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Abstract

The dissertation consists of three distinct but related projects. We consider regression

model fitting, variable selection in regression, and autocorrelation estimation in time series. In each

procedure we formulate the problem in terms of minimizing an objective function which adapts to

the given data.

First we propose a robust M-estimation procedure for regression. The main purpose of

the proposed methodology is to develop a procedure that adapts to light/heavy tailed, symmet-

ric/asymmetric distributions with/without outliers. We focus on studying the properties of the

maximum likelihood estimator of the asymmetric exponential power distribution, a broad distri-

bution class that holds both Normal and asymmetric Laplace distributions as special cases. The

proposed methodology unifies least squares and quantile regression in a data driven manner to cap-

ture both tail decay and asymmetry of the underlying distributions. Finite sample performance of

the method is exhibited via extensive Monte Carlo simulation and real data applications.

Second, we capitalize on the success of the proposed method and extend it to a variable

selection procedure that selects the important predictors under a sparse setting. Quantile regression

Lasso, i.e., quantile regession with L1 norm on the regression coefficients for regularization is a robust

technique to perform variable selection. However which quantile should be adopted is unclear. The

proposed methodology introduces a way to choose the most “informative” quantile of interest that is

used in the adaptive quantile regression Lasso. A modified BIC criterion is used to select the optimal

tuning parameter. The proposed procedure selects the quantile based on the log-likelihood of the

asymmetric Laplace distribution, and aims to perform the best quantile regression Lasso which is

confirmed in both simulation study and a real data analysis.

Third, we focus on alleviating the underestimation issue of the sample autocorrelation in

linear stationary time series. We first formulate autocorrelation estimation into a least squares prob-
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lem and then apply a penalization to regulate the autocorrelation estimate. An adaptive sequence is

proposed for tuning parameter and is shown to work well for stationary time series when the sample

size is small and correlation is high.
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Chapter 1

Introduction

Statistical inferences are usually based on assumptions and lots of statistical procedures rely on

distributional models for the error term. Many assumed error structures, e.g. Normal distribu-

tion closely describes the distribution of many practical data sets and is mathematical convenient

to analyze the pattern in real applications, which many not be exactly true. We consider a robust

methodology that allows data to choose the loss function, equivalently to choose underlying distribu-

tions from a broad class of distributions for regression coefficients estimation and variable selection.

Before introducing the idea of the proposed procedures, we first present a brief review on different

robust methodologies.

Huber (1964) proposed M-estimation approach and later Huber (1973) extended this to a

regression setting, walked toward a theory of robust estimation by introducing the following loss

function:

min
β∈Rp+1

n∑
i=1

ρ(yi − x′iβ), (1.1)

where ρ(·) is a non-constant function. Many regression methods can be viewed as an M-estimation

procedure. E.g., ρ(x) = x2 yields least squares (LS), an optimal procedure under Normal distribu-

tions but very sensitive to a slight amount of outliers in the data set. Quantile regression (QR) as an

alternative robust method introduced by Bassett and Koenker (1978) corresponds to ρ(x) = ρτ (x),

where the quantile loss function ρτ (x) = |x|{τI(x ≥ 0) + (1 − τ)I(x < 0)}. To further improve

on the efficiency of QR, Zou and Yuan (2008) developed a regression method called composite
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quantile regression (CQR) which takes a sum of K quantile loss functions at preset quantiles; i.e.,

ρ(x) =
∑K
k=1 ρτk(x), where τk = k/(1 + K), for k = 1, · · · ,K. Sun et al. (2013) further extend

the idea of CQR by assigning different weights to the quantiles used in the CQR loss function with

ρ(x) =
∑K
k=1 wkρτk(x), This allows the weighted composite quantile regression (WCQR) to deal

with both symmetric and asymmetric error distributions, and the optimal weights wk’s are selected

by minimizing the asymptotic variance of the estimator so that it allows the data to determine which

quantiles should be weighted more or less. Another way to achieve robust is to adaptively choose

the power which the residuals are raised to in the loss function. Agrò (1992) proposed Lp regression

which is essentially by taking ρ(x) = − ln f(x), where f is the probability density function (pdf) of

the generalized error distribution (GED) (see Subbotin, 1923), in which the shape parameter p and

the regression coefficients are estimated simultaneously.

These motivate us to develop a procedure that actually chooses the loss function according

to two critical information given by the data, the tail decay and the skewness of the underlying

error structure. We seek a procedure that allows continuous transition of loss function from LS to

QR depending on these two characteristics of the underlying distribution. In particular, we propose

an M-estimation procedure with ρ(x) = − ln f(x), where f is the pdf of a general distribution

called asymmetric exponential power distribution (AEPD) which holds many distributions, e.g.,

Normal, Laplace, asymmetric Laplace as special cases. The proposed method which is essentially

the maximum likelihood estimation for mis-specified models estimates regression coefficients and

two additional parameters α (tail decay) and τ (asymmetry) simultaneously, where the estimates of

α and τ determine the loss function for estimating regression coefficients. The details of the work

are shown in Chapter 2.

We then capitalize on the success of the proposed methodology and extend it to regression

coefficients estimation and variable selection simultaneously in Chapter 3. Least absolute shrinkage

and selection operator (Lasso) first introduced by Tibshirani (1996) is a useful approach to select

important predictors under sparse setting and adaptive Lasso developed by Zou (2006) used adaptive

weights to penalize coefficients differently further improved the performance of variable selection.

Then Wu and Liu (2009) developed penalized QR for variable selection, i.e., QR Lasso which replaces

the LS loss in Lasso/Adaptive Lasso by the quantile check loss function to achieve robust property in

variable selection. However the performance of QR Lasso procedure relies on the quantile of interest.

The efficiency of QR Lasso can drop drastically for different quantiles and which quantile should be

2



used to achieve the best performance for a given data is what we focus on Chapter 3. Following

the same vein of the proposed methodology in Chapter 2, we propose a loss function to be minus

log-likelihood of the asymmetric Laplace distribution (ALD), a special case of AEPD for α = 1,

plus an adaptive L1 norm penalization for regression coefficients estimation and variable selection

simultaneously. The maximum likelihood estimator based on ALD studied by Bera et al. (2016)

is essentially a penalized QR which selects the most “informative” quantile, and we further extend

it to propose a penalized log-likelihood which aims to choose the most efficient QR Lasso with the

quantile of interest dictated by data.

In the last chapter of this dissertation, we focus on the estimation of autocorrelation function

in linear stationary time series. Evidence shows that the standard error of simple estimator such as

ordinary least squares (OLS) tends to be underestimated, and thus it produces narrower confidence

intervals due to ignoring the correlation within error terms (see Bence, 1995, Cochrane and Orcutt,

1949, an Hurlbert, 1984). Bence (1995) considered adjustment which depends on accurate estimation

of the autocorrelation at lag one (ρ). Sample autocorrelation which is widely used in time series

is a consistent estimate of population autocorrelation and asymptotic normality was established.

However it is quite generally realized that sample autocorrelation is liable to bias. The bias is

usually negative which is common to many other estimation techniques, e.g., two-step Cochrane-

Orcutt, the Durbin estimator, or maximum-likelihood estimation (see Park and Mitchell, 1980,

Beesley and Griffiths, 1982, Griffiths and Beesley, 1984, King and Giles, 1984). And the bias issue

deteriorates when sample size is smaller and absolute value of ρ gets larger. In Chapter 4 we focus

on applying a penalization idea to alleviate this issue. From a best linear predictor point of view,

the problem can be formulated into a penalized LS, where the penalization is to adaptively “drag”

the ρ estimate toward ±1 so that underestimation issue can be alleviated.

3



Chapter 2

A robust regression methodology

via M-estimation

2.1 Introduction

Regression is the most common and useful statistical tool which can be used to quantify the relation-

ship between a response variable (y) and explanatory variables (x). To this end, the seminal works

of both Legendre in 1805 and Gauss in 1809 proposed the method of least squares (LS), which has

arguably become the most popular approach to conducting a regression analysis. This popularity

is likely attributable to the fact that the LS estimator can be expressed in closed form and can

be shown to achieve minimum variance among all unbiased estimators, when the underlying error

distribution is normal; e.g., see Rao (1945). However, this approach does not provide an optimal

estimator for non-normal settings and is very sensitive to outlying observations (Koenker and Bas-

sett, 1978). Further, experience has shown that LS regression may not be appropriate when the

response variable differs from the regression function in an asymmetric manner, which is commonly

encountered in medical data, among other venues. In lieu of these deficiencies, herein a general

regression methodology is proposed which allows for the possibility of non-normal tail behavior and

asymmetry in the conditional distribution of y given x, but will still perform well for symmetric

and/or normally distributed data.

One way to improve parameter estimates for non-normal data and to guard against the
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influence of outlying observations is to replace the LS loss function (i.e., the squared error loss) by

a loss function which can accommodate asymmetry in the error distribution and is less susceptible

to the magnitude of the residuals. For example, in 1793 Laplace proposed least absolute deviations

(LAD), or L1-norm regression as an alternative to LS. This regression technique is less sensitive to

outlying observations and is more appropriate, when compared to LS, for error distributions whose

tails are heavier than that of the normal. More generally one can replace the LAD estimator, with

an Lp norm estimator; for further discussion see Zeckhauser and Thompson (1970), Mineo (1989)

and Agrò (1992). Quantile regression estimates are found by minimizing the quantile (check) loss

function, and since they estimate quantiles of the conditional distribution of y given x, they are

appropriate for asymmetric and heavy tailed distributions (Koenker and Bassett, 1978).

Each of the aforementioned loss functions have corresponding conditional distributions of

y given x for which the maximum likelihood estimator (MLE) is equivalent to the estimator which

minimizes the corresponding loss: the LS estimator corresponds to the MLE when the error distri-

bution is normal; the LAD estimator is equivalent to the MLE under Laplace errors, the Lp norm

estimator corresponds to the MLE when the error terms obey the generalized error distribution

(GED) (Subbotin, 1923); and the quantile regression estimator is equivalent to the MLE when the

errors follow an asymmetric Laplace distribution (ALPD). Moreover, in these very specific settings

the regression estimators are asymptotically most efficient. More generally, the aforementioned loss

functions do provide consistent estimators, under standard regularity conditions, but the efficiency of

the resulting estimator is inherently tied to the chosen loss and underlying error distribution. That

is, there does not exist a universally most efficient approach to conducting a regression analysis.

Although, provided a priori knowledge of the error distribution, which is typically not available, a

regression methodology could be selected with efficiency in mind. For example, in a location scale

regression framework, the efficiency of the quantile regression estimator depends on the quantile

of interest. Moreover, under asymmetric Laplace errors the asymptotic variance of the quantile

regression estimator is minimized when the analysis proceeds to use the true skewness parameter

as the quantile of interest. More generally, the quantile that corresponds to minimizing the asymp-

totic variance of the estimator depends on the underlying error distribution, which is unknown. The

salient point is that to perform a regression analysis an analyst must select a particular methodology,

which, in some sense, is equivalent to specifying either the error distribution or loss function under

which the regression coefficients are estimated. This work provides a more general approach which
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allows the loss function to be selected in a data adaptive fashion, thus resulting in a more efficient

and robust estimator.

In order to develop a robust regression procedure one could consider two competing ap-

proaches; i.e., perform the regression analysis with respect to multiple loss functions or allow the

characteristics of the data to dictate the selection of the loss function. In order to improve the effi-

ciency of quantile regression, Zou and Yuan (2008) introduced composite quantile regression (CQR),

which optimizes over a sum of multiple quantile loss functions. As a robust regression procedure,

CQR combines the strength of multiple quantile regressions to estimate the same ”slope” coefficients

across different quantiles. Kai et al. (2010) adapted CQR to the local polynomial framework and

established that for many common non-normal errors this extension provided for gains in estimation

efficiency when compared to its local LS counterpart. Regretfully, when implementing CQR it is

still unclear how many quantiles should be used and simply increasing the number of quantiles does

not necessarily improve the efficiency of the estimator; for further discussion see Kai et al. (2010).

Alternately, one could consider a convex combination of loss functions; e.g., Zheng et al. (2013)

extended CQR by embedding the usage of an empirically weighted average of quantile loss functions

and the LS loss function, so that the LS loss tends to be weighted heavier for normally distributed

data. Rather than using several quantiles, another tact would be to let the data select the quantile

of interest in quantile regression. Bera et al. (2016) proposed a Z-estimator which could be used to

simultaneously obtain the quantile regression estimator and the quantile of interest in a data driven

fashion, and is hereafter referred to as ZQR. In particular, this estimator is obtained by minimizing

an objective function which is inspired by the maximum likelihood score function under the ALPD.

Proceeding in this fashion results in a penalized quantile regression framework where the penalty

depends on the quantile of interest.

Motivated by the work of Bera et al. (2016), the regression methodology presented herein

is developed in the same vein. In particular, a robust loss function is constructed so that the

proposed estimator corresponds to the MLE when the error terms obey the asymmetric exponential

power distribution (AEPD). The AEPD class of distributions was first proposed by Ayebo and

Kozubowski (2003) and holds the normal, skewed normal, Laplace, ALPD, and GED as special

cases, among many others. Developing the proposed regression methodology under the AEPD has

several definitive advantages. First, and foremost, the proposed method selects the best loss function

(e.g., LS, LAD, Lp, quantile, etc.) from a broad class in a data driven fashion. For this reason,
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one could view this proposal as a method which unifies and bridges the gaps between LS, LAD,

Lp norm, and quantile regression. Secondly, the proposed technique can effectively capture the

tail decay and/or asymmetry of the error distribution, thus maintaining a high level of estimation

efficiency in venues where other competing procedures do not. Lastly, as the AEPD holds many

common distributions as special cases (e.g., normal, skewed normal, ALPD, GED, etc.), one may

use model selection criteria, such as AIC or BIC, to identify the ”best” model (e.g., LS fit, specific

quantile regression fits, etc.), as is demonstrated in subsequent sections.

The remainder of this article is organized as follows. Section 2 presents the modeling as-

sumptions, develops the proposed loss function based on the AEPD, and provides a stable numerical

algorithm which can be used to obtain the regression parameter estimates. The consistency and

asymptotic normality of the proposed estimator are established in Section 3. The results of an

extensive Monte Carlo simulation study designed to assess the finite sample performance of the pro-

posed procedure is provided in Section 4. The results of the motivating data analyses are provided

in Section 5. Section 6 concludes with a summary discussion, and the regularity conditions under

which the theoretical results can be established are provided in the appendix.

2.2 Methodology

2.2.1 Model Assumption

Consider a linear regression model

y = x′β + ε, (2.1)

where y denotes the response variable, x is a (p + 1)-dimensional vector of covariates, β is the

corresponding vector of regression coefficients, and ε is the error term. Throughout the remainder

of this article it is assumed that the error term is independent of the covariates (i.e., x ⊥ ε, where ⊥

denotes statistical independence) and that the probability density function of ε has a unique mode

at zero. Under these assumptions, the linear predictor x′β = β0 + x1β1 + · · ·+ xpβp represents the

unique mode of the conditional distribution of y given x. Note, this model becomes a mean regression

model when the distribution of ε is symmetric and has a finite first moment. The primary focus of

this work is aimed at estimating the ”slope” parameters, β∗ = (β1, . . . , βp)
′, since the intercept, β0,

provides solely for a shift between different regression functions of interest; i.e., regression functions
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such as the mean and median for (2.1) have identical unknown slope parameters.

For ease of exposition, assume that the error term in (2.1) follows an AEPD, this assumption

is later relaxed in subsequent sections. A random variable ε is said to follow an AEPD if there exist

parameters α > 0, µ ∈ R, σ > 0 and 0 < τ < 1 such that the probability density function of ε has

the form

f(ε) =
ατ(1− τ)

Γ( 1
α )σ

exp

[
−|ε− µ|

α

σα
{I(ε ≥ µ)τα + I(ε < µ)(1− τ)α}

]
, (2.2)

where µ is the location (mode) parameter, σ is the scale parameter, τ controls the skewness

and α is the shape (tail decay) parameter. For notational brevity, this relationship is denoted

ε ∼ AEPD(µ, α, σ, τ). The AEPD class of distributions hold many common distributions as special

cases; e.g., the epsilon-skew-normal distribution, studied by Mudholkar and Hutson (2000), is ob-

tained when α = 2, which holds the normal distribution as a special case when τ = 0.5; Specifying

α = 1 results in the ALPD which holds the Laplace distribution as a special case when τ = 0.5; And

the GED results from specifying τ = 0.5. Moreover, as α approaches ∞, the AEPD approaches a

uniform distribution with parameter (µ− σ/(1− τ), µ+ σ/τ). To illustrate the broad spectrum of

shapes for which the AEPD density can take, Figure 2.1 depicts several AEPD densities for different

combinations of α and τ , where µ = 0 and σ is specified such that the variance is unity.

Under the aforementioned assumptions, the response variable conditionally, given the co-

variates, follows an AEPD; i.e., y|x ∼ AEPD(x′β, α, σ, τ). Thus, the log-likelihood of the observed

data {(yi,x′i), i = 1, . . . , n} is given by

ρ(θ) =
1

n

n∑
i=1

ln f(yi|xi;θ) = ln

{
α

Γ(1/α)

}
+ ln{τ(1− τ)} − ln(σ)

− 1

nσα

n∑
i=1

|yi − x′iβ|α {I(yi ≥ x′iβ)τα + I(yi < x
′
iβ)(1− τ)α} , (2.3)

where θ = (β′, α, σ, τ) denotes the collection of model parameters and θ0 = (β′0, α0, σ0, τ0) represents

the true unknown value of θ. More generally, in the case in which the error distribution does

not belong to the AEPD class, (2.3) can be viewed as a loss function, which still can be used to

efficiently estimate the regression coefficients, as is demonstrated in Sections 4 and 5. In either case,

let θ̂ = (β̂
′
, α̂, σ̂, τ̂) denote the value of θ which maximizes (2.3); i.e., θ̂ is the proposed estimator of

θ0.

To illustrate how the proposed approach is data adaptive, it is first noted that the process
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Figure 2.1: The AEPD densities for different parameter configurations.
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of estimating θ0 via maximizing (2.3), can be viewed as a two-step process. First, for fixed values

of α, σ and τ an estimate of β0 is obtained by minimizing the following loss function

n∑
i=1

|yi − x′iβ|α {I(yi ≥ x′iβ)τα + I(yi < x
′
iβ)(1− τ)α} , (2.4)

This estimator is denoted as β̂(α, τ). The second step estimates the remaining parameters by maxi-

mizing (2.3) after replacing β by β̂(α, τ). The key feature of this approach is that every combination

of α and τ corresponds to a different loss function specification in (2.4), and consequently results

in obtaining a different estimate of β0. For example, if α = 2 and τ = 0.5, the proposed approach

and LS obtain the same estimate; when α = 1 and τ = τ∗, the resulting estimate is identical to

the quantile regression estimate with the quantile of interest being τ∗. The salient point: by esti-

mating α0 and τ0 the proposed procedure allows the data to determine the shape and skewness of

the underlying distribution and as consequence selects the form of the loss function which is used

to estimate the regression coefficients.

2.2.2 A general error distribution and the Kullback Leibler divergence

In the setting in which the error distribution does not belong to the AEPD class, one could view

the model for the conditional distribution of y, given x, as being misspecified. Denote the true

probability density function for y, given x, by f∗(y|x), the assumed parametric density by f(y|x;θ),

and the density of x as h(x). Further, define the joint density of y and x as g∗(y,x) = f∗(y|x)h(x)

and gθ(y,x) = f(y|x;θ)h(x) under the true and assumed model, respectively. Subsequently, the

Kullback-Leibler divergence is defined by

DKL(g∗||gθ) = −E
{

ln
gθ(y,x)

g∗(y,x)

}
= −E

{
ln
f(y|x;θ)

f∗(y|x)

}
, (2.5)

where the expectation is taken with respect to the true distribution g∗. Minimizing (2.5) with respect

to θ, or equivalently maximizing (2.3), results in identifying the AEPD density closest to f∗(y|x), i.e.,

f(y|x; θ̂) is the ”projection” of f∗(y|x) onto the AEPD class. More specifically, obtaining θ̂ as the

maximizer of (2.3) is equivalent to finding the AEPD density closest to the true probability density

with respect to the observed empirical distribution. This feature allows the proposed approach to be

robust to the structure of the underlying error distribution and to maintain a high level of estimation

10



efficiency, by permitting the loss function (i.e., the assumed AEPD density) to adapt to the true

underlying structure of the data.

2.2.3 Numerical algorithm

In order to develop a numerical algorithm for obtaining θ̂, the dimension of the loss function pre-

sented in (2.3) is reduced. In particular, for fixed values of β and α, the values of σ and τ which

maximize (2.3) can be expressed as

σ(β, α) =
(α
n

[e+(β, α)τ(β, α)α + e−(β, α){1− τ(β, α)}α]
)1/α

,

τ(β, α) =
[
1 + {e+(β, α)/e−(β, α)}1/(α+1)

]−1

,

respectively, where e+(β, α) =
∑n
i=1 |yi−x′iβ|αI(yi ≥ x′iβ) and e−(β, α) =

∑n
i=1 |yi−x′iβ|αI(yi <

x′iβ). Replacing σ and τ in (2.3) by σ(β, α) and τ(β, α), respectively, leads to the following loss

function

Q(β, α) = ln

{
α

Γ(1/α)

}
− 1

α
ln
(α
n

)
− 1

α
− 1 + α

α
ln
{
e+(β, α)1/(α+1) + e−(β, α)1/(α+1)

}
. (2.6)

In order to maximize (2.6) with respect to β and α, an iterative algorithm is employed with a well

specified initial value. The proposed algorithm proceeds as follows:

1. Set j = 1 and initialize θ(0) = {β(0), α(0), σ(0), τ (0)} as β(0) = β(τ (0)), α(0) = 1,

σ(0) = n−1
n∑
i=1

ρτ(0)(yi − x′iβ
(0)),

τ (0) = arg min
τ

n∑
i=1

ρτ{yi − x′iβ(τ)}/{τ(1− τ)},

where ρτ (·) is the usual quantile check loss function and β(τ) = arg minβ

∑n
i=1 ρτ (yi − x′iβ).

2. Compute β(j) = arg maxβ Q(β, α(j−1)) and α(j) = arg maxαQ(β(j), α), respectively, and set

j = j + 1.
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3. Repeat step 2 until convergence.

At the point of convergence the proposed estimator θ̂ = (β̂
′
, α̂, σ̂, τ̂) is determined as β̂ = β(j), α̂ =

α(j), σ̂ = σ(β(j), α(j)), and τ̂ = τ(β(j), α(j)). Note, the more complex initialization step provides the

numerical algorithm with a well posed initial value and results in gains in computational efficiency.

Further, the necessary optimization steps throughout the algorithm can easily be completed using

standard numerical software; e.g., quantreg, optim, and optimize in R.

2.3 Asymptotic properties

The proposed methodology falls under the general class of M-estimators introduced by Huber (1964),

and as such, standard regularity conditions ensure consistency and asymptotic normality of the

resulting estimators. The specific technical conditions required are given in the appendix, along

with a brief discussion.

Theorem 2.3.1. (Consistency). Under regularity condition (A1)-(A6), provided in the appendix,

θ̂ is a consistent estimator of θ0; i.e. θ̂
p→ θ0.

Theorem 2.3.2. (Asymptotic Normality). Under regularity condition (A1)-(A7), provided in the

appendix, and for α0 > 1. The M-estimator θ̂ of θ0 is asymptotically normal; i.e.,

√
n(θ̂ − θ0)

d→ N(0,V −1
2θ0
V 1θ0

V −1
2θ0

),

where V 1θ0
= E{ψ(y,x,θ0)ψ(y,x,θ0)′}, V 2θ0

= [∂E{ψ(y,x,θ)}/∂θ′]|θ=θ0
and ψ(y,x,θ) =

∂ ln{f(y|x;θ)}/∂θ.

Note, the proofs of Theorem 2.3.1 and Theorem 2.3.2 are standard, and simply involve

verifying the conditions outlined by Huber (2009); for further discussion see the appendix. It is

worthwhile to note that the computation of the asymptotic covariance matrix in Theorem 2.3.2

depends on the unknown distribution of the errors, thus making a direct appeal to asymptotic

based inference challenging; i.e., an additional step has to be undertaken in order to estimate the

error distribution. This same challenge is commonly encountered in other existing techniques; e.g.,

QR. Further, based on simulation studies (results not shown), it was ascertained that standard

asymptotic based inference based on the result established in Theorem 2.3.2 may not be appropriate
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for relatively small sample sizes; e.g., when n = 200. Thus, it is suggested that bootstrapping be

adopted for the purposes of conducting finite sample inference. In general, bootstrapping is an

approach which can be used to obtain an improved approximation of the sampling distribution of a

statistic, and is most theoretically sound for statistics which achieve asymptotic normality. Under

the regularity conditions provided in the appendix, it can easily be shown that the conditions of

Arcones and Giné (1992) are satisfied, thus assuring in this context that the bootstrapped estimator

is consistent and possess the same limiting distribution depicted in Theorem 2.3.2. These results

tend to suggest that bootstrapping will provide reliable finite sample inference through use of the

standard bootstrap distribution.

In what follows, the bootstrapping procedure implemented throughout the remainder of this

article is briefly described. To begin, for a given data set (i.e., (yi,x
′
i), i = 1, . . . , n) the numerical al-

gorithm described in Section 2.2.3 is used to obtain an estimate of the regression parameters. Using

the regression coefficient estimates, one then computes the residuals ei = yi − x′iβ̂, for i = 1, . . . , n.

A random sample of size n is then drawn from the set of residuals, with replacement, providing the

bootstrapped residuals e∗i , for i = 1, ..., n. The bootstrapped response is subsequently obtained via

y∗i = x′iβ̂ + e∗i , and the proposed approach is used to model this data (i.e., (y∗i ,x
′
i), i = 1, . . . , n)

resulting in the bootstrapped estimate θ∗. This process is repeated B times yielding B bootstrap

replicates of the regression coefficients. The bootstrap replicates can then be used to construct

standard error estimates in the usual fashion (Efron, 1982), and (1− α)100% bootstrap confidence

intervals using the empirical (α/2)100%th and (1− α/2)100%th percentiles of the bootstrap distri-

bution.

2.4 Simulation study

In order to examine the finite sample performance of the proposed approach, the following Monte

Carlo simulation study was conducted. This study considers a model of the form

yi = β0 + β1xi + εi, for i = 1, . . . , n, (2.7)

where β0 = 1, β1 = 0.1, and xi ∼ N(0, 1). In order to illustrate the robustness property of the pro-

posed estimator, several distributions of the error term εi are considered, both within and outside of
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the AEPD class. In particular, the investigations discussed herein consider the settings in which the

error terms are distributed AEPD(0, 2, σ, 0.5), AEPD(0, 1, σ, 0.5), and AEPD(0, 1.5, σ, 0.25), with

the two former specifications providing for standard normal and Laplacian errors, respectively, where

the σ parameters were selected so that the variance of the error term is 1. For error distributions

outside of the AEPD class, this study considers Student’s t-distribution with 3 degrees of freedom;

a skewed normal distribution with a slant parameter of 4 (Azzalini, 1985); a skewed t-distribution

with 3 degrees of freedom and a skewing parameter of 0.5 (Fernandez and Steel, 1998); a Chi-square

distribution with 3 degrees of freedom; and a log-normal distribution with location and scale pa-

rameters being set to be 0 and 0.5, respectively. These choices provide for a broad spectrum of

characteristics of the error distribution which are commonly encountered in practical applications;

to include symmetry, heavy tails, and positive skewness. For each of the above error distributions,

m = 500 independent data sets were generated, each consisting of n = 200 observations.

The proposed methodology denoted by AME (adaptive M-estimator) was implemented to

analyze each of the simulated data sets, using the techniques outlined in Section 2 and 3. In order to

provide a comparison between the proposed methodology and existing techniques, several competing

procedures were also implemented. In particular, each data set was analyzed using LS, LAD, and

ZQR. The two former techniques are staples among standard data analysis methods, while the latter

can be viewed as a generalization of quantile regression which estimates the quantile of interest along

with the rest of the model parameters, thus allowing the approach to ”adapt” to the data. In order

to estimate standard errors and to construct confidence intervals the standard techniques were used

for LS, while bootstrapping techniques with B = 1000 were used for the proposed approach, LAD,

and ZQR. It is worthwhile to point out that all of the aforementioned methods attempt to estimate

the same slope coefficient (i.e., β1) in the data generating model above; i.e., β1 is the slope coefficient

for the mean and all quantile functions. Thus, this study focuses solely on the results that were

obtained from the proposed approach and the three competing techniques for the slope parameter.

Table 2.1 provides a summary of the estimators resulting from the proposed procedure,

across all considered error distributions. In particular, this summary includes the empirical bias, the

relative efficiency of the estimator (i.e., the average estimated standard error of the estimator divided

by the average estimated standard error of the proposed estimator), empirical coverage probabilities

associated with 95% confidence intervals, and average confidence interval length. From these results,

one will notice that the proposed method performs very well; i.e., our estimator exhibits little if any
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Table 2.1: Simulation results summarizing the estimates of the ”slope” coefficient obtained by AME,
LS, LAD, and ZQR, for both the AEPD and non-AEPD error distributions. This summary includes
the average estimate minus the true value (Bias), relative efficiency (Eff), estimated coverage proba-
bility (Cov) associated with 95% confidence intervals, and averaged confidence interval length (AL).
Here t3 denotes Student’s t-distribution with 3 degrees of freedom; χ2

3 denotes a Chi-square distribu-
tion with 3 degrees of freedom; SN(4) denotes a skewed normal distribution with a slant parameter
of 4; ST (3, 0.5) for skewed t-distribution with 3 degrees of freedom and a skewing parameter of 0.5.

N(0,1) t3
Bias Eff Cov AL Bias Eff Cov AL

LS 0.0051 0.9741 0.960 0.2796 -0.0064 1.2331 0.954 0.4677
LAD 0.0037 1.2626 0.958 0.3598 -0.0036 1.0238 0.953 0.4042
ZQR 0.0037 1.2064 0.976 0.3765 -0.0028 1.0023 0.955 0.4174
AME 0.0053 1.0000 0.974 0.3104 -0.0023 1.0000 0.961 0.4238

χ2
3 Log-normal

LS 0.0053 2.3995 0.943 0.6811 -0.0017 1.4453 0.929 0.1665
LAD -0.0016 2.5165 0.959 0.7644 -0.0028 1.4602 0.965 0.1814
ZQR -0.0043 1.1525 0.977 0.4027 -0.0049 1.1287 0.963 0.1429
AME -0.0030 1.0000 0.969 0.3426 -0.0032 1.0000 0.965 0.1276

SN(4) ST (3, 0.5)
LS -0.0014 1.0958 0.952 0.1768 -0.0224 2.0737 0.947 0.7030

LAD -0.0020 1.4075 0.966 0.2276 -0.0081 1.4816 0.971 0.5871
ZQR 0.0004 1.2190 0.958 0.1988 -0.0066 1.0047 0.977 0.4375
AME -0.0012 1.0000 0.942 0.1659 -0.0075 1.0000 0.979 0.4375

Laplace AEPD(0, 1.5, σ, 0.25)
LS -0.0016 1.2904 0.942 0.2781 0.0037 1.3014 0.957 0.2780

LAD -0.0028 0.9875 0.964 0.2347 0.0030 1.5021 0.979 0.3390
ZQR -0.0042 0.9971 0.968 0.2434 0.0012 1.1321 0.973 0.2733
AME -0.0044 1.0000 0.972 0.2562 0.0001 1.0000 0.965 0.2510

evidence of bias and the empirical coverage probabilities appear to attain their nominal level.

Table 2.1 also provides the same summary for the other three competing regression tech-

niques. Unsurprisingly, the same conclusions discussed above can also be drawn for LS, LAD, and

ZQR, but differences in performance are apparent. First, under normal (Laplacian) errors the most

efficient procedure is LS (LAD), which can be ascertained by examining both the relative efficiency

and the average confidence interval length. Note, this finding was expected since LS and LAD result

in the MLE under normal and Laplacian errors, respectively. With that being said, one will also

note that the estimators resulting from the proposed approach are almost as efficient as the most

efficient estimator under normal and Laplacian errors, even though the proposed method is tasked

to estimate two additional parameters in these settings. Second, for all other considered error dis-

tributions the proposed method provided for the most efficient estimator, with the exception of the

setting in which the errors obey a Student’s t-distribution. In some cases the efficiency gains are
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substantial; e.g., under Chi-square errors the proposed estimator is twice as efficient when compared

to the the LS and LAD estimators. In general, the proposed approach performed better in terms of

estimation efficiency than LS, LAD, and ZQR when the error distribution was asymmetric. More-

over, the proposed approach surprisingly outperformed ZQR, which is the most comparable existing

technique, in all considered settings. In summary, this simulation study illustrates that the proposed

methodology provides reliable estimates across a broad spectrum of potential error distributions, and

can provide for more efficient estimates when compared to existing regression methods. Moreover,

these gains in estimation efficiency are more dramatic for asymmetric error distributions.

2.4.1 Power of the hypothesis test

In order to investigate other inferential characteristics of the proposed approach, a power analysis was

conducted to assess the performance of the proposed methodology when utilized to test H0 : β1 = 0

versus H1 : β1 6= 0, at the α = 0.05 significance level. Data for this study was generated in the exact

same fashion as was described above with a few minor exceptions; i.e., here the slope coefficient

is taken to be β1 ∈ {0, 0.005, . . . , 0.2}, then for each error distribution and value of β1, m = 1000

independent data sets are generated each consisting of n = 500 observations. Our approach along

with LS, LAD, and ZQR were applied to each of the data sets and the results from these analyses

were used to create 95% confidence intervals, as was described in the previous section. Decisions

between the null and alternative hypothesis were made based on the confidence intervals in the usual

fashion. These results were then used to construct power curves for each of the regression techniques,

under each of the considered error distributions.

Figure 2.2 provides the empirical power curves for all four regression techniques across all

considered error distributions. Again, as one should expect, in the case of Gaussian and Laplacian

errors the methods with the most power are LS and LAD, respectively, but the power curve for the

proposed approach is practically identical. In contrast, when the error distribution is not normal

or Laplace, LS and LAD can suffer from a dramatic loss in power (e.g., Chi-square or skewed t

errors) a feature which the proposed approach does not possess. In fact, for skewed distributions

one will note that the proposed approach has the most power to detect departures from the null,

under all considered configurations. In summary, the findings from this study reinforce the main

findings discussed above; i.e., the proposed methodology provides for efficient estimation and reliable

inference across a broad spectrum of error distributions.
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Figure 2.2: Empirical power curves obtained under AME, LS, LAD, and ZQR. Here t3 denotes Stu-
dent’s t-distribution with 3 degrees of freedom; χ2

3 denotes a Chi-square distribution with 3 degrees
of freedom; SN(4) denotes a skewed normal distribution with a slant parameter of 4; ST (3, 0.5) for
skewed t-distribution with 3 degrees of freedom and a skewing parameter of 0.5.
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2.5 Data applications

In this section the proposed M-estimator is used to analyze two data sets. These applications further

illustrate the useful properties of the proposed regression methodology.

2.5.1 Blood pressure data

The National Health and Nutrition Examination Survey (NHANES) is a Center for Disease Control

and Prevention program which was initiated to assess the general health of the populous in the

United States. As a part of this study, data is collected from participants via questionnaires and

various physical exams, to include laboratory testing. This information is subsequently made publicly

available so that researchers may address/explore future medical, environmental, and public health

issues that the United States, and more generally the world, may face. One such issue involves the

significant number of adults who are affected by high blood pressure. In fact, the World Health

Organization (World Health Organization; 2016) estimates that 22% of adults overs the age of 18

have abnormally high blood pressure, equating to approximately 1.2 billion afflicted individuals

world wide. Individuals with chronic high blood pressure may develop further sequelae to include

aneurysms, coronary artery disease, heart failure, strokes, dementia, kidney failure, etc. (Chobanian

et al., 2003). Thus, developing a sound understanding of the relationship that exists between blood

pressure and other risk factors is essential to public health.

To this end, the analysis considered herein examines blood pressure data collected on the

participants of the NHANES study during the years of 2009-2010, and attempts to relate this

response (diastolic blood pressure) to several different risk factors. In particular, the risk factors

selected for this study include a binary variable (Food) indicating whether the participant had eaten

within the last 30 minutes (with 1 indicating that they had, and 0 otherwise), the average number

of cigarettes smoked per day during the past 30 days (Cigarette), the average number of alcoholic

drinks consumed per day during the past 12 months (Alcohol), and the participants age (Age). This

analysis assumes that a first order linear model is appropriate, and uses the proposed approach

as well as LS, LAD, and ZQR to complete model fitting. These techniques were implemented in

the exact same fashion as was described in Section 3.3. Table 2.2 reports the estimated regression

coefficients as well as the corresponding standard errors obtained from this analysis.

From the results presented in Table 2.2, one will note that the findings between the four
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Table 2.2: Blood pressure data analysis: Estimated regression coefficients, their estimated standard
errors in parenthesis, and the values of the model selection criteria AIC and BIC, resulting from
AME, LS, LAD, and ZQR.

Estimate(SE)
Method Food Alcohol Cigarette Age (AIC,BIC)

LS -0.481(1.279) 0.452(0.157) -0.001(0.069) 0.473(0.041) (7066.61, 7095.06)
LAD 0.170(1.251) 0.430(0.170) -0.024(0.057) 0.385(0.044) (7028.93, 7057.37)
ZQR 1.429(1.451) 0.429(0.182) 0.000(0.051) 0.286(0.051) (6985.03, 7018.22)
AME 0.675(1.170) 0.405(0.160) 0.004(0.047) 0.316(0.039) (6962.68, 7000.61)

regression methodologies are similar, but differences are apparent. In particular, this analysis finds

that age and alcohol are significantly (positively) related to diastolic blood pressure, with the other

two covariates being insignificant. The effect estimate associated with alcohol consumption is in

agreement across all of the techniques, but the same cannot be said for the age effect. In partic-

ular, the proposed method actually renders an age effect estimate that is statistically different (or

essentially) than the effect estimate which was obtained by LS. In contrast, the age effect estimates

obtained by the proposed approach and ZQR are generally in agreement, this is likely attributable

to the fact that both of these techniques are designed to adapt to the asymmetry of the data, which

is present in this analysis; e.g., the proposed approach estimated the shape parameter to be α̂ ≈ 1.4

and the skewness parameter to be τ̂ ≈ 0.3, indicating that the error distribution has heavy tails

and is right skewed. To further investigate this, Figure 2.3 provides QQ-plots and histograms of

the residuals obtained under the four regression methodologies. From Figure 2.3 one would note

that LS, LAD, and likely even ZQR would fail basic diagnostic checks. Further, when comparing

the standard error estimates of the age effect one will also note that the proposed approach renders

a smaller value when compared to LS, LAD and ZQR, which is not surprising given the results

discussed in Section 4. Ultimately, in terms of choosing a ”best” model fit in this scenario one could

make use of the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

to select between model fits, noting that the proposed approach holds the other 3 as special cases.

Table 2.2 provides the values of these model selection criteria for all of the regression techniques, and

one will note that both techniques unanimously select the model fit via the proposed approach. In

summary, whether based on standard diagnostic procedures, estimator efficiency, or model selection

criteria, the proposed approach appears to be the favorable technique for this application.
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Figure 2.3: QQ-plots and histogram of the residuals under AME, LS, LAD, and ZQR for the blood
pressure dataset.
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2.5.2 Miscarriage data

The Collaborative Perinatal Project (CPP) was a longitudinal study, conducted from 1957 to 1974,

which was aimed at assessing multiple aspects of maternal and child health (Hardy, 2003). Even

though this study was conducted half a century ago, the information collected still constitutes an

important resource for biomedical research in many areas of perinatology and pediatrics. For ex-

ample, in 2007 a nested case-control study which examined whether circulating levels of chemokines

were related to miscarriage risk was conducted using (n = 745) stored serum samples collected as a

part of the original CPP study, for further details see Whitcomb et al. (2007). In particular, this

study focused on monocyte chemotactic protein-1 (MCP1), which is a cytokine that is located on

chromosome 17 in the human genome and is believed to have a pregnancy regulatory function, for

further details see Wood (1997). The cases (controls) in the study were participants who had (not)

experienced a spontaneous miscarriage, and cases were matched with controls based on gestational

age. In addition to the measured MCP1 levels, several other variables were collected on each partic-

ipant; i.e., age, race (with 1 denoting Africa American, and 0 otherwise)), smoke (with 1 denoting

that the participant had smoked before and 0 otherwise) and miscarriage status (with 1 denoting

that miscarriage had been experienced, and 0 otherwise).

In this analysis, the measured MCP1 level is considered to be the response variable and all

other variables are treated as covariates. A full linear model consisting of all first order terms, as well

as all pairwise interactions, is assumed and best subset model selection is implemented using BIC

as the criteria. The proposed approach was used to fit all possible models, including models where

(α, τ) were set to be (2, 0.5), (1, 0.5), and (1, τ), which are equivalent to implementing LS, LAD,

and ZQR, respectively. Model fitting was conducted in the exact same fashion as was described in

Section 3.3. This process identified an intercept only model for LS, a model consisting of race as the

only covariate for ZQR, and a first order model consisting of both age and race as covariates for LAD

and AME, with BIC values of 431.28, -395.51, -822.02, and -937.55 for LS, LAD, ZQR, and AME,

respectively. From these results, one will note that important relationships will potentially be missed

when the appropriate regression methodology is not used. In particular, this study illustrates that

the best model chosen under these existing procedures may differ from the best model chosen under

the proposed approach. When one considers the model selection process described above, it would

be natural to place more faith in the results that were obtained under the proposed approach. This
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assertion is based on two primary facts. First, the proposed procedure holds the other competing

procedures as special cases, thus the analysis described above should be viewed as a much more in

depth model selection process which evaluates whether it is more reasonable to view α and τ as

being fixed (with known value) or as unknown parameters. Second, of the considered techniques

the proposed procedure has the ability to more aptly adapt to the underlying error structure, and

is therefore able to render a more reliable analysis.

2.6 Conclusions

This work has developed a general robust regression methodology, which was inspired by the asym-

metric exponential power distribution. In particular, the proposed methodology is robust with

respect to the underlying error structure, thus rendering reliable estimation and inference across a

broad spectrum of error distributions, even in the case of heavy tails and/or asymmetry. This is

made possible by the fact that the loss function is chosen in a data adaptive fashion, during the esti-

mation process, thus capturing the shape and skewness of the underlying distribution of the errors.

The asymptotic properties of the proposed estimator are established. Through an extensive Monte

Carlo simulation study, the proposed approach was shown to perform as well if not better than

several existing techniques. In particular, these studies show that the proposed method generally

performs better than these existing techniques when the error distribution is heavy-tailed and/or

skewed. The strengths of the proposed method were further exhibited through the analysis of two

motivating data sets. To further disseminate this work, code (written in R) which implements the

proposed methodology has been prepared and is available upon request.
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Appendix

The regularity conditions under which consistency and asymptotic normality of the proposed M-

estimator and the bootstrapped estimator can be established are provided below.
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A1: {(xi, yi), i = 1, . . . , n} is an i.i.d. sequence of random variables.

A2: The conditional cumulative distribution function of y|x is absolutely continuous and has a

positive density denoted by f∗(·|·).

A3: The parameter space Θ ⊂ Ξ ≡ {θ|α > 0, σ > 0, τ ∈ (0, 1), βi ∈ R,∀i}, and Θ is a compact set.

A4: There exists a unique θ0 ∈ Θ such that E {ln f(y|x,θ)} is maximized and has nonsingular

second derivative at θ0.

A5: ‖n−1
∑n
i=1ψ(yi,xi, θ̂)‖ = op(n

−1/2).

A6: There exists a δ such that 0 < δ < α − 1, E
(
|ε|2ᾱ+4δ

)
< ∞, and E

(
|xj |2ᾱ+4δ

)
< ∞, for

j = 1, ..., p, where α and ᾱ denote the infimum and supremum of the set of all α in Θ,

respectively.

A7: V 1θ0 and V 2θ0 exist and are finite, V 1θ0 is positive definite, and V 2θ0 is invertible.

Conditions A1-A5 and A7 are common in the literature, see Huber (1967), Huber and Ronchetti

(2009), Koenker (2005), and Bera et al. (2016). Condition A2 restricts the conditional distribution of

the dependent variable and Condition A7 is assumed so that the asymptotic variance of the estimator

exists and is finite. Condition A4 ensures identifiability and existence of a unique solution. Condition

A5 is used to ensure that the derivative of the loss function evaluated at θ̂ is “nearly-zero”. Condition

A6 restricts the absolute moments on the conditional distribution of y|x and each covariate xj in

order to ensure the asymptotic behavior of the proposed estimator.

The consistency and asymptotic normality of the proposed estimator and the bootstrapped

estimator are established by verifying the conditions in Huber and Ronchetti (2009) (page 127 for

consistency and Theorem 6.6 as well as its corollary for normality) and Arcones and Giné (1992)

(page 42), respectively. The arguments to verify these assumptions are similar to those in Zhu (2009)

and Bera et al. (2016), and the details of these arguments are available from the corresponding

author.
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Chapter 3

Adaptive Penalized Quantile

Regression for Variable Selection

3.1 Introduction

Suppose that (x′i, yi)
n
i=1 represents an independent and identically distributed (iid) sample which

is assumed to follow a joint distribution g(y,x), with y being a response variable and x being a

p-dimensional covariate vector. In many settings, the conditional mean of y given x is assumed

to be β0 + x′β. In general, some of the covariates are important and others are not; in some

studies e.g. genomics/genetics it is the case that most are unimportant. In these situations, variable

selection techniques can be used to attempt to identify important variables, which is equivalent to

identify which regression coefficients are non-zero. In general, two evaluation metrics are concerned:

the mean squared error (MSE) or the mean absolute error (MAE) of the regression coefficients

estimates to measure the accuracy of the estimates and the average number of correctly specified

and mis-specified unimportant covariates to assess the variable selection performance. Both metrics

are related to the accuracy of prediction that takes both the bias and the variability of the estimates

into account. The following literature review gives a brief introduction of several methods which have

been proposed to perform regression coefficients estimation and variable selection simultaneously.

In practice, the true density g(y,x) is rarely known, so a parametric model fθ(y,x) is

assumed, where θ denotes the collection of unknown parameters of the model. Consider nested

24



models, where part of θ is allowed to be any sub-vector of a p dimensional “slope” coefficient vector

with coefficients corresponds to covariates being potentially related to the response, then a working

model class is constructed which consists of a set of competing models that is denoted by {Mm : m =

1, · · · , 2p}. If the true model belongs to the assumed model class, from the perspective of Kullback-

Leibler (KL) divergence defined in (2.5), Akaike (1974) shows that up to a constant, the estimated

KL divergence for model Mm can be asymptotically expanded as −ln(θ̂m) +
∑p
j=1 I(θ̂m,j 6= 0),

where ln(θ̂m) is the log-likelihood function for model Mm evaluated at the maximum likelihood

estimate θ̂m for m = 1, · · · , 2p, and Schwarz (1978) proposes the BIC criterion from the Bayesian

principle which yields −ln(θ̂m)+ln(n)/2
∑p
j=1 I(θ̂m,j 6= 0) as the criterion for model selection. Both

AIC and BIC choose a model that minimizes the penalized likelihood; i.e.,

arg min
θ

−ln(θ) + λ||θ||0, (3.1)

for different values of λ, where || · ||0 is called the L0 norm that counts the number of non-zero

components. Many traditional methods can amount to penalized least squares (LS) methods with

different choices of λ when the Normal likelihood in (3.1) is used. This includes Mallow’s Cp statistics

in Mallows (1973) corresponds to λ = 1 and the adjusted R2 is approximately equivalent to λ = 1/2.

(See details in Fan and Lv, 2010). (3.1) can be solved when p is rather small via best subsets, but

as p increases this problem quickly becomes unsolvable. In case when the number of covariates p is

comparable to or larger than the sample size n, the computation of L0 regularization is infeasible.

Tibshirani (1996) proposed the least absolute shrinkage and selection operator (Lasso) that

is defined as follows,

arg min
β0∈R,β∈Rp

1

n

n∑
i=1

(yi − β0 − x′iβ)2 subject to

p∑
j=1

|βj | ≤ t, (3.2)

here t is a tunning parameter. If t is greater than or equal to the L1 norm of the OLS estimator,

then (3.2) is equivalent to the unconstrained problem, which yields the OLS estimator. For smaller

values of t, Lasso shrinks the estimated coefficients toward the origin, and typically sets some of the

coefficients to be identically equal to zero. The optimization problem described in (3.2) has its dual
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form which is given by

arg min
β0∈R,β∈Rp

1

n

n∑
i=1

(yi − β0 − x′iβ)2 + λ

p∑
j=1

|βj |. (3.3)

Problems (3.2) and (3.3) are equivalent; that is, for a given λ ≥ 0, there exists a t ≥ 0 such that the

two problems share the same solution, and vice versa, see Osborne et al. (2000) for derivation. Efron

et al. (2004) proposes the least angle regression (LARS), a fast and efficient algorithm to produce

the entire Lasso solution path. In fact, LARS is as computationally efficient as computing the OLS

estimates. Zou (2006) proposed adaptive Lasso which is an adaptive version of Lasso, naturally

assigns different weights to the coefficients in the L1 penalty, that is defined as

arg min
β0∈R,β∈Rp

1

n

n∑
i=1

{yi − β0 − x′iβ}2 + λ

p∑
j=1

wj |βj |, (3.4)

where wj ’s are the adaptive weights. Zou (2006) shows that Lasso estimate (3.3) can be inconsistent

in some scenarios, and a necessary condition for adaptive Lasso being consistent is derived. The

adaptive Lasso enjoys the oracle properties (see Fan and Li, 2001), i.e., performs as well as if the true

underlying distribution is given. The adaptive Lasso outperforms Lasso by making use of a natural

idea that more penalty should be put on the unimportant covariates. One convenient and effective

way to choose the weights is by taking wj = 1/|β̂OLS,j |, and β̂OLS,j denotes the OLS estimate. The

smaller |β̂OLS,j | is, the stronger penalty 1/|β̂OLS,j | will be put on coefficient βj .

Lasso/Adaptive Lasso are expected to perform well under Normal errors since they can be

regarded as penialized log-likelihood of Normal distributions. However, in practice, it is common to

see heavy-tailed errors and contaminated distributions with outliers, in which case it is well known

that OLS may fail to provide reliable estimates, due to its squared power on residuals that penalizes

large residuals too much. LAD regression estimates the conditional median function, which has been

shown to be robust with respect to the underlying distributions. In the seminal paper of Koenker

and Bassett (1978), the idea of LAD is generalized, and quantile regression (QR) is introduced to

estimate the conditional quantile function of the response. Li and Zhu (2008) considered variable

selection through L1 regularization in linear quantile regression models, i.e., QR Lasso, with the loss
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function defined as follows,

arg min
β0∈R,β∈Rp

1

n

n∑
i=1

ρτ (yi − β0 − x′iβ) + λ

p∑
j=1

|βj |. (3.5)

QR Lasso and the corresponding adaptive version are successful tools to perform variable

selection with robust property. However guidance on the selection of the quantile used has not yet

been fully addressed. Zou and Yuan (2008) developed composite quantile regression (CQR) which

takes a sum of quantile loss functions at preset quantiles. By making use of the strength of multiple

QR to estimate the same slope coefficients across different quantiles, the CQR estimator is shown to

lose less than 30% asymptotic relative efficiency with respect to LS for a collection of densities when

the number of quantiles approaches∞. The idea of CQR is further extended in Bradic et al. (2011)

by taking a weighted linear combination of quantile loss functions; i.e., the weighted composite

quantile regression (WCQR), which can deal with both symmetric and asymmetric distributions. In

Bradic et al. (2011) the WCQR plus L1 regularization as loss function is studied, that is defined as

arg min
β1,··· ,βq∈R,β∈Rp

1

n

q∑
k=1

n∑
i=1

wkρτk{yi − βk − x′iβ}+ λ

p∑
j=1

wj |βj |, (3.6)

where the weights w′ks satisfy
∑q
i=1 wk = 1 and are selected by minimizing the asymptotic variance

of the estimator. This provides an adaptive procedure that allows the data to determine how the

weights are distributed to those preset quantiles.

However how many number of quantities should be used in the loss function remains an

open question and increasing the number of quantiles does not necessarily improve the efficiency

of WCQR estimator (see Sun et al., 2013). This motivates us to look for a new approach that

selects the optimal quantile in a continuous manner. Since QR can be viewed as the maximum

likelihood estimator (MLE) of the asymmetric Laplace distribution (ALD) when the parameter τ in

ALD is fixed, estimating the MLE of ALD would allow to estimate the most “informative” quantile

for QR. Thus in this work, we perform variable selection by focusing on adaptively selecting the

optimal quantile of interest in a different manner than methods described above, which we propose

a penalized likelihood method by simply making use of the ALD. The proposed method allows the

data to dictate which quantile of interest should be used by estimating an additional parameter

which assesses the skewness of the underlying distribution. So essentially the proposed method

27



selects the most “informative” quantile used in QR Lasso for variable selection, inherits the robust

property of QR, and complements QR by improving the accuracy of regression coefficients estimates

across various error structures.

The remainder of this Chapter is organized as follows. Section 3.2 presents the modeling

assumptions, introduces ALD with adaptive L1 regularization, provides details of a stable numerical

algorithm to obtain the regression parameter estimates, and presents a method for selecting the

tuning parameter. Then results of an extensive Monte Carlo simulation study are presented in

Section 3.3. We apply the proposed procedure to a motivating data set in Section 3.4. Section 3.5

concludes with a summary discussion.

3.2 Methodology

3.2.1 Model Assumption

Consider the linear regression model

yi = β0 + x′iβ + εi, i = 1, · · · , n, (3.7)

(yi,x
′
i)’s are iid random variables, with yi being the response variable, xi a p dimensional vector of

covariates, β0 is the intercept parameter, β = (β1, · · · , βp)′ is a p dimensional vector of regression

coefficients, and εi is the error term. Herein, the xi and εi are assumed to be independent, thus

equivalently, the conditional quantiles of yi given xi have the same “slope” coefficient β and only

differ in the intercept. Next we introduce the ALD based on which the adaptive robust variable

selection procedure is proposed.

3.2.2 Asymmetric Laplace distribution and Penalized Quantile Regres-

sion

The conditional distribution of yi|xi follows ALD(x′β, σ, τ) if, the probability density is given as

f(yi|xi) =
τ(1− τ)

σ
exp

{
ρτ (yi − β0 − x′iβ)

σ

}
.
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The well known Laplace (double exponential) distribution is hold as a special case when τ = 0.5.

The log-likelihood of the observed data {(yi,x′i), i = 1, . . . , n} is given by

1

n

n∑
i=1

ln f(yi|xi;σ, τ, β0,β) = log{τ(1− τ)} − log(σ)−
∑n
i=1 ρτ (yi − β0 − x′iβ)

σ
. (3.8)

For fixed τ and (β0,β
′), the maximizer σ̂ of (3.8) can be solved as σ̂ =

∑n
i=1 ρτ (yi − β0 − x′iβ)/n .

Plug in σ̂ back into (3.8) and the log-likelihood function is proportional to

Q(β0,β, τ) =

∑n
i=1 ρτ (yi − β0 − x′iβ)

τ(1− τ)
. (3.9)

MLEs (β̂0, β̂
′
) and τ̂ can be solved by minimizing (3.9). Note that for any fixed τ , {β̂0(τ), β̂

′
(τ)}

is the QR estimate with quantile of interest being τ . Then τ̂ can be obtained by minimizing

Q(β̂0(τ), β̂(τ), τ).

The minimizer (β̂0, β̂
′
, τ̂) of (3.9) is studied in Bera et al. (2016), which they denote

(β̂0, β̂
′
, τ̂) as ZQR and showed the asymptotic properties of (β̂0, β̂

′
, τ̂) for error distributions that are

not only within ALD class, but also for model mis-specifications, in which case τ0 can be interpreted

as a skewness measurement for the underlying distribution. Our proposed method is developed in

the same vein, such that by the model assumption (3.7), we can make use of the log-likelihood of

the ALD to estimate the same “slope” coefficients β by simultaneously estimating one additional

parameter τ , together with an adaptive Lasso penalty on the “slope” coefficients, to perform variable

selection with improved performance. In particular, we consider the following optimization problem,

min
β0∈R,β∈Rp,τ∈(0,1)

1

n

∑n
i=1 ρτ (yi − β0 − x′iβ)

τ(1− τ)
subject to

p∑
j=1

wj |βj | ≤ t, (3.10)

where wj is adaptive weight for βj . Compared to QR Lasso, the difference in our proposed method-

ology is that we have one more parameter τ to estimate. For any β that is in the feasible region∑p
j=1 wj |βj | ≤ t, the minimizer τ̂ can be solved analytically, that is,

τ̂ =

{
1 +

√∑n
i=1(yi − x′iβ)+∑n
i=1(yi − x′iβ)−

}−1

,

where x+ = max{x, 0} and x− = min{−x, 0}. So it is more interpretable from the analytical

expression of τ̂ that τ̂ measures the skewness of the underlying distribution. If the underlying
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distribution is symmetric then on average τ̂ ≈ 0.5 and τ̂ > 0.5 for left skewed and τ̂ < 0.5 for right

skewed distribution respectively. As argued by Bera et al. (2016) that, τ̂ is the most “informative”

quantile that determines the quantile of interests that should be performed in the QR so that more

efficient and accurate estimates of β̂ can be obtained. In the following we present a detailed and

stable algorithm for obtaining (β̂0, β̂
′
, τ̂) for any fixed t.

In step 1, for fixed τ , the optimization problem (3.10) is equivalent to the dual form of (3.5)

with an adaptive weights w′js that assign different weights to the coefficients. We take wj = 1/|β̃j |,

where β̃ are the unconstrained estimates of problem (3.10), which has been shown in Bera et al.

(2016) to be a
√
n consistent estimator of the true “slope” coefficients. Thus β̂λ(τ) is obtained as

β̂λ(τ) = arg min
β0∈R,β∈Rp

1

n

n∑
i=1

ρτ (yi − β0 − x′iβ) + λ

p∑
j=1

|βj |
|β̃j |

. (3.11)

Note that |x| = ρτ (x) + ρτ (−x), so that (3.11) can be combined into a single quantile check loss

function that is given as

β̂
∗
λ(τ) = arg min

β∗∈Rp+1

1

n

n+2p∑
i=1

ρτ (y∗i − x∗iβ
∗),

where y∗i = yi for i = 1, · · · , n and y∗i = 0 for n + 1 ≤ i ≤ n + 2p, and x∗i is the ith row of matrix

X∗, where X∗ is defined as follows,

X∗ =



1 x′1
...

...

1 x′n

0 −nλ/|β̃1|
...

. . .

0 −nλ/|β̃p|

0 nλ/|β̃1|
...

. . .

0 nλ/|β̃p|



In step 2, perform a grid search over τ to identify τ̂λ which is minimizing Q(β̂0,λ(τ), β̂
′
λ(τ), τ)

in (3.9). As can be seen, the proposed objective function in (3.10) is convex with convex penalties
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for any fixed τ , and it has a unique global minimizer β̂λ(τ) rather than multiple possible local

minimizers.

3.2.3 Tuning Parameter

Tuning is an important issue in practice. Finite sample performance of the estimate relies on a

good tuning procedure. There are many commonly used methods, such as k-fold cross validation,

generalized cross-validation (see Golub G., Heath M., Wahba G., 1979; Tibshirani, 1996), AIC,

AICc (Akaike, 1973; Hurvich CM. and Tsai CL., 1989; Zou et al., 2007), and BIC (Zou et al., 2007;

Wang et al., 2007; Lee et al., 2014) can be applied to select the optimal tuning parameter. See

Shao (1997) for a discussion of asymptotic properties of these techniques. However, AIC and BIC

type methods are more computationally efficient when compared to cross validation type techniques.

Both AIC and BIC methods have a theoretical justification to be used to select the correct model

asymptotically, and for finite sample since BIC implements larger penalty than AIC, BIC tends to

promote more sparsity. In this work, we make use of the connection between our proposed approach

to the ALD likelihood, and propose to adopt a BIC type criterion to select the best tuning parameter

λ which is shown as follows:

BICλ = log

{∑n
i=1 ρτ (yi − β̂0 − x′iβ̂)

τ̂(1− τ̂)

}
+

log(n)d̂f(λ)

2n
, (3.12)

where d̂f(λ) is the number of non-zero elements of (β̂0, β̂
′
), which is shown by Zou (2007) to be an

unbiased estimate of the dimensionality of the model. (β̂0, β̂
′
) and τ̂ are the estimates for each fixed

λ that are obtained from section 3.2.2. The optimal λ̂ is selected which minimizes the proposed

BICλ.

Numerically searching for optimal λ based on minimum BIC value requires a uniform upper

bound for λ so that for each τ in the first step of the proposed algorithm presented in section 3.2.2,

the grid search over λ walks through the minimum λ such that the QR lasso estimate is equivalent to

the unconstrained QR estimate, to the maximu m λ such that all “slope” coefficients are penalized

to 0. This uniform upper bound λmax can be obtained by

λmax = max
τ∈(0,1)

|λmax(τ)|, (3.13)
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where λmax(τ) is the upper bound for QR adaptive lasso when the quantile is τ , which can be

obtained using the function hqreg in hqreg package (see Yi and Huang, 2016).

3.3 Simulation Results

In this section we summarize a simulation study to evaluate the finite sample performance of the

proposed methodology denoted by PZQR, and to compare between the proposed approach and

the existing methods including adaptive Lasso (ALA) (Zou, 2006) and adaptive QR Lasso denoted

by QR(τ) (Zheng et al., 2013) with τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The adaptive weights wj used are

1/|β̃OLS,j | for adaptive Lasso; 1/|β̃(τ)| for adaptive QR Lasso with quantile of interest being τ ,

where β̃(τ) are the QR estimate (Koenker and Barssett, 1978); 1/|β̃ZQR| for the proposed approach,

where β̃ZQR is the ZQR estimate (Bera et al., 2016). All methods use corresponding BIC criterion

to select the tuning parameter. (See Zou, 2007 for BIC in Lasso and Lee et al., 2014 for BIC in QR

Lasso.)

We adopt the following simulation setting. By setting β0 = 0 and β is a 8 × 1 vector

with β = (3.0, 2.0, 1.5, 0, 0, 0, 0, 0)′. By doing this, we get a covariate vector with the first three

components being important and the rest being redundant. The covariates xi are generated from

a multivariate normal distribution with 0 mean and covariance matrix Σ[i, j] = 0.5|i−j|, for 1 ≤

i, j ≤ 8. And the response variables are generated by yi = x′iβ + εi. The εi’s are generated from

different distributions to examine the general performance of the proposed method. In particular,

we consider the following six distributions: N(0,1); standard t distribution of degree freedom 4 (t4);

ALD(0, σ∗, 0.25) denoted by ALD, where σ∗ is the value such that the standard deviation of the

ALD is 1; Skewed t distribution (see Fernandez and Steel, 1998) of degree freedom 3 and gamma of

2; two mixture models 0.1N(0, 9) + 0.9N(5, 1) and 0.7Laplace(0, 1) + 0.3Laplace(3, 1), respectively.

These choices reflect various characteristics of error structures that are commonly seen in practical

applications; to include symmetry, asymmetry, light tails, heavy tails and slight deviation from

light/heavy-tailed distributions. For each of the above error distribution, m = 1000 independent

data sets were generated, each consisting of n = 200 observations.

The results of “slope” coefficients estimates are summarized in Table 3.1 under these six

error structures. As can be seen in Table 3.1 that the bias of all coefficients estimates are close to

zero for all approaches. In terms of efficiency, except when the error distribution is Normal, adaptive
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Lasso is most efficient as expected, the proposed estimator has smallest standard deviation for non-

zero coefficients estimates across all other underlying distributions. The variable selection results are

summarized in Table 3.2 which shows that all methods perform well on identifying significant/non-

zero coefficients. One will note that when the underlying distribution is symmetric, i. e., N(0, 1) or

t4, the averaged τ̂ is very close to 0.5, and for other skewed distributions, τ̂ assesses the skewness

of the underlying distributions. For example, in case of Laplace mixture as the error structure,

the averaged τ̂ = 0.228. In Table 3.1 it shows that under Laplace mixture error distribution, the

proposed method has the smallest standard deviations of the non-zero coefficients estimates, and

adaptive QR Lasso performs better for quantiles of interest being closer to 0.228, so that QR(0.3) is

the best among all selected quantiles, whereas the performance can drop drastically for mis-specified

quantiles, e.g., Q(0.9). Same conclusion can be drawn for all other error structures. This clearly

shows the proposed method provides for more efficient estimates by capturing the skewness of the

underlying distribution via estimating the skewness parameter τ , a feature not shared by QR Lasso

procedures.

Moreover by further examining the performance of estimation accuracy, the MAE score, i.e.,

the L1 norm of the difference between the “slope” regression coefficients estimates and the true, is

computed for each sample. Then box plots of values of MAE score over 1000 repetition are reported,

across all six error structures. The results are presented in Figure 3.1. It clearly shows that the

proposed method generally attains smallest MAE over various error structures, except under Normal

distribution, as expected, adaptive Lasso performs the best. Similar simulation results for the MSE

score of the estimates are obtained which is omitted here.

3.4 Real data analysis

According to National Institute of Diabetes and Digestive and Kidney Diseases (2017), 29.1 million

people or 9.3% of the U.S. population have diabetes. It is well known that many factors increase

the risk for diabetes, e.g., obesity, lack of physical activity and generic predisposition (The Expert

Committee on the Diagnosis and Classification of Diabetes Mellitus, 2003). Our motivating data

which was used in Efron et al. (2004) consists of 442 patients’ information including ten covariates;

i.e., the participants age (Age), sex (with 1 denoting female and 2 for male), body mass index (BMI),

average blood pressure (BP), and six blood serum measurements (S1-S6). The quantity measurement
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Table 3.1: Simulation results for coefficients estimates obtained by ALA, QR(τ) with τ ∈
{0.1, 0.3, 0.5, 0.7, 0.9} and PZQR for six distributions. This summary provides for the averaged
estimate for each coefficient and the standard deviation of the estimates in parenthesis.

Error Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

N(0, 1)
ALA 2.996 1.998 1.497 0.000 0.001 -0.001 0.001 -0.001

(0.082) (0.089) (0.082) (0.023) (0.020) (0.015) (0.021) (0.020)
QR(0.1) 2.984 1.977 1.417 0.000 0.000 0.000 0.000 0.000

(0.139) (0.165) (0.151) (0.006) (0.005) (0.003) (0.004) (0.004)
QR(0.3) 2.984 1.976 1.431 0.000 0.000 0.000 0.000 0.000

(0.109) (0.126) (0.116) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.5) 2.982 1.976 1.434 0.000 0.000 0.000 0.000 0.000

(0.106) (0.120) (0.112) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.7) 2.986 1.974 1.431 0.000 0.000 0.000 0.000 0.000

(0.113) (0.128) (0.123) (0.000) (0.003) (0.000) (0.000) (0.000)
QR(0.9) 2.984 1.976 1.423 0.000 0.000 0.000 0.000 0.000

(0.149) (0.166) (0.156) (0.000) (0.000) (0.000) (0.001) (0.000)
PZQR 2.993 1.990 1.484 0.000 0.000 -0.001 0.000 0.000

(0.103) (0.114) (0.107) (0.023) (0.019) (0.017) (0.016) (0.017)
t4

ALA 2.993 1.993 1.492 0.001 -0.002 -0.002 0.002 0.000
(0.118) (0.137) (0.123) (0.030) (0.036) (0.037) (0.037) (0.035)

QR(0.1) 2.971 1.963 1.382 0.001 0.000 0.001 0.000 0.000
(0.219) (0.271) (0.249) (0.015) (0.017) (0.023) (0.013) (0.010)

QR(0.3) 2.984 1.977 1.421 0.000 0.000 0.000 0.000 0.000
(0.127) (0.157) (0.138) (0.000) (0.000) (0.000) (0.000) (0.000)

QR(0.5) 2.981 1.980 1.426 0.000 0.000 0.000 0.000 0.000
(0.112) (0.137) (0.122) (0.000) (0.000) (0.000) (0.000) (0.000)

QR(0.7) 2.982 1.975 1.419 0.000 0.000 0.000 0.000 0.000
(0.124) (0.152) (0.137) (0.000) (0.000) (0.000) (0.000) (0.000)

QR(0.9) 2.972 1.947 1.387 0.000 0.000 0.000 0.001 -0.001
(0.213) (0.261) (0.243) (0.028) (0.012) (0.021) (0.015) (0.017)

PZQR 2.992 1.995 1.474 0.000 0.000 -0.001 -0.001 0.000
(0.110) (0.129) (0.116) (0.021) (0.015) (0.018) (0.017) (0.023)

ALD
ALA 3.001 1.993 1.498 0.000 0.000 0.001 -0.001 0.000

(0.083) (0.091) (0.079) (0.019) (0.018) (0.017) (0.018) (0.021)
QR(0.1) 2.989 1.987 1.463 0.000 0.000 0.000 0.000 0.000

(0.079) (0.090) (0.078) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.3) 2.992 1.987 1.469 0.000 0.000 0.000 0.000 0.000

(0.055) (0.061) (0.056) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.5) 2.988 1.981 1.451 0.000 0.000 0.000 0.000 0.000

(0.078) (0.091) (0.082) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.7) 2.985 1.972 1.423 0.000 0.000 0.000 0.000 0.000

(0.119) (0.138) (0.123) (0.000) (0.003) (0.000) (0.000) (0.000)
QR(0.9) 2.995 1.939 1.364 0.003 0.001 0.000 -0.001 -0.001

(0.234) (0.299) (0.255) (0.039) (0.023) (0.014) (0.024) (0.022)
PZQR 2.995 1.997 1.493 0.000 0.000 0.000 0.000 0.000

(0.054) (0.058) (0.054) (0.004) (0.003) (0.002) (0.003) (0.005)

(continued)
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Table 3.1 continued: Here Norm Mix and Lap Mix denote the Normal mixture and Laplace mixture
described in simulation section respectively.

Error Method β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

Skewed t
ALA 2.992 1.995 1.469 -0.001 0.000 -0.001 0.000 0.000

(0.169) (0.207) (0.193) (0.065) (0.051) (0.048) (0.042) (0.042)
QR(0.1) 2.981 1.975 1.427 0.000 0.000 0.000 0.000 0.000

(0.124) (0.148) (0.135) (0.000) (0.003) (0.000) (0.000) (0.005)
QR(0.3) 2.975 1.978 1.411 0.000 0.000 0.000 0.000 0.000

(0.132) (0.161) (0.149) (0.004) (0.002) (0.000) (0.000) (0.003)
QR(0.5) 2.968 1.972 1.378 0.000 0.000 0.000 0.000 0.000

(0.165) (0.203) (0.190) (0.000) (0.000) (0.007) (0.004) (0.000)
QR(0.7) 2.968 1.956 1.330 0.000 0.001 0.000 0.000 0.000

(0.235) (0.295) (0.277) (0.017) (0.010) (0.016) (0.004) (0.008)
QR(0.9) 2.974 1.921 1.225 0.014 0.011 0.002 0.003 -0.006

(0.464) (0.614) (0.555) (0.137) (0.113) (0.092) (0.096) (0.095)
PZQR 2.984 1.993 1.464 0.000 0.001 -0.001 0.001 0.000

(0.118) (0.136) (0.123) (0.024) (0.029) (0.026) (0.025) (0.026)
Norm Mix

ALA 2.996 1.982 1.474 -0.002 0.000 0.000 0.001 -0.002
(0.172) (0.196) (0.187) (0.058) (0.053) (0.044) (0.051) (0.052)

QR(0.1) 2.988 1.848 1.241 0.020 0.012 -0.001 -0.006 0.000
(0.569) (0.738) (0.670) (0.195) (0.169) (0.165) (0.155) (0.155)

QR(0.3) 2.982 1.974 1.410 0.000 0.000 0.000 0.000 0.000
(0.144) (0.168) (0.161) (0.001) (0.000) (0.003) (0.000) (0.000)

QR(0.5) 2.984 1.972 1.420 0.000 0.000 0.000 0.000 0.000
(0.119) (0.141) (0.130) (0.000) (0.002) (0.004) (0.000) (0.000)

QR(0.7) 2.983 1.978 1.422 0.000 0.000 0.000 0.000 0.000
(0.121) (0.142) (0.130) (0.000) (0.000) (0.000) (0.000) (0.000)

QR(0.9) 2.973 1.981 1.417 0.000 0.000 0.000 0.000 0.000
(0.157) (0.182) (0.164) (0.003) (0.007) (0.005) (0.003) (0.005)

PZQR 2.992 1.987 1.465 0.001 -0.001 0.000 0.000 0.000
(0.118) (0.136) (0.127) (0.028) (0.022) (0.018) (0.020) (0.019)

Lap Mix
ALA 2.993 1.989 1.476 0.001 0.000 0.002 0.001 0.000

(0.177) (0.199) (0.185) (0.042) (0.043) (0.048) (0.050) (0.050)
QR(0.1) 2.990 1.979 1.442 0.000 0.000 0.000 0.000 0.000

(0.112) (0.129) (0.116) (0.000) (0.000) (0.000) (0.000) (0.000)
QR(0.3) 2.988 1.986 1.449 0.000 0.000 0.000 0.000 0.000

(0.088) (0.097) (0.090) (0.000) (0.000) (0.003) (0.000) (0.000)
QR(0.5) 2.980 1.972 1.405 0.000 0.000 0.000 0.000 0.000

(0.151) (0.181) (0.167) (0.000) (0.000) (0.005) (0.000) (0.006)
QR(0.7) 2.955 1.938 1.317 0.002 0.000 0.002 -0.001 0.000

(0.282) (0.356) (0.323) (0.027) (0.022) (0.023) (0.022) (0.033)
QR(0.9) 2.960 1.884 1.237 0.022 0.005 0.000 0.004 -0.003

(0.513) (0.647) (0.621) (0.158) (0.118) (0.098) (0.106) (0.095)
PZQR 2.995 1.997 1.482 0.000 0.000 0.000 0.000 0.000

(0.076) (0.083) (0.077) (0.000) (0.000) (0.008) (0.003) (0.008)
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Table 3.2: Variable selection results for six error distributions. This summary includes the average
number of correctly specified zero coefficients (Correct), the average number of incorrectly specified
zero coefficients (Wrong), and the averaged τ̂ . Here Norm Mix and Lap Mix denote the Normal
mixture and Laplace mixture described in simulation section respectively.

Mean of No. of 0
Error Method Correct Wrong τ̂
N(0, 1) LS-Lasso 4.927 0.000 -

QR(0.1)-Lasso 4.927 0.000 -
QR(0.3)-Lasso 4.997 0.000 -
QR(0.5)-Lasso 4.999 0.000 -
QR(0.7)-Lasso 4.997 0.000 -
QR(0.9)-Lasso 4.942 0.000 -

ZQR-Lasso 4.914 0.000 0.496
t4 LS-Lasso 4.912 0.000 -

QR(0.1)-Lasso 4.827 0.000 -
QR(0.3)-Lasso 5.000 0.000 -
QR(0.5)-Lasso 5.000 0.000 -
QR(0.7)-Lasso 5.000 0.000 -
QR(0.9)-Lasso 4.853 0.000 -

ZQR-Lasso 4.933 0.000 0.500
ALD LS-Lasso 4.936 0.000 -

QR(0.1)-Lasso 4.990 0.000 -
QR(0.3)-Lasso 5.000 0.000 -
QR(0.5)-Lasso 5.000 0.000 -
QR(0.7)-Lasso 4.993 0.000 -
QR(0.9)-Lasso 4.751 0.000 -

ZQR-Lasso 4.987 0.000 0.245
Skewed t LS-Lasso 4.899 0.000 -

QR(0.1)-Lasso 4.978 0.000 -
QR(0.3)-Lasso 4.997 0.000 -
QR(0.5)-Lasso 4.998 0.000 -
QR(0.7)-Lasso 4.934 0.001 -
QR(0.9)-Lasso 4.393 0.047 -

ZQR-Lasso 4.902 0.000 0.198
Norm Mix LS-Lasso 4.889 0.000 -

QR(0.1)-Lasso 4.484 0.119 -
QR(0.3)-Lasso 4.999 0.000 -
QR(0.5)-Lasso 4.987 0.000 -
QR(0.7)-Lasso 4.987 0.000 -
QR(0.9)-Lasso 4.935 0.000 -

ZQR-Lasso 4.933 0.000 0.720
Lap Mix LS-Lasso 4.900 0.000 -

QR(0.1)-Lasso 4.997 0.000 -
QR(0.3)-Lasso 4.999 0.000 -
QR(0.5)-Lasso 4.997 0.000 -
QR(0.7)-Lasso 4.900 0.000 -
QR(0.9)-Lasso 4.359 0.065 -

ZQR-Lasso 4.993 0.000 0.228
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Figure 3.1: Box plot of the MAE scores across six error structures for different methods. Here Norm
Mix and Lap Mix denote Normal mixture and Laplace mixture described in simulation section
respectively.
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Table 3.3: Coefficients Estimates Result

Methods Age Sex BMI BP S1 S2 S3 S4 S5 S6
ALA 0.000 -0.125 0.334 0.194 -0.318 0.166 0.000 0.074 0.422 0.000

QR(0.1) 0.000 0.000 0.132 0.000 0.000 0.000 0.000 0.094 0.198 0.000
QR(0.3) 0.000 -0.029 0.368 0.099 0.000 -0.046 0.000 0.032 0.319 0.000
QR(0.5) 0.000 -0.101 0.326 0.159 -0.167 0.000 0.000 0.018 0.451 0.000
QR(0.7) 0.000 -0.071 0.388 0.132 -0.122 0.000 0.000 0.000 0.494 0.000
QR(0.9) 0.000 -0.048 0.378 0.158 -0.372 0.241 0.000 0.000 0.479 0.000
PZQR 0.000 -0.146 0.303 0.214 -0.204 0.010 0.000 0.109 0.398 0.000

of diabetes progression, which is taken one year after baseline, is the response variable. All covariates

and the response variable have been standardized so that the mean is 0 and the standard deviation

is 1. This analysis assumes a linear model and uses the proposed methodology as well as ALA and

QR(τ) with the quantile τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, to perform regression coefficients estimation and

variable selection simultaneously. All techniques were implemented in the exact same way as was

described in Section 3.3.

Table 3.3 reports the regression coefficients estimates and variable selection result. One

will note that almost all coefficients estimates across all methods are close to each other, both in

magnitude and sign. QQ-plots of the residuals obtained under ALA method indicates this data is

close to be normally distributed, and only the proposed approach has the same variable selection

result with ALA, that both methods select Sex, BMI, BP, S1,S2, S4 and S5 as important variables.

All other QR Lasso approaches will miss either one or several important predictors. The proposed

approach delivers τ̂ = 0.49, which is consistent with the finding of QQ-plots that the data is close

to be symmetric.

3.5 Conclusions

This work has developed an adaptive procedure for variable selection by making use of the log-

likelihood of the ALD. In particular, the proposed methodology is robust with respect to the under-

lying distributions meaning that it can select important predictors under sparse setting when the

underlying error structure is symmetric, but can also render reliable estimation and inference for

asymmetric error structures with light/heavy tails. This is achieved by the fact that the proposed

procedure essentially chooses the loss function in a data driven fashion, such that the additional
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parameter estimate τ̂ can assess the skewness of the underlying distribution, which determines the

quantile of interest used in the adaptive QR Lasso procedure. Through an extensive Monte Carlo

simulation study, the proposed approach is shown to perform as well as the adaptive Lasso and the

adaptive QR Lasso procedures in terms of identifying important predictor variables, and from the es-

timation perspective, the proposed method provides for more accurate estimates across a broad class

of distributions which reflect heavy/light-tailed, symmetric/left skewed/right skewed distributions.

The strengths of the proposed method are further exhibited through the analysis of one motivating

data set. The code (written in R) implements the proposed methodology has been prepared and is

efficient and stable to obtain the estimates, which is available upon request.
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Chapter 4

Penalized Autocorrelation

Estimation in Time Series

4.1 Introduction

Consider a simple case that an independent and identically distributed (iid) sample, {xt}, t =

1, · · · , n, is given and the sample mean x̄ can be used to construct the 1− α confidence interval for

µ = E(Xt) which is given as

x̄± s√
n
tα/2,

where s is the sample standard deviation and tα/2 is the critical value of Student t distribution with

degree freedom of n− 1. However this often leads to an empirical coverage that is smaller than the

nominal level due to the underestimation of the standard error of x̄. The usual assumption of inde-

pendence is not valid for correlated data set in time series, and often positive autocorrelation exists

in time series data with the autocorrelation being stronger for closer observations, in which case the

actual standard error of x̄ is larger than s/
√
n. Discussions about effect of ignoring autocorrelations

on producing reliable estimates and type one error in hypothesis testing can found in Cochrane and

Orcutt (1949).

The correlation between the two random variables Xt and Xt+h in a stationary time series
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is called autocorrelation and is defined as

ρ(h) =
Cov(Xt, Xt+h)

V ar(Xt)
.

Of course, the issue brought by the correlated error term would also extend to the linear regression

model for estimating regression coefficients. Test statistics such as Durbin-Watson test in Durbin

and Watson (1950) is to detect the presence of autocorrelation and if the conclusion of this hypothesis

test indicates the existence of correlation then transformed regression techniques will be applied to

test the significance of the regression coefficient. Nakamura and Nakamura (1978) show in presence

of correlation, the hypothesis test could yield a type I error much larger than the significance level,

e.g., the significance level of α = 5% hypothesis test for significance of “slope” coefficient brings out

a type I error of 40%, with the autocorrelation at lag one ρ = 0.9 when the sample size is n = 30.

The situation improves as sample size increases, but deteriorates as ρ increases.

Sample autocorrelation is used to estimate the population autocorrelation and is defined as

ρ̂(h) =

∑n−h
t=1 (xt+h − x̄)(xt − x̄)∑n

t=1(xt − x̄)2
(4.1)

From Cauchy Schwartz Inequality, it is easy to see that |ρ̂(h)| ≤ 1 at any lag h ≥ 0. ρ̂(h) is a consis-

tent estimate of ρ(h) and asymptotic normality holds under a mild restriction on stationary linear

stochastic process (see Anderson and Walker, 1964). However, for finite samples, ρ̂(h) tends to under

estimate ρ(h) in many scenarios and much work has been done to derive explicit approximations

for the bias (see Lomnicki and Zaremba, 1957). The analytical expressions of the serial correlation

coefficient studied in Marriott and Pope (1954) are derived for two simple stationary processes: the

unweighted moving average model of order 1 (UMA(1)), i.e., Xt = Wt−1 +Wt and the autoregressive

model of order 1 (AR(1)), i.e., Xt = ρXt−1 + Wt, where Wt is the standard normally distributed

white noise, for t = 1, · · · , n. Since ρ̂(h) and the serial correlation coefficient differs by terms of

order 1/n2, E{ρ̂(h)} can be derived and E{ρ̂(1)} is given as follows,

E{ρ̂(1)} =
1

2
− 2

n
+O(

1

n2
), for UMA(1),

E{ρ̂(1)} = ρ− 1 + 4ρ

n
+O(

1

n2
), for AR(1),
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These results clearly show under these two stationary time series to the order of 1/n2, ρ̂(1) under-

estimates ρ(1) (when ρ < −0.25 under AR(1), ρ̂(1) underestimate ρ in absolute sense), the negative

bias becomes more severe for smaller sample size and larger ρ. The bias-corrected estimation for ρ

becomes possible based on the expectation and Bence (1995) applied the bias-corrected ρ estimate

for AR(1) model to adjust the standard error estimate of x̄ by a correction factor k such that E(ks)

is equals to the standard deviation of x̄. An approximate correction factor k = {(1 + ρ)/(1− ρ)}1/2

from which we can see finite sample inference performances depend on the accuracy of ρ estimation.

The underestimation is common to many techniques , e.g., two-step Cochrane-Orcutt, the

Durbin estimator, or maximum-likelihood estimation (Park and Mitchell, 1980; Beesley and Griffiths,

1982; Griffiths and Beesley, 1984; King and Giles, 1984). Methods of removing the bias include the

test statistics R = 2r− (r1 + r2)/2 in Quenouille (1949), where r is the sample correlation estimate

for the whole series and r1 and r2 are for the first and second halves respectively. This procedure

reduces the bias to the order of 1/n2 but loses efficiency.

In this work we propose a methodology that aims to provide for estimation of autocorrela-

tion with reduced bias and small standard deviation. In particular, the population autocorrelation

estimation is obtained as a LS problem from the best linear predictor perspective, and regularization

is applied to the parameter of the objective function in order to penalize the autocorrelation estimate

being away from ±1. The proposed procedure is expected to “drag” the autocorrelation estimate

toward ±1 so that it alleviates the underestimation issue. The tuning parameter is chosen in a data

driven manner in order to obtain a good performance of the proposed approach in terms of mean

squared error (MSE). This chapter is organized as follows. Section 4.2 presents model assumptions,

the proposed loss function and the sequence for tuning parameter. Asymptotic properties of the pro-

posed method is established in Section 4.3. Extensive Monte Carlo simulations under AR(1), AR(2),

ARMA(1,1) models are studied in section 4.4. Suggestions for better choice of tuning parameter is

discussed in section 4.5.

4.2 Methodology

Consider a linear stochastic process defined as

Xt = µ+

∞∑
i=0

ψiWt−i, for t = 1, · · · , n, (4.2)
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where {Wt} ∼ WN(0, σ2
w) is iid white noise with zero mean and finite variance, and µ, ψi are

parameters satisfying
∑∞
i=−∞ |ψi| < ∞. Note that many commonly seen time series models can

be represented as linear process. For example, If ψ0 = 1 and ψ1 = θ, then the linear process is

MA(1) with parameter θ. If ψi = φi for i ≥ 0, then it corresponds to AR(1) with parameter φ. In

general ARMA models have a linear process representation. Bickel (1996) showed the closure of the

linear process under a suitable metric is unexpectedly large, and this work deals with estimation of

autocorrelation under linear stochastic models and all of our simulated time series belong to this

class.

As we know autocorrelation at lag h can be obtained by the following:

ρ(h) = arg min
ρ∈(−1,1)

E{(Xt+h − µ)− ρ(Xt − µ)}2, (4.3)

where µ = E(Xt). This motivates us to propose a penalized LS procedure, that is, for a realization

{xt}, t = 1, · · · , n from the linear process, the loss function is given

n∑
t=1

{
(x∗t+h − x̄)− ρ(x∗t − x̄)

}2
+ nλn(1− ρ2), (4.4)

where λn ≥ 0 is the tuning parameter and x∗ is the augmented data set so that x∗i = xi, for

i = 1, 2, · · · , n, and x∗i = x̄ for i = n + 1, · · · , 2n − 1. The minimizer of the proposed objective

function is given

ρ̃(h) =

∑n−h
t=1 (xt+h − x̄)(xt − x̄)∑n
t=1(xt − x̄)2 − nλn

. (4.5)

When the tuning parameter λn = 0, i.e., no penalization is taken, (4.4) as an empirical

analogue of the objective function in (4.3) leads to the sample autocorrelation (4.1). The larger λn

is, the more penalty is put on ρ being away from ±1. When λn =∞, ρ̃(h) = ±1. Therefore, selection

of λn is critical for the performance of the proposed estimate ρ̃(h). The underestimation of ρ becomes

an issue for small sample size, and deteriorates as the absolute value of ρ gets larger. The selection of

λn should take these into account. We propose λn = f(x1, · · · , xn)an, where f(x1, · · · , xn) reflects

the penalization depends on ρ through the data, and an → ∞. The proposed λn in this work to
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achieve these characteristics is given as follows,

λn = {γ̂(0)− |γ̂(h)|}n−0.5−10−6

, (4.6)

where γ̂(h) =
∑n−h
t=1 (xt+h − x̄)(xt − x̄)/n for any h ≥ 0 is a consistent estimate of γ(h) =

Cov(Xt+h, Xt). The proposed λn is derived from the restriction that |ρ̃(h)| ≤ 1 so that it is a

valid autocorrelation estimate, and is chosen so that ρ̃(h) and ρ̂(h) have the same asymptotic be-

havior. After simple algebra, the proposed estimator is given as

ρ̃(h) =
ρ̂(h)

1− (1− |ρ̂(h)|)n−0.5−10−6 (4.7)

4.3 Asymptotics

Theorem 4.3.1. For any stationary linear stochastic process defined in (4.2), if
∑∞
i=−∞ |i|ψ2

i <∞,

and
√
nan → 0 as n → ∞, then for λn = f(x1, · · · , xn)an with stochastically bounded f, ρ̃(h) as

defined in (4.5) is asymptotically normal; i.e.,

√
n{ρ̃(h)− ρ(h)} d→ N(0, Vh), (4.8)

for −n < h < n, where Vh =
∑∞
i=−∞{ρ(i)2 + ρ(i)ρ(i+ 2h) + 2ρ(h)2ρ(i)2 − 4ρ(h)ρ(i)ρ(i+ h)}. The

proof of the theorem is straightforward by using the consistency and asymptotic normality of sample

autocorrelation and applying slutsky’s theorem. The proposed λn in (4.6) satisfies the condition so

that ρ̃(h) defined in (4.7) is asymptotically normal.

4.4 Simulation Study

In order to examine the finite performance of the proposed estimator, a simulation study is conducted

to generate stationary time series from AR(1) and ARMA(1,1) model:

• Xt = φXt−1 +Wt, φ = 0.1, 0.3, 0.5, 0.7, 0.9

• Xt = φXt−1 + θWt−1 +Wt, φ = −0.8,−0.4, 0, 0.4, 0.8 and θ = 1.
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ρ = 0.1, 0.3, 0.5, 0.7, 0.9 are considered for time series from both models. For each parameter

setting, sample size is taken as n = 25, 50, 100. The comparison of the performance is made between

the sample autocorrelation at lag one ρ̂ and the proposed autocorrelation estimate at lag one ρ̃.

1000 independent dataset for each setting are generated to evaluate the performance and the result

is shown in Table 4.1, which provides a summary of the estimators from near non-correlated (ρ = 0.1)

to highly correlated (ρ = 0.9) data sets with small, moderate and large sample sizes. Simulation

results for negative ρ are similar and for simplicity we omit the results. In particular, this summary

includes the empirical bias, standard deviation of the estimates, and the relative mean squared error

(RMSE) i.e., the averaged MSE of the sample autocorrelation divided by the averaged MSE of the

proposed estimator. From these results, one will note that the estimates of autocorrelation are

subject to quite large biases, especially for small sample size and high correlations. The proposed

estimator reduces the bias for all cases and generally has smaller MSE when ρ ≥ 0.5.

Furthermore, we are interested in using the proposed approach to estimate the partial

autocorrelation. In time series Xt, the partial autocorrelation α(h) is defined as the autocorrelation

between Xt and Xt+h that is not accounted by lags from 1 to h− 1. Sample partial autocorrelation

is defined as

α̂(h) =


1 · · · ρ̂(h− 1)

...
. . .

...

ρ̂(h− 1) · · · 1


−1

ρ̂(1)

...

ρ̂(h)

 ,

which is a function of sample autocorrelation. Partial autocorrelation plays an important role in

identifying the extent of the lag in AR(p) models. The proposed approach in estimating autocor-

relation ρ̃ leads to the partial autocorrelation estimate at lag one α̃. A simulation study under

AR(2) model is conducted to examine the performance of estimating partial autocorrelation by the

proposed method, where AR(2) is defined as Xt = φ1Xt−1 + φ2Xt−2 +Wt.

Note that in AR(2), ρ(1) = φ1/(1 − φ2) and α(2) = φ2. We take φ1 and φ2 with different

combinations so that ρ(1) takes value in {0.5, 0.7, 0.9} and α(2) takes value in {0.6, 0.7, 0.8, 0.9}.

Simulation results over 1000 independent time series are shown in Table 4.2, where the bias and

standard deviation of both autocorrelation estimate at lag one, ρ̃, and partial autocorrelation esti-

mate at lag of two, α̃, are presented compared with the usual sample autocorrelation ρ̂ and usual

sample partial autocorrelation α̂. The RMSE for both autocorrelation and partial autocorrelation
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Table 4.1: Simulation results summarizing the estimates of ρ obtained by the sample autocorrelation
at lag one ρ̂ and the proposed autocorrelation estimate at lag one ρ̃ under AR(1) and ARMA(1,1)
model. This summary includes the average estimate minus the true value (bias), standard deviation
(sd) and relative mean squared error (RMSE).

bias sd
Model n ρ ρ̂ ρ̃ ρ̂ ρ̃ RMSE
AR(1) 25 0.1 -0.0570 -0.0495 0.1880 0.2191 0.7650

0.3 -0.0773 -0.0442 0.1834 0.2061 0.8916
0.5 -0.1342 -0.0896 0.1902 0.2037 1.0942
0.7 -0.1623 -0.1140 0.1717 0.1727 1.3042
0.9 -0.2186 -0.1764 0.1439 0.1356 1.3839

50 0.1 -0.0293 -0.0206 0.1405 0.1572 0.8193
0.3 -0.0423 -0.0150 0.1321 0.1420 0.9428
0.5 -0.0608 -0.0253 0.1222 0.1252 1.1418
0.7 -0.0855 -0.0520 0.1140 0.1108 1.3560
0.9 -0.1054 -0.0828 0.0934 0.0864 1.3859

100 0.1 -0.0143 -0.0066 0.0984 0.1069 0.8626
0.3 -0.0217 -0.0010 0.0957 0.1002 0.9587
0.5 -0.0330 -0.0076 0.0885 0.0891 1.1155
0.7 -0.0414 -0.0187 0.0789 0.0766 1.2769
0.9 -0.0494 -0.0368 0.0582 0.0544 1.3512

ARMA(1,1) 25 0.1 -0.0573 -0.0501 0.1752 0.2048 0.7645
0.3 -0.0681 -0.0321 0.1573 0.1759 0.9193
0.5 -0.0863 -0.0359 0.1409 0.1461 1.2061
0.7 -0.1090 -0.0598 0.1263 0.1224 1.5003
0.9 -0.1327 -0.0970 0.0962 0.0863 1.5944

50 0.1 -0.0305 -0.0219 0.1354 0.1517 0.8198
0.3 -0.0326 -0.0040 0.1154 0.1237 0.9389
0.5 -0.0414 -0.0049 0.0993 0.1006 1.1414
0.7 -0.0465 -0.0138 0.0847 0.0809 1.3844
0.9 -0.0630 -0.0437 0.0595 0.0538 1.5611

100 0.1 -0.0126 -0.0047 0.0945 0.1026 0.8613
0.3 -0.0109 -0.0029 0.0949 0.1030 0.8591
0.5 -0.0191 0.0066 0.0743 0.0744 1.0535
0.7 -0.0237 -0.0014 0.0583 0.0561 1.2562
0.9 -0.0300 -0.0187 0.0391 0.0362 1.4629
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are reported for sample size n = 25, 50, 100. As can be seen in Table 4.2, the proposed α̃ has smaller

MSE compared to α̂ for almost every parameter setting and the efficiency improves when n increases.

4.5 Future Work

4.5.1 Tuning parameter selection

As can be seen from the simulation results in both Table 4.1 and Table 4.2, the proposed estimator

ρ̃ and α̃ generally alleviate the underestimation and attain smaller MSE compared to sample au-

tocorrelation and sample partial autocorrelation when the correlation is strong, still there are large

biases when time series is short and correlation is strong. For example in Table 4.1, we can see under

AR(1) model when n = 50, ρ = 0.9, the bias is around −0.10 for ρ̂ and −0.08 for ρ̃. The proposed

tuning parameter sequence λn does improve the accuracy of the estimation in terms of mse but

there definitely exists a better choice of λn to improve further. K fold cross validation method is

considered to select the best tuning parameter for a zero mean stationary time series Yt. The cross

validation score can be defined as

cvk =
1

n− h

n−h∑
t=1

(yt+h − ρ̃λyt)2,

where ρ̃λ is the penalized sample autocorrelation estimate (4.5) which are obtained from the training

data set that does not contain kth fold data, and y1, · · · , yn is the testing data set in kth fold. Then

the cross validation score is the average of K cv’s. Monte Carlo simulation results (not shown here)

indicate the estimates obtained in this way has smaller bias compared to the proposed penalized ρ̃

but has larger standard deviations. Other methods to select tuning parameter such as generalized

cross validation (GCV), the modified version of GCV in Huang et al. (2011), L-curve approach in

Hansen (2000) and BIC Zou et al. (2007) all have similar simulation results. None of those methods

work well due to the small sample size and high correlation in time series data. Developing novel

cross validation schemes to deal with this issue could be a future research topic.

4.5.2 Estimating autocorrelation at all lags simultaneously

Instead of estimating the autocorrelation at lag h for each fixed h, an estimation of ρ = {ρ(0), · · · , ρ(n−

1)}′ can be formulated as follows. For a time series with zero mean,
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Table 4.2: Simulation results summarizing the estimates of ρ obtained by the sample autocorrelation
ρ̂ and the proposed methods ρ̃, and the estimates of partial autocorrelation at lag two α by the sample
partial autocorrelation α̂ and the proposed methods α̃ under AR(2) model. This summary includes
the average estimate minus the true value (bias), standard deviation (sd) and RMSE of ρ̂ with
respect to ρ̃ (R(ρ)), and R(α) for the corresponding RMSE for partial autocorrelation.

bias sd
n ρ α ρ̂ ρ̃ α̂ α̃ ρ̂ ρ̃ α̂ α̃ R(ρ) R(α)
25 0.5 0.6 -0.333 -0.314 -0.243 -0.188 0.302 0.337 0.173 0.215 0.954 1.093

0.7 0.6 -0.419 -0.389 -0.262 -0.218 0.293 0.321 0.175 0.216 1.031 1.053
0.9 0.6 -0.520 -0.484 -0.286 -0.257 0.296 0.317 0.170 0.213 1.068 0.993
0.5 0.7 -0.421 -0.411 -0.265 -0.192 0.330 0.368 0.169 0.211 0.938 1.211
0.7 0.7 -0.515 -0.496 -0.288 -0.226 0.335 0.370 0.176 0.220 0.988 1.147
0.9 0.7 -0.629 -0.602 -0.298 -0.243 0.324 0.355 0.170 0.213 1.027 1.131
0.5 0.8 -0.510 -0.511 -0.306 -0.225 0.370 0.411 0.166 0.209 0.923 1.288
0.7 0.8 -0.649 -0.644 -0.309 -0.229 0.374 0.414 0.169 0.213 0.958 1.267
0.9 0.8 -0.759 -0.746 -0.335 -0.264 0.375 0.414 0.163 0.206 0.986 1.239
0.5 0.9 -0.726 -0.744 -0.339 -0.253 0.401 0.435 0.169 0.214 0.924 1.304
0.7 0.9 -0.853 -0.866 -0.348 -0.261 0.411 0.448 0.169 0.214 0.943 1.308
0.9 0.9 -0.998 -1.006 -0.349 -0.261 0.409 0.448 0.177 0.224 0.960 1.296

50 0.5 0.6 -0.187 -0.161 -0.125 -0.076 0.241 0.256 0.125 0.144 1.014 1.178
0.7 0.6 -0.237 -0.206 -0.145 -0.110 0.226 0.233 0.125 0.145 1.107 1.114
0.9 0.6 -0.305 -0.275 -0.177 -0.156 0.204 0.202 0.131 0.153 1.154 1.014
0.5 0.7 -0.252 -0.232 -0.136 -0.072 0.272 0.292 0.113 0.132 0.989 1.394
0.7 0.7 -0.324 -0.299 -0.155 -0.102 0.273 0.286 0.117 0.135 1.049 1.317
0.9 0.7 -0.398 -0.371 -0.176 -0.134 0.261 0.268 0.122 0.143 1.086 1.186
0.5 0.8 -0.352 -0.341 -0.161 -0.085 0.331 0.355 0.113 0.134 0.963 1.546
0.7 0.8 -0.433 -0.414 -0.171 -0.101 0.320 0.340 0.112 0.131 1.007 1.517
0.9 0.8 -0.541 -0.518 -0.185 -0.121 0.310 0.326 0.116 0.137 1.038 1.416
0.5 0.9 -0.537 -0.540 -0.180 -0.094 0.380 0.407 0.107 0.127 0.948 1.757
0.7 0.9 -0.683 -0.682 -0.184 -0.098 0.380 0.407 0.107 0.128 0.969 1.735
0.9 0.9 -0.797 -0.791 -0.184 -0.100 0.379 0.405 0.103 0.124 0.987 1.762

100 0.5 0.6 -0.099 -0.077 -0.063 -0.027 0.176 0.181 0.085 0.093 1.056 1.186
0.7 0.6 -0.129 -0.106 -0.068 -0.042 0.161 0.160 0.083 0.092 1.154 1.138
0.9 0.6 -0.165 -0.147 -0.096 -0.082 0.144 0.139 0.092 0.102 1.169 1.033
0.5 0.7 -0.130 -0.110 -0.069 -0.023 0.214 0.221 0.077 0.085 1.027 1.382
0.7 0.7 -0.177 -0.155 -0.080 -0.043 0.197 0.198 0.077 0.085 1.108 1.359
0.9 0.7 -0.223 -0.204 -0.104 -0.078 0.172 0.168 0.082 0.091 1.136 1.221
0.5 0.8 -0.206 -0.189 -0.074 -0.016 0.254 0.265 0.070 0.078 1.004 1.640
0.7 0.8 -0.253 -0.233 -0.089 -0.040 0.240 0.245 0.075 0.084 1.062 1.588
0.9 0.8 -0.325 -0.304 -0.107 -0.066 0.223 0.223 0.076 0.086 1.089 1.478
0.5 0.9 -0.364 -0.357 -0.088 -0.019 0.324 0.341 0.063 0.072 0.975 2.125
0.7 0.9 -0.443 -0.430 -0.094 -0.030 0.324 0.338 0.066 0.075 1.005 2.045
0.9 0.9 -0.538 -0.523 -0.108 -0.048 0.320 0.331 0.067 0.077 1.023 1.947
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Cov(Yi, Yj) = E(YiYj) = γ(|i− j|),

for all 1 ≤ i, j ≤ n. Then the ρ = {ρ(0), · · · , ρ(n− 1)} can be estimated as

∑
1≤i≤j≤n

{yiyj − ρ(j − i)γ̂(0)}2 + n2λ

n−1∑
k=1

{1− ρ2(k)}, (4.9)

where γ̂(0) =
∑n
t=1 y

2
t /n. Up to a constant the above equation can be rewritten in the following

matrix form:

(y −Xρ)′(y −Xρ)− n2λ(Aρ)′(Aρ),

where, y = (y2
1 , · · · , y2

n, y1y
∗
2 , · · · , yny∗n+1, · · · , y1y

∗
n, · · · , yny∗2n−1)′ is an n2 × 1 vector, and y∗ =

(y1, · · · , yn, 0, · · · , 0)′ is an (2n− 1)× 1 vector; X = diag(1n, · · · ,1n) is an n2 × n matrix, 1n is an

n × 1 vector with all entries 1; and A = diag(0, 1, · · · , 1) is an n × n matrix. The explicit solution

can be obtained as

ρ̂(h) =
γ̂(0)

∑n−h
t=1 yt+hyt

γ̂2(0)n− n2λ
, (4.10)

for h = 0, · · · , n − 1. When λ = 0, ρ̂(h) becomes the sample autocorrelation, the larger λ is the

larger the estimate will be dragged to ±1. The performance of the proposed estimator depends on

the selection of tuning parameter λ, and one handy technique to use is generalized cross validation

(GCV) that is defined as

GCV (λ) =
1
n ||(I −Hλ)y||2

| 1n tr(I −Hλ)|2
,

where Hλ is the hat matrix, defined by

Hλ = X(X ′X + λA′A)−1X ′,

and I is an n2 × n2 diagonal matrix. This method is currently under investigation.
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[10] Bickel P., Bühlmann. What is a linear process? Proc. Natl. Acad. Sci. 1996; 93:12128-12131.

[11] Bradic J., Fan J., Wang W. Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional
Variable Selection. Journal of Royal Statistical Society: Series B 2011; 73:325-349.

[12] Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo L Jr, Jones DW, Materson
BJ, Oparil S, Wright JT Jr, Roccella EJ, National Heart, Lung, Blood Institute, National High
Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint Na-
tional Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure.
Hypertension 2003; 42:1206-1252.

[13] Cochrane D., Orcutt GH. Application of Least Squares Regression to Relationships Containing
Auto-Correlated Error Terms. Journal of the American Statistical Association 1949; 44:32-61.

50



[14] Durbin J., Watson GS. Testing for Serial Correlation in Least Squares Regression: I. Biometrika
1950; 37:409-428.

[15] Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Capital City Press: Mont-
pelier, 1982.

[16] Efron B., Hastie T., Johnstone I., Tibshirani R. Least Angle Regression. The Annals of Statistics
2004; 32:407-499.

[17] Fan J., Li R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.
Journal of the American Statistical Association 2001; 96.

[18] an J., Lv J. A Selective Overview of Variable Selection in High Dimensional Feature Space. Stat
Sin. 2010; 20:101-148.

[19] Fernandez C, Steel MFJ. On Bayesian modeling of fat tails and skewness. Journal of the Amer-
ican Statistical Association 1998; 93:359-371.

[20] Golub G., Heath M., Wahba G. Generalized Cross-Validation as a Method for Choosing a Good
Ridge Parameter. Technometrics 1979; 21.

[21] Griffiths WE., Beesley PAA. he small sample properties of some preliminary-test estimators in
a linear model with autocorrelated errors. Journal of Econometrics 1984; 25:49-62.

[22] Hansen PC. The L-curve and its use in the numerical treatment of inverse problems. In Compu-
tational Inverse Problems in Electrocardiology, Advances in Computational Bioengineering (P.
Johnston, eds.); 119-142.

[23] Hardy JB. The collaborative perinatal project: Lessons and legacy. Annals of Epidemiology
2003; 13:303-311.

[24] Huang C., Hsing T., Cressie N. Spectral Density Estimation Through A Regularized Inverse
Problem. Statistica Sinica 2011; 21:1115-1144.

[25] Huber PJ. Robust estimation of a location parameter. Annals of Mathematical Statistics 1964;
35:73-101.

[26] Huber PJ. The Behavior of Maximum Likelihood Estimates Under Nonstandard Conditions. In
Fifth Symposium on Mathematical Statistics and Probability. University of California, Berkeley,
California, 1967; 179-195.

[27] Huber PJ. Robust Regression Asymptotics Conjectures and Monte Carlo. The Annals of Statis-
tics 1973; 1:799-821.

[28] Huber PJ, Ronchetti EM. Robust Statistics, 2nd ed. Wiley: Hoboken, 2009.

[29] Hurlbert SH. Pseudoreplication and the Design of Ecological Field Experiments. Ecological
Monographs 1984; 54:187-211.

[30] Hurvich CM., Tsai CL. Regression and Time Series Model Selection in Small Samples.
Biometrika 1989; 76:297-307.

[31] Kai B, Li R, Zou H. Local Composite Quantile Regression Smoothing: An Efficient and Safe
Alternative to Local Polynomial Regression. Journal of the Royal Statistical Society, Series B
2010; 71:49-69.

[32] King ML., Giles, DEA. Autocorrelation pre-testing in the linear model: Estimation, testing
and prediction. Journal of Econometrics 1984; 25:35-48.

51



[33] Koenker R, Bassett G. Regression Quantiles. Econometrica 1978; 46:33-50.

[34] Bassett G., Koenker R. Asymptotic Theory of Least Absolute Error Regression. Journal of the
American Statistical Association 1978; 73:618-622.

[35] Koenker R. Quantile Regression. Cambridge University Press: Cambridge, 2005.

[36] Lee ER., Noh H., Park BU. Model Selection via Bayesian Information Criterion for Quantile
Regression Models. Journal of the American Statistical Association 2014; 109.

[37] Li Y., Zhu J. l1-norm quantile regressions. J. Comput. Graph. Statist 2008; 17:1-23.

[38] Lomnicki ZA., Zaremba SK. On the Estimation of Autocorrelation in time Series. The Annals
of Mathematical Statistics 1957; 28:140-158.

[39] Mallow CL. Some Comments on Cp. Technometric 1973; 15:661-675.

[40] Marriott FHC., Pope JA. Bias in the Estimation of Autocorrelations. Biometrika 1954; 41:390-
402.

[41] Mineo A. The norm-p estimation of location, scale and simple linear regression parameters.
Lecture notes in statistics. Statistical Modelling Proceedings. Trento, 1989; 222-233.

[42] Mudholkar GS., Hutson AD. The epsilon-skew-normal distribution for analyzing near-normal
data. Journal of Statistical Planning and Inference 2000; 83:291-309.

[43] Nakamura A., Nakamura M. On the Impact of the Tests for Serial Correlation Upon the Test
of Significance for the Regression Coefficient. Journal of Econometrics 1978; 7.

[44] National Institute of Diabetes and Digestive and Kidney Diseases. National Diabetes Statistics
Report, 2014. Bethesda, MD: Department of Health and Human Services; 2017.

[45] Osborne M., Presnell B., Turlach B. On the LASSO and Its Dual. Journal of Computational
and Graphical Statistics 2000; 9:319-337.

[46] Park, RE., Michell, BM. Estimating the Autocorrelated Error Model with Trended Data. Jour-
nal of Econometric 1980; 13:185-201.

[47] Quenouille MH. Approximate Tests of Correlation in Time Series. Journal of the Royal Statis-
tical Society: Series B 1949; 11:68-84.

[48] Rao CR. Information and the accuracy attainable in the estimation of statistical parameters.
Bulletin of the Calcutta Mathematical Society 1945; 37:81-89.

[49] Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978; 6:461-464.

[50] Shao J. An asymptotic theory for linear model selection (with discussion). Statist. Sin. 1997;
7:221-264.

[51] Subbotin MT. On the law of frequency of error. Matematicheskii Sbornik 1923; 31:296-301.

[52] Sun J., Gai Y., Lin L. Weighted local linear composite quantile estimation for the case of general
error distributions. Journal of Statistical Planning and Inference 2013; 143:1049-1063.

[53] The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care.
2003; 26(Suppl 1):S5–S20.

52



[54] Tibshirani R. Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society.
Series B (Methodological) 1996; 58:267-288.

[55] Wang H., Li G., Tsai CL. Regression coefficient and autoregressive order shrinkage and selection
via the lasso. J. R. Statist. Soc. B 2007; 69:63-78.

[56] Whitcomb B, Schisterman E, Klebanoff M, Baumgarten M, Rhoton-Vlasak A, Luo X, Chegini N.
Circulating chemokine levels and miscarriage. American Journal of Epidemiology 2007; 331:166-
323.

[57] Wood GW, Hausmann E, Choudhuri R. Relative role of CSF-1, MCP-1/JE, and RANTES in
macrophage recruitment during successful pregnancy. Molecular Reproduction and Development
1997; 46:62-70.

[58] World Health Organization; 2016. Available from: http://www.who.int/en/.

[59] Yi C., Huang J. Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penal-
ized Huber Loss Regression and Quantile Regression. Journal of Computational and Graphical
Statistics 2016.

[60] Zeckhauser R, Thompson M. Linear regression with non-normal error terms. The Review of
Economics and Statistics 1970; 52:280-286.

[61] Zheng Q., Gallagher C., Kulasekera KB. Adaptively weighted kernel regression. Journal of
Nonparametric Statistics 2013; 25:855-872.

[62] Zheng Q., Gallagher C., Kulasekera KB. Adaptive penalized quantile regression for high dimen-
sional data. Journal of Statistical Planning and Inference 2013; 143:1029-1038.

[63] Zhu D., Zinde-Walsh V. Properties and estimation of asymmetric exponential power distribu-
tion. Journal of Econometrics 2009; 148:86-99.

[64] Zou H. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical
Association 2006; 101.

[65] Zou H., Hastie T., Tibshirani R. ON THE “DEGREES OF FREEDOM” OF THE LASSO.
The Annals of Statistics 2007; 35:2173-2192.

[66] Zou H, Yuan M. Composite quantile regression and the oracle model selection theory. The
Annals of Statistics 2008; 36:1108-1126.

53


	Clemson University
	TigerPrints
	8-2017

	Adaptive Robust Methodology for Parameter Estimation and Variable Selection
	Tao Yang
	Recommended Citation


	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	A robust regression methodology via M-estimation
	Introduction
	Methodology
	Asymptotic properties
	Simulation study
	Data applications
	Conclusions

	Adaptive Penalized Quantile Regression for Variable Selection
	Introduction
	Methodology
	Simulation Results
	Real data analysis
	Conclusions

	Penalized Autocorrelation Estimation in Time Series
	Introduction
	Methodology
	Asymptotics
	Simulation Study
	Future Work

	Bibliography

