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ABSTRACT 
 
 

Inspired by living organisms, self-healing materials have been designed as smart 

materials. Their automatic healing nature is achieved through the use of capsule in which 

the healing agent is encapsulated. The occurrence of cracks leads to ripping of the capsule, 

along with crack propagation and release of the healing agent that wets the crack surface 

to eventually heal (bond) the crack. Such automatic repair of the crack significantly extends 

the service life of the material.  

A vast majority of existing self-healing systems have been designed for the epoxy 

matrix – the most common commercially used thermoset – that possesses low crack 

resistance. Currently, self-healing systems have not yet been introduced for fully protein-

based materials, despite their great potential to replace currently used synthesis precursors 

for the latter and the eco-friendly nature of self-healing materials. This has been probably 

due to two major obstacles: poor mechanical properties of the protein-based matrix, and 

extreme difficulty associated with the encapsulation of hydrophilic healing agents suitable 

for the protein-based matrix. This study provides possible solutions towards addressing 

both these obstacles.  

To improve the inherent mechanical properties of protein-based resin, soy protein 

isolate (SPI) was chosen as the model in this study. Dialdehyde carboxymethyl cellulose 

(DCMC) was synthesized and used as the crosslinking agent to modify the SPI film. As-

synthesized DCMC – a fully bio-based material – exhibited high mechanical strength, 

excellent thermal stability, and reduced moisture sensitivity. Good compatibility and 

effective crosslinking were believed to be the key reasons for such property enhancements. 
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However, these were accompanied by poor crack resistance, where self-healing is a 

pertinent solution. 

A novel healing system for the protein matrix was designed in this work via the use 

of formaldehyde as a healing agent. Subsequently, the well-acknowledged challenge, e.g. 

hydrophilic agent encapsulation, was addressed through the development of novel 

polyurethane-Poly(melamine-formaldehyde) (PU-PMF) dual-component capsules. 

Remarkably, the external PU insulation layer was fabricated through interfacial 

polymerization based on a water-in-oil-in-oil (W/O/O) emulsion template. Surface tension 

was identified as the main driving factor for the formation of the external oil phase. The 

internal PMF layer was observed to strongly influence the internal morphology of the 

capsule. A protocol was developed, and a typical capsule with dense and neat shell 

morphology with a shell/capsule diameter (around 3 %) was fabricated. 

This study provides solutions for the two aforementioned obstacles related to the 

development of the healing system for the protein-based materials. 
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CHAPTER ONE 

1. INTRODUCTION AND LITERATURE

1.1  Protein-based	resin	

Protein-based materials have drawn the attention of researchers in recent times, in 

part due to the current focus on addressing environmental issues such as inadequate 

facilities for waste disposal amidst huge mounds of garbage, and the depletion of non-

renewable resources. Various strategies have been designed for partial/full substitution of 

petroleum-based polymers with alternative bio-based materials, thus endowing 

sustainability to the final product. Decades of endeavor has led to some bio-based materials 

exhibiting comparable or better performance than their petroleum-based counterparts, 

enabling their successful application across several industries. Representative examples 

include the use of epoxidized plant oil as a substitute to conventional petroleum-based 

epoxy1-2; phenolic resins originating from cashew nut shell liquid3; renewable polyol 

derived from bio-pitches; castor oil; and oxy-propylated lignin used for the synthesis of 

polyurethane4, to name a few. Recently, Raquez at el. has reviewed the current progress on 

bio-based thermosetting polymers5.  

Proteins are composed of amino acid units with a broad range of chain length, 

ranging from tens of amino acid units up to 100,000 units. In nature, proteins are produced 

from animal feedstock or through plant products such as casein (from milk), soy protein 
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and gluten. Commercial application of protein-based materials dates back to 1930s when 

Henry Ford launched soy-based automobile parts via blending of phenol-formaldehyde 

resin and soybean meal6. This effort later came to a halt due to World War II and 

subsequent low prices of petroleum-based plastics but has revived in recent years owing to 

increasing concerns regarding environmental sustainability. Today, Ford and other 

automotive manufacturers including General Electric (GE), Honda, Daimler, and Renault 

are demonstrating a commitment to utilize natural resources and wastes to ensure that the 

automotive sector is eco-friendly and sustainable. Their achievements have been 

summarized in the “Biobased Automobile Parts Investigation” report issued by the United 

States Department of Agriculture (USDA) (2012)7.  

Soy protein remains an excellent model for making protein-based materials. Soy 

protein is abundant and hence, is relatively inexpensive. Chemically, the molecular weight 

of soy protein ranges from 20k to 35k Dalton, and it is composed of amino acid residuals, 

including aspartic acid, glutamic acid, nonpolar amino acids, and < 1 wt. % of cysteine8. 

The functionality of amino acid residuals provides functional groups for subsequent/future 

modifications. However, a major drawback of soy protein-based materials is their high 

sensitivity to moisture9. To address this problem, soy protein materials are crosslinked with 

aldehydes, such as formaldehyde10，glyoxal11 and glutaraldehyde12. The aldehyde group 

reacts with amine groups – mainly from lysine (6.2 g/100 g in PRO-FAM 646, the 

commercial product used in this study) – and leads to the formation of intra- and 

intermolecular covalent bonds, resulting in a dense crosslinked network. As shown in Table 
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1.1, crosslinking is an effective approach to improve mechanical properties and sensitivity 

to moisture.  

Gluten is another abundantly available protein in nature. Unlike soy protein, gluten 

is insoluble in water due to its high uncharged amino acid (glutamine and prolines) content. 

Hence, it exhibits lower sensitivity to moisture when compared with soy protein. Also, 

gluten contains a high amount of disulfide bonds, probably due to the high gliadins content, 

which explains its viscous flow properties without any sign of significant elasticity. 

Similarly, aldehyde-induced crosslinking is also a proper modification strategy to improve 

the mechanical properties of gluten-based material13. Besides, the reductive L-cysteine 

could also induce crosslinking by cleaving the existing disulfide bonds, thus promoting the 

formation of new disulfide bonds13-14. 

In addition to soy proteins and gluten, the potential of other protein-based materials 

has also been evaluated in literature,  including on egg-white protein15, gelatin, and 

keratin16 that originate from animals. Crosslinking has also been used to effectively 

improve their mechanical properties and moisture sensitivity. For instance, gelatin, derived 

from collagen, can be crosslinked by resorcinol, formaldehyde or glutaraldehyde17.  

As discussed above, crosslinking is among the most efficient and commonly used 

approaches to address the inherent shortcomings of protein-based materials. However, the 

formation of the crosslinking network also causes brittleness – a common problem with 

most thermosets. Inspired by the solution designed for epoxies, self-healing strategy was 

considered to be a possible solution to heal cracks and extend the service life of the product.  
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1.2  Designing	self-healing	system	for	the	protein-based	material	

A lot of capsule-based self-healing strategies have been developed to heal the 

cracked hydrophobic matrix. Most of these are based on hydrophobic material systems, 

such as epoxies, multi-amine hardener, or multimaleimide25. Most of the successful epoxy 

capsules with external PU shell have been prepared in the emulsion system. In such 

capsules, surface polymerization takes place on the surface of water-in-oil (W/O) emulsion, 

producing an ideal shell that has low permeability, high loading capacity, good stability 

and excellent bonding with the matrix. On the other hand, encapsulation of hydrophilic 

content is currently a challenge26, despite it being in high demand across various 

applications. 

Table 1.1 Performance of existing protein-based materials 

Type of 
modification 

Bio-
matrix Modifier 

M
ec

ha
ni
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l 

pr
op

er
tie

s 

Th
er
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st
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e 
se

ns
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N
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-to
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ci
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R
ef

er
en
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Coating 
SPI PLA +++ + √ 18

SPI PU +++ + √ 19

Crosslinking 

SPI Aldehyde ++ + - 10-12, 20

SPI Diglycidyl 
ester ++ + - 21

SPI Dialdehyde 
starch (DAS) + - √ 22

Egg 
white DAS + - √ 15

Keratin DAS - + √ 16

Gelatin DAS - √ - √ 23

Gelatin DCMC + + √ 24

Gluten Aldehyde ++ √ + √ 13
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Encapsulation of the hydrophilic filling can be achieved through interfacial 

polymerization in inverse emulsion. For interfacial polymerization, surfactants were used 

in this work to stabilize the emulsion droplets. The consequent shell formation reaction, 

including the epoxy-amine chemistry27,28, isocyanate-amine chemistry29, and isocyanate-

polyol chemistry26, 30-31 were observed to occur at the interface of the W/O system. 

The aim of this study is to prepare the healing capsule suitable for the proteinaceous 

matrix. Single microcapsule self-healing system was considered in this study to take the 

advantage of presence of the amine in the protein-based matrix. Curing reaction between 

the amino group of protein and epoxy has been proven to be too slow at room temperature32 

for the purpose of healing. Highly reactive isocyanates-filled capsules have been 

prepared33-34, without any evaluation of their healing performance. Also, its low protein 

bonding capacity is not satisfied in adhesive usage35. Another candidate is glycidyl 

methacrylate that can cure the epoxy substrate at room temperature but needs to react with 

DETA in the matrix36. Hence, researchers have focused on formaldehyde, glutaraldehyde, 

and paraformaldehyde that have shown exceptional bonding capacity with protein in 

existing literature10.  

 

1.3  Encapsulation	

In this section, current strategies to encapsulate payload have been reviewed. 

Methods for payload encapsulation include polycondensation interfacial polymerization, 

polymer precipitation by phase separation, layer-by-layer polyelectrolyte deposition, and 

polymer growth by surface polymerization. Such methods can be broadly categorized into 
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two groups, depending on the hydrophilic/hydrophobic nature of the payload. Both kinds 

of methods have been briefly discussed in this section, especially hydrophilic encapsulation 

as it is relevant to this study.   

The general purpose of encapsulation is to isolate the payload from the 

surroundings; for instance, bioactive enzymes are encapsulated to prevent their denaturing. 

Self-healing solution remains stored in the capsule until its release is triggered by crack 

generation and propagation. Also, the capsule carrier integrates add-on properties such as 

target delivery and controlled release, which is valuable for pharmaceutical applications. 

Among all these payloads, self-healing reagents are usually hydrophobic, while the drug, 

water-soluble dye, flavors, preservatives, vitamins and bio-reactive enzymes are usually 

hydrophilic. The nature of the payload determines the encapsulation strategy. In the 

following section, various methods are introduced and discussed. 

Polycondensation interfacial polymerization 

This technique is usually based on the emulsion system. Shell-forming monomers 

are dissolved in either phase. Therefore, the water-oil (W/O) interface serves as the locus 

where the reactants meet and react to form a shell “membrane."  This process is depicted 

in Figure 1.1. 

 
Figure 1.1 Schematic of polycondensation interfacial polymerization (adapted form37) 
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Generally speaking, this technique can be performed in both oil-in-water (O/W) 

emulsion system (direct emulsion) and water-in-oil (W/O) emulsion system (inverse 

emulsion), depending on the nature of the payload to be encapsulated. Also, the size of the 

resultant capsule is determined by the dimension of the emulsion droplets that are 

developed. Hence, parameters that affect the size of emulsion capsule will also determine 

its dimensions. Such parameters include the rate of agitation, surfactant amount and species, 

and the viscosity of the dispersive phase. The most typical model of this technique is the 

polyurethane capsule formed using isocyanate, polyol (or polyamine) and nylon capsule 

fabricated by polyamine and terephthaloyldichloride, which dates back to 1980s when 

aqueous-containing amine was injected into the oil phase via a syringe38. The process can 

also be performed in inverse emulsions, thus encapsulating the aqueous phase 39. 

Polyurethane capsule has been extensively investigated due to its versatility. Koh et al. 

produced oil-core capsules with isocyanate derivatives and diol as chain extender to 

encapsulate hydrophobic corrosion inhibitors. Capsules with neat morphology were 

facilely fabricated30. Recently, Kuypers et al. added the thiol-isocyanate reaction into the 

chemistry family suitable for the interfacial polymerization and encapsulated aqueous 

payloads via thiourethane nanocarriers40.  

Polycondensation interfacial polymerization provides a facile, efficient manner for 

encapsulating hydrophobic payloads. This is especially evident in its prevalence in the  

fabrication of self-healing capsules where the hydrophobic epoxy,  multiamine hardener, 

or multimaleimide25 are loaded. However, encapsulation of hydrophilic payload through 
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this method has not proven successful. Although some cases have been reported, the 

resultant capsules have been found to be either too small40 or too weak38, 40, which inhibit 

their application. 

Interfacial precipitation (by phase separation)  

The main difference between interfacial precipitation and polycondensation 

interfacial polymerization is the location of shell-forming polymers.  In the case of 

interfacial precipitation, the shell-forming polymer precipitates out and gets deposited onto 

the interface of the droplet. Polymerization-induced phase separation (Case (1)) and 

Solvent evaporation-induced phase separation (Case (2)) are among the key driving factors 

that affect this deposition. In Case (1), monomers are dissolved in the 

dispersive/continuous phase, and chain growth reduces the solubility of resulting polymer. 

This leads to its separation from the solution and deposition on the internal/external side 

of the droplet interface, as illustrated in Figure 1.2. The most typical example of this 

technique is the formation of poly(formaldehyde-melamine) (PMF) capsule, in which pre-

PMF oligomer is dissolved in either the continuous phase or dispersed phase. Further 

crosslinking leads to the separation of PMF polymer and its subsequent deposition, 

resulting in the formation of the capsule shell41-44.Other major chemistries include the 

poly(methyl methacrylate) (PMMA) capsule 45-46.  
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Figure 1.2 Schematic of  Polymerization-induced phase separation 

Case (2) mainly occurs in the oil-in-water (O/W) system. Shell-forming polymer is 

dissolved in the dispersed oil phase, which consists of one volatile organic solvent and one 

non-volatile solvent. Evaporation of the volatile solvent leads to the precipitation of shell-

forming polymer on the oil/water interface. Examples of polymers that have employed this 

technique include PMMA47, poly(vinyl phenyl ketone) (PVPK)48, and polystyrene (PS)49, 

in the CH2Cl2/Hexadecane (good solvent/ poor solvent) system.  

 

Figure 1.3 Schematic of solvent evaporation induced phase separation 

 

Interfacial precipitation method is commonly used for encapsulation, mainly for 

preventing oxidation and trapping and controlled release of perfume odor, due to its narrow 

size distribution and tunable shell thickness. The disadvantage of this technique is its 

limitation in hydrophilic payload encapsulation (for Case (1)), and difficulty in choosing 

the proper ternary system (for Case (2))50. 
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 The previous two approaches are those that have been successfully employed for 

commercial large-scale industrial applications for several years. Since our interest is in 

encapsulating hydrophilic payloads, other less-common methods have also been discussed 

below.  

Layer-by-layer polyelectrolyte deposition  

Layer-by-layer polyelectrolyte deposition takes advantage of electrostatic driving 

force. A charged solid template is submerged into a solution of polyelectrolytes of opposite 

charge on an iterative basis. Commonly used polyelectrolytes include poly(styrene 

sulfonate) (as poly-anion) and poly (allylamine hydrochloride) (as poly-cation) 

respectively.  After coating, the solid core dissolves, leaving behind a hollow capsule shell. 

Applications of this approach include the encapsulation of enzyme crystal, followed by a 

step called solubilization to form the enzyme solution inside the capsule51.  The advantages 

of this product include its tunable shell thickness, non-usage of organic solvents, and good 

stimuli response properties inherited from the polyelectrolyte (such as pH response)51. The 

disadvantages are also evident, such as laborious fabrication procedure, low stability, and 

inability in encapsulating solution52. 

 
Figure 1.4 Schematic on layer-by-layer polyelectrolyte deposition(adapted from 

literature53) 
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Hydrophilic encapsulation 

When compared with hydrophobic encapsulation, encapsulation of hydrophilic 

load is challenging despite its high value in industrial applications such as a water-soluble 

dye, flavors, preservatives, vitamins, and pharmaceuticals54. Currently, common examples 

of hydrophilic encapsulation exist in the pharmaceutical industry, where liquid medicine is 

encapsulated by liposomes that enable the delivery of hydrophilic medicine through the 

physiology barrier and into the target organ. A review article on hydrophilic encapsulation 

has been recently published, mainly focusing on the drug delivery issue54. However, for 

other applications such as self-healing capsule, where dense, robust capsule shells are 

desired, the progress is much slower.  

As a pioneer and an important contributor in the field of self-healing, Dr. Scott R. 

White at the University of Illinois at Urbana-Champaign has undertaken impressive 

endeavor to encapsulate hydrophilic amine as a component of the dual-capsule self-healing 

system on the basis of the epoxy-amine chemistry. Encapsulation of epoxy was 

conveniently developed by adopting interface polymerization33 (published in 2008) or via 

polymerization-induced phase separation method55 (2006). In contrast, encapsulating 

amine – another self-healing component – was an extreme challenge owing to its reactive 

nature and wide miscibility. Attempts to adopt interfacial polymerization to the inverse 

emulsion to encapsulate amine can hardly be considered successful due to the unconfirmed 

capsule structure, broad size distribution, and most importantly, limited healing 

performance (2010)29,56. Further up-gradation of this approach by incorporating inorganic 

particles as well as polymeric isocyanate was not observed to result in capsules with hard 
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and dense shell57 (2014). In 2012, amine microcapsules were prepared by vacuum 

infiltration of hollow polymer microcapsules, finally resulting in self-healing of the epoxy 

capsule56.  Despite the laborious procedure, Philipp et al. in ETH in Switzerland offered 

his solution – perhaps, the closest to the ideal capsule in 2014. They used microfluidics to 

make a double-emulsion template. Aqueous amine solution was confined in the innermost 

droplet and polymerization of acrylic monomer was carried out in the middle oil layer. This 

method avoided the interference of shell forming reaction with the active payload (amine), 

leading to the obtainment of typical capsules with dense shell, clean surface, tunable shell 

thickness, and narrow distribution58. Unfortunately, the laborious nature of microfluidic 

method hindered its mass production. 

Other application-oriented studies did not exhibit exciting results. To encapsulate 

flame-retardant (bistetrazol∙diammonium), interfacial polymerization between epoxy (oil 

phase) and hydrazine (aqueous phase) was carried out in a W/O system. The obvious 

drawback of this design was the side reaction between the payload and epoxy28. In another 

study aiming to encapsulate herbicide, two water emulsions were separately prepared, one 

containing poly(vinyl alcohol) and chitosan as wall material, while the other containing 

crosslinker and catalyst. Shell formation was carried out via the collision of these two kinds 

of droplets in the oil phase59. While spheres were fabricated, their internal architecture was 

not characterized.    

In conclusion, although various methods were developed continuously in the lab to 

encapsulate a hydrophilic solution, few easy and efficient routes exist for this purpose, 

leaving a big gap between the existing techniques and the demands of the industry.  
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1.4  Overview	of	the	dissertation	

In Chapter 2, the strategy developed to crosslink protein-based film  is discussed. 

Crosslinking is achieved via the use of a bio-based cross-linker derived from cellulose to 

address the inherent problems (i.e., low mechanical properties and high moisture 

sensitivity) that hinder the application of protein-based materials. Mechanical properties, 

sensitivity to moisture and thermal stability are systematically evaluated. However, 

improvement in properties above is also accompanied by brittleness post-crosslinking 

modification.  

Chapter 3 discusses a method to encapsulate hydrophilic liquid – acknowledged as 

a challenge, but difficult to avoid in the scenario where self-healing strategy is intended to 

be applied to address the brittleness problem discussed in Chapter 2. The capsule was 

fabricated from water-in-oil-in-oil (W/O/O) double emulsion template. As this is a novel 

method that has never been considered in the earlier literature, the underlying mechanism 

and verification of the process has been discussed in great detail to justify the techniques. 

Chapter 4 is an extension of Chapter 3. Parameters that affect capsule fabrication 

were systematically investigated, focusing mostly on the internal PMF layer. A protocol 

was provided to fabricate the capsule and meet its requirements for self-healing purposes. 

Chapter 5 concludes the dissertation. Recommendations are provided for the future 

investigation of this system. 
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CHAPTER TWO 

 

2.  MECHANICAL AND MOISTURE SENSITIVITY OF FULLY BIO-BASED 
DIALDEHYDE CARBOXYMETHYL CELLULOSE CROSS-LINKED SOY PROTEIN 

ISOLATE FILMS 

 

ABSTRACT	

Dialdehyde carboxymethyl cellulose (DCMC) crosslinked soy protein isolate (SPI) 

films were prepared by solvent casting method. Effect of DCMC treatment on mechanical 

properties, water sensitivity, light barrier properties and thermal stability were investigated. 

A significant increase in tensile strength (TS) was observed (up to 218%) by varying the 

content of DCMC and plasticizer, suggesting the occurrence of highly effective 

crosslinking between SPI and DCMC. Significant improvement in TS compared to other 

dialdehyde polysaccharide crosslinking agents such as dialdehyde starch is likely due to 

the higher compatibility of DCMC with SPI, as was further confirmed by SEM images. 

Crosslinking also led to a reduction in water vapor permeability and moisture content along 

with the increase of insoluble mass percentage, indicating improvement in the water 

resistance of these bio-based protein films. The thermal stability of protein films also 

showed improvement post crosslinking of DCMC.  
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2.1  Introduction	

Protein-based films have received significant attention in recent times for purposes 

of food packaging due to their abundance, biodegradability, and good gas barrier properties 

(O2, CO2)21. However, these are accompanied with conspicuously weak mechanical 

properties and poor water resistance, hindering their use for packaging applications. 

Various strategies such as external coating and crosslinking have been deployed to 

overcome these drawbacks while not compromising on the merits above. For instance, an 

external coating of PLA60 or polyurethane19 layers has been observed to lead to low water 

permeability and improvement in mechanical properties of soy protein isolate (SPI) films. 

On the other hand, the addition of crosslinking agents during film preparation has led to 

obtainment of better mechanical properties and thermal stability, low moisture sensitivity, 

and reduced hydrophilicity of protein-based films. In such crosslinking reactions, 

functional groups of crosslinking agents such as aldehydes20 and diglycidyl ether61 react 

effectively with amino groups – abundantly available in protein chain – to form the 

crosslinking network (Fig. S 2.1 in supporting materials). However, the biggest concern 

about the small aldehyde molecule is its cytotoxicity, restricting the application of SPI 

films in food-related industries 21. Efforts have been made to overcome this through 

developing crosslinking agents of low cytotoxicity, one of which is dialdehyde starch 

(DAS)62. Unfortunately, DAS treatment has not necessarily led to satisfactory results. For 

example, only marginal increase (20-40%) was observed in tensile strength of DAS-treated 

SPI 22 and egg white 63 films. Treatment with DAS even led to a deterioration in mechanical 

properties of keratin 16 and gelatin 23 films. These results were probably due to low 
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crosslinking efficiency induced by steric hindrances of these polymeric agents and/or 

compatibility-induced phase separation of the components23. Compared to starch, cellulose 

– another naturally abundant polysaccharide – has shown better compatibility with protein 

films 64. A recent effort involved preparation of dialdehydecarboxymethyl cellulose 

(DCMC) 24, 65, and attempts to crosslink it to gelatin66. However, this effort resulted in 

limited improvement in mechanical properties (e.g. only 20-30% increase in tensile 

strength).  

Through our study, we focus on addressing the issues with poor mechanical and 

water-resistant properties of protein films. In this work, DCMC was used to modify SPI 

films via crosslinking to process fully bio-based films and improvements in mechanical 

properties and water sensitivity was investigated. SPI film was chosen for the fact that 

although it shows high promise as an important food packaging material, currently it has 

shortcomings due to the nature of its protein.   

2.2  Materials	and	methods	

Materials:  

Soy protein isolate (PRO-FAM 646) was provided by Archer Daniels Midland 

(ADM) food processing company. It contains approximately < 6 wt. % moisture, > 90 

wt. % protein, < 4 wt. % fat and < 5 wt. % ash. Glycerol (99 %, AC332031000, ACROS), 

sodium periodate (99 %, AC43285, ACROS Organics), and carboxymethyl cellulose 

sodium salt (CMC, average M.W. 250000, DS = 0.9, AC33262, ACROS Organics) was 

used as-received. 
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DCMC preparation: 

DCMC was prepared by oxidation method as described in 16, 66 with minor 

modifications. Briefly, carboxymethyl cellulose (1.0 g) was dissolved in 30 mL purified 

water under magnetic stirring. pH of the cellulose-water solution was then adjusted to 3.0 

using hydrochloric acid solution (1 N). 10 mL of sodium periodate solution (1.1 g/10 mL) 

was added drop-wise to the above-mentioned solution in order to trigger oxidization 

reaction at 35 °C in darkness. After 4 h, the product solution was poured in an excess 

amount of isopropyl alcohol to obtain the product precipitate, namely DCMC. White floc 

precipitant (DCMC) was recovered after washing it with isopropyl alcohol and dried under 

vacuum at room temperature for future use.  

 

Film preparation:  

SPI (2.04 g) was dissolved in purified water (41 mL) containing glycerin (50 %, 

40 %, or 30 % as SPI weight) as the plasticizer. pH of SPI solution was adjusted to 11 using 

1 M NaOH solution. SPI solution was then heated to 90 °C in water bath for 30 min to 

denature the protein. After the SPI solution was cooled to room temperature, certain 

volume of DCMC solution (0.1 g/10 mL), or corresponding amount of carboxymethyl 

cellulose (CMC) solution (0.1 g/10 mL, as control) was added. The solution was then cast 

using silicon mold (294 cm2), and dried in air for at least 72 h in lab room (20 °C, 35% 

humidity). Films were obtained after peeling from the mold, and denoted as SPI-x% 
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DCMC or SPI-x% CMC films, with numerical values (“x”) denoting the weight percentage 

of DCMC or CMC based on SPI. 

 

ATR-FTIR spectroscopy: 

Attenuated Total Reflectance Fourier Transform-Infrared (ATR-FTIR) 

Spectroscopy was performed on a Thermo-Nicolet Magna 550 FTIR spectrometer in 

combination with a Thermo-SpectraTech Foundation Series Diamond ATR accessory with 

a 50-degree angle of incidence. Spectra of DCMC and as-received CMC were collected in 

absorbance mode from 4000 to 400 cm-1 at a resolution of 2 cm-1.  

 

Light transparency: 

UV-visible light spectrophotometer (Lambda 900, Perkin Elmer) was used to 

determine the light transparency of the film. This method was obtained from a previous 

study 66 and is based on ASTM D 1746-92 standard. Film samples were cut into small 

pieces and placed perpendicularly into the film frame. Light absorbance was measured in 

the wavelength range of 200-800 nm, and light transparency was determined using 

Equation (1):   

Light	transparency = 	−
log T
x 		(1) 

Where T refers to transmittance at 600 nm, and x is the film thickness (in mm). 
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SEM imaging: 

Micro-morphology of the film surface and frozen-fracture cross-sectional surface 

were obtained using Scanning Electron Micrograph (SEM) (Hitachi, S-4800) at an 

accelerating voltage of 5.0 kV. Film samples were coated with a gold layer before imaging.  

 

Mechanical properties: 

Tensile strength (TS) and elongation at break (EB) were measured using Instron 

Universal Testing Machine (Model 1125 with 0-500 g load cell) at a cross-head speed of 

50 mm/min with 30 mm grip separation as per ASTM D882-12 standard. Tensile 

specimens were prepared by cutting the film into six rectangular sized-samples of 

dimensions 10 mm	× 70 mm. All the cut samples were tested, and average properties were 

measured and reported. 

 

Moisture content: 

Moisture content was calculated as the percentage of weight loss of the prepared 

film 22. Before undertaking the test, films were cut in a square shape (dimensions – 0.9 cm 

× 0.9 cm) and conditioned in laboratory atmosphere (temperature of 20 °C, 36% humidity) 

for 5 days. At least five specimens were tested for each composition. Film specimen was 

first weighed (m=,±0.1 mg) and then dried at 105 °C for 24 h. After cooling in a desiccator, 
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specimen was weighed to obtain the dried mass (m>,±0.1 mg). Moisture content was 

calculated using Equation (2):  

Moisture	content	(MC) = 	
m= −	m>

m=
	×100%			(2) 

 

Total insoluble matter percentage (IMP):  

The total insoluble matter was determined as the percentage of residual insoluble 

mass to its original dry mass after immersion in water for 24 h 22. Briefly, eight square 

specimens (dimensions of 2 cm × 2 cm) were cut from film samples; four of these were 

used to determine moisture content (MC), while the other four were weighed precisely (mE, 

±0.1 mg) for the water solubility test. Consequently, specimens for water soluble test were 

immersed in 50 mL water for 24 h at 20 °C with occasional, gentle shaking. Following this, 

insoluble samples were collected by filtration, rinsed and dried at 105 °C in oven for 24 h, 

and then the final weight (mF ,± 0.1 mg) was measured. The total soluble matter was 

calculated using Equation	(3):  

Total	insoluble	matter	percentage = 	
mE×θ −mF

mE
	×100%		(3) 

At least three film samples were tested for each composition.  
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Water vapor permeability (WVP): 

WVP of protein films was determined as per ASTM E96-15 standard. The film was 

sealed on top of a plastic cup containing CaCl2 and placed in an ESPEC (ESX-4Cw) 

environmental chamber at 25 °C and controlled relative humidity (RH) level of 50% in 

order to maintain the RH gradient at 50:0 between both sides of the film. The weight of the 

cup was recorded at intervals of 1 h for 10 hours. WVP was calculated using Equation (4):  

WVP = 	
w	×x

[A	×t× PQ −	P= ]
		(4) 

Where w is weight gain (g), x is film thickness (m), A is area of the exposed film 

(m2), t is time (s), and PQ −	P= 	is the vapor pressure difference across the film (Pa). 

Three measurements were taken for each film composition. 

 

Thermogravimetric analysis (TGA):  

TGA measurement was undertaken using TGA Q5000 instrument. About 4.0 mg 

samples were analyzed from room temperature to 800 °C at 10 °C/min under nitrogen 

atmosphere (25 mL/min) using Al2O3 pans.  

 

Intrinsic viscosity: 

Intrinsic viscosity [η] of CMC and DCMC was measured in water solution at 25 °C 

using the Ubbelohde viscometer. Test samples were diluted five times to achieve 
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concentration ranging between 1.08 ×  10−3 g/mL and 3 ×  10−3 g/mL for CMC and 

between 5.00 ×	10−3 g/mL and 1.08 × 10−3 for DCMC. 

 

Statistical analysis: 

At least three independent experiments were conducted to obtain replications for 

every SPI film. Films were compared by analyzing the variance with post-hoc comparison 

of mean values using Duncan’s multiple-range test. At P < 0.05 or as indicated, differences 

between the mean values were considered significant.  

2.3  Results	and	discussion	

Preparation and characterization of DCMC: 

DCMC was prepared by oxidation of sodium periodate in the solution66. Formation 

of active aldehyde groups was accomplished by cleavage of the C2-C3 bond as per 

Malaprade reaction24. This reaction was performed in a low pH environment, and 

conversion of cellulose to 2,3-dialdehyde cellulose was associated with reaction duration 

and oxidant concentration67. 
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Figure 2.1  FTIR spectra of DCMC 

 

FTIR spectrum was used to characterize oxidization products. Two characteristic 

bands were observed for the carbonyl group (Figure 2.1). Absorbance at 1721 cm-1 was 

assigned to C=O vibrations of the aldehyde group, while absorbance at 892 cm-1 was 

assigned to its hemiacetal form 66. In addition, absorbance observed at 1110 cm-1 was 

assigned to C-O bond stretching on glucose residues 16. FTIR spectrum was found to be 

in accordance with previously undertaken studies 16, 66, indicating the formation of 

aldehyde groups. 

 

A significant decrease in viscosity was observed after oxidation of sodium 

periodate. The intrinsic viscosity of CMC and DCMC was measured to be 9.60 and 0.63 

dL/g respectively. A decrease in intrinsic viscosity has also been reported in previous 
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studies 24, 65. Oxidation-induced thinning is believed to be associated with two 

phenomena: one, degradation due to acid-catalyzed hydrolysis of β-1,4-glycosidic bonds 

(Li, Wu, Mu & Lin, 2011), and two, breaking of hydrogen bonds attributed to the 

irregular structure of newly-formed DCMC. 

 

Film Preparation: 

SPI film was prepared by referring to the optimized process in 60. Alkali treatment, 

heat treatment and polyol plasticizer have been proved as key factors in obtaining a 

homogeneous, transparent, mechanically strong and smooth SPI film. Alkaline and high-

temperature conditions have been observed to cause denaturing of the globular protein 

chain to extended conformation 68, resulting in increased solubility, higher elongation at 

break (EB), and uniform appearance. On the other hand, plasticizers are found to lead to 

reduced protein-protein interaction and increased the mobility of protein chains, resulting 

in an increase in EB and reduction in tensile strength (TS) 69.  

 

In this study, the alkaline condition and presence of plasticizer also impacted the 

subsequent cross-linking reaction in various ways. First, the reaction between aldehyde and 

amine groups generated the Schiff base rapidly in alkaline condition (pH of 7-10, Figure 

S1) 70, thereby leading to the efficient generation of crosslinking sites. Second, denatured 

protein provided an adequate amount of exposed residues with high chain flexibility, 

further facilitating the crosslinking reaction. Third, the addition of plasticizer improved 

both mobility and flexibility of the protein 71, increasing the probability of amine groups 
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getting exposed to distal DCMC in the final stages. This, in turn, lowered the activation 

energy of crosslinking reaction and facilitated crosslink formation. Moreover, instead of 

the alcohol used by other researchers 60, isopropyl alcohol was chosen as the precipitant in 

this study, allowing flocculent DCMC to conveniently precipitate out in the reaction.  

 

Film appearance, light transparency and microstructure:  

All processed films were observed to be yellowish in color, flexible and easy to 

peel off from the mold on the application of 50 wt. % glycerol. The surface of the SPI-

CMC film was observed to be rough upon addition of CMC beyond 1 wt. %, and showed 

frosting. In stark contrast to SPI-CMC films, all SPI-DCMC films processed for this study 

exhibited a highly transparent, smooth surface (Figure 2.2). For SPI-DCMC films, an 

increase in DCMC content led to a change in color from greenish to reddish tinge, this is 

considered a general phenomenon in aldehyde-treated protein film systems due to the 

intermediate or final product formed as a result of the reaction between the protein and the 

aldehyde 20, 22.  

The film transparencies are presented in in Table 2.1. SPI-DCMC films show low 

transmission value in the wavelength range of 200-280 nm, indicating good UV-barrier 

properties. Similar UV-barrier properties have also been observed in other protein-based 

films, such as gelatin 66 and keratin 16 films. Such good UV-barrier properties are due to 

the presence of aromatic amino residual of proteins which absorbs UV radiation 72. From 

the application point of view, an effective UV-barrier property is essential for safe food 
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packaging, as highly energetic UV radiation is associated with discoloration 73 and 

oxidation, leading to short retail time for the food 74.  

Our results indicate that UV-barrier properties were preserved after crosslinking 

with DCMC. At the same time, SPI-DCMC films also showed high transmission for light 

in the visible wavelength region, exhibiting good values of light transparency, as shown in 

Table 2.1. These results suggest that SPI-DCMC films are transparent and can be used as 

UV-barrier, see-through packaging. 

 

Non-uniform surfaces (Figure 2.2) are associated with non-homogeneous bulk. 

This is probably due to the unstable dispersed state or low compatibility between the film 

and crosslinking agents, leading to poor mechanical properties of the film 75. To verify this, 

surfaces and cryo-fractured cross-sections were observed under a SEM. SPI film and SPI-

DCMC cross-linked films exhibited uniform surface with clean and dense cross-sections 

(Figure 2.2). In contrast, SPI-CMC films with CMC content greater than 1 wt. % exhibited 

rough surfaces. Accordingly, aggregation/phase separation was also observed in the cross-

section for SPI-CMC films with CMC content ranging from 1 to 10 wt. %. This was 

Table 2.1 T% and transparency of SPI-DCMC films 

 T% Transparenc
y 600 nm  200 nm 280 nm 400 nm 600 nm 800 nm 

 
SPI 0.002±0.002 0.001±0.001 38.59±6.52 77.08±1.57 83.27±0.76 1.16 ± 0.10 

SPI-1%DCMC 0.002±0.001 0.003±0.001 40.00±2.59 76.59±0.76 82.61±0.73  1.29±0.09 
SPI-3%DCMC 0.001±0.001 0.002±0.001 38.65±3.74 75.41±1.18 81.25±1.46  1.36±0.30 
SPI-5%DCMC 0.001±0.001 0.002±0.001 37.61±4.20 76.29±0.44 82.63±0.22  1.17±0.17 
SPI-7%DCMC 0.001±0.001 0.002±0.001 42.51±7.55 75.90±0.90 82.15±1.00  1.23±0.36 

SPI-
10%DCMC 0.002±0.002 0.002±0.001 40.91±6.46 75.86±1.44 82.00±1.20  1.33±0.23 
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probably due to thermodynamic incompatibility between SPI and CMC, and has been 

observed in the past for gelatin-dialdehyde starch film systems23. 

 

 

Figure 2.2 Appearance (up) and SEM image (bottom) of SPI, SPI-CMC and SPI- DCMC 
films with 5 wt. % of glycerol. For optical images, a glass sheet (thickness = 3.5 mm) 
was placed between the film samples and the 6.4 mm × 6.4 mm grid paper to illustrate 

the opacity. 

Mechanical properties:  

Films used for packaging purposes should have good mechanical properties such 

that their integrity is maintained after usage. Tensile strength (TS) and elongation at break 

(EB) are two critical mechanical properties in this regard. In this study, initially the 

percentage of glycerol was kept constant (e.g. 50 wt. %) while varying DCMC content (e.g. 
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0-10 wt. %). For the sake of control and comparison, SPI-CMC films with the same wt. % 

of CMC were also prepared. It is noteworthy that the difference between CMC and DCMC 

lies both in their chain length and in the presence of active aldehyde groups, both of which 

impact mechanical properties, and should therefore be taken into consideration while 

comparing the two films.  

Figure 2.3 shows the effects of DCMC/CMC on EB and TS of SPI films. SPI-

DCMC films exhibit an increase of ~ 1.8 fold in TS compared to SPI film at 10 wt. % 

addition of DCMC (Figure 2.3-B), with insignificant change in EB (Figure 2.3-A). 

However, for SPI-CMC films, no significant difference is observed in TS compared to pure 

SPI film, indicating the limited impact of unmodified CMC on mechanical properties of 

SPI film. The significant improvement observed in mechanical properties of SPI-DCMC 

films suggests the occurrence of crosslinking between DCMC and SPI. 

When compared with values reported for other DCMC or DAS crosslinked protein 

film systems, the 178% increase observed in TS (SPI-10% DCMC) in this study can be 

considered significant. Moreover, this increase in TS is not accompanied by any decrease 

in EB, as is commonly observed in other similar systems such as gelatin-DCMC film (TS 

increases by 30% while EB reduces by 23% upon addition of 10 wt.% DCMC) 66, and SPI-

dialdehyde starch film (TS increases by 20%, and EB decreases by 8% upon addition of 10 

wt.% DAS) 22. Even when compared with small molecular aldehyde crosslinking systems, 

such as SPI-glutaraldehyde (GA) (TS increases by 79% and EB increases by 84% upon 

addition of 0.4 wt. % of GA) 76, improvement in TS upon addition of DCMC to SPI films 

is significant. It should be noted that such comparison is not strictly undertaken due to the 
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prevalence of different conditions in different cases, such as plasticizer proportion, as these 

have a strong influence on mechanical properties of the film obtained 64, 77. Moreover, 

comparing with some petroleum thermoplastics film, such as the polypropylene (35.13 

MPa78) and polyethylene (~26 Mpa79), the absolute tensile strength (~2.5 MPa) of the 

modified SPI film is still very low, indicating its incapacity as structural materials.  
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Figure 2.3  Mechanical properties of SPI-DCMC and SPI-CMC films with different 
DCMC/CMC content: Elongation at Break (A); Tensile Strength (B); Young’s Modulus 

and (D) Typical Strain-Stress curves. 

To evaluate the effects of DCMC crosslinking in a broader sense, SPI-5% DCMC 
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(30-50 wt. %). At lower glycerol content (10-20 wt. %), films were observed to be highly 

brittle and quite difficult to cut into qualified tensile specimens, and were henceforth 

excluded for the purpose of our study. For glycerol content in our chosen range, for both 

SPI and SPI-DCMC films, increase in glycerol content led to increase in EB and reduction 

in TS (Fig. 4), consistent with previous studies 64. As can be seen in Figure 2.4-B, 

significant increase was observed in TS of SPI-DCMC films (218%, 177%, and 133% at 

glycerol content of 30 wt. %, 40 wt. % and 50 wt. % respectively), strongly supporting the 

conclusion that crosslinking of DCMC leads to significant improvement in TS of films. 

Moreover, crosslinking did not lead to significant change in EB, as is shown in Figure 2.4-

A. Also, the impact of crosslinking was observed to be more significant at lower glycerol 

content, with SPI-5%DCMC film showing a Young’s modulus value of 101.7 MPa at 30 

wt. % glycerol content, exhibiting good stiffness. 

 

Typical strain-stress curves for various SPI-DCMC films is presented in Fig.2.3(D). 

Several characteristics of polymeric aldehyde crosslinking are shown in these typical 

strain-stress curves. Distinct features, such as high TS, comparable Young’s modulus, and 

continuous increase in TS during extension, were observed in SPI-DCMC curves upon 

comparison with their uncross-linked counterparts (SPI-CMC). Young’s modulus was 

measured at the initial stage of extension, which was calculated as being in the range of 1-

5 % strain in  this study. Comparable values of Young’s modulus were obtained for SPI, 

SPI-CMC and SPI-DCMC films, likely due to the flexible, long polysaccharide chain 

exerting less restriction at low strain. In stark contrast, a significant difference was 
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observed in Young’s modulus when different amount of small molecular crosslinking 

agents, e.g. glutaraldehyde, was applied 66, 80. However, at higher strain values, these 

flexible segments between the cross-linking sites tend to exert restriction, leading to a 

continuous increase in stress until break (Figure 2.3). A hypothesis is illustrated Figure 2.3 

(D). In the case of non-crosslinked SPI, SPI chain was observed to the first yield and then 

begin to slip against protein-protein interaction, showing a plateau until it breaks. This was 

also observed in SPI-CMC films where no crosslinking occurs (see typical curves in Figure 

2.3). 
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Figure 2.4  Effect of plasticizer on the mechanical properties of SPI film. Elongation at 
Break (A); Tensile Strength (B); Typical Strain-Stress Curves (C); and Young’s Modulus 

(D). 
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Water resistance: 

To understand the impact of crosslinking on moisture sensitivity, three criteria – 

moisture content, insoluble mass percentage (IMP), and water vapor permeability (WVP) 

– were evaluated for SPI-DCMC films and control SPI films. Results of these studies are 

summarized in Table 2.2. Moisture content showed a decrease with increasing DCMC 

content, which was consistent with TGA results in which weight-loss in the temperature 

range of 50-125 °C was found to reduce with increase in DCMC content (Figure 2.6-B). 

This reduction was probably due to crosslinking restricting the exposure of hydrophilic 

groups of protein and consuming amino acid residues that can form a hydrogen bond with 

water 23. However, this is not always true for macromolecular crosslinking agents such as 

dialdehyde starch 22. This is probably due to the hydrophilic nature of polysaccharide 

having an affinity to water and ineffectively formed crosslinking network. Furthermore, 

increase in water content has been observed to be associated with a decrease of TS 22 and 

vice-versa 81. Although no strict causal relationship can be attributed based on current 

results, a cautious assumption was made that continuous decrease in moisture content of 

SPI-DCMC system reflects the formation of an effective crosslinking network. This 

network is believed to override inherent hydrophilicity, leading to the continuous increase 

in TS, as shown in Fig. 2.3. 
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Figure 2.5  Experimental results of IMP 

 

Table 2.2  Moisture content, insoluble matter percentage and WVP of SPI-DCMC films 

 

Means of 3 to 6 replicates ± standard deviations. Any two means in the same 

column flowed by the same letter are not significantly (P > 0.05) different by Duncan’s 

multiple range test. 

IMP was determined using two parallel steps (see the experiment section) to avoid 

possible heat-induced cross-linking via sulphydryl-disulphide exchange reactions between 

protein molecules 82-84, or through Maillard reaction between amine groups in protein and 

 MC (%) IMP (%) WVP (10-9 g·m·m-2·s-1·Pa-1) 
SPI 26.1 ± 0.6 a 15.2 ± 4.7 a 1.49 ± 0.11 a 

SPI-1%DCMC 25.0 ± 0.6 b 38.6 ± 9.2 b 1.45 ± 0.05 a,b 
SPI-3%DCMC 24.3 ± 0.7 c  63.3 ± 5.4 c 1.46 ± 0.22 a,b 
SPI-5%DCMC 24.2 ± 0.6 c 62.5 ± 9.7 c 1.40 ± 0.93 b 
SPI-7%DCMC 23.9 ± 0.7 c  62.1± 4.5 c 1.33± 0.13 b,c 

SPI-10%DCMC 23.8 ± 1.3 c  61.6 ± 5.5 c 1.28 ± 0.05 c 
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hydroxyl groups in polysaccharide 81. Pure SPI film disintegrated within 1 h after 

immersion, while SPI-1% DCMC film was observed to maintain its integrity, but broke 

when gentle agitation applied. For SPI-DCMC films with more than 3 wt. % DCMC 

content, the integrity of the entire film remained even after immersion in water for 24 h, 

although significant swelling was observed (Figure 2.5). Accordingly, IMP showed an 

increase from 15.2% for pure SPI to reach its plateau at around 63% on use of more than 3 

wt. % DCMC, indicating that ~ 3 wt. % is threshold concentration of DCMC for generating 

dynamic 3D networks. The occurrence of swelling, insolubility in water and continuous 

consumption of primary amine (Figure S 2.2) can together be considered to be a direct 

evidence of the occurrence of crosslinking.    

WVP (water vapor permeability) is essential for food packaging in order to ensure 

adequate food moisture during storage. WVP test is a dynamic process in which water 

molecule penetrates the film due to the driving force of concentration gradient built 

between both sides of the film. Table 2 shows a significant and continuous decrease in 

WVP with an increase in DCMC content, induced by DCMC crosslinking. Similar 

crosslinking-induced reduction in WVP is also observed in aldehyde-treated gluten films 

20. Such crosslinking-induced decrease in WVP is attributed to the formation of reticulation 

which increases pathway of the water molecule. Consumption of hydrophilic protein 

during crosslinking may also play a role in reducing diffusion of H2O molecule.  

In this study, water barrier properties show significant improvement, but it cannot 

be said with authority that SPI-DCMC films can or should be used alone. Thus, other 
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methods, such as coating 19, 60 can be considered for use with these films in order to make 

them suitable for food packaging applications.  

Thermal stability: 

The effect of DCMC crosslinking on thermal stability of SPI films was studied 

using TGA. TGA curves of pure SPI and SPI-DCMC films are presented in Figure 2.6-

(A). Three regions relevant to glycerol, pure SPI and DCMC degradation are presented on 

the top of the figure (Figure 2.6-B). Glycerol and pure SPI showed their maximum rate of 

mass loss at 199 °C and 321 °C, respectively, giving non-overlapping decomposition 

regions. Degradation of DCMC was observed to occur within a wide temperature range 

overlapping with both glycerol and SPI.  

For SPI-DCMC films, the first stage of mass loss below 125 °C is characteristic of 

absorbed water. Areas in this range shrink with an increase in DCMC content, indicating a 

fall in water/moisture content and resulting in obtainment of a denser film post-

crosslinking. This is also confirmed by SEM imaging and through moisture content assays. 

Considering the low proportion of DCMC (< 10 wt. %), the mass loss occurring in the 

temperature range of 250-400 °C can be mainly attributed to thermal degradation of the 

protein. In this region, single broad peak observed in the case of pure SPI film sample split 

into several smaller ones after completion of the filming process, and was observed in both 

crosslinked (containing 1 wt. %, 3 wt. % and 10 wt. % DCMC) and uncrosslinked SPI 

films. This was probably due to the denaturing procedure leading to change in protein 

conformation, the disentanglement of peptide chains, and exposure of thermal sensitive 

segments. The first peak of DTG curves in this region shifted from low temperature to high 
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temperature (280 °C for 0 wt. %, 279 °C for 1 wt. % and 287 °C for 3 wt. % DCMC) and 

merged with the border peak on DCMC content reaching 10 wt. % at 303 °C. This 

suggested that the crosslinking network integrated those thermal sensitive proteinases 

composition to the network and delayed their decomposition. Lower moisture content and 

higher degradation temperature of protein after crosslinking contributed to the higher 

thermal stability of SPI-DCMC film, indicating delayed weight loss (Figure 2.6 (A)). Both 

these aspects indicated better thermal stability. 
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Figure 2.6 Thermal properties of SPI-DCMC film with different DCMC/CMC content 
(in %) TG curves: (A); DTG curves (B). 
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2.4  Conclusion	

The present study demonstrates a method to improve properties of SPI films by 

DCMC crosslinking. DCMC treatment leads to significant increase in tensile strength (~ 

218%) and simultaneous improvement in both water resistance and thermal stability. 

Effective generation of crosslinking network via aldehyde-amine reaction is believed to be 

the reason for these improvements. These improvements are also observed to be associated 

with DCMC content and are accompanied by consumption of primary amine groups in the 

system. Excellent performance of SPI-DCMC system is believed to be due to good 

compatibility between SPI and DCMC. Unlike other protein bio-based crosslinking 

systems, granules and phase separation phenomenon were not observed in SEM images of 

SPI-DCMC films. In summary, DCMC crosslinking was an effective method for obtaining 

fully bio-based, biodegradable SPI films with low cytotoxicity. 

2.5  Supporting	information:	

 
Figure S 2.1 The crosslinking chemistry of DCMC with SPI 

 

DCMC SPI

SPI-DCMC
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Determination of residual primary amine: 

The free α-amino concentrations in the film casting solution were quantified by 

ninhydrin colorimetric assay 85-86. Specifically, film casting solution was seasoning for 3 

days allowing the crosslinking reaction complete. Then, 300 µL such film casting solution 

was mixed with 1.7 mL water and 1 mL 2% ninhydrin solution (1g ninhydrin 

(AC415720100, Acros), 50 mL alcohol, 1.5 mL acetic acid). Samples were heated at 80℃ 

for exact 10 min,  cooled in ice water, mixed with 5 mL ethanol, and centrifuged at 4k rpm 

for 5 min. The supernatant was collected, and optical absorbance at 570 nm was measured 

using a double beam spectrophotometer (VWR UV6300PC). The content of free amino 

groups were then determined by reference to a standard curve derived from lysine solutions. 

 
 

 
Figure S 2.2 Concentration of residual primary amino group after the DCMC or CMC 

treatment (top), and the typical colorimetric reaction (bottom). 
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CHAPTER THREE 

 

3.  ENCAPSULATING HYDROPHILIC SOLUTION BY PU-PMF DOUBLE 
COMPONENT CAPSULE BASED ON WATER-IN-OIL-IN-OIL EMULSION 

TEMPLATE 

 

 
 

In this chapter, we demonstrate an effective method to encapsulate hydrophilic 

payload, in particularly, the formaldehyde. Formaldehyde is a promising healing agent for 

the protein-based resin due to its high efficiency of crosslinking and bonding capacity. In 

this study, encapsulation of water solution was achieved by use of polyurethane-

poly(melamine-formaldehyde) (PU-PMF) dual-component capsules based on the W/O/O 

emulsion template, whose middle oil layer hosted the PU (external shell) forming reaction. 

The internal PMF skeleton, fabricated concurrently by condensation polymerization, 

provided additional mechanical support. Therefore, the formaldehyde has dual roles：(1) 
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as the inner PMF shell forming material and (2) the residual formaldehyde in the capsule 

as the healing agent. The resultant capsules exhibited dense and spherical shape, low 

permeability, and diameter of ~50 µm, making them suitable for self-healing applications. 

Remarkably, the interfacial tension was found to be the driving factor in the formation of 

W/O/O template. This micro-encapsulation system, and its fabrication methods, have the 

strong technical potential for use in industrial applications.     

3.1  Introduction		

Encapsulation of aqueous cargo is a widely-acknowledged challenge40, 87-88 despite 

its tremendous industrial value for numerous applications, ranging from self-healing and 

drug-delivery to cosmetics and pesticides. A stark contrast is the considerable success of 

encapsulation of hydrophobic cargo on the basis of oil-in-water (O/W) emulsion.30, 33, 42, 89 

A good example of such O/W emulsion is the preparation of PU capsule,42 in which 

isocyanate (in the dispersive oil phase) and polyol (in the continuous aqueous phase) meet 

and react at the water/oil interface, and subsequently form the PU capsule with a dense, 

thick and robust shell.33, 89 Unfortunately, such facile interfacial polymerization route has 

proved to be ineffective when applied to the inverse emulsion (water-in-oil, W/O) for 

encapsulating a hydrophilic substance.29 While other aqueous encapsulation strategies, 

such as self-assembly90 and layer-by-layer polyelectrolyte deposition,53 have been 

continuously developed,88 these strategies bring with them inherent and unavoidable 

disadvantages, such as small dimensions (~ nm range),87, 91 atypical capsule architecture,29, 

59 and fragility of shells.57 This impedes their use for self-healing applications, where larger 
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diameters (~ 50 µm), robust shells, and low permeability are required for the subsequent 

procedure and healing reagent release kinetics.92 Till now, no alternative has been designed 

to fabricate capsules for self-healing purposes that are as good as those obtained via 

interfacial polymerization. 

The setback in aqueous core encapsulation via interfacial polymerization is 

hypothesized to be due to failure in synthesizing large molecular PU as the shell material. 

In the water-in-oil emulsion (inverse emulsion), chain extender remained confined within 

the dispersed water phase, which led to a high concentration of chain extender at the O/W 

interface. This terminated the chain extension reaction on a frequent basis, resulting in the 

obtainment of short PU molecules. In contrast, in the case of a oil-in-water emulsion, the 

presence of isocyanate in high concentration at W/O interface allows for hydrophobic 

payload encapsulation to be easily undertaken.  

Based on this hypothesis, a pre-shell region with high isocyanate concentration was 

deemed to be a desirable locus to host the shell formation reaction. However, engineering 

a uniform, continuous liquid layer wrapping around individual aqueous droplets is 

technically challenging. For instance, mono-dispersed W/O/W double emulsion droplets 

were fabricated through use of sophisticated micro-fluids, with polymeric vesicles formed 

via solvent evaporation within its middle oil phase.93 A simpler route – via addition of a 

pre-fabricated O/W emulsion into a second oil continuous phase – led to the formation of 

“capsule cluster”,94 as opposed to the desired individual double emulsion architecture. 

Similarly, “vesicle” with aqueous core enclosed by dual layers of amphiphilic molecules 

could only generate nano-sized capsules, accompanied with its inherent risk of leakage 
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despite having been engineered to possess a thicker, cross-linked outer layer.95 To the best 

of our knowledge, there exists no facile and effective route to prepare durable capsules 

based on this double-layer emulsion concept.  

3.2  Results	and	Discussion		

To illustrate this W/O/O concept, herein, we demonstrate an effective approach to 

engineer an isocyanate-rich phase wrapping around each individual aqueous droplet. Such 

a layer was achieved by adding polymeric isocyanate suspension (PPI suspension) to the 

Pickering pre-emulsion (W/O template emulsion). Driven by interfacial tension, PPI 

droplets attach to the surface of W/O template emulsion, fuse together, and form a coating 

layer, within which, the subsequent PU forming reaction was triggered by the addition of 

chain extender – 4,4'-methylenebis(2-chloroaniline) (MOCA) – to the continuous oil phase, 

as illustrated in Figure 1. By using this method, the W/O/O template was obtained on the 

basis of W/O template and PPI wrapping. In order to track the core substance, fluorescent 

rhodamine B water solution was chosen as the dispersive phase.   

 

 

Figure 3.1  Schematic of PU-PMF capsule formation. PPI drop-lets migrate to the 
interface of water droplet where they fuse, spread and gulf water droplets to form 

isocyanate-rich layer as the locus of the consequent PU shell-forming reaction. 
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In this study, W/O emulsion template was stabilized by surface-modified 

montmorillonite (Cloisite 20), well-known as “Pickering emulsion” for its remarkable 

stability (> 16 h) and tunable droplet size via variation in species and load of nanoparticles 

(Table S1 & Figure S2-3).96 Meanwhile, integrated solid particles in the shell imparted 

benefits of high leakage resistance,59 capsule stability, and high shell strength97 – aspects 

desirable for encapsulation. Benefitting from these advantages, shell formation chemistry 

was prominently investigated in this study.  

The “isocyanate-rich layer” (middle oil layer, Figure 2-D) consist of a pre-

polymeric isocyanate named “PPI” [𝑀Z =1149 Da, 𝑀[/𝑀Z= 1.43, NCO content ~ 20 %] 

that was synthesized from 1,4-butanediol in presence of excess TDI, as described in 

literature89. PPI was found to be soluble in cyclohexanone, but the solution was observed 

to turn turbid upon the dropwise addition of xylene, provided the ratio of volume of xylene-

to-cyclohexanone was greater than 1.25:1, which indicated the formation of stable (>12 h) 

PPI suspension (adding the PPI  into the xylene led to a rapid precipitation). Further, mixing 

this turbid PPI suspension with the Pickering template emulsion led to the obtainment of a 

transparent supernatant after the settling of heavier template droplets, as shown in Figure 

3.2. Hence, we hypothesized that PPI droplets attached to the surface of W/O template 

droplets – a hypothesis that was later confirmed visually through microscopy and 

fluoroscopy. As shown in Figure 3.2-B insert, black specks were observed to appear on the 

emulsion surface, and were identified as PPI by fluoroscopy (Figure S 3.7). Fluorescence-

labelled PPI was found to form a green corona wrapping around the aqueous droplet with 
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very few visible free aggregations in the continuous phase, indicating the majority of PPI 

was on the O/W interface. Moreover, W/O/O template droplets displayed corrugated and 

wrinkling surfaces, indicating a formation of a complete membrane probably due to the 

slow isocyanate-water PU forming reaction. The PPI complete wrapping was further 

confirmed by the SEM image of the lyophilized W/O/O template, which was stabilized by 

MOCA (the “PU layer” specimen whose FITR was presented in Figure 3.2-C). Debris of 

spheres are observed in Figure 3.2-C. Thus, the existence of the PPI layer (the middle oil 

phase) is highly possible, which can be visualized by florescent microscopy, or through its 

reaction with the internal or external substance (water or MOCA) that form a substantial 

layer and was observed by optical microscopy or SEM. The formation of isocyanate (PPI)-

rich layer is the basis of the “W/O/O template” hypothesis.  
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Figure 3.2  Characterization of emulsions templates. Optical and florescence images of 
the W/O template droplet (A) and W/O/O template droplet with labelled PPI (B,D). The 

latter displayed corrugated and wrinkling surfaces with the PPI middle oil layer 
fluorescently visible. Scale bars are 200 µm. SEM image of lyophilized W/O/O template 

stabilized by MOCA (C). Scale bar is 20 µm. 

 
In a system composed of three mutually immiscible liquids, the process in which 

liquid 3 (PPI in this study) “engulfs” liquid 1 (water in this study) droplet to form a shell-

core suspension in liquid 2 (continuous oil phase in this study) was rationalized 

thermodynamically, as per the minimum total free energy rule.98 By defining the spreading 

coefficients (𝑆^) as (𝑆^ = 𝛾 a − 𝛾^`−𝛾^a), the final configuration (completely engulfing, 

partially engulfing or non-engulfing) can be predicted roughly by the three 𝑆^ values (> or 

< 0)47, 98-100. For a better understanding of the formation of outer PPI layer, interfacial 

tension of water (1), oil phase (2) and PPI (3) were determined by drop shape analysis, and 
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obtained as: 𝛾=Q ,= 20.56,  𝛾=b =  13.89, and 𝛾Qb= 14.10 (mN/m), based on which the 

spreading coefficients were calculated and obtained as: 𝑆== -20.35, 𝑆Q= -20.77 and	𝑆b= -

7.42. Although the resultant values referred to a partially engulfing conformation (rather 

than complete engulfing), they indicated poor interaction between water and oil (based on 

the large 	𝛾=Q value) and high affinity between PPI and water as well as PPI and oil phases 

(exhibited by small values of 	𝛾=b and	𝛾Qb), which were hypothesized as the driving factors 

favoring the enlargement of the contact area, eventually leading to the formation of shell-

core morphology. 

Although the designed isocyanate-rich layer gives a chance to synthesize a stronger 

PU shell, our final objective of the capsule holding the aqueous payload in extreme 

conditions could not be achieved only through the use of the afore-described route. The 

resultant PU capsules were observed to be still vulnerable to the drying process, and 

eventually collapsed. Thus, the multiple-layer strategy was employed to utilize the 

advantages it offers with regard to improving mechanical properties42. This was done by 

fabricating an additional PMF internal lining underneath the PU layer through a two-step 

chemistry101-102 (Figure S 3.11). Briefly, water soluble pre-MF oligomer was synthesized, 

subsequent to which its cross-linking was triggered by lowering the pH value of the 

solution. Following this, activated pre-MF was added to the water phase during the 

preparation of W/O emulsion. Pre-MF showed growth in size, depositing on the (internal) 

interface of droplets, undergoes continuous cross-linking, and eventually forms the PMF 

network that lined the capsule.  
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The most directly observed consequence of the addition of PMF lining was an 

improvement in capsule strength, which helped prevent their collapse while keeping their 

spherical shape intact throughout the drying process. A shell-core image was observed 

under the microscope, as shown in Figure 3.3. Fluorescent cargo (rhodamine B) depicted 

its occupying region that was confined by a thin shell layer with a distinct transmission. 

Contrary to the impression given by optical images, SEM images of the cross-

section revealed an atypical “capsule” structure (capsule_E6), showing solid surface and a 

porous occupied core (Figure 3.4-E). Also, a flexible “skin” was observed when the capsule 

was crushed, indicating a multi-layer structure, as shown in Figure 4-C. We assumed the 

dense surface layer and the porous internal material to be PU and PMF respectively. The 

tiny bulges on the surface might be associated with the deposition of PPI droplets, as was 

observed previously under the microscope (Figure 3.2-B). 
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Figure 3.3  Microscopy of double component capsule (suspension of xylene). Shell-core 
structure is visible under bright field (A). Rhodamine cargo is visible under fluorescent 
microscopy (A-insert). Arrows indicate the position of the “shell” of sample E6. FTIR 

spectra of capsule, PU, and PMF (B). 

 
FTIR aids in the determination of overall capsule composition, as shown in Figure 

3.3-B. Furthermore, spectra of cured aqueous phase (without encapsulation) and single 

layer PU capsule (PU shell, no PMF) has been shown for reference. Some distinct peaks 

of either PU or PMF were observed in the capsule spectra, including characteristic urethane 

peaks (~ 1700 cm-1 and ~ 1600 cm-1), and C-H stretching vibration (~ 2922 cm-1) that can 

be attributed to MOCA or BD segment of PPI indicating the dual component of capsules. 

Interesting, various capsule interiors were fabricated by varying the parameters 

related to the PMF forming such as formaldehyde-to-melamine (F/M) ratio, and pH value 

on the basis that they determine the functionality, structure and reactivity of the pre-MF 

molecule involved in the subsequent cross-linking reaction.102 In this study, distinct hollow, 
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solid filled, or porous-filled capsule structures with different shell thickness were observed, 

as shown in Figure 3.4. The typical capsule morphology with a dense and neat shell 

(3.12±0.72 µm) was achieved (Figure 3.4-F).  It is beyond the scope of this communication 

to investigate the mechanism and techniques to manipulate the interior morphology. 

However, it is worthy to note that, a study on the morphology of the PMF capsule prepared 

in W/O was barely reported probably due to the lack of stable and robust platform, as the 

W/O/O template developed by this study.  

 

 
Figure 3.4  SEM image of the external appearance of double component capsules (A & 
B), and cross section exhibiting hollow (F capsule_BpH6), porous filled (E, capsule_E6) 
and solid filled (D, capsule_A6) structures. Exfoliated skins (C, I) indicates the multi-
layer structure. Detailed synthesis parameters are presented in supporting document. 

 
PU and PMF layers were not added together in a simple, independent manner. To 

ascertain the nature of reactions involved in capsule fabrication, reactants were screened 

by removing one reactant in each batch. This confirmed the critical roles of MOCA, PMF, 

and PPI in capsule formation, as no capsule could be obtained upon the absence of either 

of these three substances (as shown in Figure S 3.12). Therefore, two possible chemistries 

will not be considered as the main reason for the capsule formation otherwise undermine 
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the significance of this study: one, capsules were formed due to the reaction between 

isocyanate and pre-MF without the help of MOCA;42 and two, capsules formed from the 

PMF itself in the reverse emulsion.94 It is challenging to identify whether these 

aforementioned cross reactions exist by spectra, such as NMR or IR, due to the similarity 

of the reactants. However, use of this screening methodology, combined with the FTIR 

data and the multi-layer shell structure (as shown in Figure 3.4-C) clarify the critical roles 

of PPI-MOCA and PMF reactions in capsule formation. 

For a potential micro-container, low permeability is no less important than 

structural stability. Hence, in this communication, a preliminary loading capacity test was 

performed to demonstrate the low permeability. Double component capsules were 

completely dried on the glass slide under controlled conditions (at 20 °C, 35 % humidity) 

for 7 days, and rolled by another glass slide. The payload, whose hydrophilic nature was 

confirmed by the drop test, was released from the capsule, and observed clearly under the 

microscope to demonstrate its excellent low permeability.  

 

 
Figure 3.5  Aqueous cargo released after glass slide rolling. Optical images of (A-insert): 

intact dried capsules; (A) and (B): broken capsules; arrow: released water. 
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3.3  Conclusion		

Based on these results, we concluded that the dual-component capsules were 

composed of an external PU layer and a porous-yet-stiffer PMF skeleton. The two 

components proved complementary to each other, with the PMF skeleton providing 

mechanical support, and the external PU layer providing isolation against leakage.  

For the first time, effective encapsulation of hydrophilic payload was thus 

accomplished based on W/O/O template by integrating two classical capsule formation 

chemistries – PU interfacial polymerization and PMF in-situ polymerization – with critical 

modifications. For PU shell formation, isocyanate-rich pre-layer was achieved by taking 

advantage of interfacial tension that minimized overall free energy and eventually led to 

the novel W/O/O conformation. The advantages of this structure, with isocyanate confined 

in the middle layer, were: (1) High isocyanate concentration that facilitated synthesis of 

high molecular weight PU molecule; and (2) Possibility of external addition of chain 

extender (e.g. MOCA), thus avoiding any interference with the reactive/sensitive payload 

– the inherent drawback with the conventional route. Further improvement in mechanical 

properties was accomplished by incorporating PMF lining under the PU layer. A multilayer 

structure, composed of a dense external PU layer and PMF skeleton was obtained, with PU 

and PMF respectively performing complimentary roles of insulation and improving 

mechanical stability. The resultant capsule with tunable internal architecture was observed 

to withstand ambient drying process and hold the hydrophilic payload.         
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Future research efforts will be directed towards fabricating robust PU capsules 

based on W/O/O emulsion template without the use of any supporting internal lining, for 

which possible solutions include the use of alternative PU monomers and external coatings. 

 

3.4  Support	information		

Experimental part 

All materials and reagents were obtained from commercial suppliers and used in 

the as-obtained state without subjecting them to further purification. Micro-granulated 

nanoclay (Cloisite 10A, 15, 20, and Cloisite Ca++) were obtained as generous gifts from 

BYK Additives & Instruments. Polymethylene-polyphenylene-isocyanate (PMPPI, Mw = 

340, 372986) and polyisobutylene (PIB, 181463) were purchased from Sigma Aldrich. 1,4-

butanediol (BD, AAL0349130), 1,4-diazabicyclo-2,2,2-octane (DABCO, AAA1400314) 

and xylene (AA16371K2) were purchased from Fisher Science. 4,4'-methylenebis(2-

chloroaniline) (MOCA) was purchased from TCI America, while triethylenediamine 

(TEDA) was purchased from Huntsman. 

Instrumentation 

Attenuation Total Reflectance-Fourier Transform Infra-red (ATR-FTIR) 

Spectroscopy was performed on a Thermo-Nicolet Magna 550 FTIR Spectrometer in 

combination with a Thermo Spectra Tech Foundation Series Diamond ATR accessory with 

an angle of incidence of 50°. ATR-FTIR spectra were obtained for MOCA, dry PU-PMF 

capsule, PMF and PU resins, where PMF resin is the aqueous phase of cured pre-PMF 
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capsule, processed using pre-PMF. PU resin was obtained from the capsule prepared 

through PPI deposition-and-MOCA method.  

Optical and fluorescent microscope images were acquired using a fluorescence 

microscope (AMF-4306; EVOS Fl, AMG) under four image channels: (a) Bright-field; (b) 

DAPI (excitation 360 nm, emission 447 nm); (c) GFP (excitation 470 nm, emission 525 

nm); and (d) RFP (excitation 530 nm, emission 593 nm). Xylene suspension drop of the 

capsule was observed on a glass slide. 

Scanning Electron Micrograph (SEM) (Hitachi, S-4800) was used to visualize the 

sample surfaces. Samples were coated with a gold layer prior to imaging. To observe a 

cross-section of the samples, the capsule was first dried in air on the glass slide mounted 

on the stage, and then rolled/crashed with another glass slide.  

Interfacial tension between immiscible liquids was measured using a drop shape 

analysis system (Easy Drop DSA 100, Kruss, Germany) at 23.5 ℃. A drop of higher 

density was generated using a syringe needle (1.82 mm in diameter). Video recording was 

employed to capture the shape of the drop as it came in contact with the solution in the 

reservoir. Interfacial tension was measured by fitting the shape and dimensions of the 

actual drop with the theoretical drop profile base obtained via Laplace equation on 

capillarity. 
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Reaction mechanism employed by the interfacial reaction:  

 

Figure S 3.1  Schematic presentation of the reaction between amine (e.g. MOCA) and an 
isocyanate (e.g. PPI and TDI) 

 

Figure S 3.2  Schematic representation of the synthesis PPI 

 

Evaluation of the stabilization of the Pickering pre-capsule. 

Emulsion stabilization via Pickering mechanism is based on the contact angle of 

the interface (liquid-liquid-solid powder). Partial wetting by both oil and water phase drives 

solid powders irreversibly towards the interface, subsequently helping the emulsion 

stabilize efficiently.103 The crucial role of hydrophobic/hydrophilic properties of the 

powder in stabilizing the Pickering emulsion has been well demonstrated in the literature.87, 

104 For instance, through surface modification, emulsion forming capability of propyl- and 

octadecyl-functionalized silica87 has shown significant improvement. Under the strategy 

employed in this study, particles are modified such that they are partially wettable by both 
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oil and water phases (contact angle: θ	 ≅ 90°), thus accumulating at the interface and 

consequently stabilizing oil-water dispersion104. In general, hydrophilic particle (i.e. θ	< 

90°) stabilize the emulsion, while hydrophobic particles (i.e. θ > 90°) stabilize the 

inverse emulsion.87, 103 

Emulsion ability of various unmodified (Cloisite Ca++) and hydrophobically-

modified organoclay platelets (Cloisite 10A, 15 and 20) were evaluated in this study. These 

organically modified clays were prepared through an ion-exchange reaction between 

sodium montmorillonite (Na-MMT) and ammonium surfactants by BYK Additives & 

Instruments105.  Physical properties of these clays have been summarized in Table S1. 

 

Table S 3.1 Characteristics of hydrophobically modified nanoclay 

Commercial 
designation 

Surfactant used to 
make the clay 

Surfactant 
loading in 

modified clay / 
MER 

(mequiv./100 g 
of clay) 

Typical dry 
particle 

size (d50) / 
um a 

Interlayer 
spacing 

(d001) / nm 
b 

Weight loss 
percentage at 550 ℃ 

Cloisite Ca++ None NA <10 1.55 2.33 

Cloisite 10A 

Benzyl(hydrogenated 
tallow alkyl) 
dimethyl salt 

125 d <10 1.9 34.95 

Cloisite 15 
Bis(hydrogenated 

tallow alkyl) 
dimethyl salt 

unknown <10 3.63 43.02 

Cloisite 20 
 
 
c 

unknown <10 3.16 36.55 

aThe typical particle size values are reported by BYK Additives & Instruments; 
bThe interlayer spacing values are reported by BYK Additives & Instruments; 
cMe, HT represent methyl, hydrogenated tallow of mainly 18 carbons with the majority of the double bonds 
hydrogenated.  
dValues are reported by literature.   
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The main differences among those organoclays were their surfactant loading, 

presented as cation exchange capacity (ECE). While the manufacturer has provided ECE 

values for the earlier product lines, ECE values for these current products have not been 

released by them. However, ECE can be estimated by using isothermal TG and the linear 

correlation between the mass of organic/MMT (g/g) and d-spacing (nm), as illustrated by 

Cui et. Al.105  

Organoclay-stabilized Pickering emulsions were observed under the optical 

microscope prior to the addition of isocyanate (Figure S 3.3). Capsules were observed to 

be stable for up to 16 h, indicating effective stabilization of the emulsion by organoclay. 

Unmodified nanoclay (Cloisite Ca++) failed to assist in the formation of capsules, indicating 

the essential role of surface modification of clay in the formation of Pickering emulsion. 

Capsule size was significantly influenced by the nature and quantity of nanoclay species 

used. For self-healing purposes, capsules with diameters of ~ 50 µm have been reported as 

favorable.92 Thus, Cloisite 20 was added in amounts ranging from 3.2 mg to 6.4 mg and 

evaluated for its performance in subsequent experiments in this study.  
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Figure S 3.3  Preparation of inverse Pickering emulsions (W/O template emulsion) 

 

 

Figure S 3.4  The effect of Cloisite 20 load on the template-emulsion. The scale bar is 
200 µm. 
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Preparation of Pickering capsules by applied conventional route inversely. 

Attempts to encapsulate the aqueous payload by applying the inverse of the 

conventional route did not help in getting a robust capsule. The optimized process is 

described below.  

Three kinds of solutions were prepared. In the first solution (Solution I – oil phase), 

PIB (polyisobutylene) was dissolved in 4.65 mL xylene. The second solution (Solution II 

– aqueous phase) contained 1.2 mL of water (H2O). In the third solution (Solution III – 

isocyanate), CNO groups provided by PMPPI or TDI were dissolved in 0.78 mL of xylene 

using DABCO as a catalyst. Cloisite (6.4 mg) was dissolved in Solution I and the solution 

was sonicated for 5 min. Inverse emulsions were prepared by pouring Solution II into the 

mixture of Solution I and Cloisite clay. The combined mixture was subjected to vigorous 

hand shaking for ~ 5 min to pre-mix, after which Solution III was added drop-wise to it 

under continuous stirring.  

According to literature, capsule parameters such as morphology, size and strength 

(based on emulsions) are related to a number of processing and constituent parameters, 

such as agitation speed, oil/water volume ratio, temperature, and chemical components. In 

this study, the synthesis process used to fabricate capsules was used in a manner to optimize 

these different processing and constituent parameters. These included the concentration of 

BD and TDI, processing temperature, amount of Cloisite 20 and catalyst added, and the 

nature of isocyanate species (e.g. TDI and PMPPI). However, the capsule did not show 

significant improvement in its strength. Hence, the collapse of capsules remained 

unavoidable through mere change in above-mentioned parameters.  
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Typical optical microscopy images are presented in Figure S5. As can be seen, 

nearly all the capsules eventually collapsed, and it was technically difficult to evaluate their 

strength given their fragile nature. However, the debris of collapsed capsules displayed 

different morphologies, ranging from containing small pieces to having regular round 

shape, and from being dark to very light in color. Through the use of subjective rate and 

gray analysis via image analysis software (“ImageJ”), it was found that use of higher 

processing temperature (40 ℃), and concentration of isocyanate/polyol was essential to the 

formation of a darker, regular round-shaped capsule upon drying in air. An optimized 

process has been specified in Table S 3.2.  

Table S 3.2  Typical recipe for conventional method 

 

Compared with the pre-emulsion, the size and size distribution of the drop showed 

significant variation, probably due to change in viscosity of the aqueous phase as a result 

of variation in BD content. The existence of smaller and larger capsules, prepared by the 

interfacial reaction, indicated that droplets broke and coalesced during capsule membrane 

formation. Despite the existence of large amounts of small particles (size < 20 𝜇m), a 

majority of the aqueous cargo was observed to be encapsulated in bigger capsules (size of 

~ 80-200 𝜇m).  

Cloisite 20 Condition PID in Solution 
1 TDI PMPPI BD 

6.4 mg 40℃/ 
overnight 1.3% 0.276 g 0.0402 g 60 µL 
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Figure S 3.5  Capsules fabricated by TDI-BD interfacial polymerization on the basis of 
W/O emulsion (A) collapsed during the in air drying process (B). Optimizing parameters 
(see Table S2) led to appearance of few survivor capsule after drying (D), and can be torn 

by pipette tip (E), showing the elastic and soft texture of capsule shell. 

 

Synthesis of BD-TDI pre-polymer 

Polymeric isocyanate (PPI) was prepared as per methods reported in the literature. 
Briefly, 12.65 g TDI was dissolved in 25 mL cyclohexanone in a 100 mL round-bottom 

flask, and the mixture was subjected to magnetic stirring at 80 °C. After this, 4.5 g of BD 
was slowly added to this solution and the reaction was allowed to continue for 24 h. 
Subsequently, the solution was distilled at 100 °C under pressure of 5 Torr for 5 h to 

cyclohexanone and excess amount of TDI. The final product obtained was a yellowish 
liquid with high viscosity, and its molecular weight was determined using GPC and 

reported in  

Table S 3.3.  
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Table S 3.3  Molecular weight of the polymeric isocyanate (PPI) 

 

This high-viscosity polymeric isocyanate was observed to be soluble in 

cyclohexanone but insoluble in xylene. In a separate experiment, 0.2 g of this polymeric 

isocyanate (PPI) was dissolved in 1 mL of cyclohexanone, and xylene was added drop-

wise to this solution. Upon the volume of xylene reaching 1.25 mL and above, the solution 

changed from being transparent to becoming opaque (as shown in Figure S-6), indicating 

phase separation and the formation of PPI emulsion. The addition of this PPI emulsion (0.1 

g) to the template emulsion followed by vigorous hand-shaking led to the obtainment of 

the template emulsion-PPI system, which has transparent supernatants after the sedation of 

heavier aqueous droplets.  

Retention 
Time (min) Mn (Daltons) Mw (Daltons) Mz (Daltons) Polydispersit

y Mz/Mw 

10.845 1149 1647 2478 1.433620 1.504765 
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Figure S 3.6  PPI precipitates out from its cyclohexanone solution upon addition of 
xylene 

 

To trace the PPI content in the template emulsion-PPI system, fluoresceinamine 

(Acros, MFCD00005052) was tagged to PPI molecules. Specifically, 1 mg of 

fluoresceinamine was dissolved in PPI solution (0.1 g of PPI in 500 L cyclohexane) and 

conjugated at room temperature for ≥ 2 h with occasional gentle agitation. One drop of this 

PPI-fluorescent solution was observed on a glass slide under the EVOS Fl digital inverted 

microscope. To confirm the formation of PPI-fluorescence conjugate, a large quantity of 

xylene was used to wash the PPI droplet on the slide; the result was obtainment of PPI 

precipitate on the slide (see Figure S 3.7).  
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Figure S 3.7  The fluorescent microscope image of a drop of PPI-Fluor solution (A-C) 
and its precipitate residual after xylene wash on the slide (E-G). Scale bar = 2000 µm 

 

Fluorescence signals of PPI-florescent solution were observed in RFP and GFP 

channels. After washing with xylene, the fluorescence image clearly indicated precipitation 

of PPI, indicating the success of their conjugation.  

Preparation and characterization of “PPI-warping” capsules. 

PPI layer outside the Pickering emulsion is proposed in this study as the location 

of the shell-forming reaction. Pre-emulsion was first prepared as described earlier: Briefly, 

6.4 mg of Cloisite 20, 3.5 mL xylene and 1.15 mL PIB-xylene solution (1.3 wt. % of PIB) 

were mixed in a 15 mL centrifuge tube, followed by ultra-sonication for 5 min. After this, 

1.2 mL aqueous solution (containing 0.5 mg of Rhodamine as a tracer) was added, and the 

tube was shaken vigorously by hand to obtain the pre-emulsion.  

The PPI-cyclohexaone drop

PPI precipitate

�
������
�
�	����

Bright Field RFP GFP DAPI
A B C D

E F G H
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To ensure the deposition of PPI on the surface of the aqueous droplet, PPI emulsion 

was processed by adding 625 µL xylene into the PPI solution (containing 500 µL 

cyclohexane and 0.1 g PPI, fluorescence labeled or unlabeled). Such PPI emulsion was 

then poured to the previous pre-emulsion, followed by vigorous hand-shaking. At first, 

adhesion was observed, but this seemed to mitigate with the further shaking of the solution. 

Further, fine particles could be observed with naked eyes in the emulsion system. Such 

emulsion exhibited more reddish color compared to the pre-emulsion without any PPI layer 

(as shown in Figure S 3.6), probably due to change in refraction upon the presence of PPI 

layer.  

 

Figure S 3.8  The fluorescent microscope image of pre-emulsion (A-C, scale bar 400 
µm), pre-emulsion with PPI (D-F, scale bar = 100 µm), and pre-emulsion with PPI-
fluorescence (G-I, scale bar 200 µm, J-L, scale bar 100 µm). Red color indicates the 

aqueous payload and PPI, and green color indicates PPI 
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Fluorescence-labeled PPI (PPI-Fluor) was clearly observed on the surface of the 

template emulsion under the fluorescence microscope. Under the bright field channel, 

template emulsion-PPI droplets exhibited corrugated and rough surface (as shown in 

Figures S-8D, S-8G and S-8J), which was significantly different from the template 

emulsions without any PPI wrapping (Figure S8-A). Under the GFP channel, such small 

particles – attached to the droplet surfaces – were clearly observed and identified as PPI. 

Small and free particles not attached to droplet surfaces were also observed in both 

template emulsion-PPI (fluorescence unlabeled) and template emulsion-PPI (fluorescence 

labeled) samples, which could be identified as free PPI conglomerate floating in the 

emulsion system.  

Preparing capsule based on the PPI warped emulsion system (water-in-oil-in-oil 

system) 

Chain extenders (e.g. MOCA, TEDA) were used to react with PPI at the O/O 

interface (e.g. xylene/PPI interface) of the synthesized PPI-wrapped capsule system 

(W/O/O system). Optimization of parameters (such as the concentration of MOCA or 

TEDA) did not help in fabricating stronger capsules, which collapsed upon the evaporation 

of xylene. Under an optical microscope, upon the evaporation of xylene phase, objects in 

round-like contour and dark color were observed, as shown in Figure S 3.9-B and S9-E. 

By comparing these images (Figure S 3.9-B and S9-E) with images in xylene solution 

(Figure S 3.9-A and S9-D), the possibility of them being capsules was excluded as the 

contours were not found to be superimposable. Hence, objects observed in the former set 
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of images were deemed to be those of solid and stiff capsule debris, accompanied with 

aqueous cargo leakage that was confirmed by fluoroscopy (C and F).  

 

Figure S 3.9  Optical and fluorescent images of PPI-MOCA capsules prepared on the 
basis of W/O/O emulsion, in xylene solution (A &D) and after the evperation of xylene 

(B,C,E &F). Black objects in B & E are deemed to be the debris of brittle and solid 
capsule debris, companied with the aqueous leakage. 
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Preparing multilayer poly(melamine formaldehyde)-polyurethane (PMF-PU) capsule 

 

Figure S 3.10  Schematic presentation of capsulation via PU external layer and PMF 
skeleton 

 

PMF-PU multi-layer capsule was fabricated by combining PMF (processed via in-

situ polymerization) and PU (processed via interfacial polymerization), with the former 

forming the internal layer and the latter forming the external layer. To fabricate the PMF 

layer, pre-polymers of melamine and formaldehyde (pre-MF) were synthesized based on 

methods detailed in existing literature. Typically, melamine (3.79 g, 0.03 mol), 

formaldehyde (8.1 g, 0.1 mol) and water (5 mL) were mixed using magnetic stirring, after 

which pH of the solution was adjusted to 9.25. Subsequently, the temperature of the 
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solution was initially raised to 60 °C for 10 min, and then to 65 °C for another 10 min, 

until the solution became transparent in order to obtain the pre-MF solution (pre-MF 

master solution).  

To prepare the aqueous phase, as-synthesized pre-MF, formaldehyde and water 

were mixed in a specific ratio (Optimized composition was listed in Table S 3.4), after 

which pH of the solution was adjusted to 3.20 by the addition of hydrochloric acid (HCl). 

This aqueous phase was subsequently emulsified with oil phase to make the capsule 

emulsion. Typically, 1.2 mL of as-prepared aqueous phase was mixed with 4.65 mL of the 

oil phase (consisting of 4.65 mL or 4 g of xylene, 0.3 wt. % PIB solution and 6.4 mg of 

Cloisite 20) in a 15 mL centrifuge tube. The mixture was emulsified with vigorous hand 

shaking for ~ 5 min. Isocyanate-rich wrapping layer was fabricated by simple addition of 

PPI emulsion (0.5 g of PPI in 1 mL of cyclohexanone and 1.25 mL xylene) followed by 

vigorous hand-shaking. The obtained emulsion was designated as “Emulsion A”.  

External PU layer was fabricated by adding “Emulsion A” to xylene containing 

chain extender. In this work, triethylenetetramine (TETA, Huntsman) or 

4,4’methylenebis(2-chloroaniline) (MOCA, TCI Chemicals) were chosen as chain 

extenders. TETA and MOCA have multiple amine moieties that react with isocyanate to 

form PU106. In a group of typical experiments (used to produce samples E1-E6), 1 mL of 

“Emulsion A” was added to 2 mL of MOCA’s xylene solution (containing 0.038 g of 

MOCA or 2.80 ´ 10-4 mol –NH2) and subsequently shaken vigorously via hand-shaking. 

This solution was designated as “Emulsion B”, and placed in a water bath at 70 °C for 4 h 

to ensure completion of the reaction.  
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The reaction accelerates due to use of elevated temperature, leading to the 

simultaneous formation of the internal PMF layer through cross-linking reaction among 

pre-MF oligomers. The chemistry of PMF formation has been elucidated in the previous 

studies101-102. Specifically, pre-MF oligomers were first synthesized under basic conditions, 

and subsequently, under high temperature, the presence of H+ ions triggered the cross-

linking reaction. Pre-MF oligomers grew, deposited on the interface of emulsion droplets 

and continuously cross-linked to form the PMF network.  

 

Figure S 3.11  Schematic of two-step poly(melamine-formaldehyde) formation chemistry 
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Figure S 3.12  Shell forming factors analysis. Optical images of dried capsule with 
different shell formation factors. Images are (A): template emulsion-PPI, (B): template 

emulsion-PPI with pre-MF in aqueous phase, (C): (B) with excessive formaldehyde, and 
(D): template emulsion with pre-MF and excess formaldehyde. (E), (F) and(G) samples 

were prepared same as (A), (B), (C) respectively, but adding MOCA as chain extender in 
the xylene phase. Results showed that, capsules can only be obtained in case (G), 

indicating MOCA, PPI, Pre-MF and excessive formaldehyde are critical factors to form 
robust capsules 
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Table S 3.4  Composition of multilayer PM-PU capsules 

 

FTIR was used to confirm the composition of the multi-layer capsule. As can be 

seen from the FTIR spectra (Figure 3.3-B), the characteristic isocyanate peak 

(corresponding to 2100-2270 cm-1) was not observed, while the characteristic urethane 

peak (at ~ 1700 and 1600 cm-1) was observed. A new strong peak was observed for the 

capsules at ~ 2922 cm-1, which could be assigned to the C-H stretching vibration inherited 

from the MOCA and PPI (BD segment), while the peak at ~ 1500 cm-1 could be assigned 

to the C-C aromatic stretch inherited from PPI (TDI segment) and MOCA. The peak at ~ 

813 cm-1 may be related to stretching vibration of C-Cl bond in MOCA.  

 

 

  

Sample 

Aqueous phase composition  
W/O

a) 
(V/
V) 

 
Chain 

extender 

(g/2mL) 

Water 

(mL) 

Formald
ehyde 
(mL) 

Rhodamine 
solution 
(mL)c) 

Pre-PM 
master 

solusion 

(mL)b) 

PH 

(step 1/ step 
2) 

  

E4 2.0 1.0 0.5 1.5 9.25 / 3.20  1:3.8
8  0.038 

(MOCA) 

E6 0.5 2.5 0.5 1.5 9.25 / 3.20  1:3.8
8  0.038 

(MOCA) 

A5 0 0 0 5 9.25 / 3.20  1:3.8
8  0.038 

(MOCA) 

BPH6 1.25 0 0 3.75 9.25 / 6.00  1:3.8
8  0.038 

(MOCA) 
a) The composition of the oil phase was kept constant:  4.65 mL xylene (4 g), 1.3 wt.% PIB (0.052 g) and 
6.4 mg Cloisite 20  
b) The starting concentration of the formaldehyde and melamine (master solution) were calculated to be 
6.17× 10-3  mol/mL, and 1.85	× 10-3  mol/mL.  
c) The concentration of rhodamine solution is 0.5 mg/mL 
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CHAPTER FOUR 

 
 

4.  ENCAPSULATION OF HYDROPHILIC PAYLOAD BY PU-PMF CAPSULE: 
EFFECT OF SHELL FORMING CONTENT, PH VALUE AND TEMPERATURE ON 

CAPSULE MORPHOLOGY 

 
This chapter is a continuation of the previous chapter.  

Shell formation, or specifically PFM shell formation, has been extensively 

investigated in this chapter. Based on our previous observation, varying F/M ratio 

(formaldehyde: melamine ratio) of the feed material led to an unexpected internal 

morphology of the capsule. Variation in F/M ratio was found to cause variation in capsule 

conformation ranging from hollow to semi-filled and filled conformations. This 

phenomenon triggered our interest in further exploring the formed shell, as the 

understanding that can be gained through existing literature cannot be readily used to 

explain these observations.  

4.1  Introduction	

Encapsulation of liquid core is used in a wide variety of industries, such as 

cosmetics, drug delivery, anti-corrosion, food preservation and self-healing. By taking 

advantage of capsules, reactive reagents were preserved under its protective shell; sensitive 

chemicals were isolated from the environment and drugs were delivered in the capsule 

carrier to either pass through the physiological barrier or be endowed with controlled-

release properties. Encapsulation can be effectively carried via emulsion, where the 
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payload is dissolved in the dispersed droplet, and shell formation reaction takes place at 

the droplet interface by either of interfacial polymerization, polymer precipitation or other 

methodologies. Thus, to encapsulate hydrophobic liquids such as epoxy 44, essence oil 43 

and flame retardants 107, oil-in-water emulsion template has been appropriately employed. 

For instance, polyurethane (PU) or mechanically stronger PMF is the most common and 

effective capsule shells. PU capsule formed by interfacial polymerization contains two 

shell forming components: the water-soluble polyol, and oil-soluble isocyanate, both of 

which meet at the water/oil interface to eventually form the PU shell. For polymer 

deposition of PMF shell, a water-soluble precursor is crosslinked to form the water-

insoluble polymer that gets deposited on the water/oil (W/O) interface to form the PMF 

shell. Capsules fabricated by these two methods usually exhibit neat and robust shells; 

hence, they are widely used.   

However, encapsulation of hydrophilic payloads continues to remain a challenge. 

Employing the aforementioned protocols directly on water-in-oil emulsion template 

(inverse emulsion) usually leads to capsules with fragile nature, high permeability, and 

atypical shape, thus hindering their use for further applications. In our previous endeavor, 

a dual-component capsule containing a PU outer layer and PMF inner layer was fabricated 

based on a water-in-oil-in-oil (W/O/O) emulsion template, through which encapsulation of 

formaldehyde was achieved. Meanwhile, the effect of formaldehyde-to-melamine (F/M) 

ratio on capsule morphology was also observed, but its underlying mechanism was not 

elucidated.  
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In this study, we focus on the inner PMF layer as it determines the carrier capacity 

and release characteristics of the capsule. More importantly, payload and shell forming 

reaction coexist in the dispersive phase, indicating that direct exposure of the shell may 

cause negative interference on the payload. Hence, it is beneficial to understand the 

procedure of formation of PMF inner shell. Extensive previous studies have elucidated a 

two-stage chemistry of PMF synthesis: (1) Formation of water-soluble methylol melamines 

(pre-MF) by the addition of formaldehyde to melamine under basic condition, and (2) 

Crosslinking of methylol melamines by condensation reaction 101-102, 108. In the second 

stage, polymerization-induced phase separation occurred, and PMF precipitate from the 

solution, get deposited on the W/O interface, eventually forming the PMF shell. Various 

parameters have been observed to affect this reaction, such as pH of the solution, F/M ratio, 

temperature, and shell-forming materials. For instance, higher F/M ratio is expected to lead 

to more formaldehyde substitution and thus higher functionality and increase in 

crosslinking density. Studies on in-situ bulk polymerization have shown that high F/M ratio 

leads to high crosslinking rate 109, with the solution rapidly turning turbid 102 and leading 

to the obtainment of the resultant resin with low hardness102. In addition, methylene bridge 

formation (stage 2) has shown higher reaction rate in acidic condition despite it could occur 

in wide range of pH (4 to 9) 109. Besides, the temperature has been found to influence not 

only the reaction rate but also the solubility of Pre-MF, e.g., high reaction temperature has 

been observed to retard the occurrence of turbidity 102. Other studies carried out on the 

capsule have indicated that use of larger quantities of shell forming material leads to an 

increase in shell thickness, but probably up to a maximum limit 110. 
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To date, PMF shell formation in the internal space of a droplet has not been 

investigated. This is probably due to the lack of a technique by which a robust, neat, and 

typical capsule can be fabricated. The route developed in our lab provides a platform on 

which features of the PMF shell formation could be systemically investigated. Such 

droplet-confined reaction shares similarity with its counterparts performed in bulk or direct 

emulsion, but has its distinct features, such as the severe fluctuation in concentration and 

pH, and the lack of shear stress. The main objective of this study was to analyze the effect 

of these factors on PMF reaction and geometry of formed capsule.  

4.2  Experimental	

Materials 

Micro-granule nanoclay (Cloisite 20) was obtained from BYK Additives & 

Instruments. Polyisobutylene (PIB, 181463) was purchased from Sigma-Aldrich. Xylene 

(AA16371K2), 1,4-butanediol (BD, AAL0349130), and 1,4-diazabicyclo-2,2,2-octane 

(DABCO, AAA1400314) were purchased from Fisher Science. Triethylenediamine 

(TEDA) was purchased from Huntsman, while 4,4'-methylenebis(2-chloroaniline) 

(MOCA) was purchased from TCI America. 
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Table 4.1 Preparation parameters for different batches of microcapsules 

Preparation of the microcapsules. 

PMF-PU multilayer capsule was fabricated by combining PMF (obtained via in situ 

polymerization) and PU (obtained via interfacial polymerization), with the former 

constituting the internal layer and the latter forming the external layer. To fabricate the 

internal PMF layer, pre-polymer of melamine and formaldehyde  (pre-MF) was 

synthesized based on previous literature with minor modifications 94. Typically, melamine 

(3.79 g, 0.03 mol), formaldehyde (8.1 g, 0.1 mol) and 5 mL water were mixed using 

magnetic stirrer. pH of the solution was then adjusted to 9.25, and its temperature was 

raised to 60 ℃ for 10 min followed by a further increase to 65 ℃	for another 10 min until 

the pre-MF solution became transparent (pre-MF master solution).  

To prepare the aqueous phase, as-synthesized pre-MF, and water were mixed to a 

total volume of 5 mL (as listed in Table 4.1), and pH of the solution was adjusted to 3.20 

Batch Pre-MF master 
solution (mL)* F/M ratio PH Temperature / ℃   

A1 0 3.3:1 9.25 / 3.2 70 
A2 0.5 3.3:1 9.25 / 3.2 70 
A3 1.25 3.3:1 9.25 / 3.2 70 
A4 2.5 3.3:1 9.25 / 3.2 70 
A5 3.75 3.3:1 9.25 / 3.2 70 
A6 5  3.3:1 9.25 / 3.2 70 

BpH3 3.75 3.3:1 9.25 / 3.0 70 
B pH4 3.75 3.3:1 9.25 / 4.0 70 
B pH5 3.75 3.3:1 9.25 / 5.0 70 
B pH6 3.75 3.3:1 9.25 / 6.0 70 
B pH6.6 3.75 3.3:1 9.25 / 6.6 70 
C30deg 3.75 3.3:1 9.25 / 5.0 30 
C50deg 3.75 3.3:1 9.25 / 5.0 50 
C70deg 3.75 3.3:1 9.25 / 5.0 70 

*  Pre-MF master solution contained 3.79 g (0.03 mol) melamine, 8.10 g (0.1 mol) formaldehyde and 5 
mL water.  
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by adding hydrochloric acid (HCl). This aqueous phase was emulsified with oil phase to 

make the capsule emulsion. Typically, 1.2 mL of as-prepared aqueous phase was mixed 

with 4.65 mL of oil phase – consisting of 4.65 mL xylene (4 g) with 0.33 wt. % PIB and 

6.4 mg of Cloisite 20 in a 15 mL centrifuge tube. The mixture was emulsified with vigorous 

hand shaking for approximate 5 min. Isocyanate-rich warping layer was fabricated by 

adding PPI suspension (0.5 g PPI (~ 2.38 ´ 10-3 mol CNO) in 1 mL cyclohexane and 1.25 

mL xylene), followed by vigorous hand shaking. The obtained emulsion was designated as 

“Emulsion A”. 

PU outer layer was fabricated by adding “Emulsion A” into xylene-containing 

chain extender. In this study, MOCA was chosen as the chain extender, as MOCA has 

multiple amine moieties that can react with isocyanate to form PU 106. In a set of typical 

experiments, one mL “Emulsion A” was added to 2 mL xylene solution of MOCA (0.038 

g MOCA, 2.80 ´ 10-4 mol –NH2) followed by vigorous hand shaking. Designated as 

“Emulsion B”, the obtained emulsion was placed in a water bath (temperature = 70℃) for 

4 h to ensure completion of the reaction.  

Accelerated by the elevated temperature, formation of the internal PMF layer 

occurred simultaneously through crosslinking reaction among pre-MF oligomers.  

Dye load and PMF conversion  

To determine the dye load and PMF conversion, dry capsules were ground in an 

agate mortar. Acetone was added to the ground powder to dissolve the payload. The 

suspension mixture was subjected to centrifugation at 5000 rpm for 3 min, and the 
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supernatant was collected to determine the amount of dye by UV absorbance. Sediment 

(shell material) was dried in a vacuum oven at 50 ℃ overnight to determine the PMF 

conversion – defined as the ratio of the amount of shell material to the amount of feeding 

material (melamine + formaldehyde amount).  

Dye releasing  

As a releasing model reagent, rhodamine B water solution (0.5 mg/mL) was 

encapsulated in the C70deg capsule. The produced capsules were added into 10 mL of 

acetone, water, and hexane respectively. At specific time intervals, the concentration of the 

dye was measured by UV absorbance.  

Characterization techniques 

Images of microcapsules were examined via fluorescence microscopy (AMF-4306; 

EVOS Fl, AMG). Emulsion template, synthesized capsule (in its xylene suspension), and 

the drying procedure in ambient condition were visualized under both bright fields. 

Micromorphology of the capsules was investigated by using scanning electron 

micrograph (SEM) (Hitachi, S-4800). Voltage was adjusted from 5 kV to 3 kV or lower 

upon observing sample damage.  Capsule suspension was dropped onto the silicon wafer, 

followed by sputter coating. To observe the cross-section of the capsule, capsules mounted 

on the silicon wafer were rolled by another wafer prior to sputter coating.  

The overall composition of the capsule was characterized by Attenuation Total 

Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR, Thermo-Nicolet 



 82 

Magna 550 in combination with a Thermo Spectra-Tech Foundation Series Diamond ATR 

accessory with an angle of incidence of 50°). 

Thermo-gravimetric analysis (TGA) measurement was carried out by using TGA 

Q5000 instrument from room temperature to 800 °C at 10 °C/min under the nitrogen 

atmosphere (25 mL/min). 

4.3  Results	and	discussions	

The primary objective of this study is to understand the impact of different 

parameters on PMF internal shell formation on the basis of the W/O/O Pickering template. 

This study is based on the protocol that was developed in our previous study. Initially, 

stable W/O/O template was achieved by the active wrapping of an isocyanate layer around 

the primary W/O template. The middle oil layer was the locus of formation of the PU 

external shell, while dispersed droplet was the locus of formation of the internal PMF layer. 

The overall composition of the dual-component capsule was elucidated by FTIR 

spectra (presented in Figure 4.1. PU spectra were obtained by assaying the #A1 capsule 

(Table 4.1) that was composed of only the external PU layer synthesized using MOCA and 

PPI. Before assaying, extensive xylene wash was performed on the #A1 capsule to 

eliminate any interference from residual MOCA. Likewise, non-encapsulated aqueous 

phase cured in a separate container was assayed and subjected to FTIR; it is named “PMF” 

in Figure 4.1. The disappearance of the characteristic isocyanate peak (2280 cm-1) in PU 

indicated the consumption of isocyanate group of PPI. Generation of the urea peak (~1640 

cm-1) was overlapped by the existing urethane peak in PPI (~ 1700-1600 cm-1), rendering 
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it border-like 40. These were substantial evidence of the occurrence of PU formation 

reaction (external layer formation). Moreover, feature peaks of both PU and PMF were 

both observed in the FTIR spectra of the capsule. Polyurethane peak (~ 1700-1600 cm-1) 

was not as pronounced in the FTIR spectra of capsules, probably due to its low proportion. 

However, the peak around 2922 cm-1 (that can be attributed to the C-H stretching vibration 

from MOCA and BD segment of PPI), and the peak around 1220 cm-1 (that corresponds to 

the C-O-C bond of PU) were clearly observed in the FTIR spectra of capsule, indicating 

the dual-components of the capsule (e.g., PU and PMF).  

 
Figure 4.1 FTIR of capsule and its reactants 

 

Three sets of capsules were fabricated containing different amounts of PMF shell 

forming material (ranging from 0 to 100 % with respect to the pre-MF master solution, has 

been described subsequently), different pH values of the solution in the second stage 

(ranging from 3.0 to 6.6), and different temperatures (ranging from 30 to 50℃). F/M ratio, 

another important factor in PMF synthesis, is, however, not reported in this study.  
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Reaction mechanism of PMF synthesis has been elucidated via a two-stage reaction 

(i.e., stage 1: methylation and stage 2: condensation). This reaction mechanism has been 

elucidated in detail in the previous literature 44, 102, 108, and therefore, has not been described 

in this work. 

 

Effects of shell-forming materials 

First, the effect of the amount of shell formation material (i.e., formaldehyde and 

melamine) was investigated. The molar ratio of formaldehyde-to-melamine was set to 3.3:1 

(as per previous literature) which ensured a formation of the capsule shell on the basis of 

the direct emulsion template (O/W) 44. The concentration of pre-MF in the water phase was 

varied at 0, 10, 25, 50, 75 and 100 % of the master pre-MF solution. One of the direct 

consequences of change in the composition of the aqueous phase is the change in 

dimension of the emulsion templates. As can be seen in Figure 4.2, the size of Pickering 

emulsion template was observed to increase upon the increase of pre-MF content, probably 

due to the enhanced viscosity of the solution. The correlation between the viscosity of the 

dispersed phase and droplet size has been reported earlier 111 and can be understood as the 

increase in viscosity inhibiting the break-up during collision leading to the growth in 

emulsion droplet size. In this study, the frequency peak showed a shift from ~ 25 µm to ~ 

50 µm with the increase in pre-MF content while exhibiting a bimodal distribution during 

the transition. This could be explained as the merging of initial droplets during the collision, 

followed by its non-breakage due to the enhanced viscosity. 
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Figure 4.2: Size distribution curves of template emulsion (n ~ 400, droplets were 

measured in optical microscopy images), and size distribution curves of final capsules (n 
~300, measured in SEM image) obtained with different pre-MF content. 

 

The effect of pre-MF content on the morphology of final capsules was studied via 

the SEM images. As shown in Figure 4.3, capsules withstood the drying process in ambient 

condition and retained their spherical morphology only above a certain critical content of 

PMF forming materials. It should be noted that failure in the obtainment of spherical 

capsules (as per SEM image) does not indicate a failure in the fabrication of capsules. 

Capsules in xylene suspension could be observed by optical microscopy but were seen to 

collapse during xylene evaporation owing to their weak structure. Without the PMF lining 

under the PU layer, capsules (#A1) were found to collapse, leaving behind an amorphous 

substance as observed by SEM (Figure 4.3-a). This substance was earlier confirmed to be 

polyurethane (PU) by FTIR (Figure 4.1) – the substance constituting the external layer of 

dual-composition capsules. The increase in the pre-MF material was found to lead to the 

obtainment of stiffer spherical capsules that could be observed by SEM. The addition of 

pre-MF (at 10 % of master pre-MF content) was found to result in the obtainment of 
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capsules with stiffer structure, yet such capsules were not robust enough to support its 

spherical architecture, leaving behind a circle debris upon collapse, as shown in Figure 4.3-

(b). The addition of 25 % pre-MF solution (at 25 % of master pre-MF content) led to 

capsules with a broad range of sizes, as shown in Figure 4.3-(c). Raspberry-like particles 

with rough skin may be due to the deposition of underdeveloped capsule or capsule debris.  

 

 
Figure 4.3: SEM images of capsule with F/M=3:1 but different pre-MF contents: a) 0 % 

master pre-MF  (A1); b) 10 % master pre-MF (A2); c) 25 % master pre-MF (A3); d) 
50 % master pre-MF (A4); e) 75 % master pre-MF (A5); f) 100 % master pre-MF (A6). 

All the scale bars are 200 𝜇𝑚. 

 

Spherical capsules could only be obtained at the pre-MF concentration of > 50% of 

the master solution, as shown in Figure 4.3-(d) to (f). Capsules exhibited dense and neat 

external surface and were found to be robust enough to withstand the ambient environment 

after the evaporation of xylene. The increase in the pre-MF concentration of capsules was 

found to increase the capsule diameter (Figure 4.2-(b)). Compared with emulsion templates 
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which they were developed from (Figure 4.2-(a)), the shape of corresponding frequency 

curves overlapped nicely, indicating that the dimension of Pickering emulsion droplets 

determined the dimensions of the final capsule.  

An entity is called a “capsule” only upon the presence/existence of a cavity. 

Representative cross-section image of A4 could not be obtained, probably due to its lower 

stiffness. In contrast, A5 and A6 capsules were observed to be easy to crush, indicating 

their higher stiffness, as shown in Figure 4.4. The effect of pre-MF content can be seen, 

with an increase in pre-MF content resulting in an increase in shell thickness. The shell 

thickness of A5 capsule was estimated to be ~ 3.12 ±	0.72 µm by use of ImageJ software, 

whereas A6 capsule showed varying cross-section morphology, ranging from capsules 

with 5.73 µm-shell to completely filled particles, with the latter more commonly observed, 

as shown in Figure 4.4-b1. Successful capsule formation revealed two facts: first, the 

feasibility to fabricate typical capsules on the basis of inverse emulsion (W/O/O), unlike 

counterparts manufactured via conventional W/O template that usually exhibit loose nature 

in texture and, thus, exhibit inherent permeability 94. Furthermore, deposition of PMF 

favors the droplet interface in a confined environment where no shear force was applied. 

Thus, as a starting point, processing parameters (e.g. pH and temperature) were 

investigated based on the composition of A5.  
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Figure 4.4: SEM image of the cross-section of A5 (a-1 & a2) and A6 (b-1 to b-5) capsule. 

Capsules are crushed by a silicon wafer. Scale bars are 100 𝜇𝑚 for a-1 and b-1, 50 𝜇𝑚 
for the rest. 

Effects of PH value 

Interference between the payload and shell forming reaction is a primary concern 

when both of them are present in the dispersed phase. For the typical PMF shell forming 

protocol performed based on the O/W template 44, condensation step was carried out under 

acidic condition (pH ~ 3-5), under which, pH sensitive payloads may lose their function. 

Hence, milder conditions in the dispersed phase are favorable in stage 2, in which payloads 

are supposed to be added. In this study, stage 2 was carried out in a series of pH conditions 

(pH ~ 3.0, 4.0, 5.0, 6.0, and 6.6), as shown in Table 1, and synthesized capsules were named 

as BpH3 to B pH6.6 respectively.  
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Figure 4.5  SEM of capsules prepared with different ph. Step 2 was carried out in pH = 
3.0 (a, capsule BpH3), 4.0 (b, capsule BpH4), 5.0 (c, capsule BpH5), 6.0 (d, capsule BpH6) 
and 6.6 (e, capsule BpH6.6). Surface feature and crushed capsule are presented as inserts 

respectively. Scale bars are 200 𝜇𝑚. 

 

Distinct surface features and cross-section of capsules was observed by SEM, as 

shown in Figure 4.5. We hypothesized that differences in capsule morphology, for both the 

external surface as well as internal architecture, are associated with the confinement of 

PMF reaction in the emulsion droplet. As a reference, parallel in-situ bulk polymerization 

under corresponding conditions (i.e., concentration, composition, temperature, named as 

RpH3 to RpH6.6 where “R” is short for Resin) was carried out in a plastic tube to mimic the 

reaction in the emulsion droplet. RpH3, RpH4, and RpH5 were observed to solidify within 5 

min at 70 ℃ while exhibiting distinct texture. RpH3 was found to be transparent and brittle, 
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while RpH4 was observed to be hard and opaque. RpH5 was observed to be white in color and 

porous while possessing stable dimension – all of which could be observed by naked eyes. 

RpH6 and RpH6.6 were not observed to solidify as a whole entity but were found to turn turbid 

at ~ 10 min and ~ 30 min respectively. Following this, the white substance was found to 

accumulate on the internal surface of the tube wall, resulting in a white hard lining against 

the wall, leaving transparent liquid in the middle space.  

Reactions in emulsion droplets may take place in an analogous manner, and this 

can affect the morphology of capsules. Capsules prepared in pH = 3 (BpH3) exhibited 

shriveled external surface (Figure 4.5-a), which was believed to be the consequence of the 

drying process. This was supported by optical images in which smooth profile of capsule 

was observed to become rough after the evaporation of xylene (image not shown). Oval 

shape reflected the occurrence of PMF polymerization prior to the emulsion becoming 

stable, thereby “freezing” the shear-induced elongation. For BpH4, a large number of 

capsules were observed to be lacking any external PU layer (Figure 4.5-b) – a phenomenon 

that we could not explain. Typical spherical capsules with smooth skin were observed when 

pH of the solution was controlled at 5.0 and 6.0. BpH6.6 capsules showed less mechanical 

stability, along with spherical shape in xylene suspension (observed in the optical image, 

not shown) that collapsed upon drying and exhibited bowl-like conformation, as shown in 

(Figure 4.5-e). To observe the cross-section, capsules were dried under ambient condition 

and crushed by a silicon wafer. However, for capsules BpH3 and BpH4, few broken capsules 

were observed. The high impact resistance may have been inherited from the precursor 

materials (due to their high resistance properties) and particle architecture (cavity filled), 



 91 

as shown in Figure 4.5- right insert. In contrast, for capsules B pH5 and B pH6, plenty of 

crushed capsules were observed with the typical hollow structure, neat internal surface and 

thin shell (1~4 µm thickness).  

Considering the phenomenon observed in the plastic tube, it can be likely concluded 

that pH of the solution has a strong effect on the PMF forming reaction and the architecture 

of the final capsule. Based on observations above, lower pH probably led to a rapid 

crosslinking and tended to result in a bulk resin. This may also occur within the emulsion 

droplet and justified the generation of a cavity-filled particle, as was observed for capsules 

BpH3 and BpH4. The reaction was so rapid that the oval droplet was found to “solidify” even 

before it stabilized, leading to the obtainment of an elliptical capsule for BpH3. pH was 

observed to exhibit a pronounced effect on the clarity of dried PMF aerogel 112. The 

increase in pH of the solution from 3.0 to 5.0 was found to result in a transition from the 

transparent stiff gel (R pH3) to the white porous rigid foam (R pH5), indicating the change in 

the microstructure and phase morphology of the PMF 112. Although characterization of the 

PMF resin at the molecular level remains challenging 113, the fact that foam dimension 

showed stability (RpH5) in comparison to the visible shrinkage of the bulk resin during the 

condensation step (RpH3 & RpH4) indicates distinct PMF microstructure forming process. 

This is especially evident in RpH6 and RpH6.6 where visible particles were observed to form 

in the system and accumulate on the internal surface of the plastic wall. Therefore, folds 

and creases on the capsule BpH3 surface can be interpreted as the consequence of shrinkage 

of its solid bulk core. During the drying process, vapor-liquid interface recedes, causing an 

increase in tensile stress that causes the polymeric network to collapse 114. In contrast, at 
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higher pH, PMF particle was found to deposit gradually within the droplets and form dense 

and stiff shells, along with less integration of water within the PMF network, thereby 

eliminating the shrinkage during the drying process. However, when the reaction was 

undertaken at neutral pH (for instance, 6.6 in this study), low reaction rate and possible low 

PMF conversion led to the incomplete formation of the PMF internal shell, resulting in its 

collapse after drying. 

 
Figure 4.6: TGA thermograms of capsule (right) and PMF resin (left). 

 

TGA thermograms of capsules (Figure 4.6-B) and corresponding PMF resin 

(Figure 4.6Figure 4.6-A) revealed the similarity of PMF synthesis reaction carried out in 

the micro-droplet and in-situ bulk polymerization. Thermal behavior of PMF resin is 

complicated, as the post-pot reaction occurring during its heating is accompanied by 

molecular elimination. Multi-stage weight loss behavior of PMF has been observed in 

earlier studies 89. Each stage is correlated to specific reactions involved in PMF synthesis. 

For instance, the stage around 160 	℃  on the TGA thermogram corresponds to the 

elimination of formaldehyde via reverse methylolation reaction, along with the elimination 
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of water due to condensation 41, 108 . Similarly, weight loss above 350℃ is associated with 

the breakdown of methylene bridges, and that above 400℃ corresponds to slow thermal 

degradation of the triazine ring 41, 108. When compared with cured PMF, partially cured 

PMF resin has been observed to exhibit more pronounced weight loss at ~ 160 ℃ and ~ 

350 ℃, and the stage around ~ 350℃ has been found to shift towards higher temperature 

41, which is in good agreement with the phenomenon observed in Figure 4.6-A. Thus, it 

can be interpreted that pH of the solution affects the molecular structure of PMF resin, with 

a higher pH leading to a sparser PMF network. This trend, e.g. the stage shift and weight 

loss at ~ 350 ℃, is also observed in thermograms of capsules (Figure 4.6-B) despite the 

reduced significance of PMF resin. The opposite trend observed at the lower temperature 

(~160 ℃) associated with weight loss can be interpreted as the loss of weight due to 

aqueous payload evaporation, reflecting that the capsule is more efficient in bearing loads 

when prepared in higher pH condition. In summary, PMF formation under higher pH 

conditions (such as ~ 5.0) would be favorable in the formation of a dimensional stable 

capsule.  

 

Temperature effect 

The initial intention of the temperature study was to investigate the effect of PMF 

formation rate on the morphology of the prepared capsule. As an easily controlled 

parameter, temperature effect was observed to be pronounced in batch PMF synthesis in 

the plastic tube, in which the white solid bulk was observed to form within 5 min at 70	℃, 
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whereas at 50 and 70 ℃, white solid particles were found to occur at 10 min and 30 min 

respectively, but did not show any solidification to form a bulk material (data not shown). 

Experimental conditions for preparing capsules were kept identical as those of basic 

design while varying the temperature in condensation stage (30, 50 and 70 ℃ ), as 

summarized in Table 1. External and cross-section morphology of capsules are presented 

in Figure 4.7. Capsules obtained at the lower temperature (30 and 50 ℃) exhibited bowl-

like shape, as clearly shown in Figure 4.7-a, which is analogous with capsules BpH6 and 

BpH6 (Error! Reference source not found.-b & e) fabricated in more neutral conditions. 

his phenomenon can again be explained by the same consideration as presented above, i.e., 

factors (low temperature and low pH value) that led to a low conversion of PMF, resulting 

in an incomplete formation of the internal PMF layer and subsequent collapse of capsules 

during the drying process. The collapsed morphology was not observed when the 

temperature was increased in our study to 70	℃	 (Figure 4.7-c), indicating that a more 

stable structure was achieved probably due to complete formation of the internal PMF layer. 

Moreover, the surface of collapsed capsule remained intact, showing the flexible nature of 

the capsule shell, which can be attributed to the flexible PU external layer synthesized by 

MOCA and PPI. A slight increase in thickness of the capsule shell was observed with 

increase in temperature, as shown in Figure 4.7-d. Shell thickness and thickness-to-

diameter (T/D) ratio of capsules with a typical diameter between ~ 32-44 𝜇𝑚  were 

measured. Typical thickness of C30deg, C50deg, and C70deg was measured as 1.02±0.18 𝜇𝑚, 

1.12±0.19 𝜇𝑚 and 1.19	±0.19 𝜇𝑚 respectively, and T/D ratio was calculated as 3.6±0.7%, 

3.5±0.5%, 3.5±1.1%, respectively.  
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Figure 4.7. SEM image of capsules prepared at 30℃ (a), 50℃ (b) and 70℃ (c). Inserts 

include break capsules. The thickness of capsules’ shell (d). 

 

Permeability and releasing behavior 

As a potential micro-container, permeability is essential for capsules. Thus, the 

release behavior of prepared capsules was investigated. Herein, fluorescent rhodamine B 

aqueous solution was encapsulated in the dual component capsules under optimized 

encapsulation conditions. The diffusion rate of rhodamine B in water was investigated. 



 96 

 

Figure 4.8 Diffusion profile of rhodamine B from the capsule in water (a). Encapsulated 
solution released after the crush (b &c)  

 

Capsules (C70deg) were dried in the controlled condition (i.e., 20 °C, 35 % humidity) 

for seven days and crushed by silicon wafer on the glass slide. Observed under the optical 

microscope, the liquid was released as shown in Figure 1.8 (b and c). The release properties 

of the capsule were investigated by tracing the loaded fluorescence dye. As shown in Figure 

1.8-a, the diffusion of the rhodamine B in water is relatively slow. Given that the water can 

wet the PU substance and PMF well, and the rhodamine B has a high solubility in water94, 

the low diffusion rate could attribute to the low permeability of the capsule. 
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4.4  Conclusion	

PU-PMF dual component capsules with typical and robust shell were fabricated 

with the aim of encapsulating the hydrophilic payload. Selected parameters that can 

influence PMF synthesis in in-situ bulk polymerization were found to affect capsule 

formation in the micro-droplet, and eventually, determine its morphology. By controlling 

temperature, formaldehyde and melamine content, and pH conditions, capsule size, shell 

thickness and its internal/external morphology were adjusted. A protocol was also provided 

to manufacture capsules with a regular surface, dense shell, and mild pH condition. Capsule 

size was found to be determined by the Pickering emulsion, and shell thickness was found 

to be related to PMF synthesis that in turn was affected by the shell forming material and 

temperature.  Thermal behavior of the capsule, studied using TGA, revealed that the effect 

of pH on capsule morphology was related to the density of the methylene bridges. In sum, 

this study provides a protocol to encapsulate hydrophilic payload within a capsule. 
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CHAPTER FIVE 

5.  CONCLUSION AND FUTURE WORK 

5.1  Conclusion	

In this dissertation, we provide solutions to address two critical problems that are 

related to the fabrication of protein-based resin. Our solution employs the crosslinking 

technique to improve mechanical properties, while applying self-healing technique to 

remedy the brittleness caused by crosslinking.   

We demonstrate a method to improve properties of SPI films by DCMC 

crosslinking. DCMC treatment led to significant increase in tensile strength (~ 218 %) and 

simultaneous improvement in both water resistance and thermal stability. Effective 

generation of crosslinking network via aldehyde-amine reaction is believed to be the reason 

for these improvements, which are also observed to be related to DCMC content, and are 

accompanied by the consumption of primary amine groups in the system. Excellent 

performance of SPI-DCMC system is believed to be due to good compatibility between 

SPI and DCMC. Unlike other protein bio-based crosslinking systems, granules and phase 

separation phenomenon were not observed in SEM images of SPI-DCMC films. In 

summary, DCMC crosslinking was an efficient method for obtaining fully bio-based, 

biodegradable SPI films with low cytotoxicity.  

We propose in this work that the tendency of cracking due to crosslinking can be 

alleviated by employing the self-healing system. Based on the distinct features of the 

protein-based material, a single capsule self-healing system with formaldehyde as self-

healing reagent was designed. Encapsulating the hydrophilic formaldehyde was 
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challenging. For the first time, effective encapsulation of hydrophilic payload was 

accomplished based on W/O/O template by integrating two classical capsule formation 

chemistries – PU via interfacial polymerization and PMF via in-situ polymerization – with 

critical modifications. For PU shell formation, isocyanate-rich pre-layer was achieved by 

taking advantage of interfacial tension that minimized overall free energy and eventually 

led to the novel W/O/O conformation. The advantages of this structure, with isocyanate 

confined in the middle layer, were: (1) High isocyanate concentration that facilitated 

synthesis of high molecular weight PU molecule; and (2) Possibility of external addition 

of chain extender (e.g. MOCA), thus avoiding any interference with the reactive/sensitive 

payload – an inherent drawback of the conventional route. Further improvement in 

mechanical properties was accomplished by incorporating PMF lining under the PU layer. 

A multilayer structure, composed of a dense external PU layer and PMF skeleton, was 

obtained with PU and PMF respectively performing complementary roles of insulation and 

improving mechanical stability. The resultant capsule with tunable internal architecture 

was observed to withstand ambient drying process and hold the hydrophilic payload.         

Based on the protocol, we focused on fabricating capsules with robust structure, 

dense shell, and typical structure. Selected parameters that can influence PMF synthesis in 

in-situ bulk polymerization were found to affect capsule formation in the micro-droplet, 

and eventually determine its morphology. By controlling temperature, formaldehyde-to-

melamine content ratio and pH conditions, capsule size, shell thickness and its 

internal/external morphology were adjusted. A protocol was also developed and provided 

to manufacture capsules with a regular surface, dense shell, and mild pH condition. Capsule 
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size was found to be determined by the Pickering emulsion, while shell thickness was 

observed to be related to PMF synthesis, which in turn was affected by shell forming 

material and temperature.  Thermal behavior of the capsule, studied using TGA, revealed 

that the effect of pH on capsule morphology was related to the density of methylene 

bridges.  

5.2  Future	work	

Shell wall refinement 

Although we have provided a protocol to encapsulate formaldehyde in this 

dissertation, the more significant value of the W/O/O template is its potential to prepare 

capsule with single PU layer without containing the internal PMF skeleton. If this were to 

be realized, it might be an extremely facile solution to encapsulate hydrophilic loads. The 

interference of shell forming reaction with the payload can then be smartly eliminated, 

since in this work, PU shell forming occurred only in the middle oil layer of the double 

emulsion droplet. Currently, double emulsion concept can only be realized via microfluidic 

technique, which has limited potential to be applicable for mass production. Improvement 

in the strength of PU shell can be achieved by optimization of PU components (i.e., soft 

segment, stiff segment, and crosslinking reagents) or additional coating from the external 

side of capsules.  
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Self-healing evaluation 

Self-healing evaluation was not performed in this dissertation due to the huge 

amount of systematic evaluations required for the conversion of the capsule to self-healing 

system. These assessments include, but are not limited to, the bonding capacity of the 

capsule shell to the protein matrix, deposition of capsules in matrix materials, and 

optimization of the viscosity of the payload, all of which can impact healing efficiency of 

the system. 
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