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ABSTRACT 

Dielectric spectroscopy (DS) is an important technique for scientific and 

technological investigations in various areas. DS sensitivity and operating frequency 

ranges are critical for many applications, including lab-on-chip development where 

sample volumes are small with a wide range of dynamic processes to probe. In this 

dissertation, the design and operation considerations of radio-frequency (RF) 

interferometers that are based on power-dividers (PDs) and quadrature-hybrids (QHs) is 

presented. The effective quality factor (Qeff) of the sensor is as high as ∼3.8×10
6
 with

200 μL of water samples. Such interferometers are proposed to address the sensitivity and 

frequency tuning challenges of current DS techniques. A high-sensitivity and stable QH-

based interferometer is demonstrated by measuring glucose-water solution at a 

concentration level that is ten times lower than some recent RF sensors and DNA solution 

at ~3×10
-15

 mol/mL that is close to the previously reported lowest result while the sample

volume is ~1 nL. Composition analysis of ternary mixture solutions are also 

demonstrated with a PD-based interferometer. Using a tunable liquid attenuator by 

accurately changing its liquid volume, the sensitivity of a RF interferometer is tuned 

automatically. The obtained Qeff of the interferometer is up to 1×10
8
 at ~5 GHz, i.e., ~100

times higher than previously reported results. When material-under-test, i.e., methanol-

water solution in this work, is used for the tuning, a self-calibration and measurement 

process is demonstrated from 2 GHz to 7.5 GHz at a methanol concentration level down 

to 5×10
-5

 mole fraction, which is 100 times lower than previously reported results.
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A microwave scanning technique is reported for the measurement of floating 

giant unilamellar vesicles (GUV) in a 25 μm wide and 18.8 μm high microfluidic channel. 

The measurement is conducted at 2.7 GHz and 7.9 GHz, at which a split ring resonator 

(SRR) operates at odd modes. A 500 nm wide and 100 μm long SRR split gap is used to 

scan GUVs that are slightly larger than 25 μm in diameter. The smaller fluidic channel 

induces flattened GUV membrane sections, which make close contact with the SRR gap 

surface. The used GUVs are synthesized with POPC (16:0-18:1 PC 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine), SM (16:0 Egg Sphingomyelin) and cholesterol at different 

molecular compositions. It is shown that SM and POPC bilayers have different dielectric 

permittivity values, which also change with measurement frequencies. The obtained 

membrane permittivity values, such as 73.64-j6.13 for POPC at 2.7 GHz, are more than 

10 times larger than previously reported results. The discrepancy is likely due to the 

measurement of dielectric polarization responses that are parallel with, other than 

perpendicular to, the membrane surface. POPC and SM-rich GUV surface sections are 

also clearly identified from scanning measurement results. Further work is needed to 

enable accurate analysis of membrane composition and dynamics at high spatial 

resolutions. 
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1 

CHAPTER ONE 

 

INTRODUCTION 

 

 

Dielectric spectroscopy measures the complex permittivity of materials over a 

broad frequency range. It is a powerful technique for scientific investigations and 

technological developments in various areas, including chemistry, biology and micro-

total-analysis systems (µ-TAS) [1.1]. For chemistry, dielectric spectroscopy between 10
2
 

and 10
7
 Hz has been developed to obtain mobile ion concentration level and ion mobility, 

which are of great interest for developing secondary ion batteries and fuel-cell 

membranes [1.2]. Dielectric spectroscopy between 1 MHz and 20 GHz has been used to 

determine the dielectric constants of imida-zolium-based ionic liquids [1.3], which are 

developed as environmentally benign solvents. The dielectric constant values are 

important for solvent behavior modeling, which often depends on the dielectric 

continuum models of the solvent. Furthermore, dielectric spectroscopy can investigate the 

relaxation processes occurring in aqueous solutions in an extremely wide time range. 

Thus, it is one of the most important methods for the study of polyelectrolyte-solution 

structure and dynamics [1.4], such as the molecular structures of aqueous urea solutions 

[1.5]. For biology, dielectric spectroscopy has been used to study the relaxation of DNA 

aqueous solutions [1.6], to investigate the collective vibrational modes of proteins, DNAs 

and oligonucleotides (from 60 GHz to 2 THz) [1.7], to help understand protein folding 

and unfolding processes [1.8], to explore the dynamic processes at the protein-solvent 

interface (from 300 kHz to 20 GHz) [1.9], to quantitatively assess the Debye dielectric 

model of membrane lipid bi-layers [1.10] and to characterize tissues [1.11].  For μ-TAS 
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development, such as electronic flow-cytometers [1.12] for single cell detection and 

identification [1.13], [1.14], dielectric spectroscopy is promising to be a label-free 

method. 

Sensitivity is critical for these applications. The strong interest in minimizing the 

volume and concentration level of chemical and biomedical samples has further 

emphasized the need for high sensitivity operations. Small volumes save materials. This 

is especially important for studying minute amounts of precious samples. Low 

concentration levels avoid the interactions among analyte molecules, which is important 

for potentially label-free molecular identifications [1.15] without using additional 

recognition molecules. Different approaches have been explored to improve sensitivities, 

including differential measurements of signals from electrode-pairs [1.12] and the 

development of nanometer electrodes. Among the efforts, resonance based methods 

achieved higher sensitivities. Examples include the recent planar resonator for single cell 

capture and measurement [1.16], the resonant circuit for single particle detection and 

counting [1.17]  the resonant filters for biological and chemical sensing [1.18], the 

resonant structure for femtomolar DNA detection [1.19], the cavity-enabled microwave 

imaging for DNA sensing [1.20], and the whispering gallery mode resonator for aqueous 

solution measurement [1.21]. Nevertheless, these devices are still limited in sensitivity 

since their quality factors are modest except the whispering gallery mode resonators, 

which have an un-loaded Q as high as ~1.1×10
5
 [1.21]. Yet, the Q values degrade 

significantly when a lossy sample, e.g., water solutions, are introduced. Besides, 

dielectric resonators need sophisticated fabrication processes and more complicated 
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liquid handling procedures. As a result, it is of great interest to develop new and highly 

sensitive dielectric spectroscopy techniques. 

Broadband measurements are also essential for many applications, such as those 

discussed in the first paragraph. Additionally, the potential resonant absorption of 

microwaves by molecules and viruses [1.22], [1.23], the potential electrical identification 

of individual cells [1.15], and the development of microwave microdosimetry [1.24] need 

broadband RF measurements. Straight transmission lines are very broadband, but with 

relatively low sensitivity [1.25]; tunable RF resonators [1.11], [1.26], [1.27], harmonic-

frequency/multi-mode resonators, and whispering gallery mode resonators [1.28], can 

operate at a wide frequency range, but their sensitivities are still limited as discussed 

above. 

In Chapter II of this dissertation, a RF interferometer system, which is able to 

simultaneously tune sensitivity and measurement frequency, as a result, addresses the 

challenges of current techniques, is proposed and demonstrated. Compared to the 

previous efforts made by our group [1.29], [1.30], the limited Qeff and mostly operating at 

a single frequency point can be addressed. In the following chapters, the sensing 

component in the proposed interferometer system will be replaced by various microwave 

sensors, i.e, regular coplanar waveguide (CPW), conducted-backed CPW (GCPW), 

nanometer slotline. In Chapter III, using the proposed interferometer, glucose-water 

solution at a concentration level 10 times lower than some recent RF sensors [1.31] and 

pET21a (pE) DNA solution at 10 ng/mL, which is close to the lowest detectable 

concentration level [1.32], while the used sample volume is ~1 nL are measured by a 
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regular CPW-based sensing structure and its dielectric constant is extracted. Composition 

analysis of ternary mixture solutions on basis of GCPW or CPW are also demonstrated 

together. Chapter IV presents a technique that automatically tunes the sensitivity of a 

radio-frequency (RF) interferometer with a tunable liquid attenuator by accurately 

changing its liquid volume, which achieves fast measurements, is unnecessary to keep the 

interferometer stable over a long period of time, i.e., the work in Chapter III, and avoids 

the use of calibration liquids. 

Giant unilamellar vesicles (GUVs) are biologically relevant models that are often 

used to study cell membrane structures, such as raft-like and non-raft microdomains 

[1.33], [1.34]. They are also used to study cells, such as red blood cells [1.35]-[1.37]. 

GUV molecular compositions and interior solutions can be controlled and GUV domain 

structures are well documented. Thus, GUVs are a good model system for cell sensor 

examinations. In Chapter V, the GUVs accompanied by different aqueous mediums 

inside and outside are detected over a range of GHz frequencies using a 100 nm slotline 

structure, which can concentrate RF fields, up to ~1.76×10
7
 V/m, and the complex 

permittivities of these GUVs are extracted from measured S-parameters. 

However, due to the limitation of sensitivity, the information of the lipid bilayer 

cannot be extracted from the measurement in Chapter V. Lipid plasma membrane 

heterogeneity, such as sphingomyelin (SM) and cholesterol (Chol)-rich raft-like domains, 

as shown in Fig. 1.1 [1.38], playing an essential and active role in various cellular 

functions, e.g., immune signaling [1.39], [1.40], host–pathogen interactions [1.41], [1.42], 

cancer [1.43], [1.44] and cardiovascular diseases [1.45], [1.46]. The property is also 
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critical for molecular simulation and understanding [1.47], [1.48] of biological membrane 

organizations [1.49], dynamics and functions [1.50], [1.51]. It is shown that a small 

dielectric property change can lead to significantly different membrane behavior [1.52]. 

Furthermore, membrane dielectric property determines cell responses to external electric 

fields in dielectrophoresis [1.53], impedance spectroscopy [1.54] and electroporation 

[1.55], which are important for scientific and technological development. 

 

 

Fig. 1.1 Raft-like domain (Phase Lo) and non-raft domain (Phase Lα) on a fluorescently-

labeled GUV [1.38]. 

 

A commonly used technique for membrane dielectric property measurement is 

scanning probe microscopy (SPM), which includes electrostatic force microscopy [1.56]-

[1.60] and microwave microscopy [1.61]. The technique has nanoscale resolution, and is 

promising for investigating nanoscale dynamic membrane organizations, such as rafts 

[1.62]. Nevertheless, SPM measurements are often conducted with supported lipid 

bilayers in air, and only recently in aqueous solution [1.56]. In force-based measurement, 

charges on membranes, among other factors, complicate data interpretation. The 
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microwave microscopy needs cell fixation [1.63] while its probe moves. The supporting 

substrate and the fixation process are likely to induce significant dielectric property 

changes in lipid bilayers and cell membranes. Other measurement methods include 

impedance spectroscopy [1.64], environment-sensitive fluorescent microscopy [1.65], 

electron paramagnetic resonance (EPR) [1.66], imaging ellipsometry [1.67], 

interferometry [1.68], and dielectrophoretic spectroscopy [1.69]. These less commonly 

used methods may also need supported membranes or fixed cells. Measuring floating 

cells and model membranes, such as a giant unilamellar vesicle (GUV), in native or near 

native environment is still a challenge [1.70]. In this work, we demonstrate a microwave 

technique to scan and quantify the dielectric property of floating GUV membranes in 

aqueous solution. We also show that the technique can clearly measure GUV membrane 

structures. 
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Böckmann, "A critical comparison of biomembrane force fields: structure and dynamics 

of model DMPC, POPC, and POPE bilayers," J. Phys. Chem. B, vol. 120, no. 16, pp. 

3888-3903, Apr. 2016. 

 

[1.52] M. Patra, M. Karttunen, M. T. Hyvönen, E. Falck, and I. Vattulainen, "Lipid 

bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in 

long-range electrostatic interactions," J. Phys. Chem. B, vol. 108, no. 14, pp. 4485-4494, 

Mar. 2004. 

 

[1.53] P. R. Gascoyne, S. Shim, J. Noshari, F. F. Becker, and K. Stemke‐Hale, 

"Correlations between the dielectric properties and exterior morphology of cells revealed 

by dielectrophoretic field‐flow fractionation," Electrophoresis, vol. 34, no.7, pp. 1042-

1050, Apr. 2013. 

 

[1.54] A. Valero, T. Braschler, and P. Renaud, "A unified approach to dielectric single 

cell analysis: Impedance and dielectrophoretic force spectroscopy," Lab. Chip., vol. 10, 

pp. 2216-2225, Jul. 2010. 

 

[1.55] T. Y. Tsong, "Electroporation of cell membranes," Biophys. J., vol. 60, no. 2, pp. 

297-306, Aug. 1991. 

 

[1.56] G. Gramse, A. Dols-Perez, M.A. Edwards, L. Fumagalli, and G. Gomila, 

"Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous 

solutions with electrostatic force microscopy," Biophys. J., vol. 104, no. 6, pp. 1257-1262, 

Mar. 2013. 



 12 

[1.57] L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, G, "Quantitative nanoscale 

dielectric microscopy of single-layer supported biomembranes," Nano. Lett., vol. 9, no. 4, 

1604-1608, Mar. 2009. 

 

[1.58] G. Gramse, I. Casuso, J. Toset, L. Fumagalli, and G. Gomila, "Quantitative 

dielectric constant measurement of thin films by DC electrostatic force microscopy," 

Nanotechnology, vol. 20, no. 39, pp. 395702, Sep. 2009. 

 

[1.59] G. Gramse, M. Edwards, L. Fumagalli, and G. Gomila, "Dynamic electrostatic 

force microscopy in liquid media," Appl. Phys. Lett., vol. 101, no. 21, pp. 213108, Nov. 

2012. 

 

[1.60] L. Collins, A. Belianinov, S. Somnath, B. J. Rodriguez, N. Balke, S. V. Kalinin, 

and S. Jesse, "Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe 

force microscopy," Nanotechnology, vol. 27, no. 10, pp. 105706, Feb. 2016. 

 

[1.61] G. Gramse, M. Kasper, L. Fumagalli, G. Gomila, P. Hinterdorfer, and F. 

Kienberger, "Calibrated complex impedance and permittivity measurements with 

scanning microwave microscopy," Nanotechnology, vol. 25, no. 14, pp. 145703, Mar. 

2014. 

 

[1.62] E. Klotzsch and G. J. Schütz, "A critical survey of methods to detect plasma 

membrane rafts," Phil. Trans. R. Soc. B, vol. 368, no. 1611, pp. 20120033, Feb. 2013. 

 

[1.63] M. C. Biagi, R. Fabregas, G. Gramse, M. Van Der Hofstadt, A. Juárez, F. 
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CHAPTER TWO 

ULTRA-SENSITIVE AND TUNABLE RADIO-FREQUENCY INTERFEROMETER 

 

2.1 Dielectric Permittivity Spectroscopy 

Permittivity measurement of dielectric materials over a broad frequency range is a 

powerful technique for scientific and technological investigations in chemistry, biology 

and micro-total-analysis systems (µ-TAS). When a dielectric material is exposed to an 

electric field E , nuclei (positive charges) and electron clouds (negative charges) in 

individual atoms, as shown in Fig. 2.1 [2.1], and electric dipole moments in molecules 

separate from one another along the direction of E . Dielectric permittivity ε is defined as 

the ratio between the electric field E  within a material and the corresponding electric 

displacement D . 

                                         
0 rD E E                            (2.1) 

Here, ε0=8.8541878176×10
-12

 F/m is the permittivity of free-space, and εr is defined to 

the relative permittivity characterizing the dielectric properties of materials. 
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Fig. 2.1 Un-polarized and polarized atomic elements [2.1]. 

 

For an applied electric field with high frequency f, the above electric polarization 

depends on the frequency, and the dielectric permittivity is expressed below as a complex 

number ε*(ω). 

                                     

*( ) '( ) ''( )j                          (2.2) 

Here, the angular frequency ω is defined by 2πf, the real component ε'(ω) of the dielectric 

permittivity represents energy stored through electrical polarization whereas the 

imaginary component ε''(ω) represents a measure of energy loss. The frequency-

dependent dielectric permittivity ε*(ω) is also described by the following model [2.2]. 

                                         
0

1

*( )
[1 ( ) ]j j

n
j j

j jj
 

 
  










 


              (2.3) 

In eq. (2.3), ε∞ represents a limit as frequency goes to infinity, ε0 represents the zero-

frequency permittivity, τ is the dielectric relaxation time, j represents the jth process, α 

and β are the shape parameters representing asymmetric and symmetric distribution of 

relaxation times, respectively. Equation (2.3) includes some following cases: (i) the 

Debye (D1) when αj=βj=1, n=1; (ii) the Cole-Cole (CC1) when αj=1, 0<βj≤1, n=1; (iii) 

the Davidson-Cole (DC1), when 0<αj≤1, βj=1, n=1; (iv) the Havriliak-Negami (HN1) 

when 0<αj≤1, 0<βj≤1, n=1; (v) the double-Debye (D2) when αj=βj=1, n=2; (vi) the double 

Cole-Cole (CC2) when αj=1, 0<βj≤1, n=2; and so on. For example, the dielectric 

permittivity spectroscopy of methanol-water mixture at 0.01 mole fraction can be 

described by the CC2. Using the data in [2.2], it can be drawn as: 
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Fig. 2.2 Dielectric permittivity spectroscopy of methanol-water mixture (0.05 mole 

fraction) from 10
5
 Hz (0.1 MHz) to 10

12
 Hz (1 THz). Blue line: real component; green 

line: imaginary component. 

 

From Fig. 2.2, we can see that (i) at low frequency (<10 MHz), the complex 

permittivity is mainly determined by the real component, and the imaginary one is close 

to zero; (ii) from several hundreds of MHz to 100 GHz (the microwave frequency range), 

the real and imaginary components have strong frequency-dependency; (iii) at high 

frequency (several hundreds of GHz), the real one is close to 6 and keeps almost 

consistent, and the imaginary becomes back to zero. These features caused by structural 

reorientation of polar molecules [2.3] are also applied to other concentration levels and 

aqueous solutions, e.g., 1-propanol [2.4], 2-propanol [2.5]-[2.6], ethanol [2.7], DNA 
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[2.8]-[2.9], protein [2.10], glucose [2.11], and so on. As a result, the dielectric 

permittivity spectroscopy in the microwave regime is of brilliant prospects for the 

detection and analysis of chemical and biological substances at low-concentration and 

without fluorescent labels involved. 

 

2.2 Interferometer Design and Operation 

Figure 2.3 is the schematic of the proposed radio-frequency (RF) interferometer. 

Three frequency bands are combined to cover 3-decades of operating frequencies. The 

detailed arrangement of band II is illustrated. Compared with the devices in [2.12]-[2.15], 

off-chip tuning components are introduced for continuous adjustments of phase (Φ) and 

attenuation (R). Broadband off-chip power dividers are also used. Band III has similar 

configurations. For band I, coaxial cables, instead of phase shifter Φ, are used to provide 

180
o
 phase shifts at the fundamental and certain harmonic frequency points. The yellow 

sensing sections are built with 50 Ω conducted-backed coplanar waveguides (GCPW), 

which are fabricated with Duroid 5870 laminates using the milling machine shown in Fig. 

2.4. They will be replaced by other sensing structures in the following chapters. 

Polydimethylsiloxane (PDMS) wells are attached to the GCPWs to hold reference (REF) 

and material-under-test (MUT) solutions. The dimensions of the GCPWs and PDMS 

wells are shown in Fig. 2.5. As a frequently-used polymeric material in this dissertation, 

the fabrication process and the limitation of PDMS will be introduced in Section 2.5. 
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Fig. 2.3 Schematic of the proposed RF sensor setup. Two switches are used to combine 

the operations of three frequency-bands. Band I: from ~20 MHz to ~1 GHz; band II: from 

~1 GHz to ~12.5 GHz, band III: from ~26.5 GHz to ~38 GHz. Manual tuning 

components are used in this work. 

 

                                         

Fig. 2.4 Milling machine for printed circuits board (PCB) circuit fabrication. 
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Fig. 2.5 Dimensions of top view and cross section of the sensing zone, where w=2 mm, 

g=1 mm, t=17 µm, h1=2.625 mm, h2=0.787 mm, ε1: MUT permittivity, ε2: 2.33. 

 

The sensitivity of the sensor at a given frequency f0 is characterized by Qeff or 

equivalently |S21|min if the insertion loss of the circuit components in Fig. 2.3 is negligible. 

The value of |S21|min is determined by the level of electrical balance between the two 

branches when REF solutions, which do not have to be identical, are included in the 

MUT and REF wells. The level of balance, i.e., the sensitivity |S21|min, and the operating 

frequency f0 can be tuned by the attenuators and phase shifters. The introduction of MUT 

or change of MUT properties will cause |S21|min and f0 shifts, which are the sensing 

indicators that can be further processed to obtain MUT properties. Fig. 2.6 shows the 

measured |S21|min when DI water is used as REF solutions in both wells. It shows that the 

RF sensor has high sensitivities over the measured frequency range. Lossy water does not 

significantly decrease sensor sensitivity due to its relatively small volume. This 

observation is further verified by doubling the PDMS well length in MUT branch. 

Nevertheless, the amount of water used in the tests is large in the context of μ-TAS due to 

large GCPW dimensions. Considering the scalability of GCPW sizes, the achieved |S21|min 

also indicates high sensitivities when measuring small-volume samples with nanometer 
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GCPWs. Hence, the sensor sensitivities compare favorably against current RF sensors, 

such as the planar ones in [2.16]-[2.17]. Furthermore, the lowest |S21|min at ~10.06 GHz 

yields a Qeff of ~3.8×10
6
, which is much higher than the un-loaded Q of dielectric 

resonators [2.18]. This Qeff is also comparable with that of the optical dielectric 

resonators, which have been developed for single molecule and single nano-particle 

measurements [2.19]. Fig. 2.6 also shows different |S21|min values at different frequencies. 

The differences are mainly caused by the manual tuning operations of the attenuators and 

phase shifters. With better tuning components and better control, it is expected that 

|S21|min uniformity will be significantly improved across the operating frequency ranges. 

 

 

Fig. 2.6 (a) Measured |S21| from ~20.5 MHz to ~38 GHz. (b) Zoom in view at one 

frequency point. 

 

It should be pointed out that |S21|min values and their corresponding frequencies, f0, 

fluctuate and drift with time when the RF sensor is tuned for high sensitivity operations, 
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as shown in Fig. 2.6 zoom-in. As a result, the high sensitivity tuning in Fig. 2.6 is only 

obtained for time duration of about 1~2 minutes. The technique that automatically tunes 

the sensitivity of the RF interferometer can improve this issue, presented in Chapter IV. 

To demonstrate the operation of the presented interferometer, 0.01 mole fraction 

2-proponal/methanol-water solutions are measured. It is placed in the PDMS well in Fig. 

2.5. A plastic cylindrical tube is used to hold DI water as REF on the second and identical 

CPW. The use of a plastic tube is to illustrate the flexibility of the sensor. The 

measurement is focused on frequency band II, from ~1 GHz to ~12 GHz, where we have 

better tuning components as well as discrete standards for vector network analyzer (VNA) 

calibration. 

First, use DI water in MUT well to adjust the RF sensor at each f0 to obtain a 

|S21|min of ~-60 dB to ~-70 dB. Then, the water is replaced by methanol-water solution, 

which is replaced by the 2-propanol-water solution subsequently. Lastly, 2-propanol-

water mixture is measured. The obtained results are shown in Fig. 2.7. 
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Fig. 2.7 (a) The measured S21 magnitude from ~1 GHz to ~10 GHz for water-water, 

methanol-water and 2-proponal-water solutions. (b) Zoom in view at one frequency point, 

where I: DI water, II: methanol-water,  III: 2-propanol-water. 

 

2.2 Quantitative Analysis of the Interferometer 

The introducing of multiple solutions can calibrate the interferometer system for 

the extraction of the complex permittivity of MUT solution. The reason is that the 

manually tunable components in Fig. 2.3 do not provide accurate readings. As a result, 

their exact phase and attenuation values are unknown. These values are also different at 

different frequency f0. In order to address this issue, it is assumed that the permittivities 

of two of three solutions, i.e., DI water, and 2-propanol-/methanol-water mixtures (at 

0.01 mole fraction) are known, e.g., the data in [2.2] and [2.6]. Then the third can be 

solved using the following equations: 

                       

21( ) 21( )

21( ) 21( )

- exp(- ) - exp(- )

- exp(- ) - exp(- )

 

 


m w m MUT w MUT

p w p MUT w MUT

S S l l

S S l l
          (2.4) 

where it is assumed that DI water and methanol-water have known permittivities, and 2-

propanol-water is the MUT. Subscript m is for methanol-water solution, p is for 2-

propanol-water solution, w is for water-water measurement, and lMUT is for the length of 

the PDMS well in Fig. 2.5. The parameters γm,p,w are the corresponding propagation 

constants. Once γp=αp+jβp is obtained, the real and imaginary permittivity components of 

2-propanol-water solution, εp=εp'-jεp'', can be obtained through the following equations 

for a GCPW. 
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where parameters ai=2ε0K(ki)/K(ki'), i=0, 2, a1=2ε0K(ki')/ K(ki), K(k) is the complete 

elliptic integrals of the first kind with modulus k, as shown below, and k'=(1-k
2
)
0.5

. 

                                                                  0 / ( 2 )k w w g                                           (2.7) 

                                           1 1 1sinh( / 4 ) / sinh( ( 2 ) / 4 )k w h w g h                    (2.8) 

                                          2 2 2tanh( / 4 ) / tanh( ( 2 ) / 4 )k w h w g h                 (2.9) 

where the geometrical parameters are defined in Fig. 2.5. 

The above analysis ignored the effects of mismatches between MUT/REF section 

and their adjacent 50 Ω sections. For S11, the reflection is partly absorbed by the power 

dividers. For S21, mismatch effects are included in its accurate expression [2.20] 
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           (2.10) 

where Z is the characteristic impedance of the Reference/MUT section. A constant ratio 

S21(branch)/exp(-γl) of for calibration solutions and MUT indicates that reflection can be 

ignored. For calibration liquids and MUT with close permittivity values in this work, e.g., 

DI water, methanol-water and 2-propanol-water both with 0.005 and 0.01 mole fractions, 

respectively, the ratio at 6 GHz is (1.56~1.58)∠(-0.04~-0.03), which can be considered to 

be a constant. Consequently, the calibration process and the use of the simplified S21 in eq. 

(2.4) can be used for simplified extraction of extract MUT permittivity. However, for 
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large permittivity differences, better matched REF/MUT lines should be considered or eq. 

(2.10) should be used. As a result, data processing is a lot more involved. 

 

2.3 Fabrication of the PDMS Well 

Dow Corning’s 184 Sylgard Elastomer [2.21] with two separate bottles of liquid 

base and curing agent are used to synthesize PDMS well. First, prepare two clean glass or 

plastic dishes, and place mold for the well on one dish. Then, mix base and curing agent 

together using a weight ratio of 10:1 and stir them for about 15 minutes until they are 

mixed sufficiently (a lot of bubbles appear). Next, pour the mixture onto the mold on 

another dish, place the dish into the vacuum oven, and vacuum it until all bubbles 

disappear. Finally, make the oven keep 60
o
C for 1 hour, then it is ready to use after 

peeled off from the mold [2.22]. 

In spite of a lot of advantages of PDMS material, e.g. rapid prototyping, and 

sealing, transparency for observation, chemical inertness [2.23], which facilitates it be 

widely used in all sorts of microfluidic devices, PDMS is not a universal material and not 

suitable for all MUTs. If an inappropriate sample is held in PDMS channel, it would 

cause measurement uncertainty and even incorrect result. Three main aspects need to be 

carefully considered, i.e., the solubility of a solvent in PDMS since this solubility 

influences the swelling of the PDMS, the solubility of solutes in PDMS (or more properly, 

the partition of solute between a solution and PDMS) since loss of solute from the solvent 

is a concern; the dissolution of PDMS oligomers in solvent since these oligomers (present 

as contaminants in cross-linked PDMS) are potential contaminants in PDMS. 
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Swelling changes the cross sectional area of PDMS well and the rate and profile 

of flow in PDMS channel therefore. Also, changes in channel dimensions due to swelling 

can affect integration of the channel attaching with other components, such as substrate. 

Table 2.1 [2.23] summarizes the swelling of the PDMS in different solvents, where S is 

the swelling ratio that was measured experimentally. We can see that there is almost no 

swelling for some solvents, e.g., water, glycerol, and nitromethane, but some solvents can 

cause significant swelling, e.g., diisopropylamine, triethylamine, and pentane, which 

cannot be held directly by a PDMS-based structure. 

 

TABLE 2.1 

SOLUBILITY PARAMETERS AND SWELLING RATIOS 

OF VARIOUS SOLVENTS USED IN ORGANIC SYNTHESIS [2.23] 

Solvent δ
a
 S

b
 

water 23.4 1.00 

glycerol 21.1 1.00 

nitromethane  12.6 1.00 

diisopropylamine  7.3 2.13 

triethylamine 7.5 1.58 

pentane 7.1 1.44 
aδ in units of cal1/2 cm-3/2. bS denotes the swelling ratio that was measured experimentally; S=D/D0,  

where D is the length of PDMS in the solvent and D0 is the length of the dry PDMS. 

 

Table 2.2 [2.23] shows partitioning of solutes between a solvent and PDMS, 

where the Flory-Huggins interaction parameter χ is used to evaluate partitioning. 

                                    
21 ( )solvent PDMS

V

RT
                             (2.11) 

where V1 is the molar volume of solvent, R is the real gas constant, and T is the 

Temperature. When χ is close to zero, the maximum mixing or interaction between 

PDMS and solvent exists. Taking rhodamine for example, when dissolved in water, 
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propylene carbonate, and nitromethane, it has more significant partition ratios than 

dissolved in ethanol. If one would like to detect rhodamine, ethanol should be a better 

solvent choice than other three. 

 

TABLE 2.2 

PARTITIONING OF ORGANIC COMPOUNDS 

IN SOLVENT/PDMS MIXTURES [2.23] 

Compound Partition ratios (Asolvent/(Asolvent+APDMS)) 

water nitromethane ethanol 

Rhodamine 0.4±0.1 0.83±0.08 0.97±0.03 

Fluorescein 1.00±0.04 a b 

Dansyl chloride a 1.00±0.01 b 
aCompoud did not dissolve in solvent. bFluorescence of compound was quenched in the solvent/PDMS mixture. 

 

 

Fig. 2.8 Contact angle versus time for □non-oxidized, non-extracted PDMS; ○non-

oxidized, extracted PDMS; ■oxidized, non-extracted PDMS; ●oxidized, extracted PDMS 

[2.23]. 
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Removal of PDMS oligomers (un-cross-linked hydrophobic groups) from solvent 

can be achieved using the O2 plasma treatment for a hydrophilic surface. The detailed 

steps of plasma treatment will be introduced in Section 3.4. Some organic solvents, e.g., 

diisopropylamine, are also reported to be effective for decreasing the rate of regeneration 

of the hydrophobic surface by extracting un-cross-linked oligomers. Figure 2.8 [2.23] is 

the relationship between contact angle (for measuring hydrophilicity/hydrophobicity) and 

time, indicating that the use of O2 plasma treatment and diisopropylamine can create a 

long-term hydrophilic PDMS surface. 
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CHAPTER THREE 

DETECTION AND ANALYSIS OF AQUEOUS SOLUTIONS 

USING COPLANAR WAVEDUIDE SENSING STRUCTURES 

 

3.1 Mathematical Models of the Sensing Structures 

A GCPW component is used as the sensing structure in Fig. 2.2, which is also 

replaced by a regular CPW (without backed conductor) or microstrip line (ML). Fig. 3.1 

shows the top and cross-section views of CPW-based MUT transmission line (TL) 

section together with a microfluidic channel. The capacitance of a uniform CPW with the 

cross section in Fig. 3.1 can be written as the superposition of four partial capacitances 

[3.1]: 

                                           
0 1 2 3totC C C C C                                       (3.1) 

The configurations for the calculation of these partial capacitances are similar to 

those in [3.1]. The expressions of C0~C3 are [3.1]: 
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where ai=2ε0K(ki')/K(ki) (i=0, 1, 2, 3), k'=(1-k
2
)
0.5

, K(k) is the complete elliptic integrals 

of the first kind with modulus k0=w/(w+2g), ki(i=1, 2, 3), and 
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The effective permittivity of the CPW is 

                                        
, ,eff r eff i effj                                          (3.7) 

where the real and imaginary components of the permittivity are [3.2] 
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where filling factors q0=(2a0-a2-a3)/(2a0), q1=a1/(2a0), q2=a2/(2a0), q3=(a3-a1)/(2a0). 

 

                               

                             (a)                                                        (b) 

Fig. 3.1 (a) Top view and (b) cross section of a CPW MUT section. 

 

The dielectric loss αd is determined by the substrate, MUT liquids and the channel 

cover material, 
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                        (3.10) 
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The conductor loss αc of the center signal line and the ground planes can also be 

calculated. But its effects will be cancelled out in eq. (2.1). 

For phase constant β, it depends on the relative effective dielectric constant εr,eff, 

                                      
0 , 02 r eff

ph

f
v


                                     (3.11) 

Thus, MUT permittivity ε=ε'-jε'' can be obtained from γMUT=(αc +αd)+jβ with eq. 

(3.10) and (3.11). The algorithm for extracting material property ε=ε'-jε''=ε' (1-tanδ) from 

scattering parameters is also summarized in Fig. 3.2, where the subscript cal1 and cal2 

represent two different calibration liquids with known dielectric constants. As mentioned 

in the end of Chapter II, the purpose of two different calibration liquids is to increase the 

number of independent measurements to remove the unknown effects brought by the 

cables, manual attenuators and phase shifters in Fig. 2.3. 

 

 

Fig. 3.2 Algorithm to obtain MUT permittivity values from S-parameters. 

 

For GCPW-/ML-based MUT TL section, shown in Fig. 3.3 and 3.4 respectively, 

the similar mathematical models can be also presented to quantify material properties 

from scattering parameters. 
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                             (a)                                                        (b) 

Fig. 3.3 (a) Top view and (b) cross section view of the GCPW MUT section. 

 

                    

                             (a)                                                        (b) 

Fig. 3.4 (a) Top view and (b) cross section of the ML MUT section. 

 

3.2 Quadrature Hybrid Based RF Interferometers 

Power dividers in Fig. 2.3 can be replaced with broadband quadrature hybrids, as 

shown in Fig. 3.5. Compared with power divider implementation, the quadrature hybrid 

implementation enables the use of reflected RF probing signals, e.g., S11 in Fig. 3.6, in 

addition to transmission signal S21. The use of S11 also helps to address the uncertainties 

that appear in obtaining phase constant βMUT from propagation constant. The use of S21 

will not be repeated below. 
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Fig. 3.5 The schematic of an interferometer that is based on quadrature hybrids. 

 

To use S11 to obtain MUT properties, it is easy to show 
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              (3.12) 

where ZL(MUT) is the impedance looking towards attenuators and phase shifters at the 

MUT branch. Matching consideration is assumed between adjacent circuit components 

except the MUT TL section, which has a characteristic impedance of ZMUT.  For CPW 

and GCPW, it can be written as [3.1] 

                                 
,1/ ( ) / ( )MUT tot ph r eff totZ C v C c                    (3.13) 

For ML, the following expression can be used [3.3] 

                                         2

,

860
lnMUT

r eff

h
Z

w
                              (3.14) 

which is valid for w/h2≥1, and the expression for w/h2≤1 is also given in [3.3]. 
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                      (a)                                                                       (b) 

Fig. 3.6 (a) Illustrations of |S21| and |S11|. (b) |S11| differences of a CPW based MUT TL. 

 

The obtained scattering parameters S11 and S21 can be combined to obtain MUT 

permittivity. The use of S11 for MUT detection is also highly sensitive even though the 

measured S11 does not yield an effective Q that is nearly as high as that from |S21|min. The 

high-sensitivity is enabled by the differential nature of the reflections from MUT and 

REF branch in Fig. 3.5. The differential operation of S11 in eq. (3.12) also removes 

reflections from mismatches occurred mainly at quadrature-hybrid connections. These 

reflections are part of the measured S11 data for each individual measurement and cause 

much higher |S11| values (e.g., -20 dB) than |S21|min values (e.g., -100 dB). Thus, the 

smallest |S11| change measured by VNA determines S11-related sensitivity. Typical long-

term measurement uncertainty of |S11| is better than 0.005 for commercial VNAs. For the 

measurements at each frequency point, it is observed that S11 is stable at the 5th digit, 

which corresponds to a level of ~-100 dB. It implies that the proposed differential S11 

measurement has the potential to achieve a sensitivity that is comparable to that of |S21|min. 
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3.3 High Sensitivity Measurements 

The operating principles of the two types of interferometers in Figs. 2.3 and 3.5 

have been demonstrated in the above section. In this chapter, the quadrature-hybrid-based 

interferometer is further improved for stable operations at much higher sensitivity levels 

than those in Fig. 2.7. The improved performance is demonstrated by measuring glucose 

solutions at a concentration level 10-times lower than that in [3.4] and pET21a (pE) DNA 

solution at 10 ng/mL, which is close to the lowest detectable concentration level [3.5]. At 

the same time, the effective MUT volume is only ~1 nL. The analysis of molecular 

compositions of ternary solutions with a power-divider based interferometer is further 

demonstrated. Such capabilities may lead to some interesting applications, including non-

invasive, label-free detection and identification of molecules [3.6]. 

The CPW TL MUT section is fabricated with standard microfabrication 

techniques on 1 mm thick fused silica substrate. The detailed process will be introduced 

in Section 3.5. A 500 nm thick gold film on top of a 10 nm thick Ti adhesion layer is 

deposited as CPW sensing electrode. Microfluidic channels, 500 μm wide and 50 μm 

high, are incorporated with the CPW for MUT handling. High Frequency Structure 

Simulator (HFSS) [3.7] simulation indicates that the channel has an insertion loss of 0.54 

dB at 6 GHz with water as MUT. The small loss does affect measurement sensitivity, but 

negligible in the proposed measurements. Fig. 3.7 shows the measurement setup, where 

VNA, phase shifters and attenuators are marked, for glucose-/DNA-water solution 

measurements. The CPW lines for MUT and REF are covered with thick PDMS slabs to 

eliminate deposition of micro-particles from the measurement environment onto CPW 
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surfaces. The post-processing of the PDMS channel for good adhesion and hydrophilicity 

will be introduced in Section 3.4. These particles and the mechanical stability of the 

cables and connections in Fig. 3.7 affect achievable |S21|min, which is improved by about 

15~20 dB in this Chapter when compared with that in Fig. 2.7. The Qeff magnitude is 

improved from ~10
4
 to ~10

5
. The micro-particles are mainly from air in the measuring 

environment. Figure 3.8 shows measured S21 and S11 of glucose-water solution at 5 

mg/dL (~0.0002 mol/L) from ~2 GHz to ~10 GHz. The concentration level is 10 times 

lower than that in [3.4], which aims at non-invasive measurements of glucose in blood 

vessels. DI water and methanol-water solution (at 0.005 mole fraction) are used as 

calibration liquids for this measurement. 

 

 

Fig. 3.7 A high sensitivity interferometer measurement setup. 
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                                                          (a) 

 

                                                          (b) 

Fig. 3.8 Measured (a) S21 and (b) S11 from ~2 to ~10 GHz and a zoom-in view at ~10 

GHz (blue solid line, I: DI water; red dashed line, II: glucose-water; black circles: 

methanol-water). The error bar in (b) shows the range of |S11| difference for water (w) and 

glucose-water (g) at the frequency f0, i.e., |S11|w-|S11|g (dB). 

 

Figure 3.9 shows the calculated permittivity of glucose-water solution by 

following the algorithm in Fig. 3.2. Based on the calculated results, the Cole-Cole (CC) 

equation in [3.8] can be fitted through a least-square fitting approach, also drawn in the 

same figure. Table 3.1 lists all fitting parameters in the CC equation. The uncertainty of 

the REF material property also propagates to the extracted MUT properties. For instance, 
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the calculated 5 mg/dL glucose-water permittivity value is 77.57-j7.96 at ~2 GHz if the 

permittivity of the calibration liquid methanol-water (at 0.005 mole fraction) is 77.02-

j8.10 [3.9]. A +1% uncertainty, i.e., a deviation of 0.77-j0.08 of methanol-water 

permittivity, induces a +1% shift of glucose-water solution permittivity to 78.30-j8.04. If 

the same process is repeated again at ~10 GHz, the permittivity changes from 63.10-

j29.66 to 63.18-j29.75, which is smaller than 1% shift. The larger uncertainty at relatively 

lower frequency point is caused by closer permittivity values among calibration liquids 

1&2 and MUT. 

 

 

Fig. 3.9 The permittivity, ε=ε'-jε'', of glucose-water solution at 5 mg/dL. 

 

TABLE 3.1 

FITTING PARAMETERS FOR GLUCOSE-WATER SOLUTION 

AT DIFFERENT CONCENTRATIONS 

Parameter Fitting values 

0.0002 mol/L 0.001 mol/L 0.01 mol/L 0.1 mol/L 

ε0 78.36 78.52 77.9 77.6 

τ1  8.15 ps      8.21 ps        8.18 ps      7.57 ps 

τ2  8.17 ps      9.79 ps        9.50 ps      11.8 ps 

a1 72.1     71.7         70.4     64.5 

a2 1.1     2.02         2.6     10.1 



 40 

Glucose-water solutions of different concentration levels are also measured with 

their permittivity values at each frequency point obtained. A part of the results are 

summarized in Table 3.1 with their fitting parameter values. It shows that the techniques 

can be applied to measure solutions with wide range concentration variations. The 

parameters also show that two types of Debye processes (high-frequency process: 

subscript 1; low frequency process: subscript 2) contribute to the dielectric spectrum of 

glucose-water solution [3.8]. With the concentration level increased, the fitting 

parameters a1 and a2 change in opposite directions, which suggest that the low frequency 

process is more significant. Parameters τ1 and τ2 also demonstrate such a trend. The 

change trend of ε0 suggests that the static permittivity decreases with the increase of 

glucose molecules due to the glucose related low frequency processes. The non-

monotonic variations of ε0, τ1 and τ2 versus concentration level are probably due to 

measurement errors. 

Fig. 3.10 shows the measured S21 magnitude for pET21a (pE) DNA at different 

concentration levels. Multiple measurements are conducted for each MUT sample. 

Corresponding |S21|min points are also shown. It shows that the achievable sensitivity limit 

is below 10 ng/mL, i.e., 2.97×10
-15

 mol/mL, which is close to the highest sensitivity in 

[3.5]. In the measurements, however, the effective MUT volume is ~1 nL and DNA 

molecules are not pre-processed or concentrated. The distance between two adjacent 

DNA molecules in the solution is estimated to be ~8.2 µm. Such distance is much larger 

than the Debye length of pure DI water [3.10]. Therefore, the interactions among the 
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DNA molecules in the test solution are negligible. The demonstrated dielectric properties 

are a simple summation of the individual DNA molecules. 

 

 

Fig. 3.10 |S21| measurement results for pE DNA aqueous solution with different 

concentration levels at ~10 GHz (blue line and snowflakes, I: DI water; black line and 

crosses, II: 1 μg/mL; red line and circles, III: 100 ng/mL; green line and triangles, IV: 10 

ng/mL). 

 

The GCPW TLs for Fig. 3.3 and the power divider-based measurement setup in 

Fig. 2.3 are used here to demonstrate the composition analysis of aqueous samples. 

PDMS wells with a 3 mm-long lMUT are attached to the GCPWs to hold REF and MUT 

solutions, which has a volume of 200 μL. The HFSS simulation indicates that the GCPW 

section has an insertion loss of 1.75 dB at 6 GHz with water as MUT. 

Three solution samples, methanol, 2-propanol, and water, are used for 

measurements.  The mole fractions of the mixtures are listed in column 1 of Table 3.2. 
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Figure 3.11 shows measurement results for methanol-2-propanol-water solution (m: 0.01; 

p: 0.01) at ~1 GHz and ~8 GHz. DI water and 2-propanol-water mixture solution with a 

mole fraction of 0.01 are used as calibration liquids. The measurement setup is similar to 

that in Fig. 3.7. 

 

The permittivity of the solutions can be obtained with the algorithm described in 

Fig. 3.2 and are shown in column 2 of Table 3.2. 

One way to identify the concentration levels of the solution components is to 

exploit the relative dielectric constant expression [3.11], [3.12] 

                                   ' (1 ) ' ' 'tot w m px y x y                     (3.15) 

where εm' and εp' are relative dielectric constants of pure methanol and 2-propanol. 

Factors x and y are the mole fraction of methanol and 2-propanol, respectively. The 

excess function ε
E
 has been eliminated since the interactions between different molecules 

are expected to be weak under low mole fractions, as described in [3.11], [3.12]. 

 

TABLE 3.2 

COMPOSITION ANALYSIS OF METHANOL-2-PROPANOL-WATER SOLUTIONS  

WITH DIFFERENT MOLE FRACTIONS 

Sample 

(m & p) 

Measurement result 

Permittivity (1 GHz & 8 GHz) Mole fraction 

0.01 & 0.01 76.71&66.02 0.0130 & 0.0130 

0.005 & 0.01 77.17&66.31 0.0032 & 0.0139 

0.01 & 0.005 77.07&65.93 0.0156 & 0.0069 

 

Substituting these data and the corresponding permittivities of pure water, 

methanol and 2-propanol [3.8], [3.13] into (3.15), x and y can be found as 0.0130 and 
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0.0130, respectively. Table 3.2 also summaries the results for the other two samples. 

These results indicate that the obtained solution composition levels are reasonable even 

though further work is needed to improve the accuracies. 

 

3.4 Surface Modifications of PDMS 

The surface of the used PDMS channel required to be chemically modified using 

an O2 plasma to be hydrophilic before it is attached onto a glass substrate for a good 

adhesion. Also, the hydrophilicity can facilitate the easiness of the solution flow. 

First, the surface of PDMS and glass substrate needs to be well cleaned using 

isopropyl alcohol (IPA) and DI water. If there is diisopropylamine in lab, to rinse PDMS 

using it is recommended. Then, dry them using nitrogen if it is available in lab, otherwise, 

fiber-free paper is alternative. In this process and the followings, one should wear latex 

gloves to prevent possible contaminations. 

Second, put the cleaned PDMS (face up) and glass substrate into the chamber of 

the plasma cleaner, and run it under the maximum RF power for 20 to 30 seconds. 

Third, face down the PDMS and press it onto the glass under a microscope for 

good alignment. In this step, any air bubbles between the PDMS and the glass substrate 

should be removed. 

Forth, place the glass with PDMS onto a hotplate for 85
o
C and 30 minutes for 

annealing. Then it is ready to use. An excellent bonding means an irreversible process, 

i.e., once one tries to peel it off from the glass substrate, the PDMS structure will be 

destroyed permanently. 
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3.5 Microfarication Process 

The metal layers of micro-machined sensing structures in this and next chapters 

are patterned by lift-off process in clean room. Compared to the wet-etching process, the 

micron-level CPW gap is closer to what is designed on the mask since no lateral etching 

occurs, which is positive to enhance the electric field in the gap and the sensitivity. 

The main process and recipes are following: 

(1) Cleaning Wafers 

First, well clean 4-inch fused quartz wafers using 65
o
C Nanostrip or the mixture 

solvents of 96% H2SO4 and H2O2 (piranha solvent) at a volumetric percentage of 3:1 for 

removal of most organic matter and adding hydroxyl groups with highly hydrophilic. 

Then put them one by one into a Cl2 plasma chamber for 3 minutes descuuming. 

(2) Coating 

Use a spinner and the following recipe in Table 3.3 to coat a ~500 nm thick 

photoresist LOR_3A layer [3.14] as the undercut layer in bi-layer to speed up the lift-off 

process. After that, place the wafer onto a hotplate at 150
o
C for 150 seconds for soft-

baking. If there is no Cl2 plasma in Step (1), the O2 plasma can be alternative but higher 

temperature and longer time, e.g., 180
o
C and 5 minutes, are required for soft-baking, and 

an additional 200
o
C and 5 minutes dehydration process is highly recommended. 

Otherwise, there will be terrible mouse-bites after development, as shown in Fig. 3.11(a). 

TABLE 3.3 

SPINNING RECIPE FOR LOR_3A 

Step # RPM RPM/s Time (s) 

1 500 500 10 

2 1000 10000 45 
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(a)                                                                     (b) 

Fig. 3.11 (a) Mouse-bites and (b) improved patterns and after development. 

 

Next, coat a layer of AZ2020 [3.15] with a thickness of about 3 μm on the 

LOR_3A layer using the recipe in Table 3.4. For its soft-baking, 110
o
C and 90 seconds 

are used. 

 

TABLE 3.4 

SPINNING RECIPE FOR AZ2020 

Step # RPM RPM/s Time (s) 

1 1000 1000 5 

2 2890 5000 40 

 

(3) Optical Lithography 

Use a chrome-down mask for contact exposure under pressure mode for minimum 

5 μm feature size. The exposure time is measured to be 25 seconds (125 mJ/cm
2
) under a 

ultra-violet (UV) intensity of 5 mw/cm
2
 for quartz-based mask material. For other mask 
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materials, e.g., soda lime, the exposure time should be compensated accordingly. A 

recipe of 100
o
C and 90 seconds are used for post-baking. 

(4) Development 

After the post-baking, use a spinner with the recipe in Table 3.5 for development. 

For a good metal adhesion during the deposition, the developed wafers need to be plasma 

cleaned again for 30 seconds. The cross-sectional shape [3.15] after AZ2020 

development is shown in Fig. 3.12. 

 

TABLE 3.5 

SPINNING RECIPE FOR DEVELOPMENT 

Step # RPM RPM/s Time (s) Commentary 

1 500 1000 3 Pre-treatment 

2 500 250 3 Pre-treatment 

3 500 250 90 Developer 

4 500 500 45 Water (top side) 

5 2500 1000 60 Water (back side) 

 

 

Fig. 3.12 Cross-sectional shape after AZ2020 development [3.15]. 

 

(5) Evaporation 
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Use Telemark’s E-beam evaporator [3.16] for metal deposition. First, check the 

crystal sensor and renew it if necessary. Second, check the metal pellets if they are 

sufficient during the deposition. Third, load all wafers and face down the surface needs to 

be deposited. Forth, close the chamber, turn on the control and high-voltage button, and 

start the vacuuming step until the pressure is down to about 2×10
-6

 torr. In the followings, 

deposit all desired layers one by one, cool down the chamber below 70
o
C, and open the 

valve for a room atmospheric pressure. Finally, get all wafers out. A concise process flow 

from optical lithography to evaporation is shown in Fig. 3.13. 

 

 

Fig. 3.13 Process flow from optical lithography to evaporation. 

 

(6) Lift-off 

Put all deposited wafers into an ultra-sonic bath with NMP solvent [3.17] for 

about 1 to 1.5 hours until all photoresists shaken off. Then dice chips out for 

measurement. 
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CHAPTER FOUR 

AUTO-TUNING AND SELF-CALIBRATION OF  

RADIO-FREQUENCY INTERFEROMETERS 

 

4.1 Principle and Operation 

For a matched design, the measured transmission coefficient S21 of the 

interferometer in Fig. 2.3, 3.5, or re-drawn Fig. 4.1(a) is 

                             
21 1 1 2 1exp( ) exp( )    MUT REFS K l K l                  (4.1) 

where K1 and K2 include the effects of all the components in MUT and REF paths except 

MUT and REF liquid sections; γMUT and γREF are the propagation constants of the 

sections, and their length is l1 (Fig. 4.1(b)). For high sensitivity MUT measurement at 

frequency f0, it is necessary to fine tune the interference process and to obtain very low 

|S21|min values (Fig. 4.1(a)). The tuning is achieved with high resolution tunable 

attenuators. Currently, significant experience is needed with available commercial 

devices. It is often challenging to keep the interferometer stable over a long period of 

time. Thus, rapid measurements are important. Furthermore, calibration liquids are 

needed to remove the unknown coefficients, i.e., Ki and γREF in eq. (4.1), in order to 

quantify MUT permittivity. The accuracy of the calibration liquid properties and the 

measurement repeatability are significant concerns, especially when the analyte 

concentration level is very low. De-embedding approaches could avoid the use of 

calibration liquids by measuring different calibration structures [4.1]. But measurement 

repeatability of different structures is a challenge. In this chapter, it is demonstrated that 

liquid-based attenuators can be exploited to automatically tune RF interferometer 
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sensitivity at high resolutions. Also, MUT solutions can be used to calibrate the 

measurement system, and enable rapid and quantitative measurements of MUT dielectric 

properties. No additional calibration standards or de-embedding structures are needed. 

Thus, the above mentioned problems are addressed. 

 

 

Fig. 4.1 (a) A schematic of the proposed RF interferometer with liquid attenuators. 

Another attenuator in the REF path can be replaced by a cable. The additional manually-

tunable attenuators (R) and phase shifters (ϕ) are introduced for additional tuning 

flexibility. (b) Top view and (c) cross section of the liquid attenuator in (a), where 

w=0.13 mm, g=1.935 mm, t=17 µm, hwell=20 mm, hliq: tunable, hsub=0.787 mm, w'=2.2 

mm, g'=0.9 mm, l1=10 mm, l2=15 mm, l3=32 mm, l4=40 mm, εsub=2.33, εliq: to be 

measured. 
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Figures 4.1(b) and (c) show the layout of a well-based tunable liquid attenuator 

built on a CPW, which is fabricated with Duroid 5870 laminate by the milling machine in 

Fig. 2.3. When MUT liquid, i.e., methanol-water solution, is used for tuning, the well is 

simultaneously a sample holder. A syringe pump shown in Fig. 4.1(a) is used to infuse or 

withdraw MUT liquid to or from the well with a pre-determined volume ΔV, which 

effectively tunes the attenuation value. The attenuation resolution, which depends on 

initial hliq (Fig. 4.1(c)), ΔV, and MUT properties, can be very high since ΔV can be very 

small, as indicated in Fig. 4.2. The curves are calculated with eqs. (2.2)-(2.6) in Chapter 

II at ~3 GHz. Compared with digitally tunable attenuators, Fig. 4.2 indicates that the 

liquid attenuator has better resolution. It also has larger dynamic range as well as 

potentially smaller insertion loss and lower cost. 

 

 

Fig. 4.2 Calculated Δ|S21| of the attenuator in Fig. 1(b) when infuse (positive change) or 

withdraw (negative change) lossy liquids. Δhliq is referenced to the initial hliq, at which 

the characteristic impedance values are 48.677 Ω, 44.033 Ω, 43.717 Ω and 54.116 Ω. A 
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change of 54 nL liquid volume induces 360 nm Δhliq. When Δhliq is tuned from -1000 nm 

to +1000 nm, the impedance value changes are below 0.017 Ω. Thus, the attenuator is 

reasonably matched. 

 

To evaluate the performance of the attenuator and the interferometer in Fig. 4.1, 

the well is initially filled with ~600 μL deionized (DI) water, which corresponds to an hliq 

of ~4 mm. The |S21|min in Fig. 4.1(a) is manually tuned to ~-70 dB, the corresponding f0 

and |S21|min are the “starting point” in Fig. 4.3. Then the attenuator in Fig. 4.1(c) takes 

over the job for tuning |S21|min. DI water is withdrawn from the well at ~54 nL per step 

with ~1 second time interval between two steps. As a result, both |S21|min and f0 will 

change and reach a new (f0, |S21|min) point in Fig. 4.3 until (f0,min, |S21|min,min) is obtained. 

Further water withdrawal increase |S21|min until it goes back to ~-70 dB. The pump is then 

switched to infuse water to the well. Thus, curve 2 in Fig. 4.3 is obtained. The procedure 

is repeated and stopped at the “ending point”. The whole process took about 33 minutes. 
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Fig. 4.3 Measured trajectory of (f0, |S21|min) in Fig. 4.1(a) for repeated water infusion and 

withdrawal operations. 

 

In Fig. 4.3, the interferometer has very high frequency resolution, consequently 

high sensitivity, at (f0,min, |S21|min,min). Figure 4.4 shows three curves measured on the 

VNA in Fig. 4.1(a) around 5 GHz. To make the figure clearer, only the |S21| curve with 

(f0,min, |S21|min,min), i.e., curve 1, and two adjacent curves, i.e., 2 and 3, are included. At 

point (5.0695322 GHz, ~-138.88 dB), the measured Qeff is more than 1×10
8
, which is 

exceptionally high and indicates outstanding frequency resolution. The Qeff is comparable 

to or higher than those reported for optical resonators [4.2]. It is worth pointing out that 

lossy water, which significantly deteriorates the Q of resonators, is used in the 

measurement. 

 

4.2 Quantitative Model for Complex Permittivity Extraction 

To obtain quantitative ε=ε'-jε'' of MUT, the coefficients K1,2 and propagation 

constants γMUT,REF in eq. (4.1) as well as hliq for |S21|min,min in Fig. 4.4 need to be obtained. 

As a result, 4 different measurements need to be used for data extraction. High 

sensitivity/accuracy consideration suggests using the measurements close to the one with 

|S21|min,min, i.e., curve 1 in Fig. 4.4, where MUT Vmin is also uncertain. Using eq. (4.1), we 

have 

                            
min21,min,min 1 1 2 1exp( ) exp( )    V REFS K l K l                   (4.2) 
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Similarly, for |S21| at the same f0, but measured immediately after drawing ΔV 

(curve 2 in Fig. 4.4) or before drawing ΔV (curve 3), the S-parameters are expressed as 

                            
min21, 1 1 2 1exp( ) exp( )    next V V REFS K l K l                    (4.3) 

                           
min21, 1 1 2 1exp( ) exp( )    last V V REFS K l K l                 (4.4) 

Thus, we have 

                       min min

min min

1 121, 21,min,min

21, 21,min,min 1 1

exp( ) exp( )

exp( ) exp( )

V V Vlast

next V V V

l lS S

S S l l

 

 





  


   
          (4.5) 

Additionally, another S21 curve next to curves 2 or 3 is needed. 

The formula for calculating propagation constant γ=α+jβ can be found in Chapter 

II and III. The parameters Vmin, ε'liq, and ε''liq can be solved using eqs. (4.2)-(4.5) when 

mismatches in Fig. 4.1(a) are ignored, as discussed at the end of Section 2.2. 

 

 

Fig. 4.4 Measured interferometer outputs when MUT is removed from the well at 54 

nL/step. Curve 2 is one step after curve 1, which is one step after 3. 
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4.3 Model Validation and High-Sensitivity Measurement 

First, the self-calibration method needs to be verified by measuring 0.005 mole 

fraction methanol-in-DI water (MUT) and comparing with the results reported in [4.3]. 

The liquid attenuator in Fig. 4.1(c) is also used as a sample holder. Approximately 600 

μL MUT is infused to establish an initial hliq in Fig. 4.1(c). Then the manual phase 

shifters and attenuators are used to tune |S21|min to ~-80 dB at the desired frequency point. 

After that, the computer controlled syringe pump automatically infuses or withdraws 

MUT solutions to or from the well, ~54 nL per step. The measured scattering parameters 

are recorded until |S21|min,min is identified. Repeat the process 4 times for the same 

frequency point before move to the next frequency point. 

Using eqs. (4.2)-(4.5), the extracted complex permittivity at different frequencies 

of the methanol-water solution is shown in Table 4.1. They agree with the results in [4.3] 

reasonably well. Thus, our auto-tuning and self-calibration measurement procedures are 

validated. 

 

TABLE 4.1 

EXTRACTED COMPLEX PERMITTIVITY OF METHANOL-WATER 

SOLUTION AT 0.005 MOLE FRACTION AND COMPARISON WITH THE DATA IN [4.3] 

Freq. 
(GHz) 

  This work             [4.3] 

Real                      Imag Real           Imag 
2 77.1327±0.0063 7.6241±0.0034 77.1304 7.6212 
3 76.1358±0.0005 11.2783±0.0004 76.1417 11.2692 
4 74.8036±0.0056 14.7401±0.00005 74.8056 14.7372 
6 71.2439±0.0021 20.9998±0.0097 71.2586 20.9673 

7.5 68.0076±0.0016 24.9204±0.0004 68.0224 24.9164 
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Then, methanol-water solutions at 5×10
-4

 and 5×10
-5

 mole fractions are measured 

similarly at 3 GHz to further demonstrate the high sensitivity capabilities. The methanol 

concentrations are 10 and 100 times lower than that in [4.3], respectively. The obtained 

permittivity data, averaged from five independent measurements, are shown in Table 4.2. 

As expected, lower methanol concentration MUT has ε closer to that of water. The values 

are reasonable even though there are no published data for comparison. Thus, accurate 

permittivity values or small permittivity changes can be automatically measured without 

the need for additional calibration liquids or de-embedding procedures. 

 

TABLE 4.2 

MEASURED COMPLEX PERMITTIVITY OF METHANOL-WATER SOLUTIONS AT 

0.005 (#0), 0.0005 (#1), 0.00005 (#2) MOLE FRACTIONS AND PURE DI WATER (#3) 

#          Real                      Imag 
0 76.1358±0.0005 11.2783±0.0004 
1 76.5192±0.0017 11.1125±0.0023 
2 76.5479±0.0023 11.1048±0.0047 
3 76.5462±0.0004 11.1097±0.00006 
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CHAPTER FIVE 

ANALYZING SINGLE GIANT UNILAMELLAR VESICLES 

USING SLOTLINE SENSING STRUCTURE 

 

5.1 Slotline-Based RF Sensor Design 

Figure 5.1(a) shows the schematic of the RF sensor. Similar to the highly 

sensitive and tunable RF interferometers in Chapter II-IV, two broadband quadrature 

hybrids (QH) are used for RF probing signal division and combination. Off-chip tuning 

components, phase shifters (Φ) and attenuators (R), are introduced to tune the sensor 

sensitivity as well as the operating frequency. A slotline-based sensing structure, shown 

in Figs. 5.1(b) and 1(c), is used to probe single GUVs. Unlike coplanar waveguide 

transmission lines (CPWs) used in Chapter II-IV, slotlines are designed to yield higher 

RF fields for the same gap dimension w (Fig. 5.1(c)), which is often limited by 

fabrication techniques. Thus, stronger interactions between RF fields and GUVs [5.1] can 

be obtained for higher sensor sensitivities. Furthermore, better one-dimensional (1-D) 

spatial resolution can be achieved since a slotine has only one gap, unlike a CPW with 

two gaps and a signal line. 

Baluns for nanometer slotline to CPW transitions [5.2] are shown in Fig. 5.1(a). 

CPWs are convenient for measurements. The RF structures, including the slotline and the 

baluns, are integrated on a fused-silica substrate through conventional micro-fabrication 

procedures. Lift-off processes are used, same as that in Section 3.5, for the deposition of 

Ti/Au (20 nm / 200 nm) films. A focused ion beam (FIB) is used to form the 100 nm 

slotline. Figure 5.2 shows the simulated and measured performance of the RF structure 
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around the designed center frequency, 3 GHz, around which the measurement will be 

performed. The simulation is conducted with HFSS. Low return loss and insertion loss 

are achieved for sensor operations. Factors that cause discrepancies between 

measurements and simulations include metal line dimension and cross-section deviations 

from layout, which is used for simulations. SMA female connectors and conductive 

epoxy used for measurement connection are also not taken into consideration in 

simulation. 

 

 

Fig. 5.1 (a) Schematic of the RF sensor. (b) The top and (c) cross section views of the 

sensing zone in (a) with single GUV (circle), where dimensions w=100 nm (gap), t=220 

nm (Ti/Au), hcarr=50 µm (channel height), hsub=1 mm (substrate), hPDMS=~2 mm (PDMS 

cover), lsol= 50 μm (channel width), and lgap=100 μm. The dimension for the CPW is 0.1 

mm / 1.5 mm / 0.1 mm (gap/signal line/gap). Abbreviations MUT and REF represent 
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material-under-test and reference branches, respectively. Coefficients K1, K2 will be used 

to describe effects of indicated components. Φ and R represent phase shifters and 

attenuators, respectively. The Cartesian coordinate systems are marked for (b) and (c). 

The mismatch interfaces for impedance are marked by red dash lines in (b). 

 

 

Fig. 5.2 S-parameters of the nanometer RF sensing structure. 

 

Compared with the previous sensors that have millimeter (mm) in Chapter II, III 

and IV, and micrometer (µm) gaps in Chapter III, the RF electric fields of the 100 nm 

slotline are concentrated to achieve much stronger GUV-RF field interactions. Figure 5.3 

depicts the electric field distribution at 3 GHz around the gap obtained with HFSS 

simulation. Minor asymmetry may be caused by simulation meshes, for which 0.5 μm is 

used as the maximum length of mesh elements due to a compromise between simulation 
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accuracy and simulation time. For 5 dBm input power (used in the measurements), the 

electric field intensity is up to ~1.76×10
7
 V/m around the sensing zone. In comparison, 

for the sensors with mm and µm gaps, the maximum electric field intensities are 

~1.33×10
3
 and ~1.73×10

5
 V/m, respectively. Thus, the absolute sensitivity of the sensor 

is significantly improved, as illustrated by eq. (5.22) and (5.24) below. 

 

 

Fig. 5.3 Simulated distribution of electric field intensity (unit: V/m) around the sensing 

zone (axis origin corresponds to the gap in Fig. 1(c)). 

 

A polydimethylsiloxane (PDMS) microfluidic channel with a cross-section of 50 

µm × 50 µm is built and incorporated with the slotline in the MUT branch. The GUV 

solution is injected into and extracted from the channel through two soft plastic tubes (not 

shown in Fig. 5.1) that are attached to the circular openings of the channel. 
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5.2 Extraction of GUV Dielectric Property  

The introduction of a GUV particle, Fig. 1(c), will change the effective 

permittivity of the overall slotline structure and its S-parameters measured by the vector 

network analyzer (VNA). As a result, the particle properties can be obtained with the 

models based on the conformal mapping method and perturbation method presented 

below in this work. 

(1) Conformal mapping method 

The transmission S-parameter recorded by the VNA in Fig. 1(a) can be expressed 

as  

                    0 0 2 2
21, 1 2

2 2 2 2

2 2 2 2
sol sol

j j
lj j

solS e K e e K e e
 


            (5.1). 

Subscript sol indicates solution. The propagation constant of the slotline section is 

γsol with a physical length of lsol. The coefficients K1 and K2 describe the effects of all the 

other sensor components, including cables, attenuators and phase shifters. K1 also 

includes the slotline, and can be measured independently using a calibrated VNA, as 

illustrated in Fig. 5.1(a). When a GUV flows above the slotline gap, the strong interaction 

between the electric field and GUV causes |S21| to be 

                
( )0 0 2 2

21, 1 2

2 2 2 2

2 2 2 2

sol sol solp solp solp
j jl l lj j

solpS e K e e K e e
 

   
           (5.2) 

where the subscript solp is for solution with single GUV particle, as shown in Fig. 5.1(c). 

It is proved that for solutions with and without single GUV, which have close 

permittivity values, γsolp can be solved using eqs. (5.1) and (5.2) when mismatches at the 

interfaces, as shown in Fig. 5.1(b), between microfluidic channel section of MUT/REF 
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branch and transmission lines, are ignored. For a solution with known permittivity, the 

propagation constant γsol=αsol+jβsol can be obtained from  

                                                ,

0 ,

''

'

eff sol

sol

eff sol




 
                                  (5.3) 

                                           

0 , 0

2 2
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f f

v

 


  
           .                  (5.4) 

 

 

Fig. 5.4 Configurations of partial capacitances: (a) Cair, (b) Ccarr, (c) Csub, and (d) CPDMS. 

 

The capacitance of a uniform slotline with the cross section shown in Fig. 5.1(c) 

can be approximated as the superposition of four partial capacitances Cair, Ccarr, Csub and 

CPDMS, as shown in Fig. 5.4 [5.3]. Then, ε'eff and ε''eff can be obtained through,  

                
,

( ' ) ( ' ) ( ' )
' air sub sub carr carr PDMS PDMS
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air
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                 (5.5) 

                                           
,

( '' )
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air

C

C


                                            (5.6) 

where the subscript sub refers to the substrate, e.g., ε'sub=3.75 for fused silica, while the 

subscript carr stands for the carrier solution of the particle. Only the dielectric loss 
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coming from the solution is considered in eq. (5.6). The expressions for the capacitances 

in eqs. (5.5) and (5.6) are 
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The functions K in eqs. (5.7)-(5.10) are incomplete elliptic integral of the first 

kind with variable k0,sub,carr,PDMS as 

                   
0, , ,

0, , ,

0, , ,

2 tanh(0.5 / )

1 tanh(0.5 / )

sub carr PDMS

sub carr PDMS

sub carr PDMS

w h
k

w h







                (5.11) 

where metal film thickness t is assumed to be negligible, w is the gap width of the 

slotline, hsub,carr,PDMS are thicknesses of substrate, solution and PDMS layers, and a 

semiempirical expression for the quasi-static non-frequency dependent approximation of 

distance h0 is [5.3] 
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                                    (5.12) 

and k'=(1- k
2
)
0.5

. 

The obtained γsolp=αsolp+jβsolp from eqs. (5.1) and (5.2) is used to extract the 

complex permittivity of the particle, where the expression for αsolp and βsolp are the same 

as eqs. (5.3) and (5.4) with different subscripts. The partial capacitances in eqs. (5.5) and 
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(5.6) have to be modified to include the dielectric and physical properties of single 

particles. As shown in Fig. 5.6, the carrier solution layer is split into upper and bottom 

layers (subscripts: upp and bott), and a particle-solution layer (subscript: ps), where it is 

assumed that the particle can be treated as a cylinder to acquire the unit length 

capacitance using the conformal mapping method. The validity of this assumption will be 

discussed later. So ε'eff,solp and ε''eff,solp should be rewritten as 

 
,
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                      (5.14) 

where ε'p-jε''p is the complex permittivity of the particle, and the expressions for the 

capacitances, Cupp and Cbott, are 
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The variables kupp and kbott in eqs. (5.15) and (5.16) are  
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                            (5.18) 

where SC and R are the spherical-center coordinate and radius of the particle, 

respectively. It can be found from Fig. 5.5 that hupp=SC+R (θ=π/2) and hbott=SC-R (θ=-

π/2) with θ shown in Fig. 5.5. 
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Fig. 5.5 Partition of the carrier layer (horizontal dash line), and magnetic wall (vertical 

dash line) with single GUV (solid circle with two meshed circles marked as 

microdomains on it). 

 

 

Fig. 5.6 Two-dimensional conformal mapping of particle-solution layer (w plane). 

 

For the particle-solution layer, dielectrics in the mapped capacitance consist of 

two parts: particle and carrier solution, as shown in Fig. 5.6. Transforms eqs. (1) and (2) 

in [5.3] are used to map the particle-solution layer from z plane to w plane. Capacitance 

Cps is in the form of  
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where K'(f(θ)) = d(K(f(θ)))/dθ, and the coefficient kx is also a function of the angle θ 
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 .             (5.20) 

In eq. (5.19), the terms '(K(k'x)/K(kx))
-1

' and '(K(k'0)/K(k0)-K(k'x)/K(kx))
-1

' represent 

the dielectric thicknesses for particle and solution, i.e., tp and ts in Fig. 5.6, respectively, 

corresponding to a given θ. Figure 5.7 shows normalized tp and ts versus θ (from -π/2 to 

π/2) for different SCs and Rs. The parameters for Case #0 in Fig. 5.7 will be used to 

extract complex permittivity in Section 5.4. Based on this, for Case #1 and #2, R and w 

are changed, respectively, to demonstrate their independent effect on tp and ts. Figure 5.7 

shows that (i) the vertical position has a more significant effect than the radius through 

Case #0 and #1; (ii) the dielectric thickness in Fig. 5.6 increases with increased radius for 

the same vertical position through Case #1 and Case #2. 

The GUV sphere is treated as a cylinder, which may cause significant errors, 

partly due to increased volume. A coefficient fitting factor κ=0.67, which is also the 

volume ratio of the sphere and the approximated cylinder, is introduced to revise lsolp as 

2κR. 

Thus, the dielectric property of the measured particle can be obtained. Figure 5.8 

summarizes the algorithm to obtain GUV permittivity values from S-parameters. 

The conformal mapping method gives an intuitive and closed-form model for 

analyzing GUV permittivity from measured S-parameters. Yet, conformal mapping is 

rigorous for the analysis of two-dimensional direct-current (DC) systems or RF 

transverse-electromagnetic (TEM) systems. Although the slotline in Fig. 5.1 may be 
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approximated as a quasi-TEM system for the targeted frequency band, which is relatively 

narrow, GUVs are, in fact, three-dimensional objects. Therefore, the validity of the above 

model needs to be examined. This is accomplished by the experimental results presented 

in Section IV and by using a second modeling approach, discussed below. 

 

 

Fig. 5.7 tp and ts versus θ for: case #0, w=100 nm, SC=6 μm, R=5 μm; case #1, w=100 

nm, SC=15 μm, R=5 μm; case #2, w=100 nm, SC=20 μm, R=10 μm. 

 

 

Fig. 5.8 Algorithm to obtain GUV permittivity values from S-parameters. 

 

(2) Perturbation method 
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It is assumed that the GUV particle in Fig. 5.1(c) only slightly perturbs the RF 

electric and magnetic fields of the slotline. Therefore, the un-perturbed RF fields can be 

used to calculate the interactions between the GUV and the RF fields. As a result, the 

new propagation constants of the slotline section, γsol,solp in eqs. (5.1) and (5.2), can be 

obtained. So can the GUV properties. This assumption is reasonable since the RF 

properties of GUVs are expected to be close to those of the carrier liquids. 

It is possible to obtain an approximate, closed-form analytical solution of slotline 

RF fields (without GUVs). The fields can also be obtained using simulation tools, such as 

COMSOL Multiphysics tools [5.4]. The time cost of a single simulation is acceptable. 

Figure 5.9 shows the distributions of RF fields at the cross section in Fig. 5.1(c) with the 

dimensions given in Table 5.1 (only a part of the channel is shown), where εcarr=76.05-

j10.34 (glucose-water solution at 2.8 GHz [5.5]). The green circle indicates the location 

of a GUV, which is not included in the simulation for Fig. 5.9. 

 

TABLE 5.1 

PARAMETERS USED FOR ESTIMATING |S21|min 

Parameter Symbol Value 

Thickness of PDMS hPDMS-hcarr 2 mm 

Relative dielectric constant 

of PDMS 

εPDMS 2.5 

Thickness of substrate  hsub 1 mm 

Relative dielectric constant 

of substrate  

εsub 3.75 

Width of microfluidic channel  lsol 50 µm 

Height of microfluidic channel hcarr 50 µm 

Radius of GUV R 5 µm 

Spherical-center coordinate of GUV SC 6 µm 

Width of slotline gap w 100 nm 
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Fig. 5.9 Cross-sectional distributions of EM fields. Red semi-circle clusters: electric field; 

blue parabola clusters: magnetic field. The bold green circle indicates the location of the 

GUV particle (x-y plane corresponding to the cross section in Fig. 5.1, and the origin is 

selected at the center of the gap). 

 

With the obtained RF field data and equations eqs. (2.17)-(2.20) in [5.1], 

equivalent circuit parameters L, C, R and G of the GUV loaded slotline can be obtained 

with a priori GUV properties. Corresponding γsol,solp and S-parameters are obtained. This 

process is iterated with new GUV property values until the best match between the 

calculated and measured S-parameters is achieved. The time cost of this numerical 

iteration approach is significantly lower than that of full wave simulations of RF fields 

for each iteration step. The following are the main considerations. 

The 10 µm diameter GUV sphere is divided into smaller elements using Wolfram 

Demonstrations Project [5.6], Fig. 5.10, which has 4,999 cubes with a side length of 0.5 
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μm, and 21 cubes along the diameter direction. A similar division is made for the carrier 

solution, not shown in Fig. 5.10. 

 

 

Fig. 5.10 Approximating a 10 μm diameter sphere with 4,999 cubes (x-y plane 

corresponding to the cross section in Fig. 5.1). 

 

Along the z-axis direction, there are 21 layers. For layer i, the corresponding 

parameters Li, Ci, Ri and Gi can be calculated once their ε and µ are given. 
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where Exy and Hxy are RF field intensities in the x-y plane, which are assumed to be 

uniform within one element; parameters Δl and ΔS are the length and area of one element; 

the subscript Ni describes a GUV element while subscript Mi for any non-GUV element, 

including solution, substrate, channel, PDMS, and air; parameter Ti is determined by the 

boundary lines on conductors in Fig. 5.1(c). In this example, Δl=0.5 μm, ΔS=0.25 μm
2
, 

Ti=6,400 (two 800 μm long conductors), and for the first layer, N1= 37 (countable in Fig. 

5.10), M1 (channel part)=32,000-N1=319,963 (for a 1600 μm × 50 μm channel); for other 

layers, Ni and Mi can also be found accordingly. The definitions for other parameters are 

the same as those in [5.1]. Then the propagation constant γi for each layer can be solved 

by γi={(Ri+jωLi)(Gi+jωCi)}
0.5

, and γsolp for the microfluidic channel with single GUV can 

be considered as a set of γi. So the term γsolplsolp in eq. (5.2) can be expressed as 

                                                         
21

1

solp solp i i

i

l l 


                                   (5.25) 

where Δli is the length of layer i along the z-axis, e.g., 0.5 μm in this example. 

The results from eq. (5.25) are compared with measured results until the 

following conditions are satisfied with a set of εp: 

                        | Re( ) Re( ) |solp solp measured solp solp calculatedl l                 (5.26) 

                    | Im( ) Im( ) |solp solp measured solp solp calculatedl l             (5.27) 

where δ, e.g., 0.0001, represents the error tolerance. 
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In addition to extracting cell particle properties, the models above can also be 

used to rapidly predict the required |S21|min for a given RF interferometer to measure a 

given particle using  

                            
21, 21,| | | |solp solp sol solpl l

solp solS S e e
  

      .              (5.28)  

Table 5.2 summarizes the estimations for different dielectric properties, where we 

choose εcarr=76.05-j10.34 (glucose-water solution at 2.8 GHz [5.5]), and εp is changed 

from 74.55-j11.84 to 10-j1. The other parameters are given in Table 5.1. The results 

indicate reasonable agreement between HFSS full-wave simulation and model analysis. 

The effects of particle radius and vertical position on the required |S21|min can also be 

evaluated. It should be pointed out that higher sensitivity (or lower |S21|min) in actual 

measurements is always required because of system losses (i.e., |K2|<1 in eq. (5.2)) which 

is not considered in the above estimation. 

 

TABLE 5.2 

ESTIMATED MINIMUM REQUIRED |S21|min 

εp |S21|min (dB) 

Model #1 Model #2 HFSS 

74.55-j11.84 -99.46 -106.99 -108.73 

73.55-j12.84 -97.78 -102.55 -96.66 

60-j25 -82.45 -86.78 -77.42 

10-j1 -68.60 -77.04 -72.53 

 

For Model #2, the RF electric and magnetic fields, as shown in Fig. 5.9, are 

simulated without the GUV. In reality, the GUV tends to change the field distribution 

around it due to the dielectric property difference between the GUV and the carrier 

solution. So |S21|min calculated using Model #2 is always lower than that using Model #1. 
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Moreover, both Models #1 and #2 are based on the assumption of quasi-static TEM while 

HFSS is based on full-wave analysis. They tend to obtain different results. 

The advantage of Model #2 is that there are no complex transformation 

expressions for conformal mapping, like eq. (1) and (2) in [5.3]. The FEM (finite element 

method)-based direct-current (DC) simulation to obtain the electric and magnetic fields 

|E| and |H| is relatively easy, even for some more complex structures for which there are 

no transformation expressions for conformal mapping. However, no closed-form 

analytical expression is obtained for Model #2 to describe effect of every structureal 

parameter, e.g., w, hPDMS, hsub, and hcarr in Fig. 5.1. 

 

5.3 GUV Synthesis and RF Measurements 

The electroformation method [5.7] is adopted for GUV synthesis. Chol 

(Cholesterol), POPC (16:0-18:1 PC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 

and SM (16:0 Egg Sphingomyelin) in chloroform are mixed at different mole fractions to 

form coexisting liquid-ordered phase Lo and  liquid-disordered phase Lα (Lo+Lα) (Group 

I), liquid-ordered phase Lo (Group II), and liquid-disordered phase Lα (Group III) [5.8], as 

shown in Fig. 5.11 obtained with an epi-fluorescence microscope with an ET-FITC/CY3 

Filter. Two fluorescent labels, Rho-PE (2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(lissamine rhodamine B sulfonyl) (ammonium salt)) and DioC18 (3,3’-

Dioctadecyloxacarbocyanine Percholorate) are used for liquid-disordered phase Lα and 

liquid-ordered phase Lo domains, respectively. Three groups of GUV particles are 
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synthesized with different molecular compositions (molar fraction) of POPC/SM/Chol: 

2/1/1 (I), 1/2/2 (II), and 8/1/1 (III). 

 

 

Fig. 5.11 Images of synthesized GUVs at different molecular compositions 

POPC/SM/Chol shown on a ternary composition diagram (hollow circle, I: 2/1/1; solid 

circle, II: 1/2/2; solid square, III: 8/1/1). Liquid-disordered phase Lα: red; liquid-ordered 

phase Lo: green. 

 

The main electroformation steps are the following: 

(1) Sample preparation 

Before starting to preparation, all powered lipids should be solubilized by 

chloroform to be 10 mg/mL and stored in amber bottles with resistant cap at -20
o
C. Prior 

to GUV Synthesis, the bottles should be taken out from the storage freezer and place at 

the room temperature for 40~60 minutes. At the same time, clean several indium tin 

oxide (ITO)-coated glass slides using kimwipes rinsed by ethanol. One GUV sample 

needs two slides. To avoid possible scratching and stripping on the glass surface, some 
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harsh wipes, e.g., paper towels, should be not used. And, the conductive ITO-coated 

surface needs to be identified using a multimeter and then labeled, which will applies AC 

(alternating current) voltage in step (5). Place all slides face up on a 55
o
C hotplate for 15 

minutes. 

(2) Lipids mixing 

Fill two glass test tubes, i.e., one for washing, and another one for lipids mixing 

(~75% full with chloroform). Then clean several Hamilton syringes with different ranges 

with chloroform. If the lipids-chloroform solutions are solubilized to be 10 mg/mL, as 

done in Step (1), add 120 μL chloroform into a single glass test tube for each sample. 

Then add appropriate mounts of lipids into the test tube. For every sample, a total lipids 

weight should be 350 μg. Taking the mentioned POPC/SM/Chol: 2:1:1 (Group #I) for 

example, from Table 5.3, one can calculate that the represent amounts for them are 20.39 

μL, 9.43 μL, and 5.19 μL, respectively. Fluorescent labels (1 μL for each) should be also 

added at this step. 

 

TABLE 5.3 

CALCULATION OF LIPID AMOUNT  

Lipid Mixtures 

Mol wt 

(g/mol) 

Mol % Vol of each 

(μL) 

16:0-18:1 POPC  760.1 50 20.39 

16:0 SM 703 25 9.43 

Chol 386.66 25 5.19 

 

Drop 80 μL Chol/lipids/labels mixture chloroform solution onto the top 1/3 of one 

glass slide, then use a glass pipet to gently spread out the drop limited on the top 1/3 of 
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the slide. At this step, the lipid mixture between the pipet and the slide should be uniform 

from the left to the right. Before the chloroform is completely evaporated, stop the 

spreading job shortly. Then leave the slide onto the hotplate at 55
o
C for 15 minutes. 

(3) Vacuum drying lipids-coated slides 

Put all lipids-coated and dried slides from the hotplate into a vacuum desiccator at 

a pressure of 60~70 mm torr for 2 hours at least. The chamber should be completely 

covered in dark preventing lipid oxidation if one needs an overnight drying. 

(4) Sandwiching of samples 

Place a big O-ring rubber in the center of the coated lipid film surrounding by 

four fashion-like small O-rings. They are pressed down by a tweezer. These rubber rings 

should be cleaned by water and ethanol before. Then sucrose-water solution at 0.1 M 

concentration level is dropped inside the O-ring, which is sealed to form a chamber using 

a second vacuum-desiccated ITO glass. Alligator clips at the slide edge are used to fix 

them tightly. The excess sucrose solution should be wiped off using kimwipes. Then 

attach the ITO surface of two glass slides onto two aluminum bars using alligator clips. 

(5) Electrowelling 

These rubber-glass chambers need to be placed into an incubator at a miscibility 

transition temperature of ~60
o
C. A 1 V, 10 Hz sinusoidal wave is applied across the ITO 

electrodes. The button should be turned on before applying to the aluminum bars. Lipid 

bilayers will spontaneously vesiculate in 2 hours. In addition, a bottle 0.1 M glucose-

water solution should be placed into the incubator to keep the same temperature with the 

sample. 
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(6) Harvesting 

Take out the aluminum bars and the glucose solution from the incubator, and 

draw 3 mL glucose-water solution into a glass tube for each sample. Remove all clips and 

break the seal between two slides gently. GUVs are then suctioned up from the chamber 

and dropped into the glucose-water solution for measurement. The density gradient of 

sucrose and glucose concentrates GUVs [5.9]. 

 

5.4 RF Measurements 

Glucose-water solutions at a 0.1 M concentration level with GUV particles are 

first injected into the PDMS channel in Fig. 5.1. The sensor is tuned to a desired 

sensitivity at each target frequency f0, i.e., a desired |S21|min level before a GUV passes 

through the gap. Then a syringe pump is used to drive the GUV through the channel and 

the slotline gap. The solutions are in a laminar flow and potential swirls of the fluid in the 

channel contributing to possible tumbling motion of the GUV can be neglected. A 

fluorescent microscope is used to observe the labeled GUV simultaneously. The 

measurement setup is shown in Fig. 5.12. The GUV induced S-parameter changes are 

recorded by the VNA. The S-parameter will return to the initial |S21|min after the GUV 

moves away from the slotline. Figure 5.13 shows two pairs (#1 and #2) of typical 

measurement results for Group I at ~2.8 GHz. In each of the pairs, both the initial and 

maximally changed (corresponding to the GUV right above the gap) |S21| are shown 

together. The value of |S21|min and its corresponding frequency changes with time, i.e., 

GUV position, are shown in Fig. 5.14. The figures show that our sensor is capable of 
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detecting a single GUV with good sensitivity. In Fig. 5.14, the maximum response occurs 

when the GUV appears above the gap. Multiple frequency measurements can be achieved 

to analyze GUV dielectric properties at different frequencies by adjusting phase shifters 

and attenuators. The initial |S21|mins are adjusted between ~-100 dB and ~-105 dB. The 

maximum responses are different for each set of GUV particles due to their different radii 

and vertical positions in the channel. 

 

 

Fig. 5.12 Measurement setup for single GUVs. 
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Fig. 5.13 Measured |S21| for Group I at ~2.8 GHz. 

 

 

Fig. 5.14 Time-dependent |S21|min and corresponding Δf (f0: ~2.8 GHz) when single GUV 

passing through the slotline gap. 

 

Figure 5.15 shows the extracted real and imaginary permittivity components of 

different GUV particles for each group at ~2 GHz, ~2.5 GHz, and ~2.8 GHz. Both 

models in the next section are used to obtain the permittivity values. The parameters for 

the calculations are listed in Table 5.1. Here, 5 μm and 6 μm are chosen as the GUV 

radius and vertical center position, respectively. The 5 μm average GUV radius value is 

estimated by comparing GUVs with the 50 μm wide PDMS channel observed under 

microscope. From microscope observations, it is also estimated that these GUVs are close 

to the slotline surface because the microscope is focused on the surface plane before the 

GUVs pass through the gap. Then the measured S-parameters are recorded when a GUV 

is observed to be close to the surface. The error bars indicate the distributions of five 
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repeated, but separate, measurements. In each group of the GUVs with the same 

compositions, the GUVs are synthesized and then measured on the same day. It shows 

that (i) the permittivity values of GUV particles are close to that of 0.1 M sucrose-water 

solution (ε'-jε''=82.87-j7.83 (at 2 GHz), 82.43-j9.73 (at 2.5 GHz), 82.12-j10.85 (at 2.8 

GHz) through [5.10]), which is reasonable and serves to verify the validity of the 

proposed extraction method; (ii) roughly the same results are obtained using the proposed 

Model #1 and #2. The differences between the models have been further reduced with the 

use of κ=0.67; (iii) the average ε' and ε'' also vary with frequencies, which may carry 

molecular dynamic process information.  Further work is needed to understand the details. 
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Fig. 5.15 The obtained real and imaginary permittivities ε' and ε'', of GUV particles for (a) 

Group I (POPC/SM/Chol: 2/1/1), (b) Group II (POPC/SM/Chol: 1/2/2), and (c) Group III 

(POPC/SM/Chol: 8/1/1) at different frequencies (blue bold lines and small caps are for 

Model #1; red thin lines and big caps are for Model #2). 

 

TABLE 5.4 

EXTRACTED PERMITTIVITIES AT DIFFERENT TIMES IN FIG. 5.15 

Time (s) εp (Model #2) 

1 79.41-j16.16 

2 79.41-j16.16 

3 79.41-j16.16 

4 79.42-j16.15 

5 79.42-j16.12 

6 79.43-j16.08 

7 79.40-j16.14 

8 79.41-j16.15 

9 79.41-j16.16 

 

The permittivity extraction and error range in Fig. 5.15 are from measuring five 

independent GUVs, which may have different diameters and vertical positions in the 

microfluidic channel. For each individual GUV particle, e.g., the one measured for Fig. 

5.14, GUV size and vertical position are constant in the measurement process since the 

GUV only travels a very short distance. Using the measured S-parameters at each time 
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moment (i.e., longitudinal location), the obtained GUV permittivity with Model #2 is 

shown in Table 5.4. The almost identical GUV permittivity values, which are expected 

because GUV radius and vertical position do not induce relative error, further verify the 

validity of the model. 

 

TABLE 5.5 

EXTRACTED PERMITTIVITIES WHEN DIFFERENT RS, SCS, AND hbottS ARE USED 

(UNIT: μm FOR RS, SCS, AND hbottS)  

# R  SC hbott εp (Model #1) εp (Model #2) 

0 5 6 1 78.46-j14.46 79.43-j16.08 

1 6 7 1 78.23-j14.56 79.10-j16.17 

2 4 5 1 78.78-j15.93 79.91-j18.61 

3 5 7 2 79.31-j15.89 80.89-j18.44 

4 5 5.5 0.5 77.89-j15.68 77.30-j18.04 

5 5 25 20 90.65-j25.05 93.10-j27.53 

6 5 45 40 104.31-j44.58 106.91-j48.64 

7 15 16 1 77.82-j14.37 78.71-j15.95 

8 24 25 1 77.66-j14.19 78.53-j15.69 

 

The high intensity electric field of the nanometer slotline strongly interacts with 

GUV particles so that significant changes of S21 in magnitude and phase can be observed. 

High sensitivity operations enable high measurement accuracies, which are critical for 

detecting and observing subtle biological and physical processes in cells and GUVs as 

well as for identifying potential markers. Nevertheless, a few factors, such as the 

uncertainties of GUV radius, shape, and vertical position (i.e., hbott in Fig. 5.5), need to be 

addressed in the future. The estimated effects of these factors are listed in Table 5.5. The 

data show that the GUV vertical position has more significant effects than the uncertain 

radius on the interaction. 
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CHAPTER SIX 

MICROWAVE SCANNING OF  

GIANT UNILAMELLAR VESICLE MEMBRANE IN AQUEOUS SOLUTION 

 

6.1 Principle of High Sensitivity of Split-ring Resonator 

In Chapter V, a slotline-based sensing structure is used to detect single GUVs and 

analyze their dielectric properties, and the encouraging results have been obtained. 

However, to detect the GUV membrane heterogeneity formed by Phase Lo (35 Å thick) 

and Phase Lα (28 Å thick) [6.1]-[6.3], as shown in Fig. 6.1 [6.4], the sensitivity is 

required to be increased further. 

 

 

Fig. 6.1 Coexisting Lo and Ld(Lα) Phases demonstrating the GUV membrane 

heterogeneity [6.4]. Topper: molecular dynamics snapshot; lower: simplified molecular 

structural schematic. Green and disordered acyl chains: Ld(Lα); red and ordered acyl 

chains: Lo; grey and shadows: Chol. 
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The split-ring resonator (SRR) is a possible high-sensitive solution for the 

detection and analysis of GUV membrane, which was proposed by Pendry et al [6.5] in 

1999 to obtained negative effective permeability in the microwave regime, and then was 

used as one component of composite “left hand” medium [6.6]. The SRR also 

demonstrates significant enhancement of the energy density of the electric field within 

the gap between the split rings at its resonant frequency (Figs. 12 and 17 in [6.5], re-

printed as Fig. 6.2 in this dissertation) potentially for a strong microwave-MUT 

interaction. 

To exhibit its performance on high sensitivity, a PCB-based SRR is fabricated on 

Duroid 5870 laminate [6.7], is shown in Fig. 6.3. The ring and ML are separated by a 500 

μm gap, and the split on the ring is also created using the same dimension. Only 500 μm, 

rather than a smaller one, is gaped since the minimum size is limited for our milling 

machine shown in Fig. 2.4. The HFSS simulations demonstrate that the designed SRR 

has a narrow |S21| stop band and a narrow |S11| pass band around the first resonant 

frequency 3.05 GHz, as shown in Fig. 6.4. 

 

 

                                         (a)                                                 (b) 
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Fig. 6.2 (a) Plan view of the proposed SRR in [6.5] (b) Enhancement of the energy 

density of the electric field within the gap between the split rings for two different values 

of the resistivity of the metal sheet [6.5]. 

 

Fig. 6.3 Schematic of a PCB-based SRR in HFSS. 

 

 

                                     (a)                                                                   (b) 

Fig. 6.4 Simulated (a) |S21| and (b) |S11| of the SRR in Fig. 6.3. 
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For the regular ML, the electric field always concentrates the edge of the line [6.8] 

for sensing in a wide range. After adding a ring aside, however, the electric field of the 

SRR concentrates only in the narrow split around the resonant frequency from the 

simulation in Fig. 6.5. The concentrated electric field in the split means that a part of 

energy is stored into the ring from the total microwave energy transmitting along the ML. 

Since there is no enough big inductance to store magnetic field, most energy coming 

from the ML has to be stored into the capacitor formed by the split. From Fig. 6.5, the 

percentage of the coupled energy from the ML into the ring can be calculated, as shown 

in Fig. 6.6. At the resonant frequency, ~40% energy is coupled. But only a part of the 

energy is stored and the other has to be dissipated by the ring resistor R. The quality 

factor Q is defined by [6.9] 

                                                     
average energy stored

energy loss/second

e

loss

W
Q

P
                                        (6.1) 

where We is the average electric energy stored in the capacitor, and Ploss is the power 

dissipated by the resistor R. 

The electric field concentrating around the split is verified to be more sensitive 

than that around the gap between ML and ring, shown by Fig. 6.7. In the measurement, a 

0.5 mm × 0.5 mm × 0.5 mm PDMS is loaded on the split and the gap, respectively, for a 

comparison. The result for air-load only (no PDMS) is also drawn together. From the 

figure, the PDMS placed at the split shifts the resonant frequency towards left ~75 MHz, 

and S21 in magnitude changes ~0.55. As another comparison, for a 4 mm × 2.5 mm × 2.0 

mm PDMS, the fundamental resonant frequency of the two-stage RF interferometer with 
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the significantly improved sensitivity [6.10] only shifts ~3.2 MHz, and S21 in magnitude 

changes ~0.0012, re-printed as Fig. 6.8. 

 

 

(a) 

 

(b) 
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Fig. 6.5 Electric field distributions simulated (a) at 3 GHz and (b) at 2 GHz for the 

resonator in Fig. 6.3. 

 

 

Fig. 6.6 Percentage of the coupled energy from the total microwave energy on the ML. 

 

 

Fig. 6.7 Different |S21| responses around the resonant frequency without and with a 

PDMS at the split of ring and the gap between ML and ring. 
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Fig. 6.8 Typical measured results of the two-stage interferometer using the PDMS as 

MUT [6.10]. 

 

We can see that the resonator, which can concentrate electric field within a 

limited region, causes that, without and with MUT there, the transmission of microwave 

is changed hugely. As a microwave component, SRRs have such properties: (i) coupling 

at specific frequencies (via 4 ports coupled lines, blue box in Fig. 6.9(a)) into a ring-

shape structure for multiple-reflections; (ii) concentrate electric field via a narrow split 

(modeled by a π-network with three capacitors [6.11], green box in Fig. 6.9(a)). The 

design in Fig. 6.9(a) will be applied to a micromachined chip for the detection of GUV 

membrane later. For (i), the electromagnetic wave at a specific frequency undergoes 

multiple internal reflections along the ring and gives rise to a standing wave with 

significantly increased group delay; for (ii), a lot of microwave energy is stored into the 

split, of which capacitance can be significantly affected by slight permittivity change in 

the split caused by MUT. Figure 6.9(b) is the simulated |S21| (without considering a 
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solution in the capacitance) of the SRR in Fig. 6.9(a) using Advanced Design System 

(ADS) [6.12], displaying four resonant frequencies, i.e., 1
st
 odd mode, 1

st
 even mode, 2

nd
 

odd mode, and 2
nd

 even mode, from 1 GHz to 12 GHz. The used structural dimension can 

be also modified to obtain resonances at other frequency points, e.g, to decrease the 

length of the coupled line to obtain higher resonant frequencies. From the detailed 

mathematic analysis in Section 6.4, only odd mode is related to the role of the property 

(ii). Great group delays are found at these resonant frequencies, as shown in Fig. 6.9(c), 

indicating that the standing wave formed by multi-reflections is able to interact more time 

with MUT. The schematic of the multi-reflections in SRR will be shown in Fig. 6.41 in 

Section 6.4. The schematic in Fig. 6.9(a) will be micromachined for the GUV detection in 

Section 6.2 and 6.3. 

 

 

(a) 
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                                     (b)                                                                   (c) 

Fig. 6.9 (a) Schematic of the equivalent circuit of a SRR. Simulated (b) |S21| and (c) group 

delay of the SRR in (a) by ADS. 

 

For (i), the similar idea has been also used in some optical resonators with ultra-

high sensitivity, e.g., the coupled microtoroid cavity-nanoparticle system [6.13], as 

shown in Fig. 6.10. Here the fibre taper couples light into and out of the microtoroid in a, 

and a part of light at specific frequency is coupled into the microtoroid. Then two 

whispering-gallery-modes (WGMs) rise with opposite propagation directions in b, that is, 

clockwise and counter-clockwise modes. Thereafter, the interaction with MUT is 

enhanced by the standing wave mode (SWM). A potassium chloride (KCL) particle with 

a diameter of 80 μm can be detected, as shown in Fig. 6.11. 
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Fig. 6.10 Experimental set-up and coupled microtoroid cavity-nanoparticle system [6.13]. 

 

 

Fig. 6.11 Transmission spectra and the amount of splitting versus number of deposited 

KCL particles with a diameter of 80 nm [6.13]. 
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For (ii), the nanoscale-fabricated gaped metal for confining electric field has been 

also reported for the detection of nanoparticles [6.14], e.g., polystyrene with different 

diameters (51 nm, 75 nm and 117 nm), HIV (130 nm), and Hepatitis C (55 nm), as shown 

in Fig. 6.12. Here, nanoparticles in saline suspension flow in the direction of the arrows, 

and changes in the electrical potential of the fluid adjacent to the nanoconstriction built 

by a 250 nm × 250 nm × 290 nm gap are detected by the lithographed sensing electrode. 

 

 

Fig. 6.12 Device schematics and detector response. (a) overall chip layout; (b) detail of 

boxed area in (a); (c) electrical equivalent circuit; (d) output voltage Vout as a function of 

time responded by a 117 nm polystyrene in diameter [6.14]. 

 

In a summary, the design in Fig. 6.9(a) collects two aspects of advantages in (i) 

multiple-reflections and (ii) confined electric field for the expectation of ultra-high 

sensitivity to detect GUV membrane. 

Some people might have a question: if we can only build a split on a metal line, 

then apply a DC voltage to the split and measure the capacitance change between without 
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a GUV and with a GUV? This design shown in Fig. 6.13 looks simpler than the SRR. 

However, even if a short DC pulse (μs to ms, 10
3
 to 10

4
 V/cm) has lead to the 

electroporation on lipid membrane [6.15], even the cell death is caused [6.16]. For the 

exhibited frequency range over 1 GHz in Fig. 6.9(b) and the following measurements in 

Section 6.3, the time period of sinusoidal wave with the similar electric field intensity in 

Fig. 6.15(a) is lower than 1 ns. So the proposed microwave technique is non-destructive. 

Moreover, the used frequency range does not cause the deformation of GUV [6.17]. 

Another possible proposal is to design a ML like that in Fig. 6.13, which can operate at a 

microwave frequency and concentrate electric field in the middle split. But the multi-

reflections cannot be achieved under this situation. According to a quick ADS schematic 

simulation, for a same capacitance change from 30 fF to 31 fF, the |S21| change of the 

SRR in Fig. 9(a) at 1
st
 odd-mode resonant frequency is ~100 times larger than that 

obtained by a well-matched middle-gaped ML at the same frequency. 

 

 

Fig. 6.13 Split in the middle of a metal line for DC measurement. 
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6.2 Micromachined Split-ring Resonator and Microfluidic Channel 

To detect a single GUV membrane, the sensing area, i.e., the split gap, needs to be 

downsized to several microns even smaller to concentrate electric field there. The 

presented structure with a section of microfluidic channel (green color) is shown in Fig. 

6.14(a), where the metal layer Ti/Cu/Ti: 20 nm / 500 nm / 20 nm is deposited onto the 

fused silica substrate with a thickness of 1 mm. The process is the same as that in Section 

3.5. The split and the gap between ML and ring are reduced to 5 μm on the mask. After 

the lift-off process, they are ~3.5 μm measured by a microscope, but a narrower gap is 

more positive to enhance the coupling. Then Tungsten (W) will be deposited into the 

~3.5 μm ring split to form a narrower 500 nm × 100 μm. The HFSS simulation in Fig. 

6.14(b) indicates that 1
st
 and 2

nd
 odd modes are at 2.70 GHz and 7.75 GHz, respectively. 

Because of the adoption of different solving methods, i.e., FEM for HFSS, analytical 

formula for ADS, the results in Fig. 6.14(b) are different from those in Fig. 6.9(b). The 

energy coupling from the ML is also calculated from the simulated |S21| and |S11|, and 

shown in Fig. 6.14(c). Although the energy is also coupled from the ML under the even 

mode, i.e., 5.07 GHz and 11.08 GHz, the electric field streamline will start from the edge 

of the split and terminate at the bottom metal. For this situation, only limited streamline 

can penetrate MUT at the split, so it is not suitable for high sensitive measurement. The 

detailed analysis of odd and even modes will be stated in Section 6.4. Figure 6.15(a) 

shows the electric field distribution for 12.7 dBm input power (used in the following 

measurements), where we can see the electric field strongly concentrates around the split, 

i.e., 7.99×10
6
 V/m and is at least 10-times larger than that at other most area. Besides, the 



 98 

field in the gap is in parallel with GUV membrane and perpendicular to the field on the 

electrode surfaces. The field intensity variations in Fig. 15(b) show that (i) the microwave 

field is much stronger in and near the split gap than elsewhere; (ii) the top GUV 

membrane does not produce much signal due to very weak microwave fields; (iii) the 

vertical distributions of field intensity is different for 2.70 GHz (first odd mode) and 7.75 

GHz (second odd mode). The only ~-6 dB minimum |S21| looks not so high compared to 

many published resonators [6.18], [6.19]. However, there is only one main reactance 

component formed by a nanoscale split in the proposed SRR, which stores the microwave 

energy. The lower |S21| in other resonators are always produced by a couple of inductors 

and capacitors. So that is a sum. 

 

(a) 

          

                                     (b)                                                                   (c) 
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Fig. 6.14 (a) Schematic of the micromachined SRR with partial microfluidic channel in 

HFSS. Simulated (b) |S21| by HFSS and calculated (c) coupled energy from the total 

microwave energy. 

 

  

                                   (a)                                                                       (b) 

Fig. 6.15 Simulated (a) electric field distribution around the split gap at the resonant 

frequency of the first odd mode and (b) field intensity versus height using the top surface 

of metal layer set as origin at the first two odd modes, i.e., 2.70 GHz and 7.75 GHz. 

 

As commented in Chapter I, the introducing of lossy material, e.g., DI water, can 

significantly decrease the quality factor of a resonator. To avoid this issue as far as 

possible, the PDMS mold for microfluidic channel transporting GUVs is designed to a 

combination of two layers with different thicknesses, as shown in Fig. 6.16. Figure 6.17 

is a camera shot after the PDMS channel is assembled onto the sensing area, showing 

GUVs passed through the 18.8 μm-thick (measured by a profilometer) section under a 
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fluorescent microscope. We can see that there is only a short micro-channel with an 18.8 

μm × 25 μm cross section is attached to the metal layer. 

 

 

Fig. 6.16 Microscopy of the proposed SU-8 mold for PDMS channel. 

 

 

Fig. 6.17 PDMS channel assembled onto the sensing area, i.e., the split, transporting 

GUVs. 

 

The following are fabrication steps and used recipes for the SU-8 mold in Fig. 

6.16: 

(1) Substrate preparation 
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Clean fused silica wafers by piranha first, then place them onto a hotplate with 

150
o
C and 15 minutes for dehydration. 

(2) Thin SU-8 layer coating 

The 18.8 μm-in-thickness layer should be created prior to the 220 μm thick layer. 

Once the order is reversed, the distance between the optical mask and the thin SU-8 layer 

will be 220 μm when the wafer is ready to be exposed. So it is not contact lithography for 

the thin layer. A too long distance means that the severe diffraction will not make sure 

the desired feature size. For the thin layer, SU-8 GM 1060 [6.20] is coated by the recipe 

in Table 6.1. Then leave the wafer onto a hotplate at 100
o
C for 5 minutes for soft-baking. 

The exposure time 26.3 s (dose: 158 mJ/cm
2
) is used for a soda lime mask under the UV 

intensity 6 mW/cm
2
. Next, use 100

o
C for 5 minutes for post-baking. Then the wafer is 

immersed into SU-8 developer [6.21] for 4 minutes and needs to be shaken continuously. 

After development, the wafer should be rinsed in IPA solvent for several seconds. 

 

TABLE 6.1 

SPINNING RECIPE FOR SU-8 GM 1060 

Step # RPM RPM/s Time (s) 

1 500 100 10 

2 1000 100 10 

3 1000 100 45 

4 0 100 10 

 

(3) Thick SU-8 layer coating 

The thick SU-8 layer is coated using SU-8 2075 [6.22]. Table 6.2 is the spinning 

recipe. For soft-baking, use 100
o
C for 60 minutes. The exposure time 101.7s (dose: 385 

mJ/cm
2
) is used for a soda lime mask under UV intensity 5.68 mW/cm

2
. The 
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development time 17 minutes in [6.22] are not sufficient to remove residual photoresist 

between some narrow gaps. More time, e.g. more 30 minutes, for developer shaking 

rinsing is required. Figure 6.18 compares the surface profiles after 17 minutes and 47 

minutes rinsing times are used, respectively. Similarly, the wafer should be also rinsed in 

IPA solvent after development. The SRR in Fig. 6.14 and the mold in Fig. 6.16 are 

fabricated in Electrical and Computer Engineering Cleanroom at Clemson University 

[6.23]. 

TABLE 6.2 

SPINNING RECIPE FOR SU-8 2075 

Step # RPM RPM/s Time (s) 

1 500 100 10 

2 1000 300 30 

 

  

(a)                                                               (b) 

Fig. 6.18 Surface profiles after (a) 17 minutes and (b) 47 minutes developer rinsing time. 

 

6.3 Time-domain Measurement of Single GUV Membranes 

In the measurement, the micromachined SRR is loaded on a brass to eliminate the 

mechanical noise, as shown in Fig. 6.19. Two silicon tubings are assembled for solution 
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flow-in and -out. The measured |S21| and calculated percentage of the stored energy from 

the total microwave energy are also shown in Fig. 6.20 (a) and (b), respectively. During 

the measurement, the channel is filled with 0.1 M glucose-water solution, which is also 

used as the aqueous carrier medium of GUVs in the following. In Fig. 6.20(a), at the first 

and second odd mode resonant frequencies, locating at 2.7 GHz and 7.9 GHz, 

respectively, the time-domain detection of GUV membrane will be performed. The 

measured |S21| are -4.51 dB and -3.44 dB, and the percentages of the coupled energy are 

45.74% and 45.53%, respectively. 

 

Fig. 6.19 Measurement setup for the detection of GUV membrane. 

        

                                     (a)                                                                    (b) 
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Fig. 6.20 (a) Measured |S21| and (b) percentage of the coupled energy from the total 

microwave energy from 1 GHz to 12 GHz for the SRR loaded with 0.1 M glucose-water 

solution. 

 

To obtain signal response only caused by the membrane itself, the dielectric 

difference of different liquids inside and outside a GUV requires to be excluded. As a 

result, both the carrier medium and the solution in the GUV have to originate from the 

0.1 M glucose-water solution in a same bottle. Other procedures for GUV synthesis are 

the same as those in Section 5.3. It is found that when the molar fraction 10/65/25 of 

POPC/SM/Chol is used during GUV synthesis, a lot of GUVs with significantly 

identifiable Lo and Lα phases rise, which can be clearly separated by two fluorescent 

labels, DioC18 and Rho-PE. So this recipe is used in the following experiment. The 

corresponding lipid amount is calculated, as shown in Table 6.3. It is noting that labels 

are reported to affect microwave membrane structures [6.24], [6.25]. But, it is expected 

that Rho-PE and DioC18 do not significantly affect measurement results since they only 

account for ~1% of membrane lipid molecules. 

 

TABLE 6.3 

CALCULATION OF LIPID AMOUNT  

Lipid Mixtures 

Mol wt 

(g/mol) 

Mol % Vol of each 

(μL) 

16:0-18:1 POPC 760.1 10 4.23 

16:0 SM 703 65 25.4 

Chol 386.66 25 5.37 
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Using the measurement setup in Fig. 6.19, the solution with GUVs is transported 

through the silicone tubes into and out from the microfluidic channel by a syringe pump. 

The rate of 2 μL/min is selected for a relatively low flow during the measurement. Since 

the intensive electric field concentrates around the split, the bottom surface of a GUV 

passing through the channel is interacted effectively. When the bottom surface touches 

the split on the metal layer, the largest signal readout will be obtained. Two cables shown 

in Fig. 6.19 are connected to Agilent’s VNA N5230A for S-parameter measurement. To 

conveniently record data, the VNA is connected to a laptop and controlled by Labview 

[6.26] using a graphic programming interface. The graphic codes are shown in Fig. 6.21. 

For the settings of the VNA, the intermediate frequency bandwidth (IFBW) 1 kHz is 

selected to obtain a good compromise between fast measurement and low noise, and the 

input power 12.7 dBm is used, which is the maximum value without an un-leveled 

prompt in this VNA. From the feedback of the VNA, the measurement time per point is 

1.01 ms, so one-time 3000-points scanning costs 3.03 s. It is noting that Labview cannot 

read the calibrated S-parameters from the VNA. So a further processing on the 

uncalibrated data transferred to the laptop is required. In fact, the VNA also does the 

same processing in its interior [6.27]. The detailed process is introduced in Appendix A. 

All data existing in the main body of this dissertation have been calibrated. 

Before starting detecting GUV membrane heterogeneity, some additional 

experiments are required to verify that the proposed sensor has sufficient sensitivity to 

distinguish Lo and Lα phases. In other words, the SM-rich domain (Lo) and the POPC-rich 

domain (Lα) should have a significant difference at permittivity. Therefore, two different 
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types of GUVs synthesized only with SM or POPC, respectively, are measured prior to 

the heterogeneity detection. 

 

 

Fig. 6.21 Labview graphic codes for the control of the VNA and the data-recording. 

 

Unfortunately, the size distribution of GUVs ranges widely. It is observed that too 

large GUVs will fold even rupture when they pass through the channel, while too small 

ones will pass through the channel without any shape reconstruction. These phenomena 

are consistent with the reported in [6.28]. For a too small GUV, the measurement result is 

subject to the uncertain vertical position. Even, there will be not any readout for a GUV 
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far away from the split region. For the GUV with a size between them, A. Yamada et al’s 

confocal microscopy images [6.28] indicate that the top and bottom surfaces are fattened 

against the microchannel walls, as shown in Fig. 6.22. But in the images, the GUV is not 

confined at y-direction, unlike the proposed 18.8 μm × 25 μm PDMS microfluidic 

channel shown in Fig. 6.17, where y-direction is also confined like z-direction. Assuming 

that x–y plane profile in the proposed work is similar to the x–z plane in Fig. 6.22, it is 

reasonable to believe that an enough fitting GUV can almost completely fill in the whole 

18.8 μm × 25 μm cross section of the channel due to y-direction restriction. Thus, only 

GUVs with a diameter of ~25 μm at least are considered for the measurement. Such 

GUVs can produce enough big signal response and the almost completely filling is 

convenient to quantify the permittivity of the GUV membrane, which will be discussed 

further in Section 6.4. 

To analyze the possible profile of a ~25 μm GUV in the proposed 18.8 μm × 25 

μm cross section, it is assumed that there is not a y-direction wall first, so that eqs. (2) and 

(3) in [6.28] apply to the y–z plane. Re-scaling R0 versus Δx in Fig. 7 in [6.28] with an 

appropriate ratio, a GUV with 25 μm in diameter in the channel is shaped as Fig. 6.23(a), 

where the shape constants b and c are equal to 2.17 and 2. However, two walls on the left 

and right sides confine the horizontal length to be only 25 μm. The extrusion from the 

walls will make the GUV flatten further, as shown in Fig 6.25(b). Since the surface area 

of a squeezed GUV changes little (<2% in Fig. 7 [6.28]), it is reasonable to assume that 

the perimeter in Fig. 6.25 (a) and (b) keep consistent. The following eq. (6.2) will be used 

to calculate Δ1 and Δ2 in microns. 
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2 2

1 2 2 1(7 ) (9.4 ) 9.4                                (6.2) 

As an estimation, let Δ1=Δ2, then one can solve it is 4.9 μm. In other words, for the GUV 

with a diameter of no smaller than 25 μm, the flatten area at the bottom surface is 20.8 

μm at least. In eq. (6.3), the curve is treated approximately as a straight line to avoid the 

complete elliptic integral of the second kind. 

 

 

Fig. 6.22 Left: three dimensional reconstruction of the confocal microscopy image when 

the GUV is confined in a channel; right: cross-section of the left image in an x–z plane. 

Bar, 10 μm. [6.28] 

 

Although we have the above estimation, the accurate dimension for each 

individual GUV is still uncertain, i.e., the flatten area ranges from 20.8 μm to 25 μm but 

more or less for different GUVs. To estimate the average signal response (S21) for these 

GUVs, 10-times independent and repeated experiments for each group of GUVs 

discussed in the previous paragraph are performed to establish their representative sample 

space. Then, the random variable, S21 change between without and with a GUV, is 

modeled by a normal distribution, i.e., ΔS21 ~ N(μ, σ). Here, the use of normal 
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distribution only produces the most conservative prediction and do not mean to imply 

that the analyzed random variable is normally distribution [6.29].  

 

                                 

                                                                      (a) 

               

                                                                     (b) 

Fig. 6.23 Confined GUV in the microfluidic channel with an 18.8 μm × 25 μm cross 

section: (a) only confined at z-direction, without y-direction restriction; (b) subject to z- 

and y-direction restriction, the profile in (a) is also drawn together (dash line) for 

comparison. 

 

Figures 6.24 and 6.25 demonstrate several representative measurement results of 

the single GUV membrane made up by 100% SM and 100% POPC, respectively. We can 

see that the flatten area of these GUVs have to spend ~0.6 s to ~0.9 s (1.01 ms per 
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sampling point in all measurements) to pass through the sensing area (the 500 nm split) 

and then release themselves. The slightly larger noise at 7.9 GHz is likely from 

measurement system. More measurement results of S21 change between without and with 

a GUV, i.e., (S21,without-S21,with), are listed in Table 6.4 and 6.5, where the logarithmic unit 

in Fig. 6.24 and 6.25 are changed to the linear. The probability density functions (PDFs) 

of the data in magnitude for two types of GUVs at 2.7 GHz and 7.9 GHz are drawn in Fig. 

6.26. Figure 6.26(a) indicates that the average S21 change from 95.45% (corresponding to 

±2σ away from the mean μ) of SM GUVs ranges from 5.87×10
-4

 to 12.10×10
-4

 and 

95.45% of POPC GUVs ranges from 2.34×10
-4

 to 5.83×10
-4

. Two PDFs in Fig. 6.26(b) 

are more far away from each than those in Fig. 6.26(a), demonstrating that the restriction 

is relaxed to ±4σ away from the mean μ, corresponding to a probability of 99.99%. In 

other words, the average S21 change from 99.99% of SM GUVs ranges from 7.09×10
-4

 to 

11.61×10
-4

 and 99.99% of POPC GUVs ranges from -0.755×10
-4

 to 6.97×10
-4

. These 

results indicate that the membrane synthesized by SM causes larger |S21| change than 

POPC. The even-mode resonant frequencies are also tried in the measurement, but there 

is no significant response on S-parameters. 

 

                                  (a)                                                                   (b) 
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Fig. 6.24 Measurement result of the single GUV membrane made up by 100% SM at (a) 

2.7 GHz and (b) 7.9 GHz. Blue solid line: magnitude; red dash line: phase. 

 

 

                                 (a)                                                                   (b) 

Fig. 6.25 Measurement result of the single GUV membrane made up by 100% POPC at 

(a) 2.7 GHz and (b) 7.9 GHz. Blue solid line: magnitude; red dash line: phase. 

 

TABLE 6.4 

S21 CHANGE BETWEEN WITHOUT AND WITH A SM GUV 

# 2.7 GHz 

μ=8.99×10
-4

 

σ=1.56×10
-4

 

# 7.9 GHz 

μ=9.35×10
-4

 

σ=0.57×10
-4

 

Fig. 6.24 (a) 7.19×10
-4∠138.34

o
 Fig. 6.24 (b) 8.39×10

-4∠349.71
o
 

1 9.78×10
-4∠142.16

o
 1  9.32×10

-4∠358.48
o
 

2 10.74×10
-4∠141.84

o
 2 10.03×10

-4∠356.59
o
 

3 10.41×10
-4∠142.43

o
 3 9.63×10

-4∠356.92
o
 

4 8.38×10
-4∠144.04

o
 4 9.38×10

-4∠355.01
o
 

5 8.20×10
-4∠142.27

o
 5 9.18×10

-4∠356.00
o
 

6 9.93×10
-4∠139.94

o
 6 10.38×10

-4∠358.44
o
 

7 6.34×10
-4∠144.12

o
 7 9.08×10

-4∠4.04
o
 

8 10.78×10
-4∠140.71

o
 8 8.88×10

-4∠357.62
o
 

9 8.10×10
-4∠142.45

o
 9 9.19×10

-4∠356.26
o
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TABLE 6.5 

S21 CHANGE BETWEEN WITHOUT AND WITH A POPC GUV 

# 2.7 GHz 

μ=4.09×10
-4

 

σ=0.87×10
-4

 

# 7.9 GHz 

μ=3.11×10
-4

 

σ=0.97×10
-4

 

Fig. 6.25 (a) 5.51×10
-4∠156.59

o
 Fig. 6.25 (b) 4.58×10

-4∠6.44
o
 

1 3.17×10
-4∠153.11

o
 1 2.06×10

-4∠3.41
o
 

2 4.49×10
-4∠155.47

o
 2 4.34×10

-4∠8.62
o
 

3 4.75×10
-4∠157.04

o
 3 4.13×10

-4∠7.95
o
 

4 4.72×10
-4∠156.15

o
 4 3.65×10

-4∠7.01
o
 

5 3.15×10
-4∠153.46

o
 5 2.85×10

-4∠6.39
o
 

6 4.57×10
-4∠156.36

o
 6 2.29×10

-4∠5.23
o
 

7 4.16×10
-4∠154.29

o
 7 2.50×10

-4∠3.35
o
 

8 2.87×10
-4∠154.17

o
 8 2.40×10

-4∠358.59
o
 

9 3.46×10
-4∠157.11

o
 9 2.29×10

-4∠10.33
o
 

 

  

                                      (a)                                                                   (b) 

Fig. 6.26 Probability density functions (PDFs) for the average S21 change between 

without and with a SM or POPC GUV in magnitude at (a) 2.7 GHz and (b) 7.9 GHz. 

 

To deserve to be mentioned that, the proposed sensor can also detect the folding 

of the GUV membrane, taking a SM GUV with a diameter of ~31 μm, as shown in Fig. 

6.27(a). For a GUV with diameter smaller than the channel height, it is difficult to control 

±2σ 
±2σ 

±4σ 
±4σ 
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its vertical position in the channel. As a result, measured signals, as shown in Fig. 27(b), 

may vary significantly even for identical GUVs. This phenomenon is probably caused by 

the inconsistent velocities at the front and the back of the GUV when it suffers the 

friction force coming from the PDMS walls, which is helpful for the research on 

mechanical properties of lipid bilayer, e.g., elastic energy [6.28]. But these data are not 

recorded in Table 6.4 and 6.5 since such GUVs are not flatted, subject to more 

uncertainty in dimension, therefore. 

 

 

                                  (a)                                                                   (b) 

Fig. 6.27 |S21| response for (a) a folding SM GUV and (b) a GUV with diameter smaller 

than the channel height both at 2.7 GHz. Blue solid line: magnitude; red dash line: phase. 

 

After making sure that there is enough significant dielectric difference between 

SM and POPC lipid membranes, the GUVs are re-synthesized using the recipe in Table 

6.3 for the heterogeneity detection. The same measurement steps are also adopted for 

data-recording. Figure 6.28 shows some characteristic time-domain |S21| measurement 

results of attached single GUV membranes at 2.7 GHz and 7.9 GHz, where signal leaps 
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are produced by different domains. The imaging of GUVs in the channel is shot by a 

camera connected to the fluorescent microscope, which is focused to the surface of the 

metal layer for capturing the bottom surface of GUVs touching the split. At this time, the 

raft-like and non-raft domains with different colors are also shot. The imaging before the 

GUV in Fig. 6.28(a) enters the narrow channel (the 18.8 μm × 25 μm cross section) for 

sensing is shown in Fig. 6.29. It is observed that some “ghost” membranes tend to adhere 

around the inlet junction of narrow channel caused by too large GUVs passing early, 

which are always blocked there and then explode due to shear. This phenomenon was 

also observed in A. Yamada et al’s work [6.28]. However, these “ghost” membranes only 

float around the inlet junction and enough far ways the split on the metal line. So the 

disturbance from them is considered to be negligible. In the experiment, it is observed 

that the raft-like domain (green color) always locate at the front of a GUV in the 

microfluidic channel, like that in Fig. 6.29, probably caused by the moving outer fluid 

[6.28], [6.30]. When a GUV enters the narrow channel, it will be flattened at the walls 

and slowly pass through the narrow channel, like those in Figs. 6.24 and 6.25. Then the 

raft-like domain touches the split, as shown in Fig. 6.30(a), inducing the first |S21| falling, 

named as “Section I”. Next, the non-raft domain touches the split shown in Fig. 6.30(b), 

inducing the second |S21| falling, named as “Section II”. Table 6.6 summarizes S21 

changes at Sections I and II corresponding to the GUVs in Fig. 6.28 (a)-(d), where all 

changes are relative to the S21 without GUVs. These values are also labeled in Fig. 6.26, 

which is now re-drawn as Fig. 6.31. 
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From the probabilities listed in Table 6.7, Section I is much more likely to be SM, 

and Section II is much more likely to be POPC. This also agrees with the fluorescent 

label indications in Fig. 6.28. So the proposed measurement is able to detect different 

domains on a GUV. It is worth noting that the addition of Chol does not significantly 

change Δ|S21| for the SM response. A possible reason is that the dipole moment of Chol 

molecule is much smaller than that of lipid molecule, i.e., one order of magnitude as 

pointed out in [6.31]. 

 

            

                                        (a)                                                                  (b) 

            

                                       (c)                                                                  (d) 
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Fig. 6.28 Time-domain |S21| measurements of single GUVs passing through the split at 

(a)-(c) 2.7 GHz and at (d) 7.9 GHz. The arrows indicate the flow directions before these 

GUVs enter the narrow channel. Bar: 25 μm. 

 

 

Fig. 6.29 Imaging before the GUV in Fig. 6.28(a) enters the narrow channel for sensing. 

 

 

Fig. 6.30 Cross section of (a) raft-like or (b) non-raft domain on a GUV touching the split 

in the channel. 



 117 

 

                                      (a)                                                                   (b) 

Fig. 6.31 PDFs for the average S21 change in magnitude at (a) 2.7 GHz and at (b) 7.9 GHz 

with labeled values in Table 6.6. Straight dash line: Section I; straight dot line: Section II. 

TABLE 6.6 

S21 CHANGES AT SECTIONS I AND II 

CORRESPONDING TO THE GUVS IN FIG. 6.28 

# Section I Section II 

(a) 10.64×10
-4∠144.16

o
 4.55×10

-4∠140.68
o
 

(b) 9.29×10
-4∠146.09

o
 4.74×10

-4∠144.50
o
 

(c) 7.32×10
-4∠144.56

o
 2.92×10

-4∠142.38
o
 

(d) 7.91×10
-4∠356.32

o
 2.71×10

-4∠0.82
o
 

                             Note: (a)-(c) at 2.7 GHz; (d) at 7.9 GHz. 

 

TABLE 6.7 

PROBABILITY RATIOS OF SM VS. POPC FOR 

SECTIONS I & II IN 4 TYPICAL MEASUREMENTS 

Section 

# 

Label 

Color 

Fig. 6.28 

(#) 

Probability
*
 

SM/POPC 

I Green (a) 13.6%/0.27% 

  (b) 34.1%/0.27% 

  (c) 13.6%/0.27% 

  (d) 2.14%/0.0031% 

II Orange (a) 2.27%/34.1% 

  (b) 2.27%/34.1% 

  (c) 2.27%/13.6% 

  (d) ~0%/34.1% 
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Note: 
*
Probability values are obtained from the PDFs in Fig. 6.31. The measured |S21| changes are also 

marked Fig. 6.31. Section I: dash lines; Section II: dot lines. 

 

6.4 Analytical Model of the SRR 

To analyze, design, and extract the permittivity of MUT locating at the split, an 

appropriate model of the proposed SRR is required. Some equivalent circuit-based 

models have been proposed to meet the demand [6.32]-[6.34]. However, these existing 

models have to fit and adjust lumped-element parameters to agree with the measured S-

parameters. Moreover, these fitted parameters are not always unique, which brings a 

great uncertainty for permittivity extraction. To address this issue, in this dissertation, a 

novel analytical model is first proposed. Using the model, S-parameters of the SRR can 

be determined by necessary dimensions and dielectric information of substrate. 

The proposed SRR can be modeled as shown in Fig. 6.32, which is composed of a 

coupled line and a gaped ML, discussed in Section 6.4.1 and 6.4.2, respectively. Then, 

using the even-odd mode analysis technique [6.35], they are combined together for the 

final 2-port S-parameters in Section 6.4.3. For the well-matched MLs on the left and right, 

they only shift the phase of the combined S-parameters. So the total phase of the SRR 

will be revised using the measurement result as reference. 
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Fig. 6.32 Decomposition of the SRR. Blue: ML; orange: coupled line; green: gaped ML. 

 

6.4.1 S-parameters of Asymmetric Coupled Line 

For a four-port asymmetric coupled line made up by two adjacent MLs a and b 

with a spacing s and arbitrary widths W1 andW2 in Fig. 6.33, its S-parameters can be 

expressed as 

                      

11 12 13 14 11 21 31 41

21 22 23 24 21 11 41 31

31 32 33 34 31 41 33 43

41 42 43 44 41 31 43 44

[ ] [ ] [ ] 

S S S S S S S S

S S S S S S S S
S

S S S S S S S S

S S S S S S S S

                      (6.3) 

where S11=S22, S21=S12, S33=S44, S43=S34, S31=S13=S42=S24, S41=S14=S32=S23, because of the 

symmetry and reciprocity [6.36]. 

 

 

Fig. 6.33 Four-port asymmetric coupled line with a spacing s and arbitrary widths W1 and 

W2. 

 

Under the assumption of transverse electromagnetic (TEM) propagation, the wave 

propagation along y direction in Fig. 6.33, is described by conventional transmission-line 

theory [6.37] as 
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[ ]

[ ][ ]
d V

z I
dy

                                                (6.4) 

where 1

3

[ ] [ ]
V

V
V

 , 
1

3

[ ] [ ]
I

I
I

 , the elements Vi and Ii (i=1, 3) represent the voltage and current 

at the port i of the network. And the impedance matrix is 

                                                  
11 13 11 31

31 33 31 33

[ ] [ ] [ ]
z z z z

z
z z z z

                                     (6.5) 

where z13=z31 because of the reciprocity [6.36]. Now we solve the following eigenvalue 

equation for [z]: 

                                                             ([ ] [ ])[ ] 0z E x                                           (6.6) 

where [E] is the unity matrix, and [x] corresponding to voltage modes is eigenvectors of 

[z], solved as 
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            (6.8) 

The eigenvalue [λ] is also calculated as 
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Then, from the capacitance matrix 1 11 13 1 11 31 1

3 31 33 3 31 33 3

[ ] [ ][ ] [ ][ ]
Q c c V c c V

Q c c V c c V
  , we have the 

following static capacitances to ground per unit length for each conductor (a and b): 

(1) Differential Mode (π) 

                                                               11 31

1
aC c c

m
                                                   (6.11) 

                                                               31 33bC mc c                                                   (6.12) 

(2) Common Mode (c) 

                                                                11 31

1
acC c c

n
                                                  (6.13) 

                                                                31 33bcC nc c                                                    (6.14) 

where the self-capacitance coefficients c11, c33 are solved using cp+2cf from eqs. (3)-(4) in 

[6.38], the mutual-capacitance coefficients c31 for two adjacent asymmetric lines is 

solved using C0
ACPS●εeff

ACPS
 from eqs. (10) and (39) in [6.39]. 

To order to obtain the same modal impedances for two conductors, in the above 

equations, Caπ=Cbπ and Cac=Cbc should be met. Then we have 

                                           

2 2

33 11 33 11 31

31

( ) ( ) 4

2

c c c c c
m

c

    
                                (6.15) 

                                           

2 2

33 11 33 11 31

31

( ) ( ) 4

2

c c c c c
n

c

    
                               (6.16) 

It is worth noting that mn=-1, which will be used in some later calculations. For a 

special case when the conductor a and b in Fig. 6.33 are the same, m=-1, n=1. Then, the 

mode impedances are written as 
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Because of Caπ=Cbπ and Cac=Cbc, we have 
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                                             (6.22) 

The reflection and transmission coefficients of each mode in terms of 

corresponding mode impedances and electrical lengths are expressed as  

                                 
0

0

[[ ] / sin ] /x
x x x

x

Z Z
j

Z Z
                                          (6.23) 

                                                               2 /x xT                                                         (6.24) 

                                           
0

0

2cos ( ) / sinx
x x x

x

Z Z
j

Z Z
                                         (6.25) 

For the asymmetric a and b (as a result, we use π and c instead of odd and even denoting 

modes), these equations (6.23)-(6.25) have verified by V. K. Tripathi et al [6.40]. 

 



 123 

 

                                                                      (a) 

 

 (b) 

Fig. 6.34 System of generators for derivation of the S-parameters for an overall 1 V input 

signal at port 1: (a) π Mode; (b) c Mode. 

 

S-parameters of this system can be solved using voltage generators at each 

matched port, e.g., S11, S21, S31 and S41 can be determined by the emerging voltage waves 

at all ports to an incident voltage wave at port 1, shown in Fig. 6.34. 

For an applied 1 V voltage at Port 1, the voltages at two conductors can be solved 

as 

(1) Differential Mode (π) 

                                                       

2

2
2

1

1 1
1 ( )






m

m

m

 for port 1                       (6.26) 



 124 

                                                      2
2

1

1 1
1 ( )






mm

m

m

 for port 3                       (6.27) 

(2) Common Mode (c) 
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One can easily prove that 
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The reflection and transmission coefficients for each mode are the same on each 

of the conductor a and b since zaπ=zbπ and zac=zbc. Now we obtain 
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Similarly, to apply an overall 1 V voltage at Port 3, the distribution of voltages at 

two conductors shown in Fig. 6.35 can be solved: 

(1) Differential Mode (π) 

                                                           2 1

m

m
 for port 1                                    (6.36) 

                                                           2

1

1m
 for port 3                                    (6.37) 

(2) Common Mode (c) 

                                                          2 1

n

n
  for port 1                                    (6.38) 

                                                          2

1

1n
  for port 3                                    (6.39) 

 

 

(a) 

 

(b) 
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Fig. 6.35 System of generators for derivation of the S-parameters for an overall 1 V input 

signal at port 3: (a) π Mode; (b) c Mode. 

 

Similarly, S13, S33, S43, S23 can be also solved: 
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OE EE

m n
S

m n
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                                (6.42) 
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OE EE

m n
S T T

m n
                               (6.43) 

Let us go back to the matrix (6.3), we can find that all remaining S-parameters are 

also obtained therefore from S11=S22, S21=S12, S33=S44, S43=S34, S31=S13=S42=S24, 

S41=S14=S32=S23. 

 

6.4.2 Reflection Coefficient of Gaped ML 

Many publications have presented the modeling of the split area. The analytic 

mathematic expression is very complicated even for the simplest case that only includes 

necessary conductor and dielectric substrate [6.41]-[6.43]. These models do not consider 

a top dielectric layer above the metal, e.g., the microfluidic channel filled with a solution. 

In this section, a π-network of capacitors [6.44] shown in Fig. 6.36 will be used to model 

this area to obtain an effective and simple quantification. 
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Fig. 6.36 π-network of capacitors for the equivalent circuit of the split. 

 

 

Fig. 6.37 Cross-section of the substrate/metal layer/GUV bottom surface/liquid inside the 

GUV/GUV top surface/PDMS/air system. The thickness of the GUV membrane is not 

drawn in an actual proportion to improve readability. 

 

The following will introduce how to solve Cend and Cgap in Fig. 6.36, respectively. 

Although some fitting equations are reported [6.44], these equations are generally not 

applicable to the multiple layer system of substrate/metal layer/GUV bottom 

surface/solution inside the GUV/GUV top surface/PDMS/air shown in Fig. 6.37. So, 

some more practical and applicable to the multiple layer system for Cgap calculation 
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needs to be established. For Cend, however, most of electric fields emitted from edge only 

penetrate substrate material and terminate at the back conductor, rather than another 

conductor, so the fitting equation of Cend is applicable. According to [6.44], 

                   0.9 0.8675 0.120.5{12 ( ) ( ) exp(2.043( ) )}( )
9.6

sub
end

s W
C W pF

W h


           (6.44) 

where s is the gap width, εsub and h are the dielectric constant and thickness of the 

substrate, respectively, and W is the width of the ML, which is different from the length 

w and perpendicular to the cross section in Fig. 6.37. 

As discussed in Section 6.3, when the GUV with a slightly larger diameter than 

the channel passes through the sensing split, the bottom/top area on the GUV touching 

split/PDMS channel can be treated approximately as a flattened surface with a thickness 

of hGUV, i.e., 2.8 nm or 3.5 nm for different phases [6.1]-[6.3], as shown in Fig. 6.37. 

However, the conformal mapping technique [6.45] requires both the top and bottom 

surfaces to cover the whole metal layer. The requirement is not met. Provided that the 

GUV bottom surface is a thin sheet tightly attached on the metal layer, it can be 

approximately seen as a dielectric filled in the parallel-plate capacitor formed by the split. 

Using the conformal mapping in E. Chen et al’s work [6.45], the total capacitance per 

unit length between two adjacent metals shown in Fig. 6.37 are written by 
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and                                                             
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                                         and               
2' 1x xk k                                                     (6.50) 

where x=air, sub, PDMS, and solution, K is incomplete elliptic integral of the first kind 

with variables kx and kx'. It is worth to be mentioned that in Fig. 6.17 the microfluidic 

channel does not cover the whole metal layer but only ~100 μm long on each side taking 

the split as the center. So w=100 μm is selected for the calculations of eqs. (6.45)-(6.50). 

From Fig. 6.17, the microfluidic channel is only 25 μm wide (⊗ direction in Fig. 

6.37), so most of the split is covered by PDMS, not solution. Similarly, the capacitance 

Cwall per unit length for the cross section without the microfluidic channel is expressed as 
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Consequently, Cgap can be obtained as a shunt connection using Cchannel and Cwall 

in parallel: 

                                                 gap channel channel wall wallC w C w C                                         (6.52) 

where wchannel=25 µm is the width of microfluidic channel, and wwall=75 µm is the width 

of electrodes covered by PDMS. 

In eq. (6.45), the capacitance of the GUV bottom surface is in the form of a 

parallel-plate capacitance, rather than an elliptic function based on the conformal 

mapping technique like other layers, since the use of a thickness of 2.8 nm or 3.5 nm 

causes the calculation error, i.e., K(kGUV)/K(kGUV')=0. The parameters kGUV and kGUV' can 

be obtained similarly from eq. (6.50) and any one from eq. (6.47) to (6.49). Figure 6.38 

demonstrates the electric field distribution (blue lines) around the 500 nm-wide split. The 

used method to draw Fig. 6.38 is introduced in Appendix B. A flatten GUV membrane 

with ~3 nm thickness is also drawn together, where the membrane over the split is 

marked in red and other parts are marked in orange. We can see that the red part is 

approximately inside a parallel-plate capacitor. For the orange part, it is approximately 

between two long-distance parallel-plates aside the split. As rough estimations, provided 

that εGUV=73 and εsolution=76, the capacitance change per unit length of the red part 

between without and with the membrane is  
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              (6.53) 

For the total 1000 nm-long (2lorange) orange parts aside the split, it is calculated as 
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           (6.54) 

where the distance 1.35×10
-6

 m (symbolled by curve) between two parallel-plates is 

obtained using the complete elliptic integral of the second kind. The halved ellipse 

beginning at 9.9975×10
-4

 ending at 10.0075×10
-4

, as shown in Fig. 6.39, is selected as the 

average distance. More capacitance changes can be also calculated using the similar 

equation, e.g., the next 1000 nm is calculated to be 0.000565ε0 C/m. That implies that the 

farther away from the split, the smaller the capacitance change between with and without 

the membrane. So the approximation of the parallel-plate capacitance in eq. (6.45) is 

reasonable to evaluate the capacitance of the GUV bottom surface. 
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Fig. 6.38 Electric field distribution around the 500 nm-wide split (horizontal direction, 

from 1.0000×10
-3

 m to 1.0005×10
-3

 m). Red: the GUV membrane over the split; orange: 

other parts of the membrane aside the split. 

 

 

Fig. 6.39 A selected (bold) curve as the average distance between two 500 nm-long 

parallel-plates along horizontal direction. One plate: from 0.9995×10
-3

 m to 1.0000×10
-3

 

m; another plate: from 1.0005×10
-3

 m to 1.0010×10
-3

 m. 

 

6.4.3 Combination of Coupled Line and Gaped ML 

The S-parameters of the symmetric SRR can be solved by analyzing its odd and 

even modes. Under odd and even mode excitations, it becomes to Fig. 6.40 (a) and (b) 

[6.35]. From Fig. 6.40(b), the capacitance Cgap, an equivalence of the split, does not play 

any role under the even-mode excitation. 

We can solve the reflections S11
o
 and S11

e
 at Port 1 from Fig. 6.40 (a) and (b). The 

complete S-parameters of the SRR are expressed as 
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(6.56) 

 

(a) 

 

(b) 

Fig. 6.40 Bisection of the circuit of the symmetric SRR under (a) odd-mode and (b) even-

mode excitations. The length of the 4-port coupled line needs to be halved here. 
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The following will take the odd mode as an example to demonstrate how to solve 

S11
o
. The solving method of S11

e
 is similar to S11

o
. It is analyzed by the following signal 

flow [6.46], where Γsc=-1 for short-circuit. 

 

Fig. 6.41 Signal flow graph for the analysis of S11
o
. 

 

                                     (a)                                                                    (b) 
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Fig. 6.42 (a) Signal flow graph for the analysis of [S11' S13'; S31' S33'] and (b) numbering of 

the nodes in (a). 

 

To write S11
o
=b1/a1 directly is still difficult, so an additional step is necessary, i.e., 

to match Port 3 (let Γo=0) and then solve the 2-port network [S11' S13'; S31' S33'] first, as 

shown in Fig. 6.42. 

For S11', the signal flow from Node 1 to 3 may be 1→3, 1→2→4→3, and 

1→6→8→3. The above three is the simplest. Further, 1243 and 1683 develop 

1→2→4→6→8→3, 1→2→4→6→8→2→4→3, 1→2→4→6→8→2→4→6→8→3, 

1→2→4→6→8→2→4→6→8→2→4→3, …… and 1→6→8→2→4→3, 

1→6→8→2→4→6→8→3, 1→6→8→2→4→6→8→2→4→3, 

1→6→8→2→4→6→8→2→4→6→8→3, …… 

We can write the expression of S11' using the sum of an infinitely proportional 

sequence: 
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(6.57) 

For S33', the signal flow from Node 5 to 7 may be 5→7, 5→2→4→7, 

5→2→4→6→8→7, 5→2→4→6→8→2→4→7, 5→2→4→6→8→2→4→6→8→7, 
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5→2→4→6→8→2→4→6→8→2→4→7, …… and 5→6→8→7, 5→6→8→2→4→7, 

5→6→8→2→4→6→8→7, 5→6→8→2→4→6→8→2→4→7, 

5→6→8→2→4→6→8→2→4→6→8→7, …… Similarly, S33' is in the form of 
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(6.58) 

For S31', the signal flow from Node 1 to 7 may be 1→7, 1→2→4→7, 

1→2→4→6→8→7, 1→2→4→6→8→2→4→7, 1→2→4→6→8→2→4→6→8→7, 

1→2→4→6→8→2→4→6→8→2→4→7, …… and 1→6→8→7, 1→6→8→2→4→7, 

1→6→8→2→4→6→8→7, 1→6→8→2→4→6→8→2→4→7, 

1→6→8→2→4→6→8→2→4→6→8→7, …… Similarly, S31' is in the form of  
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(6.59) 

Now we can draw the signal flow of the 2-port network [S11' S13'; S31' S33'] to solve 

S11
o
. It is obtained by eq. (6.60). Using the similar steps, S11

e
 can be also solved. 
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Fig. 6.43 Signal flow graph of the network [S11' S13'; S31' S33'].  

 

 

Fig. 6.44 1-port network decomposed from Fig. 6.40(a) for Γo. 

 

The rest of the work is to solve the reflection coefficient Γo and Γe in Fig. 6.40 (a) 

and (b). Taking Γo for example, it is S11 of the 1-port network in Fig. 6.44, which is 

decomposed from Fig. 6.40(a). The 2-port S-parameters [S11" S12"; S21" S22"] of the 

transmission line TL1 and TL2 in series in Fig. 6.44 can be easily solved. The 

calculations of conductor loss and 45
o
 mitered bend can be found in [6.47], [6.48]. Then, 
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S11 of the network, i.e., Γo, is expressed as eq. (6.61). The similar process is also used to 

obtain Γe. 
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(6.61) 

where the reflection coefficient ΓC' is 
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For the SRR in Fig. 6.14(a), the calculated |S21| from 1 GHz to 12 GHz loading 

0.1 M glucose-water solution using the proposed analytical model is shown in Fig. 6.45. 

The frequency-dependent complex permittivity of the solution [6.49] is used to calculate 

eq. (6.45). To analyze the respective resonant frequencies of odd-mode and even-mode, 

|S11
o
| for odd-mode and |S11

e
| for even-mode are also demonstrated, respectively, in Fig. 

6.46 (a) and (b). We can see that 1
st
 and 2

nd
 resonant frequencies of the odd-mode, i.e., 

2.68 GHz and 7.99 GHz, correspond to 1
st
 and 3

rd
 resonant frequencies of the complete 

SRR, i.e., 2.54 GHz and 7.54 GHz as shown in Fig. 6.45, whereas 1
st
 and 2

nd
 resonant 

frequencies of the even-mode, i.e., 5.08 GHz and 10.99 GHz, correspond to 2
nd

 and 4
th

 

resonant frequencies of the complete SRR, i.e., 4.77 GHz and 9.90 GHz. The deviations 

are caused since only half of full length is calculated for |S11
o
| and |S11

e
|, which is a 

requirement of the even-odd mode analysis technique [6.35]. It is also observed that the 

values at these frequencies for the combined |S21| are different from the single |S11
o
| and 

|S11
e
|, due to the combination calculation in eq. (6.56). 
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Fig. 6.45 Calculated |S21| from 1 GHz to 12 GHz loading 0.1 M glucose-water solution. 

 

 

                                     (a)                                                                     (b) 

Fig. 6.46 (a) |S11
o
| for the odd-mode and (b) |S11

e
| for the even-mode. 

 

6.5 Complex Permittivity Extraction of GUV Membrane 

In Fig. 6.45, 1
st
 frequency locates at 2.54 GHz with a |S21| of ~-20.17 dB, much 

lower than the measured ~-4.51 dB in Fig. 6.20(a), implying that the proposed coupled-

line model has a stronger coupling between two adjacent MLs. The same thing also 
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affects other resonant frequencies. The reason is that the calculation of the mutual-

capacitance coefficients c31 for two adjacent asymmetric lines uses the coplanar stripline 

(CPS)-based conformal mapping [6.38], but it is unlike two coplanar MLs of the SRR. 

For the CPS, almost all electric field streamlines emitted from an electrode terminate at 

another one; for two adjacent MLs of the SRR, a lot of electric field streamlines emitted 

from an electrode terminate at the back conductor [6.38]. So the calculated c31 is larger 

than what it should be. Moreover, the proposed model is derived based on the assumption 

of TEM propagation, which has to be used to meet the prerequisite of eq. (6.4), but it is 

only strictly satisfied in a homogeneous medium. Based on this assumption, the field 

distribution at any transverse plane perpendicular to z-direction in Fig. 6.33 can be treated 

as a linear combination of the proposed two fundamental TEM-modes, i.e., π Mode and c 

Mode in Section 6.4.1. Then the derivations in Section 6.4.1 can be further performed for 

a relatively simple and intuitive analysis of the SRR. 

To extract the permittivity of the measured GUV membranes using the proposed 

model, some additional revisions are required. According to the above discussion, c31 is 

the main target. For s=3.5 μm (the spacing between two adjacent MLs), c31 is calculated 

to be ~95.60 pF, demonstrating a strong coupling in Fig. 6.45. If it is decreased to ~19.11 

pF, the |S21| at 1
st
 resonant frequency is close to the measured value, i.e., ~-4.51 dB. The 

minor frequency error is eliminated by decreasing the length of the coupled line. Then the 

corrected |S21| from 1 GHz to 12 GHz is re-drawn in Fig. 6.47(a). But, 2
nd

 resonant 

frequency shifts to at 8.1 GHz with a |S21| of -1.53 dB, therefore. So the above adjustment 

is more suitable for permittivity extraction at 2.7 GHz, and c31 and the length of the 
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coupled line need to be adjusted again when extracting permittivity at 7.9 GHz. Figure 

6.47(b) also demonstrates the corrected |S21| from 1 GHz to 12 GHz using a c31 of ~28.90 

pF, which agrees with the measured |S21| at 7.9 GHz. 

To verify the proposed model, it is necessary to measure another MUT with 

known permittivity and compare it with the calculated result. Replacing 0.1 M glucose-

water solution with air (εair≈1-j0), the calculated |S21|s using 19.11 pF and 28.90 pF as c31, 

respectively, for good agreement at 2.7 GHz and 7.9 GHz, are compared with the 

measured data together in Table 6.8. The relative errors at 2.7 GHz and 7.9 GHz from 

Table 6.8 are 1.00% and 1.90%, respectively, suggesting that the proposed model can 

obtain an accurate permittivity of MUT. It is worth noting that the above comparison is 

made for a wide permittivity range (from the solution to the air). In fact, for the minute 

permittivity change without and with a GUV membrane, the proposed model is expected 

to obtain a lower relative error. 

 

 

                                     (a)                                                                   (b) 
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Fig. 6.47 Corrected |S21| from 1 GHz to 12 GHz loading 0.1 M glucose-water solution 

demonstrating a good agreement with the measurement at (a) 2.7 GHz and at (b) 7.9 GHz. 

 

TABLE 6.8 

COMPARISON BETWEEN THE CALCULATED AND THE MEASURED  

|S21|S USING AIR AS A MUT AT 2.7 GHZ AND 7.9 GHZ 

Frequency Calculated |S21| Measured |S21| Relative error
*
 

2.7 GHz -0.02526 dB 0.06129 dB
#
 1.00% 

7.9 GHz -0.04479 dB -0.2079 dB 1.90% 
              

*
Relative error=|(Calculated-Measured)/Measured| ×100%, where the data is in linear  

               format, rather than dB, for the calculation. 
#
The value is slightly larger than 0 dB,  

               caused by the calibration error of VNA.  

 

Until this step, however, the additional phase shift induced by the left and right 

MLs in Fig. 6.32 is not taken into account. In Fig. 6.47, the S21 at 1
st
 resonant frequency 

2.7 GHz is 315.89
o
, which should be corrected to the measured angle, i.e., 104.01

o
. Then 

the data at 2.7 GHz in Table 6.4 to 6.6 can be transformed to corresponding complex 

permittivities. The same procedures are also done at 7.9 GHz. These extracted 

permittivities are listed in Table 6.9 to 6.11. In the transformation, the width of the flatten 

GUV membrane (along W direction in Fig. 6.37) wGUV is selected as 25 μm. But, 

according to the discussion in Section 6.3, the possible wGUV value ranges from 20.8 μm 

to 25 μm. For other possible choices of wGUV, the extracted complex permittivities may 

demonstrate a slight deviation. Figure 6.48 shows a complete calculation flow graph for 

GUV membrane complex permittivity using the proposed model. 
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TABLE 6.9 

EXTRACTED COMPLEX PERMITTIVITY OF THE SM GUVS IN TABLE 6.4 

# 2.7 GHz 

μ=73.49-j2.27 

σreal=0.47, σimag=1.44 

# 7.9 GHz 

μ=63.20-j3.28 

σreal=1.37, σimag=1.31 

Fig. 6.24(a) 74.39-j3.74 Fig. 6.24(b) 66.10-j5.22 

1 73.20-j1.66 1 62.63-j3.41 

2 72.96-j0.83 2 63.09-j1.61 

3 72.97-j1.14 3 63.10-j2.57 

4 73.39-j2.94 4 63.94-j3.05 

5 73.66-j3.01 5 63.63-j3.57 

6 73.48-j1.43 6 62.16-j0.93 

7 74.05-j4.66 7 60.71-j4.48 

8 73.13-j0.13 8 63.15-j4.38 

9 73.67-j3.11 9 63.53-j3.57 

 

TABLE 6.10 

EXTRACTED COMPLEX PERMITTIVITY OF THE POPC GUVS IN TABLE 6.5 

# 2.7 GHz 

μ=73.64-j6.13 

σreal=0.61, σimag=0.79 

# 7.9 GHz 

μ=63.97-j16.46 

σreal=1.23, σimag=2.66 

Fig. 6.25(a) 72.67-j4.83 Fig. 6.25(b) 62.47-j12.31 

1 74.33-j6.92 1 65.26-j19.33 

2 73.40-j5.74 2 62.24-j13.16 

3 73.11-j5.57 3 62.61-j13.70 

4 73.20-j5.55 4 63.28-j14.98 

5 74.33-j6.94 5 64.18-j17.19 

6 73.28-j5.70 6 64.86-j18.73 

7 73.68-j6.00 7 64.90-j18.06 

8 74.46-j7.24 8 65.56-j18.21 

9 73.93-j6.78 9 64.29-j18.95 

 

TABLE 6.11 

EXTRACTED COMPLEX PERMITTIVITY OF THE GUVS IN TABLE 6.6 

# Section I Section II 

(a) 72.62-j1.05 74.56-j5.11 

(b) 72.81-j2.29 74.15-j5.03 

(c) 73.68-j3.86 75.04-j6.90 

(d) 63.99-j6.58 65.07-j17.37 
                        Note: (a)-(c) at 2.7 GHz; (d) at 7.9 GHz. 
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Fig. 6.48 Complete calculation flow graph for GUV membrane complex permittivity. 

 

6.6 Discussions 

According to Table 6.8 and 6.9, the PDFs of SM and POPC GUVs at 2.7 GHz and 

7.9 GHz are drawn in Fig. 6.49. From Fig. 6.49 (a) and (c), the PDFs of the real 

component of SM and POPC GUVs highly overlap and only slightly shift a little, which 

suggests that their dipole moments are comparable. Figure 6.49(b) indicates that at 2.7 

GHz, the imaginary relative permittivity of 86.6% SM GUVs ranges from 0.11 to 4.43, 

corresponding to ±1.5σ away from the mean μ, but for 86.6% (μ-1.5σ, μ+1.5σ) POPC 

GUVs, it ranges from 4.95 to 7.32. From Fig. 6.49(d), at 7.9 GHz, the imaginary relative 

permittivity of 95.4% SM GUVs ranges from 0.66 to 5.90, corresponding to ±2σ away 

from the mean μ, but for 95.4% (μ-2σ, μ+2σ) POPC GUVs, it ranges from 11.14 to 21.78. 

That means that the hydrated POPC membrane has larger dielectric loss than SM. The 

water-glucose-POPC system is able to absorb more microwave energy both at 2.7 GHz 
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and 7.9 GHz. It is probably caused by longer SM lipid molecules and corresponding 

thicker membrane. Moreover, from Fig. 6.50 [6.50], [6.51], POPC and SM have the same 

choline and phosphate molecules but different glycerol molecules, which may be 

responsible for the difference in the dielectric loss. The further investigation is required to 

explain this phenomenon. 

 

 

                                     (a)                                                                   (b) 

 

                                     (c)                                                                   (d) 
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Fig. 6.49 PDFs for the real and imaginary relative permittivities of SM and POPC GUVs 

at (a)-(b) 2.7 GHz and at (c)-(d) 7.9 GHz. 

 

 

                                                                      (a) 

 

                                                                      (b) 

Fig. 6.50 Molecular structures of (a) 16:0-18:1 POPC [6.50] and (b) 16:0 SM [6.51]. 

Glycerol is enclosed by dashed box. 

 

The obtained GUV membrane permittivity values in Fig. 6.49 are more than 10 

times higher than that of the supported bilayers in air [6.52] and electrolyte [6.53] despite 

the fact that the lipid molecules used in these experiments are different and electrolyte 

reduces hydration water permittivity [6.54]. A possible reason is that the measured 

permittivity values in Fig. 6.49 are from lipid polarizations perpendicular to those in 

previous efforts. As shown in Fig. 6.15(a), the fields between the 500-nm wide split gap, 

Eǀǀ, is parallel with the membrane surface plane while the fringing fields near the gap edge, 

E⊥, is perpendicular to GUV membrane. But Eǀǀ is much stronger than E⊥ and account for 

more than 90% of the electric field energy for GUV scanning. Thus, the lipid polarization 
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process for Fig. 6.49 is perpendicular to the process in scanning probe microscopy (SPM) 

efforts, i.e., Fig. 6.49 is for ε|| rather than ε⊥ unlike that in Fig. 6.51 [6.53]. It is predicted 

that ε|| values are very high [6.55], much higher than ε⊥, albeit the results are calculated at 

DC, not at GHz frequencies. Regardless, the proposed scanning technique provides a 

method to measure the permittivity values that are difficult to access by any of current 

technique. A second possible reason is data extraction uncertainty. To obtain GUV 

membrane permittivity values in Fig. 6.49, GUV membranes are assumed to be in contact 

with the smooth and flat electrode surfaces around the SRR split gap, as shown in Fig. 

6.15(a). This assumption is questionable because there will be thin layers of liquids on 

electrode surface and GUV membrane outer surface, e.g. hydration water on GUV 

membrane. As a result, GUV membrane will be elevated above electrode surface by the 

liquid thin layers. It is estimated that a 100-nm elevation will result in a factor of 0.107 

reduction of probing field intensity, as shown in the zoom-in figure of Fig. 6.15(a) and 

Fig. 6.15(b). As expected, the obtained GUV permittivity values (expectation μ) are 

lower, 73.17-j1.34 at 2.7GHz, 62.75-j0.65 at 7.9GHz for SM and 73.34-j5.66 at 2.7GHz, 

63.61-j15.41 at 7.9 GHz for POPC. But the effects are not significant even though the 

exact GUV elevation height is still uncertain. Further complicating accurate data 

extraction are the uncertainties associated with the permittivity values of surface water 

and confined water, which are a subject of active investigation [6.56]-[6.59]. 

The spatial resolution of the proposed 1-D scanning is determined by the ~500 nm 

split gap. Engineering the split gap dimensions in both directions, a high resolution 2-D 

scanning can be achieved provided that measurement sensitivity is sufficient. The 
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scanning technique is intrinsically label-free even though fluorescent labels are used in 

this work for better visual guidance. The label-free characteristic is beneficial for various 

investigations since labels are known to affect membrane structures and functions [6.24], 

[6.25]. 

 

             

Fig. 6.51 (a) Electrostatic force microscopy setup and (b) AFM-tip for measuring local 

dielectric properties of materials in electrolyte solution [6.53]. 
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CHAPTER SEVEN 

CONCULSION 

 

In Chapter Two, it is demonstrated that the use of tunable attenuators and phase 

shifters for an interference-based RF sensor provides a simple and effective approach to 

build tunable and highly sensitive RF sensors. The obtained Qeff, i.e., ~3.8×10
6
, is an 

order of magnitude higher than that of any previously published results. Lossy materials 

do not significantly reduce the achievable Q values. Thus the sensors are uniquely suited 

for biochemical material detection and analysis. 

In Chapter Three, the mathematical models for extracting quantitative MUT 

properties from scattering parameters are introduced for commonly used CPW, GCPW, 

and ML sensing structures. Microfluidic channels are also included in the considerations. 

Furthermore, a quadrature-hybrid based interferometer is demonstrated to measure the 

glucose-water solution at a concentration level that is 10 times lower than the previous 

publication [7.1]. DNA solutions at a concentration level of 10 ng/mL are also measured 

with ~1 nL MUT volume. The demonstrated RF sensitivity is close to the reported 

highest result so far [7.2]. Composition analysis of ternary mixtures is also demonstrated 

through high-sensitivity measurements with a power divider based system. These results 

show that the proposed interferometers have wide application potentials in many 

scientific and technological areas. 

In Chapter Four, it is demonstrated that infusing or withdrawal liquid to or from a 

well can achieve high resolution attenuation tuning. The obtained Qeff of the 

interferometer is up to ~1×10
8
. When MUT sample is used, the automatic tuning process 
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also self-calibrates the measurement system and yields MUT permittivity values. 

Methanol-water solution is measured down to 5×10
-5

 mole fraction concentration level, 

which is 100 times lower than that in [7.3]. 

In Chapter Five, an interferometer based RF sensor with 100 nm slotline is 

presented. The sensor is highly sensitive and tunable in both operating frequency and 

sensitivity. Models are established and verified to obtain the RF properties of particles in 

carrier solution from measured scattering parameters. GUVs with different molecular 

compositions are synthesized, tested and analyzed with the sensor. The results show that 

the sensor can detect and scan GUVs at multiple frequency points, and the average 

dielectric properties of the GUV particles extracted with the two models agree with each 

other reasonably well. 

In Chapter Six, the SRR provides strong microwave probing fields near its split 

gap for GUV membrane dielectric property 1-D scanning. It is shown that floating SM 

and POPC lipid bilayers have significantly different dielectric properties. The properties 

also depend on measurement frequencies. Thus, GUV domains, which are mainly formed 

with different lipid molecules, are also clearly identified from microwave scanning. The 

obtained GUV dielectric property values, based on algorithms developed for the scanning 

technique, are much larger than those obtained from other techniques. Nevertheless, the 

permittivity is from molecular polarizations parallel to GUV surface. Currently, there is 

no other technique that can probe such polarizations. Further investigation is needed to 

clarify the accuracy of the obtained permittivity values, increase scanning resolutions, 

analyze membrane dynamics, and determine membrane molecular compositions. 
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Appendix A 

Processing of Uncalibrated S-parameters 

 

Figure A1 demonstrates the Block diagram of a vector network analyzer (VNA) 

measurement of a two-port device. The matrix [AmBmCmDm] is what the VNA records in its 

memory. But it is subject to the interference from the error box [ABCD]. So the measured 

[AmBmCmDm] versus the realistic [A'B'C'D'] of a device under test (DUT) is expressed as 
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Fig. A1 Block diagram of a network analyzer measurement of a two-port device [A.1]. 

 

For the SRR with 0.1 M glucose-water solution, the measured data before calibration 

corresponds to [AmBmCmDm], and the measured data after calibration corresponds to 

[A'B'C'D']. Using [AmBmCmDm] and [A'B'C'D'], the error matrix at a selected frequency, e.g., 

2.7 GHz or 7.9 GHz can be solved, respectively. Next, applying eq. (A.2) with the 
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uncalibrated measurement data and the error box, the calibrated [A'B'C'D'] for MUT can be 

obtained, which is then transformed to S-parameters [A.2]. 
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Appendix B 

Electric Field Distribution around the Split 

 

The electric field (EF) distribution can be drawn using the equations in [B.1], 

[B.2]. For the EF above the substrate, they are 
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For the EF inside the substrate, they are 
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                         (B.4) 

where all definitions of parameters in (B.1)-(B.4) can be found in the reference. 

 

Although the target of these equations is the conductor-backed coplanar 

waveguides, they are still applicable around an enough small split. For Figs. 6.37 and 

6.38, the parameters a and b are determined so that the split is from 1.0000×10
-3

 m to 

1.0005×10
-3

 m along the horizontal direction. 
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