
Clemson University
TigerPrints

All Dissertations Dissertations

8-2017

Exploring the Key Determinants of Bicycle Share
Program Use in a Leisure Context
Li-Hsin Chen
Clemson University, lihsinc@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Chen, Li-Hsin, "Exploring the Key Determinants of Bicycle Share Program Use in a Leisure Context" (2017). All Dissertations. 2008.
https://tigerprints.clemson.edu/all_dissertations/2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268659672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2008?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


EXPLORING THE KEY DETERMINANTS OF BICYCLE SHARE PROGRAM USE 
IN A LEISURE CONTEXT 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
Parks, Recreation and Tourism Management 

by 
Li-Hsin Chen 
August 2017 

Accepted by: 
Dr. H. Charles Chancellor, Committee Chair 

Dr. DeWayne D. Moore 
Dr. Lauren N. Duffy
Dr. Robert D. Bixler  



ii 

ABSTRACT 

Over the past two decades, bicycle share programs (BSPs) have developed rapidly 

around the world, with studies finding that people use such service not only for 

commuting but also for leisure. However, compared to utilitarian BSP users, limited 

research has focused on the factors influencing BSP use for leisure experiences. To begin 

this limitation in the current cycling literature, this dissertation explores the key 

determinants of leisure BSP use.  

The extended unified theory of acceptance and use of technology proposed by 

Venkatesh, Thong, and Xu (2012) and the dual-attitudes model conceptualized by 

Wilson, Lindsey, and Schooler (2000) provided the theoretical framework guiding this 

research. First, this dissertation developed the Unified Measurement of Bicycle Share 

Program Use (UMBSPU), an encompassing scale for further investigation of factors 

influencing an individual’s leisure BSP use. The results of the measurement invariance 

testing and method effect examination indicated that this scale, which includes eight 

constructs and thirty-three measurement items, is a reliable, valid measurement. Second, 

this dissertation applied the UMBSPU to examine the influences of performance 

expectancy, effort expectancy, facilitating conditions, social influence, price value, 

hedonic motivation, and habit on Taipei citizens’ intentions to use BSP and their actual 

use in leisure time. Among all factors examined, habit demonstrated the strongest predict 

validity of use intention. Furthermore, behavioral intention outperformed habit and 

facilitating conditions in explaining the variance of actual use.   
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Finally, this dissertation used two Single Target Implicit Association Tests (ST-

IATs) to explore BSP users’ implicit attitudes toward leisure cycling and leisure cyclists. 

Explicit attitudes toward leisure cycling and social identity with leisure cyclists were also 

measured and compared with implicit attitudes, the results indicating that implicit 

attitudes did not significantly predict leisure BSP use. However, social identity exhibited 

a strong predictability of an individual’s public bicycle riding frequency. Future research 

is needed to cross-validate the UMBSPU in different contexts and to compare the results 

from the leisure cycling and cyclists ST-IAT across different types of cyclist groups.  
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CHAPTER ONE 

INTRODUCTION 

Research Background 

A bicycle share program (BSP) is a short-term rental service where bicycles are 

checked out from one docking station and returned to another, and they have developed 

rapidly over the past two decades (Fishman, Washington, & Haworth, 2013). At the end 

of 2016, 1,163 BSPs were in operation  around the world (R. Meddin, personal 

communication, December 22, 2016). The popularity of BSPs may be a result of their 

benefits to society, including, providing an ecofriendly solution to the “first- and-last-

mile” problem in public transportation and bridging the gap between the transportation 

networks (Shaheen, Guzman, & Zhang, 2010). Their convenience and low cost make 

them a practical approach for incorporating bicycling into people’s everyday lives and a 

regular transportation mode (Fishman, Washington, & Haworth, 2013). However, 

researchers have found that BSPs’ role is larger than daily commuting (Murphy & Usher, 

2015; Pai & Pai, 2015; Vogel et al., 2014).  

For example, in Dublin, Murphy and Usher (2015) found that during peak hours, 

85.6% of riders were commuting, however, during off-peak hours, 48.3% rode for 

leisure, indicating that the BSP in Dublin has various roles and functions at different 

times. In France, Vogel et al. (2014) also found that a group of Vélo bicycle users 

typically use BSPs on weekends and at night, suggesting that their practice is likely for 

leisure. This phenomenon is not limited to Europe. Pai and Pai’s (2015) found that 28% 

of the Taipei’s BSP users primarily use such services for recreation. Furthermore, when 
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asked about their intention for future use, 90% of the respondents expressed their 

willingness to use BSPs as a means of recreation, 10% more than the percentage of 

people willing to use it for commuting (80%). 

These studies indicate that a BSP functions not merely as a public transport 

service but also serves users with leisure purposes. An intriguing research question that 

merits further investigation is “Why do people ride public bicycles for leisure?” To 

answer this question, we need to first understand the fundamental difference between 

leisure cycling and utilitarian cycling. We, then, can examine the causes that encourage 

individuals to integrate cycling into their leisure life. As Kelly and Freysinger (2004) 

suggested, leisure may refer to a product of a decision, a period of time, a process, and/or 

a state of mind. It can also be viewed as an activity in which people engage with their 

free will. In most instances, it is pleasurable and able to rejuvenate the individual (Kraus, 

1971). In short, leisure can be seen as an activity, separately from the duty of work, 

family, and society, which individuals perform for either a feeling of freedom, relaxation, 

diversion, or broadening their knowledge in a relatively unconstrained condition 

(Dumazedier, 1974). Therefore, individuals choose leisure behaviors for intrinsic 

satisfaction rather than extrinsic rewards. 

For example, individuals may consider cycling as a means of transportation to 

work or school because they are too young to drive a car or cannot afford other 

transportation options. People may not intrinsically like cycling for transportation, but 

have to do it. In contrast, individuals may choose to cycle in their unobligated time 

because they enjoy cycling. It becomes an activity from an internally compelling love, 
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which is personally pleasing and intuitively worthwhile (Godbey, 1985). In other words, 

the primary difference between leisure cycling and utilitarian cycling is that leisure 

cycling is intrinsically motivated; it is valuable for its own sake (Cushman & Laidler, 

1990). However, most of the BSP research has focused on the utilitarian factors of public 

bikes, not on leisure uses (Fishman, 2016), indicating the information in this area is 

limited.  

Previous research has pointed out that not only commuting trips but also leisure 

BSP trips could provide significant support for local economies (Murphy & Usher, 2015). 

To maximize the benefits of BSPs, understanding the determinants of leisure use is as 

important as those for utilitarian trips. Given that the factors influencing these two uses 

are different, the existing research instruments or methods originally developed to 

examine commuting use may not be able to fully explain leisure use (Bachand-Marleau, 

Lee, & El-Geneidy, 2012; Pai & Pai, 2015). Therefore, more research and new 

instrument development is needed to better understand the key determinates of BSP use 

in a leisure context.  

Furthermore, the East Asia region has been shown to have the strongest bicycle 

sharing activity in the world (DeMaio & Meddin 2016), but the research on this area is 

limited compared to the number of studies focused on Europe and North America 

(Fishman, 2016; Pai & Pai, 2015). The factors influencing leisure BSP use may differ 

across cultures, geographic limits, and BSP operating models. The research results found 

for the West may not fully explain this phenomenon in the East. Thus, more research is 

needed for a better understanding of BSP use especially in the East Asia region. As 
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YouBike in Taipei Taiwan has been found to be one of the most successful BSPs in Asia 

(Eco-Business, 2014) with a large number of leisure users (Pai & Pai, 2015; Ting, 2014), 

this dissertation focused on these users.     

Theoretical Framework 

While many studies have examined the factors that either encourage or discourage 

cycling, they may not have considered the differences between the characteristics of 

public and private bicycles. Therefore, when analyzing the determinants of BSP use, 

researchers should clarify the type of activity being investigated, meaning that factors that 

may only influence BSP use, such as the locations of the bike stations, bicycle 

availability, and pricing, should also be considered; in addition, factors that may be 

associated with both types of cycling, such as attitudes or habits, should be modified to fit 

the BSP investigation. 

 Pai and Pai (2015) pointed out that factors influencing BSP use can be generally 

categorized into four dimensions: (1) system characteristics, such as a convenient rental 

procedures and emergency preparedness and response; (2) environmental characteristics, 

such as bike lane quality and the convenience of transferring to other public modes of 

transportation; (3) existing restrictions of cities, such as geographical conditions, climate, 

social support and cultural influences, and policies; (4) the BSP users’ demographic, 

socioeconomic, and behavioral attributes, such as physiological ability, or credit card 

ownership. Researchers have also found that convenience (Fishman, 2016; Verma, Rahul, 

Reddy, & Verma, 2016), easy access to BSP stations (Bachand-Marleau et al., 2012; 

Fuller et al., 2011), interaction with other transportation modes (Fishman, Washington, & 
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Haworth, 2012; Kaplan, Manca, Nielsen, & Prato, 2015; Tang, Pan, & Shen, 2011), and 

safety concerns (Muñoz, Monzon, & López, 2016; Winters, Davidson, Kao, & Teschke, 

2011) are the most frequently mentioned determinants of BSP use among commuters.   

Although these studies have contributed to our knowledge of utilitarian BSP use, 

few have attempted to develop a unified theory to explain such use. The lack of a unified 

theoretical model able to integrate the fragmented research may make capturing the most 

critical determinates of BSP use difficult and, thus, inhibit the advancement of this field. 

Specifically, when investigating factors that influence BSP use, researchers may easily 

encounter a problem in picking “preferred” constructs across various studies. Therefore, 

formulating a unified theoretical model to investigate and compare the factors influencing 

such use is both important and needed.  

Given that the current operating BSPs typically include the newest technology 

(e.g. solar-powered stations, GPS tracking, and real-time transit integration), they can be 

viewed as an innovative non-motorized vehicle; thus, researchers have adopted theories 

from the information technology (IT) acceptance field to investigate BSP use (Chen, 

2016; Chen & Lu, 2015, 2016). Chen and Lu (2015) applied the green technology 

acceptance model (green TAM) to investigate how perceived usefulness, perceived ease-

of-use and user attitude influence BSP users’ green intentions, while, Hazen, Overstreet, 

and Wang (2015) modified TAM to investigate the predictive validity of perceived 

quality, perceived convenience, and perceived value on an individual’s intention to adopt 

a BSP in Beijing, China. Given that these studies primarily focused on utilitarian BSP 

use, some factors that significantly influence leisure use might not have been included. 
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For instance, Fishman, Washington, Haworth, and Mazzei (2014) pointed out that “fun” 

is an important factor to encourage citizens in Brisbane and Melbourne to use BSPs. 

However, few studies integrate this intrinsic type of motivation, such as fun or 

enjoyment, into TAM to investigate BSP use. To more fully understand the leisure user 

psychology, a further extension of TAM is necessary.  

Venkatesh, Thong, and Xu (2012) expanded the unified theory of acceptance and 

use of technology (UTAUT), which integrated eight theories/models that have been 

frequently applied in IT acceptance research, to better understand consumer psychology 

and behavior. The extended UTAUT (UTAUT2) demonstrated significant improvement 

over the original model in explaining the variance in a consumer’s behavioral intention 

(56 % to 74%) and technology use (40% to 52%). As a result, it can be viewed as a more 

encompassing theoretical framework regarding consumer IT acceptance and use 

behavior.  

The determinants of BSP use have been found to be compatible with the 

framework of the UTAUT2. For instance, Fishman et al. (2013) pointed out that 

convenience and economic value are the key factors motivating an individual’s BSP use, 

and these factors are similar to the effort expectancy and price value constructs in the 

UTAUT2. In Taiwan, Chen’s (2016) research revealed that BSP use might be influenced 

by positive emotions (e.g., relaxed, happy, or gratified), which parallels “hedonic 

motivation” in the UTAUT2. Given that the UTAUT2 was developed in a consumer 

context with a focus on voluntary behavior, thus sharing some of the characteristics of 
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leisure cycling and BSP use, it is employed in this dissertation to explore an individual’s 

acceptance and use of these innovative IT-embedded bicycles.   

Although the UTAUT2 is a suitable social cognitive model for exploring an 

individual’s rational decision-making process, researchers have found that human beings 

are easily influenced by emotional, social, and symbolic factors as well (Nosek, 

Greenwald, & Banaji, 2005; Sheeran, 2002; Yang, He, & Gu, 2012). Specifically, human 

behavior is not only influenced by logical thinking, but also by unconcious and automatic 

reactions (Hofmann, Friese, & Strack, 2009). In psychology, these two fundamentally 

different modes of cognitive processing, one intuitive and fast and the other deliberative 

and slow, have been postulated as the dual-processing theory (Frankish, 2010; Hofmann 

et al., 2009; Kahneman, 2011; Stanovich, 1999).  

Parallel with this theory, Wilson, Lindsey, and Schooler (2000) conceptualized a 

dual-attitudes model for describing how an individual can have two attitudes toward the 

same individual or issue. One of these attitudes, the explicit attitude, is the deliberate 

expression of an attitude controlled by the conscious mind, while the implicit attitude is 

an associative, automatic, and habitual response toward an object. Implicit bias, then, has 

also been found to play a role in perceptions of cyclists or cycling. For example, non-

cyclists may perceive cyclists as ‘‘greenie activists,’’, militant students, or elitists even 

though cyclists may not act like any of these types of people (Daley & Rissel, 2011). This 

implicit bias may result from social meanings and the perspectives of various social 

groups; individuals apply more positive social meanings to their in-groups (“us”) and 

adhere stereotypes to their out-groups (“them”) even if they are unaware of it (Fitt, 2015). 
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Because the influence of both explicit and implicit attitudes is significant to human 

behavior, this dissertation also uses the dual-attitudes model to explore the key 

determinants of leisure BSP use. The theoretical framework of this research is visually 

presented in Figure 1. 

 

Figure 1. The Theoretical Framework of Leisure BSP Use 

 

Purpose of the Research Project 

This primary purpose of this dissertation is to explore the determinants of BSP 

use in a leisure context. Specifically, the study adopts the UTAUT2 and the dual-attitudes 

model as the theoretical framework for exploring individuals’ acceptance and use of a 

BSP in their leisure time. Three main goals guiding this research are: (1) To develop a 
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sufficiently encompassing yet parsimonious measurement scale to study leisure BSP use; 

(2) To explore the factors influencing the use of an urban BSP for leisure among Taipei 

citizens; and (3) To assess the influences of implicit and explicit attitudes toward leisure 

cycling and leisure cyclists on leisure BSP use. 

Significance and Impact of this Study 

Over the past two decades, BSPs have expanded rapidly worldwide. Although 

East Asia has the strongest bicycle share activity, studies conducted in this area are 

limited (Fishman, 2016). In addition, existing studies primarily focus on commuting 

cyclists, with only a few emphasizing leisure BSP use. Therefore, it is believed that the 

contributions of this dissertation are fivefold: 

(1) This dissertation examines the key determinants of leisure BSP use by adopting the 

UTAUT2, a theory that has not previously been applied in cycling-related research;  

(2) The integration of cycling behavior into the theoretical framework of the UTAUT2 

furthers the generalizability of the theory by applying it in a different context, an 

important step in advancing a theory; 

(3) By incorporating the dual-attitudes model into the investigation, this study suggests 

that human’s implicit attitudes may be another key determinant of BSP use ; 

(4) Utilizing indirect measures to explain BSP use addresses the limitations of self-

reported data that are sometimes inaccurate due to social desirability; and 

(5) Finally, from a practical perspective, the knowledge obtained from this study can 

help governments or the leisure industry more effectively market BSP as an 

environmental-friendly, healthy, and pleasurable leisure activity. 
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Dissertation Format 

This dissertation is structured in the multi-article format, with Chapter One being 

the introduction, Chapters Two, Three, and Four being completed manuscripts, and 

Chapter Five is a summary of the overall research project. Each article includes an 

introduction, a literature review, an explanation of the research method and analysis, the 

results, and a conclusion and discussion. Chapter Two is a conceptual article that 

develops the Unified Measurement of Bicycle Share Program Use (UMBSPU), 

particularly focusing on leisure use. Chapter Three explores factors influencing Taipei 

citizens’ intentions to use BSP (i.e., YouBike) in their leisure time and the key 

determinants of the frequency of their use. Chapter Four examines an individual’s explicit 

and implicit attitudes toward leisure cycling and leisure cyclists and their influences on 

leisure BSP use. The final chapter summarizes the primary findings of the three articles 

as well as discusses future research directions and implications.  
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CHAPTER TWO 

DEVELOPMENT OF A UNIFIED MEASUREMENT SCALE FOR BICYCLE SHARE 

PROGRAM USE IN A LEISURE CONTEXT 

Introduction 

Bicycle share programs, also called bike-share, cycle hire, cycle sharing, and 

public bicycle systems have become more popular across the world over the past two 

decades (DeMaio & Meddin 2016; Fishman, Washington, & Haworth, 2013). The first 

automated bicycle share program (BSP), which refers to a short-term rental service where 

information and communications technology (ICT) embedded bicycles are made 

available from one docking station and returned to another, was initiated in Rennes, 

France, in 1998. Since then, 1,207 programs have emerged throughout the world. 

Although 144 programs ceased operation from June 1998 to December 2016, currently, 

1,163 are still in operation (R. Meddin, personal communication, December 22, 2016). 

The fundamental function of a BSP is to incorporate cycling into an individual’s 

everyday life so that it can gradually become a regular mode of transportation (Fishman 

et al., 2013). However, previous studies have found that a BSP’s role is larger than daily 

commuting.  

In Lyon, France, some users were found to ride public bicycles only on weekends 

and at night, suggesting that their practice is for leisure (Vogel et al., 2014). Dublin’s 

BSP shares a similar phenomenon, with Lyon, as Murphy and Usher (2015) discovered 

that during peak hours, the BSP was dominated by commuting trips; by contrast, during 

off-peak hours, 48.3% of the users rode only for leisure, indicating that the BSP in Dublin 
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has various roles and functions at different journey times. Studies have also indicated that 

short-term users have a greater probability to ride public bicycles for leisure. Fishman 

(2016) investigated CityCycle users in Brisbane and found that 65% of casual users 

reported leisure or sightseeing as the primary purpose of their last trip. Similarly, 53% of 

short-term users were found to use the BSP to sightsee and run errands in the 

Washington, D.C. area (Buck et al., 2013). These studies have revealed that as a public 

transport service, a BSP serves multiple roles and purposes. Specifically, a BSP can be a 

recreational activity for locals and tourists. 

The important question that merits further investigation is “What are the key 

determinants of BSP use in a leisure context?” Although there is a growing body of 

research on BSPs, studies on people who use it for leisure are limited. Fishman’s (2016) 

review of recently published BSP research found that the majority of studies focused on 

factors influencing the willingness to commute using public bikes. Since the intentions to 

cycle for daily commuting purposes and for leisure are influenced by different factors 

(Chang & Chang, 2009; Sherwin, Chatterjee, & Jain, 2014), the existing research 

instruments developed to examine BSP use among commuters may not be able to fully 

explain the factors that affect its leisure use (Bachand-Marleau, Lee, & El-Geneidy, 

2012; Pai & Pai, 2015). Furthermore, researchers could gain insight from the factors 

associated with commuters’ willingness to use a BSP (Pai & Pai, 2015) by applying 

theories with roots in psychology and sociology to develop a more comprehensive model. 

The reason for the limited depth in the research is because widespread BSP use is a fairly 

new phenomenon and most existing studies have remained in the exploratory phase. 
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However, the lack of a unified model able to integrate fragmented studies, may inhibit the 

advancement of a theory and fail to capture the most critical determinates of BSP use in a 

leisure context. Researchers may encounter problems in “picking” constructs across 

various research areas. Therefore, this study proposes an encompassing yet parsimonious 

measurement tool to study leisure BSP use, referred to as the Unified Measurement of 

Bicycle Share Program Use (UMBSPU). 

BSPs typically employ the newest technology (e.g., solar-powered stations, GPS 

tracking, real-time transit integration systems, and smartcard integration), meaning that 

they cannot simply be viewed as traditional non-motorized vehicles, but rather as an 

innovative transportation mode (S. -Y., Chen, 2016). Previous studies have pointed out 

that factors influencing commuters’ use and acceptance of these newest information and 

communications technology ICT embedded public bicycles are different from factors 

regarding personal bikes (Bachand-Marleau et al., 2012; Pai & Pai, 2015). Thus, 

researchers have attempted to adopt theories from the field of information systems and 

technology (IT) to investigate BSP use. Particularly, the technology acceptance model 

(TAM) has been modified in several studies to explore an individuals’ BSP use with 

fruitful findings (S.-Y. Chen, 2016; S.-Y. Chen & Lu, 2015, 2016; Hazen, Overstreet, & 

Wang, 2015). Although the applications of TAM have enhanced our understanding that 

theories from the IT field can be used to explore factors associated with the intention to 

adopt BSP, it has been suggested that this model includes critical factors that may 

influence people’s decision to cycle in general (Hazen et al., 2015). 
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The unified theory of acceptance and use of technology (UTAUT), which 

integrates 32 similar variables across eight theoretical models that have been frequently 

applied in IT acceptance research, has been found to be one of the most comprehensive 

social cognitive models for explaining an individual’s intentions and behaviors in terms 

of technology use in an organizational setting (Venkatesh, Thong, & Xu, 2016). 

However, it has been criticized for its inability to predict the influence of some key 

elements related to technology use in a consumer-focused context. After comparing 

studies that applied the UTAUT to investigate consumer behaviors, Venkatesh, Thong, 

and Xu (2012) incorporated three additional constructs (i.e., hedonic motivations, price 

value, and habit) into the model. This extended UTAUT (i.e., UTAUT2) has 

demonstrated a significant improvement over the original model in explaining the 

variance in consumers’ intentions for technology use (56% to 74%) and their actual use 

behavior (40% to 52%). Given the lack of research on leisure use of BSP and the positive 

precedent for applying IT acceptance theories to explain BSP use behavior, UTAUT2, 

which also focuses on voluntary behaviors, was adopted in this study as the conceptual 

framework for exploring the determinants of BSP use in a leisure context. 

The development of a measurement of BSP use with the UTAUT2 framework is 

valuable for both basic and applied scientific endeavors. Researchers can use this tool to 

empirically examine the relationships among factors and their influence on the adoption 

of BSP across different settings and cultures. Additionally, the integration of leisure 

cycling behaviors into the theoretical model of UTAUT2 furthers the generalizability of 

this theory to a new discipline, an important step in advancing a theory. Furthermore, 
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since this scale modifies a theoretical model from the field of technology acceptance, it 

can also be used to explore determinants of the use and acceptance of the newest type of 

bicycles, such as e-bikes or booster bikes. The BSP professionals and practitioners can 

also use this tool to evaluate and understand the factors influencing customer behavior 

and simultaneously improve their service. Therefore, developing a uniform approach to 

quantify the influence of various factors on an individual’s adoption of BSP not only 

serves to add fullness to the existing literature but it also systematically advances our 

knowledge about the focal phenomenon and the theory itself.  

Literature Review  

While factors that encourage cycling have been studied extensively, the 

differences between public and private bicycles merit investigation, in particular those 

characteristics that are unique to BSP programs, such as the locations of the docking 

stations, the availability of public bicycles, and the rental fee. Since the majority of 

current operating BSPs are using the third-generation systems, which integrate the newest 

technologies with public bicycles (Shaheen, Guzman, & Zhang, 2010; Wong & Cheng, 

2015), adopting theories from the field of IT acceptance may provide innovative and 

alternative approaches for exploring these programs and to discovering some crucial 

factors that have not been examined in previous cycling research more focused on the 

intention to ride traditional bicycles. Therefore, this section uses the UTAUT2 as 

framework to synthesize BSP literature in order to lay the theoretical foundation for 

developing the UMBSPU.  
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An Overview of the UTAUT2 

The acceptance and use of information technology are two frequently investigated 

research topics in the IT field, supported by the theoretical models that have been 

proposed and examined (Venkatesh, Morris, Davis, & Davis, 2003). For example, TAM 

hypothesizes that when users are presented with a new technology, the factors of 

“perceived usefulness” and “perceived ease-of-use” will influence their decision to use or 

not (Davis, Bagozzi, & Warshaw, 1989). In addition, models based on the theory of 

planned behavior (TPB), which extend from the theory of reasoned action (TRA) by 

including perceived behavioral control, have also been applied to many studies (Ajzen, 

1991).  

After comparing and examining the eight models most frequently used in IT 

research, namely TRA, TAM, TPB, the technology acceptance model and the theory of 

planned behavior (C-TAM-TPB), the motivational model (MM), the innovation diffusion 

theory (IDT), the model of PC utilization (MPCU), and the social cognitive theory (SCT), 

Venkatesh et al. (2003) proposed the UTAUT as a more comprehensive model for 

examining intention and technology use. This model distilled factors related to behavioral 

intentions in organizational contexts, categorizing them into the four constructs of 

performance expectancy, effort expectancy, social influence, and facilitating conditions, 

and the four moderators of age, gender, experience, and voluntariness.  

This theory hypothesizes that performance expectancy, effort expectancy, and 

social influence affect behavioral intention towards technology use, while behavioral 

intention and facilitating conditions predict the actual use. Furthermore, individual 
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differences, namely age, gender, experience, and voluntariness, moderate the 

relationships among the constructs. In a longitudinal study, the UTAUT was able to 

explain 70% of the variance in behavioral intention and 52% of the variance of 

technology use (adjusted R2), results that were better than the eight adopted models 

(Venkatesh et al., 2003). 

UTAUT, initially, was developed to explain employee technology acceptance and 

use in an organizational setting; however, in the context of consumer technology use, 

where individuals can freely choose products, the original UTAUT does not capture some 

key elements influencing their IT use intention and behavior. Venkatesh et al. (2012), 

modified and tested an extended version of the UTAUT, which focused on the consumer 

context, integrating three new constructs, hedonic motivation, price value, and habit, into 

the model. Moreover, voluntariness was dropped from the model because it can be seen 

as a continuum from completely compulsory to completely voluntary, and since most 

consumer behaviors are voluntary, it added no variance to the construct.  

Since its introduction, the UTAUT2 has been applied in various fields. For 

example in education, it was used to investigate teacher acceptance of learning 

management software (Raman & Don, 2013) and undergraduate students’ adoption of 

mobile learning models (Yang, 2013); in e-commerce, the model was applied to examine 

the adoption of mobile payments (Slade, Williams, & Dwivedi, 2014); in the health field, 

users’ intentions to adopt health and fitness apps were analyzed using this model (Yuan, 

Ma, Kanthawala, & Peng, 2015). The UTAUT2 has also been used in various cultural 

contexts, for example in studies of hospital quality in Jordan (Alazzam et al., 2015), 
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smartphones use in Brazil (Faria, Giuliani, Pizzinatto, & Pizzinatto, 2014), and online 

shopping in India (Tandon, Kiran, & Sah, 2016). Researchers also have used the 

UTAUT2 to investigate different generations, applying it to explain Internet banking use 

by individuals over 55 (Arenas-Gaitan, Peral-Peral, & Ramon-Jeronimc, 2015). Despite 

scholars in different fields using this model for investigating various subjects and 

obtaining fruitful research findings, its application to cycling behaviors and BSP use is 

limited. This research aims to apply the UTAUT2 in a different context, thus adding to 

the current knowledge of both the model and BSP use. In the following section, each 

variable in the UTAUT2 is discussed and modified to fit the context of BSP use. 

Conceptual Framework 

Performance expectancy 

Performance expectancy refers to the degree to which an individual believes that 

using a technology will benefit consumers in performing certain activities (Venkatesh et 

al., 2012), and is conceptualized from five constructs from different theories, extrinsic 

motivation from MM, relative advantage from IDT, outcome expectations from SCT, 

perceived usefulness from TAM, and job-fit from MPCU (Venkatesh et al., 2003). This 

variable is expected to be a strong predictor of employee technology use intention and 

behavior in a mandatory setting (Venkatesh et al., 2003; Venkatesh & Zhang, 2010). 

Factors sharing similar concepts with performance expectancy have also been found to be 

influential in connection with BSP use. For example, Hazen et al. (2015) contextualized 

the perceived usefulness of TAM, redefining as a possible transportation option for daily 

commuting, to investigate BSP use among residents in Beijing. They found that this 
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factor was positively associated with the intention to use BSP. In some studies that 

modified TAM to investigate the intention to adopt green transportation, green perceived 

usefulness, which refers to the extent to which individuals believe that a BSP increases 

their environmental commitment, was found as the most important factor associated with 

users’ acceptance of BSP (S.-Y. Chen, 2016; S.-Y. Chen & Lu, 2015, 2016). 

Synthesizing these studies, performance expectancy in this study is conceptualized as the 

degree to which people believe that BSP is an attractive transportation mode for their 

leisure time and is helpful in improving their personal leisure life.  

Effort expectancy 

Effort expectancy is defined as the degree of effort that an individual believes to 

be associated with using a system (Venkatesh et al., 2012). It integrates three constructs 

of existing theories, which are complexity (MPCU), ease-of-use (IDT), and perceived 

ease-of-use (TAM). The effort expectancy construct is hypothesized to be associated with 

behavioral intention in the early stages of a new behavior. When difficulties are 

overcome, the influence of effort expectancy is gradually reduced (Venkatesh et al., 

2003; Venkatesh et al., 2012; Venkatesh & Zhang, 2010). In the BSP literature, perceived 

convenience also frequently appears as important factor among those investigated 

(Fishman et al., 2013; Hazen et al., 2015; Pai & Pai, 2015; Verma, Rahul, Reddy, & 

Verma, 2016). For example, the effort required by a sign-up process for becoming a 

member is a critical factor influencing BSP use. As Fishman, Washington, and Haworth 

(2012) found, an inconvenient sign-up process strongly discourages individual from 

using a BSP and eventually results in the negative belief that it is not for the general 
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public. In addition, the locations and number of docking stations, the availability of 

bicycles, and the connectivity with other transits also influence the effort involved in BSP 

use and impact an individual’s intention to use it (Bachand-Marleau et al., 2012; Fuller et 

al., 2011; Pai & Pai, 2015). Therefore, in the BSP literature, effort expectancy is typically 

contextualized as perceived convenience or perceived ease-of-use, meaning the time and 

effort required to use a BSP (Hazen et al., 2015). In this study, effort expectancy refers to 

the degree to which an individual believes that using a BSP is easy and convenient, 

specifically in regards to the process of becoming a member, renting and retuning 

bicycles, and finding stations.  

Social influence 

Social influence in the UTAUT2, defined as the degree to which people perceive 

that significant others consider they should use the product (Venkatesh et al., 2012), is an 

integration of the subjective norms in TPB/DTPB, TRA, TAM2, and C-TAM-TPB; the 

image in IDT, and the social factors in MPCU. Venkatesh et al. (2012) found significant 

effects for social influence on behavioral intention when individual differences were not 

included in the model. However, when gender, age, and experience were included in the 

model, the direct effect of social influences on behavioral intention disappeared. 

Individual differences moderated the relationship probably because the role of social 

influence in the human decision-making process is complicated and subject to a broad 

range of contingent influences (Barnett & Casper, 2001).  

Social influence has also been found to have an impact on an individual’s 

transportation choice at different levels (Fitt, 2015). More specifically, social influence 
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may take the form of direct influence from social interactions with partners and families, 

a less direct influence through friends and colleagues, or an indirect influence from the 

broader sociocultural context (Sherwin et al., 2014). For example, an individual may 

cycle more if others views cycling as a normal activity in society, while in contrast, an 

individual may be intimidated by an aggressively pro-car culture in the workplace and 

choose not to cycle anymore (Fitt, 2015). Furthermore, conflicts among cyclists, 

motorists, and pedestrians on shared paths and sidewalks are often seen as barriers to the 

adoption of cycling (Fishman et al., 2012; Kaplan & Prato, 2016). In this study, social 

influence is defined as the degree to which an individual believes that using a BSP is 

directly influenced by significant others or indirectly influenced by the city’s cycling 

culture. 

Facilitating conditions 

Facilitating conditions, which refer to an individual’s perceptions of the resources 

accessible for adopting a new system or performing a certain behavior (Venkatesh et al., 

2003; Venkatesh et al., 2012), integrates three theories that share the similar concepts of 

compatibility from IDT, facilitating condition from MPCU, and perceived behavioral 

control from TPB. In cycling-related studies, facilitating conditions are often 

contextualized as the perception of bicycle infrastructures and facilities that make cycling 

to work or school easier (Kaplan, Manca, Nielsen, & Prato, 2015). Adequate bicycle 

facilities have been found by many researchers to be essential for encouraging more 

people to cycle (De Sousa, Sanches, & Ferreira, 2014). In the BSP literature, researchers 

have also found a strong association between bicycle share activity and the existence and 
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length of bike lanes, even controlling for the influence of docking stations and retail 

opportunities (Buck et al., 2013; Faghih-Imani & Eluru, 2015). For recreational cyclists, 

an attractive bicycle lane is one along scenic areas or famous attractions (Chang & 

Chang, 2009), located in a natural environment with green foliage (Heesch, Giles-Corti, 

& Turrell, 2014), with a low volume of traffic (Chang & Chang, 2005), and with 

restaurants and coffee stores (C.-F. Chen & Chen, 2013). In this study, facilitating 

conditions are operationalized as natural environments or bicycle facilities that increase 

individuals’ willingness to use a BSP in their leisure time. 

Price value 

Unlike the UTAUT, which was developed in a workplace context, the UTAUT2 

focuses on customers, who fund and adapt the technology. Therefore, the price of a 

product may significantly influence consumers’ intentions to use a new system 

(Venkatesh et al., 2012). In addition to price, perceived value is centered on consumer 

experience as well, involving a tradeoff of giving and getting components. In other 

words, the willingness to pay a price for a specific good or service is usually determined 

by the perceived value of this product or service (Zeithaml, 1988). In the UTAUT2, the 

price value, then, is defined as an individual’s cognitive tradeoff between the monetary 

cost for using the technology and the perceived benefits of it (Venkatesh et al., 2012).  

In cycling-related research, the perception of benefits and values has also been 

found to have important influences on an individual’s decision to cycle. These include the 

perceptions of the health benefits from exercise (Fitt, 2015), the cost saving benefits, the 

convenience and flexibility of cycling, the timesaving benefits from avoiding traffic 
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congestion (Willis, Manaugh, & El-Geneidy, 2015), and eco-friendly values (Dill & 

Voros, 2007). In addition to these benefits, researchers have also found that BSP users 

are cost-sensitive. For example, Fishman et al. (2013) investigated the motivations for 

BSP use and found that convenience and value for the money are the key factors. Pai and 

Pai (2015) also found that BSP users pay particular attention to rate and efficiency. 

Furthermore, those who own bicycles find BSPs attractive as a way to save money on 

maintenance cost (Bachand-Marleau et al., 2012) and to be free from worries about theft 

and vandalism (Curto et al., 2016). In general, BSP users are not only focused on the 

benefits that cycling can provide and are also very mindful of the monetary costs. 

Therefore, in this study, price value is contextualized as an individual’s cognitive tradeoff 

between the perceived benefits of the BSP and the monetary cost for its use.  

Hedonic motivation  

The UTAUT highlights the significance of utilitarian value and outcome-

orientated motivations so constructs linked to usefulness, such as performance 

expectancy, have been found to be the strongest predictors of the intention to use a new 

system (Venkatesh et al., 2003). However, in the consumer context, hedonic motivations 

(e.g., enjoyment and fun) may play an important role in people’s behavior. From the 

perspective of motivation theory, integrating both extrinsic and intrinsic motivations may 

help better understand human behaviors (Ryan & Deci, 2000). Therefore, hedonic 

motivation is added to the UTAUT2 model, referring to the perception of fun or pleasure 

associated with using a technology or performing a behavior.  
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Perceived fun or pleasure is also linked to cycling. For example, Fitt (2015) 

investigated the influences of social meanings on everyday transportation practices and 

found that people’s perceptions of leisure cycling are often associated with fun, 

pleasantness, and cafes. This factor plays a significant role in encouraging BSP use as 

well. For instance, Fishman, Washington, Haworth, and Mazzei (2014) found that fun 

was ranked fourth (after convenience, docking station proximity, and health benefits) in 

attracting people to use BSPs. This perception seems to have no national boundaries or 

cultural differences as a Taiwanese researcher also found that positive emotions (e.g., 

happy, excited, glad, and relaxed) and escapism (i.e., forget troubles) have a significant 

influence on an individual’s intention to use BSPs in Taiwan (S.-Y. Chen, 2016). Thus, 

hedonic motivation should be investigated in the context of leisure BSP use. In this study, 

it is operationalized as the degree to which an individual believes that riding public 

bicycles can help him or her obtain feelings of enjoyment, fun, relaxation, and escapism.  

Habit 

Behavioral intention postulated as an indicator of an individual’s mental readiness 

for an act has been investigated extensively in the psychology field. However, its role as 

the only predictor of human behaviors has been challenged (Rhodes & Bruijn, 2013; 

Sheeran, 2002a; Verplanken, Aarts, Knippenberg, & Moonen, 1998). Rhodes and Bruijn 

(2013) conducted a meta-analysis using the guidelines of the action control framework to 

quantify the intention–behavior gap in the public health field, finding that the overall 

intention–physical activity gap was 46%. Sheeran’s (2002) meta-analysis of meta-

analyses found that, on average, behavioral intention explains only 28% of the variance 
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of a given behavior. He further suggested that other factors such as automaticity, past 

behavior, and habit seem to be another set of factors that predict human behavior, a 

conclusion supported by Verplanken et al. (1998).  

Upon noticing the impact of habit on human behavior, Venkatesh et al. (2012) 

integrated this factor into the UTAUT2 to “complement the theory’s focus on 

intentionality as the overarching mechanism and key driver of behavior” (p.158). They 

conceptualized habit as a repetitive behavior that could be measured as the extent to 

which an individual believes that the given behavior is automatically performed without 

deliberation. In the context of cycling, habit has been found to be strongly associated with 

an individual’s decision to commute by bicycle. For example, De Bruijn, Kremers, Singh, 

Van den Putte, and Van Mechelen (2009) integrated habit into TPB, finding it was the 

strongest predictor for cycling. Furthermore, intentions became less relevant in cycling 

behavior as the strength of habit increased. The habit of cycling is also found to be 

significantly associated with riding public bicycles for leisure in the daytime (Pai & Pai, 

2015). Therefore, habit is integrated into the UMBSPU, contextualized as situation-

specific sequences that can be measured as the degree to which an individual believes 

that BSP use has become so automatic that it occurs without self-instruction.  

Although research on individual adoption of BSP as received increasing attention, 

researchers have suggested that the studies in this area are still in the early phases 

(Duvall, 2012; Fishman et al., 2013; Zhang, Zhang, Duan, & Bryde, 2015), and very few 

aim to develop measurement scales to quantify its use. Furthermore, the multidisciplinary 

nature of BSP research results in fragmentation in the current literature. Existing scales 
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that measure “bikeability” or examine an individual’s BSP use often emphasize 

commuting behavior and/or particular dimension such as environmental characteristics. 

Therefore, by adopting a well-established theoretical framework that unifies existing 

social cognitive theories that have been extensively applied, this study can contribute to 

the current knowledge in two ways: first, to develop a uniform approach to quantify the 

influences of various factors that have been shown to influence BSP use, and second, to 

explore the factors specifically associated with individual’s BSP use for leisure.  

Methods 

Developing a reliable measurement scale that provides valid results is crucial for 

the establishment of any young and growing research field (Slavec & Drnovsek, 2012), 

and the cornerstone of developing a sound measurement scale is applying a 

methodologically rigorous procedure (DeVellis, 2016). Slavec and Drnovsek (2012), who 

conducted an in-depth review of scale development procedures and proposed a ten-step 

guideline, summarized the crucial phases for developing a new measure. Although 

strictly following every step in this guideline may reduce the probability of developing 

poor measures, Churchill (1979) suggested that when developing a new measurement 

scale, researchers remain flexible and consider alternative techniques to tailor the scale 

development procedure to match the needs of various research contexts. Therefore, this 

study follows the guideline that Slavec and Drnovsek (2012) suggested but modifies 

some techniques to fit in this research. The following sections detail the steps. 
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Construct Specification and Item Pool Generation 

As Slavec and Drnovsek (2012) suggested, the first phase of scale development 

includes three steps: (1) specification of the content domain, (2) generation of an item 

pool, and (3) evaluation of the content validity. Therefore, an interdisciplinary literature 

review was first conducted to specify the domain of each construct. The original 

definition of each construct of the UTAUT2 was then operationalized to fit this research. 

Based on these definitions, an item pool was then generated using two techniques: (1) 

adopting measurement items from existing scales and (2) using semi-structured 

interviews.   

The measurement items of the UMBSPU were first compiled from various scales 

related to BSP use. Because the literature on this research topic is relatively limited and 

some key aspects might be inadvertently omitted if items were only adopted from 

existing research, the data from semi-structured in-depth interviews were analyzed 

through a deductive approach to reflect the current study’s conceptual framework, see L.-

H, Chen, Chancellor, and Ogletree (2016). In their study, convenience and the snowball 

sampling techniques were used to select individuals who had used BSP in their leisure 

time, with a predetermined interview protocol being subsequently used to guide the 

interview process. The interviews proceeded until the data became saturated and no new 

information was emerging. In total, 10 face-to-face interviews were completed. A list of 

themes related to BSP use was then compiled after summarizing the influential factors 

reported by the interviewees (see Table 1).  
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These themes were then purified and reworded to better serve as additional 

measurement items. After comparing the additional items and items adopted from 

existing scales, some repeated and items that did not fit were eliminated. Therefore, the 

initial measurement scale included 75 items for further testing.  

 
Table 1 A Summary of the Codes in Qualitative Analysis 

Factors Influence BSP Use Total Counts 

Performance expectancy 
Faster than taking other transportations 
Useful to connect to other transportations 
The customer service can help me solve problems 
Better than walking  
The website and apps is useful  
Public bikes have fair conditions 

Effort expectancy 
Easy to find a docking station and a bike 
An easy registration process 
Easy to rent and return a bike 

Social influence 
Friends, family, and colleagues 

Because many friends use it 
My colleagues invite me to ride the bikes  
My wife wants me to ride public bikes 
Because my friends do not have a bike 
My parents are worried about me to ride my own bike 

Interaction among road users 
Most of pedestrians will yield space to cyclists  
YouBike users are polite to each other 

Image and bicycle culture 
Riding YouBike bikes is a kind of social norm among young people 
Nowadays, YouBike is everywhere and everyone knows how to use it 
It’s part of Taipei and people’s life 
You can see it on the media 
It’s very popular and you can see many families will use it in weekends 

Price value 
I use it because it is very cheap 
It’s cheap and I can also exercise  
Save money for maintenance  
It’s a good value for transportation  
It's cheap and can increase my physically fitness 

10 
3 
2 
2 
1 
1 
1 

17 
12 
3 
2 

25 
 

3 
2 
3 
1 
1 
 

2 
1 
 

3 
3 
3 
2 
1 

20 
9 
5 
3 
2 
1 
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Table 1 A Summary of the Codes in Qualitative Analysis (Continued) 

Factors Influence BSP Use Total Counts 
Facilitating conditions 

Places without cars and motorcycles make me less pressure to ride  
Public toilet or a place to rest is important as well 
If there’s a bike lane, I will use it  
The pavement of bike lanes is improved now 
If it’s for leisure, I will choose the route that I can enjoy the beautiful scenery  
The sidewalks are wide enough. So it’s okay to ride a bike 
I will choose the place with more tree shades to cycle 
So many people ride YouBike bikes along riverside in weekend 
It should have bike lanes on the bridges 

Hedonic motivation 
If I want to exercise or relax, I will ride 
With a bicycle, I enjoy a sense of freedom 
Riding a bike boosts my mood 
I ride it just for having some fun 

Habit 
I think it’s a habit to ride 
Actually I have ridden a bike since childhood  

43 
11 
6 
6 
5 
5 
3 
3 
3 
1 
8 
3 
2 
2 
1 
4 
3 
1 

 

Expert Review 

Given the ongoing, iterative nature of the scale development process (Reynolds, 

2010; Slavec & Drnovsek, 2012), the expert review occurred twice during this study, the 

first occurred after the author finalized the 75-item UMBSPU and the second after the 

pilot test.     

Phase one 

To assess the content validity of the scale, two scholars with expertise in leisure 

and cycling research further evaluated the definitions of the constructs and their specific 

items. A questionnaire suggested by Zaichkowsky (1985) was developed to collect the 

experts’ comments on representativeness, clarity, and wording of items. Based on these 

comments and several face-to-face discussions with the experts, the measurement scale 
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was further revised. The evaluation process resulted in a modification of 20 items, with 

15 being reworded and five being re-categorized into a different construct. Additionally, 

18 items were removed because of concerns of redundancy and a lack of 

representativeness. This process ensured that the constructs were precisely and 

appropriately defined and that the remaining 57 measurement items were relevant to the 

eight constructs. 

Phase two 

The initial measurement was tested with a small group of BSP users and resulted 

in identifying 24 items after the pilot test and each of the eight constructs retained three 

items (see more details in the data analysis section). After assessment of the 24-item 

measurement, the scale was revised and extended given the following reasons: (1) 

Because this study seeks to develop a parsimonious but also encompassing measurement, 

the 24-item measurement may not adequately assess the domain of interest; (2) Harvey, 

Billings, and Nilan (1985) recommended that the use of at least four items to define a 

latent construct is needed to allow a model to generate the kind of over-identifying 

restriction needed when method factors are expected to be included in further analysis. 

Therefore, two additional scholars with knowledge of psychometrics and tourism were 

consulted to evaluate all measurement items used in the pilot test. Their feedback was 

collected through the same questionnaire used in first expert review. Based on their 

comments and the in-person interviews, the instrument was further revised. The refined 

scale was reviewed again by an expert on cycling related research. The final instrument 

comprised 52-items and this process contributed to the establishment of the content 
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validity of the newly added and modified items to be able to capture the essence of the 

appropriate construct.  

Translation and Questionnaire Evaluation 

This research was conducted in Taiwan due to a high portion of users reporting 

that their BSP use was primarily for leisure (Pai & Pai, 2015), the target population for 

this study. Since the original scale was developed in English, part of the scale 

development process involved translating it into Traditional Chinese, the language 

predominantly used by the local residents in Taiwan. 

To preserve the consistency of each item across linguistic boundaries, this study 

adopted the technique of translation and back-translation that is widely used in cross-

cultural studies (Brislin, 1970; Ruvio, Shoham, & Makovec Brenčič, 2008). A 

professional translator and the author, who is a native Mandarin Chinese speaker, 

separately translated the original English items into Traditional Chinese. The two 

translated Traditional Chinese questionnaires were then compared and evaluated. After a 

face-to-face discussion, the translator and the author came to an agreement on the final 

Traditional Chinese version of the questionnaire. Another translator was then hired to 

translate the Traditional Chinese version back into English to confirm the consistency. A 

second discussion was held using a video call to verify the equivalency between the two 

linguistic versions.  

Before testing a questionnaire, Dillman (2011) suggested that it should be 

evaluated by a group of people who have specific experience on aspects of questionnaire 

development. Because the questionnaire was to be administered through the online 
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survey platform, Qualtrics, a group of 32 Taiwanese graduate students with experience in 

conducting web-based surveys in the field of leisure participated in this evaluation 

process. The primary goal of this process was to confirm the face validity and to ensure 

the viability of the questionnaire on various computer operating systems with various 

Internet browsers. After completing the survey, all evaluators reported their thoughts and 

provided suggestions to the author through a document shared online. The survey 

instructions and instrumentation were modified slightly based on this feedback.  For 

example, this panel suggested that an option of “not applicable” should be added to the 

scale because some survey respondents may not have the relevant experience necessary 

to answer some of the questions.  

Data Collection 

The data collection process consisted of two phases. The first phase was to test 

the proposed measure and to identify potential problems with the instrument, while the 

data collection in the second phase included target samples from two cities in order to 

cross-validate the instrument and to assess the psychometric properties of the new 

measure. 

Participants 

In the first phase, a sample of Taiwanese BSP users was recruited from the 

cycling discussion forum of a terminal-based bulletin board system (telnet://ptt.cc), which 

is the most influential online community in Taiwan with more than 1.5 million registered 

users (Busuness Next, 2016). The web-based UMBSPU questionnaire was posted on the 

cycling forum from April 21 to April 30, 2017. In total, 247 respondents clicked the 
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survey link, of these, 21 respondents were deleted from the sample because they skipped 

the entire survey. In addition, another 16 were eliminated because they had no previous 

experience using a BSP for leisure. As a result, the first sample consisted of 210 

Taiwanese BSP users who had ridden public bikes for leisure at least once in the past 

twelve months. Based on the approach proposed by MacCallum, Browne, and Sugawara 

(1996), the sample size of the pilot test was large enough to reject a Type II decision error 

(the power estimations are based on alpha = .05, desired power = .80, RMSEA for H0 = 

.05, RMSEA for Ha = .01).  

To further assess the measurement and its reliability and validity, the second 

phase of data collection was composed of target samples recruited from an online panel. 

The International Organization for Standardization (2012) defines an assessment panel as 

a “sample database of potential respondents who declare that they will cooperate for 

future data collection if selected” (p. 1). These panels may include a large number of 

individuals sampled at varying level of frequency. Typically, respondents are prescreened 

to complete a questionnaire on various topics. Currently, an online panel study is utilized 

for a wide range of social science research (Callegaro et al., 2014). In this study, samples 

were selected from two cities in Taiwan, Taipei and Kaohsiung because of having 

different BSP operating systems and the large percentage of citizens reporting that their 

main reason for using a BSP was for leisure (Huang, 2010; Pai & Pai, 2015; Yu, 2009). 

The participants were selected from a random sample provided by an online panel 

company asserting it had more than 500,000 members. In total, 1,600 e-mail invitations 

were sent to its members who had experience using a BSP in their leisure time. In total, 
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647 members completed the questionnaire for a response rate of 40.4%, which was 

higher than the average response rate (34%) for Web surveys (Shih & Fan, 2008). Of the 

647 who responded, 348 lived in Taipei and 299 lived in Kaohsiung. In this study the 

non-response bias was analyzed by comparing early responses with late responses 

because the demographic data of the non-respondents could not be obtained from the 

survey company (Ognibene, 1971). A Chi-square test was conducted to examine the 

differences between the demographic information (age, gender, education, and monthly 

income) of the two groups, with no significant differences being found. 

Instrumentation 

In the pilot test, a seven-point Likert-type scale was used, with the responses 

ranging from  “Strongly Disagree” to “Strongly Agree”. A “not applicable” option was 

also provided for respondents who had no experience to rate a given item. The results of 

the pilot test indicated that the majority of the respondents fell between “Slightly Agree” 

to “Strongly Agree,” probably because the survey respondents were chosen based on the 

criteria that they had experience using a BSP in their leisure time in the past 12 months.  

As a result, they tended to have a positive attitude towards the items. Therefore, in the 

second phase of data collection, a nine-point Likert-type scale was used to ensure that 

participants had multiple response categories for agreement. This also increased the 

rating scale variation for those pro-cycling individuals who tend to select the positive 

options for any question.    
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Data Analysis 

The final phase of the scale development process involved providing evidence of 

its reliability and validity using statistical analysis (Slavec & Drnovsek, 2012). This study 

used several steps for this data analysis process. 

Data preparation  

Before conducting the descriptive or factor analysis, all datasets were screened 

using SPSS 23.0, a preparation process that included univariate and multivariate 

normality testing and missing value examination. First, all variables were assessed for the 

two indicators of skewness and kurtosis. According to Curran, West, and Finch (1996), 

the absolute univariate values close to 2.0 for skewness and 7.0 for kurtosis can be used 

as reference values for detecting extreme non-normality. No variable exceeded these 

values. The examinations of multivariate normality were conducted using Mahalanobis 

Distance and graphical assessment (Arifin, 2015). When the outlier data were detected, 

they were removed from an individual construct instead of the entire sample. Each 

construct was examined using this approach.  

Of the 210 cases in the pilot test, 4 to 11 observations were removed from the 

individual construct in which they were found to be extreme, and for Kaohsiung City 

data, 1 to 6 outliers were deleted from their constructs, while 2 to 6 cases were eliminated 

from the Taipei City data. The data, then, were examined using Little’s missing 

completely at random (MCAR) test in SPSS having significant results in all samples (p < 

.01). Thus, all missing values were assumed missing at random (MAR), and the 
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expectation-maximization (EM) algorithm was used to impute the incomplete data as it 

can provide a relatively unbiased parameter estimation (Enders, 2001; Graham, 2009).  

Factor analysis 

For measurement item refinement, exploratory factor analysis (EFA) and 

confirmatory factor analysis (CFA) have been used by many social scientists. EFA is 

typically used to explore the possible factor structure when there are no adequate 

theoretical supports to identify a research model (Child, 2006). In contrast, CFA is a 

statistical technique that allows a researcher to exam the hypothetical model based on 

theories or empirical evidence (Suhr, 2006). Since a theoretical basis has been established 

in this study, CFA was a more appropriate method for assessing the measurement. All 

factor analyses in this study were conducted using statistical package EQS 6.3. A set of 

fit indices, including the chi-square value, root mean square error (RMSEA), comparative 

fit index (CFI), and standardized root mean residual (SRMR) were utilized to determine 

if the differences between predicted values and the data values observed were acceptable. 

The Lagrange Multiplier (LM) test was used to detect the causes of any misfits. 

Measurement items were removed from a latent factor when (1) a relatively high error 

covariance was detected (Byrne, 2013); (2) items were correlated with more than one 

specific construct (Kline, 2014). 

Measurement invariance testing 

While a model with a good fit is associated with the construct validity of the 

structural factors, it cannot be concluded that the results can be generalizable (Dimitrov, 

2010). The generalizability characteristic of validity can be examined by testing 
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measurement invariance, which tests if the same items and structural constructs can be 

used across two or more independent samples drawn from the same population (F. F. 

Chen, Sousa, & West, 2005). This technique aids researchers in examining the construct 

validity by comparing if (1) the measurement model is group-invariant; (2) the factorial 

structure of a measurement is equivalent across populations; and (3) the means of latent 

variables in a model are equivalent across various samples (Byrne, 2013).  In other 

words, these analyses verify that the psychometric properties of the UMBSPU can be 

duplicated across two or more BSP user groups.  

Although most studies test multi-group invariance based on the analysis of 

covariance structures (simulated data), some researchers suggest these examinations 

could be based on the mean and covariance structures (real data) in order to compare 

latent mean differences across groups (Byrne, 2013; Meredith, 1993; Sörbom, 1974). 

This approach not only includes parameters representing regression coefficients, 

variances and covariances but also the intercept parameter, meaning the analyses can be 

considered a strong level testing of multiple-group invariance (Meredith, 1993). In this 

study, a forward (sequential constraint imposition) approach involving a series of 

hierarchically nested CFA models was used (Byrne, 2013; Dimitrov, 2010). This process 

began with the examination of the baseline model (unconstrained). Subsequently, 

constraints were imposed on specific parameters (e.g., factor loadings and intercepts) 

across two independent samples. Finally, the resulting nested models were tested against 

the baseline model by comparing the chi-square value and the CFI. Invariance is accepted 
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when the chi-square difference is not significant (p > .05) and the amount of decrease of 

the CFI is smaller than .01 (Cheung & Rensvold, 2002). 

Method bias examination  

According to Campbell and Fiske (1959), any given psychological measure 

consists of two essential aspects, one representing the traits that a researcher intends to 

test, while the other is related to the method being used. If a researcher does not account 

for the systematic variance caused by the methods used, either through a test, a rating 

scale, or some other technique, the scores related to the traits are invalid. Podsakoff, 

MacKenzie, and Podsakoff (2012) pointed out that method effects may come from 

response styles, proximity and reversed items; the wording of the item; or their context.  

Furthermore, method bias, which is the variance derived from the measure, not the traits, 

might substantially affect the validity and reliability of the items and the latent constructs. 

They further proposed several approaches to control this effect, including the CFA 

marker technique and the measured response style technique. In this study, the CFA 

approach was used because of its ability to assess the loadings of the items on the eight 

proposed traits as stronger or weaker on a method factor, here a self-administered web-

based survey. Specifically, three nested models were generated to compare the 

differences in chi-square values and the CFI. First, a model that included both traits and 

method factors was generated to provide baseline estimations for subsequent 

examinations. Then, a model including only the method was built to evaluate the 

common method bias. Finally, a model including only traits was used to assess the 

variance that derived from the variables emphasized in this study. The difference between 
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the models (ΔCFI and significant Δchi-square) provided the evidence for determining the 

convergent and discriminate validity.  

Results 

Model Testing and Measurement Items Confirmation 

Three models were tested in the early stages of the analysis process in order to 

confirm the factor structure and to purify the measurement items of the UMBSPU. Given 

that all three models had large Mardia's normalized estimate values (> 5.00) reflecting 

significant positive kurtosis (Bentler, 2006), the robust estimation was performed in EQS 

and Satorra-Bentler (S-B) scaled statistics were reported in this study (Byrne, 2013). The 

CFA for the pilot test (N = 210) empirically supported that three items per construct 

represented a good-fitting model (S-B χ2
 (224) = 333.999, p < .001; SRMR = .047; CFI = 

.950; RMSEA = .048 with 90% C.I. = .037, .059). Specifically, the factor loadings of 

measurement items ranged from .64 to .92. The composite reliability (CR) of each 

construct was found to be greater than .70, and the average variance extracted (AVE) was 

larger than .50, confirming the convergent validity of the 24-item UMBSPU (Fornell & 

Larcker, 1981). A summary of the factor loadings, CR and AVE of first version the 

UMBSPU is listed in Table 2. 

Given that a more encompassing measure is beneficial for future research, the 

initial UMBSPU was further revised and validated using the data collected from the 

target sample BSP users in Taipei, Taiwan (N = 348). The results of CFA indicated that 

the constructs with four items (the only exception being facilitating conditions with five 

items) achieved the best fit (S-B χ2
(467) = 837.691, p < .001; SRMR = .051; CFI = .954; 
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RMSEA = .048 with 90% C.I. = .043, .053). The second version UMBSPU was 

subsequently developed. The same factor structure and 33 measurement items were 

examined again with a second independent sample, the BSP users in Kaohsiung, Taiwan 

(N = 299), the goodness-of-fit indices of this third model also exhibiting an acceptable 

result (S-B χ2
 (467) = 898.509, p < .001; SRMR = .062; CFI = .929; RMSEA = .056 with 

90% C.I. = .050, .061). As Table 3 shows, the CR and AVE of both target sample models 

exceeded standard values (CR > .70; AVE > .50); therefore, the convergent validity of 

the second version UMBSPU was confirmed as well (Fornell & Larcker, 1981).  

Discriminant validity assesses the variance shared between a variable and any 

other variable in a model (Fornell & Larcker, 1981). This analysis is conducted by 

comparing the AVE of two latent constructs and the values of their shared variances. 

Specifically, the square of the correlation between construct A and B should be smaller 

than the AVE of construct A and the AVE of construct B (Fornell & Larcker, 1981; Hair, 

Black, Babin, & Anderson, 2010). Given the measurement error is not taken into account 

in the correlation matrix generated from SPSS or PRELIS, Farrell (2010) recommended 

using the correlation matrix from the CFA results to avoid misinterpretation. Therefore, 

for this study, the correlation estimations from the EQS output were squared and then 

compared with the AVE of the eight factors tested. Table 4 and Table 5 shows that all 

AVEs of latent constructs were larger than the squared correlation estimations, providing 

evidence of discriminant validity among the latent constructs in all tested models. In 

summary, the CFA models reveal that the UMBSPU has satisfactory reliability and 

adequate convergent and discriminant validity for future use.  
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Table 2 A Summary of the Parameters for the Initial UMBSPU 

• Factors and Items Factor 
Loadings 

CR AVE 

Performance expectancy 
• YouBike helps me reach destinations more quickly. 
• I find YouBike useful for my leisure. 
• Using YouBike increases the quality of my leisure 

Effort expectancy 
• It is easy to become a YouBike member. 
• It is easy to use the YouBike system. 
• The renting process of YouBike is understandable. 

Social influence 
• My friends encourage me to use YouBike. 
• I believe the pedestrians interact with YouBike users in a 

friendly manner. 
• In general, people in Taipei respect YouBike users. 

Facilitating conditions 
• I am more likely to use YouBike if the station is around 

scenic areas.  
• I am more likely to use YouBike in places that have 

more shades. 
• I am more likely to use YouBike in places that have less 

traffic flow. 

Price value 
• YouBike is an affordable option for exercise. 
• YouBike is an affordable option to reduce my carbon 

footprint. 
• At the current price, YouBike is a good value. 

Hedonic motivation 
• Riding a YouBike bike is enjoyable. 
• Riding a YouBike bike is fun. 
• Riding a YouBike bike is relaxing. 

Habit 
• Using YouBike is a habit for me. 
• It is natural for me to use YouBike. 
• I always use YouBike during my leisure time.  

Behavioral intention 
• I will always try to use YouBike in my leisure time. 
• I plan to continue to use YouBike for leisure frequently. 
• I intend to continue using YouBike for leisure in the 

future. 

 
.788 
.856 
.754 

 
.775 
.963 
.896 

 
.651 
.738 

 
.739 

 
.844 

 
.809 

 
.801 

 

 
.811 
.758 

 
.643 

 

.909 

.921 

.893 

 
.855 
.913 
.900 

 
.883 
.915 
.844 

.842 
 
 
 

.912 
 
 
 

.753 
 
 
 
 

.859 
 
 
 
 
 
 

.783 
 
 
 
 

.934 
 
 
 
 

.917 
 
 
 

.912 

.641 
 
 
 

.777 
 
 
 

.505 
 
 
 
 

.669 
 
 
 
 
 
 

.549 
 
 
 
 

.824 
 
 
 
 

.787 
 
 
 

.776 

CR = Composite Reliability; AVE = Average variance extracted. 
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Table 3 A Summary of the Parameters for the Second Version UMBSPU 

Factors and Items Taipei Users Kaohsiung Users 
Performance expectancy 
• PE1: ____a helps me reach destinations effectively. 
• PE2: Using ____a improves the quality of my leisure. 
• PE3: ______a meets my leisure needs. 
• PE42: Overall, _____a is helpful in my leisure time. 

CR=.913; AVE=.728 
.637 
.890 
.949 
.901 

 

CR=.923; AVE=.751 
.722 
.895 
.929 
.904 

Effort expectancy 
• EE1: It is easy to become a _____a member. 
• EE2: The process of renting a _____a bike is easy. 
• EE3: Finding a _____ 1station in ____b is easy. 
• EE4: It is easy to use the _____a system. 

CR=.874; AVE=.637 
.718 
.861 
.669 
.916 

 

CR=.877; AVE=.645 
.746 
.851 
.681 
.913 

Social influence 
• SI1: Members of my household encourage me to use 

_____a. 
• SI2: My friends encourage me to use _______a. 
• SI3: People who are important to me think that I should 

use _____a. 
• SI4: _______a users are respected in ______b. 

CR=.849; AVE=.597 
.767 

 
.869 
.905 

 
.473 

CR=.875; AVE=.642 
.800 

 
.882 
.887 

 
.602 

Facilitating conditions 
• FC1: In my community, I am more likely to use ____a 

if there are bike lanes. 
• FC2: I am more likely to use _____a in scenic areas. 
• FC3: I am more likely to use _____a in the places that 

have more shades. 
• FC4: I am more likely to use _____a in the places that 

have fewer traffic lights. 
• FC5: I am more likely to use _____a in the places that 

have less traffic flow.   

CR=.923; AVE=.707 
.691 

 
.884 
.858 

 
.894 

 
.861 

CR=.940; AVE=.758 
.773 

 
.863 
.910 

 
.882 

 
.917 

Price value 
• PV1: _______a is an affordable option for exercise. 
• PV2: _______a is an affordable option for maintaining 

mental health. 
• PV3: _______a is an affordable option to protect the 

environment. 
• PV4: At the current price, _______a is a good value. 

CR=.928; AVE=.765 
.918 
.895 

 
.877 

 
.804 

CR=.952; AVE=.831 
.947 
.935 

 
.897 

 
.846 

Hedonic motivation 
• HM1: Riding a _______a bike is fun. 
• HM2: Riding a _______a bike helps me get away from 

the daily grind. 
• HM3: I have a sense of freedom when riding a 

_______a bike. 
•   HM4: Riding a _______ a bike helps me relieve stress. 

CR=.941; AVE=.799 
.850 
.866 

 
.929 

 
.927 

CR=.942; AVE=.803 
.775 
.928 

 
.927 

 
.944 
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Table 3 A Summary of the Parameters for the Second Version UMBSPU (Continued) 

Factors and Items Taipei Users Kaohsiung Users 
Habit 
• HT1: Using _______a is a habit for me. 
• HT2: It is natural for me to use _______a. 
• HT3: Riding a _______a bike is a usual part of my life. 
• HT4: I use _____a without consciously thinking about it. 

CR=.945; AVE=.811 
.864 
.924 
.930 
.882 

CR=.958; AVE=.849 
.908 
.920 
.948 
.913 

Behavioral intention 
• BI1: I will try to ride _______a bikes more frequently in 

my leisure time. 
• BI2: I plan to ride ______a bikes for leisure. 
• BI3: I expect to ride ______a bikes for leisure more often 

in the future. 
• BI4: I will use _____a soon. 

CR=.952; AVE=.831 
.882 

 
.924 
.936 

 
.904 

CR=.951; AVE=.829 
.894 

 
.934 
.930 

 
.882 

CR = Composite Reliability; AVE = Average variance extracted; a. Insert the name of BSP in the 
investigated city; b. Insert the city name. 

 

Table 4 Discriminant Validity of the Pilot Test Measurement Model 

Construct Correlation Coefficient 
PE EE SI FC PV HM HT BI 

PE: Performance expectancy .641                 
EE: Effort expectancy .295 .777         
SI: Social influence .112 .058 .505        
FC: Facilitating conditions .109 .287 .162 .669       
PV: Price value .110 .222 .283 .458 .549      
HM: Hedonic motivation .225 .255 .204 .352 .503 .824     
HT: Habit .187 .028 .403 .116 .294 .278 .787    
BI: Behavioral intention .296 .309 .227 .323 .533 .549 .468 .776  
The values of the average variance extracted are listed in bold font; all other entries are the shared variance 
(squared correlation). 
 

Table 5 Discriminant Validity of the Target Population Measurement Model 

Constructs Correlation Coefficient 
PE EE SI FC PV HM HT BI 

PE .728(.751) .320 .339 .240 .461 .497 .362 .477   
EE .340 .637(.645) .211 .191 .225 .401 .226 .238   
SI .292 .275 .597(.642) .110 .378 .286 .376 .441   
FC .275 .190 .076 .707(.758) .269 .303 .107 .191   
PV .448 .250 .304 .181 .765(.831) .475 .417 .536   
HM .503 .340 .161 .329 .399 .799(.803) .460 .506   
HT .402 .243 .384 .100 .408 .361 .843(.849) .607   
BI .484 .252 .274 .238 .511 .494 .542 .831(.829)  

The values of the average variance extracted are listed in bold font; all other entries are the shared variance 
(squared correlation). Values in parentheses and lower triangular part of table represent data from 
Kaohsiung group; values in upper triangular part of table represent data from Taipei group. 
PE =  Performance expectancy: EE =  Effort expectancy; SI =  Social influence; FC =  Facilitating 
conditions; PV =  Price value; HM =  Hedonic motivation; HT =  Habit; BI =  Behavioral intention.  
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Measurement Invariance Confirmation 

To cross-validate the UMBSPU over two independent groups, a series of tests 

suggested by Byrne (2013) were conducted using EQS, including those for (1) configural 

invariance, (2) measurement (factor loading) invariance, (3) intercepts of measured 

variables invariance, and (4) latent factor mean invariance. Since the data were analyzed 

based on the Robust estimation, the χ2 difference between models should not be 

calculated without correction (Byrne, 2013). Therefore, all S-B χ2 differences in this 

study were adjusted using approach suggested by Satorra and Bentler (2001).  

As the results listed in Table 6 show, the S-B χ2 difference between the configural 

(unconstrained) model and the measurement model is not significant (ΔS-B χ2 (25) = 

32.066, p > .05); furthermore, the CFI difference is .001, significantly less than Cheung 

and Rensvold’s (2002) proposed criterion (ΔCFI = .01). Therefore, the equivalence of the 

factor loadings across the two samples is validated. However, the chi-square difference 

between the intercepts invariant model and the configural model is statistically significant 

(ΔS-B χ2 (58) = 169.557, p < .001). Based on the results of the LM test, three items (FC2, 

FC3, and BI2) have statistically significant probabilities (p < .05) influencing the chi-

square value of the model. Therefore, a modified intercept invariant model was built by 

freeing FC2, FC3, and BI2, the results indicating only small changes in the chi-square 

(ΔS-B χ2 (3) = 5.519, p > .05) between the two models. Given that the results of a chi-

square difference test are easily influenced by sample size (N = 647), Cheung and 

Rensvold (2002) encouraged researchers to consider the changes in other fit statistics. In 

this case, the difference of the CFI between intercepts invariant model and the configural 
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model was found to be less than .01 and the RMSEA remained the same. Thus, the 

assessment of the latent factor mean could proceed. There were no noticeable differences 

between Taipei and Kaohsiung respondents on the intercepts of the measured variables.  

Kaohsiung respondents were selected as the reference group with the mean of all 

factors was fixed to zero while the Taipei group was freely estimated. No significant chi-

square (i.e., corrected) and CFI differences were found (ΔS-B χ2 (17) = 15.612, p > .05; 

ΔCFI = .002; ΔRMSEA = .001), meaning there was no statistical difference in the eight 

factors tested between the Taipei and the Kaohsiung respondents. The results of this 

analysis support the scalar, metric, and factorial invariance of the UMBSPU for use in 

future research. 

Table 6 Fit Indices for Measurement Invariance Model Testing 

Model S-B χ2 df CFIa SRMR RMSEAa ΔS-B χ2 Δdf ΔCFI 
1. Configural  1735.053 934 .943 .057 .052 - - - 
2. Measurement 

(factor loading 
invariance) 

1767.981 959 .942 .060 .051 32.066 25 .001 

3. Intercepts 
invariance 1884.520 992 .941 .060 .052 169.557b 58 .002 

4. Modified 
intercepts 
invariance 

1876.006 989 .941 .060 .052 158.906b 55 .002 

5. Latent factor 
mean invariance 1736.355 951 .945 .060 .051 15.612 17 .002 

a. Value based on robust estimation (Satorra-Bentler scaled χ2); b. The result is significant at p < 0.01;  
ΔS-B χ2 was calculated with corrected S-B scaling difference (Satorra & Bentler, 2001). 
 
 

Method Effects Examination 

The purpose of this examination is to detect for method bias in UMBSPU because 

of variances derived from the measurement device (a self-administered online survey 
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using a nine-points Likert-type scale). Theoretically, variance derived from traits should 

be higher than those measured by methods in an assessment model (Campbell & Fiske, 

1959). Although both the discriminant and the convergent validity of the UMBSPU were 

confirmed in previous analyses, the method factor was not included in the model. In this 

section, the discriminant and convergent validity are analyzed including both the traits 

and the method (Widaman, 1985).  

Four CFA models were tested using a sample of BSP users from Taipei (N = 

348). The first model excluded the method factor and included only the traits in the 

assessment. The goodness-of-fit statistics in Table 7 indicate that this model is good-

fitting (S-B χ2
 (467) = 837.691,  p < .001; SRMR = .051; CFI = .954; RMSEA = .048 with 

90% C.I. = .043, .053). The second model tested was the baseline model, which included 

freely correlated traits and a common method factor in the estimation. The fit statistics 

indicate this model also fits the data well (S-B χ2 (434) = 653.280, p < .001; SRMR = .038; 

CFI = .973; RMSEA = .038 with 90% C.I. = .032, .044), in fact better than Model 1. To 

examine convergent validity, the third model removed all traits, leaving only the common 

method factor for the assessment. As seen in Table 7, the goodness-of-fit statistics for the 

method-only model is particularly poor (S-B χ2 (495) = 3424.911, p < .001; SRMR = .107; 

CFI = .638; RMSEA = .131with 90% C.I. = .126, .135). The fourth model fixed the 

correlations among the trait factors to 1.0 to assess their discriminant validity of traits. As 

indicated in Table 7, the goodness-of-fit statistics for this model inadequately fit the data 

(S-B χ2 (463) = 2711.956, p < .001; SRMR = .078; CFI = .722; RMSEA = .118 with 90% 

C.I. = .114, .122).  
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The evidence of construct validity was examined by comparing the differences in 

the fit statistics among the models. As per Table 7, the comparison between Model 1 and 

Model 2 indicates that the CFI is improved and S-B χ2 is significantly reduced when the 

common method factor was included in the assessment (ΔCFI = .019; ΔS-B χ2 (33) = 

146.452, p < .01), providing evidence of method effects. In order to investigate the 

relative method effect for each trait, the AVE is calculated for every factor in the 

UMBSPU and for the corresponding dimensions of the common method factor in the 

baseline model, and the factor loadings for traits and the method are compared. The trait 

loadings should be significant and larger than the method loadings to confirm convergent 

validity. 

The results show that for four items in the performance expectancy, effort 

expectancy, and price value construct, the method factor accounts for more variance than 

traits. Furthermore, when the method factor was included in the model, all AVEs for 

every trait in the UMBSPU decreased. The factor loadings of the eight factors in the 

UMBSPU model also decreased when statistically controlled the method (see Table 3 and 

Table 8). However, the AVE for every trait in the UMBSPU is better than the AVE for 

every corresponding dimension of the method. Therefore, the eight factors in the 

UMBSPU are able to explain more variances than the common method. The convergent 

validity of UMBSPU is supported. According to Widaman (1985), convergent validity 

can also be examined by comparing the traits and methods of the specified model (the 

baseline model) with the one with no traits specified (model 3). A significant difference 

in the chi-square and CFI between these two models (ΔS-B χ2 (61) = 1402.984, p < .01; 
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ΔCFI = .335) provides evidence of the convergent validity of the UMBSPU as well. 

These data can be found in Table 8. 

To test discriminant validity among traits, the model in which traits are freely 

correlated (the baseline model) can be compared with the model in which they are 

perfectly correlated (Model 4), with the larger the difference between the χ2 and the CFI 

values, the stronger the discriminant validity (Byrne, 2013; Widaman, 1985). The results 

show that a statistically significant and a substantial difference in the fit statistics (ΔS-B 

χ2 (29) = 758.555, p < .01; ΔCFI = .251) between these two models, thereby providing 

solid evidence of the discriminant validity.  

Based on these results, it seems reasonable to conclude that the UMBSPU is a 

reliable and valid measurement in the context of leisure BSP use. However, the evidence 

of method bias in the sample of Taipei BSP users should be monitored carefully in future 

use, particularly for the four items exhibiting strong method effects.  

 
Table 7 A Summary of Goodness-of-Fit Indices and Model Comparison 

Model S-B χ2 df CFIa SRMR RMSEAa ΔS-B χ2 Δ df ΔCFI 
1. Hypothesized 

Model 837.691 467 .954 .051 .048 - - - 

2. Freely correlated 
traits and method- 
included model 
(baseline) 

653.280 434 .973 .038 .038 146.452bc 33 c .019 c 

3. No traits and 
method only model 3424.911 495 .638 .107 .131 1402.984bd 61d .335 d 

4. Perfectly correlated 
traits and method 
included model 

2711.956 463 .722 .078 .118 758.555bd 29 d .251 d 

a. Value based on robust estimation (Satorra-Bentler scaled χ2). b. The result is significant at p < .01.         
c. Compare with Model 1; d. Compare with Model 2; ΔS-B χ2 was calculated with corrected S-B scaling 
difference (Satorra & Bentler, 2001). 
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Table 8 Average Variance Extracted and Factor Loadings for Baseline Model  

Factors and 
Items 

UMBSPU 
Traits 

Common 
Method 

Factors and 
Items 

UMBSPU 
Traits 

Common 
Method 

Performance  
expectancy 
• PE1 
• PE2 
• PE3 
• PE4 

AVE=.567 
 

.439 

.779 

.931 

.775 

AVE=.191 
 

.539a 
.413 
.314 
.447 

Price value 
 
• PV1 
• PV2 
• PV3 
• PV4 

AVE=.459 
 

.705 

.842 

.581 

.542 
 

AVE=.328 
 

.583 

.422 
.669 a 
.588 a 

 
Effort 
expectancy 
• EE1 
• EE2 
• EE3 
• EE4 

AVE=.366 
 

.547 

.574 

.645 

.646 

AVE=.288 
 

.469 
.646 a 
.311 
.645 

Hedonic 
motivation 
• HM1 
• HM2 
• HM3 
• HM4 

AVE=.650 
 

.707 

.850 

.805 

.854 

AVE=.162 
 

.484 

.251 

.465 

.367 

Social influence 
• SI1 
• SI2 
• SI3 
• SI4 

    AVE=.573 
.722 
.846 
.914 
.470 

AVE=.030 
.272 
.163 
.114 
.080 

 

Habit 
• HT1 
• HT2 
• HT3 
• HT4 

AVE=.697 
.785 
.797 
.894 
.858 

AVE=.151 
.354 
.481 
.346 
.358 

 
Facilitating  
conditions 
• FC1 
• FC2 
• FC3 
• FC4 
• FC5  

AVE=.411 
 

.550 

.796 

.785 

.797 

.681 

AVE=.186 
 

.424 

.392 

.362 

.410 

.546 

Behavioral 
intention 
• BI1 
• BI2 
• BI3 
• BI4 

AVE=.668 
 

.730 

.839 

.861 

.834 
 

AVE=.171 
 

.519 

.388 

.373 

.355 

a. The method factor accounts more variance than traits. AVE = average variance extracted. 
 

Discussion and Conclusions 

The goal of this study is to explore the primary determinants of BSP use in a 

leisure context, specifically to develop a uniform measurement for future examination of 

the relationships among those key factors. Following the guidelines suggested by Slavec 

and Drnovsek (2012), the UMBSPU was developed by integrating both qualitative and 

quantitative methods, in hopes that its use will increase the knowledge and understanding 

of the focal phenomenon. The results of the qualitative investigation (i.e., interviews) 

revealed that a wide variety of factors are involved in an individual’s decision to use BSP 
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for leisure. The subsequent analysis using the quantitative method verified the themes 

extracted from these interviews and the measurement items adopted from the existing 

scales. Thus, this study developed a measurement scale for further generalization and 

systematic examination.  

The items of the UMBSPU adopted from existing scales and interviews were 

tested with BSP users in a pilot test of 210 Taiwanese adults participated in a self-

administered, web-based survey. Based on the results of the factor analysis, the initial 24-

item UMBSPU was found to be reliable and valid. In order to develop a more 

encompassing measurement, the three-item per factor version was expanded and revised 

based on the comments of an expert panel. The second version of the UMBSPU was 

subsequently examined using a sample of 647 online panel members. The final 

measurement scale consisting of at least four items per factor performed best in the 

model. However, most of the items derived from interviews were omitted based on this 

purification process, perhaps making the UMBSPU a less than comprehensive 

measurement scale. For example, both the interviewees and the literature pointed out that 

the interaction among cyclists and other road occupants was a critical factor influencing 

an individual’s decision to cycle (Kaplan & Prato, 2016), whereas the corresponding 

items in the UMBSPU were removed from the scale due to poor factor loadings. Future 

research is needed to investigate if this social interaction is more important to cycling 

commuters than to leisure cyclists.  

In order to assess the applicability of the UMBSPU for various locations, a cross-

validation with two independent samples was conducted. This step is important in 
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establishing the generalizability of the theory. A sequential confirmatory factor analysis 

based on real data (mean and covariance structures) aided the measurement invariance 

testing. As noted earlier, two items in the facilitating conditions construct (FC2: I am 

more likely to use BSP in scenic areas; and FC3: I am more likely to use BSP in the 

places that have more shades) and one in the behavioral intention construct (BI2: I plan to 

ride public bikes for leisure) were found to have noninvariant intercepts. Based on the 

Item Response Theory (IRT), this noninvariant item intercept may be associated with the 

level of item difficulty. In other words, the higher the value of an intercept (or item 

difficulty level), the higher the probability of respondents’ endorsing it (Byrne, 2013; 

Chan, 2000). Furthermore, the weather and the landscape in Kaohsiung and Taipei are 

somewhat different; therefore, citizens in these two cities may rate the importance of 

scenery and tree shades slightly different. Future research should further explore the 

difference using samples from various geographic areas.   

Nonetheless, previous research has found that noninvariant factor loadings, which 

correspond to the item discrimination parameter, are more serious than intercept 

noninvariant. Intercept differences among groups should not reduce the value of these 

items in assessing the underlying factors (Byrne, 2013; Cooke, Kosson, & Michie, 2001). 

Furthermore, the CFI difference test among all models indicated a rejection of 

noninvariance (ΔCFI < .01). Therefore, it is reasonable to conclude that the UMBSPU 

can assess the same construct and predict equally across different groups. 

Developing a complex and multidimensional measurement scale such as the 

UMBSPU may include the risk that a substantial amount of variance in the model is 
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derived from method effects. Method bias impacts both the accuracy of the interpretation 

and the validity of the measure (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). The 

findings of the Multitrait-Monomethod testing indicated that the UMBSPU demonstrated 

good convergent and discriminant validity, albeit method effects were detected, 

particularly in items, PE1, EE2, PV3, and PV4. This effect may be derived from the 

survey-based method that is commonly utilized in behavioral research (Podsakoff et al., 

2003; Spector, 2006). As Cote and Buckley (1987) suggested, almost 26.3% of the 

variance in self-reported studies may result from systematic sources of measurement 

error such as common method biases. Podsakoff et al. (2003) found that that item social 

desirability may be one of the primary causes of such bias. The measurement items that 

have more social desirability associate closely with one another because their social 

desirability characteristics are more demonstrable than the underlying constructs that they 

measure. Two items in the price value construct are related to environmental protection 

and monetary evaluation, both of which suggest a certain social desirability. To address 

this issue, future research should expressly emphasize the anonymity in the survey 

instructions and assure the participants that there are no correct answers.   

The method effect examination in this study can also create a useful way for 

refining the UMBSPU by selecting the items that have the largest factor loadings to the 

underlying constructs. These items remaining after this examination should be able to 

capture more variances in what they measure than those from common method variances. 

Future research could develop a UMBSPU short form and compare its performance with 

the 33-item UMBSPU.  
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Given the limited research exploring BSP leisure use, this study lays a foundation 

for further investigations. While the primary goal of the UMBSPU is to study the key 

determinates of an individual’s leisure BSP use, future research can adopt it to assess 

commuting usage. The existing scales developed to measure bikeability, which primarily 

focus on environmental features, could also be incorporated into the UMBSPU to add 

depth to the investigation. Furthermore, the UMBSPU was developed using individuals 

with previous experiences using BSP in their leisure time; future research may explore 

the barriers that inhibit this usage, such as the difficulty of finding shower rooms or rest 

places, mandatory helmet legislation, or safety concerns. As noted earlier, the factors 

influencing BSP use are very broad and diverse, and the UMBSPU should not be 

considered a panacea for answering all questions related to public bicycles. Future 

research can continue expanding the UMBSPU by integrating barriers or other context 

specific questions to develop a more comprehensive measure. In addition, this study 

tested the measurement invariance of the UMBSPU and found acceptable results. This 

examination was based on Taiwanese adults and the UMBSPU should be examined in 

different cultural contexts to obtain an international level of cross- validation.  

From a practical perspective, the UMBSPU can also serve as a valuable tool for 

BSP practitioners exploring potential markets. Since previous studies have shown that a 

particular group of users only use BSP in their leisure time, accurately identifying the 

relevant factors influencing this use is important for BSP managers and marketers. 
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CHAPTER THREE 

EXPLORING THE LEISURE USE OF BICYCLE SHARE PROGRAM: A CASE 

STUDY OF YOUBIKE IN TAIPEI  

Introduction 

Cycling is not only a means of daily transportation but also a popular recreational 

activity (Han, Meng, & Kim, 2017; Lamont, 2014; Ritchie, 1998), with many marketing 

analysts characterizing the bicycle industry in the 21st century as “with the zeitgeist” 

(Harker, 2008). Adventure Cycling Association (2012) reported that Americans spend 

USD $10 billion on bikes, gear, and accessories and more than USD $70 billion on 

leisure cycling trips - these sales directly support 772,146 jobs. Additionally, increasing 

numbers of tourists are participating in road and mountain biking, and cycling events 

(World Tourism Organization, 2014). In Europe, approximately 2.295 billion leisure 

cycling trips are taken annually with a value in excess of €44 billion (Weston et al., 

2012). 

As part of this “bike boom,” Taiwan has made a strong commitment to become 

Asia’s cycling hub. Until 2014, Taiwan was the only country in Asia with a strategically 

built national network of bike lanes (Manibo, 2015). By effectively integrating the 

development of bicycle infrastructures with the leisure industry, Taiwan was transformed 

from a world-renowned bicycle manufacturer into one of the best cycling destinations in 

Asia (Lonely Planet, 2012; The New York Times, 2014) , with cycling becoming 

Taiwan’s most popular recreational activity (H.-W. Chang & Chang, 2003; Lee & Huang, 

2014). In addition to constructing a national bikeway system, many cities in Taiwan, 
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including Kaohsiung, Taipei, Taichung, and Changhua, have initiated a bicycle share 

program (BSP), the short-term rental service through which bicycles are made available 

at one docking station and returned to another (Fishman, Washington, & Haworth, 2013). 

The increasing number of such programs has led to a new generation of urban cycling 

enthusiasts. The discussion of riding public bicycles instead of self-owned, high-end, or 

famous brands of bikes has become a topic on social media, blogs, and tourism websites 

(e.g. Taipei Travel Forum of TripAdvisor).  

Taipei is viewed as the best Taiwanese location for cycling and BSP use (Koh, 

2016). According to the Ministry of Transportation and Communications (2016), in 2015 

cycling trips accounted for approximately 4.1% of the country’s travel, with Taipei 

responsible for 20.6% of this 4.1%, making it the city with the highest cycling rate. The 

substantial amount of governmental infrastructure investment has aided Taipei in its goal 

to be Asia’s cycling capital (Horton, 2017). According to a 2016 report, Taipei City 

possessed approximately 491 km of bicycle paths, including urban separated bikeways 

71.5 km, urban share-used paths 308 km, and riverside bikeways 112 km (Taipei City 

Government, 2016). In addition to the extensive construction of bicycle paths, the city 

government also actively promotes its BSP, YouBike, which is operated by the world’s 

largest bicycle manufacturer, Giant Co., Ltd.  

Studies have found that 28% of respondents use YouBike for leisure (Pai and Pai 

(2015). Furthermore, when asked about their intention for future use, 90% of the 

respondents expressed a willingness to continue using YouBike as a means of leisure, 

10% more than the percentage of people willing to use it for commuting (80%). Ting 
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(2014) also reported similar findings for YouBike use for leisure or entertainment 

purposes. Wong and Cheng (2015) took advantage of the Open Data Policy in Taipei, and 

analyzed the YouBike spatial data. They found that a significant number of rental 

activities were recorded at the edge of the city center, at the outer area of Taipei City, and 

in proximity to the riverfront parks. They concluded that these groups of users probably 

use YouBike for recreation during weekends and on holidays.  

However, riding public bicycles for leisure is not limited to Taipei as BSPs have 

appeared across the world over the past decade (DeMaio & Meddin 2016; Fishman, 

Washington, & Haworth, 2013). For example, a group of Vélo bicycle users typically use 

the BSP during weekends or non-commuting time (Vogel et al., 2014), and 48.3% of the 

BSP users in Dublin cycle only for leisure during off-peak hours (Murphy & Usher, 

2015). The same phenomenon is also found in Brisbane (Fishman, 2016), Washington, 

DC (Adventure Cycling Association, 2012), and Montreal (Bachand-Marleau, Lee, & El-

Geneidy, 2012).  As these studies suggest, a BSP is not just a tool for commuting but also 

serves a wide range of individuals who use it for leisure purposes. These reports indicate 

the need for researchers to investigate in-depth such questions as “Who rides public 

bicycles for leisure?” “What characteristics do these ‘special’ users share?” “How do they 

make the decisions to use BSP for leisure?” “What are the key determinants of this 

leisure BSP use?”  

However, cycling for leisure is usually given little attention in transportation 

planning even though the significance of non-motorized transport in tourism is frequently 

investigated (Dickinson & Robbins, 2009). Furthermore, research on this topic is also 
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limited. Reviewing recently published BSP research, Fishman (2016) pointed out that the 

primary stream in BSP literature is related to commuting, with researchers calling for 

more focus on the differences between BSP commuter and leisure users (Bachand-

Marleau et al., 2012). Use of BSP for leisure may be influenced by other (non-

commuting related) variables that are not fully captured by current BSP studies (Pai & 

Pai, 2015). To address these issues, the primary goal of this study is to explore the key 

determinants of BPS use, especially in a leisure context.  

Given that the newest information and communications technology (ICT), such as 

GPS tracking, real-time transit integration system, and smartcard integration, are 

integrated in the current BSPs, researchers have begun to apply theories from the 

information and technology field to investigate user behavior. For instance, the 

technology acceptance model (TAM) has been applied in various studies (S. -Y, Chen, 

2016; S. -Y, Chen & Lu, 2015, 2016; Hazen, Overstreet, & Wang, 2015). However, 

Hazen et al. (2015) pointed out that some critical factors related to an individual’s 

decision to use a BSP may not be addressed by this model, thus suggesting an extension 

of this theory. The extended unified theory of acceptance and use of technology 

(UTAUT2), which integrates eight theories frequently used in technology acceptance 

studies, has been found to more accurately explain consumers’ intentions and technology 

use (Venkatesh, Thong, & Xu, 2012). Given the success in applying theories from the 

technology acceptance field in previous BSP research, the UTAUT2, which also focuses 

on human voluntary behavior, was adopted and further contextualized for this study.  



 72 

It is expected that this integration of UTAUT2 and BSP use can further the 

generalizability of the theory itself. The knowledge obtained from this study can help 

BSP organizations in the leisure and transportation industry better meet consumer needs 

and develop marketing strategies to promote BSP use among various populations. 

Furthermore, while the East-Asia region has been found to have the most bicycle sharing 

activity in the world (DeMaio & Meddin 2016), the research conducted in this area is 

limited (Fishman, 2016; Pai & Pai, 2015). Thus, this research contributes to our 

knowledge of individual adoption of BSP across cultural and geographic boundaries. 

Hypotheses and Research Model Development  

The popularity of BSP has prompted researchers to examine factors that influence 

its use. Pai and Pai (2015) categorized the factors into four dimensions: (1) system 

characteristics, such as bicycle design and quality, the accessibility of docking stations 

and bikes, a convenient rental procedure, emergency preparedness and response, 

maintenance programs, and price; (2) environmental characteristics, such as bike lane 

quality, bike-related facilities, and the convenience of transfer to other public 

transportation; (3) existing restrictions in cities, such as geographical conditions, climate, 

social support and cultural influence, and policies; and lastly (4) the BSP users’ 

demographics and preferences, such as gender, socioeconomic status, trip features and 

physiological ability, credit card ownership, and time restrictions. Among these factors, 

convenience (Fishman, 2016; Verma, Rahul, Reddy, & Verma, 2016), easy access to BSP 

stations (Bachand-Marleau et al., 2012; Fuller et al., 2011), interaction with other 

transportation modes (Fishman, Washington, & Haworth, 2012; Kaplan, Manca, Nielsen, 
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& Prato, 2015; Tang, Pan, & Shen, 2011), and safety (Muñoz, Monzon, & López, 2016; 

Winters, Davidson, Kao, & Teschke, 2011) are the most frequently mentioned reasons to 

use a BSP. Although previous studies add to our knowledge of BSPs, few integrate social 

cognitive theories to investigate individual leisure BPS use. As the UTAUT2 is a 

relatively comprehensive framework for explaining human voluntary behavior, in this 

study it aided in development of the theoretical model and hypotheses.     

Core Constructs 

Performance expectancy, effort expectancy, facilitating conditions, and social 

influence have been identified as the core constructs that primarily form the unified 

theory of acceptance and use of technology (UTAUT). This theory hypothesizes that 

performance expectancy, effort expectancy, and social influence may affect individual 

behavioral intention, while behavioral intention and facilitating conditions directly 

influencing the actual use. In addition, combinations of individual differences, namely 

age, gender, experience, and voluntariness, moderate the relationships (Venkatesh, 

Morris, Davis, & Davis, 2003). In cycling and BSP literature, these four constructs have 

been found to positively influence an individual’s intention to cycle as well.  

Performance Expectancy 

Extrinsic motivation, which has been studied widely in many social science fields, 

refers to the external rewards that motivate an individual to be energized or activated 

toward an act or to attain the separable outcome of avoiding punishment (Ryan & Deci, 

2000). It has been found to play an important role in an individual’s acceptance of new 

technology. For example, perceived usefulness in TAM, which refers to an individual’s 
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belief that using a new technology or a system would improve job performance, has been 

examined extensively with the results indicating that it has a positive influence on 

behavioral intentions (Davis, Bagozzi, & Warshaw, 1989). In the UTAUT2, this extrinsic 

type of motivation is conceptualized as “performance expectancy.”  Venkatesh et al. 

(2012) define it as the degree to which individuals believe that utilizing a particular piece 

of technology will benefit them in performing certain activities. Its impact has been found 

to be stronger on one’s intention in an organizational setting rather than in the consumer 

context.   

Researchers have explored the positive impact of extrinsic rewards or perceived 

usefulness on one’s intention to use a BSP. According to Shaheen, Guzman, and Zhang 

(2010), BSPs are planned to provide a low-carbon solution to the “first and last mile” 

problem, which refers to the distances between an individual’s residence/workplace and 

the transit stations that are too far to walk. Hazen et al. (2015) found that when a BSP is 

viewed as a useful option for transportation among residents in Beijing, it positively 

influenced the residents’ intention to use it. A modified TAM was used to investigate 

one’s intention to embrace an eco-friendly lifestyle, and green-perceived-usefulness was 

found to have the strongest predictive validity regarding an individual’s plan for using a 

BSP (S. -Y, Chen, 2016; S. -Y, Chen & Lu, 2015, 2016). 

Although a BSP is seen as a practical tool for integrating bicycling into people’s 

commuting, it has also been found to serve people’s needs in their leisure time (Buck et 

al., 2013; Pai & Pai, 2015), as cycling can be associated with characteristics such as fun, 

sociability, and cafe stops (Fitt, 2015). Thus, performance expectancy in this study is 
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operationalized as the degree to which an individual believes that a BSP is a useful 

transportation mode in individuals’ leisure time, one that will improve his or her personal 

leisure life. Thus, this study proposes the following hypothesis: 

Hypothesis 1. Performance expectancy will positively impact the intention of an 

individual to use a BSP. 

Effort expectancy 

As usability may cause an individual to accept or reject a technology, the level of 

ease in manipulating such devices is viewed as important. In other words, a new 

technology is more likely to be accepted if it is believed to be easy-to-use (Davis et al., 

1989). In the UTAUT2, Venkatesh et al. (2012) defined “effort expectancy” as the 

consumer’s perception of the ease-of-use of a new piece of technology, finding it to be 

more influential at the early stage when an individual adopts a new system. Its influence 

reduces as the difficulties of using a new technology are overcome (Venkatesh et al., 

2003).  

The importance of “comfort” or “convenience” is frequently mentioned in cycling 

and BSP research (Fishman, Washington, & Haworth, 2013; Hazen et al., 2015; Pai & 

Pai, 2015; Verma et al., 2016). For example, the review of BSP research conducted by 

Fishman et al. (2013) found that BSP users are most often motivated by convenience. 

From a negative perspective, an inconvenient process for renting a public bicycle, 

accessing docking stations, or becoming a BSP member may have a negative impact on 

BSP use. For instance, the YouBike pilot program in Taipei experienced low usage due to 

poor service quality, the cancelation of the free ride policy, and most importantly, the 
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scarcity of docking stations, all of which made the accessibility of public bikes an issue. 

When asked their opinions of how to improve of YouBike service, respondents 

repeatedly mentioned the facilities related to the convenience of use, such as location, 

number of docking stations, shortage of bikes to borrow and the lack of empty docks for 

returning bikes (Lai, 2012). 

The CityCycle pilot program in Brisbane faced challenges as well. While the 

citizens consistently expressed a high level of interest in the program, the inefficient sign-

up process discouraged many. Eventually, the public viewed the program as “not for 

them” (Fishman et al., 2012). As these findings suggest, in the context of BSP use, effort 

expectancy can be operationalized as perceived convenience (Hazen et al., 2015), 

meaning the degree to which an individual believes that using a BSP for leisure is easy 

and convenient. Therefore, this research proposes:  

Hypothesis 2.  Effort expectancy will positively impact the intention of an individual to 

use a BSP. 

Social influence 

The importance of the social reality and the social processes of people’s 

transportation decisions have been investigated extensively. From the social 

representation perspective, Dickinson and Dickinson (2006) found that individuals’ 

choice of transportation is made in light of the social reality they live in, while Fitt’s 

(2015) investigation of the social meaning behind transportation choices found that 92% 

of the research participants expressed that their transportation practice was influenced by 

their social environments. Furthermore, 20% of the participants stated that social 
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meanings were the primary influences for their decisions. Barnett and Casper (2001) 

pointed out that such influences can be “experienced” at various levels, including 

kinships, neighborhoods, working places, communities, cities, and regions. In other 

words, social influences may directly come from one’s household members and less 

directly from peers, friends and colleagues, or even from the society as a whole and its 

culture (Sherwin, Chatterjee, & Jain, 2014).  

The UTAUT2 has a narrower definition of this factor defining it as the point at 

“which consumers perceive that important others (e.g., family and friends) believe they 

should use a particular technology” (Venkatesh et al., 2012, p. 159). In addition, it has 

been found to have an indirect effect on behavioral intention when age, gender, and 

experiences are included in the model (Venkatesh et al., 2012). However, in the cycling 

literature, social influences have been found to come from multiple strata not just family 

and friends. For example, Titze, Stronegger, Janschitz, and Oja (2008) conducted a cross-

sectional survey of adults aged 15 to 60, finding that a supportive social environment is a 

possible influence on an individual’s decision to cycle. They further emphasized that this 

support comes not only from friends or family members but also from observing others 

cycling. Similarly, Sherwin et al. (2014) pointed out that social influence is the primary   

factor for some people who decide to cycle regularly; and it may come from a spouse, 

family, friends and/or society. They suggested that making bicycling more visible to the 

society might increase the probability that more citizens will cycle. Therefore, this study 

operationalizes social influence as the degree to which an individual believes that using 
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BSP for leisure is directly influenced by family and friends, or indirectly influenced by 

the cycling culture in Taipei. This study hypothesizes: 

Hypothesis 3.  Social influence will positively impact the intention of an individual to 

use a BSP. 

Facilitating conditions 

Facilitating conditions refer to the degree to which a person perceives the 

technical infrastructure is accessible enough to support the acceptance of a new system 

(Venkatesh et al., 2003; Venkatesh et al., 2012). In other words, does the support 

provided by existing resources help an individual perform a certain behavior easily or are 

there barriers that need to be removed. The facilitating conditions in the UTAUT are 

assumed only to have a significant influence on behavior because when both performance 

expectancy and effort expectancy constructs are also included in the model, facilitating 

conditions are no longer significant in predicting intention (Ajzen, 1991; Venkatesh et al., 

2003); however, in the consumer context, this construct is hypothesized to influence both 

behavior and behavioral intentions (Venkatesh et al., 2012). That is, the belief that he or 

she has support may increase an individual’s intention as well as his or her likelihood of 

performing an act. 

In cycling-related literature, bicycle infrastructure, including the connectivity, 

length, and width of bicycle lanes, have been extensively investigated. Dill and Voros 

(2007) found that an individual’s perception of the quality and accessibility of bicycle 

lanes has a significant influence on the decision to cycle. Specifically, places with easily 

accessible and well-connected bicycle lanes, and streets with low traffic are more likely 



 79 

to increase one’s intention to be a regular or utilitarian cyclist. According to Buck et al. 

(2013), the relationship between the existence of bicycle lanes and the level of BSP 

activity is statistically significant — even when the opportunity for shopping around 

stations and the influences of population are controlled in the model. Except for bike 

lanes, Winters, Brauer, Setton, and Teschke (2013) found that people are much more 

likely to cycle on routes away from traffic noise and air pollution. Their results also 

revealed that individuals who perceive that the scenery on the cycling route was beautiful 

and that the route was separated entirely from traffic are more likely to go cycling. Given 

the influence of weather on Taiwanese decisions to cycle, Zhan & Su (2008) highlighted 

that adequate shade is one of the most importance indicators for constructing a bicycle 

lane in Taipei. Thus, in this study, facilitating conditions are defined as bicycle 

infrastructure and the environmental conditions that support individuals’ use of a BSP in 

their leisure time. This study proposes:  

Hypothesis 4a.  Facilitating conditions will positively impact the intention of an 

individual to use a BSP. 

Hypothesis 4b.  Facilitating conditions will positively impact the leisure use of a BSP. 

Additional Key Constructs 

The UTAUT highlights the significance of utilitarian value and outcome-

orientated motivations; thus, the constructs linked to utility, such as performance 

expectancy, have been found to be the strongest predictors of the intention to use a new 

system (Venkatesh et al. 2003). However, in the consumer context, Venkatesh et al. 

(2012) found that additional predictors and mechanisms should be included in the model, 
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specifically hedonic motivation, price value, and habit. Empirically, the extended 

UTAUT2 demonstrated a significant improvement over the original model, UTAUT, in 

explaining the variance in consumer behavioral intention and actual use. The details of 

these three additional key constructs are discussed in the following sections. 

Price value 

Because the UTAUT2, was developed based on a consumer context, the price of a 

product becomes another important factor that attracts or deters consumers’ acceptance of 

a new technology (Venkatesh et al., 2012). In addition to the cost, the perceived quality 

and value also play significant roles in a consumer’s decision to purchase a service or a 

product. The consumer’s willingness to pay a certain price involves a cognitive tradeoff 

between giving a certain monetary cost and receiving the expected value of the product 

(Zeithaml, 1988). Thus, Venkatesh and his colleagues (2012) define price value as the 

“consumers’ cognitive tradeoff between the perceived benefits of the applications and the 

monetary cost for using them (p.161).” In other words, when the perceived value of using 

a product or a service is believed to be higher than the price, the consumer is more likely 

to pay for it. Therefore, price value is a predictor of behavioral intention in the UTAUT2. 

The price of a bicycle rental service is a primary motivating factor for individuals 

taking a short-term cycling trip. For example, H.-L. Chang and Chang (2009) found that a 

reasonably priced bicycle rental is associated with an individuals’ level of satisfaction 

with the leisure cycling experience among Taiwanese adults.  “Low cost” is also 

frequently mentioned as the reason for utilitarian cycling. According to Heinen, Maat, 

and Van Wee (2011), the advantages of cycling, including convenience, low cost, and 
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health benefits, are important factors influencing Dutch citizens’ choice of a bicycle as a 

mode of transportation. Further, the literature has shown that individuals who are BSP 

users are 2.5 times more likely to perceive benefits in using a BSP, such as bicycle 

maintenance, freedom from parking issues, low cost and no anxieties about vandalism 

and theft, than regular private bicycle riders (Curto et al., 2016).  

In addition to cost-effectiveness, the perception of various benefits of cycling is 

another important theme in cycling literature. For example, Willis, Manaugh, and El-

Geneidy’s (2015) review of cycling research published between 2005 to 2012 found that 

the decision to cycle is affected by the perception of cycling benefits, including 

perceptions of the health benefits from exercise, low cost, convenience, flexibility, speed, 

the ability to avoid traffic congestion, and environmental benefits. Similarly, Fitt (2015) 

pointed out that cycling is commonly associated with ecofriendly values and is often 

described as an activity that maintains or improves physical fitness. Furthermore, cycling 

as a form of physical activity also benefits mental health by reducing the levels of 

depression, stress, and anxiety, as well as improves mood, self-esteem, premenstrual 

syndrome, and body image (Scully, Kremer, Meade, Graham, & Dudgeon, 1998). Based 

on this analysis, this study operationalizes price value as an individual’s cognitive 

tradeoff between the monetary cost for BSP use and the perceived benefits from using it, 

including the benefits of physical activity, mental health, and environmental values.  This 

study hypothesizes:  

Hypothesis 5.  Price value will positively impact the intention of an individual to use a 

BSP. 
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Hedonic motivation  

In contrast with extrinsic motivation, intrinsic motivation refers to performing an 

act purely for the pleasure and the internal satisfaction of the activity itself rather than for 

its external rewards (Ryan & Deci, 2000). Found to be more important than performance 

expectancy in the UTAUT2, intrinsic motivation is conceptualized as “hedonic 

motivation,” meaning the consumer’s perception of the fun or enjoyment associated with 

the technology use (Venkatesh et al. 2012).  

Hedonic motivation is also important for an individual’s satisfaction with 

recreational cycling trips. H.-L. Chang and Chang (2009) explored the motivations 

driving Taiwanese high-tech workers and non-high-tech workers to go cycling, and 

discovered that the primary motivations for the high-tech workers included 

entertainment, stress-release, and the social networking opportunity. For the non-high-

tech worker group, motivations include the cycling itself, family time, and the enjoyment 

of nature. This type of motivation not only influences individuals to go recreational 

cycling but also is associated with BSP use, with S. -Y Chen’s (2016) finding that 

perceived fun-to-use is positively connected to continued use of a BSP. 

In fact one the most important images of cycling, is that it is fun. Daley and Rissel 

(2011) interviewed 70 Australians, finding that the themes linked to images of cycling 

included “clean and green,” and “healthy and fun.” Fitt’s  (2015) study also found that 

the general public frequently connected images of fun and sociability with leisure 

cycling. In some cases, cycling is perceived as “kids’ activity, ” suggesting that people do 

it just for fun, not for transportation (Handy, Xing, & Buehler, 2010). Thus, hedonic 
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motivation is operationalized as the degree to which an individual believes that riding a 

public bicycle is enjoyable, fun, and relieves stress. It is hypothesized that: 

Hypothesis 6.  Hedonic motivation will positively impact the intention of an individual 

to use a BSP.  

Habit 

In the UTAUT, experience, which refers to prior behavior, functions as an 

important moderator in the model. In the UTAUT2, Venkatesh et al. (2012) further 

categorized prior behaviors at two different levels, experience and habit. For them, 

experience refers to “an opportunity to use a target technology and is typically 

operationalized as the passage of time from the initial use of a technology by an 

individual (p.161),”while, habit is operationalized as prior behavior that is automatically 

performed without the need for self-instruction. They concluded that experience is 

necessary but may not be adequate to form a habit, which is postulated to significantly 

influence both behavioral intention and actual use.  

 In the cycling literature, habit has also been found to have an impact on both 

intention and behavior. For example, Ducheyne, De Bourdeaudhuij, Spittaels, and 

Cardon (2012) examined the relationships among individual social and physical 

environmental factors and their influences on cycling to school. Their results indicated 

that a strong habit is associated with 18% more cycling among Belgian children. In 

addition, De Bruijn, Kremers, Singh, Van den Putte, and Van Mechelen (2009) also 

found that habit is the strongest predictor of the length of cycling time. It moderates the 

intention- behavior relationship, meaning that as the strength of habit increased, the 
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intention for bicycle use became weaker in the research model.  

Since these previous studies found that habit had a strong influence on an 

individual’s decision to cycle, it is integrated into this study’s theoretical model and 

operationalized as the degree to which individuals believe that BSP use has become an 

inseparable part of their life so much so that its use is automatic. This study proposes: 

Hypothesis 7a.  Habit will positively impact the intention of an individual to use a BSP.  

Hypothesis 7b.  Habit will positively impact the leisure use of a BSP. 

Finally, an individual’s intention to use a BSP in this study is measured by how 

much an individual is willing to ride public bicycles in their leisure time. In addition, it is 

also assessed by how likely an individual will engage in such use in the near future. It is 

hypothesized that:  

Hypothesis 8.  Behavioral intention will positively impact the leisure use of a BSP. 

Use is measured by the frequency of an individual’s BSP use in his or her leisure 

time as well as how many times such use occurred in the past 30 days. Figure 2 below 

presents the theoretical model for this study, showing the eight primary constructs and 

their relationships.  
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Figure 2. Conceptual Model 

 
Methods 

Participants and Data Collection Procedure 

The target population for this study includes current users of YouBike who ride 

public bicycles in their leisure time. The sample was recruited from an online panel. 

According to the International Organization for Standardization (2012), an assess panel is 

a “sample database of potential respondents who declare that they will cooperate for 

future data collection if selected” (p. 1). An online panel study is a common practice in 

today’s consumer research. Furthermore, the advantage of an online survey panel is that 

the profiles of the respondents can be prescreened to ensure they fit the needs of the 

research. As a result, the questionnaire can be distributed more efficiently and the number 
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of invalid responses is lower than for a freely accessed online survey (Callegaro et al., 

2014; Primm, 2017). The validity concern of an online survey resulting from a low rate 

of Internet access is not an issue in the case of Taiwan. According to the Taiwan Network 

Information Center (2015), 80.3% of the total population of Taiwan has access to the 

Internet, and the access rate of the population aged 18 to 30 is 100%.  

The data used in this study were obtained from an online panel company, chosen 

due to its large number of members (over 500,000). In total, 900 e-mail invitations were 

sent to its members who have used YouBike for leisure in the past 12 months. There were 

348 members who completed the questionnaire for a response rate of 38.7%, which is 

higher than the average (34%) for online surveys (Shih & Fan, 2008). According to 

MacCallum, Browne, and Sugawara (1996), the sample size used in this study was large 

enough to reject a Type II decision error (the power estimates are based on alpha = .05, 

desired power = .80, RMSEA for H0 = .05, RMSEA for Ha = .01).   

Instrumentation 

This study employed an online questionnaire to investigate the relationships 

among the eight proposed factors and their influences on an individual’s BPS use in a 

leisure context. The questionnaire was developed following the Slavec and Drnovsek 

(2012) ten-step guideline. The initial measurement items were adopted from cycling and 

BSP literature (see Table 9 for details). Subsequently, qualitative data from ten semi-

structured interviews (see L. -H, Chen, Chancellor, & Ogletree, 2016) were used to adjust 

the initial measurement to ensure it fit the context of this research. An expert panel 

consisting of four faculty members with expertise in leisure, cycling, tourism, and 
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psychometrics evaluated the applicability of the measurement items. Because the 

research was conducted in Taiwan, the initial English questionnaire was translated into 

Traditional Chinese using the translation and back-translation method (Brislin, 1970; 

Ruvio et al., 2008). Because some pro-cycling participants may tend to select more 

positive options on any given question, a nine- point Likert-type scale (1 = ”Extremely 

Disagree” to 9 = ” Extremely Agree”) was used to measure each item. This range 

increases the variation of the rating scale and ensures respondents have multiple 

agreement response categories from which to select. 

The questionnaire was divided into three sections. First, the respondents were 

asked to evaluate their perceptions of 33 items related to the eight proposed factors. 

Second section questions related to respondents’ BSP use and cycling behaviors followed 

by questions related to the respondents’ BSP use and cycling behaviors. The last section 

of the survey asked about demographic characteristics and the socio-economic status of 

the respondents.  

 
Table 9 Construct and Items of the Measurement Model 

Factors and Items References 
Performance expectancy 
• PE1: YouBike helps me reach destinations effectively. 
• PE2: Using YouBike improves the quality of my leisure. 
• PE3: YouBike meets my leisure needs. 
• PE42: Overall, YouBike is helpful in my leisure time. 

 
Titze et al. (2008) 
S. -Y Chen and Lu 
(2016) 
 

Effort expectancy 
• EE1: It is easy to become a YouBike member. 
• EE2: The process of renting a YouBike bike is easy. 
• EE3: Finding a YouBike station in Taipei is easy. 
• EE4: It is easy to use the YouBike system. 

 
S. -Y Chen and Lu 
(2016) 
Hazen et al. (2015) 
Fishman et al (2014) 
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Table 9 Construct and Items of the Measurement Model (Continued) 

Factors and Items References 
Social influence 
• SI1: Members of my household encourage me to use YouBike. 
• SI2: My friends encourage me to use YouBike. 
• SI3: People who are important to me think that I should use YouBike. 
• SI4: YouBike users are respected in Taipei. 

 
Titze et al. (2008) 
Verma et al. (2016) 
Pai and Pai (2015) 

Facilitating conditions 
• FC1: In my community, I am more likely to use YouBike if there are bike    

         lanes. 
• FC2: I am more likely to use YouBike in scenic areas. 
• FC3: I am more likely to use YouBike in the places that have more  

         shades. 
• FC4: I am more likely to use YouBike in the places that have fewer traffic  

         lights. 
• FC5: I am more likely to use YouBike in the places that have less traffic  

         flow.   

 
De Sousa, Sanches, 
and Ferreira (2014) 
Titze et al. (2008) 
 Hazen et al. (2015) 
 

Price value 
• PV1: YouBike is an affordable option for exercise. 
• PV2: YouBike is an affordable option for maintaining mental health. 
• PV3: YouBike is an affordable option to protect the environment. 
• PV4: At the current price, YouBike is a good value. 

 

Titze et al. (2008) 
S. -Y Chen (2016) 
Hazen et al. (2015) 

Hedonic motivation 
• HM1: Riding a YouBike bike is fun. 
• HM2: Riding a YouBike bike helps me get away from the daily grind. 
• HM3: I have a sense of freedom when riding a YouBike bike. 
• HM4: Riding a YouBike bike helps me relieve stress. 

 

S. -Y Chen (2016) 
Titze et al. (2008) 

Habit 
• HT1: Using YouBike is a habit for me. 
• HT2: It is natural for me to use YouBike. 
• HT3: Riding a YouBike bike is a usual part of my life. 
• HT4: I use YouBike without consciously thinking about it. 

 
Venkatesh et al. 
(2012) 
 

Behavioral intention 
• BI1: I will try to ride YouBike bikes more frequently in my leisure time. 
• BI2: I plan to ride YouBike bikes for leisure. 
• BI3: I expect to ride YouBike bikes for leisure more often in the future. 
• BI4: I will use YouBike soon. 

 
Titze et al. (2008) 
Hazen et al. (2015) 

Use  
• U1: How many times do you use YouBike for leisure in the past 30 days? 
• U2: On average, how often do you use YouBike in your leisure time? 

 
S. -Y Chen and Lu 
(2016) 
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Data Analysis 

The initial data screening was conducted using SPSS (version 23.0) and included 

calculations for missing values, leverage, kurtosis, and skewness. For univariate 

normality, the absolute values close to 2.0 for skewness and 7.0 for kurtosis were used as 

reference for detecting extreme non-normality (Curran, West, & Finch, 1996). No 

variable in this sample violated this assumption. Mahalanobis Distance and graphical 

assessment were employed to examine multivariate normality (Arifin, 2015). Of the 348 

cases in the pilot test, two to six outliers were removed from the constructs, a process 

resulting in missing data. Given the relatively unbiased parameter estimation, the 

expectation-maximization (EM) algorithm was used to impute the incomplete data 

(Enders, 2001; Graham, 2009). Descriptive statistics were also employed to develop 

sample profiles. 

Given that a theoretical basis has been established in this study, confirmatory 

factor analysis (CFA) using Mplus 7.4 rather than exploratory factor analysis (EFA) was 

employed to assess the measurement (Suhr, 2006). A two-step CFA was conducted, as 

suggested by Anderson and Gerbing (1988), to evaluate each construct first and then to 

examine the overall measurement model. Finally, the hypothesized model was tested 

using structural equation modeling (SEM).  

Results 

Respondents’ Profiles 

The sample (N = 348) is slightly skewed toward male (53.2%), with the majority 

(37.4%) being between 30 and 39 years old. The respondents have low personal incomes, 
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with 21.8% reporting monthly personal incomes from NT $30,000 (approximately US 

$990.5) to NT $39,999 (approximately US $1320.64). Nearly 61.8% have completed 

either a 2- or 4-year college education, with approximately 22.4% completing a graduate 

degree. The demographic characteristics of the study sample can be seen in Table 10.  

 
Table 10 Demographic Attributes of the Respondents 

Demographic 
categories 

Frequency Percentage 
(%) 

Demographic 
categories Frequency Percentage 

(%) 
Gender   Monthly Personal Income  (TWDa) 

Male 185 53.2% Less than $10,000 46 13.2% 
Female 163 46.8% $10,000 - $19,999 26 7.5% 

Age   $20,000 - $29,999 51 14.7% 
18-20 29 8.3% $30,000 - $39,999 76 21.8% 
20–29 118 33.9% $40,000 - $49,999 57 16.4% 
30-39 130 37.4% $50,000 - $59,999 34 9.8% 
40-49 53 15.2% $60,000 - $69,999 16 4.6% 
Over 50 18 5.2% $70,000 - $79,999 15 4.3% 

Education level   More than $80,000 27 7.8% 
High School 49 14.1%    
College 215 61.8%    
Master Degree 78 22.4%    
Doctorate Degree 6 1.7%    

a. 1 New Taiwan Dollar (TWD) is approximately equal to .03 U.S. Dollars. 
 

Regarding the attributes of the respondents’ cycling behavior, the majority 

(54.6%) owns a personal bicycle. The preferred cycling season is spring (28.1%), while 

the preferred riding time is weekends (daytime 13.8%; nighttime 14.1%). The two 

primary transportation modes are public transportation (46.8%) and mopeds (26.7%). 

Almost half (50.9%) of the respondents also have experiences of commuting by 

YouBike. Approximately 44.3% had never ridden a bicycle in Taipei before YouBike 

launched. Of the respondents, 38.5% prefer riding YouBike bikes with friends, followed 
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by riding with family (23.6%). The descriptive behavioral characteristics of the 

respondents can be seen in Table 11 below.  

 
Table 11 Behavioral Attributes of the Respondents 

Preference Frequency %  Preference Frequency % 

Bike ownership   Riding time a   
Yes 190 54.6% Weekday before 9:00 216 11.2% 
No 158 45.4% Weekday 9:00-12:00 205 10.6% 
Riding Season a   Weekday 12:00-5:00 216 11.2% 
Spring 310 28.1% Weekday after 5:00 259 13.4% 
Summer 233 21.1% Weekend daytime 265 13.8% 
Autumn 310 28.1% Weekend evening 271 14.1% 
Winter 251 22.7% Daytime in notional holidays 257 13.3% 
Frequently used transportation mode  Evenings in notional holidays 238 12.4% 
Walking 23 6.6% Riding companion   
BSP 31 8.9% Family 82 23.6% 
Private bike 10 2.9% Friends 134 38.5% 
Moped/Motorcycle 93 26.7% Both family and friends 61 17.5% 
Car 28 8.0% Alone 71 20.4% 
Public transports 163 46.8% Commuting by public bikes   
Cycling behavior before 
YouBike’s launch   

Yes 
No 

171 
177 

49.1% 
50.9% 

Riding personal own bike 140 40.2% 
Riding rental bike 32 9.2%    
Riding friends’ bike 22 6.3%    
Never biking before 154 44.3%    

a. Respondents can choose multiple answers. 
 

Considering the reasons for riding YouBike bikes, 15.3% reported  “connects to 

public transports” as the main reason, followed by “exercising” (13.5%), “to get to leisure 

activities” (13.5%), and “relaxing” (13.3%). It seems that YouBike has been used to 

achieve various purposes in Taipei citizens’ leisure time. The details are presented in 

Table 12. 
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Table 12 Purposes of YouBike Use in Leisure Time 

Reason for use Frequency %  Reason for use Frequency % 
Exercising 260 13.5% Avoid finding parking spot 248 12.8% 
Go shopping 224 11.6% Avoid theft and vandalism 230 11.9% 
Give it a try 225 11.6% To get to leisure activities 260 13.5% 
Connects to public transports 295 15.3% Invited by friends or family 247 12.8% 
Relaxing 257 13.3% No other travel means  219 11.3% 
Avoid traffic congestion 231 12.0% Protect the environment  237 12.3% 
Respondents can choose multiple answers. 
 

Confirmatory Factor Analysis 

Since a theoretical structure of measurement and a model (see Figure 2 and Table 

9) are proposed, the first step in the analysis is to validate the proposed model structure 

(Kline, 2014). Because the chi-square test is sensitive to sample size, a set of incremental 

fit indices including the comparative fit index (CFI), the nonnormed fit index (NNFI or 

TLI), and the root mean squared error of approximation index (RMSEA) was used in this 

study to assess the goodness of all imposed covariance estimations (Bentler & Bonett, 

1980; Browne & Cudeck, 1993). According to Muthén and Muthén (2012), the non-

normality data should be assessed by MLM in Mplus, which refers to “maximum 

likelihood parameter estimates with standard errors and a mean-adjusted chi-square test 

statistic that are robust to non-normality (p.603).” Thus, this study used Satorra-Bentler 

(S-B) scaled statistics.  

The result of the CFA suggested that the measurement model fit the data fairly 

well (S-B χ2
 (467) = 908.588,  p < .001; SRMR = .050; TLI = .943; CFI = .950; RMSEA = 

.052 with 90% C.I. = .047, .057).  Factor loading of the measurement items ranged from 

.473 to .954, exceeding the cutoff value of .45 as suggested by Tabachnick and Fidell 

(2007). Thus, it was concluded that the measurement items fit the underlying constructs. 
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The composite reliability (CR) of the eight constructs tested was larger than .7, indicating 

satisfactory reliability. Furthermore, the constructs’ average variance extracted (AVE), 

which is used to assess the overall variance attributed to the underlying construct in 

relation to the variance attributed to measurement error, was larger than .50. Therefore, 

the convergent validity of the proposed measurement model was confirmed (Fornell & 

Larcker, 1981; Hair, Black, Babin, & Anderson, 2010). A summary of the factor 

loadings, CR and AVE of the measurement model is listed in Table 13. 

According to Fornell and Larcker (1981), discriminant validity, which estimates 

the variance shared between a factor and any other factor in the model, can be assessed 

by comparing the shared variance (squared correlation) between each pair of factors 

against their AVE (Fornell & Larcker, 1981; Hair et al., 2010). In other words, the value 

of the square roots of the AVE should be greater than the correlation between the two 

constructs.  As Table 14 shows, the off-diagonal elements in the rows and columns are 

smaller than the square roots of the related AVEs, which supports that any given 

construct in this model is correlated less with the other constructs than with its 

measurement items. Therefore, discriminant validity was supported.    
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Table 13 Measurement Model Results 

Constructs Items Mean (Standard 
Deviation) 

Factor Loading 
(Standard Error) 

Composite Reliability AVE 

Performance 
expectancy 

PE1 7.21 (1.192) .636 (.042) .913 .727 
PE2 7.03 (1.306) .890 (.016) 
PE3 6.93 (1.335) .949 (.008) 
PE4 

 
7.06 (1.387) .901 (.013) 

Effort 
expectancy 

EE1 6.88 (1.379) .718 (.032) .873 .636 
EE2 7.21 (1.257) .861 (.022) 
EE3 6.88 (1.281) .669 (.030) 
EE4 

 
7.14 (1.178) .916 (.015) 

Social 
influence 

SI1 6.18 (1.557) .767 (.026) .849 .597 
SI2 6.00 (1.600) .869 (.021) 
SI3 5.66 (1.734) .905 (.015) 
SI4 

 
5.30 (1.731) .473 (.055) 

Facilitating 
conditions 

FC1 7.22 (1.352) .691 (.036) .923 .707 
FC2 7.44 (1.245) .884 (.016) 
FC3 7.42 (1.268) .858 (.020) 
FC4 7.46 (1.256) .894 (.017) 
FC5  

 
7.69 (1.188) .861 (.020) 

Price value PV1 7.27 (1.296) .918 (.014) .929 .765 
PV2 7.11 (1.323) .896 (.012) 
PV3 7.45 (1.233) .877 (.013) 
PV4 

 
7.14 (1.475) .804 (.019) 

Hedonic 
motivation 

HM1 6.93 (1.349) .850 (.018) .941 .799 
HM2 6.47 (1.503) .866 (.015) 
HM3 6.77 (1.430) .929 (.011) 
HM4 

 
6.69 (1.450) .927 (.010) 

Habit HT1 6.09 (1.604) .861 (.017) .955 .843 
 HT2 6.47 (1.581) .924 (.011) 
 HT3 6.11 (1.668) .954 (.008) 
 HT4 

 
6.24 (1.672) .930 (.009) 

Behavioral 
intention 

BI1 6.90 (1.367) .882 (.015) .952 .831 
BI2 6.60 (1.491) .924 (.012) 
BI3 6.60 (1.515) .936 (.009) 
BI4 6.62 (1.547) .904 (.014) 

All items loaded on significantly to their respective constructs at p < .001; AVE = Average variance 
extracted. 
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Table 14 Discriminant Validity of the Measurement Model 

Constructs Correlation Coefficient 
PE EE SI FC PV HM HT BI 

PE: Performance expectancy .853                 
EE: Effort expectancy .565 .797               
SI: Social influence .582 .459 .773             
FC: Facilitating conditions .490 .437 .331 .841           
PV: Price value .705 .633 .535 .550 .875         
HM: Hedonic motivation .679 .474 .615 .519 .689 .894       
HT: Habit .601 .475 .613 .327 .678 .646 .918     
BI: Behavioral intention .691 .488 .664 .437 .711 .732 .779 .912  
The value on the diagonal line is the square root of AVE for the latent variable. The value should be higher 
than the value on the non-diagonal line. 
 

Hypotheses Testing 

As Table 15 shows, the model supported seven of ten tested hypotheses. The 

model demonstrated an acceptable fit, S-B χ2
 (529) = 1055.238,  p < .001; SRMR = .050; 

TLI = .943; CFI = .949; RMSEA = .051 with 90% C.I. = .046, .056. However, a close 

examination of results indicated that the direction and significance of effort expectancy in 

relation to behavioral intention as well as facilitating conditions in relation to leisure BSP 

use were not as expected. The parameters showed negative and non-significant 

relationships.  Furthermore, the relationship between facilitating conditions and 

behavioral intention was also shown to be non-significant. These findings did not support 

the positive relationships hypothesized by this study, perhaps because the survey 

respondents, who were familiar with YouBike, have either compromised their 

expectations or solved the difficulties of adoption of such programs. Therefore, 

facilitating conditions and effort expectancy did not influence their intention to use or 

their actual use of this BSP. 
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Table 15 Results of the Hypothesis Testing 

Hypothesis Paths 
Standardized 

Path 
Coefficient 

Standard 
Errora 

Two-
Tailed 
p-value 

Results 

H1: Performance expectancy →Behavioral intention .148 .055 ** Supported 
H2: Effort expectancy → Behavioral intention -.044 .044 ns. Not supported 
H3: Social influence → Behavioral intention .160 .047 ** Supported 
H4a: Facilitating conditions → Behavioral intention .029 .038 ns. Not supported 
H4b: Facilitating conditions → Leisure BSP use -.038 .046 ns. Not supported 
H5: Price value → Behavioral intention .133 .062 * Supported 
H6: Hedonic motivation → Behavioral intention .198 .057 ** Supported 
H7a: Habit → Behavioral intention .385 .056 *** Supported 
H7b: Habit → Leisure BSP use .300 .074 *** Supported 
H8: Behavioral intention → Leisure BSP use .321 .073 *** Supported 
 * p < 0.05; ** p < .01; *** p < .001; ns = not significant. a. Entries are standardized estimates. 

 

Except for these paths, the remaining hypotheses were supported with no values 

suggesting improper solutions. It was hypothesized in the model that the performance 

expectancy would stimulate individuals’ intention to use a BSP in their leisure time. The 

path between these two constructs was found to be statistically significant (β =  .145, p < 

.01), suggesting that a stronger expectation of the usefulness of YouBike increases the 

user’s willingness to ride these public bikes. The results provide evidence for the positive 

effect of the usefulness of a BSP on an individual’s decisions to ride, supporting earlier 

studies (Willis, Manaugh, & El-Geneidy, 2015).  

Social influence, which was hypothesized to be positively related to BSP use 

intention, was supported in this study (β =  .160, p < .01), with the results indicating that 

greater social support and a more bicycle-friendly culture positively influenced the 

individual’s assessment of BSP use. This study confirmed that when promoting cycling, 

marketers should remember that the social environment plays a significant role in 

people’s decision to cycle (Sherwin et al., 2014); furthermore, this influence may come 
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from the direct support of family and friends (Fishman, Washington, Haworth, & Mazzei, 

2014) and from the indirect support of a bicycle-friendly society (Fitt, 2015).   

This study further examined the impact of price value on the intention to use a 

BSP, hypothesizing that the more value and economic benefit people receive from a BSP, 

the more likely they are to use it during their leisure time. This assumption was supported 

with a significant standardized path coefficient in the model  (β =  .133, p < .05). Thus, 

BSP use intention increases .133 for every unit increase in price value, suggesting that the 

cost and value of a BSP are important to the users. As Pai and Pai (2015) mentioned, BSP 

users are cost-sensitive and interested in the benefits that the program can provide. 

As intrinsic motivation is significant in one’s decision making process (Ryan & 

Deci, 2000), hedonic motivation was hypothesized in this study to be positively related to 

an individual’s intention to use a BSP, and the results support this hypothesis (β =  .198, 

p < .01). More specifically, as the enjoyment perceived by an individual increased, the 

probability that he or she would ride public bicycles for leisure also increased. In other 

words, the pure pleasure and the satisfaction derived from cycling itself stimulated the 

participants to try BSP use. In this study, the relationship between hedonic motivation 

and use intention was greater than performance expectancy, social influence, and price 

value, indicating that the nature of leisure cycling, fun and happiness, more strongly 

influenced people to become involved in this activity than other factors. This resonates 

with the findings of Chen (2016) who found that the desire to use a BSP is influenced by 

positive emotions and attitudes such as happy, excited, satisfied, and, relaxed. 
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The relationship between habit and behavioral intention was particularly strong 

(β =  .385, p < .001) in this model, showing that the BSP users’ intention to ride increased 

.385 units for every unit increase of habit. This finding supports Kaplan et al. (2015) who 

suggested that cycling chosen as a habitual transport mode choice during daily life 

significantly influences tourist intentions to use an urban BSP on holiday. Furthermore, 

habit also strongly predicted individuals’ leisure BSP use (β =  .300, p < .001), suggesting 

that the stronger the habit, the more positively it affects the frequency of an individual’s 

BSP use. This study provided empirical evidence that habit should be included in a 

theoretical model examining cycling behaviors as De Bruijn et al. (2009) suggested. 

Taken together, these two results lead to the conclusion that habit has both a direct and an 

indirect effect on leisure BSP use. 

Behavioral intention was also a strong predictor in this model  (β =  .321, p < 

.001) as it directly influenced the frequency of an individual’s BSP use, suggesting an 

individual’s mental readiness plays an important role in their behavior. Although 

behavioral intention as an indicator of people’s behavior has been challenged (Rhodes & 

Bruijn, 2013; Sheeran, 2002; Verplanken, Aarts, Knippenberg, & Moonen, 1998), its role 

in individual leisure use of a BSP was found important in this study.  

Squared multiple correlation (R2) was used to determine how much variance of 

the latent dependent variable (i.e., behavioral intention and leisure use) was explained by 

the exogenous variables. The R2 value of use intention was .739, which means 73.9% of 

the total variance of use intention was explained by performance expectancy, social 

influence, price value, hedonic motivation, habit, and behavioral intention. Furthermore, 
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behavioral intention and habit combined accounted for 32.6% of the total variance in 

explaining BSP use (R2 = .326). Although three hypothesized paths were not supported in 

this study, the results indicate adequate predictive validity of the model.    

Discussion and Conclusion 

To expand the limited research examining leisure BSP use, this study adopted the 

UTAUT2 as the conceptual framework for exploring the determinants of its use. The 

results partially supported the predictive validity of the model. Five factors, including 

performance expectancy, social influence, price value, hedonic motivation, and habit, 

significantly impacted people’s intention to use a BSP for leisure. Furthermore, habit and 

behavioral intention significantly influenced the frequency of this leisure use among 

Taipei citizens. Some practical and theoretical implications can be drawn from these 

findings.  

Habit was the strongest predictor of behavioral intention and explained a large 

amount of variance of actual use. This result confirms previous findings from Sheeran’s  

(2002) meta-analysis of the predictive validity of behavioral intention, with results 

showing that on average, behavioral intention explains only 28% of the variance in a 

given behavior. He concluded that past behavior or habit seems to be another important 

factor in predicting human behavior. Verplanken et al. (1998) further explained that habit 

sets the boundary for the application of intentionality in predicting people’s choice of a 

travel mode, with the results of their study indicating that behavioral intention could 

predict behavior only when habits have not been shaped. Therefore, future investigation 
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of cycling or leisure behavior should consider the significance of habit and include it in 

the research model.  

This study also found that BSP’s utility and leisure functions attract Taipei 

citizens to use it during their leisure time. As Table 15 shows, both the performance 

expectancy and hedonic motivation constructs significantly predicted BSP use intention. 

The descriptive analysis also exhibited similar findings as BSP is not only used as a 

means of transportation but serves various functions for its users. For example, 

motivations related to the utility of BSP as “connects to public transports” or “get to 

leisure activities” were the top two reasons why Taipei citizens use YouBike, while “for 

relaxing” and “exercising” were also selected by many respondents as the main reasons 

to ride public bicycles in their leisure time (see Table 12). Therefore, the study confirms 

that BSP can play multiple roles in people’s lives, functioning not only as a means of 

transportation but also a tool for leisure as suggested by previous research (Murphy & 

Usher, 2015). 

From a theoretical perspective, the standardized path coefficient for hedonic 

motivation  (β = .198, p < .01) was slightly larger than performance expectancy (β = .148, 

p < .01) in the hypothesized model, indicating that the intrinsic motivation was more 

important than extrinsic motivation regarding BSP use in a leisure context. Thus, future 

BSP research may need to explore this difference and try to integrate both extrinsic and 

intrinsic types of motivation in one research model to increase the predictive validity 

(Ryan & Deci, 2000). Furthermore, the government and the cycling advocacy groups 

should promote BSPs or cycling through various marketing strategies. Commuting by 
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bike should not be the only focus. Based on this study, advertising public bicycles as a 

pleasurable and fun activity may persuade more people to try it. 

This study revealed that price value is important to BSP users. According to Curto 

et al. (2016), the most important factors attracting people, even those who have their own 

bicycles, to use a BSP are the avoidance of theft, vandalism, bicycle maintenance, and the 

low cost. However, price value is not the only reason why people use a BSP in their 

leisure time. Individuals also value its health and environmental benefits, and these 

results provide further support for the role of perceived value in cycling intention. 

Specifically, it seems that not only individuals who ride private bicycle are influenced by 

perceived health benefits (Heinen et al., 2011) and environmental value of cycling 

(Gatersleben & Appleton, 2007) but also leisure BSP users (Kaplan et al., 2015). In 

summary, the value of BSP is viewed by its users as a combination of low cost, health, 

and environmental benefits.  

Future research should examine how the price and other benefits of cycling are 

weighted and influence BSP-use patterns. Researchers may investigate, for example, at 

what degree do health benefits and environmental values start to influence an individual’s 

willingness to pay. These data are also important for practitioners. For instance, since 

YouBike canceled the first 30-minutes-free riding policy, the numbers of travel trips have 

dropped by more than six million per annum (Chi, 2016, April 25). The subtle balance 

between an individual’s willingness to pay and the perceived value of a BSP may 

significantly determine the success of a BSP. 
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This study compared the influences of bicycle infrastructure, ease of BSP use, and 

social influences on use intention. The results were contrary to previous research. For 

example, Buck et al. (2013) found that bike sharing activity and the existence of bike 

lanes exhibit a statistically significant relationship. In addition, Titze et al. (2008) pointed 

out that connectivity of bicycle lanes was positively linked with bicycle commuting. 

Kaplan and Prato (2016) also found that bicycle lanes were perceived as essential by both 

utilitarian and recreational cyclists. However, this does not appear to apply to leisure BSP 

use. In this study, the facilitating conditions have a non-significant and negative 

relationship with use intention (β = -.029, p > .05), as does the ease of BSP use  

(β = -.044, p > .05). Although previous studies have been found that sufficient docking 

stations (Fuller et al., 2011), an easy sign-up procedure (Fishman et al., 2012), and a 

simple renting and returning process (Pai & Pai, 2015) are important motivating factors 

for people to use BSP, there is no relationship found between leisure BSP use intention 

and effort expectancy in this study.  

In the UTAUT, Venkatesh et al. (2003) found that effort-oriented constructs are 

significant only during the initial introduction of a technology, becoming non-significant 

over extended and continued usage. They further explained that effort expectancy is more 

salient at the beginning of a new behavior. When the obstacles of adopting new systems 

or performing a new behavior are overcome, instrumentality concerns become the user’s 

priority focus. Therefore, in the future, researchers may compare if effort-oriented 

constructs are more important to people new to using a BSP than long-term users who 

have formed the habit of its use. A longitudinal research study should also be conducted 
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to document the changes in the significance of effort expectancy in a city that initially 

launches a new BSP until the program is accepted as a part of its citizens’ lives. For 

example, when the BSP began to appear on Brisbane’s streets, citizens indicated a high 

level of interest in use but the time-consuming sign-up process discouraged many of them 

(Fishman et al., 2012). It appears that a simple, easy operating BSP may attract more new 

users but is not necessarily important to regular users. 

Similarly, in the UTAUT, resource-orientated constructs are significant at the 

early stages of introducing a new system, but their influence on intention disappears after 

the system becomes established. Furthermore, the influence of the support infrastructure 

becomes non-significant when both performance expectancy and effort expectancy 

constructs are included in the model (Venkatesh et al., 2003). Therefore, future research 

may investigate if the presence of bicycle lanes, beautiful scenery, shade, and traffic 

volume are more important in attracting new users than for long-term BSP users. 

Furthermore, Venkatesh et al. (2012) pointed out that age and gender might influence the 

importance of facilitating condition on intention, finding, for example, older women 

value the availability of resources, knowledge, and support for new technology more than 

other age groups. Deenihan and Caulfield (2015) also found that younger male bicycle 

tourists who own personal bicycles are more likely to cycle on routes without bicycle 

facilities, while older female tourists who do not have personal bicycles are more willing 

to cycle on routes with bicycle lanes away from the flow of traffic. Thus, in the future, 

demographic characteristic can be included in the model to investigate the influence of 

age and gender on the perception of facilitating conditions.  
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In contrast to the non-significant and negative path of effort expectancy and 

facilitating conditions toward intention, social influence was found to positively influence 

Taipei citizens’ intention for leisure BSP use (β = .160, p < .01). It seems that for BPS 

leisure users, social support is more important than bicycle infrastructure or the operating 

system of the BSP. Based on the descriptive analysis, 12.8% of the survey respondents 

reported that the reason why they use BSP in their leisure time is simply because of being 

invited by their friends and family to do so. This finding provides further support for the 

importance of the sociocultural environment factor in BSP use intention, a result 

corresponding to Liao’s (2016) call for associating the social environment with bicycle 

share activities to further our understanding of this relationship. These results suggest that 

the government and other organizations should not only focus on the construction of the 

bicycle infrastructure but also include efforts promoting a bicycle-friendly culture. As 

Dickinson and Dickinson (2006) explained, “It is important not to ignore wider social 

processes and the societal pressures in which individuals make decisions” (p. 205).  

Since the leisure use of BSP is a worldwide phenomenon (Murphy & Usher, 

2015; Pai & Pai, 2015; Vogel et al., 2014), further investigation of such use is needed. It 

is expected that this study serves only as a steppingstone in the examination of the 

determinants of people’s leisure BSP use. Developing a unified model that integrates 

various psychological factors known to affect cycling decisions may shed some light on 

this field. Future research may extend this model to investigate various cyclists groups, 

further contributing to our understanding of BSP use. Furthermore, the model indicated 

that performance expectancy, social influences, price value, hedonic motivation, and 



 105 

habit significantly predict individual behavioral intention and behavioral intention 

significantly predicts actual use. Future research may explore the mediation effect in the 

model, discovering the strength of indirect effect of performance expectancy, social 

influences, price value, hedonic motivation, and habit on the actual use. 
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CHAPTER FOUR 

EXAMINING THE EFFECTS OF EXPLICIT AND IMPLICIT ATTITUDES ON 

USING PUBLIC BICYCLE SHARE FOR LEISURE  

Introduction 

SmartBike, introduced in Rennes, France, in 1998, is considered the first citywide 

information-technology based bicycle share program (BSP). Since then, it has attracted 

enormous interest and stimulated the rapid growth of similar programs worldwide 

(DeMaio, 2009; Parkes, Marsden, Shaheen, & Cohen, 2013; Shaheen, Guzman, & Zhang, 

2010). According to Shaheen et al. (2010), the BSP has made a significant positive 

impact on society by providing a low-carbon transportation mode to help solve the “first 

and last mile” public transportation problem and bridging the gap between current 

transport networks. However, the literature has shown that its use is not limited to being a 

means of transportation (Vogel et al., 2014). In Taipei, 28% of BSP users ride public 

bicycles only for leisure (Pai & Pai, 2015), while in Brisbane, 65% of CityCycle casual 

users reported leisure or sightseeing as the primary purpose of their last trip (Fishman, 

2016), and in Montreal, 6% of BIXI users cycle only for recreational purposes (Bachand-

Marleau, Lee, & El-Geneidy, 2012).   

However, researchers have not yet discovered why people ride public bicycles for 

leisure. Although the factors that cause people to engage in such behavior remain unclear, 

the cycling literature may provide some insights about their reasons. Sherwin, Chatterjee, 

and Jain (2014) interviewed 61 individuals across England to explore the significance of 

social influence on the decision to begin cycling, concluding that social networks and 
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their influences played an important part in people’s transportation choice. Similarly, 

Heinen, Maat, and Van Wee's  (2011) survey of Dutch citizens found that the attitude 

towards the benefits of cycling positively and significantly link with the decision to cycle. 

Although these qualitative and quantitative studies contribute to the knowledge of cycling 

behavior, researchers also point out that self-reported methods may not be able to fully 

capture the influences of emotional or symbolic drivers in the human decision-making 

process (Nosek, Greenwald, & Banaji, 2005; Sheeran, 2002; Yang, He, & Gu, 2012).  

To understand why people sometimes act irrationally and to better analyze the 

causes, researchers have proposed the “dual process theory” that postulates human beings 

may possess two fundamentally different modes of cognitive processing, one intuitive 

and fast, the other deliberative and slow (Frankish, 2010; Hofmann, Friese, & Strack, 

2009; Kahneman, 2011; Stanovich, 1999). Reflecting such theory, Wilson, Lindsey, and 

Schooler (2000) conceptualized a dual-attitudes model to explain how and why an 

individual may have two opposite attitudes toward the same object (e.g., bicycle). One, 

the explicit attitude, is the deliberate expression of an overt judgment controlled by our 

conscious mind and can be measured through self-reported questionnaires, while the 

other, the implicit attitude, is an automatic, habitual response that is difficult to assess 

using standardized survey instruments. Over the past several decades, scientists have 

developed alternative measures to detect these unconscious (implicit) attitudes. Among 

these measures, the Implicit Association Test (IAT) is the most widely used (Hofmann, 

Gawronski, Gschwendner, Le, & Schmitt, 2005). It primarily asks participants to 

categorize four sets of stimuli (either words or pictures) as quickly as possible using two 
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response keys. In this way, researchers are able to analyze participants’ response times 

for the assigned task and to indirectly measure the associative strength between two 

opposite concepts (Greenwald & Banaji, 1995; Greenwald, McGhee, & Schwartz, 1998).  

An IAT criticism is that the requirement of bipolar attributes (e.g., good–bad) 

may induce systematic error variance and reduce the validity if the research target has no 

clear opposite category (Penke, Eichstaedt, & Asendorpf, 2006). For example, the 

implicit attitudes of tourists toward a popular destination are somewhat difficult to assess 

using the IAT, as researchers must assign a second location as the opposite category.  

Measurement errors may be introduced if participants are attracted to both destinations or 

do not feel strongly against one or the other (Lee & Kim, 2016). Furthermore, IAT effects 

can also be understood oppositely. For example, in the classic flower-insect IAT 

(Greenwald, McGhee, & Schwartz, 1998), a negative IAT score of insects can be 

interpreted as the participant has a positive implicit preference for the flower instead of 

having an implicit bias against insects. Therefore, the IAT effect leads to a relative 

interpretation, which in some cases may create equivocal arguments and, thus, challenge 

the validity of the conclusions. To address this concern, researchers developed the Single 

Target Implicit Association Test (ST-IAT), modifying the IAT to assess the evaluative 

associations with a specific attitude object when the research target has no clear 

counterpart category (Wigboldus, Holland, & van Knippenberg, 2004). 

Research has found that individuals may be influenced by a stereotype or an 

implicit bias towards cycling and, thus, choose not to cycle. For instance, Handy, Xing, 

and Buehler (2010) found that people who consider cycling a fun activity only for kids 
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were less likely to cycle, while Fitt (2015) suggested that cycling is occasionally 

characterized as a specialist or elitist activity, requiring certain skills, expensive 

equipment, and special clothing, rather than a common transportation mode for the 

general public. Therefore, some view cycling implicitly as an “other people’s activity,” a 

perception that discourages people from cycling. Although previous research has found 

that a connection between an individual’s implicit bias and their cycling behavior, few 

studies quantify this relationship. As riding public bicycle for leisure can be seen as one 

type of cycling activity, an intriguing question that merits further examination is “How 

does the implicit attitude toward cycling influence individual leisure BSP use?” To better 

understand such influence, this study applied ST-IAT to assess this relationship.  

Furthermore, researchers have found that people perceive cycling and cyclists 

differently. For example, some may link positive words such as “clean and green,” 

“healthy and fun” with cycling whereas others link negative terms such as “risk takers,” 

“law breakers,” and “status and sub-cultures” with cyclists (Daley & Rissel, 2011). In 

order to capture the differences between an individual’s implicit attitude towards both 

cycling and cyclists, two ST-IATs were developed to yield a more holistic picture.  

In addition to implicit bias, researchers have also found that individuals’ explicit 

attitudes may positively influence his or her intention to cycle. For example, Curto et al. 

(2016) applied the Theory of Planned Behavior (TPB) to investigate cycling intention, 

finding that attitude and perceived behavioral control were the most influential factors 

affecting bicycle use for commuting purposes. In addition, Chen and Lu (2015) found 

that a BSP user’s attitude has the highest mediation effect on an individual’s BSP use 
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intentions. Fitt (2015) further explored why individuals might hold positive or negative 

attitudes toward a certain mode of transportation, concluding that the formation of 

attitudes might be derived from social meanings and the perspectives held by various 

social groups. Namely, individuals perceive more positive social meanings in their in-

groups (us) and attach stereotypes to their out-groups (them), even if they are unaware of 

doing so. Thus, this study also assesses the influence of individuals’ explicit attitudes 

towards leisure cycling and their social group identity on leisure public bicycle riding. 

It is expected that incorporating a dual-attitudes model in the investigation of 

leisure cycling behavior will contribute to the current knowledge. Furthermore, the use of 

the ST-IAT to explain the effects of implicit social cognition on using BSP for leisure 

may provide more comprehensive information for leisure cycling and BSP practitioners 

as well as introducing a new direction for future work.   

Literature Review 

Dual Process Theory and Its Influence on Leisure Behavior 

Although humans have the ability to deliberate and plan future behavior, they also 

act impulsively at times. For example, people occasionally engage in irrational behavior 

contrary to their long-term goals for instant hedonic fulfillment (Hofmann et al., 2009). 

Understanding this aspect of human nature may provide insights on leisure behavior.    

Social scientists have recently introduced the dual process theory, which posits 

that there are two distinct systems of cognitive processing that control human behavior 

(Hofmann et al., 2009; Kahneman, 2011; Stanovich, 1999). Stanovich (1999) used the 

generic terms System 1 and System 2 to describe these two sets of properties. However, 
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Evans and Stanovich (2013) criticized such terms such as System 1 or heuristic system as 

being inaccurate and misleading because they imply that what is being indicated to is a 

particular system. In fact, the term System 1 should be plural because it suggests a set of 

systems in our brain. Therefore, they suggest using the terminology Type 1 and Type 2 

processing because these terms both specify qualitatively different forms of processing 

and indicate that multiple neural or cognitive systems may trigger them. 

Though different terminologies have been used to label these two modes of 

thinking, these theories share a common assumption that one is fast and autonomous, 

whereas the other is slow and capacity-limited. Specifically, Type 1 processing is 

unconscious, meaning it is fast, automatic, and involuntary. Information processed 

through this path lacks precise details and context. Furthermore, Type 1 is associated 

with a human’s implicit attitudes and, thus, cannot be controlled. On the other hand, Type 

2 is an evolutionary and uniquely human system, which is slow, deliberate, and 

voluntary. It is the source of our capability for abstract thinking in accordance with 

logical social norms, and it is associated with explicit attitudes and responsive to verbal 

instruction (Frankish, 2010; Kahneman, 2011). 

Iso-Ahola (2015) argued that most human behavior is driven by environmental 

cues and that people tend to avoid cognitive and physical demanding tasks, pointing out 

that Type 1 thinking operates best during casual leisure (i.e., watching TV) because 

people typically exhaust their limited working memory at work, thus leaving little to 

nothing for strenuous cognitive or physical leisure activity. Rational thinking, the Type 2 

process, on the other hand, negatively affects the sense of freedom suggested by leisure 
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since it reminds people that they should be engaged in activities that benefit them (i.e., 

you must exercise or else…) but which require significant energy to complete. 

Subsequently, leisure becomes an incubator for the Type 1 process and a difficult setting 

for the Type 2 to dominate. Because the studies applying the dual process theory to 

leisure are limited, he called for more empirical examination of these assumptions. This 

study responds to his call, applying the dual process theory by comparing individuals’ 

implicit and explicit attitudes toward leisure cycling and leisure cyclists. 

Dual Attitudes and the Indirect Measures 

Recent research in social psychology indicates that human beings possess two sets 

of attitudes: one, the explicit attitude, is a verbalized, overt, and self-aware assessment of 

a particular group, individual, or issue, while the other, the implicit attitude, is a difficult 

to control, non-verbalized, and spontaneously activated evaluation of objects, which can 

sometimes function without an individual’s awareness (Greenwald & Banaji, 1995; 

Perez, 2013). Specifically, explicit attitudes demand more mental effort to articulate than 

implicit attitudes (Eagly & Chaiken, 1993).  

In leisure research, explicit attitudes are typically measured using self-report 

approaches. When respondents reply to a questionnaire, they perform a series of high-

level cognitive functions formulating their answers. First, they need to understand the 

inquiry: what does this question mean? Then, based on their interpretation, they need to 

retrieve memories that match their responses with the available answer categories. Last, 

the respondents need to organize and report their opinions on the survey (Perez, 2013). At 

times, they may adjust their answers due to the social desirability effect (Fisher, 1993), 
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another cognitive activity. All of these steps require considerable energy, effort, and self-

awareness. If the respondents fail to introspectively assess their thoughts precisely, the 

self-reported information may be inaccurate and biased (Kollmuss & Agyeman, 2002).  

To address the bias caused by an individual’s less than perfect introspective 

capability, researchers have developed alternative measures to assess attitudes as they 

attempt to address the limitations of self-reported measures. These indirect measures 

examine the existence of attitudes not by what respondents express but by the rapidity 

with which they complete a set of tasks (Calitri, Lowe, Eves, & Bennett, 2009; 

Greenwald et al., 1998; Nosek et al., 2005; Perez, 2013). Because implicit attitudes are 

affective evaluations and, hence automatic, they can be better captured through these 

reaction-time methods, which circumvent individuals’ introspective abilities. Among 

these latency-based implicit measures, the IAT is the most widely used for evaluating an 

individual’s implicit aptitudes (Greenwald & Banaji, 1995; Greenwald et al., 1998). 

In a typical IAT, participants are asked to respond to certain words or pictures 

using a computer keyboard.  For example, participants are requested to rapidly sort 

several words relating to concepts (e.g., flower, insect) or to attributes (e.g., good, bad) 

into categories that appear on the left and right side of a computer screen. When the 

concepts and attributes are assessed as congruent by the participants (e.g., flower + good 

words), the implicit mind will guide them to press the corresponding keys faster than 

when the concepts and attributes are evaluated as incongruent, such as insect and good 

words (Greenwald et al., 1998).  
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While researchers recognize the value of the IAT, it has been criticized for 

delivering equivocal answer to some inquiries, such as the assessment of a target concept 

for which the counter-category is difficult to define (Bluemke & Friese, 2008). Taking 

leisure cycling as an example, researchers can use leisure driving, leisure hiking, or many 

other leisure behaviors as the counter-category; however, given leisure cycling is not 

absolutely opposite to leisure driving or leisure hiking, the results of the IAT are 

problematic and cannot be clearly interpreted. Therefore, modified versions of the IAT, 

including the Multi-Dimensional IAT (MD-IAT), the Single-Target IAT (ST-IAT), the 

Single-Attribute IAT (SA-IAT), and the Single-Category IAT (SC-IAT), have been 

developed (Bluemke & Friese, 2008; Karpinski & Steinman, 2006; Penke et al., 2006; 

Wigboldus et al., 2004), with the ST-IAT being the most widely used method for 

evaluating associations of only one target (Lee & Kim, 2016). Furthermore, researchers 

have also found that several ST-IATs can be combined in one study to compare multiple 

concepts and still exhibit good discriminant validity (Bluemke & Friese, 2008), 

supporting the strength of the ST-IAT for examining leisure behavior for which it is 

difficult to define an opposite category. 

Distinctive Attitudes toward Cycling and Cyclists 

Although research shows that the health benefits of cycling outweigh the risks of 

a crash, the most commonly mentioned reason for not cycling is fear (Fishman, 

Washington, & Haworth, 2012). When researchers further explored the formation of fear 

of cycling in places with a pro-car culture, the results implied that this emotion might be 

derived from an individual’s implicit bias against cyclists, not cycling (Fitt, 2015).  
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Daley and Rissel (2011) interviewed non-riders, occasional riders, and regular 

riders, finding opposite perceptions of cycling and cyclists. Themes linked to images of 

cycling were typically good words, such as “serious business,” “healthy and fun,” and 

“clean and green,” while negative terms such as “law breakers,” “status and sub-cultures” 

and “risk takers,” were frequently associated with cyclists. They also found that the 

perceptions of cyclists vary across rider groups, with non-riders generally expressing less 

favorable opinions about cyclists than occasional and regular riders. Fitt (2015) explained 

this phenomenon from social meanings and social groups perspectives, saying individuals 

apply more positive social meanings to their in-groups (us) and more negative stereotypes 

to their out-groups (them).  

Lois, Moriano, and Rondinella (2015) also pointed out that an individual’s 

intention to commute by bicycle is associated with the person identifying as “a cyclist.” 

Specifically, this identification is a symbolic result derived from individual’s self-

perception as a member of a particular group. Based on this identity, individuals can 

make a quick social judgment about people who are not part of their “in-group” and act 

irrationally against them. For example, Kaplan and Prato (2016) found that at locations 

where motorcyclists and cyclists compete for road space, negative terms (e.g., fear and 

anxiety, anger, annoyance, or contempt) were frequently expressed by research 

participants against the other group, even if no real conflict occurred. However, this bias 

has primarily been seen in relation to commuting cyclists, not the leisure cyclists. People 

may see utilitarian cyclist as ‘‘hazardous’’ but see a leisure cyclist as person who has a 

good quality of life (Daley & Rissel, 2011). These distinctive perceptions may influence 



 126 

people’s choice of cycling. Research comparing the differences between individuals’ 

implicit attitudes and explicit attitudes toward cycling and cyclists and quantifying their 

influences on cycling behavior is limited. To address this limitation, this study explores 

this relationship, proposing the following hypotheses: 

Hypothesis 1: The implicit attitudes toward leisure cycling will positively influence an 

individual’s leisure public bicycle riding frequency.  

Hypothesis 2: The implicit attitudes toward leisure cyclists will positively influence an 

individual’s leisure public bicycle riding frequency. 

Hypothesis 3: The explicit attitudes toward leisure cycling will positively influence an 

individual’s leisure public bicycle riding frequency. 

Hypothesis 4: An individual’s social identification with a leisure cycling group will 

positively influence his/her leisure public bicycle riding frequency. 

The hypothetical model of this study is presented in Figure 3. 

Research Methods 

Participants 

The recruitment of participants for this study involved two phases. Convenient 

sampling was used in the first phase of the study for stimuli selection. A total of 78 

Taiwanese adults participated in the survey with 27 invalid responses. The remaining 51 

participants (male = 10, female = 41) were between the ages of 18 and 56 (average = 

30.59, SD = 9.19). The majority of these participants had completed college  (47.1%), 

followed by those with high school degrees (25.5%), master’s degrees (23.5%) and 

doctorate degrees (3.9%).  
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 Figure 3. Theoretical Model 

 

Participants in the second phase (N = 260) were primarily recruited from a 

cycling discussion forum of a terminal-based bulletin board system (telnet://ptt.cc), which 

is the most influential online community in Taiwan, with more than 1.5 million registered 

users (Busuness Next, 2016). There were more females (60.8%) than males (38.5%) in 

this sample, and the majority of the respondents were in the 20 to 29 age group (43.8%), 

followed by the 30-39 (36.2%). Of the 260 respondents, 19.2% had personal monthly 

incomes in the range of NT$30,000 (approximately US $990.5) to NT $39,999 

(approximately US $1320.64). Most of the respondents were well-educated, with 46.2% 

having a college degree and another 46.2% with master’s degrees. More than 81.5% of 
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the respondents did not commute by public bicycles, with a majority using a moped or a 

motorcycle (48.5%) as their primary mode of transportation. The sample size for phase 

two was based on a power analysis conducted using the approach proposed by 

MacCallum, Browne, and Sugawara (1996). The sample size of the ST-IAT was large 

enough to reject a Type II decision error (the power estimates are based on alpha = .05, 

desired power =.80, RMSEA for H0=.05, RMSEA for Ha.01). The detailed profile of the 

respondents is presented in Table 16. 

Table 16 Respondents’ Profile 

Demographic 
categories Frequency Percentage 

(%) 
Demographic 

categories Frequency Percentage 
(%) 

Gender Monthly Personal Income  (TWDa) 
Male 100 38.5% Less than $10,000 64 24.6% 
Female 158 60.8% $10,000 - $19,999 16 6.2% 
No Response     2 0.8% $20,000 - $29,999 30 11.5% 

Age $30,000 - $39,999 50 19.2% 
Less than 20 10 3.8% $40,000 - $49,999 42 16.2% 
20–29 114 43.8% $50,000 - $59,999 22 8.5% 
30-39 94 36.2% $60,000 - $69,999 20 7.7% 
40-49 36 13.8% $70,000 - $79,999 16 6.2% 
Over 50 6 2.3% Frequently used transportation mode 

Education level Walking 12 4.6% 
High School 16 6.2% BSP 6 2.3% 
College 120 46.2% Private bike 20 7.7% 
Master Degree 120 46.2% Moped/Motorcycle 126 48.5% 
Doctorate Degree 4 1.5% Car 34 13.1% 

Commuting by public bikes Public transports 62 23.8% 
   Yes 

 No 
48 
212 

18.5% 
81.5% 

a. 1 New Taiwan Dollar (TWD) is approximately equal to .03 U.S. Dollars.

Selection of Stimuli 

To select stimuli representing the leisure cycling and leisure cyclist categories, a 

Qualtrics-based survey facilitating a sorting task was developed. Since no IAT relevant to 

the topic investigated here has been developed, ten candidates for verbal stimuli for each 



129 

category as well as good words and bad words were first chosen from an online search 

engine and the cycling literature (Daley & Rissel, 2011; Fitt, 2015). Participants were 

asked to categorize these terms and rate their ease of classification. The final set of 

stimuli was determined based on the correct percentages of reactions to each of them, 

with each stimulus word resulting in at least a 96% agreement in categorization. The 

sorting task produced six verbal stimuli for the categories of leisure cycling and leisure 

cyclists and the attributes, i.e. good words, and bad words. The details can be seen in 

Table 17 and Table 18 respectively. 

Table 17 Results of Stimuli Sorting Task for Categories 

Stimulus Terms % Categorized as Leisure 
Cycling/Leisure Cyclists 

Mean of Easiness 
for Classification 

Standard 
Deviation 

騎自行車 (Bicycling) 98.08% 4.47 0.75 
騎腳踏車 (Cycling)  98.04% 4.31 0.85 
騎單車 (Biking) 98.04% 4.73 0.53 
騎自行車 (Go cycling) 98.04% 4.14 1.14 
腳踏車 (Bicycle) 98.04% 4.27 0.95 
自行車 (Bike) 98.12% 4.14 0.93 
腳踏車騎士(Cyclist) 98.12% 4.22 0.96 
自行車騎士(Bicyclists) 98.12% 4.53 0.72 
單車騎士(Biker) 100% 4.67 0.55 
騎單車的人(Bike Rider) 96.08% 4.61 0.63 
騎自行車的人(People who cycle) 98.04% 4.22 0.96 
騎腳踏車的人(Bicycle Rider) 98.04% 4.31 1.00 

All the candidate terms are synonyms for cycling and cyclists in Chinese. 
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Table 18 Results of Stimuli Sorting Task for Attributes 

Stimulus Terms % Categorized as 
Good/Bad 

Mean of Easiness for 
Classification 

Standard 
Deviation 

強壯 (Strong) 100.00% 4.35 0.86 
成功 (Success) 100.00% 4.10 0.89 
健康 (Healthy) 100.00% 4.22 0.96 
快樂 (Happy) 98.04% 4.41 0.89 
自信 (Confident) 98.00% 4.27 0.97 
幸福 (Happiness) 100.00% 4.08 0.86 
愛炫耀 (Flaunting) 100.00% 4.08 0.88 
粗魯 (Rude) 100.00% 4.45 0.75 
討厭 (Disgusted) 100.00% 4.39 0.84 
煩人 (Annoying) 100.00% 4.27 0.82 
危險 (Dangerous) 98.00% 4.35 0.79 
遊手好閒 (Idle rich) 98.00% 4.39 0.77 

Research Instruments 

ST-IAT design 

The ST-IATs were created with open-source web-based codes (Chakroff, 2013) 

and uploaded to Qualtrics, a protected online survey platform, for data collection and 

storage. As Figure 4 shows, the leisure cycling ST-IAT was presented as a focal category 

of leisure cycling on one side of a computer monitor paired with good or bad, with 

stimulus words continually appearing in the middle of the screen (e.g., cycling, biking, 

healthy, dangerous). The participants were asked to correctly sort the stimuli into the 

appropriate category. If the participant miscategorized the stimulus word, a red “X” 

appeared on the screen, and the next stimulus terms continued to appear. The leisure 

cyclist ST-IAT adopted a similar procedure, but with the focal category, leisure cyclists. 

Each ST-IAT included a set of instructions for the categorization task and the 

appropriate key responses. The first trial started 1.5 seconds after the participant pressed 
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the space bar. If a stimulus word that shared similar attributes with the target concept 

appeared on the left of the monitor, the participants responded with the “A” key, while if 

the stimulus word shared the same attribute with the concept on the right of the monitor, 

the participants responded with the “L” key. Stimulus words remained on the monitor 

until the responses were made. The interval between the response and the next stimulus 

word was 30 milliseconds. A faster response suggested a more automatic association 

consistent with the participant’s attitudes, while a longer response time indicated a 

smaller or no association, suggesting an implicit bias against the target concept. Each ST-

IAT was comprised of two practice blocks and four formal task blocks. The detailed task 

sequences are presented in Table 19 and Table 20. 

Figure 4. Example of Tasks for the Leisure Cycling ST-IAT 

Table 19 Single-Target IAT for Leisure Cycling: Task Sequence 

 Block Trials Block Description Left Response Right Response 

1 18 Practice block Leisure Cycling 
+  

Good word 
 Bad words 2 36 First compatible experimental block 

3 36 Second compatible experimental block 

4 18 Practice block 

Good word 

Leisure Cycling 
+ 

Bad words 
5 36 First incompatible experimental block 
6 36 Second incompatible experimental block 
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Table 20 Single-Target IAT for Leisure Cyclist: Task Sequence 

 Block Trials Block Description Left Response Right Response 

1 18 Practice block Leisure Cyclist 
+  

Good word 
 Bad words 2 36 First compatible experimental block 

3 36 Second compatible experimental block 

4 18 Practice block 

Good word 

Leisure Cyclist 
+ 

Bad words 
5 36 First incompatible experimental block 
6 36 Second incompatible experimental block 

Explicit attitudes measures 

The explicit attitudes measure included five sections: 1) two semantic differential 

scales for measuring the general preference for leisure cycling and leisure cyclists; 2) an 

explicit attitudes measurement with five items related to leisure cycling; 3) a social 

identity measurement with five items related to leisure cyclist, 4) two current BSP use 

behavior questions, and 5) selected demographic questions. The semantic differential 

scales asked participants to rate the adjectives displayed in terms of  “good-bad” in 

relation to their perceptions of leisure cycling and leisure cyclists on a scale ranging from 

1 to 10, with 1 representing negative adjectives (i.e., bad) and 10 representing positive 

adjectives (i.e., good).  

The scale measuring the explicit attitudes toward leisure cycling included five 

items modified from cycling literature (Chen & Lu, 2015; Handy et al., 2010; Verma, 

Rahul, Reddy, & Verma, 2016), with participants responding to them using a 7-point 

Likert-type scale ranging from strongly disagree to strongly agree. These items included 

“Cycling is a good leisure activity for me”; “Leisure cycling is worth encouraging”; 

“Cycling is a cool option for leisure”; “Cycling for leisure is a wise decision for me”; and 
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“I like cycling in my leisure time.” For the social identity scale, the measurement items, 

which were adapted from the studies of Lois et al. (2015) and Cameron (2004), included  

“I identify myself as a leisure cyclist”; “I can envisage myself as a leisure cyclist”; “In 

general, I am glad to be a leisure cyclist”; “I feel good about being one of leisure 

cyclists”; and “I hope I can be a leisure cyclist.”  

The current BSP use behavior measure contained two questions. The first one,  

“How many times did you use YouBike for leisure in the past 30 days,” was answered 

using a range from  “never” to “more than 30 times.” The second question,  “On average, 

how often do you use YouBike in your leisure time,” was answered using a range from  

“used only once,” “once per year,” “once per half year,” “once per three months,” “once 

per month,” “once every two weeks,” “once per week,” “once every three days,” “once a 

day” to “more than once a day.”  

Procedure 

When participants entered the online ST-IAT website, they first saw a set of 

instructions and a consent form, informing them that their participation was completely 

voluntary and assuring them of the anonymity of their responses. Only after the 

participants clicked the agreement button could they proceed to the ST-IAT. The leisure 

cycling ST-IAT was presented first, followed by the leisure cyclist ST-IAT. After 

completing both ST-IATs, the participants answered the questionnaire measuring explicit 

attitudes toward leisure cycling and leisure cyclists. Once the participants completed the 

questionnaire, the data were stored in a database that only the researcher had access to in 

order to protect the their anonymity and to reduce self-presentation concerns. The 
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response times for ST-IATs were recorded on the website server regardless if an incorrect 

or correct response was given for each term. 

Data Analysis 

Data extraction and scoring 

Greenwald et al. (1998) introduced a scoring procedure (i.e., the conventional 

algorithm) to calculate IAT effect that compares the difference between the first 

combined blocks (Block 2) and the first reverse combined blocks (Block 5). This 

calculation procedure includes the following 5 steps: (1) The first two trials of the test 

trial blocks are removed because participants usually record longer response times; (2) 

Response times shorter than 300 msec or longer than 3,000 msec are recoded as 300 msec 

or 3,000 msec, respectively; (3) The raw data are log-transformed before calculation in 

order to use a statistical method that satisfies the distribution of variance for data analysis 

purposes, (4) The error-trials are also recorded in the analysis; and (5) The data with an 

error rate higher than 25% in any single experimental trial block are deleted. These 

conventional procedures typically produce the largest effect sizes (Gawronski & Payne, 

2010). 

Since the conventional algorithm needs more theoretical justification to 

differentiate it from other scoring approaches, Greenwald, Nosek, and Banaji (2003) 

introduced an improved IAT scoring process, the D measure. The main differences 

between the D measure and the conventional algorithm include that (1) 600 msec is 

added to an incorrect response as an error penalty and (2) the individual standardization 

procedure is similar to that for Cohen’s effect size measure d (Teige-Mocigemba, Klauer, 
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& Sherman, 2010). This study modified the D measure to calculate the ST-IAT effects. 

Open-source R scripts developed by Hilgard (2015) were used to analyze the data using 

the following procedure: 

(1) Data were extracted from Blocks 2, 3, 5, and 6.

(2) The data from the participants who responded more quickly than 300 msec over

10% of trials were eliminated;

(3) The means of the correct latencies of each block were computed for the final ST-

IAT effect size calculation;

(4) The pooled standard deviation for all trials in Block 2 and Block 5 was calculated

as well as for Block 3 and Block 6.

(5) The reaction times for incorrect trials within each block were replaced with that

block’s mean reaction time plus 400 ms (the penalty for an incorrect response for

the ST-IAT);

(6) The average of the resulting values for each of the four blocks was recalculated;

(7) The mean difference between Block 2 and Block 5 was divided by the pooled

Block 2 and Block 5 standard deviation as well as for Block 3 and Block 6;

(8) The equal-weight average was calculated from Step 7 results. A larger score

indicated a favorable implicit attitude toward leisure cycling or leisure cyclists.

Equation 1 represents the formula used to develop the ST- IAT effect score.

!"#$%&'()!!!"#$%&'()!
!"(!"#$% !!!"#$%!) !!"#$%&'()!!!"#$%&'()!

!"(!"#$% !!!"#$%!)

!
(1)
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According to Chequer (2014), IAT scores are significantly influenced by the 

measurement error, thereby affecting an accurate estimation of the underlying attitudes. 

Therefore, in addition to calculating the D score for the overall ST-IAT effect, this study 

used confirmatory factor analysis (CFA) to examine the reliability and construct validity 

of the ST-IAT scores and to control for the confounding influences of measurement error. 

As using a single D score to represent an entire latent construct is not ideal for the latent 

modeling approach, several scores should be extracted from the trials to estimate a latent 

factor. While generating scores with 144 paired congruent and incongruent reaction times 

for each participant is theoretically achievable, the process is cumbersome and may result 

in creating too many variables for one latent construct (Chequer, 2014). Thus, to provide 

sufficient yet manageable sets of ST-IAT scores for one latent variable, the data were 

sorted into six equal parcels based on the stimulus terms. This approach allowed for the 

control and estimation of the confounding influences of stimuli. Using the leisure cycling 

ST-IAT as an example, the implicit attitude construct was comprised of six mini ST-IAT 

scores based on six sets of stimulus terms: leisure cycling 1, good words 1, bad words 1, 

leisure cycling 2, good words 2, and bad words 2 as seen in Figure 5. All mini ST-IAT 

scores were calculated using this procedure. 
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Figure 5. An Example of a Latent Implicit Attitude Factor 

The relationships testing 

To exam the direction of the overall ST-IAT effect and the explicit attitudes, a 

correlational analysis of the relationship was conducted using SPSS 23.0. A larger D 

score on the ST-IAT is expected to have a positive correlation with favorable attitudes 

toward leisure cycling and with a stronger social identification with leisure cyclists. 

Furthermore, a series of paired samples t-test was conducted to compare the differences 

among these four attitudes. 

The CFA was performed using Mplus 7.4, based on the two-step approach 

suggested by Anderson and Gerbing (1988), evaluating each latent construct first and 

then examining the overall measurement model. According to Gorsuch (1983), a factor 
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loading of .32 is the cutoff value for a meaningful relationships between an item and a 

latent construct. Furthermore, a set of model fit indices such as chi-square, the 

comparative fit index (CFI), the standardized root mean square residual (SRMR) and the 

root mean squared error of approximation index (RMSEA) were used to assess the 

goodness of all imposed covariance estimations (Bentler & Bonett, 1980; Browne & 

Cudeck, 1993). The hypothesized model was tested using the structural equation 

modeling (SEM).  

Results 

Implicit and Explicit Attitudes Toward Leisure Cycling and Cyclists 

Table 21 shows the descriptive results for the explicit and implicit attitudes 

towards leisure cycling and cyclists. The averages of the implicit attitudes toward leisure 

cycling and cyclists were found to have positive values for both ST-IATs, which 

indicates that overall, the participants have positive implicit attitudes towards both leisure 

cycling and leisure cyclists. The average value of the explicit attitudes toward leisure 

cycling was relatively lower than expected, suggesting that the participants might 

explicitly hold a negative to neutral attitude toward leisure cycling (mean=3.35, 

SD=1.463). However, the participants gave a highly favorable assessment to leisure 

cyclists (mean=7.71, SD=1.939), suggesting that this sample has a positive explicit 

attitude toward leisure cyclists.   

To compare the implicit and explicit attitudes of leisure cycling and leisure 

cyclists, a series of paired sample t-tests was conducted, the resulting relationships being 

summarized in Table 22. The results indicated the ST-IAT scores between two implicit 
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attitudes were significantly different (t = 8.962, p < .001), suggesting the implicit attitude 

was more positive toward leisure cycling than leisure cyclists. However, the explicit 

attitudes measured by the semantic differential scale indicated the opposite, these results 

suggested that the participants hold significantly more positive attitudes towards leisure 

cyclists than leisure cycling (t = 30.211, p < .001).   

Table 23 provides the correlations among the ST-IAT scores and the semantic 

differential ratings toward leisure cycling and leisure cyclists. As this table shows, there 

was a correspondence between the ST-IATs (r = .330, p < .01), suggesting that the 

implicit attitudes towards leisure cycling and leisure cyclists were positively related. An 

individual who implicitly supports leisure cycling may also favor leisure cyclists. 

However, the ST-IAT scores were not significantly related to the measures of the explicit 

attitudes toward leisure cycling and leisure cyclist. These results, therefore, indicate that 

no significant relationship exists between an individual’s implicit and explicit attitudes. 

Furthermore, the explicit attitudes toward leisure cycling and cyclists exhibit no 

correlation.  

Table 21 Descriptive Results of Explicit and Implicit Attitudes  

Items Mean SD 

Overall ST-IAT effects for leisure cycling .280 .322 

Overall ST-IAT effects for leisure cyclist .083 .290 

Semantic differential scale for leisure cycling 3.35 1.463 

Semantic differential scale for leisure cyclist 7.71 1.939 

SD = Standard deviations. 
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Table 22 The Results of Paired Samples Test  

Items Mean Difference SD t-value df Sig. (2-tailed) 

IMCYCLING vs. IMCYCLISTS .197 .355 8.962 259 .000 

EXCYCLING vs. EXCYCLIST -4.362 2.328 30.211 259 .000 

IMCYCLING = Overall ST-IAT effects for leisure cycling; IMCYCLISTS = Overall ST-IAT effects for 
leisure cyclist; EXCYCLISTS = Semantic differential scale for leisure cycling; EXCYCLIST = Semantic 
differential scale for leisure cyclist. 

 

Table 23 Correlations Between Implicit and Explicit Attitudes   

Measures IMCYCLING IMCYCLISTS EXCYCLING 
IMCYCLISTS .330**   
EXCYCLING .047 .056  
EXCYCLIST .116 .047 .085 

IMCYCLING = Overall ST-IAT effects for leisure cycling; IMCYCLISTS = Overall ST-IAT effects for 
leisure cyclist; EXCYCLISTS = Semantic differential scale for leisure cycling; EXCYCLIST = Semantic 
differential scale for leisure cyclist. ** p < .01. 
 

Confirmatory Factor Analysis 

Indirect measures, such as the IAT, provide an alternative and valuable approach 

for evaluating an individual’s implicit attitudes that are difficult to capture using 

traditional survey measurements. However, previous research has expressed concern 

about its poor psychometric properties. According to Chequer (2014), high error 

variances likely contribute to IAT effects significantly, which should be taken into 

account to avoid inaccurate and bias estimation of implicit attitudes. Therefore, this study 

applied CFA to assess the reliability and construct validity of the ST-IATs. 

The use of a two-step CFA resulted in two parcels from the leisure cycling ST-

IAT, four parcels from the leisure cyclist ST-IAT, one item from the leisure cycling 

explicit attitudes scale, and two items from the leisure cyclist social identity scale being 

omitted due to insufficient and insignificant factor loadings. The remaining measurement 
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model fit the data properly (χ2
(56) = 113.998,  p < .001; SRMR = .058; CFI = .965; 

RMSEA = .063). Factor loadings ranged from .404 to .942, higher than the minimum 

value of .32 suggested by Gorsuch (1983). Thus, the remaining measurement items fit the 

underlying latent constructs well. The composite reliability (CR) of the two explicit 

measures and the leisure cyclist ST-IAT construct were greater than .6, indicating 

satisfactory reliability (Hair, Black, Babin, & Anderson, 2010). Furthermore, the average 

variance extracted (AVE) of these constructs, measuring the variance accounting for the 

underlying construct in relation to the measurement error, was larger than the suggested 

value of .50 (Fornell & Larcker, 1981; Hair et al., 2010), implying good convergent 

validity. Even though the AVE for the leisure cyclists ST-IAT was lower than the 

minimum value, the reliability of this construct was close to the suggested value. For the 

purpose of comparison, this construct was kept and used in the following test. A 

summary of the factor loadings, CRs and AVEs of the four-factor dual attitudinal model 

are presented in Table 24.  

The discriminant validity of the hypothesized model was estimated by comparing 

the shared variance between each pair of constructs with their respective AVEs (Fornell 

& Larcker, 1981; Hair et al., 2010). As seen in Table 25, all square roots of the AVEs are 

larger than the off-diagonal elements in the related cells. However, the correlations 

among constructs differ from the previous estimation, these results indicating that the 

leisure cycling ST-IAT score correlated with the leisure cyclist ST-IAT and the leisure 

cycling explicit measurement; however, the results from the previous analysis showed no 

correlation between both implicit attitude measures and any explicit attitude. 
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Furthermore, the leisure cycling explicit measurement correlated with the leisure cyclist 

explicit measurement, which are different results than the previous analysis. This 

difference may be due to measurement error or the different explicit measurement items. 

Thus, the results should not be treated as similar, and the interpretations should differ. 

 
Table 24 Measurement Model Results 

Constructs Items 
Mean (Standard 

Deviation) Factor Loading  Composite 
Reliability AVE 

Implicit 
attitudes 
toward leisure 
cycling 

Cycling1 .310 (.573) .488  .584 .263 
Bad1 -.036 (.631) .581  

Cycling2 .322 (.561) .561 
Bad2 .001 (.624) .404 

Implicit 
attitudes 
toward leisure 
cyclist 

Cyclist1 -.022 (.684) .666  .666 .500 
Cyclist2 -.123 (.595) .746  

   
   

Explicit 
attitudes 
toward leisure 
cycling 

ATT1 6.100 (1.291) .547  .891 .678 
ATT2 5.923 (1.116) .926  
ATT3 6.146 (.939) .848  
ATT4 5.808 (1.231) .915  

Explicit 
attitudes 
toward leisure 
cyclist 

IDEN1 4.292 (1.638) .763  .888 .727 
IDEN2 4.839 (1.605) .843 
IDEN3 4.885 (1.474) .942  

Cycling 1= First cycling stimulus words parcel; Bad 1= First bad stimulus words parcel; Cycling 2= 
Second cycling stimulus words parcel; Bad 2= Second t bad stimulus words parcel; Cyclist 1= First cyclist 
stimulus words parcel; Cyclist 2= Second cyclist stimulus words parcel; ATT1= Cycling is a good leisure 
activity for me; ATT2= Leisure cycling is worth encouraging; ATT3= Cycling for leisure is a wise 
decision for me; ATT4= I like cycling in my leisure time; IDEN1= I can envisage myself as a leisure 
cyclist ; IDEN2= I feel good about being one of leisure cyclists; IDEN3= I hope I can be a leisure cyclist. 
  



 143 

Table 25 Discriminant Validity of Measurement Scales 

Constructs 
Correlation Coefficient 

IM1 IM2 EX1 EX2 
IM1: Implicit attitudes toward leisure cycling .513       

  
  
.853 

IM2: Implicit attitudes toward leisure cyclist .426 .707   
EX1: Explicit attitudes toward leisure cycling .205 .071 a .823 
EX2: Explicit attitudes toward leisure cyclist .055a .114 a .744 

The value on the diagonal line is the square root of AVE for the latent variable; the value should be higher 
than the value on the non-diagonal line; a = not significant.  
 

Hypotheses Testing 

The influence of the implicit and explicit attitudes on an individual leisure public 

bicycle riding was estimated using SEM. The structural model in this study resulted in a 

good fit (χ2 (76) = 194.400, p < .001; SRMR = .054; CFI = .941; RMSEA = .077). The 

parameters of both implicit attitudes towards public bicycle riding showed negative and 

non-significant relationships, findings that do not support the positive relationships 

hypothesized here. However, an individual’s explicit attitudes towards leisure cycling and 

social identity with leisure cyclists were found to positively predict leisure public bicycle 

use. Thus, the hypothesized model developed for this study was partially supported by 

the data. These results are summarized in Table 26. 

 
Table 26 Results of the Hypothesis Testing 

Hypothesis Paths 
Standardized Path 

Coefficient 
Standard  

Error 
Two-Tailed 

p-value Results 

 H1: IM1→ Public bicycle riding -.018 .073 ns. Not supported 
H2: IM2→ Public bicycle riding -.086 .054 ns. Not supported 
H3: EX1→ Public bicycle riding .210 .088 * Supported 
H4: EX2→ Public bicycle riding .810 .094 *** Supported 
IM1= Implicit attitudes toward leisure cycling; IM2: Implicit attitudes toward leisure cyclist; EX1: Explicit 
attitudes toward leisure cycling; EX2: Explicit attitudes toward leisure cyclist; *p < .05; 
*** p < .001; ns = not significant. 
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Discussion and Conclusion 

Over the past decade, BSPs have expanded rapidly worldwide, with previous 

studies finding that people use such programs for commuting and leisure (Pai & Pai, 

2015). Although researchers have explored the determinants of BSP use and leisure 

cycling with fruitful results, few investigate the influence of dual attitudes on cycling 

behavior. This study appears to be one of the first to empirically apply a dual-attitude 

model to examine cycling behavior, and its findings contribute to our understanding of 

the impact of implicit and explicit attitudes on individuals’ use of BSPs for leisure. 

Furthermore, the application of CFA to examine the construct validity and reliability also 

provide an alternative direction for examining the measurement error resulting from IAT 

effects. 

More specifically, several practical and theoretical implications can be drawn 

from the study. First, the overall ST-IAT effects for leisure cycling (Mean = .280, SD = 

.322) and leisure cyclists (Mean = .083, SD = .290) exhibit positive values, suggesting 

that in general, people have favorable implicit attitudes toward both leisure cycling and 

leisure cyclists. However, the results of the paired sample t-tests indicated that these 

positive aptitudes are significantly different (Mean difference = .197, p < .001). 

Implicitly, people hold more positive attitudes towards leisure cycling than leisure 

cyclists. This result supports the findings from Daley and Rissel’s (2011) study indicating 

that people perceive cycling and cyclists differently. However, the results from the 

semantic differential scales indicated a different relationship, with people explicitly 

holding more positive attitudes toward leisure cyclists (Mean = .7.71, SD =1.939) than 



 145 

leisure cycling (Mean = .3.35, SD =1.463). This difference is also statistical significant 

(Mean difference = 4.362, p < .001). These findings confirm that people have different 

attitudes toward the same object, individual, or events (Wilson et al., 2000). While 

individuals may explicitly hold a positive attitude towards leisure cyclists, they may 

implicitly feel the opposite. Future research should continue exploring this difference, 

perhaps applying multiple ST-IATs to examine if this difference is found among 

utilitarian cycling, commuting cyclists, leisure cycling, and leisure cyclists. 

This study also investigated the correlations among implicit and explicit attitudes. 

Based on the results of the Pearson correlation coefficients, the overall ST-IAT effects 

only significantly correlated with one another, not with the explicit attitudes measured 

with the semantic differential scales. However, after controlling for the influences of the 

stimulus terms and the measurement error, the leisure cycling implicit attitude construct 

was significantly correlated with the leisure cyclist implicit construct as well as the 

explicit leisure cycling construct. Furthermore, explicit leisure cycling attitudes were 

positively associated with an individual’s social identity with leisure cyclists, providing 

further evidence supporting Chequer’s (2014) findings that to some extent, IAT scores 

are influenced by measurement error, affecting the resulting estimation. In the future, a 

meta-analysis should be conducted to compare the degree of the influence of the 

measurement error on IAT scores and the correlation between the implicit and explicit 

measurement scores. 

In addition to the methodological examination, this finding also supports that an 

individual’s social identity is positively associated with his or her explicit attitudes 
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towards leisure cycling. According to Daley and Rissel (2011) and Fitt (2015), 

individuals exhibit more positive attitudes toward a behavior associated with their in- 

groups (us) but apply stereotypes to their out-groups (them). When an individual 

identifies as part of the leisure cyclist group, they also hold a more positive opinion of 

leisure cycling. Cycling advocacy groups and practitioners can use these findings as they 

develop their marketing strategies, for example promoting the concept of being a leisure 

cyclist as an identity that people can be proud of and developing group-orientated 

activities to increase cyclists’ sense of belonging.    

This study attempted to examine the reliability and validity of the ST-IAT scores 

by applying CFA, the results indicated that implicit constructs tend to exhibit poor 

reliability and validity in this model compared to explicit constructs. Future studies 

should apply advanced analytic techniques such as the Multitrait-Multimethod analysis 

(Campbell & Fiske, 1959), to examine the method effect of IATs. Furthermore, the 

results also indicated that stimulus terms in relation to focal categories (i.e., leisure 

cycling and leisure cyclists) could better reflect the implicit attitudes construct. Most 

factor loadings of the attribute terms (i.e., good and bad) were lower than the minimum 

value (.32) and thus were dropped from the model. Although previous research has 

examined the effect of stimulus terms on IAT scores (Foroni & Bel-Bahar, 2010), few 

applied CFA to examine this effect. Further comparison should be documented to 

advance IAT techniques.   

  The relationships among implicit and explicit attitudes and an individual’s 

leisure public bicycle use behavior were also investigated in this study. A close 
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examination of the hypotheses testing indicated that social identity was the most 

influential factors driving individuals to cycle (β = .810, p < .088), further supporting that 

the leisure and BSP industry should promote the significance and benefits of being a 

leisure cyclist to increase the cycling rate. Furthermore, the positive explicit attitudes 

towards leisure cycling also significantly predict cycling behavior (β = .210, p < .05). As 

Curto et al. (2016) pointed out, in addition to environmental influences, attitude can be an 

important factor in bicycle commuting. 

Although neither implicit attitude measures were not found to have a significant 

relationship with people’s leisure public bicycle use, it is believed that this study could 

lay the foundation for further investigations applying a dual-attitudes model to human 

cycling behavior. The current study was conducted in Taiwan with BSP users; thus, 

further examination in other contexts is needed in order to determine if the results are 

applicable to other regions, cultures, and types of cyclists. In addition, this study used an 

online survey platform to collect data instead of the controlled laboratory setting typically 

used in IAT experiments. A laboratory setting would control for distractions, and 

although participants were asked to complete the IAT in a distraction free environment, if 

they did not, distractions could have affected the data. Thus, future research should 

conduct similar tests under more controlled conditions and compare the results with this 

study. Based on this study, continuous exploration of the ST-IAT effect is beneficial to 

the field, and more work needs to be done to advance the IAT paradigm. 

 

 



 148 

REFERENCES 

Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A 
review and recommended two-step approach. Psychological Bulletin, 103(3), 
411-423.  

Bachand-Marleau, J., Lee, B. H. Y., & El-Geneidy, A. M. (2012). Better understanding 
of factors influencing likelihood of using shared bicycle systems and frequency of 
use. Transportation Research Record: Journal of the Transportation Research 
Board, 2314, 66-71.  

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the 
analysis of covariance structures. Psychological Bulletin, 88(3), 588-606.  

Bluemke, M., & Friese, M. (2008). Reliability and validity of the Single-Target IAT (ST-
IAT): assessing automatic affect towards multiple attitude objects. European 
Journal of Social Psychology, 38(6), 977-997.  

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. 
Bollen & J. S. Long (Eds.), Testing Structural Equation Models (Vol. 154, pp. 
136-136). Newbury Park, CA: SAGE Publications. 

Busuness Next. (2016, February 1). Unscramble PTT: Taiwan‘s most influential online 
community.   Retrieved from https://www.bnext.com.tw/article/38609/bn-2016-
01-29-161210-178 

Calitri, R., Lowe, R., Eves, F. F., & Bennett, P. (2009). Associations between visual 
attention, implicit and explicit attitude and behaviour for physical activity. 
Psychology and Health, 24(9), 1105-1123.  

Cameron, J. E. (2004). A three-factor model of social identity. Self and Identity, 3(3), 
239-262.  

Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the 
multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105.  



 149 

Chakroff, A. (2013). Amazon turkshop: File dump. Retrieved from 
https://sites.google.com/site/amazonturkshop/documents 

Chen, S.-Y., & Lu, C.-C. (2015). A model of green acceptance and intentions to use bike-
sharing: YouBike users in Taiwan. Networks and Spatial Economics, 1-22.  

Chequer, S. R. (2014). Evaluating the construct validity of Implicit Association Tests 
using confirmatory factor analytic models. (Unpublished doctoral dissertation), 
University of Tasmania, Tasmania, Australia.    

Curto, A., De Nazelle, A., Donaire-Gonzalez, D., Cole-Hunter, T., Garcia-Aymerich, J., 
Martínez, D., . . . Nieuwenhuijsen, M. J. (2016). Private and public modes of 
bicycle commuting: A perspective on attitude and perception. The European 
Journal of Public Health, 26(4), 717-723.  

Daley, M., & Rissel, C. (2011). Perspectives and images of cycling as a barrier or 
facilitator of cycling. Transport Policy, 18(1), 211-216.  

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. 
Journal of Public Transportation, 12(4), 3.  

Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Fort Worth, TX: 
Harcourt, Brace, & Jovanovich College Publishers. 

Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: 
Advancing the debate. Perspectives on Psychological Science, 8(3), 223-241.  

Fisher, R. J. (1993). Social desirability bias and the validity of indirect questioning. 
Journal of Consumer Research, 20(2), 303-315.  

Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 
92-113.  

Fishman, E., Washington, S., & Haworth, N. (2012). Understanding the fear of bicycle 
riding in Australia. Journal of the Australasian College of Road Safety, 23(3), 19.  



 150 

Fitt, H. M. (2015). The influences of social meanings on everyday transport practices. 
(Unpublished doctoral dissertation), University of Canterbury, Christchurch, New 
Zealand.    

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with 
unobservable variables and measurement error. Journal of Marketing Research, 
18, 39-50.  

Foroni, F., & Bel‐Bahar, T. (2010). Picture - IAT versus Word - IAT: Level of stimulus 
representation influences on the IAT. European Journal of Social Psychology, 
40(2), 321-337.  

Frankish, K. (2010). Dual‐Process and Dual - System Theories of Reasoning. 
Philosophy Compass, 5(10), 914-926.  

Gawronski, B., & Payne, K. B. (2010). Handbook of implcit social cognition: 
Measurement, Theory, and Applications. New York, NY: The Guilford Press. 

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Laurence Erlbaum 
Associates. 

Greenwald, A. G., & Banaji, M. R. (1995). Implicit social cognition: attitudes, self-
esteem, and stereotypes. Psychological Review, 102(1), 4.  

Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual 
differences in implicit cognition: The implicit association test. Journal of 
Personality and Social Psychology, 74(6), 1464.  

Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the 
implicit association test: I. An improved scoring algorithm. Journal of Personality 
and Social Psychology, 85(2), 197.  

Hair, J., Black, W. C., Babin, B., & Anderson, R. E. (2010). Multivariate data analysis 
(7th ed.). Upper Saddle River, NJ: Prentice Hall. 



 151 

Handy, S. L., Xing, Y., & Buehler, T. J. (2010). Factors associated with bicycle 
ownership and use: a study of six small US cities. Transportation, 37(6), 967-985.  

Heinen, E., Maat, K., & Van Wee, B. (2011). The role of attitudes toward characteristics 
of bicycle commuting on the choice to cycle to work over various distances. 
Transportation Research part D: Transport and Environment, 16(2), 102-109.  

Hilgard, J. (2015). R script to convert Chakroff's Qualtrics IAT administration's output 
into useful, spreadsheet-format data. Retrieved from https://github.com/Joe-
Hilgard/Chakroff_IAT_Analyzer 

Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and self-control from a dual-
systems perspective. Perspectives on Psychological Science, 4(2), 162-176.  

Hofmann, W., Gawronski, B., Gschwendner, T., Le, H., & Schmitt, M. (2005). A meta-
analysis on the correlation between the Implicit Association Test and explicit self-
report measures. Personality and Social Psychology Bulletin, 31(10), 1369-1385.  

Iso-Ahola, S. E. (2015). Conscious versus nonconscious mind and leisure. Leisure 
Sciences, 37(4), 289-310.  

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux. 

Kaplan, S., & Prato, C. G. (2016). “Them or Us”: Perceptions, cognitions, emotions, and 
overt behavior associated with cyclists and motorists sharing the road. 
International Journal of Sustainable Transportation, 10(3), 193-200.  

Karpinski, A., & Steinman, R. B. (2006). The Single Category Implicit Association Test 
as a measure of implicit social cognition. Journal of Personality and Social 
Psychology, 91(1), 16-32.  

Kollmuss, A., & Agyeman, J. (2002). Mind the gap: Why do people act environmentally 
and what are the barriers to pro-environmental behavior? Environmental 
Education Research, 8(3), 239-260.  



 152 

Lee, K.-H., & Kim, D.-Y. (2016). Explicit and implicit image cognitions toward 
destination: Application of the Single-Target Implicit Association Test (ST-IAT). 
Journal of Destination Marketing & Management. 
doi:http://dx.doi.org/10.1016/j.jdmm.2016.06.006i 

Lois, D., Moriano, J. A., & Rondinella, G. (2015). Cycle commuting intention: A model 
based on theory of planned behaviour and social identity. Transportation 
Research Part F: Traffic Psychology and Behaviour, 32, 101-113.  

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and 
determination of sample size for covariance structure modeling. Psychological 
Methods, 1(2), 130-149.  

Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2005). Understanding and using the 
Implicit Association Test: II. Method variables and construct validity. Personality 
and Social Psychology Bulletin, 31(2), 166-180.  

Pai, J. T., & Pai, S. Y. (2015). User behaviour analysis of the public bike system in 
Taipei. International Review for Spatial Planning and Sustainable Development, 
3(2), 39-52.  

Parkes, S. D., Marsden, G., Shaheen, S. A., & Cohen, A. P. (2013). Understanding the 
diffusion of public bikesharing systems: evidence from Europe and North 
America. Journal of Transport Geography, 31, 94-103.  

Penke, L., Eichstaedt, J., & Asendorpf, J. B. (2006). Single-Attribute Implicit Association 
Tests (SA-IAT) for the assessment of unipolar constructs. Experimental 
Psychology, 53(4), 283-291.  

Perez, E. O. (2013). Implicit attitudes: Meaning, measurement, and synergy with political 
science. Politics, Groups, and Identities, 1(2), 275-297.  

Shaheen, S., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and 
Asia: Past, present, and future. Transportation Research Record: Journal of the 
Transportation Research Board, 2143, 159-167. doi:10.3141/2143-20 



 153 

Sheeran, P. (2002). Intention-behavior relations: A conceptual and empirical review. 
European Review of Social Psychology, 12(1), 1-36.  

Sherwin, H., Chatterjee, K., & Jain, J. (2014). An exploration of the importance of social 
influence in the decision to start bicycling in England. Transportation Research 
Part A: Policy and Practice, 68, 32-45.  

Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. 
New York, NY: Psychology Press. 

Teige-Mocigemba, S., Klauer, K. C., & Sherman, J. W. (2010). A practical guide to 
Implicit Association Tests and related tasks Handbook of implicit social cognition: 
Measurement, theory, and applications (pp. 117-139). 

Verma, M., Rahul, T., Reddy, P. V., & Verma, A. (2016). The factors influencing 
bicycling in the Bangalore city. Transportation Research Part A: Policy and 
Practice, 89, 29-40.  

Vogel, M., Hamon, R., Lozenguez, G., Merchez, L., Abry, P., Barnier, J., . . . Robardet, C. 
(2014). From bicycle sharing system movements to users: a typology of Vélo’v 
cyclists in Lyon based on large-scale behavioural dataset. Journal of Transport 
Geography, 41, 280-291.  

Wigboldus, D. H., Holland, R. W., & van Knippenberg, A. (2004). Single target implicit 
associations. Unpublished manuscript.  

Wilson, T. D., Lindsey, S., & Schooler, T. Y. (2000). A model of dual attitudes. 
Psychological Review, 107(1), 101.  

Yang, J., He, J., & Gu, Y. (2012). The implicit measurement of destination image: The 
application of implicit association tests. Tourism Management, 33(1), 50-52.  

 

 

 



 154 

CHAPTER FIVE 

CONCLUSION 

This dissertation explored the key determinates of individual leisure bicycle share 

program (BSP) use. The extended unified theory of acceptance and use of technology 

(UTAUT2) and the dual-attitudes model were employed as theoretical frameworks 

guiding this research project. Three research goals were achieved: (1) In Study One, the 

Unified Measurement of Bicycle Share Program Use (UMBSPU) was developed, which 

included eight constructs and 33 measurement items; (2) in Study Two, the UMBSPU 

was employed to examine the influences of performance expectancy, effort expectancy, 

facilitating conditions, social influence, price value, hedonic motivation, and habit on 

individuals’ intention to use BSPs and actual BSP use for leisure among Taipei citizens; 

and (3) in Study Three, using two Single Target Implicit Association Tests (ST-IATs), 

BSP users’ implicit attitudes toward leisure cycling and leisure cyclists were measured 

and compared with their explicit attitudes. This chapter summarizes the major findings of 

each study as well as the research imitations and implications for researchers and 

practitioners. 

Summary of Major Findings 

Study One 

Following Slavec and Drnovsek’s (2012) recommendations for scale 

development, the UMBSPU was developed in this study. The integration of both 

qualitative and quantitative data provided a depth of knowledge on the major factors 

influencing BSP use in a leisure context. The results of the qualitative investigation 
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indicated that a wide variety of reasons are involved in an individual’s decision (Table 1). 

The thirty-three-items UMBSPU was cross-validated using two independent samples, 

Kaohsiung and Taipei citizens. This process established the generalizability of the 

UMBSPU, the findings showing the equivalence of all factor loadings, the majority of the 

intercepts, and the latent factor means across two samples. Furthermore, the discriminant 

and convergent validity of the UMBSPU was confirmed through a series of confirmatory 

factor analysis (CFA). Although trivial method bias was detected, the UMBSPU can be 

viewed as a reliable and valid measurement. Given the limited research on developing a 

measurement scale for leisure BSP use, the UMBSPU provides a steppingstone for 

further investigations. 

Study Two 

Using the UMBSPU, ten hypotheses were examined to explore the key 

determinants of leisure BSP use among YouBike users in Taipei, Taiwan. Overall, the 

research model explained 73.9% of the variance of use intention and 32.6% of the actual 

use. Performance expectancy, social influence, price value, hedonic motivation, and habit 

were found to significantly influence people’s intention to use BSP for leisure. 

Furthermore, habit and behavioral intention were found to significantly impact the 

frequency of use. Among all the factors examined, habit was found to be the strongest 

predictor regarding behavioral intention (β = .385, p < .001). It also significantly 

predicted the frequency of Taipei citizens’ leisure BSP use (β = .300, p < .001). This 

evidence supports the conclusions of De Bruijn, Kremers, Singh, Van den Putte, and Van 
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Mechelen’s (2009) study that habit should be included in a theoretical model that 

examines cycling behavior.  

In addition, both extrinsic motivation (i.e., performance expectancy) and intrinsic 

motivation (i.e., hedonic motivation) motivate Taipei citizens to use YouBike in their 

leisure time, confirming findings from previous BSP studies that BSP is not only seen as 

a means of transportation but also satisfies its users’ leisure purpose (Murphy & Usher, 

2015; Pai & Pai, 2015; Vogel et al., 2014). In addition, the price value and social 

influence outperformed the impact of facilitating conditions and effort expectancy in this 

study, suggesting that a reasonably priced, high-value-added BSP attracts users more than 

bicycle infrastructures and the ease-of–use of the operating system. Furthermore, social 

support and a thriving bicycle culture significantly influence leisure BSP users. These 

findings partially contradicted previous research (Buck et al., 2013), indicating that the 

characteristics of leisure BSP users are different from other cyclist groups. Therefore, 

marketing strategies and future research should be tailored to fit the distinctiveness of 

leisure BSP users.  

Study Three 

This study developed leisure cycling and leisure cyclist Single Target Implicit 

Association Tests (ST-IATs) to examine the influence of an individual’s implicit attitudes 

on leisure BSP use. Furthermore, scales that measured explicit attitudes toward leisure 

cycling and the social identity of leisure cyclists were employed to compare the 

differences between an individual’s perceptions of a leisure activity and those actually 

engaged in it. The results indicated that on average, Taiwanese have favorable implicit 
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attitudes toward both leisure cycling and leisure cyclists; however, these perceptions are 

not exactly the same. Implicitly, people hold more positive attitudes towards leisure 

cycling than leisure cyclists (Mean difference = .197, p < .001), a result supporting Daley 

and Rissel’s (2011) study that people perceive cycling and cyclists differently. However, 

the results from the semantic differential scales indicated that people explicitly hold more 

positive attitudes toward leisure cyclists than leisure cycling (Mean difference = 4.362,  

p < .001), confirming Wilson, Lindsey, and Schooler’s (2000) dual-attitudes model 

indicating that people can hold different attitudes toward the same object, individual, or 

events. In other words, people may explicitly express positive opinions toward leisure 

cyclists, but implicitly they may hold other attitudes. Given that this study was conducted 

in Taiwan, the effects of social desirability might influence the results of semantic 

differential scales. As Stadler (2011) suggested, people are normally reluctant to display 

negative emotions or opinions because politeness is greatly esteemed in East Asian 

societies.  

This study also used CFA to control the influences of the stimulus terms and the 

measurement error on the ST-IAT scores. The results showed that the overall IAT effects 

might be influenced by the measurement error as the average variance extracted (AVE) 

of the implicit attitude constructs are below .6. The results of hypotheses testing showed 

that social identity was the most influential factor motivating individuals to use BSP in 

their leisure time (β = .810, p < .088). Furthermore, only explicit attitudes predict Taipei 

citizen’s leisure BSP use (β = .210, p < .05). Both implicit attitude constructs have non-



 158 

significant relationships with BSP use. This study lays the foundation for further 

investigation of human’s cycling behavior using the dual-attitudes model. 

Future Research Directions and Practitioner Implications 

The results of this dissertation were primarily obtained from quantitative analysis. 

In the future, qualitative research can be conducted to investigate the leisure BSP use to 

add richness and depth of our knowledge. For example, most measurement items related 

to the interaction among cyclists and other road occupants were omitted from the 

UMBSPU. However, according to previous research, such interaction is critical to an 

individual’s decision to cycle (Kaplan & Prato, 2016) and in-depth interviews may aid 

researchers in further understanding of leisure BSP user’s perceptions of such 

interactions. Furthermore, facilitating conditions and effort expectancy were found 

insignificant in Study Two. Future research may interview individuals who give low 

ratings to the measurement items of these two constructs but frequently use BSP for 

leisure to determine the reasons for this discrepancy.      

Given the limited BSP research conducted in the East Asia region, this 

dissertation focused on Taiwanese adults to add to our knowledge of BSP use in this area. 

In the future, the UMBSPU can be tested in different cultural contexts to obtain an 

international level of cross-validation. Furthermore, the leisure cycling and cyclists ST-

IATs can also be tested with other types of cyclist groups, such as utilitarian cyclists or 

bicycle tourists, and non-cyclists to compare the difference in implicit attitudes across 

different social groups.  
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The social influence construct in Study Two and social identify construct in Study 

Three were found significant for leisure BSP use. Cycling advocacy groups and relevant 

departments in the government may develop promotional strategies based on these 

findings. A supportive social environment and a friendly culture can be achieved through 

educational programs as well as strict enforcement of traffic laws. Furthermore, 

promoting the sense of belonging and branding leisure cyclist groups can also attract 

more individuals to leisure cycling. Improving the acceptance of cycling should not only 

focus on infrastructure construction but also the advancement of a cycling culture. 

Making cyclists visible in workplaces, in our neighborhood and in the society is the best 

way to promote cycling (Sherwin, Chatterjee, & Jain, 2014).  

Limitations  

The data for this study was primarily obtained through an online survey. Thus, the 

researcher cannot completely confirm the qualifications of the survey respondents. 

Although a skip-logic question and an online panel company were employed to select the 

target group (i.e., leisure BSP users), it is still uncertain whether the participants were 

qualified to answer the questionnaire. Furthermore, the ST-IAT is typically conducted in 

an environment without disturbances. Because this dissertation used an online survey 

platform to collect the data, it did not have the capability to document the distractions, if 

any, that occurred during the data collection process.  

Furthermore, this dissertation measured leisure BSP use using two indictors 

related to current behaviors. However, the behavioral intention construct primarily asked 
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about an individual’s intention to engage in certain behaviors in the future. Thus, a 

longitudinal study is more suitable for examining the predictability of the research model. 

Study One and Study Two were developed using a social cognitive model and the 

results were primarily obtained from self-reported data. The model explained only 32.6% 

variance of actual BSP use. As Yang, He, and Gu (2012) suggest human behavior is not 

simply influenced by the rational decisions but also the emotional or symbolic factors. 

Based on self-reported data, the research findings may somehow negate the influence of 

unconcious thinknig on the human behavior. In the future, “big data” that records BSP 

users’ riding patterns can also be analyzed to compare the differece between “self-

reported” behavior and the actual cycling behavior.  

Final Reflection 

Although most leisure scholars agree that leisure choices are made freely, some 

argue that this freedom has its limitations. For example, Bramham (2006) pointed out that 

only certain individuals, such as the middle and upper classes, male, or the Caucasian , 

have freedom to choose their leisure, the other disempowered and marginalized 

populations are never truly have that freedom. Rojek (1995) also pointed out that our 

leisure world is shaped by the limitations of the tools that we have access to use; thus, we 

do not actually have unrestricted options to choose any leisure activity. Cycling for 

leisure sometimes is viewed as an activity that only elitists can be involved in (Daley & 

Rissel, 2011). This “special” activity requires certain skills, expensive equipment, and 

unique clothing; therefore, it may be categorized by the general public as “other people’s 

activity” (Fitt, 2015). 
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In contrast, the low cost and convenience of BSPs provides a practical approach 

that integrates bicycles into our regular life. Riding public bicycles for leisure is not an 

activity that only belongs to elitists or specialists, as BSPs are used by almost every class 

and generation (Table 10) and for various purposes (Table 12). It provides a economic 

and ecofriendly approach that encourages more people to cycle for leisure. It may also 

potentially normalize the image of leisure cycling created by traditional leisure cyclists 

who wear Lycra clothing and ride high-end bicycles. BSPs may increase the general 

public’s acceptance of leisure cycling and also contribute to social equity. Individuals, 

who cannot afford to purchase an expensive bicycle, can cycle for leisure for a reasonable 

rental fee. BSPs potentially break the boundaries of social class and bridge the leisure 

cycling gap between the rich and the poor. 

 As Pieper’s (2009) critique, “Leisure, it must be remembered, is not a Sunday 

afternoon idyll, but the preserve of freedom, of education and culture, and of that 

undiminished humanity which views the world as a whole” (p.53). 
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Appendix A 

English and Traditional Chinese Measurement Items Used in Expert Review 

A. Performance Expectancy  
•  I find YouBike useful for my leisure. 
•  我發現公共自行車在我的休閒生活中是有用的 
•  Using YouBike increases the quality of my leisure 
•  使用公共自行車豐富了我的休閒品質 
•  YouBike helps me connect to public transport quickly. 
•  使用公共自行車能幫助我更快速地連結其他大眾交通工具 
•  YouBike helps me reach destinations more quickly. 
•  使用公共自行車能幫助我更快速到達目的地 
•  YouBike is an affordable form of transportation to a leisure activity (i.e., movies, shopping).  
•  公共自行車是一個能讓我到達目的地（例如:看電影或逛街) 的便宜交通方式 
•  The customer service of YouBike is useful. 
•  公共自行車的顧客服務專線是有用的 
•  The real-time app of YouBike is useful. 
•  公共自行車的即時應用程式(app)是有用的 
•  YouBike bikes are well maintained. 
•  公共自行車系統出借的腳踏車均維護良好 
•  YouBike bikes are of high quality.  
•  公共自行車系統出借的腳踏車都有一致的品質保證 

 
B. Effort Expectancy 

• It is easy to become a YouBike member. 
• 我認為成為公共自行車的會員是簡單的 
• It is easy to use the YouBike system. 
• 用公共自行車系統是簡單的 
• The renting process of YouBike is understandable. 
• 租借公共自行車的過程是簡單易懂的 
• I can easily find a YouBike station in Taipei. 
• 我能簡單地找到公共自行車的租借站 
• Using YouBike is convenient if the distance between my living places to the rental station is 

appropriate. 
• 使用公共自行車是很方便的，只要我居住 的地方離租賃站的距離不遠 
• Using YouBike is convenient if there are enough bicycles available in the rental station at all times 

(i.e., 24 h a day, 365 days per year). 
• 使用公共自行車是很方便的，只要租賃站總是有腳踏車可出租（一年 365天及 24小時） 

 
C. Social influence  

• Members of my household frequently use YouBike. 
• 我的家庭成員總是使用公共自行車 
• I use YouBike because my partner encourages me to use it. 
• 我會使用公共自行車是因為我的伴侶鼓勵我使用它 
• My friends encourage me to use YouBike. 
• 我的朋友們鼓勵我騎公共自行車 
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• I use YouBike because my friends use it. 
• 我使用公共自行車是因為我的朋友也使用它 
• I believe the motorcycle riders interact with YouBike users in a friendly manner. 
• 我相信摩托車騎士對自行車騎士的互動是友善的 
• I believe the pedestrians interact with YouBike users in a friendly manner. 
• 我相信行人與自行車騎士的互動是友善的 
• It is popular to use YouBike. 
• 騎乘公共自行車是一種潮流 
• In general, people in Taipei respect YouBike users. 
• 大致上來說，台北的民眾是尊重公共自行車騎士的 

 
D. Facilitating Conditions  

• Having a map at YouBike station is important. 
• 在租賃站有地圖是很重要的 
• I am more likely to use YouBike if a separate bike lane is provided around the stations. 
• 如果附近有自行車道，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike if the sidewalk is wider. 
• 如果人行道比較寬敞，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike if the surface of bike paths or sidewalks is better. 
• 如果路面品質好一點，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike more if there are bike lanes on bridges or underpasses. 
• 如果天橋或是地下道有自行車道，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike more if there are bike lanes in my community. 
• 如果我的社區有自行車道，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike if the station is around scenic areas.  
• 如果租賃站在美景環繞之處，會增加我使用公共自行車休閒的意願 
• I am more likely to use YouBike in places that have more shades. 
• 我會選擇在樹蔭較多的地方騎乘公共自行車休閒 
• I am more likely to use YouBike in places that have cafés or restaurants. 
• 我會選擇在有咖啡廳（車）或是餐廳的地方騎乘公共自行車休閒 
• I am more likely to use YouBike in places that have fewer traffic lights. 
• 我會選擇在紅綠燈較少的地方騎乘公共自行車休閒 
• I am more likely to use YouBike in places that have less traffic flow. 
• 我會選擇在車輛較少的地方騎乘公共自行車休閒 

 
E. Hedonic Motivation 

• Riding a YouBike bike is fun. 
• 騎乘公共腳踏車是好玩的 
• Riding a YouBike bike is enjoyable. 
• 騎乘公共腳踏車是令人享受的 
• Riding a YouBike bike is entertaining. 
• 騎乘公共腳踏車是有娛樂性的 
• Riding a YouBike bike is interesting. 
• 騎乘公共腳踏車的經驗是有趣的 
• Riding a YouBike bike is relaxing. 
• 騎乘公共腳踏車能使我放鬆心情 
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• Riding a YouBike bike makes me forget my troubles temporarily. 
• 騎乘公共腳踏車能使我暫時忘記煩憂 
• Riding a YouBike bike makes me feel free. 
• 騎乘公共腳踏車能讓我感到自由自在 

 
F. Price Value  

• At the current price, YouBike is a good value. 
• 就當前的價格而言，公共自行車提供了良好的價值 
• YouBike is an affordable option to increase my physically fitness level. 
• 騎乘公共自行車是一個能讓我保持良好身材的好選擇 
• YouBike is an affordable option for exercise. 
• 騎乘公共自行車是個幫助運動的經濟選擇 
• YouBike is an affordable option to reduce my carbon footprint. 
• 騎乘公共自行車是個能減低碳排放量的經濟選擇 
• YouBike is an inexpensive way for me to enjoy nature. 
• 騎乘公共自行車是個能讓我享受大自然的便宜方法 
• YouBike is affordable because I don’t need to spend money on maintaining a bicycle. 
• 騎乘公共自行車是個經濟實惠的好選擇，因為我不需要負擔維修的費用 
• YouBike is a good option for leisure because I don’t need to worry about vandalism and theft. 
• 騎乘公共自行車是個經濟實惠的好選擇，因為我不需要擔心盜竊或破壞的問題 

 
G. Habit  

•  Using YouBike is a habit for me. 
•  使用公共自行車對我來說已經變成一個習慣 
•  I always use YouBike during my leisure time. 
•  我在空閒時，總是使用公共自行車 
•  I am addicted to using YouBike. 
•  我使用公共自行車成癮 
•  I must use YouBike in my leisure time. 
•  在休閒時間，我必定會使用公共自行車 
•  It is natural for me to use YouBike. 
•  使用公共自行車對我而言是很一件自然的事 

 
H. Behavioral Intention 
 

•  I intend to continue using YouBike for leisure in the future. 
•  我打算未來繼續使用公共自行車來休閒． 
•  I will always try to use YouBike in my leisure time. 
•  在我的休閒時間，我會試著多多使用公共自行車． 
•  I plan to continue to use YouBike for leisure frequently. 
•  我打算繼續常常使用公共自行車來休閒． 
•  I will recommend that others use YouBike for leisure. 
•  我會推薦別人也使用公共自行車來休閒． 
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Appendix B 

English and Traditional Chinese Measurement Items Used in Target Sample Survey 

Performance Expectancy  
 

• YouBike helps me connect to other public transports  
• 公共自行車能幫助我連結其他大眾交通工具 
• YouBike helps me reach destinations effectively  
• 公共自行車能幫助我有效地到達目的地 
• YouBike helps me reduce travel time  
• 公共自行車能幫助我節省交通時間 
• Overall, YouBike is helpful in my leisure time 
• 大致上，公共自行車在我的休閒時間中是有用的 
• Using YouBike improves the quality of my leisure  
• 使用公共自行車增進了我的休閒品質 
• YouBike meets my leisure needs 
• 公共自行車能滿足我的休閒需求 

 
B. Effort Expectancy 
 

• It is easy to become a YouBike member  
• 成為公共自行車的會員是簡單的 
• The process of renting a YouBike bike is easy 
• 租借公共自行車的操作過程是簡單的 
• The process of returning a YouBike bike is easy 
• 歸還公共自行車的操作過程是簡單的 
• Finding a YouBike station in Taipei is easy 
• 在台北找到公共自行車的租借站是簡單的 
• There are sufficient bicycles available in the rental stations 
• 租借站總是有足夠的腳踏車可借 
• There are sufficient docks in the rental stations to return bikes  
• 租借站總是有足夠的空車柱可還車 
• It is easy to use the YouBike system  
• 大致上，使用公共自行車系統是簡單的 

 
C. Social influence  
 

• Members of my household encourage me to use YouBike 
• 我的家庭成員鼓勵我騎公共自行車 
• I use YouBike because of members of my household use it 
• 我使用公共自行車是因為我的家人使用它 
• My friends encourage me to use YouBike 
• 我的朋友們鼓勵我騎公共自行車 
• I use YouBike because of my friends use it 
• 我使用公共自行車是因為我的朋友們使用它 
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• People who are important to me think that I should use YouBike 
• 我重視的人認為我應該使用公共自行車 
• Motorcyclists interact with YouBike users politely 
• 摩托車騎士與公共自行車騎士的互動是有禮貌的 
• Pedestrians interact with YouBike users politely  
• 行人與公共自行車騎士的互動是有禮貌的 
• Drivers interact with YouBike users politely 
• 汽車駕駛與公共自行車騎士的互動是有禮貌的 
• YouBike users are respected in Taipei  
• 在台北， 公共自行車騎士是被尊重的 

 
D. Facilitating conditions  
 

• I am more likely to use YouBike if there are separate bike lanes. 
• 在有專用自行車道的地方，我會比較願意使用公共自行車                                                                     
• I am more likely to use YouBike if the sidewalk is wider. 
• 如果人行道寬敞一點，我會比較願意使用公共自行車  
• I am more likely to use YouBike if the surface of bike paths or sidewalks is in good condition. 
• 如果人行道或自行車道的路面品質良好，我會比較願意使用公共自行車  
• In my community, I am more likely to use YouBike if there are bike lanes. 
• 如果我的社區有自行車道，會增加我使用公共自行車的意願   
• I am more likely to use YouBike in scenic areas.  
• 我比較願意在景色優美的地方使用公共自行車 
• I am more likely to use YouBike in the places that have more shades. 
• 我比較願意在遮蔭較多的地方使用公共自行車 
• I am more likely to use YouBike in the places that have fewer traffic lights. 
• 我比較願意在紅綠燈較少的地方騎乘公共自行車 
• I am more likely to use YouBike in the places that have less traffic flow.                                                                                          
• 我比較願意在車流較少的地方騎乘公共自行車 

 
E. Hedonic motivation 
 

• Riding a YouBike bike is fun. 
• 騎乘公共腳踏車是好玩的 
• Riding a YouBike bike is enjoyable. 
• 騎乘公共腳踏車的過程是令人享受的 
• Riding a YouBike bike helps me get away from the daily grind. 
• 騎乘公共腳踏車能幫助我逃離日常的勞碌 
• I have a sense of freedom when riding a YouBike bike. 
• 騎乘公共腳踏車能讓我感到自由自在 
• Riding a YouBike bike helps me relieve stress.                                         
• 騎乘公共腳踏車能幫助我紓解壓力 

 
F. Price value  
 

• YouBike is an affordable option for exercise. 
• 騎乘公共自行車是個經濟實惠的運動方式 
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• YouBike is an affordable option for maintaining mental health. 
• 騎乘公共自行車是個保持心理健康的經濟實惠方法 
• YouBike is an affordable option to reduce my carbon footprint. 
• 騎乘公共自行車是個能減低碳排放量的經濟實惠方式 
• YouBike is an affordable option to protect the environment. 
• 騎乘公共自行車是個能做環保的經濟實惠方式 
• Riding a YouBike bike is an inexpensive way for me to enjoy nature. 
• 騎乘公共自行車能讓我享受大自然 
• YouBike is an affordable form of transportation. 
• 公共自行車是一個便宜交通方式 
• At the current price, YouBike is a good value. 
• 就當前的費率而言，公共自行車提供了良好的價值 

 
G. Habit  
 

• Using YouBike is a habit for me. 
• 使用公共自行車對我來說已經變成一個習慣 
• I always want to ride YouBike bikes. 
• 我總是想騎公共自行車 
• Riding a YouBike bike is a usual part of my life. 
• 騎公共自行車是我生活中習以為常的一部分 
• I use YouBike without consciously thinking about it. 
• 我不需要經過深思熟慮就會去使用公共自行車 
• It is natural for me to use YouBike. 
• 使用公共自行車對我而言是很一件自然的事 

 
H. Behavioral Intention 
 

• I intend to use YouBike in the future. 
• 在未來，我打算使用公共自行車． 
• I will try to ride YouBike bikes more frequently in my leisure time. 
• 在閒暇時，我會試著多多使用公共自行車． 
• I plan to ride YouBike bikes for leisure. 
• 我計畫騎公共自行車來休閒． 
• I expect to ride YouBike bikes for leisure more often in the future. 
• 我希望能在未來更頻繁地騎乘公共自行車來休閒． 
• I will use YouBike soon. 
• 我會在近期內使用公共自行車． 
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