4-7. Carbon Emissions from Refrigerant Leakage 

Refrigerant 

Type 

Greenhouse 

Gas 

Quantity 

leaked (kg) 

GWP (kg 

CO2-e) 

CO2-e 

emitted 

(metric tons) 

R-22 HCFC-22 76.80 1,760 135 

R-404A HFC-404A 0.77 3,922 3 

R-410A HFC-410A 2.21 2,088 5 
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Conclusions and Recommendations 

In 2014 about 143 metric tons of CO2-e were emitted into the atmosphere due to 

refrigerant leakage from Clemson’s campus. Some buildings received several pounds of 

refrigerant ‘top off’ with no repair recorded. Therefore, further investigation is needed as 

to how leaks are found, and what constitutes a large leak. For this, a cost benefit analysis 

may also be helpful to compare the financial cost of repair to the cost of fluid leaked. Of 

the total leakage, 135 metric tons CO2-e were from R-22, the most commonly used 

refrigerant for campus systems. Only one unit leaked R-404A, and it was repaired. This 

small leak only required 0.77 kg (1.7 lbs.) of refrigerant to be added, however due its 

high GWP this leak was responsible for 3 metric tons of CO2-e to be emitted into the 

atmosphere. Similarly, the few leakages of R-410A that totaled in 2.21 kg (4.9 lbs.) had a 

GWP equivalent to 5 metric tons of carbon. When the Montreal Protocol discontinued 

HCFC-22 use in new air conditioning systems in new systems, this refrigerant was 

replaced by HFCs. However, the HFC-404A and HFC-410A used by Clemson have a 

higher GWP than HCFC-22. While it is difficult to ensure that systems do not leak, it is 

important to recognize the global warming significance of even small leakages for the 

campus carbon footprint. If possible, finding refrigerants with lower GWP such as HFC-

32 and HFC-152a would be better to reduce the impact of leaked gas as they have GWPs 

of 677 and 138, respectively [75].  
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4.2.3 University Owned Vehicles 

Background 

Clemson University owns a variety of vehicles to aid in campus operations. One 

service offered is a shuttle service called Tiger Transit. Clemson’s Tiger Transit operates 

7 days a week, from 6 p.m. to 6 a.m. to serve Clemson University students, faculty, staff 

and visitors. During the day, the Tiger Transit buses provide a park and ride service for 

students parking on the outskirts of campus. At night, these buses can be requested to 

provide a safe ride around campus or back to a parked vehicle. Clemson University also 

has its own Police Department (CUPD) which ensures that the campus is safe for 

students, teachers, employees and visitors. Since both services utilize multiple vehicles 

for long periods of time, they are considered a significant source of Scope 1 emissions. 

Clemson also operates a bus route to the Greenville, but this was considered outside the 

boundaries of this study. CUPD uses gasoline in its vehicles while Tiger Transit buses 

use both diesel and gasoline fuel which produce CO2 after combustion. The university 

also owns several golf carts, however, it was assumed that the emissions from these 

vehicles would be negligible since they are used intermittently compared to the 

constantly running Tiger Transit and CUPD services. Clemson also produces its own 

biodiesel to fuel University Facilities trucks on campus. These emissions are assumed to 

be carbon neutral. 
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 Data 

Tiger Transit 

This service is controlled by Parking and Transportation Services, who record the 

number and type of buses running, miles traveled, and gallons used per month. This 

system has 18 vehicles total with 3 different sized vehicles ranging in fuel efficiency 

from 5 to 8 miles per gallon (mpg). Most nights, the buses switch between the multiple 

routes. Parking and Transportation services provided information on the number of miles 

traveled each month by each type of vehicle. The number of gallons used per vehicle per 

month fluctuates, however the fleet uses a total of 53,310 gallons of gasoline and 110,579 

gallons of diesel fuel per year. This data was gathered in the Fall of 2016, however it was 

assumed that the fuel consumption was comparable in 2014. 
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Data Quality 

Table 4-8. Data Quality for Tiger Transit 

Indicator Score Score Explanation 

Reliability 1 
Data from Parking and Transportation 

records 

Completeness 1 Data are representative over a year 

Temporal 

correlation 
1 

Data are from 2016, which is less than three 

years of difference to year of study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data from enterprises under study 

Clemson University’s Police Department 

As of November 2016, CUPD has a fleet of 20 vehicles. According to the fleet 

coordinator, at any given time 10 vehicles are on duty, and overall each vehicle patrols 

about 20 miles per day. The two types of vehicles used by CUPD are the Ford Crown 

Victoria and the Ford Explorer, 17 and 19 miles per gallon, respectively. This data was 

also collected in the Fall of 2016, and it was assumed that this fuel consumption trend 

was comparable in 2014. 
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Data Quality 

Table 4-9. Data Quality for Clemson University Police Department 

Indicator Score Score Explanation 

Reliability 4 
Non-verified data partly based on 

assumptions 

Completeness 2 
Representative data from a smaller number 

of vehicles, but for adequate periods 

Temporal 

correlation 
1 

Data obtained in 2016, which is less than 

three years of difference to year of study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

2 
Data are from enterprises under study, but 

vehicle usage and fuel economy is estimated 

Emission Factors 

The U.S. Energy Information Administration has determined that 19.60 lbs 

CO2/gallon gasoline and 22.40 lbs CO2/gallon diesel are produced from combustion [76]. 

This factor is an average published in 2016 which is based on home heating and diesel 

fuel practices. 
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Data Quality 

Table 4-10. Data Quality for Gasoline and Diesel Emission Factors 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements by EIA 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
3 

Data pertains to similar combustion 

conditions 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study but from different enterprises and 

technology 

 Methods 

Total Fuel Used 

The total amount of fuel used had to be determined for the CUPD fleet. 

Considering the number of vehicles in the fleet, their average driving distance, and the 

average fuel economy, the total fuel usage could be determined with the following 

equation. 

Fuel used =
Vdt

m
(7)
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Where V is the number of vehicles used, d is the average distance driven daily, t is 

the amount of time driven per year, and m is the average fuel economy for the fleet. 

Aligning with information from the police chief, it was assumed that CUPD patrolled 

year-round, and that the fuel economy was 18 mpg, which is the average mpg of the Ford 

Crown Victoria and the Ford Explorer. Using this equation, the total amount of fuel used 

is recorded in Table 4-11 below along with the given annual fuel usage for Tiger Transit.  

Table 4-11. Fuel Usage by University Owned Vehicles 

Gasoline (gallons) Diesel (gallons) 

Tiger Transit 53,310 110,579 

CUPD 8,111 N/A 

Emissions 

Once the total fuel usage was determined, the associated CO2 emissions from 

combustion can be determined using average emissions factors of 19.60 lbs CO2/gallon 

gasoline and 22.40 lbs CO2/gallon diesel from the EIA [76]. The results of these 

calculations are shown in Table 4-12. 
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Table 4-12. Total Emissions from University Owned Vehicles 

Gasoline 

Emissions 

(metric tons 

CO2) 

Diesel 

Emissions 

(metric tons 

CO2) 

Total Emissions 

(metric tons 

CO2) 

Tiger Transit 474 1,124 1,597 

CUPD 72 N/A 72 

Conclusions and Recommendations 

Tiger Transit contributed 1,597 metrics tons of CO2 while CUPD emitted 72 

metrics tons of CO2. Overall, 1,669 metrics tons of CO2 were generated from University-

owned vehicles. A change in driving practices could decrease this. The data for CUPD 

was based on estimates by the police chief, so more detailed data could be gathered for 

future studies. While it may not be feasible to decrease CUPD patrolling or Tiger Transit 

services, policies to reduce idling could help reduce emissions. Also, future purchases of 

university-owned vehicles could aim for vehicles with higher fuel economy. A transition 

to electric vehicles may also be a possible alternative, the impact of this transition could 

be examined in future studies.  
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4.2.4 University Owned Aircraft 

Background 

Clemson University has two private aircraft that are based at the Clemson 

University hangar at Oconee County Airport. The Clemson University aircraft are only 

used for official University business with the purpose of expediting travel for designated 

officials and employees. The aircraft are used by the administrators and by the Athletic 

Department when justified. The policy states university aircraft can be used in instances 

where the destination is not served by commercial carriers, the commercial travel time 

interferes with other important official obligations, departure and arrival times interfere 

with a required travel itinerary, the number of travelers makes it cost effective, there is a 

need for confidentiality, or on-demand athletic transportation for athletic events or 

recruiting [77]. Since the aircraft are owned by Clemson University, they are considered 

Scope 1 emissions. Other university-related air travel is a Scope 3 emission, and is 

discussed in Section 4.4.5. Aircraft jet engines produce CO2, H2O, nitrogen oxides, 

carbon monoxide, oxides of sulfur, volatile organic compounds, particulates, and other 

trace compounds [78]. For this analysis, the CO2 created from the jet fuel combustion will 

be examined.  
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 Data 

University Aircraft 

The Chief Pilot for Clemson University provided information about the type of 

aircraft Clemson uses and their average annual mileage. The University has two private 

aircraft, the first is a 2008 Citation CJ3 jet that seats two crew and eight passengers. The 

jet can fly 480 mph (420 nautical miles, or knots) while burning about 140 gallons of Jet 

A fuel per hour. The second plane is a 1998 Beechcraft King Air C90B Turboprop 

airplane that seats two crew and six passengers. The turboprop plane can fly 265 miles 

(230 knots) per hour while consuming about 79 gallons per hour of Jet A fuel. The jet 

averages about 300 hours per year of use while the turboprop airplane averages about 150 

hours per year. This data are recorded in Table 4-13. 

Table 4-13. University Aircraft Annual Travel 

Aircraft 
Fuel consumption 

(gallons/hour) 

Average Use 

(hours/year) 

2008 Citation CJ3 Jet 140 300 

1998 Beechcraft King Air 

C90B Turboprop Airplane 
79 150 
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Data Quality 

Table 4-14. Data Quality for Clemson University Aircraft Travel 

Indicator Score Score Explanation 

Reliability 4 
Annual mileage is a qualified estimate by 

aircraft pilot 

Completeness 3 
Data provided does not have an adequate 

sample size to account for fluctuations 

Temporal 

correlation 
1 

Data are current and less than three years of 

differences to year of study 

Geographical 

correlation 
1 Data are from area under study 

Further 

technological 

correlation 

1 
Data regarding emissions is for aircraft under 

study 

Emissions Factor 

According to the EIA, jet fuel produces 9.57 kg CO2 per gallon upon combustion 

[76]. 
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Data Quality 

Table 4-15. Data Quality for Jet Fuel Emission Factor 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements by EIA 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
3 

Data pertains to similar combustion 

conditions 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study but from different enterprises and 

technology 

Methods 

Since the University jet averages about 300 hours annually and uses 140 gallons of 

Jet A fuel per hour the total emissions from annual flights can be determined using the 

following equation.  

CO2 emissions =  EFft (8) 

Here, f is the fuel consumption of the aircraft represented in gallons per hour, t is 

the total hours the aircraft is used per year, and EF is the emissions factor for the 

combustion of jet fuel.  
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Table 4-16. Emissions from University Aircraft Travel 

Aircraft CO2 emissions (metric tons) 

2008 Citation CJ3 Jet 402 

1998 Beechcraft King Air C90B 

Turboprop Airplane 
113 

Conclusions and Recommendations 

The use of the university aircraft contributed 515 metric tons CO2-e. This data was 

based on estimates from the university pilot, and more detailed data may be obtained for 

future studies. There are many factors that influence the fuel efficiency of jet fuel such as 

take off and landing, wind speed and direction, weight carried, and altitude. Therefore, 

the total annual fuel used would be the most beneficial data to gather for future analysis, 

along with more specific combustion statistics for the aircrafts. To reduce these 

emissions, it is recommended that commercial flights or alternative transportation are 

considered as the emissions per passenger mile would be smaller. Video conferencing 

rather than traveling would also greatly reduce emissions. 
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4.2.5 Fertilizer Application 

Background 

Clemson University uses fertilizer to enhance the growth of landscaping around 

campus and on its golf course at the Madren Center. The areas that are treated are mostly 

hybrid or common Bermuda grass. The application of fertilizers adds nitrogen to the soil, 

which in turn increases the emissions of N2O into the atmosphere. This process occurs 

through both nitrification and denitrification. Nitrification occurs when ammonium 

experiences aerobic microbial oxidation to nitrate, while denitrification occurs 

anaerobically through the microbial reduction of nitrate to gaseous nitrogen (N2) [79]. 

Nitrous oxide (N2O) is a GHG that is produced as an intermediate in denitrification and 

as a by-product of nitrification. Emissions from fertilizer application vary due to 

differences in soil type, moisture, temperature, season, plant type, fertilization, and 

management practices [80]. However, any increase in available nitrogen will enhance 

nitrification and denitrification rates, which increases the production of N2O [79]. 

Emissions from fertilizer application are considered a Scope 1 emission because it occurs 

from sources that are owned and controlled by Clemson University.   

For this analysis, only direct atmospheric emissions associated with denitrification 

and nitrification after fertilizer application on university-owned land are included. 
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Indirect emissions from potential leeching and runoff will not be considered. There are 

also GHG emissions associated with the production process, transportation of the 

fertilizer from the production facility, and possibly from the energy use in machinery 

required for fertilizer application. However, these emissions will not be included.  

 Data 

Fertilizer Usage 

Clemson University Facilities provided a summary of the fertilizer applied in 2014. 

The golf course had 12,766 lbs of inorganic nitrogen fertilizer applied, while landscape 

services used 2,820 lbs of inorganic nitrogen fertilizer with an additional 50 lbs of 

organic nitrogen fertilizer. This combined is a total 15,636 lbs of nitrogen fertilizer.  
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Data Quality 

Table 4-17. Data Quality for Clemson University Fertilizer Application 

Indicator Score Score Explanation 

Reliability 2 

Data was given by Clemson University 

Facilities based on non-verified 

measurements 

Completeness 2 
Representative data for sites, but does not 

give annual comparison for fluctuations 

Temporal 

correlation 
1 Data are from year of study 

Geographical 

correlation 
1 Data are from area under study 

Further 

technological 

correlation 

2 
Data are for materials under study, but does 

not give exact type of fertilizer 

Emissions 

Emissions from fertilizer application varies due to variations in soil type, moisture, 

temperature, season, plant type, fertilization, and management practices [80]. However, 

facilities did not record this information when applying fertilizer. Therefore, an average 

emissions factor was applied. Per the IPCC (2006) Tier 1 protocol, the direct emissions 

factor of N2O for various synthetic and organic N applications to soils has is 1% of the N 

applied to soils [79]. The uncertainty range for this value is 0.003 – 0.03 kg N2O-N/ kg N 

[79]. In this study the emissions factor will be 0.01 kg N2O–N per kg N applied. 
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Data Quality 

Table 4-18. Data Quality for Fertilizer Emission Factor 

Indicator Score Score Explanation 

Reliability 1 Data was verified by the IPCC 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
3 Less than 10 years difference 

Geographical 

correlation 
4 

Data from a variety of areas with similar 

production conditions 

Further 

technological 

correlation 

2 
Data from processes and materials under 

study but from different enterprises 

Methods 

Emissions 

According to the EPA, the following equation must be used to calculate N2O 

emissions from fertilizer application [80]. 

N2O Emissions = (FC)(EF)(
44

28
) 

(9)
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Here, FC represents fertilizer consumption, EF is the emission factor for 

application, and 44/28 is the molecular weight ratio of N2O to N2. Since the GWP of N2O 

is 265 times that of CO2 by mass for a 100-year timescale, the overall global warming 

potential can be calculated with the following equation. 

CO2 equivalent emissions = (E)(GWP) (10) 

In this equation, E is the emissions of N2O, while GWP is the global warming 

potential of 265 kg CO2-e/kg N2O [8]. Using this formula, it was found that the 

application of 15,636 lbs of nitrogen fertilizer produced the equivalent of about 19 metric 

tons of CO2-e.

Conclusions and Recommendations 

Fertilizer is used to enhance plant growth, and on Clemson’s campus its use is 

purely aesthetic. Therefore, it is recommended that fertilizer use could be reduced or 

eliminated completely as a simple method to reduce the carbon footprint. While most 

fertilizer emission factors are related to agricultural application and landscapes, future 

studies may also want to seek a more precise emissions factor for the fertilizer used in 

nonagricultural settings.  
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4.2.6 Wastewater Treatment 

Background 

Clemson University owns and operates its own wastewater treatment plant 

(WWTP) which is located on the shore of Lake Hartwell. The WWTP plant is 

responsible for treating used water that contains human waste, food scraps, oil, soap, and 

chemicals. The main unit operation at the plant is a sequencing batch reactor, where large 

volumes of air are delivered to the wastewater to facilitate degradation. Aerobic digestion 

of sludge is also performed. GHGs from the wastewater are emitted during both of these 

processes. The system is similar enough to a conventional activated sludge process that it 

will be considered as such for this study 

Data 

Data was received from Clemson Faculties regarding the waste water treated. This 

data was given in millions of gallons (MG) per month for 2014 as seen in the table on the 

following page. 
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Table 4-19. Clemson University Wastewater Treated 

Date Wastewater (MG) 

14-Jul 15.09 

14-Aug 20.87 

14-Sep 27.49 

14-Oct 25.20 

14-Nov 17.13 

14-Dec 12.55 

15-Jan 17.50 

15-Feb 17.40 

15-Mar 16.80 

15-Apr 19.61 

15-May 9.93 

15-Jun 11.45 

Total 211.01 

Data Quality 

Table 4-20. Data Quality for Wastewater Treatment 

Indicator Score Score Explanation 

Reliability 1 Data based on measurements 

Completeness 1 
Data are for all wastewater processed by 

WWTP 

Temporal 

correlation 
1 Data are from 2014 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data are specific to enterprises under study 
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Emissions Factor 

Monteith et al. (2005) developed a procedure to estimate GHG emissions for many 

different wastewater treatment plants when facility-specific data are unknown [81]. They 

used data from Canadian wastewater treatment plants, site specific data was compared to 

generalized calculations to create province and national estimates. They evaluated 

emissions from various wastewater treatment processes, and didn’t account for solid 

waste disposal or electricity for operation. From this study, they estimated that 

conventional activated sludge treatment processes have CO2 emissions of 0.153 - 0.280 

kg/m3 [81]. This process was the most similar to the wastewater treatment system 

Clemson possesses. For this analysis, the middle of this range, 0.217 kg/m3, will be 

assumed.  
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Data Quality 

Table 4-21. Data Quality for Wastewater Treatment Emissions Factor 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
3 

Less than 10 years of difference to year of 

study 

Geographical 

correlation 
3 

Data pertains to similar wastewater treatment 

process 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study but from different enterprises and 

technology 

 Methods 

Carbon Emissions 

Aerobic wastewater treatment systems emit a mixture of CH4 and CO2. The amount 

of GHGs produced from treating wastewater depending on the characteristics of 

incoming wastewater, the required treated water criteria, and the on-site processes used 

[81].The U.S. EPA provides a guide to estimate these emissions based on the assumption 

that all organic carbon removed from the wastewater is converted to either CO2, CH4, or 

new biomass [82]. Emissions can be calculated using wastewater influent flow rate, 

oxygen demand of the influent wastewater to the biological treatment unit, and the 
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oxygen demand removal efficiency of the biological treatment unit [82]. However, these 

values could not be obtained for the Clemson WWTP. Therefore, surrogate data from 

Monteith et al. (2005) was used in the following equation.  

(𝐸𝐹)(𝐶𝐹)(𝑊𝑊𝐶𝑙𝑒𝑚𝑠𝑜𝑛) (11) 

Here, EF is the emissions factor, CF is the conversion factor from m3 to MG, and 

𝑊𝑊𝐶𝑙𝑒𝑚𝑠𝑜𝑛  is the amount of wastewater treated by Clemson in a year. This calculation 

produced the results shown in Table 4-22 .  

Table 4-22. Clemson University Wastewater Treatment Emissions 

Date Emissions (metric tons CO2) 

14-Jul 12 

14-Aug 17 

14-Sep 23 

14-Oct 21 

14-Nov 14 

14-Dec 10 

15-Jan 14 

15-Feb 14 

15-Mar 14 

15-Apr 16 

15-May 8 

15-Jun 9 

Total 173 
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Conclusion and Recommendations 

Overall, the emissions related to the operation of Clemson’s WWTP were 173 

metric tons CO2. This estimate was based on surrogate data for a conventional activated 

sludge system. Future studies may want to seek out more detailed information specific to 

the Clemson system, which can be considered a conventional activated sludge system, 

but also has an aerobic digestion set-up. Regardless, one method to reduce emissions is to 

reduce the wastewater volume treated. This could be achieved by installing greywater 

recycling systems that use water from sink and showers for toilet flushing and other non-

potable uses. Also, domestic wastewater can be reduced by using more water efficient 

appliances (e.g. washers, dishwashers, toilets), and installing low flow shower heads and 

faucets. Behaviorally, taking shorter showers and general water use awareness could help 

lower the amount of wastewater produced.  

Another option is to change the system itself. For example, transitioning to an 

anaerobic system and trapping biogas can reduce emissions and the biogas can be used in 

cogeneration units to produce electricity. Another option with an anaerobic system is to 

flare methane so that it has a lesser global warming impact. GHGs can also be decreased 

through the change of operational conditions. Activated sludge systems operating at high 

solid retention times promote endogenous respiration of biomass, this increases the 
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amount of COD oxidized to CO2 and decreases overall sludge production [83]. Thus, 

CO2 emissions can be minimized with shorter solid retention times as long as it does not 

negatively affect the effluent quality [83]. 

4.3 Scope 2 

Scope 2 emissions are associated with purchased electricity generation and other 

sources of energy (e.g. steam, chilled water) that are generated upstream from the 

organization. The only scope 2 emission source for Clemson University is purchased 

electricity consumption.   

4.3.1 Electricity Generation 

 Background 

Electricity is vital part to the successful functioning of Clemson University. 

Electricity is needed to power lighting, equipment, electronics, and is integrated in 

various other systems such as water distribution, steam generation, and refrigeration. 

Clemson University electricity is provided by Duke Energy, who supply to customers in 

several regions throughout the United States, including North South Carolina. 

Specifically, Clemson receives its electricity from Duke Energy Carolinas, LLC, whose 

service territory covers the western part of North and South Carolina. Therefore, 
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emissions from purchased electricity generation were allocated based on energy and 

emissions flows to Clemson from the greater electricity generation system. 

 Data 

Electricity Usage 

Data was obtained from Clemson Utility Services for electricity consumption for 

the 2013-2014 school year. The total energy consumption obtained from Utility Services 

included all buildings owned by Clemson University. The Clemson University 

International Center for Automotive Research (CU-ICAR) campus in Greenville was 

excluded since it is not a part of Clemson’s main campus, hence outside the bounds of 

this study. Included are the main campus meter, facilities meters, the wastewater 

treatment plant, and all departmental buildings. The total electricity consumed by 

Clemson University’s main campus in 2014 was 119,703,787 kWh.  Annually, the main 

meter used 117,331,603 kWh, the Madren facilities used 1,406,280 kWh, and Clemson 

WWTP related activities used 965,904 kWh for plant controls and sewage pumping. 
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Data Quality 

Table 4-23. Data Quality for Electricity Usage 

Indicator 

Score 
Score Explanation 

Reliability 1 
Data was collected by Facilities and recorded 

on Duke Energy bills 

Completeness 1 
Data was collected over an entire year, an 

adequate period to balance fluctuations 

Temporal 

correlation 
1 

Data are from 2014, which is less than three 

years difference to year of study 

Geographical 

correlation 
1 Data are from area under study 

Further 

technological 

correlation 

1 Data are specific to the processes under study 

Generation and Emissions 

The U.S. Environmental Protection Agency (EPA) has created an Emissions & 

Generation Resource Integrated Database (eGRID). Environmental characteristics 

included in eGRID are emissions of NOx, SO2, CO2, CH4, N2O, mercury, net generation, 

and the resource mix [84]. This database is based on plant data for all the individual 

electricity generating plants that supply power to the electric grid and report data to the 

U.S. government. In January of 2017, the EPA released eGRID2014 which lists 

comprehensive data for electricity generation in 2014. 
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Data Quality 

Table 4-24. Data Quality for eGRID Database 

Indicator Score Score Explanation 

Reliability 1 
eGRID data are based on plant specific data 

reported to U.S. government 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 eGRID data are specific to 2014 

Geographical 

correlation 
2 

Average data from larger area in which the 

area under study is included 

Further 

technological 

correlation 

2 

Data from processes and materials under 

study but exact providers and electricity mix 

for Clemson University cannot be 

determined 

Methods 

Electricity Generation 

Using EPA’s eGRID2014 database, the data was filtered to only include plants 

where the plant operator was Duke Energy Carolinas, LLC. Summing net generation 

from power plants with the same primary fuel (e.g. coal, gas, hydro), the generation mix 

was found as seen in Table 4-25 and displayed in Figure 10. In this section, GHG 

emissions will be allocated based on Clemson’s use of electricity compared to the total 
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generation and emissions from Duke Energy Carolinas, LLC. An alternative method 

would be to calculate emissions would be to use a national or state wide average. 

Table 4-25. Duke Energy Carolinas, LLC Electricity Generation 

Biomass Coal Gas Hydro Nuclear Oil Solar Total 

Net 

Generation 

(MWh) 

7.50 

E+05 

3.17 

E+07 

1.65 

E+07 

2.48 

E+06 

5.75 

E+07 

7.04 

E+04 

2.60 

E+05 

1.09 

E+08 

Percent 0.69% 28.99% 15.14% 2.27% 52.61% 0.06% 0.24% 

Figure 10. Duke Energy Carolinas, LLC Electricity Generation Mix 

Biomass, 0.69%

Coal, 28.99%

Gas, 

15.14%

Hydro, 2.27%

Nuclear, 

52.61%

Oil, 0.06% Solar, 0.24%
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Plant Emissions 

The EPA’s eGRID2014 database lists individual plant emissions for CO2, CH4, and 

N2O. The emissions for the plants operated by Duke Energy Carolinas, LLC were 

quantified for each GHG. The CO2-e in the database recorded emissions in short tons, 

and used the IPCC Second Assessment Report GWP in their calculations. This data had 

to be recalculated to find the more accurate global warming potential using the updated 

IPCC AR5 values as stated in Table 2-1. Then, the calculated emissions are shown in 

Table 4-26. There are no direct emissions associated with electricity generation from 

biomass, hydro, nuclear, or solar sources. Furthermore, eGRID plant data only reports 

emissions associated with the generation of electricity, and does not account for 

transmission and distribution losses or life cycle emissions such as emissions from the 

extraction, processing, and transportation of fuels. This will be addressed in Section 

4.4.1. 

Table 4-26. Summed Plant Emissions for Duke Carolinas, LLC (metric tons) 

Coal Gas Oil Total 

CO2 27,755,783 7,301,041 63,220 35,120,044 

CH4 3,230 133 2 3,364 

N20 470 14 0 484 

CO2-e 27,970,756 7,308,348 63,378 35,342,482 
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Emissions 

The total GHG emissions from Duke Energy Carolinas LLC was 35,342,483 metric 

tons CO2-e. The total GHG emissions associated to Clemson University’s electricity use 

was calculated by finding the fraction of Clemson’s energy use compared to overall 

generation for the Duke Energy Carolinas LLC. The total annual generation in 2014 for 

the plants operating under this entity was 109,269,164 MWh. Clemson University 

consumed 119,703,787 kWh in 2014, or 119,704 MWh. This equates to about 0.11 

percent of Duke Energy Carolinas net generation. Using these values, the following 

equation can be used to find the allocated emissions that are attributed to Clemson 

University.  

GHG emissions =  
EClemson

EDuke 
(PCO2e) (12) 

Here, ECLEMSON is the annual electricity use by Clemson, EDUKE is the net annual 

electricity generation by Duke Energy Carolinas LLC, and PCO2e is the total GHG 

emissions produced by Duke Energy Carolinas LLC annually. Overall, it was calculated 

that 38,718 metric tons CO2-e are emitted to produce the electricity to meet Clemson’s 

electricity needs. Of this, the main campus, the Madren Center, and the WWTP activities 

are attributed about 37,950, 455, and 312 metric tons CO2-e, respectively.  
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Trends in Electricity Use 

Clemson University electricity use varies as seen in Figure 11. Electricity use is the 

lower in winter months, with January being the month with the lowest consumption. One 

possible reason for this may be the outside temperature. Section 4.2.1 discusses how in 

the winter, the cooler temperatures cause a higher demand for steam generation for 

heating and hot water. According to Clemson Facilities, the largest use of electricity are 

our four chiller plants, which aren’t in use during the winter.   

Figure 11. Clemson University Monthly Electricity Use 
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Conclusion and Recommendations 

Duke Energy Carolinas covers a wide service territory in North and South Carolina 

that receives energy from a mixture of over 200 facilities. This assessment only included 

emissions from the plant, and did not account for other emissions associated with plant 

operation such as electricity used for lighting. There is also uncertainty of how 

representative the electricity use from 2014 is for other years. The five prior years to this 

study used more electricity annually, so more information would be needed to assess the 

cause for the decrease in consumption in 2014.  

Emissions from electricity can be reduced by addressing how energy is generated 

and utilized. Improving the electricity mix with more renewable energy would lower 

emissions. Duke Energy plans to reduce the carbon emissions of their electricity 

generation by 40% from 2005 levels [85]. Clemson University also has the ability to 

influence future electricity sources by joining forces with Duke Energy in their plans for 

future electricity generation. In the past, Duke Energy has proposed a large solar 

installation on university land, and more recently, Duke Energy Carolinas has proposed 

the construction of a 16-megawatt combined heat and power plant on Clemson’s campus 

[86]. By collaborating with Duke Energy, Clemson could seek to improve its electricity 
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mix, or investigate the possibility of supplying its own electricity with wind turbines or 

solar panels.  

A change in utilization would also lower emissions. Further investigation into what 

can be done to lower electricity demands. Demands could be reduced through increased 

conservations and efficiency. Measures such as promoting the shutdown of electrical 

devices when not in use, installing motions sensors for lights, and purchasing energy 

efficient appliances are all methods to reduce electricity demands.  

According to campus facilities, the largest users of electricity are the four chiller 

plants. Their energy demand could be reduced if thermostats were set lower or passive 

cooling strategies were applied to buildings, however this is difficult to retrofit on old 

buildings. Overall, many of these improvements to reduce electricity demand can be 

changed with human behavior or automation (i.e. adjusting thermostats, turning off 

appliances).  



113 

4.4 Scope 3 

Scope 3 emissions include the indirect emissions that come from sources owned or 

controlled by another entity [50]. Most studies focus on scope 1 and 2 emissions, but it 

has been suggested that in some cases Scope 3 might account for 80% of an 

organization’s carbon footprint [45]. For this study emissions will be analyzed related to 

the lifecycle of electricity generation, transmission and distribution, various forms of 

commuting, university related travel, paper usage, waste and recycling transportation, 

wastewater treatment chemicals, and water treatment.  

4.4.1 Electricity Life Cycle 

Background 

As described in 4.3.1, electricity is essential part to the successful functioning of 

Clemson University. While electricity has emissions from generation, it also has 

upstream indirect emissions associated with raw materials extraction, materials 

manufacturing, component manufacturing, materials transportation, and infrastructure 

construction. Since Scope 2 of this analysis were restricted to the electricity generation 

phase, this section will assess the additional upstream impacts. 
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Data 

Since many plants are included in Duke Energy Carolinas electricity generation, 

average life cycle emissions were found from surrogate data for each generation energy 

source. They are discussed below and shown in Figure 12. 

Biomass 

The IPCC AR5 conducted a review to determine lifecycle emissions from biomass. 

Analysis included global climate impacts of CO2 emissions from combustion of 

regenerative biomass such as biogenic CO2, along with associated changes in surface 

albedo following ecosystem disturbances [87]. They found the minimum, median, and 

maximum gCO2-e/ kWh life cycle emissions to be 130, 230, and 420 respectively [88]. 

Coal 

NREL screened 270 references that reported life cycle environmental impacts of 

several coal electricity generation technologies and a meta-analytical process called 

“harmonization” was applied to their results [89]. This process disaggregated emissions 

estimates according to the life cycle stages they included, and then altered all the studies 

to have consistent boundaries so they could be compared [89]. CO2, CH4, and N2O were 

used, and other GHG contributions were negligible. Upstream life cycle processes 
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included in the analysis were raw materials extraction, materials manufacturing, 

component manufacturing, materials transportation to the construction site, and 

construction [89]. Operational life cycle processes included were mining, preparation, 

transport, combustion of coal, power plant operation, and maintenance [89]. The, 

downstream life cycle processes within the boundaries were waste disposal, power plant 

decommissioning, and coal mine rehabilitation [89]. After technology specific 

harmonization, the emission factors ranged from 930 to 1,050 g CO2-e/kWh with a 

median of 980 g CO2-e/kWh [89]. This median was the value used in emissions 

calculations.  

Hydropower 

The IPCC Fifth Assessment Report conducted a review to determine lifecycle 

emissions from hydropower. Hydropower life cycle emissions are mostly associated with 

construction, materials manufacturing, and transportation of materials. In this assessment, 

biogenic CO2 emissions from reservoirs were not included [87]. They found the 

minimum, median, and maximum g CO2-e/ kWh life cycle emissions to be 1, 24, and 

2,200 respectively [88].  
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Natural Gas 

NREL gathered published LCAs of GHG emissions from the production and use of 

shale gas. They examined a mixture of different unconventional gas resources that all 

either focused on or included shale gas [90]. The life cycle stages were adjusted to be 

consistent throughout the studies so that each included accounted for power plant 

construction, the drilling and casing of the wells, water supply and treatment, liquids 

unloading, and frequency of well recompletions [90]. In this analysis CH4 leakage was 

not a parameter used in the estimates of life cycle GHG emissions since it had a very 

wide range of estimations [90]. Coproduct allocation was also not included in this 

analysis as it was not reported for many studies. The published results for shale gas range 

from 437 to 758 g CO2-e/kWh with the median being 488 g CO2-e/kWh [90]. 

Nuclear 

NREL screened published estimates of lifecycle GHG emissions from light water 

reactors, this included boiling water reactors (BWRs) and pressurized water reactors [91]. 

This process reviewed of all data sources, adjusted parameter estimates, realigned system 

boundaries within each life cycle phase, or added missing life cycle phases when 

necessary to produce a detailed meta-model [91]. Operational processes included 

uranium mining, milling, conversion, enrichment, fuel rod fabrication, transportation, 
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facility operation and maintenance, reprocessing, and mine rehabilitation [91]. The 

downstream life cycle phases included were facility decommissioning, nonradioactive 

waste disposal/recycling, and waste storage after facility's operational processes cease 

[91]. After all boundaries were adjusted, the harmonized results had a published median 

of 12 g CO2-eq/kWh, an interquartile range of 17 g CO2-e/kWh, and a range of 110 g 

CO2-e/kWh [91]. 

Oil 

Oil-fired generation produce a negligible amount of energy for Clemson’s 

electricity mix and only at times of extreme peaks. This represents less than 1% of annual 

energy contribution. Neither the IPCC nor NREL provided a harmonized estimation for 

oil. However, an estimate used by Sovacool (2012) cited that heavy oil used by various 

generator and turbine types emit 778 g CO2-e/kWh [92]. 

Solar 

NREL reviewed 109 studies, of which 91 passed the screening for quality of 

reporting, validity of analysis methods, relevance of the system, and data source used 

[93]. Harmonization of the studies adjusted life cycle stages, lifetime, performance ratio, 

solar irradiation, and efficiency degradation, and the life cycle stages included upstream 
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are raw material acquisition, materials production, film deposition, module production, 

and installation [93]. The operational processes included are electricity generation and 

maintenance, while downstream processes such as decommissioning and disposal were 

considered. The recycling stage of the thin-film PV life cycle was not included in the 

system boundary of this study since thin-film installations are relatively new. The 

resulting estimates of GHG emissions after harmonization were 21, 14, and 27 g CO2-

e/kWh for amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium 

gallium diselenide (CIGS), respectively [93]. Assuming Duke’s solar generation is 

composed equally of these three technologies, the average GHG emissions associated 

with solar PV in this analysis was 20.67 CO2-e/kWh.  

Figure 12. Life Cycle Emissions Factors for Electricity Generation 
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Data Quality 

Table 4-27. Data Quality for Electricity Emissions Factors 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a several paper 

manufacturers to even out normal 

fluctuations 

Temporal 

correlation 
5 

The studies publishing harmonized values re 

recent publications, however some of the 

references they included in their assessment 

were 10-15 years of difference 

Geographical 

correlation 
3 

Data from area with similar production 

conditions 

Further 

technological 

correlation 

2 
Data from processes and materials under 

study, but from different enterprises 

 Methods 

For each source, the emissions factor was applied to the total generation and 

electricity mix percentages found in Section 4.3.1. The following equation was used for 

to do this. 

𝐿𝑖𝑓𝑒𝑐𝑦𝑐𝑙𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = (𝐸𝐹)( 𝐸𝐶𝑙𝑒𝑚𝑠𝑜𝑛)(𝐸𝑃𝑒𝑟𝑐𝑒𝑛𝑡) (13) 

Here, EF is the respective emissions factor, ECLEMSON is the annual electricity use 

by Clemson, and ECLEMSON is the percentage that the source is of the electricity generation 
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Clemson receives. After this was performed for each source, the results were summed to 

find the total lifecycle emissions.  

Table 4-28. Life Cycle Emissions of Electricity Generation 

Generation (%) 
Median emission factor 

(g CO2-e/kWh) 
CO2-e (metric tons) 

Biomass 0.69 230 190 

Coal 28.99 980 34,008 

Gas 15.14 488 8,844 

Hydro 2.27 24 65 

Nuclear 52.61 12 756 

Oil 0.06 778 56 

Solar 0.24 20.67 6 

TOTAL 43,925 

The total life cycle emissions from all electricity generation sources used by 

Clemson was 43,925 metric tons CO2-e. The surrogate data used for this analysis did not 

break down the estimated life cycle emissions by phase, so the emissions from operation 

found in Scope 2 (section 4.3.1) had to be subtracted from this total so that they would 

not be double counted. These emissions calculated in Section 4.3.1 from the combustion 

of coal, gas, and oil, for electricity generation were 38,718 metric tons CO2-e. The 

difference between this and the total life cycle emissions is 5,207 metric tons CO2-e.  
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Recommendations and Conclusions 

The lifecycle emissions from electricity generation included the many processes 

such as upstream raw material acquisition, materials production, component 

manufacturing, materials transportation, construction, facility operation and maintenance, 

and decommissioning [89] [93] [91]. For each source, its specific processes were 

analyzed, its lifetime was considered, and the CO2-e emissions per kWh were determined 

for the overall generation. These emissions factors used calculated by evaluating LCA 

studies from varying locations, and the ranges for some emissions factors were broad. For 

this analysis the median value was chosen to be most representative, however there is 

uncertainty because they are not specific representations of the plants in Clemson’s 

electricity generation mix. Further assessment on the plants used in the Duke Energy 

Carolinas electricity mix could produce more accurate lifecycle emissions.  

There is uncertainty surrounding NREL’s harmonized value for gas life cycle 

emissions for electric power generation. This study does not account for methane leakage 

since there was a very wide range of leakage in the studies chosen [90]. Brandt et al. 

(2014) has estimated that natural gas systems can have an excess percentage leakage of 

1.8% to 5.4% of end use gas [94]. Not including this leakage is significant because 
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natural gas’s components have a higher GWP and would contribute to Clemson’s carbon 

footprint.  

There is also uncertainty linked to the harmonized value used for coal generation. 

This LCA study used outdated GWP values for CH4, and N2O to determine their 

emissions factor as it was published before the Fifth Assessment Report was released. 

Similarly, nuclear generation used GWP from the IPCC Fourth Assessment Report, but 

since it only included GHGs from CO2 this value was unaffected [91]. Meanwhile, 

NREL’s original study for natural gas was recently updated to include new GWP from 

the Fifth Assessment Report [90].  

The lifecycle emissions associated with electricity generation may be able to 

decrease if their impact was considered for future power plants. Nuclear, solar PV, and 

hydropower had the lowest median emissions factors of the sources analyzed, being 12, 

20.67, and 24 g CO2-e/kWh, respectively. Therefore, future planning for power plants 

may want to consider these sources preferentially to reduce future GHG emissions. 

4.4.2 Transmission and distribution 

Background 

Transmission and distribution losses represent the difference between the electricity 

generated at power plants and the power that is purchased by the customers. When 
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energy is transmitted over long distances there are power losses in the transformers and 

power lines. The energy may be lost as heat in the conductors, and it can also dissipate in 

generating an electro-magnetic field. There are also losses from resistance, which depend 

on the conductors, voltage, and the length of the transmission lines. By transmitting 

electricity at high voltage, the energy lost to resistance is reduced. However, there are 

still losses. This disparity between electricity produced and consumed is considered a 

Scope 3 emission as it is an indirect energy related emissions source. 

 Data 

 

As described in Section 4.3.1, data was obtained from Clemson Utility Services for 

electricity consumption for the 2013-2014 school year. Emissions and grid loss factors 

were obtained from the U.S. EPA’s eGRID database. The grid loss factors are determined 

using data from 2009 data, and are based on the consumption, generation, foreign net 

imports, and interchanges within and between the U.S. balancing authorities in the sub-

regions of the grid [95]. According to eGRID, since Clemson is located in the 

Southeastern U.S. Virginia/Carolina area, its gross grid loss factor is 5.82% [95]. 
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Data Quality 

Table 4-29. Data Quality for eGRID Grid Loss Factor 

Indicator Score Score Explanation 

Reliability 1 

Electricity usage based off of Clemson 

meters, eGRID data are based on plant 

specific data, and grid loss data are verified 

based on measurements 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
2 

Data are from 2009, so there is less than six 

years difference 

Geographical 

correlation 
2 

Average data from larger area in which the 

area under study is included 

Further 

technological 

correlation 

2 

Data from processes and materials under 

study but different enterprises are included in 

grid loss factor 

Methods 

To find the GHG emissions associated with Clemson, the electricity purchased by 

the University and the transmission and distribution losses from the electricity purchases 

must be accounted for. Transmission and distribution losses are a Scope 3 emission, 

however to properly allocate emissions the total electricity use must be known. The 

electricity use by Clemson in 2014 was 119,704 MWh as described in Section 4.3.1. To 

determine electricity lost in transmission and distribution the following equation was 

adapted from eGRID methodology [95]. 
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𝐸𝑇𝐷 = 𝐸𝐶𝑙𝑒𝑚𝑠𝑜𝑛(
1

1 − 𝐺𝐺𝐿
− 1) 

(14) 

Here, ETD is the electricity lost in transmission and distribution, ECLEMSON is the 

amount of electricity used by Clemson annually, and GGL is the eGRID grid gross loss 

factor. According to eGRID, the gross grid loss factor in the area Clemson is located in is 

5.82% [95]. Using equation 14 it was found that the electricity from combined generation 

and line losses is approximately 7,397 MWh. Therefore, in total 127,101 MWh of 

electricity is attributed to Clemson annually. Using the methodology described in Section 

4.3.1, these electricity losses account for 2,393 metric tons of CO2-e.  

Conclusions and Recommendations 

Transmission and distribution losses from power plants to Clemson University can 

be minimized, but not eliminated entirely. These losses are dependent on the design of 

the lines and equipment used, which is out of the University’s control. Therefore, 

reducing GHG emissions associated with these losses would parallel the electricity 

reduction strategies discussed in Section 4.3.1. Transmitting electricity shorter distances 

would decrease power losses in the transformers and power lines, so another method to 

decrease these emissions is to increase on-site electricity generation. If a fossil fuel 

source was used, this may come at the expense of greater Scope 1 emissions since on-site 
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generation would be under the ownership and control of the university. However, an on-

site renewable electricity generation source would have emissions from use, and it could 

decrease both electricity demand and associated transmission and distribution losses. 

4.4.3 Automotive Commuting 

Background 

Students, faculty, and staff travel to and from campus to participate and ensure its 

functioning. While some students live on campus, the rest of the student body and faculty 

commute to school by means of walking, biking, driving a personal vehicle, or taking 

public transit. In this study, commuting is defined as daily travel to and from campus by 

students, faculty, and staff. This does not include student travel at the beginning and end 

of the semester or during vacation periods. The scope of this analysis will include tailpipe 

emissions from the mode of transportation for driving a personal vehicle or taking public 

transit. The GHG considered from tailpipe emissions from diesel and gasoline 

combustion is CO2. This analysis will not include emissions associated with 

infrastructure construction, such as roads, necessary to operate the vehicles nor those 

associated with non-operation life cycle phases of the vehicles themselves. Since these 

indirect commuting emissions are a consequence of the activities of the University, but 

not from a university-owned source, these emissions are classified as Scope 3. 
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In this section, parking permits data was obtained to represent the commuter 

population. Data was also obtained describing the type of vehicle registered vehicle with 

each permit. This was combined with vehicle specific data from the DOE to find an 

average fuel economy for the commuting fleet. Then, a survey from Clemson’s Parking 

and Transportation Services was used to determine the average distance commuted. 

These values were used to determine overall fuel use, which was applied with EIA 

emissions factors to determine emissions from fuel combustion.   

 Data 

Parking Permits 

Data was obtained from Clemson University Parking and Transportation Services 

for the number of parking permits bought for students and employees in 2014. The type 

of permit purchased was either broken down by the type of commuter or the type of 

vehicle used (e.g. student commuter, moped, motorcycle, etc). The number of each type 

of permit purchased is shown in Table 4-30. There are also a variety of passes available 

for parking with different restrictions. Weekend and weekday visitor passes were not 

included in analysis, nor were passes for department guests. Fike Recreation Center 

annual passes were also not included, as it was assumed these were most likely pertinent 

to community members outside the university. Parking passes for after 4:30 only were 
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included within commuter total and there were only 66 permits purchased. Resident 

passes included the East and West resident parking lots, apartments, and the Clemson 

House. However, resident parking was not included in the analysis as it was assumed this 

population would walk to campus. Parking permits for the Bridge program (404 permits) 

were included in the total student commuting permits.  

Table 4-30. Parking Permits Sold in 2014 

Resident 
Student 

Commuter 
Employee LEV EV Motorcycle Scooter/Moped 

4,261 11,026 4,627 222 12 319 325 

Type of Vehicle 

The type of vehicles registered for each permit was also obtained in 2016 from 

Clemson University Parking and Transportation Services. For each vehicle, the make, 

model, and year were listed. This data records moped permits separately from other 

vehicles.  A small number of vehicles had incomplete information (e.g. missing vehicle 

model) and these were excluded from the analysis. For student commuters, there were 

9,333 complete records, and 1,128 incomplete. While for employees there were 5,433 

complete records and 1,159 incomplete records.  
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Data Quality 

Table 4-31. Data Quality for Vehicle Permits 

Indicator Score Score Explanation 

Reliability 1 

Permits and vehicles registered emissions are 

verified measurements by Parking and 

Transportation Services 

Completeness 2 

Representative data from a sufficient 

sample of sites over an adequate period, but 

some data are incomplete 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data are from enterprises under study 

Vehicle Emissions 

Vehicle emissions were obtained from the U.S. Department of Energy (DOE) who 

have compiled a list of all the average fuel economies for vehicles produced after 1984. 

The city mileage was assumed to be more similar to the Clemson geography rather than 

highway mileage. 
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Data Quality 

Table 4-32. Data Quality for Vehicle Emissions 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Data are up to data and specific to the 

vehicles in study 

Geographical 

correlation 
3 

Emissions data from area with similar 

production conditions 

Further 

technological 

correlation 

1 Data are from enterprises under study 

Commuting Habits 

A survey performed by Clemson University Parking and Transportation services 

was also obtained. This survey gathered commuting information from 1,081 student 

commuters, 422 faculty members, and 756 staff through an online survey. Comparing the 

2,259 surveyed to of 16,521 permits sold produces a confidence interval of 1.92 with a 

95% confidence level. This survey data described the days of the week that the surveyor 

commuting on average, the distance traveled, and the mode of transportation (e.g. walk, 

bike, CATBUS, personal vehicle). From the commuter survey, weekly frequency for 
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commuting was gathered for students who drove to campus. By providing their average 

distance traveled, an average commute could be calculated from this data and an average 

amount of days per week traveled. 

Data Quality 

Table 4-33. Data Quality for Commuting Habits Survey 

Indicator Score Score Explanation 

Reliability 2 

Commuting survey data are verified partly 

based on assumptions or non-verified data 

based on measurements 

Completeness 2 
Representative data from a smaller sample 

size, but for adequate periods 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 
Data from commuting is specific to processes 

and enterprise under study 

Emission Factors 

The U.S. EIA has determined that 19.60 lbs CO2/gallon gasoline are produced upon 

combustion [76]. The data quality for this emissions factor can be seen in Table 4-10 of 

Section 4.2.3. 
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 Methods  

Commuter Fleet Fuel Efficiency 

Data listing the make, model, and year for all vehicles registered was coupled with 

fuel efficiency information from the U.S. Department of Energy to determine the miles 

per gallon (mpg) for each individual vehicle. The city mpg was applied rather than 

highway mpg. Since the data gathered is limited to the make and type of vehicles, there 

were estimations in the mpg for certain vehicles. For example, several vehicles were 

registered as a BMW 3 Series, however without knowing the exact model of the vehicle, 

the average of the range of this series (19 mpg) was used for all. This was performed for 

both student and faculty registered vehicles to find the average mpg of the fleet. Since 

detailed information was not provided for mopeds/scooters, an average value was also 

found for mopeds using the average mpg of the top selling scooters. The average for 

motorcycles was based upon the average of the U.S. Department of Energy data. Low 

emissions vehicles (LEV) and electric vehicles (EV) were also recorded separately so that 

their mpg could be determined, however EV will not have emissions associated with 

combustion. The results of this investigation are below.  



133 

Table 4-34. Average Fuel Economy for Commuters (mpg) 

Student 

Commuters 
Employee LEV EV Motorcycle Scooter/Moped 

19.68 19.44 29.53 61.57 43.54 76.29 

Annual Commuter Distance 

Using the survey conducted from Clemson University Parking and Transportation 

Services an average weekly frequency for commuting and the median distance commuted 

could be calculated for students, faculty, and staff. From the survey carpooling was 

counted in the total driving days as there was not enough information to appraise if 

students within the survey were carpooling with each other. 

Table 4-35. Average Commuting Trends from Survey 

Responses 

Average 

commute 

(days) 

Distance commuted 

(miles one way) 

25th 

percentile 

50th 

percentile 

75th 

percentile 

Students 1,081 4.83 2 4 5 

Faculty 422 4.45 4 7 18 

Staff 756 5.04 6 12 20 

These results can be seen in Figure 13. The boxes represent the first quartile to the 

third quartile, with the inner line displaying the median. The mean is represented by an 
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“x” marker. The lines shown or “whiskers” indicate variability outside the upper and 

lower quartiles, and the points outside this range are considered outliers. Each 

demographic had several outliers. For students, the maximum value reported to commute 

one way was 290 miles, for faculty the highest reported was 107 miles, and for staff it 

was 80 miles. These could not be shown due to the scale of the plot. 

Figure 13. Box and Whisker Plot of Miles Commuted One-Way 

The 25th, median, and 75th percentile distances were then applied to the commuting 

frequency and then scaled up to the total number of permits bought by students and 

employees. However, since parking permits do not differentiate between faculty and 

staff, their data was conglomerated and averaged to be applied to the employee permits. 
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In 2014, the University employed 1,388 faculty [7]. Therefore, it was assumed that all 

faculty bought a parking permit and the remaining 3,239 employee permits belonged to 

staff and administrators. Furthermore, it was assumed that LEV, EV, motorcycles, and 

scooters/mopeds were all students. 

Total Emissions 

The total CO2 emissions were calculated separately for student commuters, faculty, 

staff, LEV, motorcycles, and mopeds/scooters since they each had varying fuel 

economies and commuting distances. The distance traveled in a roundtrip commute was 

calculated for each commuter demographic. This was then used with the average mpg for 

each pertinent vehicle group to determine the gallons of gas used per day per person. 

Next, the frequency of travel had to be determined. To do this, the total number of days 

per week commuted was converted to a daily decimal (e.g. if a student drove to campus 4 

days of the week this would be 0.57 commutes per day). Thus, weekends are accounted 

for in the daily average. This value was then applied to the length of time over the year 

commuting occurs to determine the annual distance commuted. Using the academic 

calendar, it was assumed that students commute 206 days out of the year, which neglects 

summer and holidays. For faculty and staff the national holidays and two weeks of 

vacation was assumed, which left 347 days out of the year for commuting. From this, the 
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gallons of gas used per person annually was found for student commuters, faculty, staff, 

LEV, motorcycles, and mopeds/scooters. This value was then scaled up by the number of 

permits purchased to find the total gallons of gas combusted for each demographic. An 

average combustion emissions value was then applied to the total quantity of gasoline 

used to calculate the GHG emissions associated with driving. Per the EIA, 19.60 pounds 

CO2 are produced from burning a gallon of gasoline [76]. The unit conversions for this 

process can be seen in the following equation and the converted results are listed in Table 

4-36.

(D)(g)(Comd)(Comy)(P)(EF) (15) 

Here, D is the distance traveled in miles per day, g is the gallons of gasoline used 

per mile drive, Comd is the daily commuting frequency per person, Comy is the average 

frequency (in days) commuted per year, P is the number of permits sold, and EF is the 

emissions factor of lbs of CO2 emitted per gallon of gasoline combusted. The overall 

emissions were calculated using the first, second, and third quartiles of distance 

commuted as shown as follows. 
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Table 4-36. Metric tons of CO2 Produced from Commuting 

25th percentile 50th percentile 75th percentile 

Student 

Commuters 
2,836 5,673 7,091 

Faculty 1,122 1,964 5,051 

Staff 4,454 8,908 14,846 

LEV 38 76 95 

EV NA NA NA 

Motorcycle 37 74 93 

Scooter/Moped 22 43 54 

Total 8,509 16,738 27,230 

Trends in Commuting 

The survey provided by Parking and Transportation Services also asked 

participants “If you do not primarily use alternative transportation (bike, walk, mass 

transit, etc.) to commute to campus, what is the main reason?” and gave them options for 

what their reason was for not using alternative transportation. The results of this study are 

shown in Figure 14. 
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Figure 14. Overall Survey Response to “if you do not primarily use alternative 

transportation (bike, walk, mass transit, etc.) to commute to campus, what is the 

main reason?” 

The overall trends for not using alternative transportation were similar among the 

student, staff, and faculty. In all demographics, respondents cited that time/convenience 

was their main reason for driving their personal vehicle on the commute. This 

explanation was significant for student commuters being true for 66% responders, while 

for faculty and staff time/convenience was cited for 36% and 37% of the population 
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respectively.  For faculty, the other major contributors for using personal vehicles was 

lack of infrastructure (23%) and personal reasons (18%). Staff cited that personal reasons 

was their cause for not using alternative transportation for 24% respondents, while only 

10% placed responsibility on lack of infrastructure.  

The survey also asked survey respondents “how much impact, if any, do you think 

your commuting habits have on Clemson University's "carbon footprint" on the 

environment?” This question was then followed by another question asking respondents 

“how important is it that Clemson University reduces its carbon footprint or impact on 

the environment?” The overall results are displayed in Figure 15 and Figure 16. There 

was some discrepancy between the rated impact of commuting and the importance of 

reducing one’s carbon footprint. Overall, 33% of respondents believed that commuting 

impacts were very significant or significant. However, 64% stated that reducing their 

footprint is very important or important. 
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Figure 15. Survey Responses to “how much impact, if any, do you think your 

commuting habits have on Clemson University's "carbon footprint" on the 

environment?” 
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Figure 16. Survey Responses to “how important is it that Clemson University 

reduces its carbon footprint or impact on the environment?” 

Conclusions and Recommendations 

Overall, using the median commuting distance with the other calculations found 

that that 16,738 metric tons of CO2 were produced from commuting. Of this 5,673 metric 

tons CO2 were attributed to student commuters, 1,964 to faculty, 8,908 to staff, 76 to 

LEV, 74 to motorcycles, and 43 to scooters/mopeds. Staff were found to have the highest 

associated emissions because they had the highest distance commuted (12 miles 

compared to 7 for faculty and 4 for students). They also had the highest average for days 
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per week commuted, and it must also be considered that faculty and staff commute year-

round. 

There were several sources of uncertainty in the data that may lead to error in the 

final calculations. The average mpg found from the DOE applied average fuel economics 

for city driving, which may not be fully accurate since some commuter’s habits may be 

more representative of highway driving. This consideration would lead one to think that 

the mpg calculated may be a higher estimation. Also, both student and employee vehicles 

records contained some incomplete records for which the mpg could not be factored in to 

the total. Furthermore, employee vehicle registration was conglomerated between faculty 

and staff so there was a shared average mpg for this demographic that was applied to 

their separate commuting distance (from survey).  

There is also uncertainty as the survey regarding distance traveled, weekly 

frequency, and mode of transportation used. These statistics were applied to all the 

registered vehicles, however individual driving patterns vary and influence emissions 

based on the vehicle driven. There is also a possibility that respondents were not fully 

honest in their survey about their driving habits. Also, driving patterns may have changed 

from the time respondents took the survey since changing schedules each semester 
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influences driving habits. Some students could be making multiple trips to campus per 

day, and this was not indicated on the survey. 

There are additional sources of commuting emissions that may not have been 

accounted for. This analysis did not account for students that might commute without a 

permit and park downtown, or commuters that might be dropped off on campus by 

someone with an unregistered vehicle. Another further consideration is that during peak 

hours some students drive around campus for extended periods of time searching for a 

place to park.  

Future studies could focus on obtaining more detailed data for commuting to more 

accurately estimate these emissions, which are significant to the entire campus’s 

footprint. Overall, emissions could be reduced if commuters were encouraged to carpool, 

use more fuel-efficient vehicles, or use alternative sources of transportation such as 

biking, walking, or CATBUS. Based on the calculations, if (standard) personal vehicle 

commuting was reduced by 2,000 student permits, the associated CO2 emissions would 

decrease by nearly 1,030 metric tons of CO2 per year. Since many apartment complexes 

are located within walking or biking distance to campus, it is feasible that the number of 

parking permits could be reduced if alternative transportation was convenient for 

students. However, there seems to be some disconnect between the perceived impact of 
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commuting habits and the concern for Clemson reducing its carbon footprint as seen in 

the survey results. If a large amount of the population feels that reducing Clemson’s 

carbon footprint is important, then additional education about the cumulative impact of 

commuting may promote a change in behavior.  

4.4.4 Clemson Area Transit 

Background 

Clemson Area Transit Bus System (CATBUS) is a public transit system that is fare 

free, provided through federal, state, and local assistance. This alternative mode of 

commuter transportation has routes running to Seneca, Pendleton, Central, and around 

Clemson. CATBUS also operates three campus routes that run loops on the east and west 

sides of campus to transport students from academic buildings to parking lots. While 

CATBUS is currently transitioning to have an all-electric bus fleet to reduce tailpipe 

emissions, the majority of its buses are currently fueled by diesel. Most of ridership 

around the community is for student commuting, therefore the buses in this transit system 

are considered to produce Scope 3 emissions since they are an indirect consequence of 

the activities of the University.  
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Data 

Data was obtained from Clemson Area Transit regarding the CATBUS system. 

Data included all local bus routes for 2015 and 2016. This analysis examined the 

emissions associated with the operation of the buses, but not the operation of its facilities. 

The Seneca bus route is an entirely electric-powered bus fleet, so for this route the total 

electricity consumption was recorded. The rest of the routes use diesel fuel, so the total 

monthly fuel usage and mileage for the fleet was obtained.  

Electric Bus Fleet 

The total electricity consumption for the Seneca electric bus fleet was recorded 

monthly. The transit supervisor for CATBUS provided data for the month of December 

2016. In this month, the electric fleet recorded 12,440 miles driven, 280 charge cycles, 

25,274 kWh consumption, and an average charge cycle lasting 7 minutes and 39 seconds 

(which includes 1 minute for docking).  
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Data Quality 

Table 4-37. Data Quality for CATBUS Electric Bus Fleet 

Indicator Score Score Explanation 

Reliability 1 
Verified data based on measurements by 

CATBUS 

Completeness 3 

Representative data from an adequate 

number of buses, but for a short period (one 

month) 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 
Data from enterprises, processes, and 

materials under study 

Diesel Bus Fleet 

Clemson also has a diesel bus fleet that services intercampus routes, and 

commuting routes around Pendleton, Central, and Clemson. CATBUS provided annual 

reports of the fuel consumption and mileage for 2015. The annual fuel consumption for 

these routes totaled 413,055 miles and used 109,258 gallons of diesel fuel. 
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Data Quality 

Table 4-38. Data Quality for CATBUS Diesel Bus Fleet 

Indicator Score Score Explanation 

Reliability 1 
Verified data based on measurements by 

CATBUS 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 
Data from enterprises, processes, and 

materials under study 

Diesel Emissions 

The U.S. Energy Information Administration has determined that 22.40 lbs CO2 are 

produced from the combustion of a gallon diesel fuel [76]. This factor is an average 

published in 2016 which is based on home heating and diesel fuel practices. 
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Data Quality 

Table 4-39. Data Quality for Diesel Combustion Emission Factor 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements by EIA 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
3 

Data pertains to similar combustion 

conditions, but not specific process 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study, but from emissions factor gathered 

from different enterprises and technology 

 Methods 

Electricity  

According to the transit supervisor for CATBUS, the CATBUS facility in Clemson 

is outfitted with 210 solar panels on its roof. Most these panels are solar PV, which cover 

4,000 square feet of the roof and generate 66,100 kWh of electricity annually. There are 

also 320 square feet of solar thermal panels that heat water for the bus washing station, 

and in doing so offset the equivalent of 18,250 kWh of electricity that would have been 

used annually. For this analysis, the electricity consumption used by the CATBUS 
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facilities was not obtained, although if it had been, the electricity offset from the solar PV 

panels would been applied to the entire operation. Electric buses charge at the CATBUS 

facility in Seneca, however to acknowledge CATBUS’s sustainability efforts, it was 

assumed that the electricity generation from the solar PV panels would be applied to 

offset the electric fleet. This offset about 22% of the annual electricity consumed for 

charging, then it was then assumed that the remaining electricity was provided by Duke 

Energy Carolinas, LLC. For this, it was estimated that the month of December was 

representative of the year, and so the annual electricity consumption for charging would 

be 303,288 kWh. By subtracting the electricity offset by the solar PV panels, this leaves 

237,188 kWh annual requirement from Duke Energy for charging. Since CATBUS is in 

the same region as Clemson University, the electricity mix and emission calculation 

methods are the same as described in section 4.3.1 for electricity, and the methods 

described in Section 4.4 for transmission and distribution losses are incorporated. 

Accounting for grid losses, the electricity needed annually from Duke Energy to charge 

the electric buses is approximately 252 MWh, which has an associated 82 metric tons 

CO2-e in emissions. 
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Diesel Bus Fleet 

The annual fuel consumption for 2015 totaled 413,055 miles and required 109,258 

gallons of diesel fuel. The emissions can be calculated assuming 22.40 lbs CO2 are 

produced from a gallon diesel fuel [76] and equation 16 below.  

(f)(EF) (16) 

Here, f is the total fuel used over a year, and EF is the emission factor for the fuel. 

From this, it is determined that 1,110 metric tons of CO2 are produced from the diesel 

combustion in the CATBUS fleet. 

Ridership 

According to CATBUS, there is no system to track which riders are students since 

there is not a need for a 'card swipe' to ride the buses. However, the on-campus routes 

such as the orange, purple and blue routes are known to have 99% student ridership. This 

was the only ridership statistic that could be provided, as studies to estimate ridership on 

the Red, Pendleton and Seneca routes are too costly. For this study, it will be assumed 

that ridership on the Red, Pendleton and Seneca will also be 99% student ridership. This 

is most likely an overestimation, as these routes are more likely to have non-student 
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riders since operate outside of Clemson’s campus. Since the CATBUS routes are geared 

towards student commuting, we will use the 99% student ridership to allocate 99% of the 

emissions from this public transit to Clemson. Therefore, applying this percentage it is 

determined that Clemson is attributed about 81 metric tons CO2 in emissions from the 

electric fleet, and 1,099 metric tons of CO2 are produced from the combustion in the 

diesel fleet. 

Conclusions and Recommendations 

There was some uncertainty in the data received from CATBUS. The estimation for 

annual energy use for the electric buses may not be representative as it is only based on 

data for one month. Also, the average emissions from diesel combustion were calculated 

using EIA’s combustion factor, which in reality may vary since it is based on an average 

of diesel combustion manners. 

When CATBUS transitions fully to an electric bus fleet, then their GHG emissions 

will reduce dramatically. With the given data for the electric bus fleet, the average bus 

achieved 2.03 miles/kWh of charge. Applying this statistic to the total mileage of the 

diesel fleet in 2015 (and accounting for grid losses) it was found that charging this fleet 

electrically would require about 839 MWh annually. This rough estimation would result 

in 271 metric tons CO2-e annually from the electricity provided by Duke Energy, 
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compared to the 1,110 metric tons of CO2 found from the diesel combustion. While this 

entity outside the control of Clemson, efforts to install solar PV panels could further 

reduce their emissions once their fleet is entirely electric.  

In general, if students were to commute via CATBUS rather than their personal 

vehicles, Clemson’s associated emissions would decrease. Therefore, efforts to make 

CATBUS more convenient for students may be desirable. Currently, reports from 

CATBUS operators disclosed that bus pickups may become more frequent, with buses 

picking up students from stops on a 15 minute intervals rather than 30 minute intervals. 

While this may increase the distance traveled by buses, future studies could compare the 

tradeoff between more frequent bus schedules and decreased driving by students.  

4.4.5 University Related Travel 

Background 

Clemson University administrators, faculty, and staff frequently travel for 

administrative purposes, to attend conferences and meetings, conduct field work, visit 

collaborators, and to present their research. This travel enables campus functioning, along 

with high-level research and collaboration, integral to being an R1 Research University. 

Students also travel for similar purposes. Traveling involves transportation, 

accommodations, and food. In this analysis, emissions from food and accommodations 



153 

associated with travel will be deemed negligible such that transportation will be the most 

significant source of GHG emissions associate with travel. The most common forms of 

travel are commercial flights or driving to the desired destination. Aircraft jet engines, 

like many other vehicle engines, produce CO2, H2O, NOx, CO, SOx, VOCs, particulates, 

and other trace compounds [78]. Since this travel results in indirect greenhouse emissions 

which are the outcome from activities that sustain university operations, these emissions 

are considered Scope 3 emissions.  

Data 

Data was obtained from Clemson Facilities recording the travel expense for 

students and faculty. Faculty expenses were categorized by costs from driving, 

commercial air fare, university aircraft, charter flights, and private aircraft. This data for 

faculty was further broken down in to in-state, out-of-state, and foreign travel costs. 

However, student travel costs were not classified by how they were incurred. Due to its 

monetary nature, the specifics of this data will not be disclosed.     
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Data Quality 

Table 4-40. Data Quality for University Travel Expenses 

Indicator Score Score Explanation 

Reliability 1 Verified data based on receipts of travel 

Completeness 2 

Representative data for travel paid for by 

University over the course of a year. 

University travel paid by other sources 

are not included 

Temporal 

correlation 
1 Data are for 2014 

Geographical 

correlation 
1 

Data pertains to travel from University 

employees and students 

Further 

technological 

correlation 

3 

Data pertains to processes under study, 

but from exact mode and distance 

traveled is not given 

Methods 

Where possible, a bottom-up process has been used to conduct the LCAs. However, 

the charter flights, commercial flights, and driving recorded only has data in monetary 

terms. From the driving data, the mileage reimbursement charge was used with university 

commuter fleet fuel economy to determine distances driven. Then, for flight data a top-

down approach was applied. Expenses incurred by university employees was recorded in 

more detail than for students, so student travel required many assumptions as to how 

money was spent.  
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Employee Driving 

Clemson has a known mileage reimbursement charge, so the mileage driven for 

University related activities could be determined by the total charges. Examination of the 

data and the expenses described indicated that the data was purely for mileage 

reimbursement and not rental car use or other costs. The total costs reimbursed for in 

state, out of state, and foreign travel were summed. In-state and out-of-state travel 

included direct travel to locations of interest, and travel to airports for travel. Costs 

incurred related to foreign travel was exclusively driving to and from airports. For this 

analysis, it was assumed that the vehicles driven were personal vehicles and operating 

with gasoline. With the equation below, the carbon emissions from fuel usage were 

determined.  

Total emissions from driving =
(C)

(r)(m)
(EF) 

(17) 

Here, C is the total cost reimbursed for driving mileage, m is the average fuel 

economy of the vehicles, r is the reimbursement price per mile, and EF is the emissions 

factor for the combustion of gasoline. The average reimbursement Clemson paid for 

driving mileage in 2014 was $0.54 per mile. This was used in conjunction with the 

average fuel economy for vehicles registered by faculty and staff (19.44 mpg as described 
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in Section 4.4 and shown in Table 4-34). The emissions factor from the EIA is 19.60 

pounds CO2 per a gallon of gasoline [76].  From this, it was determined that 174,023 

gallons of gasoline were consumed over 2014 for University travel by personal vehicles, 

using the methods in equation 17 from Section 4.4.4 this resulted in 1,550 metric tons of 

CO2 to be emitted.  

Employee Commercial and Charter Flights 

Since the cost of commercial and charter flights was recorded, a top-down method 

was needed to estimate the GHG emissions associated with this economic value. The 

Carnegie Mellon Economic Input-Output Life Cycle Assessment (EIO-LCA) tool was 

used to estimate the emissions resulting from spending in the air transportation sector of 

the U.S. economy. This model uses aggregated sector-level data to quantify the 

environmental impacts that can directly attributed to a specific economic sector. For this 

assessment, the 2002 U.S. purchaser price model was used. This models the U.S 

economy in 428 sectors based on the 2002 commodity by industry model of the U.S. 

Bureau of Economic Analysis [96]. The model also links the inputs and output 

transactions for sectors that support the production of each other. In this case, the sector 

evaluated was air transportation and faculty spent $2,681,383 on commercial, charter, 

and private flights in state, out of state and internationally. Since an internationally based 
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input-output model was not offered, the foreign travel was assumed to impacts consistent 

with domestic air transportation. Overall, the associated GHGs were 5,320 metric tons 

CO2-e. Of this, 4,120 metric tons CO2-e are directly attributed to the air transportation 

sector, the additional emissions stem from sectors such as oil and gas extraction, 

petroleum refineries, and power generation and supply.  

Student Travel 

Overall, $4,951,073 were expensed for student travel with descriptions ranging 

from hotels, driving, and flights. Mileage, flights, accommodations, and per diem had to 

be estimated based on the cost of an average trip. Based on typical conference travel, it 

was assumed that the average trip would be three days, consisting of driving to the 

airport, a flight, accommodations, and per diem. Three days was assumed as the average 

length of a conference. The per diem was assumed to be $32 per day, as this is Clemson’s 

out of state per diem rate. The average cost of a hotel room domestically is $131 [97] and 

this was accounted for over 3 days. This cost was assumed to be comparable to 

international hotel rooms, though average prices for hotels ranges by country. 

Furthermore, there is the possibility that rooms are shared between students, reducing the 

cost per trip, though there is no information given to support this. The emissions 

associated with the food and accommodations won’t be included in this analysis, rather it 
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will focus on the transportation. The average driving expenses for faculty foreign travel 

was $77.35. Presumably, this cost was travel to airports, so it was assumed that student 

travel to airports would be comparable in cost. The Bureau of Transportation provides 

yearly statistics on the average flight fares based on the total ticket value [98]. The 

statistics for 2014 were analyzed for three common nearby airports; Atlanta, GA, 

Charlotte, NC, and Greenville/Spartanburg, SC. The average fare between these three 

airports in 2014 was $423.57. Per the National Travel and Tourism Office of the U.S. 

Department of Commerce the average international airfare for a U.S. traveler was $1,347 

[99]. Finding the percentage that each of these costs would be to the total expenses, the 

amounts for each category could be calculated. Using the domestic airfare cost, the 

emissions associated with flying were 3,910 metric tons CO2-e, while driving produced 

328 metric tons CO2-e. For international airfare, the emissions associated were 6,440 

metric tons CO2-e from flying, and 170 metric tons CO2-e from driving. These ranges 

area shown in Figure 17, and the averages for the range are 249 metric tons CO2-e for 

driving and 5,175 metric tons CO2-e for air travel.  
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Figure 17. University Related Travel Emissions 

Conclusions and Recommendations 

Emissions from university related travel were 5,320 metric tons CO2-e for 

employee air travel, and 1,150 metric tons CO2-e for employee driving. For students, the 

average of the ranges found were 249 metric tons CO2-e for driving and 5,175 metric tons 

CO2-e for air travel. Therefore, overall 12,294 metric tons CO2-e were attributed to 

university related travel.  

Since this data was given in the term of monetary flows, finding the emissions 

associated with these activities used methods that included varying life cycle phases. The 
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driving was estimated using mileage rates and the EIA combustion emissions factor. 

Therefore, this only included the use phase in the emissions accounting. However, the 

EIO-LCA tool used for flights considers use and upstream materials and energy resources 

throughout the supply chain in its emissions accounting. This tool also considers the air 

transportation sector as a whole for its calculations, while in this analysis the travel 

expenses were primarily charter and commercial flights, whose emissions may differ 

from the entire sector. Another source of uncertainty was within the student travel 

records, which were aggregated and not appropriately described. Assumptions regarding 

the travel expenses in this category led to uncertainty in the final calculations. The main 

assumption was that the costs incurred were related to travel for a conference. In these 

calculations, average costs were used for typical expenses, however the average value 

may not be representative and other expenses may have been incurred that were not 

accounted for. While conference travel was assumed, it is also likely that some of the 

student travel costs were not attending conferences, or if they were it may have been for a 

different period of time than the assumed 3 days. Overall, using cost of travel for air 

transportation leaves room for uncertainty as cost may not be accurately indicative of 

distance travels, and associated GHG emissions. For example, a flight from Atlanta, GA 

to Miami, FL may have the same ticket price as a flight from Atlanta, GA to San 

Francisco, CA. However, the flight to San Francisco would have higher emissions 
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associated with farther distance traveled. In the future, the university may want to obtain 

more detailed travel information from the employees and students they fund to travel so 

that their associated emissions can be estimated more accurately. 

Some inherent limitations to the method applied are that ticket prices of flying 

fluctuate, and air transportation emissions may have changed over time. The data used in 

this IO model is from 2002, and is representative of this year. This model was deemed to 

be appropriate to use with 2014 data since the average age of the worldwide air transport 

jet fleet has been between 10 and 12 years old, and the growing population of airplanes 

many have aged more than 20 years [100]. Another consideration with this data are that 

the EIO-LCA model is based on U.S. economic sectors, while some university related 

flights were international. 

Overall, university related travel is a significant source of emissions as it involves 

transportation by vehicles and airplanes; both dependent on fossil fuels. Travel could be 

reduced by setting up carpools for travel, use of videoconferencing, and traveling by train 

rather than plane, especially back and forth to Washington DC, which has lower 

associated emissions. 
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4.4.6 Paper Usage 

Background 

Paper products serve many purposes for Clemson University. Copy paper is used 

throughout campus to print out materials for classes, research, and administrative 

documents. Clemson also uses a great quantity of paper towels and bathroom tissue for 

hygienic purposes. The printing on office paper will use electricity which was accounted 

for in Scope 2 emissions. The production of paper products is an upstream activity that 

has GHG emissions associated with Clemson’s need for these products. Since these 

emissions are from an entity not controlled by Clemson, they are a Scope 3 emission 

source.  

 Data 

Paper Usage 

Data for copy paper used was obtained from Clemson University Facilities. The 

majority of Clemson’s copy paper usage is standard 8.5 by 11-inch white card stock. This 

makes up 78% of the overall paper use, with 20% being recycled multipurpose paper, and 

the remaining 2% consisting of laser paper, inkjet paper, and fine business paper. 

Annually, the University uses about 336 reams of paper for its printing needs.   
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Data regarding paper towels and bath tissue bought came from the University’s 

current contractor. Clemson has varying paper towel dispenser, and accordingly must use 

paper towels that match the containers. The brown and white multi-fold towels and paper 

towel rolls varieties are seen in Table 4-41. 

Table 4-41. Clemson University Paper Usage 

Product 

Description 
Product Details Annual Usage Units 

Printing Paper 

Colored Copy Paper 263 reams 

Multipurpose Paper 66 reams 

Laser Paper 5 reams 

Inkjet Paper 2 reams 

Fine Business Paper 1 reams 

Paper Towels 

Brown Multi-fold Towels 5,232 packs 

Enmotion Brown Towels 7,554 rolls 

White Roll Towels, 2-Ply 1,290 rolls 

Envision Brown Roll Paper 

Towel 

216 
rolls 

Single Fold Towels, White 192 packs 

Enmotion White Roll Towel 138 rolls 

Bathroom Tissue 

2-Ply Coreless Bath Tissue,

White 

35,604 
rolls 

Angel Soft Toilet Tissue 8,960 rolls 
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Data Quality 

Table 4-42. Data Quality for Paper Usage 

Indicator Score Score Explanation 

Reliability 1 
Verified data based on purchases by 

University 

Completeness 1 
Representative data from a sufficient sample 

of sites over an adequate period of one year 

Temporal 

correlation 
1 

Office paper data are for 2014, while paper 

towels and bathroom tissue are less than 

three years of difference to year of study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 
Data from enterprises, processes, and 

materials under study 

Various methods were considered for this analysis. Data from the Ecoinvent 

database related to pulp and paper making processes was specific to Europe rather than 

North America, and not did not have information to model the manufacturing of the 

individual product production. Therefore, more complete surrogate data from other LCAs 

was adopted for this assessment.  

Office Paper 

The American Forest & Paper Association and the Forest Products Association of 

Canada conducted a LCA of varying grades of printing and writing paper in North 
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America. One of the LCAs analyzed a ream of office paper made of uncoated freesheet.  

This study used data from 72 mills in the U.S. and Canada, making it the most 

comprehensive study conducted for North American paper [101]. In this study, one ream 

of paper was responsible for approximately 2.91 kg CO2-e  from cradle-to-gate [101]. 

This value fell within the range of other literature values. One cradle-to-costumer study 

following ISO 14040/14044 standards found that one A4 sheet of office paper produced 

4.64 g CO2-e per sheet, translating to 2.32 kg CO2-e per ream of paper [102].  Another 

European study approximated climate change gas emissions from a typical cut-size paper 

to find areas where emissions could be reduced. This study estimated that 1.5 metric tons 

CO2-e were produced per ton of paper from forestry, pulping, paper-making, and 

printing, which is equivalent to 3.75 kg CO2-e per ream of paper [103]. Since this study 

was on a per ton basis, its significant figures for each activity was only one decimal place 

(e.g. 0.3 tons CO2-e/ton paper from pulping) which may have overestimated the 

emissions on a per ream basis. Therefore, the middle lifecycle emissions value from the 

American Forest & Paper Association study was used and was preferred as it was specific 

to paper produced in North America. 
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Washroom Towels 

In 2007, Kimberly-Clark Corporation contracted Environmental Resource 

Management to conduct LCAs on its various tissue products distributed in North America 

and Europe. These LCAs were performed for three scenarios; (A) products with a larger 

share of virgin fibers; (B) products containing 100% recycled fibers or a significant 

percentage of recycled fibers, and (BB) products containing recycled fibers where the 

waste paper used to produce recycled fibers doesn’t have a significant environmental 

burden [104].  The paper towels used by Clemson meet the Green Seal Standard and EPA 

Comprehensive Procurement Guidelines, so they contain at least 50% post-consumer 

recycled fibers. Therefore, scenario B (for North America) was chosen as it was assumed 

the products contain a significant percentage of recycled fibers. The functional units for 

the chosen products are displayed in Table 4-43. The assessment performed for 

Kimberly-Clark included all phases of the tissue product life cycles. This study was 

chosen over others as impacts were comprehensively broken down by life cycle phase. 

Further, this study was conducted following the ISO 14040 guidelines and underwent a 

critical review by an external review panel [104]. Extracting the cradle-to-gate impacts, 

the lifecycle included energy use, sorting of recycled paper, and processes up until 

manufacturing produced 550 kg CO2-e for a 72,000 linear feet of 8-inch wide hard roll 
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towel. These limited life cycle phases also keep boundaries consistent with other Scope 3 

emissions as disposal is not included.  

Emissions values from other studies were compared to this factor for consistency. 

One comparative LCA study found that 9.4 g CO2-e was produced per two sheets of 

white paper washroom towels with 100% recycled content roll, and 873 sheets per a 

800 foot roll [105]. Assuming the width of the roll is 8-inches, this would translate to 

about 369 kg CO2-e for the household functional unit that the Kimberly-Clark study used. 

Another cradle-to-grave study from the Massachusetts Institute of Technology found that 

14.8 g CO2-e were produced for 100% recycled paper towels had a reference flow of 2 

towels, plus its packaging and dispenser, waste bin, and bin liner [106]. This report didn’t 

specific the dimensions of the sheets, but assuming the same sheet quantity and 

dimensions as the prior study, then this would equate to 580 kg CO2-e for the equivalent 

functional unit in the Kimberly-Clark study. However, since this study did not provide 

the data for separate phases, or just the paper towel alone, so it was not considered for use 

in this study. Overall, the Kimberly-Clark study was preferred as it was more 

comprehensive.   



168 

Bathroom Tissue 

For consistency, another LCA performed by Kimberly-Clark was used for 

bathroom tissue. This LCA used similar scenarios in its assessment. Further investigation 

in the product description uncovered that the coreless toilet paper meets EPA 

Comprehensive Procurement Guidelines of containing at least 25% post-consumer 

recycled fibers. The product also meets the Green Seal Standard, which is dependent on 

chlorine free processing, energy and water efficiency, and content of 100% recovered 

material, with a minimum of 25% post-consumer material. The Angel Soft bath tissue 

also contains at least 20% post-consumer recycled fiber and meets or exceeds EPA 

Comprehensive Procurement Guidelines. Since the bathroom tissue used by Clemson 

uses a significant percentage of recycled fibers, scenario B was chosen. For this scenario, 

the life cycle processes examined were the cradle-to-gate impacts, which included energy 

use, sorting of recycled paper, and processes up until manufacturing. This produced 55.1 

kg CO2-e for a household’s use of bathroom tissue.  



169 

Table 4-43. Paper Product LCA Functional Units

Functional Unit Reference Flow 

North American 

Office Paper 

The production in the U.S. and 

Canada, delivery to an average 

U.S. customer, use and final 

disposal or recovery of one 

standard ream of office paper 

One ream of office paper 

(500 sheets) 

North American 

Washroom 

Towel 

One year of hand drying for 50 

workers in a typical U.S. 

washroom 

72,000 linear feet of 8-

inch wide hard roll towel 

North American 

Bathroom Tissue 

One year of bathroom use for a 

large U.S. household 

40,000 sheets 

regular/economy 

bathroom tissue 

Data Quality 

Table 4-44. Data Quality for Paper Products LCAs 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a several paper 

manufacturers to even out normal 

fluctuations 

Temporal 

correlation 
3 Less than 10 years difference 

Geographical 

correlation 
5 

Studies are pertinent to paper products 

produced in North America, exact areas and 

production conditions are unknown 

Further 

technological 

correlation 

2 
Data from processes and materials under 

study but from different enterprises 
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Methods 

Office Paper 

The American Forest & Paper Association study was a cradle-to-grave LCA, so it 

looked at all phases in the life cycle of office paper. However, to be consistent with the 

boundaries for other Scope 3 emissions this LCA had to be limited to include fiber 

procurement, production, and transport, and eliminate the end of life phase. In this study, 

one ream of office paper was responsible for approximately 2.91 kg CO2-e [101]. Here it 

is assumed that all paper used in Clemson is comparable to a ream of office paper made 

of uncoated freesheet as used in the study.  

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  (𝑆𝐹𝑈)(𝑈) (18) 

Here, SFU is the functional unit of the study for a specific paper product (e.g. 2.91 

kg CO2-e/ream office paper), and U is Clemson’s annual usage of the specific paper 

product. From this, it was found that about 1 metric ton of CO2-e was produced from 

office paper used by Clemson University.   
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Washroom Towels 

The functional unit for the Kimberly-Clark studies were scaled to serve a 

household over a year [104]. For the varying packs of paper towels, the length and widths 

of the rolls or folding towels were given in the product descriptions. The widths of the 

paper towels were assumed to be the same as this was not given in the product 

description. From this, a total square area of paper towels was calculated, assuming the 

impacts from creating a square foot of paper towels was comparable for the various types 

of towels. Overall, it was found that Clemson University uses 6,117,567 square feet of 

paper towels. The Kimberly-Clark LCA for washroom towels determined that 72,000 

linear feet of 8-inch wide hard roll towel produced 550 kg CO2 equivalent in emissions. 

Using equation 18, it was found that washroom towels produce 70 metric tons of CO2

equivalent. 

Bathroom Tissue 

For the bathroom tissue, the amount of cases purchased was known, as was the 

number of rolls per case. From this is was assumed that the individual sheets on each roll 

were the same standard dimensions as in the Kimberly-Clark study, since they were not 

known. Then, it was calculated that Clemson uses 57,438,000 sheets of bathroom tissue 

annually. The Kimberly-Clark LCA found that 40,000 sheets regular/economy bathroom 



172 

tissue produced 55.1 kg CO2-e [104]. Applying Using equation 18, it was found that 

bathroom tissue account for 79 metric tons of CO2-e. 

Conclusion and Recommendations 

Overall, the total emissions associated with Clemson’s purchased paper usage was 

150 metric tons. There was uncertainty in using surrogate data from LCA studies, as the 

data used in these studies may not be fully representative of the products used by 

Clemson. There was also uncertainty in comparing the products used by Clemson to the 

functional unit described in the LCA studies since the sizes of the products were of 

different dimensions. In all cases length and width were given, so it was assumed that 

area of paper towels used corresponded with GHG emissions. However, the thickness of 

the paper products were not given, therefore there is uncertainty related to overall mass of 

functional units compared.  

To reduce these emissions the university could promote use less office paper use by 

promoting printing on both sides of paper, and electronic distribution of course materials, 

homework, and announcements. Another recommendation is that bathrooms have 

bulletins to encourage users to limit the amount of paper towels used each time they wash 

their hands and having paper towel dispenser that have an automatic stop. Future studies 
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may also analyze if it would lower the impact to install electric hand dryers to replace 

paper towels.  

4.4.7 Waste and Recycling Transportation 

Background 

Clemson runs a Recycling Services site on campus at Kite Hill, located on the 

eastern corner of Clemson’s campus (labeled (1) in Figure 18). Kite Hill Recycling 

Center has a drop off area that will separate cardboard, scrap metal, plastic, paper glass, 

toner, electronics, batteries, oil, and yard waste. This recycling center is considered a 

multi re-use facility since it separates and prepares the recyclable materials for end-user 

manufacturers. Recycling from the center is loaded onto a truck and then taken to 

American Recycling Center outside of Asheville, NC. According to Facilities, in 2014-

2015 Clemson University produced 1,348 tons of solid waste. Of this, the 276 tons were 

cardboard, 355 tons were paper, 263 tons were compost, 119 tons were scrap metal, and 

127 tons of waste were from the home football games alone. This waste had to be 

transported to waste and recycling facilities to be processed. This is organized by 

Clemson’s recycling services, and is considered a Scope 3 emission.  



174 

Figure 18. Location of Kite Hill Recycling Center on Clemson University Campus 

Data 

According to the Clemson Recycling Services operator, recycling is brought to the 

American Recycling Center to Asheville, NC about once per week on a refuse truck. 

Meanwhile, trash goes to a transfer station in Pendleton, SC five days per week during 

the Fall and Spring, and 3 days per week during the Summer on the same type of truck. 

The waste station in Anderson is 16.7 miles away while the fastest route to the American 

Recycling Center in Asheville, NC is 83.3 miles away.  
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Data Quality 

Table 4-45. Data Quality for Waste and Recycling Transportation 

Indicator Score Score Explanation 

Reliability 2 
Verified data partly based on weekly pickup 

assumptions 

Completeness 2 
Data are an assumed waste and recycling 

schedule 

Temporal 

correlation 
1 

Data are from 2016-2017 school year, which 

is less than three years of difference to year 

of study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data are from enterprises under study 

Fuel Economy 

Refuse trucks have low fuel economy since they are heavy and stop repeatedly 

when driven. According to the Department of Energy, the average fuel economy of a 

refuse truck is 2.53 miles per gallon [107].  
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Data Quality 

Table 4-46. Data Quality for Fuel Economy of Refuse Trucks 

Indicator Score Score Explanation 

Reliability 1 Data based on national measurements 

Completeness 1 

Data are collected by the Federal Highway 

Administration and is representative of 

national trends for refuse vehicles 

Temporal 

correlation 
1 

Data are from 2015, which is less than three 

years of difference to year of study 

Geographical 

correlation 
3 Data represents a national average 

Further 

technological 

correlation 

2 
Data are from process under study, but is not 

specific to the model of the refuse truck 

Emission Factors 

According to the EIA, 19.60 lbs CO2/gallon gasoline are produced from 

combustion [76]. The data quality for this emission figure can be seen in Table 4-10 of 

Section 4.2.3. 

Methods 

Emissions 

Assuming the time frame from the Fall and Spring academic sessions, which is 

about 39 weeks, a refuse truck picks up trash from Clemson’s campus 5 times per week. 
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During the 13 weeks of summer the refuse truck only comes 3 times a week. This means 

that the refuse truck takes 170 trips to Anderson during the school year, and 39 trips 

during the Summer. Meanwhile recycling is taken to Ashville 52 times over the year. 

With the total trips and distance driven to the facilitates, the total distance traveled can be 

found, which was 7,822 miles per year. Using the following equation, the GHG 

emissions associated with combustion were determined.  

(d)(f)(EF) (19) 

Here, d is the total annual distance traveled by the refuse trucks, f is the average 

fuel economy, and EF is the emissions factor for gasoline combustion. Using the 

previously used average emissions factors of 19.60 lbs CO2/gallon gasoline from the EIA 

[76], it was found that about 27 metric tons of CO2 were produced from the refuse truck. 

Conclusion and Recommendations 

Overall, 27 metric tons of CO2 are associated with waste and recycling 

transportation. There was uncertainty in these calculations as they were based on 

estimations for an average refuse truck. Future studies should seek more precise data 

regarding pickup schedules and the type of refuse trucks used.  
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One method to continue decreasing waste is to change student behavior. For 

example, in 2012 a printing limit was put into place for students with their student ID 

cards. From this and the increased use of online materials, paper use has decreased 

significantly across campus. Programs could be enacted to encourage students to produce 

less waste. This could even spread to the campus food venues by encouraging them to 

decrease use of bags and wrappers where possible, and choosing to sell food in recyclable 

or reusable containers. Another recommendation to increase recycling and decrease 

landfill waste is educational signage and proper recycling bins dispersed around campus, 

including outside. Regular plastic, such as packaging or other food containers can be 

recycled in along with plastic bottles, however this is not specified on the signs. On the 

same note, items like paper cups cannot be recycled because they have a waxy coating on 

the inside. Better educational signs may be able to improve recycling practices. An option 

to compost food waste outside of dining halls may also reduce waste sent to landfills. 

Then, using a closer waste and recycling facility could reduce the emissions associated 

with transportation.  
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4.4.8 Wastewater Treatment Chemicals 

 Background 

 

Section 4.2.6 described the emissions from the Clemson WWTP operations in 

regards to GHGs emitted from operation. However, there are also several significant 

quantities of chemicals used to treat the wastewater which can be considered upstream 

emissions of the plant. Alum, also known as aluminum sulfate (Al2(SO4)3) is the 

coagulant used during this process. Lime is also used in treatment to adjust the pH and 

alkalinity during coagulation. After water has been separated from sludge, and remaining 

sediments and organic matter are removed, the water is then treated with chlorine. Then, 

before the water is released, it is treated with sulfur dioxide to reduce chlorine.  

 Data 

Chemical Use 

Data for wastewater treatment was received from the Clemson Wastewater 

Treatment Plant. Operators at the plant measure the amount of liquid lime and alum in 

their tanks daily. From this and knowing the tank dimensions, the annual usage could be 

gathered by tracking the amount added when the tanks were refilled. The plant also 

receives regular shipments of gaseous chlorine and sulfur dioxide. These are delivered in 
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150 lb. tanks. Using the records for the shipments received, the annual usage of these 

chemicals could be found. The results of this investigation are shown in Table 4-47. 

Table 4-47. Annual Chemical Use by Clemson WWTP 

Chemical Amount 

Lime 14,755 ft3 

Alum 29,178 ft3 

Chlorine 7,050 lbs 

Sulfur dioxide 3,600 lbs 

Chemical Properties 

Data was received on where the chemicals were supplied from, however their 

production origins were not known. Chlorine and sulfur are fed as a gas, and are not 

diluted. However, lime and alum are diluted with water. Per the manufacturing 

specifications provided by the WWTP, the lime had a concentration of 30.0 % by weight 

and a density of 1.17 – 1.19 g/mL, so the specific gravity was assumed to be the average 

of the range; 1.18. Meanwhile, the alum mixture had a concentration of 48.5% by weight 

and a density of 1.335 g/mL.   
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Data Quality 

Table 4-48. Data Quality of Wastewater Treatment Plant 

Indicator Score Score Explanation 

Reliability 1 

Verified data based on manufacturing 

information or regular measurements 

performed by WWTP operators 

Completeness 1 
Data are representative over an adequate 

period to even out normal fluctuations 

Temporal 

correlation 
1 

Data pertains to 2016-2017, which is less 

than three years of difference to study 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 
Data from enterprises, processes, and 

materials under study 

EcoInvent Database 

The ecoinvent database is the largest transparent unit-process LCI database 

worldwide [108]. This database provides well documented process data for thousands of 

products in the form of generic background LCI data. Data are regularly updated, and this 

study used from ecoinvent version 3.1 which was released in July of 2014. This study 

utilized consistently available, global datasets which represent background supply chains 

that can be relied on, no matter for which region a dataset is created [108]. This is helpful 

for areas where data for processes aren’t readily available. 
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Data Quality 

Table 4-49. Data Quality for Ecoinvent Database 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a sufficient sample 

of sites over an adequate period to even out 

normal fluctuations 

Temporal 

correlation 
1 

Less than three years of difference to year of 

study 

Geographical 

correlation 
3 

Data from area with similar production 

conditions 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study but from various enterprises and 

technology 

 Methods 

Chemical Quantity 

For lime and alum, the amount of chemical within the diluted mixture had to be 

determined. The WWTP tracks these chemicals in daily volume (already diluted) in their 

tanks. Since the concentration and specific gravity of the chemical were known, the 

following equation could be used to determine the mass of the chemical used annually.  

(𝐶𝐹)(𝑐)(ρ) (20)
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CF is the conversion factor for volume in cubic feet to milliliters (mL), c is the 

percent concentration of the chemical in the diluted mixture, and 𝜌 is the density of the 

chemical. From this, the total mass of chemicals in the mixture were found. Thus, 

326,082 lbs. of lime and 1,179,390 lbs. of alum were used.  

Ecoinvent 

The ecoinvent database was used with openLCA software. Ecoinvent documents 

the life cycles of processes and products using global datasets to represent average 

production. The data for chemicals is from cradle to gate, so it includes the 

manufacturing process with consumption of raw materials, energy, infrastructure, and 

ends with production. From these processes, it also includes the emissions to air and 

water. Therefore, for each chemical, the amount manufactured, and transportation from 

the supplier was added since the production facility was not known. For each chemical, it 

was assumed transportation by a lorry equipped to carry 3.5-7.5 metric tons. Then, the 

CML baseline method was used to calculate the impacts, which were given in GWP-100.  

The lime product used in wastewater treatment is Cal-flo, sold by Burnett Lime out 

of Campobello, SC. Further investigation found that this liquid calcium hydroxide 

solution is an alternative to using dry lime, and wasn’t in the ecoinvent database. 

Therefore, it was excluded from this analysis. Chemtrade in Catawba, SC supplies the 
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WWTP’s alum, which is 138 miles from the WWTP. For this, in ecoinvent aluminum 

sulfate, without water, in 4.33% aluminum solution state was chosen. For gaseous 

chlorine production, it was assumed it was manufactured using the membrane cell 

process, which is the most widely used manufacturing method. Therefore, the 

manufacturing process chosen was chlor-alkali electrolysis with a membrane cell, and it 

was assumed the transportation was from the supplier Airgas, which is in Anderson, SC 

and 20.3 miles away. Sulfur dioxide gas is also supplied by Airgas. Only liquid sulfur 

dioxide manufacturing was available in the database, so this was used assuming the same 

mass. The results of the openLCA analysis are displayed in Table 4-50.  

Table 4-50. Global Warming Potential of WWTP chemicals 

CO2-e (metric tons) 

Alum 0.00036 

Sulfur Dioxide 0.61 

Chlorine 0.95 

Total 1.57 

Conclusions and Recommendations 

Overall, the total upstream GHG emissions from the chemicals used in wastewater 

treatment were less than 2 metric tons of CO2-e. This is a small contribution compared to 

the other Scope 3 activities. Furthermore, since these chemicals are necessary to treat 
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wastewater before discharge, reducing their use may not be a feasible option. However, 

one method to reduce their use is to reduce the wastewater volume treated. Wastewater 

can be reduced using some of the behavioral methods outlined in Section 4.4.8.  

4.4.9 Water Treatment 

Background 

Clemson University uses potable water for drinking, washing, and in steam 

generation. The university receives its water from Anderson Regional Joint Water 

System. This water treatment plant (WTP) operates in Anderson, SC and utilizes water 

from Lake Hartwell. The plant has a capacity of 48 million gallons (MG) a day, and it 

provides water regularly to Anderson, Big Creek, Broadway, Clemson, Hammond, 

Homeland Park, Pendleton, Powdersville, Sandy Springs, Starr-Iva, West Anderson, and 

Williamston [109].  

Data 

Data was received from Clemson Faculties regarding the waste used. This data was 

given per month for 2014 as seen in the table below. 
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Table 4-51. Clemson University Water Use in 2014 

Date Water (MG) 

14-Jul 25.74 

14-Aug 25.77 

14-Sep 37.71 

14-Oct 32.08 

14-Nov 26.75 

14-Dec 18.58 

15-Jan 24.14 

15-Feb 21.46 

15-Mar 23.94 

15-Apr 27.87 

15-May 23.33 

15-Jun 27.89 

Total 315.25 

Data Quality 

Table 4-52. Data Quality for Water Use in 2014 

Indicator Score Score Explanation 

Reliability 1 Data based on measurements 

Completeness 1 
Data are for all water used by Clemson 

University 

Temporal 

correlation 
1 Data are from 2014 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data are specific to enterprises under study 
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Emissions Factor 

Data could not be obtained from the Anderson Regional Joint Water System to 

estimate lifecycle emissions. Therefore, surrogate data was used. A LCA study by 

Denholm& Kulcinski (2004) estimated the GHG impact of potable water production for a 

large North American city by tracing major energy flows [110]. In this LCA, the phases 

analyzed were chemical production, transportation of materials, and water treatment plant 

operation. In operation, electricity is needed in WTP to pump water and chemicals, and in 

treatment systems. The emissions factor used also included electricity for administrative 

and laboratory activities, and building maintenance [110]. Overall, it was estimated that 

128.13 g CO2-e were emitted per a cubic meter of water treated [110]. 
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Data Quality 

Table 4-53. Data Quality for Water Treatment Emissions Factor 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a sufficient 

sample of sites over an adequate period to 

even out normal fluctuations 

Temporal 

correlation 
4 

Less than 15 years of difference to year 

of study 

Geographical 

correlation 
3 

Data pertains to similar water treatment 

process water production for a large 

North American city 

Further 

technological 

correlation 

3 

Data from processes and materials under 

study but from different enterprises and 

technology 

Methods 

The following equation was used to determine the emissions associated with 

Clemson’s potable water use. 

(𝐸𝐹)(𝐶𝐹)(𝑊𝐶𝑙𝑒𝑚𝑠𝑜𝑛) (21) 

Here, EF is the emissions factor, CF is the conversion factor from m3 to MG, and 

𝑊𝐶𝑙𝑒𝑚𝑠𝑜𝑛  is the amount of water used by Clemson in a year. This calculation produced 

the results shown in Table 4-54. 
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Table 4-54. Emissions Associated with Water Use in 2014 

Date Emissions (metric tons CO2-e) 

14-Jul 12 

14-Aug 12 

14-Sep 18 

14-Oct 16 

14-Nov 13 

14-Dec 9 

15-Jan 12 

15-Feb 10 

15-Mar 12 

15-Apr 14 

15-May 11 

15-Jun 14 

Total 153 

Conclusions and Recommendations 

Overall, 153 metric tons CO2-e were estimated to be associated with Clemson’s 

potable water. Some uncertainty arises since this is not plant specific emissions data from 

Anderson Regional Joint Water System. There is also uncertainty due to changing water 

demands. For instance, and colder year might require more steam generation, and 

therefore increase water demands. This will create to higher associated emissions 

corresponding with increased chemical use, chemical transportation, and energy.  
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Reducing water consumption can decrease over associated emissions. This can be 

achieved by installing using more water efficient appliances and plumbing fixtures (e.g. 

toilets, faucets) or by encouraging more efficient behavior (e.g. shorter showers). Another 

method to reduce water consumption is to implement greywater recycling practices, or by 

collecting rainwater for watering activities.  

4.5 Campus Solar PV Suitability 

Background 

The ACUPCC challenges institutions to measure their GHG emissions and develop 

a plan to become climate neutral. Increasing renewable energy sourcing to 10% by the 

2025 fiscal year is one of Clemson University’s long term goals. One step towards this 

goal has been the production of biodiesel from campus waste oils. However, there are 

other opportunities to pursue further renewable energy sources on campus. Electricity 

generation was the highest contributor to Clemson’s carbon footprint (about 40,000 

metric tons CO2-e in 2014), so there is potential to decrease emissions through increased 

renewable energy sourcing. Currently, about 3% of the energy generation provided to 

Clemson by Duke Energy comes from renewable resources: 0.69% biomass, 2.27% 

hydro, and 0.24% solar. Duke Energy plans to reduce the carbon emissions of their 

electricity generation by 40% from 2005 levels [85]. This will help the university lower 
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its carbon footprint. While Clemson can encourage Duke Power to decrease their 

emissions from generation, another possibility to increase renewable sourcing is to install 

on-site power generation at the university. Even though energy technologies like utility-

scale wind or concentrated solar power are estimated to have larger technical potentials, 

decentralized rooftop PV offers benefits which centralized ‘clean energy’ systems lack 

[111]. Decentralized rooftop PV capitalizes on unused ‘rooftop real estate’ and can 

provide significant energy potential even in places with modest solar resources [111]. 

This analysis is meant to demonstrate the geographic potential for rooftop solar PV 

modules within the campus boundaries and motivate future investigations to install such a 

system.  Figure 19 displays the boundary of rooftops analyzed, and also labels rooftops of 

interest that will be discussed later on. 
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Figure 19. Clemson University Rooftops of Interest 

Map Labels: 

1. Clemson Rowing Boathouse

2. Clemson Indoor Track Facility

3. Athletic building row of McFadden, Jervey Athletic Center, and Jervey

Gymnasium
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4. Littlejohn Coliseum

5. Death Valley Stadium

6. Fike Recreation Center

7. Calhoun Courts Apartments

Data 

Data was obtained from the South Carolina Department of Natural Resources, who 

commissioned aerial photos for the entire state. Point-cloud data collected on March 19th, 

2011 was downloaded from the NOAA Digital Coast website for Pickens County, SC. 

The data was given in the NAD 1983 StatePlane South Carolina FIPS 3900 (meters) 

coordinate system.  It was stored in the form of LAS files, the standard format to store 

airborne light detection and ranging (LiDAR) data. LiDAR data collects multiple returns 

from a location. The first return reflects the tallest features, and subsequent returns will 

be from lower elevations. This illustrates the natural and built features on the surface 

layer such as trees and buildings.  
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Data Quality 

Table 4-55. Data Quality for LiDAR data 

Indicator Score Score Explanation 

Reliability 1 Verified data based on measurements 

Completeness 1 

Representative data from a several paper 

manufacturers to even out normal 

fluctuations 

Temporal 

correlation 
2 

Data are from 2011, which is less than six 

years difference, however new buildings may 

have been erected in that time 

Geographical 

correlation 
1 Data from area under study 

Further 

technological 

correlation 

1 Data from enterprises under study 

Methods 

This analysis used geographic information systems (GIS) and LiDAR data to 

determine the solar PV potential on Clemson rooftops. The following figure demonstrates 

the tools used, which are described further in this section. 
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Figure 20. Model of GIS tools used in Clemson Rooftop Solar PV Study 
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Raster 

Seven files consisting of 26,542,566 points were used to form a LAS dataset of the 

main campus, which had an average point spacing of about 0.712 meters. The LAS 

dataset of seven files was converted to a digital surface model (DSM) raster based on the 

first point returns. This was performed using a binning interpolation method that assigned 

cells based on average value and filled voids linearly. The output was designated to have 

a 1 meter cell size since the space between points was typically less than 1 meter. The 

elevation was also created in meters, which created the following figure. 

Figure 21. Raster Digital Surface Model of Clemson University's Campus 
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Rooftop Suitability 

For this analysis, only existing rooftops on the main campus were considered for 

solar panel implementation. A polygon feature map of rooftops from 2016 was provided 

by the Clemson Geospatial Center. The rooftops analyzed include campus buildings, 

residential buildings, athletics stadiums, stands, and even sheds. In total, the area of 

rooftop analyzed was 273,324 square meters. Next, suitable solar radiation needed to be 

found for rooftops. However, calculating insolation can be very time consuming, so 

before solar radiation was found, the rooftop areas were buffered by 25 meters (rather 

than running this tool for the entire DEM of campus). Using this buffer was 

recommended by the Geospatial Center since adjacent landscape and obstructions are 

considering in solar radiation calculations. Therefore, it was assumed that built and 

natural features over 25 meters away would not be need obstruct solar radiation on 

rooftops. Next, the energy from sunlight was measured using the area solar radiations 

tool. This tool simulates sun movement over the geographic area (e.g. raster surface) for a 

chosen time interval. Notably, at our latitude, solar resource is not significantly depleted 

until slope surpasses 30 degrees [112]. However, slope was not used as a constraint as it 

already factored into annual solar radiation calculations. Since this analysis is evaluating 

future potential, each monthly interval of solar radiation for the year of 2017 was 
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analyzed with daily 0.5 hour intervals. This calculated the sunlight delivered over time, in 

watt hours per square meter (Wh/m2). The maximum solar radiation varied over the year, 

as seen in Figure 22, and had a monthly average of 130 kWh/m2.  

Figure 22. Monthly Maximum Solar Radiation for Clemson Rooftops 

The solar radiation on the rooftops was mapped for each month, (see Appendix). 

However, the solar radiation in the highest month (July) and lowest month (December) 

are shown as Figure 23 and Figure 24 respectively. According to The National 

Renewable Energy Laboratory (NREL), the direct normal radiation at moderate 
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resolution in the Clemson area receives an approximate yearly average of 4.5-5 kWh/m2 

per day [113]. Assuming 4.5 kWh/m2 per day, this would amount to 135 kWh/m2 per 

month, aligning with the data obtained from GIS for solar radiation that had a monthly 

average of 130 kWh/m2.  

Figure 23. Clemson Rooftop Solar Radiation Potential for July (Wh/m2 per 

month) 
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Figure 24. Clemson Rooftop Solar Radiation Potential for December (Wh/m2 

per month) 

Solar Radiation Suitability 

From this analysis, as would be expected, most rooftop area received higher solar 

radiation during July than in December, which has less daylight hours. Using the solar 

radiation tool to produce monthly estimations only allowed one day of the month to be 

evaluated. Therefore, the annual solar radiation was calculated using smaller time 

intervals to increase the accuracy of the results. This analysis was run for the entire year 
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at 2 week intervals, with daily 0.5 hour intervals analyzed. Next, the analysis accounted 

for rooftop space needed for maintenance accessibility and infrastructure. Therefore, the 

suitable rooftop space was decreased by 1 meter around the perimeter of the roof using 

the buffer tool.  

Many buildings around campus received solar radiation with an upper range of 

1,200 – 1,500 kWh/m2 annually. To validate this estimate, NREL’s value of 4.5 

kWh/m2/day can be used for 365 days to find that this area should receive approximately 

1,645 kWh/m2 annually [113]. Since this value is an estimate at moderate resolution for 

the South Carolina area, the slightly lower annual solar radiation found using GIS seems 

reasonable. A figure showing this final product is shown in Figure 25. Here, the red 

illustrates the rooftop that receives 1,200 – 1,500 kWh/m2 solar radiation annually. 
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Figure 25. Clemson University Annual Rooftop Solar Radiation (1,200 – 1,500 

kWh/m2) 

There were many rooftops that received 1,200 – 1,500 kWh/m2 throughout campus, 

however, some of the larger rooftop area was on athletic facilities. Therefore, they pose 

significant potential for solar PV installation. The Clemson Rowing Boathouse (1), the 

Clemson Indoor Track Facility (2), the athletic building row of McFadden, Jervey 

Athletic Center, and Jervey Gymnasium (3), Littlejohn Coliseum (4), Death Valley 

Stadium (5), and Fike Recreation Center (6) are highlighted in the figure above. As can 

be seen, many other campus buildings show suitability for solar, and even smaller 

buildings such as Calhoun Courts Apartments (7) have suitable area for a PV array on 

each rooftop.  
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Conventionally, the best direction to face solar panels in the Northern Hemisphere 

is to the south, as this direction receives the most sunlight. Thus, the maximum annual 

solar radiation from this calculation (1,486 kWh/m2 per year) was found on south facing 

roofs. This is displayed by the indoor track facility (2), the Littlejohn Coliseum (4).  

Littlejohn has a flat roof and receives the same irradiance across the whole surface. 

Meanwhile, the indoor track facility has a sloped roof that aligns east-west, so the north-

facing slope receives less sunlight. This is also displayed by the south facing stands of 

Death Valley Stadium (5). While this stadium does not possess a roof, there is potential 

to add solar PV panels if a south facing stadium facade were added; a similar installation 

has been installed on the Philadelphia Eagles Stadium [114]. A one meter buffer was 

considered along the outer edge of every rooftop for maintenance and infrastructure. 

With this considered, it was determined that approximately 163,000 m2 of rooftop receive 

solar radiation within the 1,200–1,500 kWh/m2 range annually. To assess photovoltaic 

potential and determine annual electricity output, E, for a system, Hofierka and Kanuk 

(2009) used the following equation [115]. 

 E =  AeηeG (22)
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Here, Ae is the total surface area of solar cells (m2), 𝜂𝑒 is the performance ratio, and

G is the annual solar irradiation (Wh/m2). Also following Hofierka and Kanuk (2009), it 

can be conservatively assumed that the installation of a 1-kWp PV system with an array 

of solar modules requires about 10 m2 of free roof area [115]. The power density of the 

sun was assumed to be the standard 1,000 W/m2 [116]. Hence, the system has an 

efficiency of 10% or 0.1 kW/m2. This value is a conservative assumption that considers 

the many losses that occur in the system. The power conversion efficiency coefficient 

used by NREL PVWatts photovoltaic system calculator is 0.77, and considers losses from 

factors such as soiling, shading, snow, wiring, and degradation [117]. However, this 0.1 

kW/m2 assumption also accounts for losses from solar panel spacing across the areas of 

the solar array.  

Next, it was determined that all buildings with potential for solar panels had at least 

10 m2 of free roof area to accommodate an array. Then, the value of 0.1 kW/m2 was used 

to represent the performance (𝜂𝑒) of a given rooftop surface area (Ae). The annual solar 

irradiation for the surface area is assumed to be 1,200 kWh/m2, which is the lower value 

in the upper range. Considering all 163,000 m2 of available rooftop area is being covered 

with PV solar panels, the potential capacity of this system would be 16,300 kW. Since the 

surface solar radiation is 1,200 kWh/m2/yr from 1,000 W/m2 solar irradiance, their annual 
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output is 1,200 h/yr. This equates to almost a 14% capacity factor for the system per year, 

and a total potential electricity generation of about 19,560 MWh/yr.  

Conclusions and Recommendations 

Solar PV modules are a viable option for emission-free and renewable electricity to 

decrease Clemson’s carbon footprint. Solar power is sustainable, reduces vulnerability of 

the grid, and increases self-sufficiency of the campus. The purpose of this analysis to 

display the potential for solar on Clemson’s rooftops and provide a general estimation of 

potential electricity generation from widespread solar PV modules. This analysis 

evaluated 273,324 m2 of rooftops, and determined that 163,000 m2 received solar 

radiation within the 1,200–1,500 kWh/m2 range annually after accounting for space 

needed around the roof perimeter. Overall, if this entire rooftop area found viable in this 

analysis was covered with solar PV modules, it could generate approximately 19,560 

MWh annually.  

The LiDAR data used in this analysis was from 2011, therefore it does not include 

new buildings such as the Watt Center, the Clemson Indoor Practice Facility, CORE 

Campus, additions to Littlejohn Coliseum, or residence halls currently under 

construction. The rooftop outline included the Clemson Indoor Practice Facility, which 

was built in 2012, so it was not included in the LiDAR data. However, the rooftop of this 
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building is flat, so the solar radiation calculated for this area is assumed to stay consistent 

with the GIS calculations.  

There was uncertainty stemming from accuracy of point cloud data, the DSM it 

created, and the rooftop outlines. Closer examination found that for some buildings, 

suitable rooftop area was scattered across some roofs that appeared flat. However, with 

the naked eye it is difficult to determine if there were structures, slopes, or shade on the 

roof that may reduce the feasibility of solar panel installation when calculated with GIS. 

If the slope of the roof is steep, it may make it harder to install and service the solar 

arrays. Therefore, it is recommended that the rooftops be physically inspected on a 

building-by-building basis for a more thorough assessment of suitability. Also, the 

Clemson Geospatial Center is actively pursuing the acquisition of new LiDAR data for 

campus. This could be used in future studies to validate the results of this analysis and to 

evaluate further rooftop PV viability on new buildings. 

There is also potential to study potential rooftop suitability in more depth. Choi et 

al. (2011) argue that simplistic electricity generation formulas like that proposed by 

Hofierka and Kanuk (2009) do not account for intermittent behavior of solar irradiance 

and the dynamic performance of PV systems [118]. They also recommend that users 

should consider different PV technologies for the annual mean power conversion 
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efficiency coefficient [118]. Therefore, the suitability results of this analysis could 

change if more specifications were known about desired PV technology and incoming 

solar radiation. Therefore, future studies could optimize incoming solar radiation and 

investigate the potential electricity generation from various PV technologies. 

There are also some practical considerations that must accompany the installation 

of solar PV modules. One consideration is that the roof can support the weight of a solar 

array, and that the panels don’t interfere with existing structures such as HVAC or 

drainage. However, there are also some structural benefits to adding solar panels to roofs. 

Solar panels intercept solar radiation, keeping the building slightly cooler than if the roof 

was exposed, which would reduce cooling costs. Panels can also help hold heat in, which 

can reduce heating costs in winter.  

Future studies should perform a cost-benefit analysis of rooftop solar 

implementations. This should estimate the potential savings of such a system and 

compare it to the cost of the solar panels, inverters, infrastructure, labor, maintenance, 

and cost of connecting to the grid. If installing PV panels is a lucrative option, future 

studies may also investigate the possibility of implementing solar modules over parking 

lots, stadium stands, the experimental forest, and on other undeveloped university owned 

land. It must also be acknowledged that solar radiation varies seasonally, and can be 



208 

affected by changes in weather (e.g. cloud cover). Since solar generates electricity during 

daylight hours, daily electricity loads for campus should be analyzed and there may be 

potential to provide electricity to the grid and receive credits to use during nighttime.  

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Overview 

This research conducted LCAS to build a carbon footprint for Clemson 

University’s main campus. This section discloses the results of Clemson University’s 

carbon footprint, and provides recommendations for improvement and future studies. As 

previously discussed, continued GHG emissions increase the likelihood of severe and 

irreversible impacts for people and ecosystems [8]. The current atmospheric 

concentration of CO2 has already reached over 408 ppm [10], and to limit the increase of 

future global warming to 2 °C above pre-industrial levels, the atmospheric concentration 

of CO2 must be stabilized to about 450 ppm equivalent [20]. In response, GHG initiatives 

have developed, creating a need for higher education institutions such as Clemson 

University to develop a transparent inventory of GHG emissions.  
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5.2 Clemson Carbon Footprint Results 

This research built a carbon footprint for Clemson University’s campus through a 

series of LCAs described in chapter 5. The total carbon footprint for Clemson University 

was 94,903 metric tons CO2-e. The inventory of these results is shown in Table 5-1 on 

the following page. 
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Table 5-1. Carbon Footprint for Clemson University Campus 

Activity 
Emissions  

(metric tons CO2-e) 

Scope 1 

Steam Generation 15,522 

Refrigerants 143 

University Owned 

Vehicles 
Tiger Transit 1,597 

CUPD 72 

University Owned 

Aircraft 
2008 Citation CJ3 Jet 402 

1998 Beechcraft King Air C90B 

Turboprop Airplane 113 

Fertilizer 19 

Wastewater Treatment 173 

Scope 2 

Electricity Generation 38,718 

Scope 3 

Electricity Life Cycle 5,207 

Transmission and 

Distribution Losses 2,393 

Automotive Commuting 16,738 

Clemson Area Transit Electric Fleet 81 

Diesel Fleet  1,099 

University Related 

Travel 
Student Driving 249 

Student Air Travel 5,175 

Employee Driving 1,550 

Employee Air Travel 5,320 

Paper Usage Office paper  1 

Washroom Towels 70 

Bathroom Tissue 79 

Waste and Recycling 

Transportation 27 

Wastewater Treatment Chemicals 2 

Water Treatment 153 

Scope 1 18,041 

Scope 2 38,718 

Scope 3 38,144 

TOTAL 94,903 
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Figure 26. Clemson University Carbon Footprint by Scope 

As seen in Figure 26, the scope 2 and scope 3 emissions are nearly double the 

magnitude of the scope 1 emissions. On this figure 10% error in the overall calculations 

has been assumed to represent uncertainty. Most uncertainty studies in LCA quantify 

only input data uncertainty, though it can also arise from the functional unit, 

characterization factors, scenario uncertainty, and model uncertainty [68]. Due to 

available information and time considerations, this study focused on characterizing input 

data uncertainty in the inventory. The five independent data quality indicators used to 
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describe the aspects of data quality were; reliability, completeness, and correlations 

temporally, geographically, and technologically [68]. These indicators cannot be used 

quantitatively, and due to the nature of the data, a Monte Carlo analysis could not be 

performed. With the assumption of 10% error in the overall calculations, the estimated 

uncertainty creates a range of 85,413 to 104,393 metric tons CO2-e for the overall carbon 

footprint with scope 1, scope 2, and scope 3 emissions ranging from 16,237-19,845, 

34,846-42,590, and 34,330-41,958 metric tons CO2-e, respectively.  

Figure 27. Pie Chart of Clemson University's Carbon Footprint 

Steam 

Generation, 

16%

University 

Owned 

Vehicles, 2%

Electricity 

Generation, 

41%Electricity Life 

Cycle, 5%

Transmission and 

Distribution Losses, 3%

Automotive 

Commuting, 

18%

Clemson Area 

Transit, 1%

University 

Related Travel, 

13%



213 

Figure 27 displays the contributions of each activity to the overall carbon footprint. 

Any activity contributing less than 1% had its percentage excluded from the figure. Here, 

the red shaded activities are related to scope 1 emissions, which had a total contribution 

of 19%. Electricity is the only scope 2 emission, and contributed 41%. The scope 3 

emissions are shaded green, and together accounted for 40%. The activities with the 

highest emissions were related to fossil fuel combustion, including electricity (41%), 

automotive commuting (18%), steam generation (16%), and university related travel 

(13%). Overall, emissions related to electricity generation were the highest GHG emitting 

activity, being 41%. Electricity also had another 5% life cycle emissions, and 3% 

attributed from losses in transmission and distribution. 

5.3 Recommendations 

5.3.1 Reducing Carbon Footprint 

Creating a GHG inventory is essential to create strategies to improve Clemson 

University’s campus carbon footprint. To optimize carbon footprint reductions, the 

activities with the highest emissions should be prioritized. Examining the Scope 1 

emissions, the activity with the highest contributor was steam generation. Here, it is 

recommended that demands are reduced for hot water use, dehumidification, and space 
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heating. This could be achieved with methods such as low-flow showerheads, faucet 

aerators, shortening showering times, or reducing temperatures on clothes washers. 

Adjusting set temperatures in buildings and applying passive heating strategies to new 

building design could further help to reduce future heating loads. Furthermore, lower 

GHG steam generation sources such as biogas or solar thermal panels could be used in 

the future to meet the university’s increasing heating needs. The other scope 1 activities 

had less than 3% contributor cumulatively. However, several recommendations were 

made to decrease the emissions of these activities. One recommendation is that fertilizer 

use could be reduced or eliminated completely. In the future, the university should seek 

to purchase CUPD and Tiger Transit vehicles with higher fuel economy or electric 

charging capability or electric charging capability. Also, university owned aircraft travel 

could be reduced by using commercial flights, alternative transportation, or video 

conferencing instead. Scope 2 emissions from electricity generation contributed 41% to 

the overall carbon footprint. If this is combined with scope 3 emissions from electricity 

generation’s life cycle (5%) and transmission and distribution losses (3%) this altogether 

accounts for nearly half of Clemson’s campus carbon footprint. As discussed in Section 

4.5, Clemson University has a large area of rooftop that could be used for solar PV 

panels. This section demonstrated the geographic potential for rooftop solar PV modules 

within the campus. As a renewable energy source, solar PV has no emissions associated 
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with operation, and it would have less transmissions and distribution losses. Therefore, a 

transition to solar PV or another renewable energy source is recommended to 

significantly reduce campus carbon emissions. The other scope 3 activities with high 

GHG contributions were automotive commuting (18%) and university related travel 

(13%). Emissions from automotive commuting could be reduced by encouraging 

carpooling or commuting via walking, biking, or CATBUS. This may require an increase 

in bike paths in sidewalks to accommodate students. While CATBUS is outside the 

control of Clemson University, their efforts to install solar PV panels and make an 

entirely electric fleet can reduce Clemson’s associated emissions. Students may be more 

likely to choose this mode of transportation if CATBUS runs buses more frequently. 

Other university related travel (e.g. conferences) could be reduced by setting up carpools 

for travel, using videoconferencing, and traveling by alterative transport rather than 

plane.  

To make significant changes in the campus’s overall carbon footprint, a holistic 

approach to future planning should be applied. Carbon emissions must either be reduced 

or offset to reach Clemson’s goal of carbon neutrality. Each activity that contributes to 

Clemson’s carbon footprint has specific recommendations to improve, however changes 

in operation, technology, and behavior are reoccurring themes.  For instance, lowering 
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water use can decrease emissions associated with water treatment and wastewater 

treatment. Decreasing heated water use will also lower steam generation demands. A few 

methods to reduce water use are to install timed showers, low-flow showerheads, or 

encourage students to take shorter showers. These are all changes in operation, 

technology, and behavior that could be utilized, most effectively in conjunction, to lower 

water use and associated emissions. Changes in operation and technology are often 

driven by cost-benefits, but in many cases this goes hand in hand with carbon emissions 

as lower resource and energy use (e.g. steam, electricity) lowers costs for the university. 

These changes may also be made to promote the university as being “green” to attract 

potential students, or in response to pressure from stakeholders. Furthermore, increasing 

education for students and employees about the value of GHG reductions is highly 

recommended so that they can advocate for GHG improvements on campus. An educated 

campus community can help promote operational and technological changes, and may 

also be more prone to change their behavior to decrease GHG emissions as well. 

5.3.2 Sensitivity Analysis 

It is also recommended that a sensitivity analysis be performed for Clemson 

University’s carbon footprint. There was uncertainty related to data quality which is rated 

for each data source. There were also many assumptions made related to functional units 
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(e.g. paper use) and for the IO analysis (e.g. university related travel). These sources of 

uncertainty are discussed further in the section 5.5.  

5.3.3 Data Reporting 

To become carbon neutral it is essential that the necessary data is available to 

monitor emissions progress. Finding the proper channels to gather data was difficult, and 

it is recommended that the university create a directory of contacts for campus related 

activities. Another recommendation is that operations make data available to students and 

employees as it could be used for instructional purposes while simultaneously raising 

awareness of energy and material use on campus. Overall, this research unveiled limited 

recorded data to build the carbon footprint. Facilities had detailed data for energy 

consumption, steam generation, and other processes that include meters. However, there 

were several activities that did not record detailed information. It would be useful to have 

building specific data so that the carbon footprints could be created and compared for 

buildings around campus. This could drive investigations to determine what building 

specific designs and behaviors contribute most to the carbon footprint.  

There was also variability in data recorded for each campus activity. Clemson’s 

police department and aircraft provided estimates of fuel use, but in the future, specific 
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consumption would be beneficial to build the carbon footprint. During the data 

acquisition phase of this research, the benefits of gathering more detailed data in the 

future were communicated. This had positive results as the Clemson wastewater 

treatment plant started keeping records of daily chemical in January of 2017 after several 

inquiries on the subject. However, in many cases, only an annual or monthly average for 

a material or energy flow was given and this could not be amended before this research 

was conducted. For this analysis, it would have been beneficial to simulate a range of 

possible outcomes for decision making and to understand the variability in a process. 

Unfortunately, the data did not have enough quantity to create an uncertainty distribution 

with Monte Carlo. In the future, a large dataset is needed to determine distribution 

parameters for each input. Therefore, it would be preferred if data from facilities and 

administrators recorded trends over time for each input. For instance, rather than 

providing an annual value for paper towel usage or Tiger Transit fuel consumption, this 

data could be recorded at weekly intervals. This could help aid investigation to determine 

what month is our carbon footprint highest, and even be used to highlight connections in 

consumption patterns. 
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5.4 Comparison to other Studies 

5.4.1 Previous HEIs 

It is difficult to compare the results of this study to other studies conducted for 

HEIs. Each study has incorporated different activities in their scopes, has varying 

population sizes, and variations in their methodology and emissions factors. However, 

comparing available data for specific activities, many of Clemson University’s emission 

trends are of the same magnitude of other HEIs. The Norwegian University of 

Technology & Science had about 22,000 students and 5,500 employees and found a 

carbon footprint of 92,000 metric tons CO2-e [30]. Meanwhile in 2014 Clemson also had 

about 22,000 students, 5,000 employees, and had a carbon footprint of nearly 95,000 

metric tons CO2-e [6] [7]. Clemson’s steam generation in 2014 used about 337 million 

cubic feet of natural gas and subsequently produced 15,522 metric tons CO2. Rowan 

University used about 354 million cubic feet of natural gas in their plant to create steam 

and cogenerate electricity, and this produced about 19,000 metric tons CO2. Also, 

Clemson’s commuting was responsible for 18% of the total carbon footprint, which is 

comparable to previous HEIs. At the University of Illinois at Chicago commuting was 

16% of their carbon footprint, while it at De Montfort University it was 18% [39] [64]. 

Though it should be recognized that the commuters at different universities may drive 
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different types of vehicles. One way to compare the Clemson University study to 

previous studies is to normalize the carbon footprint by the number of students the 

intuition serves. Thus, finding the carbon footprint per student can relate institutions of 

different sizes. The outcome of this comparison is shown in Table 5-2 and either given 

values or based on study information. Clemson falls within the range of carbon footprints 

per student, though it should be noted that each study includes different activities and 

may have higher emission intensities from energy use. For example, De Montfort 

University has nearly 22,000 students and had a footprint of about 51,000 metric tons 

CO2-e with 34% of emissions originating from energy use [64]. This resulted in a per 

student carbon footprint of 2.4 metric tons CO2-e per student. Meanwhile, the University 

of Illinois at Chicago has about 20,000 students and had a carbon footprint of 275,000 

metric tons CO2-e, 63% of this footprint was attributed to campus power plants [33]. This 

caused them to have a per student carbon footprint of 8.8 metric tons CO2-e per student. 
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Table 5-2. Carbon Footprint per student for Higher Education Institutions 

Case Study Method MTCO2-e/student 

Institute of Engineering at Universidad Nacional 

Autónoma de México, Mexico 
PA NA 

The University of Cape Town (UCT), Africa PA 3.2 

Tongji University, China PA 3.8 

University of Illinois at Chicago (UIC), USA PA 8.8 

University of Sydney (USyd), Australia HLCA NA 

University of Maribor (Engineering Campus only), 

Slovenia 
HLCA NA 

De Montfort University (DMU), England HLCA 2.4 

Rowan University, USA HLCA 4.0 

Clemson University (CU), USA HLCA 4.3 

Yale University (YU), USA IO NA 

The Norwegian University of Technology & 

Science (NTNU), Norway 
IO 4.6 

University of Leeds (UoL), England IO 5.3 

5.4.2 Sightlines 

The Sightlines presentation for 2014 determined that Clemson University emitted 

almost 160,000 metric tons CO2-e, which is much higher compared to the nearly 95,000 

metric tons CO2-e calculated in this study [119]. Sightlines found that 22% of total 

emissions were scope 1, 46% were scope 2, and 32% were scope 3. This varies to the 

results from this research, which found scope 1 emissions to be 19%, with scope 2 and 3 

emissions being 41% and 41%, respectively. The Sightlines methodology to calculate this 

is not known since they are an independent consulting service. They included a different 
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of the same activities in their study; on-campus stationary combustion of natural gas, 

vehicle fleet, agriculture, refrigerants, purchased electricity, commuting, employee air 

travel, student study abroad, solid waste, wastewater, purchased paper, transmission and 

distribution losses [119]. The emissions from some activities were quantified, but the 

inputs and emissions factors used were not all specified. The largest discrepancy was in 

emissions related to purchased electricity. They found that 73,020 metric tons CO2-e 

were emitted, while this study determined 38,718 metric tons CO2-e were emitted. Since 

this study only included electricity used by the main campus, Sightlines may have used 

the total electricity purchased from Duke Energy in 2014. The total electricity purchased 

was 149,803,619 kWh, which would translate to 48,453 metric tons CO2-e using the 

methodology outlined in section 4.3.1. This methodology is based off plant specific data 

from the Duke Energy Carolinas balancing authority in the eGRID database, which was 

not released until January of 2016. Another possible discrepancy is that Sightlines based 

their calculations off of a different electricity mix that what was found in this study or 

used average emission factors for electricity generation. According to eGRID, the 

national average emissions factor is 0.52 kg CO2-e/kWh with an average electricity mix 

of approximately 20% nuclear, 39% coal, and 28% gas. The average emission rate for the 

SERC Virginia/Carolina subregion is 0.39 kg CO2-e/kWh since this region has an 

electricity mix of about 43% nuclear, 32% coal, and 20% gas. Meanwhile, the Duke 
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Carolinas electricity mix found for Clemson University has an emissions rate of 0.32 kg 

CO2-e/kWh since it has about more nuclear (53%), 29% coal, and 15% gas. Using the 

information provided in the Sightlines report, their emissions rate translates to about 0.49 

kg CO2-e/kWh, which falls close to the national average. 

5.5 Uncertainty 

This research performed streamlined LCAs, therefore, phases were left out of the 

analysis. This leaves room for uncertainty as it is likely that these phases would have 

contributed more to the carbon footprint. There is also uncertainty in representativeness 

of the carbon footprint for 2014. While this footprint was mainly used data from 2014, 

data for activities such as CATBUS and wastewater chemicals used more recent data. 

Since year-to-year trends may vary, annual trends are needed for future analysis. For 

example, annual steam generation could be affected by weather and heating needs, and 

the 2014 values may deviate from the norm. There has also been slight monetary inflation 

from the 2014 data to the current day, which may impact the IO analysis for university 

related travel. Some activities also were based on assumptions from operators such as for 

the CUPD distance patrolled and university aircraft use. More precise data could be 

gathered for future studies. 
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The methods used to determine GHG emissions also contributed to uncertainty in 

the final carbon footprint. For each activity, a hybrid LCA was conducted using as much 

process specific data as possible. However, in many cases average emissions factors and 

surrogate data was used. In reality, the average emission factors may vary, for instance 

diesel combustion was based on an average of diesel combustion from several modes of 

combustion. There was also surrogate data used for several studies, including wastewater 

treatment operation, water treatment, paper usage, and the electricity life cycle emissions. 

From surrogate data, the most relevant and intensive LCA study available was used. 

Then, if multiple values were presented the value corresponding with the process used by 

Clemson was used, or else a median value was chosen. However. the emissions factors 

from LCA studies had varying locations and often a range of processes or products. From 

this there is uncertainty, and obtaining LCA data for the specific products and processes 

used by Clemson may provide better insight to the GHG emissions from these activities.  

Several significant assumptions contribute to uncertainty in the carbon footprint. 

First, university related travel data was limited, so the emissions attributed to this activity 

were based on assumptions outlined in section 4.4.5. Since more detailed information for 

costs were not given, the GHG estimations for student travel were based on the cost of 

travel to a conference. However, it is likely that students traveled for other purposes 
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besides conferences, and for varying periods of time. Thus, this estimation is a source of 

notable uncertainty.  

The life cycle emissions from electricity are also an activity with great uncertainty. 

The life cycle emissions applied were averages based on LCA studies for each generation 

energy source. The majority of the life cycle emission factors were obtained from the 

IPCC or NREL’s extensive studies. However, the emissions included electricity 

generation, which were already calculated using data from Duke Energy and eGRID. To 

find the emissions associated with the lifecycle outside of operation, the electricity 

generation estimate was subtracted from the overall life cycle estimates. These are two 

different data sources, and the overall emissions factors found by the IPCC and NREL 

were not as specific as the plant operations emissions data. Therefore, sensitivity analysis 

for these sources of uncertainty are recommended.  

5.6 Future Studies 

5.6.1 Expanding Current System 

The largest obstacle in this research with the unavailability of data. One 

recommendation for future studies is to perform a sensitivity analysis. Future studies may 

also want to specifically seek out more detailed information for university owned 

vehicles and aircraft, and waste and recycling transportation, as their emissions estimates 
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were based on operator’s assumptions rather than recorded data. Also, student and 

employee commuting contributed a large portion of the campus carbon footprint. The 

frequency and distance traveled to commute were based off Parking and Transportation 

Services data. Further studies may want to re-survey for consistency or perform a 

sensitivity analysis on this data specifically. 

There are also many activities that could be added to the carbon footprint in future 

studies. The Scope 3 emissions that come from sources owned or controlled outside of 

Clemson University open many possibilities for evaluation. Further activities that could 

be assessed are emissions associated with composting, agriculture, experimental forest 

management, housing, food, beverages, furniture, laboratory supplies, machinery, 

infrastructure, and construction.  

Activities already evaluated in this study could be expanded to include additional 

life cycle phases to scope 1 activities such as raw materials extraction, processing, and 

transportation of fertilizer, refrigerants, and fossil fuels used in steam generation and in 

vehicles. Including upstream impacts could be especially significant for steam generation 

and life cycle emissions from natural gas electricity generation. Fracking for natural gas 

can produce small leakages of methane from the production and delivery system, which 

can have a great climate impact due to methane’s higher GWP. This possible leakage has 
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been estimated that a natural gas system can have an excess percentage leakage of 1.8% to 

5.4% of end use gas [94]. However, this leakage is not included in the steam generation 

calculations or in NREL’s harmonized value for life cycle emissions. Therefore, it is 

recommended that future studies investigate this leakage and add it to the carbon footprint. 

The bounds of scope 3 activities could also be further expanded. Clemson separates 

large amounts of cardboard, paper, compost, and scrap metal, and recently started 

recycling Styrofoam. The GHGs from landfilled waste and recycling processes could be 

investigated by reaching out to the facilities that receive these materials. 

5.6.2 Expanding Current System 

Future studies can also be conducted to appraise the effect of changes in behavior 

and operations. This study highlights the possibility of CATBUS commuting replacing 

personal vehicle commuting if the bus schedule becomes more frequent. The change in 

GHG from such a transition could be quantified in future studies. Studies could also 

explore the impact of a change such as electric hand dryers replacing paper towels, or 

installing low flow shower heads. Using the baseline established in this study, these 

future investments can then be weighed in a cost-benefit analysis to determine what 

changes will most effectively lower the campus carbon footprint.  
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Another aspect that can be evaluated is how the carbon footprint of Clemson’s 

main campus will change year to year. With this, it may be worthwhile to project 

Clemson’s gross carbon footprint if operations continue with current conditions. Then, 

future studies can study the projected impact as the student population grows, new 

buildings are constructed, new technology is installed (e.g. motion lights), and behavior 

changes (e.g. commuting habits). Comparing buildings may also be another useful study. 

For example, the Lee III building was designed to be zero net-energy and has a green 

roof, a geothermal heat pump, and a deliberate natural ventilation design. This building 

could be compared to older building that don’t have this technology and planning. 

The inventory analysis of this study focused on flows contributing emissions to air; 

specifically, GHGs. However, expanding the impact assessment could potentially include 

other environmental impacts. Future studies may want to assess impacts related to 

Clemson University such as resource depletion, ozone depletion, smog potential, human 

carcinogenicity, ecosystem toxicity, nanoparticle pollution, and waste generated. The 

significant quantities of water and fossil fuels used to support campus operations 

contribute to resource depletion. Smog potential would also be interesting to quantify as 

is created from pollutants released from volatile organic compounds, nitrogen oxides, and 
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sulphur dioxide. These emissions can stem from vehicle combustion, industry, and power 

plants, all which support Clemson’s activities.  

5.6.3 Comparing to Previous Studies 

Comparing carbon footprints between HEIs is difficult as each institution has 

varying population size and activities contributing to their operations. Furthermore, some 

of the carbon footprints were limited to just a few main activities, resulting in a lower 

overall footprint. Transparency should be encouraged in reporting activities inputted to 

the footprint. This leads to the question “what is an appropriate functional unit for 

comparison between very different institutions?” There are several functional units that 

have been proposed. This study has quantified the carbon footprint per student served. 

This could be expanded to create a carbon footprint per capita, which would include 

employees working on campus. Another metric that could be used to compare is an 

overall carbon footprint per square foot of building space.  Also, if building specific 

material and energy flows were obtained, then departments could also be compared. 

Departments with intensive laboratory activities will likely have higher emissions 

associated with equipment electricity needs and manufacturing of laboratory chemicals. 

However, the design and age of the building itself will also influence departmental GHG 

emissions. For example, Lee III serves the College of Architecture, Arts, and Humanities, 
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and was designed to be zero net-energy, so the departments located in this building would 

likely have a lower carbon footprint compared to others. A further metric to compare 

HEIs would be to quantify the carbon footprint per research dollar spent, or per 

publications. This functional unit could also be applied to compare the carbon footprint 

between departments, as the departments with carbon intensive laboratory activities may 

also have more publications. Another functional unit could even compare carbon 

footprints for graduate students, undergrad students, and faculty. 

Another future study may be conducting a detailed comparison of the systems 

within each university’s carbon footprint. Each HEI has a different electricity generation 

resource mix, which impacts their overall footprint. They might also have differences in 

other activities such as how they heat their buildings, the types of cars driven for 

commuting, type of paper used, and university related travel policies.   

5.6.4 Carbon Neutrality Goal 

Clemson University has set a target to become carbon neutral by 2030. There is not 

one solution, however there are several methods that can be employed in combination to 

achieve this. For instance, switching to 100% renewable energy is not   financially 

feasible, plus there are emissions associated with other activities (e.g. fertilizing) that will 

not be eliminated.  Overall, a comprehensive approach with significant operational and 
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behavioral changes is required. First, energy use can be decreased with increased energy 

efficiency in buildings, transportation, and operations. Energy and carbon emissions are 

directly related, so increased energy efficiency can lower associated emissions without 

interfering with current operations. Second, conservation of resources and reduced waste 

can decrease emissions upstream emissions associated with acquisition and downstream 

emissions associated disposal. This will require behavioral and possibility even cultural 

change. These strategies can be used to optimize Clemson’s system and reduce 

emissions. However, to become carbon net-zero, carbon-free energy sources or carbon 

offsets should be sought after by the university. Renewable energy, such as wind, solar, 

biofuel, and hydroelectric power are all potential carbon-free energy sources that could 

be used in the future to offset energy demands. Purchasing renewable energy credits is 

also an option. The Clemson Experimental Forest cannot be counted as a carbon offset 

with the ACUPCC as offsets must produce additional GHG emissions reductions to 

“business as usual.” Thus, carbon sequestered with existing forest management practices 

are not considered an offset. However, strategies that count for “additionality” would be 

reforestation in areas that have been cut down, or afforestation of lands that have not had 

trees for more than a generation. Future studies could evaluate strategies to recommend a 

comprehensive plan to achieve carbon neutrality.  
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APPENDIX 

Hillshade and Slope 

Hillshade creates a grayscale 3D representation of the surface, and considers the 

Sun’s position to shade the image. When combined over the Raster, a map can be created 

to better illustrate campus buildings and geographic features in 3D. 

Figure 28. Hillshade of Clemson's Campus 



233 

Figure 29. Raster with Hillshade of Clemson's Campus 



Monthly Solar Radiation Potential 

The solar radiation on the rooftops was mapped for each month, as seen in the following figures. 

Figure 30. Clemson Rooftop Solar Radiation Potential for January (Wh/m2 per month)
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Figure 31. Clemson Rooftop Solar Radiation Potential for February (Wh/m2 per month) 
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Figure 32. Clemson Rooftop Solar Radiation Potential for March (Wh/m2 per month) 
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Figure 33. Clemson Rooftop Solar Radiation Potential for April (Wh/m2 per month) 
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Figure 34. Clemson Rooftop Solar Radiation Potential for May (Wh/m2 per month) 
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Figure 35. Clemson Rooftop Solar Radiation Potential for June (Wh/m2 per month) 
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Figure 36. Clemson Rooftop Solar Radiation Potential for July (Wh/m2 per month) 
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Figure 37. Clemson Rooftop Solar Radiation Potential for August (Wh/m2 per month) 
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Figure 38. Clemson Rooftop Solar Radiation Potential for September (Wh/m2 per month) 
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Figure 39. Clemson Rooftop Solar Radiation Potential for October (Wh/m2 per month) 
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Figure 40. Clemson Rooftop Solar Radiation Potential for November (Wh/m2 per month) 
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Figure 41. Clemson Rooftop Solar Radiation Potential for December (Wh/m2 per month) 
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