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ABSTRACT 

 

 

Sensor technologies provide opportunities to increase the quality and quantity of soils 

data while introducing new techniques and tools for classrooms. Linear regression 

models were developed for organic carbon prediction using color data gathered with the 

Nix ProTM for dry (R2 = 0.7978, MSPE = 0.0819), and moist soils (R2 = 0.7254, MSPE = 

0.1536). A mobile application, the Soil Scanner app, was created to allow for a more soil 

science dedicated interface that would allow users to create their own database consisting 

of GPS location and soil color data gathered using the Nix ProTM. The final application 

produced results in multiple color systems, including Munsell, recorded GPS location, 

sample depth, moisture conditions, “in-field” or “laboratory” settings, and a photograph 

of the soil sample. All data could then be uploaded to an online database. The GPS 

location allows for easy integration of data into GIS mapping software for the spatial 

manipulation of soils data. The application was tested by generating GIS maps showing 

the gradient of soil color across two field surfaces. The Nix ProTM color sensor functions 

as a successful teaching tool and, coupled with the Soil Scanner app, offers a new means 

of gathering and storing reliable soils data. There is added benefit to having a soil science 

application that can be updated to include further analysis methods, resulting in an ever 

growing soils database. A laboratory exercise was developed that introduced students in 

an entry level soils course to the importance of soil color and the methods used to 

determine soil color. Students were then asked to determine the color of three soil 

samples using the Nix ProTM and the standard Munsell Color Chart before conducting 

simple statistical analysis and responding to a questionnaire. Responses indicate that the 
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Nix ProTM was the preferred method of color analysis and students felt the sensor to be a 

more reliable method than traditional color books. 
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CHAPTER ONE 

INTRODUCTION 

 

 Disruptive technologies have shown to advance and simplify analysis methods 

allowing more people to become involved in projects in various fields of science and 

industry. These technologies tend to improve upon existing methods and, sometimes, 

they can even result in wholly new research techniques. This is often the direct result of 

the disruptive technology being an inexpensive alternative that also happens to be easier 

to use than traditional methods which may require complicated steps and practices 

(Kostoff et al., 2003). Disruptive technologies can even limit human error by eliminating 

human generated data (e.g. color determined by the human eye) or by limiting the effects 

of environmental conditions (e.g. outdoor lighting can be countered by controlled lighting 

conditions) (Shields et al., 1965; Gijsenji et al., 2012). Furthermore, disruptive 

technologies tend to hasten the process of gathering data making analysis methods much 

more rapid (Kostoff et al., 2003). As this technology becomes more readily available, 

more and more scientists turn to mobile sensors, applications, and even cellphones to 

meet their research needs as inexpensively as possible (Kamholz et al., 1999; Hart and 

Martinez, 2006). 

 Disrupting technologies have the potential to improve best management practices 

(BMPs) using remote sensing and spectral data. Studies have shown that plant 

chlorophyll concentrations can be determined using the leaf spectral data gathered using a 

spectrometer. In addition, the reflectance of a leaf can also be used to determine nitrogen 



 

2 

 

concentrations of plants (Yoder and Pettigrew-Crosby, 1995; Gitelson and Merzlyak, 

1995; Daughtry et al., 2000). The spectral data of a plant can be used to develop 

prediction models that can be used on cite to determine the amount of nitrogen that needs 

to be applied to optimize crop production and minimize leaching and runoff of nitrogen 

without the need to send samples to a laboratory for results, which can be expensive 

(Daughtry et al., 2000). Other researchers have developed their own applications that 

would turn cellphones into soil color sensors by analyzing the pixels of a photograph of a 

soil sample taken by the cellphone camera. The pixels would be averaged to determine 

the color values of each soil sample photo (Gomez-Robledo et al., 2013). While the 

experiment controlled for lighting conditions and eliminated human error due to the 

human eye’s limitations to accurately determine color, the variation in cellphone cameras 

would introduce unwanted errors. 

 Stiglitz et al. (2016) tested a new disrupting technology in the form of an 

inexpensive color sensor, the Nix ProTM, for its ability to accurately and reliably 

determine soil color. Results showed that the Nix ProTM was more accurate to a 

laboratory standard, the Konica Minolta CR-400 than it was to the Munsell Color Chart. 

Results also showed that the sensor consistently produced repeatable results making it a 

reliable alternative to the Munsell Color Chart. The sensor is very portable, rechargeable, 

controlled via Bluetooth and a mobile device, and has its own light-emitting diode (LED) 

light source which eliminates much of the human and environmental factor errors. The 

Nix ProTM allows for rapid and reliable color analysis and its application offers the 

opportunity to integrate various other analysis methods to improve upon current methods 

of soils analysis. 
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 New technologies not only offer a means of improving our BMPs, precision 

agriculture, and analysis methods in general, but they can also be utilized as convenient 

and interesting teaching tool in science classrooms. As disruptive technologies are 

adapted to science fields, it is imperative to introduce students to the new techniques that 

are developed alongside the new technologies. It is believed that it is becoming necessary 

for students to learn new technologies as our world becomes more advanced and 

dependent on technology (Gambrell et al. 2015). Furthermore, new sensor technologies 

give students the opportunity to learn through hand-on activities and to become familiar 

with research techniques and practices both in the classroom and in the field. Therefore, 

effort should be made to include new technologies that are being utilized by researchers 

in classrooms as well. 

This research aims to introduce a new and inexpensive color sensor technology, 

the Nix ProTM color sensor, to the field soil science through rapid assessment of soils and 

as a teaching device in introductory soil science laboratories. There are three main 

chapters of this research, with chapter two being the first, which determines the potential 

of a portable color sensor to determine soil organic carbon content. This chapter discusses 

the development and testing of two carbon prediction models for moist and dry soil 

conditions using soil color data gathered using the Nix ProTM color sensor.  

Chapter three discusses the development and potential use for the Soil Scanner 

application that was developed for the purpose of using the Nix ProTM to gather and store 

soils data in a cloud databank. This application has the potential for crowd-sourcing and 

GIS manipulation of soils data which could assist in land management practices and 

precision agriculture.  
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Chapter four discusses the potential for the Nix ProTM to be used as a teaching 

device in introductory soils laboratories. Student have the opportunity to learn the 

importance of soil color and the different applications used to determine it in field and 

laboratory settings through a hands-on learning experience. 
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CHAPTER TWO 

USING AN INEXPENSIVE COLOR SENSOR FOR RAPID ASSESSMENT OF 

SOIL ORGANIC CARBON 

 

Abstract 

Quantifying soil organic carbon (SOC) is important for soil management, precision 

agriculture, soil mapping and carbon dynamics research. Inexpensive sensor technologies 

offer the potential for rapid quantification of SOC in laboratory samples as well as in the 

field. The objective of this study was to use a commercially-available color sensor to 

develop SOC prediction models for both dry and moist soils from the Piedmont region of 

South Carolina. Thirty-one soil samples were analyzed for lightness to darkness, redness 

to greenness, and yellowness to blueness (CIEL*a*b*) color using a Nix Pro™ color 

sensor. Soil color was measured under both dry and moist soil conditions and the depth of 

each soil sample was also recorded. Using L*, a*, b* and soil depth for each sample as 

initial predictors, regression analyses were conducted to develop SOC prediction models 

for dry and moist soils. The resulting residual plots, root mean squared errors (RMSE), 

and coefficients of determination (R2) were used to assess model fits for predicting the 

SOC content of soil. Cross validation was conducted to determine the efficiency of the 

predictive models and the mean squared prediction error (MSPE) was calculated. The 

final models included soil depth, L*, and a* as independent variables (dry soils R2 = 

0.7978 and MSPE = 0.0819, moist soils R2 = 0.7254 and MSPE = 0.1536). The results 

suggest that soil color sensors have potential for rapid SOC determination, and soil depth 

and color are useful in predicting SOC content in soils. 
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Keywords: Carbon model, CIEL*a*b*, Nix ProTM, Regression analysis, Soil color 

coordinates, Ultisols 
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Introduction 

  

 Soil organic carbon (SOC) is one of the key soil properties related to ecosystem 

services (Adhikari and Hartemink, 2016) and it is measured by the Natural Resource 

Conservation Services (NRCS) to determine soil quality (Karlen et al., 2003, 

USDA/NRCS, 1996). Organic carbon in soil serves many purposes in soil fertility and 

structure by improving water retention and infiltration, promoting soil organism growth, 

and by holding essential nutrients in the soil for healthy plant growth and production 

(Oades, 1984, Fontaine et al., 2003). In addition, soils play a major role in the carbon 

cycle by sequestering carbon dioxide from the atmosphere which would otherwise add to 

the effects of climate change (Li et al., 2007, Kheir et al., 2010). Disturbances in normal 

soil environments, such as deforestation and thawing permafrost, can lead to excessive 

release of stored carbon in the form of greenhouse gasses, such as carbon dioxide and 

methane, into the atmosphere (Potter, 1999; Christensen et al., 2004). Adhikari and 

Hartemink (2016) argue that soil is a vast determinant of a nation's economic standing 

and is linked to ecosystem service. Given the importance of soil and SOC both globally 

and agriculturally, there is a need for methods of rapid soil analysis and SOC 

determination that are inexpensive and easy-to-use. 

 It is well known that SOC content influences the color of a soil (Baumgardner et 

al., 1969). Studies have shown that because of this, it is possible to use a soil's reflectance 

to determine SOC content, making it possible to develop prediction models based on soil 

color (Bartholomeus et al., 2008). For this reason, many have turned to using visible 

near-infrared spectroscopy to determine SOC content in soils (Morgan et al., 2009, 
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Vasques et al., 2007). However, spectrometers can be expensive and many soil scientists 

may not be familiar with the resulting spectra data. 

In a study by Wills et al. (2007), soil color in Munsell Color Chart notation, along 

with other soil qualities, were used to create a SOC prediction model for agricultural and 

prairie soils of the Midwest United States. Soil color value and chroma along with depth 

of the soil sample produced the most accurate SOC prediction model. However, SOC 

predictions can be limited based on regional soils. Different soil types will appear 

different in color based on SOC origin and soil mineralogy making it necessary to gather 

a large soil sample set that encompasses all soil types and SOC content before a universal 

SOC prediction model can be developed (Bartholomeus et al., 2008). Studies have shown 

that there is significant variation among Munsell Color Charts that can result in 

inaccurate color measurements which would lead to inaccurate SOC predictions 

(Sanchez-Maranon et al., 2005). In addition, Munsell Color Chart notation does not allow 

for simple statistical analysis which could complicate the process of creating a SOC 

prediction model for various regional soils (Kirillova et al., 2014). 

Fortunately, there are a number of color systems to classify the color of soils that 

can be used in soil science (Viscarra Rossel et al., 2006). Recently, an inexpensive color 

sensor (Nix Pro™) was evaluated for its ability to determine soil color (Stiglitz et al., 

2016a, b). The Nix Pro™ produces color results in lightness to darkness, redness to 

greenness, and yellowness to blueness (CIEL*a*b* notation) and other color systems, 

is rechargeable and portable, and has its own light source making it a great mobile 

alternative to the Munsell Color Chart. The Nix Pro™ offers a new method of color 

analysis that is accurate, rapid, and convenient for statistical analysis (Stiglitz et al., 
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2016a, b). Using the Nix Pro™ as a colorimeter would assist in gathering data necessary 

for developing SOC prediction models efficiently and reliably. The objectives of this 

study were (i) to gather soils data from the Piedmont region of South Carolina for 

analysis, (ii) create a SOC prediction model for dry soils of the Piedmont region of South 

Carolina, and (iii) create a SOC prediction model for moist soils of the Piedmont region 

of South Carolina. 

 

Materials and Methods 

 

Study area and soil samples 

 The study area and samples for this experiment are as described previously by 

Stiglitz et al. (2016a, b) and were collected from the Piedmont region of South Carolina. 

For development of the predictive models, thirty-one samples (i.e., training set) were 

gathered from thirteen soil pits at the Simpson Agricultural Experimental Station near 

Pendleton, South Carolina. The following soils were represented in the collected samples 

(Fig. 1): Cecil clay loam (Fine, kaolinitic, thermic Typic Kanhapludults), Pacolet sandy 

loam (Fine, kaolinitic, thermic Typic Kanhapludults), Cartecay-Chewacla complex 

(Coarse-loamy, mixed, semiactive, nonacid, thermic Aquic Udifluvents and Fineloamy, 

mixed, active, thermic Fluvaquentic Dystrudepts), Hiwassee sandy loam (Fine-loamy, 

mixed, active, thermic Fluvaquentic Dystrudepts), and Cecil sandy loam (Fine, kaolinitic, 

thermic Typic Kanhapludults) (Soil Survey Staff, 2016). The soil series that were 

collected are typical of the Blue Ridge Mountains, Piedmont, and Valley and Ridge 

regions of the eastern United States, spanning from Virginia to Georgia, north to south, 
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and from the coast to Alabama, Tennessee, and Kentucky. In addition, thirty-one separate 

samples were taken from the soil pits for the purpose of cross validation (i.e., validation 

set). 

The depth for each soil sample collected was recorded. Subsamples of each soil 

were sent to the Clemson University Agricultural Service Lab for nutrient analysis and to 

the University of Georgia Soil, Plant and Water Analysis Lab to be analyzed for texture 

and total carbon content (Fig. 2 and Table 1). Samples were analyzed for texture using 

the standard NRCS soil textural triangle and soil carbon percent was determined by lost 

on ignition. Soil samples were oven dried, crumbled, and passed through a 2-mmsieve 

before being analyzed for color. Soil samples, about 1 in. in diameter, were placed on a 

plate and the surfaces of each sample were leveled to allow for the sensor to rest on a flat 

sample surface which prevented any outside light from entering the viewing area of the 

sensor. Dried soil samples were moistened using a water dropper to dampen the soil 

surface. The soil samples were then analyzed for color using a Nix Pro™ color sensor for 

both moist and dry soil conditions with results recorded in CIEL*a*b* following the 

methods described previously by Stiglitz et al. (2016a, b). The Nix Pro™ color sensor 

cost $349 and is controlled via Bluetooth using a free to download mobile application. 

The sensor has its own LED (light emitting diode) light source, rechargeable battery, and 

produces color results in various color systems such as CIEL*a*b*, RGB (red, green, 

blue), and XYZ (red, green, blue). 

 

Development of SOC prediction models 
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 Regression analysis was conducted using SAS Studio software (SAS Institute 

Inc., 2014) for the thirty-one soil samples (training set) using measured values from the 

soil sampling, nutritive analysis and color determination. The dependent variable in all 

regression models was the soil sample SOC (%), and specific predictor variables 

considered were depth of the soil sample, and CIEL*a*b* color coordinates to keep the 

model as simple as possible. Initially, all chosen predictors (depth, L*, a*, and b*) were 

included in the model to determine which were useful in predicting SOC content of the 

soil. Using the coefficient of determination (R2), root mean squared error (RMSE), and 

residual plots, model fit was assessed. Predictors that were determined insignificant were 

removed and the model was run again. This process was repeated until only significant 

predictors remained in the carbon prediction model. A level of significance of 0.05 was 

used for all regression analyses. Once the models were constructed, the predicted SOC 

content of the dry and moist soil samples was found using the selected soil sample 

predictors. The actual SOC content was then plotted against the predicted SOC content 

for comparison (Fig. 3). 

 

Cross validation of the selected SOC prediction models 

 Thirty-one additional soil samples (validation set) were gathered from the same 

soil pits from Simpson Agricultural Station for the purpose of cross validation and were 

not utilized for model development. Depth and Nix Pro™ CIEL*a*b* color coordinates 

were recorded for each sample under both dry and moist soil conditions. The data for the 

samples were used to predict the SOC content using the two prediction models for dry 

and moist soils. The actual and predicted SOC content of the samples were compared and 
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the mean squared prediction error (MSPE) was calculated for both dry and moist SOC 

prediction models to determine how well the models would predict SOC content of soils. 

The smaller the MSPE, the better the model would be at predicting SOC. 

 

 

Results and Discussion 

 

Development of the SOC prediction model for dry soils 

 A multiple regression model was conducted using sample depth, L*, a*, and b* as 

parameters for predicting SOC (%) for dry soil samples Table 2). Table 3 shows that b* 

is linearly correlated with SOC for moist and dry soils, and is also linearly correlated with 

sample depth and with a* for dry soils, suggesting that it may not be a desirable 

predictive parameter to include in the model because of its correlation with the other 

predictors (i.e., there may be issues with multicollinearity). When all of the predictors 

were included in the model predicting SOC (%), the residual plots indicated that a 

quadratic b* effect may be necessary to include in the model. In addition, in the dry soil 

samples model with all of the predictors, b* was not a significant predictor of SOC (%), 

adjusting for the other predictors in the model (p = 0.1107; Table 4). After considering 

the quadratic b* effect in the model, the RMSE and R2 were only marginally improved 

and were thus left out of the final model. For the dry soil final model, p-values indicate 

that sample depth (p-value = 0.0011), L* (p-value < 0.0001), and a* (p-value = 0.0002) 

were useful in predicting SOC (RMSE = 0.42490 and R2 = 0.7978; Table 5). Past studies 

have shown that there is a correlation between SOC and lightness and darkness of a soil 

(Sheilds et al., 1968). This could explain why L* had the most significant p-value for dry 
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soils. In addition, it has been reported that a close correlation exists between b* and the 

iron oxide content of soils (Schwertmann, 1993; Scheinost and Schwertmann, 1995), 

which at least partially explains the correlation observed here between b* and sample 

depth. Iron content tends to increase as the degree of weathering increases for a soil 

horizon, thus, iron content tends to increase with soil depth (Rebertus and Buol, 1985). 

More importantly, it suggests that including b* in a predictive model for SOC (%) would 

not be desirable for high iron content soils such as the ones tested in this study. Soil 

texture was not considered for the models, but soil surface texture and particle size may 

affect reflectance and result in differing color results which would affect SOC prediction 

models. Fig. 3a shows a plot of actual SOC (%) versus predicted SOC (%) for the final 

predictive model for dry soils. 

 

Development of the SOC prediction models for moist soils 

 Following the general procedures described above for the dry soils, multiple 

regression analysis was utilized to develop a predictive model for SOC (%) in moist soils 

considering initially sample depth, L*, a*, and b* as predictive parameters (Table 2). 

Consistent with the dry soils, once again b* was found to be linearly correlated with SOC 

but also again with sample depth, L* and a* for the moist soil samples (Table 3). In the 

model for moist soil samples that included all of the parameters, b* was not a significant 

predictor of SOC (%) (p-value =0.7353; Table 4). A quadratic b* effect in the model was 

also considered, but the marginal improvement in predictive capabilities was not 

statistically significant. For the moist soil final model, the sample depth (p-value = 

0.0020), L* (p-value = 0.0043), and a* (p-value = 0.0009) were useful in predicting SOC 
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(RMSE = 0.49509 and R2 = 0.7525; Table 5). Typically, SOC content decreases as soil 

depth increases (Jobbagy and Jackson, 2000). For this reason, depth was considered for 

both dry and moist soil prediction models. While the samples were moistened, the exact 

amount of moisture was not measured and, therefore, it is not possible to know exactly 

how soil moisture would affect the prediction of SOC content in soils. However, the 

resulting RMSE and R2 suggests that the chosen parameters were still sufficient at 

predicting SOC content. Fig. 3b shows a plot of actual SOC (%) versus predicted SOC 

(%) for the final model for moist soils. 

 

Cross validation of the SOC prediction models 

 The R2 values for dry and moist soil predictive models were comparable to those 

found by Wills et al. (2007) as all values were significant and accounted for a large 

amount of error within the model. A cross validation was conducted using the SOC 

predictive models for dry and moist soils and thirty-one additional soil samples 

(validation set) from the thirteen experimental soil pits. The models were used to predict 

the SOC content of the additional samples using their depth and color data. The actual 

and predicted SOC content of each additional sample was compared and the MSPE was 

calculated for the dry soils predictive model (MSPE = 0.0819; Table 5) and moist soils 

predictive model (MSPE=0.1536; Table 5). The results suggest that the models are 

sufficient at predicting SOC content. Having models that can predict SOC content of 

soils, and thereby soil quality, would be a useful addition to the Soil Quality Test Kit 

Guide (1999) which aims to determine a soil's “ability to perform basic functions” by 

gathering minimum data in field settings. 
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 The results of the regression analyses suggest that sample depth, L*, and a* are 

the best variables for predicting SOC in both dry and moist South Carolina Ultisols. 

There was a notable trend in SOC content compared to depth, specifically that SOC 

content decreased as depth increased as seen in Table 1 making depth a wise choice to 

include in a prediction model. The L* value of each sample also seemed to have a notable 

impact of the SOC content. Given that Ultisols are red in color, it would be expected that 

the a* value for redness would influence soil characteristics such as SOC content. While 

b* did not prove to be a strong predictor of SOC content in the soils of the Piedmont 

region of South Carolina, it may be a sufficient indicator of SOC in soils of another type 

that contain either yellow or blue pigments. The R2 values for dry and moist soil 

predictive models were respectable, suggesting that the models created are sufficient for 

predicting SOC content of soils of South Carolina. It is important to note that the created 

models may also be sufficient predictors of SOC for soils of the same type that are typical 

of the Blue Ridge, Piedmont, and Valley and Ridge regions of the United States. The 

MSPE values for the two models suggests that while both models are sufficient predictors 

of SOC content, the model for dry soils is better at predicting SOC. 

 

 

Conclusions 

 

The models developed in this study likely have limitations. The soil samples used 

for this experiment were from an agricultural farm in the Piedmont region of South 

Carolina and were low in SOC content and high in iron content which may negatively 

impact the ability to predict SOC based on color. Soils that are not used agriculturally 
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may have different characteristics that would impact SOC content and the accuracy of the 

models may vary. It is likely that different models will need to be developed for soils of 

different types, regions, and land-uses. This would, however, not require site-specific 

models, as it should be possible to develop models that are applicable across large areas 

with similar soil types and land uses. Furthermore, each method of color analysis would 

potentially produce carbon models unique to the device being used, as different 

illuminations, fields of view, and scanning angles may produce varying color results. 

Regardless of the current limitations, there is promise in the Nix Pro™ 

technology and its ability to predict SOC content of soils. Carbon prediction models offer 

a rapid and inexpensive method of soil quality assessment. Rapid SOC analysis could 

assist in determining best management practices or soil reclamation methods that would 

help preserve and restore farmland and other habitats. Prediction models would also offer 

a means of monitoring carbon pools in areas being affected by deforestation, permafrost 

thawing, and climate change (Potter, 1999; Christensen et al., 2004). There is notable 

advantage in determining a close estimation of SOC without having to send samples to a 

nutrient analysis laboratory, which takes time to produce results and can become costly 

depending on the number of samples being analyzed. Rapid SOC field assessment tools, 

such as this proposed soil sensor based method, can enable a much higher spatial density 

of samples which may improve our understanding of the distribution of SOC across the 

landscape. Many researchers in various fields of science would benefit from the 

development of regional carbon predictions models that require only a few soil 

parameters, such as sample depth and soil color, to function properly and provide an 

estimate of SOC content.  
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Table 1 

Selected soil properties for practice soil pit 2 (Stiglitz et al., 2016). 

 

Horizon 

Lower 

depth  

 

Texture 

 

Sand  

 

Silt  

 

Clay  

 

SOC  

 

pH in 

water 

 

BS  

 

 

CEC 

 

 

P 

 

K 

 

Ca 

 

Mg 

 

Zn 

 

Mn 

 

Cu 

 

B 

 

Na 

 (cm)  (%)  (%) (meq/100g) (mg/kg) 

                   

Ap 17 SL 68 16 16 1.3 5.1 34 4.4 5.5 17 189 30 1.2 8 0.25 0.15 4.0 

Bt1 45 C 43 12 45 0.6 5.9 44 5.0 1.5 20 339 53 0.5 2 0.40 0.20 7.0 

Bt2 81 C 38 4 58 0.4 6.2 39 5.2 0.5 11 290 63 0.2 1 0.30 0.20 5.5 

Bt3 105+ - 40 4 56 0.3 5.8 30 5.7 0.5 8 247 52 0.3 0 0.35 0.25 5.5 

*SL = sandy loam, C = clay. 
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Table 2. Example of dry and moist soil variables for practice soil pit 4. 

Horizon SOC 

(%) 

Depth 

(cm) 

L* a* b* 

Dry Soils 

Ap 1.30 11 52.16 12.41 24.70 

Bt1 0.44 28 52.61 19.54 31.53 

Bt2 0.36 59 53.16 17.68 30.75 

Bt3 0.26 90 49.12 19.89 30.42 

Moist Soils 

Ap 1.30 11 34.24 12.32 20.63 

Bt1 0.44 28 38.84 21.06 27.91 

Bt2 0.36 59 37.52 19.32 28.17 

Bt3 0.26 90 35.41 22.29 28.67 
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Table 3. Pearson correlation (r) values among soil variables for dry and moist soils (p-

values in parentheses). 

Parameter SOC 

 

Depth L* a* b* 

 

Dry soils 

 

SOC --- -0.69681 

(<0.0001) 

 

-0.29296 

(0.1097) 

-0.62770 

(0.0002) 

-0.84271 

(<0.0001) 

Depth  --- 

 

-0.05174 

(0.7822) 

 

0.56299 

(0.0010) 

0.66960 

(<0.0001) 

L*   --- 

 

-0.35450 

(0.0504) 

0.21120 

(0.2541) 

 

a*    --- 

 

0.67985 

(<0.0001) 

 

b*     --- 

 

Moist soils 

 

SOC --- -0.69681 

(<0.0001) 

 

-0.34680 

(0.0560) 

-0.70689 

(<0.0001) 

-0.72698 

(<0.0001) 

Depth  --- 0.04513 

(0.8095) 

 

0.57325 

(0.0007) 

0.57238 

(0.0008) 

L*   --- 0.02802 

(0.8811) 

 

0.62670 

(0.0002) 

a*    --- 0.59742 

(0.0004) 

 

b*     --- 
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Table 4. Parameter estimates and ANOVA results for initial SOC prediction models. 

 

Model 

 

Parameter 

Parameter 

estimate 

Parameter 

p-value 

Model 

p-value 

Root 

MSE 

 

R-squared 

Dry soils SOC 8.51924 <0.0001 <0.0001 0.41189 0.8170 

 Depth -0.00812 0.0172    

 L* -0.07588 0.0034    

 
a* 

b* 

-0.07699 

-0.06942 

0.0172 

0.1107 
   

       

Moist soils SOC 5.63852 <0.0001 <0.0001 0.50339 0.7266 

 Depth -0.01079 0.0109    

 L* -0.05643 0.1285    

 a* -0.09163 0.0106    

 b* -0.01686 0.7353    
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Table 5. Parameter estimates and ANOVA results for final SOC prediction models. 

 

Model 

 

Parameter 

Parameter 

estimate 

Parameter 

p-value 

Model 

p-value 

Root 

MSE 

R-

squared 

 

MSPE 

Dry 

soils 

SOC 8.50860 <0.0001 <0.0001 0.42485 0.7978 0.0819 

Depth -0.01060 0.0011     

 L* -0.10138 <0.0001     

 
a* 

 

-0.11292 0.0002 
    

Moist 

soils 

SOC 5.70287 <0.0001 <0.0001 0.49509 0.7254 0.1536 

Depth -0.01146 0.0020     

 L* -0.06625 0.0043     

 a* -0.09830 0.0009     
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Figure 1. Map showing the extent of the soil series collected for analysis (Series Extent Explorer, 2016).  
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Figure 2. Example of soil profile (out of 7 total soil profiles used in the study) for practice 

soil pit 4 used during 2014 Southeast Regional Collegiate Soils Contest (October 5–9, 

2014).  
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a. 

 
b. 

 
 

Figure 3. Plots of actual SOC (%) content versus predicted SOC (%) content for a) dry 

and b) moist soil samples for the training data set.  
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CHAPTER THREE 

SOIL COLOR SENSOR DATA COLLECTION USING A GPS-ENABLED 

SMARTPHONE APPLICATION 

 

Abstract 

Application of accurate and low-cost sensor technology to collect soil color data provides 

an opportunity to increase the density, quality and quantity of soil data to monitor our 

changing soil resources. The objective of this study was to develop a mobile application 

that would enable users to create their own soils database consisting of GPS location and 

soil color data gathered using the application and a mobile sensor. A mobile application 

was created utilizing the Nix™ Pro color sensor that produces multiple color results, 

including Munsell color notation. The application also allows users to toggle between 

“in-field” sampling as well as dry or moist soil samples. Users can choose to record GPS 

location and a photo of the soil sample to upload into an online database for storage. The 

application was tested for functionality in the field and for its ability to match Munsell 

notation values determined using a Munsell Soil Color Chart (MSCC). Field data were 

synchronized to a cloud database and subsequently retrieved and used to produce a 

Geographic Information Systems (GIS) layout showing sample point locations and soil 

color attributes. The Soil Scanner application allows for rapid analysis and collection of 

soils data that can be stored for further study and reference using various color systems 

and location data. 
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Keywords: Cloud storage, Geographic Information Systems (GIS), Munsell Color Chart, 

Spatial, Soil classification, Soil survey 
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Introduction 

  

Soil color is an important property used by the USDA Natural Resources 

Conservation Service (NRCS) to describe soils and it can be a strong indicator of other 

soil properties such as iron and organic matter contents (Lynn and Pearson, 2000; Sugita 

and Marumo, 1996). The Munsell Soil Color Chart (MSCC) notation, which commonly 

is used to describe soil color, often can be found in soil series descriptions and online 

databases provided by the NRCS to characterize and describe soil horizons (Soil Survey 

Staff, 2016). Studies have shown that there are discrepancies in the printing quality of 

MSCC color chips as well as a strong potential for fading that can make the charts 

unreliable (Sánchez-Marañón et al., 2005 ;  Viscarra Rossel et al., 2006), yet the MSCC 

has been the standard in-field method of soil color determination for decades (Shields et 

al., 1965). The color charts also are more qualitative than quantitative, leading many soil 

scientists to turn to alternative methods of color analysis (Kirillova et al., 2015). 

Instruments such as spectrophotometers and colorimeters often are used in lieu of a 

MSCC (Thompson et al., 2013); however, these instruments can be expensive and may 

require an external power source which makes in-field color determination very difficult. 

More recently, scientists have been testing and creating new methods of color 

determination that are more field-friendly as well as less expensive (Levin et al., 2005). 

Stiglitz et al. (2016a) tested a new and inexpensive color sensor, the Nix™ Pro, as 

a mobile method of soil color determination. The Nix™ Pro sensor is controlled via 

Bluetooth® and a mobile app through a smartphone. Multiple soil samples were analyzed 
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for color in moist and dry soil conditions and indoor and outdoor lighting. The Nix™ Pro 

color values were compared to MSCC as well as a Konica Minolta CR-400 laboratory 

colorimeter. The results showed that the Nix™ Pro produced repeatable readings and that 

the color values of the Nix™ Pro and Konica Minolta CR-400 were very similar. Stiglitz 

et al., 2016a; Stiglitz et al., 2016b concluded that the Nix™ Pro would be a good 

alternative to the MSCC as an in-field soil color determination method. However, the 

application used to control the Nix™ Pro is not directed towards the field of soil science. 

Ideally, the application would allow for data storage and produce MSCC notation as well 

because it is the most commonly used color system. 

In a study by Gómez-Robledo et al. (2013) a cellphone application was created to 

determine the color of soil samples from pictures taken with the cell phone camera. 

Software was developed to scan the pixels in the soil sample pictures taken by the camera 

and convert the subsequent red, green, and blue (RGB) color values to digital red, green, 

and blue (XYZ) and to Munsell hue, value, and chroma (HVC). The results were 

promising and demonstrated that cellphone cameras and a simple color conversion 

application can be utilized as effective soil color sensors. Han et al. (2016) also used a 

smartphone camera to process color images of soil samples. After processing the RGB 

values obtained from the images, it was once again concluded that cellphone cameras are 

effective at determining soil color. Han et al. (2016) were able to accurately classify soils, 

however, it was noted that differences in cellphone hardware may result in a change in 

accuracy of results and software stability. Furthermore, environmental factors such as soil 

moisture and lighting conditions would still affect the study results. 
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Regardless of the drawbacks of cellphone cameras, these mobile devices have 

proven to be a useful tool in soil science and related fields. Beaudette and O'Geen (2010) 

developed an iPhone application to deliver on-demand access to soil survey information 

from any location with cellphone coverage. Migliaccio et al. (2015) proposed turf 

irrigation application that develops recommended irrigation schedules based on inputs of 

form data and real-time weather data. User input data include soil type (texture) 

information as well as location and rooting depth. Soil texture information is used to 

assign estimated field capacity. Other user inputs include information about the field area 

and sprinkler type (to indicate water rate). Real-time weather data, including temperature, 

humidity, solar radiation, and wind speed are used to estimate water loss through 

evapotranspiration (ET). The application was shown to reduce overall water usage when 

compared to time-based irrigation schedules. Bartlett et al. (2015) created a smartphone 

application for an irrigation scheduling tool on a cloud-based server. 

Mobile technologies are advancing soil science as new applications and analysis 

methods are created. In addition, new technologies provide opportunities for outreach and 

raising awareness of many scientific issues faced today as mobile technologies are 

becoming more widely available and affordable (Ciampitti and McCornack, 2016). With 

development of new mobile devices and applications, subjects such as soil quality can be 

readily studied, not only by professionals but also by students in classroom settings 

(Karlen et al., 2003). To ensure that new applications are efficient learning tools in the 

classroom, Israelson (2015) proposed “the App Map” which is a basic rubric for judging 

the effectiveness of an application. In general, if a mobile application would function 
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well in a classroom setting and improve knowledge of an area of science, then it would 

also function well in field settings. 

Mobile devices offer the opportunity to quickly and easily analyze certain soil 

properties. However, current mobile applications commonly face limitations based on the 

device and environmental conditions. There should be one set device capable of running 

analysis on soils through an application that would allow for constantly updating soils 

data and storage. Finally, the application and device should be user friendly and 

inexpensive. As such, the objective of this study was to create an Android-based 

application capable of working with the Nix™ Pro color sensor that would: (i) produce 

cyan, magenta, yellow, and black (CMYK), XYZ, RGB, CIEL*a*b*, and MSCC color 

values, (ii) record GPS locations, and (iii) upload collected data to a constantly updating 

Cloud databank. 

 

Materials and Methods 

 

Developing the color application 

 Development of the Soil Scanner mobile application was completed using 

Google's integrated development environment (IDE) software, Android Studio 2.0, to 

compile and edit the code for the application. Java was chosen as the programming 

language and the Android software development kit (SDK) was used to develop the 

application into Android friendly software. Access to the Nix™ Pro application program 

interface (API) was provided by the Nix™ Pro development team allowing for smoother 
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integration of the already-existing color sensing functions of the sensor into the Soil 

Scanner application. The original Nix™ Pro application is free to download and the Soil 

Scanner application will also be available to download upon finalization. 

Upon completion, the application was able to connect to a Nix™ Pro color sensor, 

download a Munsell color reference table, and scan soil samples for color (Fig. 1). 

Resulting color systems include CMYK, CIEL*a*b*, XYZ, RGB, and Munsell notations. 

Users have the option to choose whether the samples are analyzed in a field setting and if 

the soil samples are dry or moist. Choosing the field setting option enables the user to 

obtain the GPS location of the sample. In addition, the user has the option to take a 

reference photo of soil samples using the mobile device's camera to be saved with all 

other collected data, though a photograph is not required (Fig. 2). Recently scanned data 

will appear within the application and the user has the option of uploading all data to an 

online database for storage (Fig. 3). 

 

Integration of color systems into the color application 

 The Nix™ Pro API included code to produce CMYK, CIEL*a*b*, XYZ, and 

RGB color results as default color systems within the Soil Scanner application. A goal 

was to include Munsell color notation as well to coincide with current soil science 

standards for soil descriptions. An external Munsell database that contained the 

equivalent RGB and CIEL*a*b* color values for each Munsell HVC was developed from 

preexisting data gathered from WallkillColor (2006). Missing Munsell values were found 

using BabelColor software (BabelColor, 2015). Only Munsell values found in the 
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Munsell Soil Color Chart were used. Using this database, an algorithm was used to 

determine the closest RGB or CIEL*a*b* to Munsell color matches by calculating the 

Euclidean distance of the color resulting values. This method produced three Munsell 

notations with the shortest Euclidean distance from the analyzed soil sample color. The 

resulting three Munsell notations correlate to the closest matching colors. From the 

interface, the closest Munsell color value can be viewed and chosen from three resulting 

color swatches that accompany the color systems (Fig. 2). 

 

Testing the color application 

 Once the development of the Soil Scanner application was completed, the 

functionality and accuracy of the Munsell color results were tested. The default CMYK, 

CIEL*a*b*, XYZ, and RGB color results of the Nix™ Pro API were not altered; 

therefore, it was not necessary to test the accuracy of these results because the Nix™ Pro 

sensor has previously been demonstrated to produce reliable color results (Stiglitz et al., 

2016a). The cellphone used for the experiment was a Samsung Galaxy S6 Edge running 

Android version 5.1.1 with a camera resolution of 16 megapixels. Thirty-one oven-dried, 

crumbled soil samples that were collected at varying depths from thirteen soil pits, as 

described in Stiglitz et al. (2016a), were analyzed for Munsell color using the Nix™ Pro 

color sensor, the Soil Scanner application, and a smartphone used only to control the 

application through Bluetooth® connection. The resulting Munsell notations were 

compared to Munsell notations previously determined by NRCS staff for moist samples 

and one researcher for dry samples using the MSCC for each soil sample (Table 1). The 
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Euclidean distance for each soil sample was calculated to determine the effectiveness of 

the application to match human perceived color using a MSCC. 

 The original soil pits used to gather the thirty-one samples utilized for the color 

analysis were filled to continue agricultural production on the Simpson Agricultural 

Experiment Station in Pendleton, South Carolina and could not be used for GIS mapping. 

Therefore, a GIS map was generated using GPS locations and soil color data for 

additional surface sample locations located at the Station (Fig. 4) to determine the 

functionality of the application. Soil scans were located based on the cell phone GPS and 

attributes from the color sensor were imported into a GIS system (Fig. 5). Point locations 

were interpolated using Inverse Distance Weighting to create a surface map of the a* 

(green to red) values for Simpson Agricultural Experiment Station samples from the 

CIEL*a*b* color data. Soils found at the sample locations are predominantly Ultisols and 

include Cecil clay loam, Pacolet sandy loam, Cartecay-Chewacla complex, Hiwassee 

sandy loam, and Cecil sandy loam and have a geographic range from Georgia to Virginia, 

south to north, and from the eastern coast to Alabama, Tennessee, and Kentucky. These 

soil series are abundantly found along the Blue Ridge Mountains, Piedmont, and Valley 

and Ridge regions of the eastern United States. 

 In addition, 264 dry, crumbled soil samples collected from the Willsboro Farm 

located in Willsboro, NY were analyzed for color using the Soil Scanner application and 

the resulting three Munsell notations were compared to the previously determined 

Munsell notation that was determined by one researcher using a MSCC. The soils located 

on the Willsboro Farm are of glacial till origin and are located in a lacustrine plain. Soil 
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series include Bombay, Churchville, Covington, Howard, Kingsbury, Claverack, Cosad, 

Deerfield, Stafford, Amenia, Massena, and Nellis and can be categorized into Alfisols, 

Entisols, and Inceptisols soil orders (Mikhailova et al., 1996). Again, the Euclidean 

distance was determined for each of the three sensor determined Munsell notations in 

comparison to the visually determined Munsell notations. A GIS map was generated of 

the sample locations to map the variation of L* (darkness to lightness) across the study 

area. 

 

 

Results and Discussion 

 

Soil color application measurements 

 The Euclidean distance between previously determined MSCC color (actual 

MSCC color) for each soil sample was compared to the three measured MSCC colors for 

each soil sample using the Soil Scanner application. Results showed that, for Simpson 

Agricultural Experiment Station samples, the first measured MSCC color for dry soils 

was, on average, two color chips away from the known MSCC color (standard deviation 

(SD) = 0.96). The second and third measured MSCC colors for dry soils were, on 

average, three color chips away (SD = 1.21 and SD = 1.54, respectively). The first 

measured MSCC color for moist soils was, on average, two color chips away from the 

known MSCC color (SD = 2.06). The second measured MSCC color for moist soils was, 

on average, three color chips away from the known MSCC color (SD = 1.97). The third 
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measured MSCC color for moist soils was, on average, four color chips away from the 

known MSCC color (SD = 3.28; Table 2). 

 For dry samples taken from the Willsboro Farm, the first measured MSCC color 

was, on average, three color chips away from the known MSCC color (SD = 1.05). The 

second and third measured MSCC colors were, on average, four color chips away (SD = 

1.99 and SD = 2.31 respectively; Table 3). When considering that the human eye was 

used to perceive the known soil sample color using a MSCC and that multiple 

participants determined the MSCC color of each sample, these results were to be 

expected. Past studies have shown that the human eye perceives color differently from 

person to person and in various illuminations (Villafuerte and Negro, 1998) and matching 

MSCC color chips can result in calculated differences of three MSCC units (Sánchez-

Marañón et al., 2011). In a recent study by Han et al. (2016) a smartphone based camera 

were used for soil classification by using machine learning to analyze the soil color, but 

differences in illumination as well as variation in smartphone camera sensors were highly 

variable. In contrast, this study uses a Bluetooth® linked color sensor with a standardized 

light source and sensing hardware which controls for light and sensor differences rather 

than relying on pixels in a photo taken by the smartphone itself. 

 

Potential uses and future directions 

 Simplified and accurate soil color determination, using a low-cost color sensor 

interfaced to a smartphone application, can enhance data quality while also adding 

sample location information (through GPS). Having location information associated with 

the color data increases the value of this data and may help update soil spatial databases. 
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While there are limitations in the accuracy of a smartphone GPS, it is also possible to 

improve location data by using an external Bluetooth® GPS with the application. The 

ability to include a geo-referenced photo adds both context and a check on data-quality to 

a soil color reading. Soil color information is provided in the standard Munsell notation, 

and also in other color systems that are easier to use in quantitative comparisons. Cloud 

storage of soil color and sample attribute data provides a way to back up the data, but an 

internet connection is not required during sampling (which can reduce the cost of data 

acquisition). 

Using an application and sensor also increases the speed of soil color sampling; so 

a much larger number of samples is possible, which further will enable both statistical 

comparisons as well as studies that examine the spatial variability of soil color (and the 

associated soil properties). Past studies have shown that soil color data allow for rapid 

assessment of soil organic matter (Bartholomeus et al., 2008; Stiglitz et al., 2016b). There 

is also potential to predict other soil attributes, such as metal oxides and depth to water 

table, as soil color is heavily influenced by these traits (Franzmeier et al., 1983; 

Schwertmann, 1993). The soil samples taken from the Simpson Agricultural Station for 

color analysis were high in iron content, and therefore appeared very red in color. 

Statistical comparisons between the Soil Scanner color data and laboratory determined 

iron content data could result in iron prediction models based on soil color. 

Fig. 5 shows an interpolation map of the a* (red) value from the CIEL*a*b* color 

data gathered from the surface scans on the Simpson Agriculture Experiment Station. The 

map appears to show a gradient of red from the left to the right of the map suggesting that 
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the soils lose red intensity from the left to the right of the map. This gradient suggests that 

the left side of the map has a higher iron concentration that gradually decreases towards 

the right side of the map. Fig. 6 shows an interpolation map of the L* (darkness to 

lightness) value from the CIEL*a*b* color data gathered from the surface scans on the 

Willsboro Farm. The map shows locations that are much lighter in color which also 

appear as a lighter color on the map. The lighter color suggests that these areas may be 

more highly eroded compared to the other darker locations as past studies have shown 

that soils that appear lighter in color tend to be more eroded (Metternicht and Fermont, 

1998). Data uploaded to cloud storage can be subsequently downloaded and plotted in 

GIS for spatial visualization and analysis. Soil Scanner data can be analyzed in this way 

for multiple soil components that could assist in generating soil erosion, fertility, and 

moisture maps using GIS software. 

Current efforts in soil science application development include the successful 

sharing of spatial soil databases (e.g. SSURGO) through smartphone applications based 

on the location reported by the internal phone GPS (Beaudette and O'Geen, 2010). These 

efforts have shown the ability of applications to provide detailed soils data while users 

are in the field. This dramatically improves the potential impact of the soils databases by 

providing context to field surveys. Future developments of the soil color application may 

include a similar methodology to not only provide sensor-based color measurements, but 

also soils information from these internet-enabled databases. Another advantage of 

smartphone based applications is that it is possible to organize data collection using a 

series of custom drop-down menus and forms so that detailed information can be 
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collected with as few errors as possible (Hansen et al., 2016). The soil color application 

may be extended in the future to include data entry options for other soil and land cover 

attributes to further augment spatial databases. 

 

 

Conclusions 

 

A mobile application for gathering soil color and GPS data that uses information from a 

Bluetooth® paired commercial color sensor was developed and tested in field and 

laboratory settings. Sensor data, photos and location information are stored on the local 

Android device and subsequently synced to a cloud database where it can be retrieved at 

a later time. The mobile application reports multiple color results, including Munsell Soil 

Color Chart (MSCC). The application also allows users to toggle between “in-field” 

sampling as well as dry or moist soil samples. The application was tested for 

functionality in the field as well as its ability to match Munsell notation values 

determined using MSCC. Cloud-stored data can be downloaded and used in GIS analysis 

of point locations and soil color attributes. The Soil Scanner application provides the 

opportunity to increase the spatial density of accurate soil color measurements for soil 

classification and interpretation.  
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Table 1. Munsell Color Chart and Soil Scanner application color codes for soil horizons of practice soil pit 2 from the Simpson 

Agricultural Experiment Station in the Munsell Color Chart codes (n = 31 soil samples). 

Soil 

Horizon 

Lower depth 

(cm) 

Munsell Color Chart 

Hue (V), Value (V), 

Chroma (C) 

Soil Scanner first 

Munsell set Hue (H), 

Value (V), Chroma 

(C) 

Soil Scanner second 

Munsell set Hue (H), Value 

(V), Chroma (C) 

Soil Scanner third 

Munsell set 

(Hue, Value, 

Chroma) 

H V C H V C H V C H V C 

 

Dry Soil 

 

Ap 11 7.5YR 6 4 10YR 5 4 7.5YR 5 4 2.5YR 5 4 

Bt1 28 5YR 5 8 5YR 5 6 2.5YR 5 6 7.5YR 5 6 

Bt2 59 7.5YR 6 6 2.5YR 5 6 10R 5 6 5YR 5 6 

Bt3 90+ 5YR 5 6 7.5YR 5 6 10R 4 6 5YR 5 6 

 

Moist Soil 

 

Ap 11 5YR* 4 4 7.5YR 3 4 5YR 3 4 10YR 3 4 

Bt1 28 5 YR 4 6 5YR 4 6 7.5YR 4 4 10YR 4 4 

Bt2 59 2.5YR 4 6 5YR 4 6 2.5YR 4 6 7.5YR 4 6 

Bt3 90+ 10YR 4 6 10R 3 6 5YR 4 6 7.5YR 4 6 
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Table 2. Average Euclidean distance between the known Munsell Color Chart codes and 

the Munsell Color Chart codes determined by the Soil Scanner application for samples 

gathered from the Simpson Agricultural Experiment Station. 

  

Euclidean 

Distance/Standard 

Deviation 

Munsell vs. 

Soil Scanner 

first Munsell 

set 

 

Munsell vs. Soil 

Scanner second 

Munsell set 

 

Munsell vs. Soil 

Scanner third 

Munsell set 

 

Dry soil 

Distance 2.00 3.00 3.00 

Std. Dev. 0.96 1.21 1.54 

 

Moist soil 

Distance 2.00 3.00 4.00 

Std. Dev. 2.06 1.97 3.28 
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Table 3. Average Euclidean distance between the known Munsell Color Chart codes and 

the Munsell Color Chart codes determined by the Soil Scanner application for samples (n 

= 264) gathered from the Willsboro Farm. 

  
Euclidean 

Distance/Standard 

Deviation 

Munsell vs. 

Soil Scanner 

first Munsell 

set 

 

Munsell vs. Soil 

Scanner second 

Munsell set 

 

Munsell vs. Soil 

Scanner third 

Munsell set 

 

Dry soil 

Distance 3.00 4.00 4.00 

Std. Dev. 1.05 1.99 2.31 
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Figure 1. Functional diagram of the Color Scanner application. 
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Figure 2. Example of the Soil Scanner interface that shows all possible color system 

values for a soil sample and options for “Field Mode”, “Dry” soil, GPS location, and 

attaching a photo of the soil sample. 
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Figure 3. Example of stored soil scan data using the Soil Scanner application. 

  



 

56 

 

 

Figure 4. Example of a soil surface being scanned using the Nix™ Pro color sensor. 
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Figure 5. GIS layouts showing: scan locations (top), soil color attributes (middle), and 

interpolated a* (red) color values using Inverse Distance Weighting (bottom) for the 

Simpson Agricultural Experiment Station. 
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Figure 6. GIS layout showing scan locations and interpolated L* (darkness to lightness) 

color values using Inverse Distance Weighting for the Willsboro Farm. 
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CHAPTER FOUR 

TEACHING SOIL COLOR DETERMINATION USING AN INEXPENSIVE 

COLOR SENSOR 

 

Abstract 

As new technologies are introduced to soil science it is important to determine the 

potential and preference for such innovations among users. The Nix ProTM color sensor, 

an inexpensive mobile color sensor, was tested by college students for its ability to 

determine soil color in comparison with the use of a traditional Munsell color chart. 

Sixty-four Clemson University students from various fields of study (forestry, wildlife 

biology, and environmental and natural resources) had a hands-on experience with the 

Nix ProTM color sensor and the Munsell color chart during FNR 2040: Soil Information 

Systems course taught in the fall of 2015. Students completed a laboratory exercise to 

determine soil color using the two methods of color determination (Munsell color chart 

and Nix ProTM). Students then filled out a survey providing answers to 15 questions 

related to their previous experience with soil color analysis, the ease of use of the two 

color analysis methods, and which method of color analysis they preferred. Eighty-three 

percent of the students preferred to use the Nix ProTM color sensor over the Munsell color 

chart, 76% judged the Nix ProTM to be less subjective to environmental conditions, and 

91% believed the Nix ProTM to be less subjective to user sensitivities. Student responses 

to survey questions regarding use of the Nix ProTM color sensor were positive overall, 
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indicating that there is great potential in using the new color sensor in teaching soil 

science. 

 

Abbreviations: app, application; CIEL*a*b*, lightness, redness, and yellowness; 

CMYK, cyan, magenta, yellow, and black; FNR, Forestry and Natural Resources; FNR 

2040: Soil Information Systems course; HVC, hue, value, and chroma; SAMR, 

substitution, augmentation, modification, and redefinition; XYZ, red, green, and blue. 
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Introduction 

 

 Soil science research can be enhanced by technological advances. More 

specifically, researchers are trying to identify newer and superior methods of determining 

soil quality to develop better sustainable practices. As technologies advance, so does the 

need for soil quality education and assessment, because many people do not understand 

the importance of soil in land management or the methods to identify a healthy soil 

(Karlen et al., 2003; Krzic et al., 2014). One such indicator of soil quality that can be 

enhanced by sensor technology in the classroom and in field applications is soil color 

(Soil Survey Staff, 1999). Soil color is a key factor in soil classification and can be an 

indicator of many chemical and physical properties of soil such as organic matter and 

iron oxide content (Santana et al., 2013). 

Munsell soil color charts (Fig. 1a) have been used to determine soil color since 

1949 (Thompson et al., 2013). The various color chips representing hue, value, and 

chroma (HVC) and viewing windows on each page make identifying the color of a soil 

relatively easy. For this reason, many still turn to this method when identifying soil color 

in the field (Sánchez Marañón et al., 2005). However, previous research (Rabenhorst et 

al., 2015) has shown that some Munsell soil color charts are produced with matte finish 

color chips whereas others have gloss finishes, which can create discrepancies in color 

interpretation results among the charts being used. The quality of color chips may also 

vary with age of the book (e.g., pigment fading) or from printing errors at the time of 

manufacturing (Sánchez Marañón et al., 2005). Other researchers (Viscarra Rossel et al., 



 

62 

 

2006; Kirillova et al., 2015) have noted the difficulties in conducting statistical analyses 

using Munsell color notation. Taken together, the issues above have led researchers and 

practitioners to search for alternate methods to determine soil color more consistently and 

accurately. 

Gómez-Robledo et al. (2013) proposed the idea of using a smartphone camera and 

mobile app to determine soil color. The mobile app was capable of determining red–

green–blue color values of pixels in photos of soil samples taken by the smartphone 

camera. The researchers were successful at accurately determining soil color; however, it 

was noted that camera and camera settings would vary between different phone models, 

which would result in discrepancies in color results among users. Regardless, there is 

potential for using mobile technology in classrooms as mobile devices have become 

ubiquitous. Ideally, new color analysis methods should be consistent between sensing 

devices.  

 Recent research conducted by Stiglitz et al. (2016) evaluated the Nix ProTM color 

sensor (Fig. 1b) as a new method for soil color determination. The sensor is portable and 

utilizes its own light source, making it ideal for in-field use. Color results can be recorded 

in various color systems such as CMYK (cyan, magenta, yellow and black), XYZ (red, 

green, and blue), and CIEL*a*b* (lightness, redness, and yellowness), thereby making 

statistical analysis of the results easier to conduct than when using the Munsell color 

notation. Stiglitz et al. (2016) showed that the Nix ProTM color sensor was able to 

produce consistent color results very similar to that of a standard laboratory colorimeter 

(Konica Minolta CR-400) under both moist and dry soil conditions, making it a 
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promising method of soil color identification. Although the Nix ProTM sensor showed 

promising results for the researchers, it is important to determine how receptive others are 

to this new technology as a method of color identification. Harrington et al. (2013) states 

that incorporating current research in the classroom excites and interests students making 

the Nix ProTM a more desirable tool for soil science education. 

 Both the Munsell soil color chart and the Nix ProTM color sensor provide an 

important learning opportunity for students to learn how to identify soil color and the 

importance of this process in soil science through hands-on science. Flick (1993) denotes 

hands-on science as “an instructional strategy where students are actively engaged in 

manipulating materials,” and states that there are usually three conditions that must be 

met to say that students actively engaged in an activity: 

 Students individually or in groups manipulate objects or events in 

the natural environment. 

 Students apply various facets of intelligence for the purpose of 

understanding a part of their natural environment. 

 Students are held accountable for their observations, inferences, 

and conclusions. 

Soil color identification is often conducted on-site in outdoor conditions, which 

allows students to be very interactive with each other and their environment. Studies have 

shown that learning outdoors helps “develop their knowledge and skills in ways that add 

value to their everyday experiences in the classroom” (Dillon et al., 2006). 
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Gambrell et al. (2015) state that “students are entering an age when knowledge of 

technology is a necessity and not a luxury.” It is important to give students the foundation 

they need to use new technologies in soil science by teaching these new methods in the 

classroom so they will not be left behind. Given that the Nix ProTM color sensor is a new 

technology to soil science and is controlled by a mobile app, there is great teaching 

potential for the sensor in classrooms. However, it has yet to be determined if the app 

used to control the sensor would, in fact, be instrumental in increasing students’ 

knowledge and understanding of soil color. 

Puentedura (2010) proposed basic frameworks for evaluating educational 

applications for their effectiveness at assisting students in understanding course materials. 

The SAMR model (substitution, augmentation, modification, and redefinition) was 

introduced to assist teachers in transforming learning through use of technology by 

considering how an application changed their current method. Substitution is when a 

technology acts as a direct tool substitute but makes no change to functionality. 

Augmentation is when a technology acts as a direct tool substitute and improves 

functionality. Substitution and augmentation are considered enhancements to learning 

techniques. Modification allows for significant redesign of tasks using the new 

technology. Redefinition allows for the creation of new tasks that were previously 

inconceivable using the new technology. Modification and redefinition are considered 

transformations to learning techniques (Puentedura, 2010). 

 Israelson (2015) proposed a rubric (the App Evaluation Rubric) for evaluating the 

effectiveness of an application as a teaching method based on four categories: multimodal 
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features, literacy content, intuitiveness of app navigation, and user interactivity. Although 

Isrealson’s rubric was proposed for literacy courses, it also can be applied to soil science 

because the framework evaluates the effectiveness of applications as educational tools. 

Multimodal features can be explained simply as how engaging the application is. Literacy 

content refers to the accuracy of literacy content and can be changed to the accuracy of 

color content to meet the evaluation needs of the Nix ProTM app. Intuitiveness of app 

navigation refers to how easy the application is to navigate. User interactivity represents 

how well an app engages the user and how easily the content may be manipulated by the 

user. 

Together the SAMR model (Puentedura, 2010) and the App Evaluation Rubric 

(Israelson, 2015) provide a framework for evaluating the Nix ProTM color sensor 

application. Allowing students to address the categories of the rubric provides excellent 

feedback on the functionality of the Nix ProTM and gives a unique understanding of what 

users look for in a new technology in soil science. Previous studies have shown that 

feedback from students reveals how effective an involved exercise can be at helping them 

understand the importance of land management practices (Krzic et al., 2015). Rewording 

the categories of the rubric in the form of a questionnaire enables a comparison between 

the Munsell color chart and the Nix ProTM color sensor to determine which method is 

preferred by students and why the choice was made. With these goals in mind, the 

objectives of this study were to (1) develop a laboratory exercise to teach students how to 

identify soil color and its importance to soil science, (2) give students the opportunity to 

use new methods of color analysis, and (3) evaluate the efficacy of the Nix ProTM. 
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Materials and Methods 

 

Course background 

 Soil Information Systems (FNR 2040) is a 4-credit course in the Department of 

Forestry and Environmental Conservation at Clemson University, Clemson, SC (Clemson 

University, 2015–2016). The course consists of three 1-hour lectures followed by a 2-

hour laboratory each week. Maximum capacity is 60 to 75 students for the course and 

15 students for each laboratory section. FNR 2040 is an introductory soil course that 

focuses on the input, analysis, and output of soil information utilizing graphical 

information technologies (global positioning systems, geographic information systems, 

direct/remote sensing) and soil data systems (soil surveys, laboratory data, and soil data 

storage) (http://www.gis.clemson.edu/elena/EnvInfoSysHome.htm). The course satisfies 

curriculum requirements for degree majors in forestry, wildlife, and environmental and 

natural resources. 

 

“Hands-on” learning 

 The hands-on learning model by Flick (1993) was used to establish a laboratory 

exercise for 65 Clemson University students. The SAMR model by Puentedura (2010) 

and App Evaluation Rubric by Israelson (2015) were used to determine the efficiency of 

the Nix ProTM color sensor app, and student responses to the questionnaire were 

evaluated in terms of four categories (multimodal features, color content, intuitiveness of 

app navigation, and user interactivity). 
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Students worked both individually and in groups of three to complete the color 

analysis laboratory exercise. Students were required to determine soil color for 

themselves and then work in their groups to answer questions regarding the exercise. 

Three different soil samples (Fig. 2) were analyzed both indoors and outdoors to provide 

students with the opportunity to work in a natural setting. The laboratory exercise 

required students to consider factors that affect soil color and why these factors would be 

important to a soil scientist (Fig. 3). Statistical analyses were also conducted by the 

students to give them an understanding of the sort of data that can be gathered and 

processes to assist in soil characterization. Finally, students were held accountable for 

their analysis by comparing their results to that of their lab partners and answering 

laboratory questions and a questionnaire in reference to their observations (Fig. 4).  

 

Laboratory assignments and exercises 

 Students were required to bring an Android or Apple device with them to lab that 

was capable of downloading and installing the Nix ProTM color sensor app. During the 

lab, students were given background information on soil color (Fig. 3) and its importance 

in soil science and a brief background on the Munsell color chart and the Nix ProTM color 

sensor. Students were guided through the process of downloading and using the Nix 

ProTM color sensor app to use the sensor to scan soil samples for soil color analysis under 

indoor lighting conditions. The students were then taken outside and taught how to use 

the Munsell color chart under standard outdoor lighting conditions. There were three 

different soil samples used for the exercise that were prepared before the lab to make 
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sample conditions as consistent as possible. Students worked in groups of three, with 

each student individually determining soil color with both the Munsell color chart and the 

Nix ProTM color sensor. After each student recorded his/her own results in a table 

provided to them (Fig. 4), they reunited with their group members and recorded their 

partners’ results in the same table creating three color results for each soil sample that 

would allow for statistical analysis. Students were asked to calculate the mean and 

standard deviation for each soil sample using the three results gathered by each group 

member for each method of color analysis (Munsell color chart and Nix ProTM color 

sensor). Students were then asked to complete a questionnaire about their prior 

knowledge of soil color analysis and the different methods of color analysis.  

 

 

Results and Discussion 

 

The goal of this laboratory exercise was to give students a better understanding of soil 

color and its importance and to evaluate the effectiveness of the Nix ProTM color sensor 

based on student responses. Some questionnaire responses were recorded as a rating on 

the scale of 1 to 5, with 1 being a poor rating and 5 being a very good rating (Table 1). 

Other responses were recorded as the proportion of the class that chose “yes” or “no” as 

an answer, or “Nix ProTM” or “Munsell color chart” as an answer (Table 2). Finally, 

students were asked to provide any additional written feedback regarding the laboratory 

exercise (Table 3). 
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SAMR model: Substitution, augmentation, modification, and redefinition (Puentedura, 

2010). 

 Substitution is when a technology acts as a direct tool substitute but makes no 

change to functionality. The Nix ProTM app and sensor perform the same task as the 

Munsell color chart to determine soil color. However, the Nix ProTM produces color 

results differently than the Munsell color chart and therefore cannot be considered a 

merely a substitution for the Munsell color chart. Augmentation is when a technology 

acts as a direct tool substitute and improves functionality. As previously mentioned, the 

two methods of color analysis in question perform the same function. Because the Nix 

ProTM produces color results that allow for easier statistical analysis, it can be argued that 

the Nix ProTM does improve functionality (Viscarra Rossel et al., 2006). Likewise, the 

functionality of color determination is improved with the Nix ProTM because the user 

subjectivity is greatly minimized. Therefore, it can be concluded that the Nix ProTM app 

is an augmentation of the standard color determination method. 

Modification allows for significant redesign of tasks using the new technology. 

Redefinition allows for the creation of new tasks with the new technology that were not 

possible previously. The Nix ProTM app does create new possibilities in soil science; 

however, new tasks are not created within the app itself. Therefore, the Nix ProTM app 

cannot be considered a modification or redefinition of the Munsell color chart. Taken 

together, the Nix ProTM app is an augmentation that enhances traditional color analysis 

using the Munsell color chart. 
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App evaluation rubric: Multimodal features, color content, intuitiveness of app 

navigation, and user interactivity. 

 The Nix ProTM color sensor and mobile application have many multimodal, or 

engaging, features. The application requires a mobile device to function, giving students 

the opportunity to work with a familiar technology. The app offers a color comparison 

feature and displays a color swatch identical in color to the surface being scanned by the 

sensor, enabling students to visually verify that the sensor is working properly. This 

feature takes out the guess work of whether the surface is being scanned properly and 

gives students confidence that they are properly determining soil color. The Munsell 

color chart allows students to match soil color based on their own visual inspection of a 

soil compared to a color chip in the chart. Table 2 shows that when students were asked 

which method of color analysis they preferred, 83.1% preferred the Nix ProTM color 

sensor over the Munsell color chart. When students were asked to provide additional 

feedback in their own words, many noted that they enjoyed using the Nix ProTM and that 

they thought the laboratory was fun, as shown in Table 3, suggesting that the students 

found the Nix ProTM color sensor and mobile application engaging. 

Color content accuracy is perhaps the most important category from a scientific 

perspective. The 65 students were asked various questions about the accuracy of the 

sensor. Table 2 shows that when asked which method was less subjective to user 

sensitivities, 90.8% of the students reported that the Nix ProTM was less subjective than 

the Munsell color chart. When asked which method was less subjective to environmental 

conditions, 78.5% reported that the Nix ProTM was less subjective than the Munsell color 
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chart. Past studies have shown that the Munsell color chart is subjective to user 

sensitivities such as color blindness (Lusby et al., 2013) and potentially even 

environmental conditions such as lighting and moisture content in the soil (Sánchez 

Marañón et al., 2011; Mouazen et al., 2007). Out of the 65 students, 96.8% felt that the 

human eye does not see color the same from person to person. Overall, 89.2% of students 

felt that the Nix ProTM color sensor was the more accurate method of color analysis. 

These results reflect the students’ confidence in the Nix ProTM’s results, suggesting that 

students may feel more comfortable learning soil color analysis using a color sensor. 

 Intuitiveness of app navigation is important for the functionality of the Nix ProTM 

application in a classroom setting. For students with little prior knowledge of color 

analysis, having an educational tool that is easy to use could make the process of learning 

soil color analysis methods relatively simple. Table 1 shows the average and standard 

deviations of ratings reported by students when asked about their prior knowledge of 

color analysis and the ease of use of the Munsell color chart and Nix ProTM color sensor. 

Students were asked to rate their knowledge of color analysis before the laboratory 

exercise and an average of 2.0 with a standard deviation of 1.1 was reported. This 

indicated that the students did not have much experience with color analysis methods 

prior to the laboratory exercise. When asked to rate the Nix ProTM’s ease of use, students 

reported an average rating of 4.2 with a standard deviation of 1.2. Similarly, students 

gave the Munsell color chart an average ease of use rating of 3.5 with a standard 

deviation of 1.1. Both the Munsell color chart and the Nix ProTM were given a rating 
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of fairly easy to very easy to use and students noted on a few occasions that the Nix 

ProTM was easy to use as shown in Table 3. These results suggest that the app is fairly 

easy to navigate if students with little prior knowledge of color analysis found the Nix 

ProTM mobile application easier to use than the standard Munsell color chart, which is 

known for its user-friendly pages (www.munsell.com). 

 Finally, user interactivity is a key part of any application because if there is no 

interactive aspect of an app, then the app has no real functionality. The Nix ProTM color 

sensor and mobile application offer many features that require user interactivity. The user 

must locate and sample a soil for color analysis, encouraging hands-on learning in 

outdoor settings. Users may then compare the color analysis results of their soil sample to 

that of another sample. A user may even choose to use the color converter feature of the 

app to change their color analysis results to that of another color notation. Another 

feature that the Nix ProTM offers is results in numerous color systems that allow for 

statistical analysis, which increases interactivity because the results allow for further uses 

of the app. The Munsell color chart does not allow for simple statistical analysis 

(Viscarra Rossel et al., 2006; Kirillova et al., 2015), giving the Nix ProTM an advantage 

over the standard method of color analysis, which may encourage users to choose the Nix 

ProTM as an alternative to the standard method of color analysis. 

 Students were asked to conduct simple statistical analysis using the two methods’ 

color results and rate the easiness of their analysis on a scale of 1 to 5, with 1 being a 

very poor rating and 5 being a very good rating. Table 1 shows that students reported an 

average easiness rating of 3.0 with a standard deviation of 1.2 for statistical analysis 
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using the Munsell color chart notation. This rating is not consistent with reports that the 

Munsell color chart does not allow for easy statistical analysis. However, a closer 

examination of the students’ work revealed that they attempted statistical analysis only on 

the value and chroma of the Munsell notation, excluding the hue altogether. In addition, 

no students recognized the inherent quantitative limitations posed by the Munsell color 

charts (e.g., the combination of numbers and letters defining hue, uneven step sizes for 

value and chroma, predominant use of integers). Given that the Munsell color chart 

represents color three-dimensionally and with coded color chips, statistical analysis 

cannot be completed easily using unaltered Munsell color chart data. To conduct 

statistical analysis using Munsell color notation, Euclidean distance is often used to 

determine how closely color chips match, or Munsell notation must first be converted to 

other color systems such as XYZ before any statistical analysis can occur (Romney and 

Indow, 2003; Ruck and Brown, 2015). These methods may not be appropriate for an 

introductory soil science course in which students are only beginning to learn soil color 

analysis methods. Students found the Nix ProTM results easier to use for conducting 

statistical analysis, with an average rating of 4.2 and a standard deviation of 1.1. Table 2 

shows that 87.7% of the students felt that the Nix ProTM produced more quantitative 

results, and that 78.5% felt that the Munsell color chart produced more qualitative results. 

These results are supportive of the studies that have reported the difficulties in statistical 

analysis when using Munsell color charts. In addition, the results reveal that the Nix 

ProTM promotes user interactivity within the app and that additional types of laboratory- 
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or field-based exercises would promote further use of the Nix ProTM color sensor and its 

mobile application.  

 

 

Conclusions 

 

We taught students in an introductory-level soil science course different methods 

of color analysis. A questionnaire provided after the lab exercise showed that 83.1% of 

the students preferred the Nix ProTM color sensor over the Munsell color chart. The 

average student found the Nix ProTM color sensor very easy to use, and many students 

reported that they enjoyed the laboratory experience. The overall results of the 

questionnaire indicate that the Nix ProTM is a valuable teaching device and that students 

are receptive to learning the importance of soil color analysis and its methods. 
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Table 1. Students’ average ratings of their knowledge and ease of use of the Munsell soil 

color chart and Nix ProTM color sensor (Fall 2015; n = 65). 

 

Survey Question 

 

Mean ± SD 

1. How would you rate your knowledge of soil color analysis 

prior to this lab? (Circle one: 1=poor, 3=average, 

5=excellent) 

 

2.0 ± 1.1 

 

2. How easy was the Munsell Color Chart to use? (1=not 

easy, 3=average, 5=very easy) 

 

3.5 ± 1.1 

 

3. How easy was the Nix ProTM color sensor to use? (1= not 

easy, 3=average, 5=very easy) 

 

4.2 ± 1.2 

 

4. How easy was statistical analysis using Munsell color 

notation? (1= not easy, 3=average, 5=very easy) 

 

3.0 ± 1.2 

 

5. How would you rate the easiness of statistical analysis 

using Nix ProTM color coordinates? (1= not easy, 3=average, 

5=very easy) 

 

4.2 ± 1.1 

Note: SD = standard deviation 
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Table 2. Student responses (n = 65) to questions concerning preference and usability of 

the Munsell soil color chart and Nix ProTM color sensor. 

Note: N/A = not answered. 

 

Questions 

 

Munsell Soil Color Chart 

(%)  

 

Nix ProTM color sensor 

(%)  

 

N/A  

(%) 

 

1. Which method did you prefer to use for color analysis? 

 

 15.4 83.1 1.5 

 

2. Which method of color analysis is more quantitative? 

 

 9.2 87.7 3.1 

 

3. Which method of color analysis is more qualitative? 

 

 78.5 18.5 3.1 

 

4. Which method of color analysis would be less subjective to user sensitivities? 

 

 6.2 90.8 3.1 

 

5. Which method of color analysis would be less subjective to environmental conditions? 

 

 16.9 78.5 4.6 

 

6. Which method of color analysis is more accurate? 

 

 7.7 89.2 3.1 

 

Question 

 

Yes (%) 

 

 

No (%) 

 

 

N/A (%) 

 

 

7. Do you feel that everyone sees color the same way? 

 

 0 96.8 3.1 
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Table 3. Sample of students’ responses to the question of advantages and disadvantages 

of the Munsell soil color chart and Nix ProTM color sensor and additional comments 

concerning the exercise. 

 

Munsell Color Chart 

 

Nix ProTM color sensor 

 

Advantages 

 

1. You get to make the color 

determination. 

1. Much more precise. 

2. No problems with WiFi or 

connection. 

2. Fast, easy, accurate, specific. 

3. You get a clear look at the color. 3. Quick, accurate, easy to use. 

4. No power involved. 4. Less room for human error. 

5. Simple categories. 5. Easy to use with fast results. 

 

Disadvantages 

 

1. Not as precise, can vary from person 

to person. 

1. Expensive. (Risky to take in the field) 

2. Outdated. Not as precise. Tough to 

use. 

2. Electronics are needed. 

3. Different results based on lighting. 3. Multiple people can’t connect to the same 

Nix. Unable to do task if phone is not 

updated. 

4. Subjective. 4. Costly. 

5. May be colorblind or odd lighting. 5. Lens may be held at different angle 

making different results. 

 

Additional Comments 

 

1. This was a fun lab. 

2. Love the Nix! 

3. Nix ProTM color sensor is the most practical tool compared to Munsell Soil Color 

Chart. 

4. Fun lab. Enjoyed finally using the color chart. 

5. Nix ProTM is better in my opinion. 
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a.  

 

b. 

 

Figure 1. Methods of color determination: (a) Munsell color chart, (b) Nix ProTM color 

sensor.  
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Figure 2. Example of soil samples being analyzed for color using the Nix ProTM color 

sensor. 
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Lab 11: Soil Color Determination (Comparison of Munsell Color Chart to Nix 

ProTM) 

Student Name: ________________________________ 

 

Today we will be looking at two different methods of color analysis: the Munsell Color 

Chart and the Nix ProTM color sensor. You will be working in groups of three, but you 

will determine soil sample colors individually using the two methods. 

 

Overall Objectives: 

 Learn about the importance of soil color. 

 Learn how to analyze color using the Munsell Color Chart. 

 Learn how to analyze color using the Nix ProTM color sensor. 

 Compare the Munsell Color Chart to the Nix ProTM color sensor for color 

analysis. 

 Complete a questionnaire on the two methods of color analysis.  

 

Rationale 

Color is an essential soil trait to consider when classifying soils. Color can be an 

indication of many soil properties, such as organic matter content, metal concentrations, 

and redox features. Generally, the darker the soil, the greater the amount of organic 

matter making soil color significant for agriculture. Redox features are also of particular 

importance because it is an indication of water levels in a soil which may create 

construction limitations. For these reasons, soil color is often a topic of study in soil 

science. 

 

How do we determine soil color? 

 

The Munsell Color Chart 

The Munsell Color Chart measures color by hue, value, and chroma as is reported as a 

fractional notation, such as 2.5YR ¾, where 2.5YR is hue, 3 is value, and 4 is chroma.  

Hue represents color and each page in a Munsell Soil Color Chart is a different hue, 

represented in the upper right corner of each page.  

Value is the lightness or darkness of a color and is represented as a decreasing number 

scale on the left vertical axis of each page. The smaller the number, the darker the color. 

Chroma is the degree of saturation of a color and is represented as an increasing number 

scale across the bottom of each page. The larger the number, the more vibrant the color. 

 

 

Figure 3. Instructions for the laboratory exercise. 
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Sample 

Number 

Student 

Initials 

Munsell Color Chart Notation Nix ProTM CIEL*a*b* Color 

Coordinates 

Hue Value Chroma L* a* b* 

1 
       

       

       

Average       

Standard Deviation       

2 
       

       

       

Average       

Standard Deviation       

3 
       

       

       

Average       

Standard Deviation       

4 
       

       

       

Average       

Standard Deviation       

5 
       

       

       

Average       

Standard Deviation       

6 
       

       

       

Average       

Standard Deviation       

 

Questions: 

 

1. Did you get the same Munsell Color Chart results as your lab partners? 

 

 

2. By how much did your Munsell results vary? (Standard Deviation) 

 

 

Figure 4. One of the assignments given to the students during the soil color analysis 

laboratory exercise.  
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CHAPTER FIVE 

CONCLUSION 

 

 This research introduces the Nix ProTM color sensor as a means to rapidly assess 

soil organic carbon, crowd-source and store soils data, and as a teaching device in 

introductory soils laboratories.  

 Chapter two discusses the methods used to develop SOC% prediction models 

using soil color data gathered using the Nix ProTM and sample horizon depth for both 

moist and dry soil samples in Ultisols of South Carolina. Regression analysis was found 

to be an effective method to develop the prediction models. Final models include sample 

horizon depth, sample lightness to darkness values (L*), and sample green to red values 

(a*) as significant predictors of soil organic carbon for both moist and dry soils. Small 

prediction error values suggests that the models are effective at predicting SOC%. The 

Nix ProTM proves to be an effective method for gathering soil color data for predicting 

SOC%. 

 Chapter three introduces the Soil Scanner application that was developed to better 

utilize the Nix ProTM color sensor for soil science analysis. The application produces 

color results in CIEL*a*b*, RGB, CMYK, XYZ, and Munsell Color Chart HVC. The 

application is also capable of recording the GPS location of soil samples, field or lab 

settings, moist or dry soil conditions, and photographs of the samples. Soils data can be 

uploaded into a Cloud databank and shared with other researchers offering the potential 
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for crowd-sourcing of soils data. In addition, the GPS location and soils data can be 

uploaded into software for GIS manipulation allowing for the spatial analysis of soil 

color which could help to determine the concentration of metals or even organic matter in 

soil. 

 Chapter four discusses the potential of the Nix ProTM as a means of teaching 

students in an introductory soils laboratory soil color analysis methods as well as the 

students’ receptiveness to the new sensor technology. Results suggest that the majority of 

students did not have much prior knowledge of soil color analysis methods. Regardless, 

the majority of students found the sensor easy to use, accurate, and preferable to the 

Munsell Color Chart. Students seem to be receptive to new sensor technologies in 

classrooms and appear to prefer newer methods to traditional analysis methods.  

 There is increasing demand for more advanced and inexpensive technologies in 

the field and in classroom settings. As scientific analysis methods move forward, more 

technologies are being developed and introduced to meet the needs of researchers and 

educators alike (Shannon et al., 2008; Arsenault et al., 2005). Many turn to cellphones 

and mobile applications as an inexpensive alternative to laboratory spectrometers for 

color analysis, but as previously mentioned, cellphone cameras and settings can vary 

from one phone to another creating unwanted error within the analysis (Venkataramani et 

al., 2005). Spectrometers are a standard method used for determining soil color, however, 

they are often limited by a power source, expensive, and many scientists may not be 

familiar with spectral data that the device produces leading many to turn to less 

expensive, user-friendly methods (Levin et al., 2005). For a technology to be 
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“disruptive,” it has to have the capabilities to disrupt the normal methods that have been 

used thus far, which is usually done when the technology simplifies known techniques, is 

inexpensive, easy to use, and is easily accessible to people of all backgrounds and 

experience for use in a research or industry field (Kostoff, 2004). 

 The Nix ProTM was not originally created for soil science, but rather for interior 

design for the purpose of identifying and matching colors. The device itself is very 

simple to use making it ideal for many people of varying backgrounds to become 

accustomed to. This research has geared the sensor towards the soil science field to fill 

the need for a tool that can rapidly assess and monitor soil properties. In doing so, there is 

now a mobile application that can be further updated as new analysis methods are 

developed based on soil color to continuously expand the data gathered using the Nix 

ProTM and Soil Scanner application. In the future, the SOC prediction models may be 

included within the application as well to further field analysis methods and reduce the 

cost of SOC analysis.  

 This research has several application within the scientific and agricultural 

communities. For example, many farmers send hundreds of soil samples to laboratories 

each year for nutrient analysis. This helps them to better determine how much fertilizer 

should be applied to fields each year and which management practices would better suite 

each field. Soil organic carbon is often included within the result of this analysis and is an 

indication of soil fertility (West and Post, 2002). Farmers would directly benefit from the 

ability to determine SOC% for themselves each year through a simple analysis using an 

inexpensive color sensor. Having a device on hand that would allow for an unlimited 
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number of SOC analysis would also assist farmers to better determine areas of concern 

for management practices as areas low in SOC may require less tilling to prevent further 

loss of organic matter through oxidation (Shepherd et al., 2002). This could also be 

visually determined through spatial distribution maps generated through GIS 

applications. 

 Another application of the Soil Scanner and Nix ProTM is a means to monitor 

changing soil conditions through changing SOC and soil color over time. This is 

important as researchers continue to observe and predict the effects of climate change on 

the environment. Studies have already shown that permafrost in the subarctic regions are 

thawing and releasing increasing amounts of carbon into oceans (Osterkamp and 

Romanovsky, 1999; Akerman and Johansson, 2008; Rowland et al., 2010). In addition, 

previously frozen peat soils are becoming waterlogged creating anaerobic conditions 

where microbial activity metabolizes SOC into the greenhouse gas, methane (Dunfield et 

al., 1993). The cloud-based databank that is a part of the Soil Scanner application offers a 

means to gather and store long-term soils data that would allow climate scientists to 

monitor the potential of a soil to contribute to climate change over time by way of SOC 

as an energy source for microbial activity and potential pollutant. 

 The Nix ProTM color sensor has shown to be easy to use, its color results allow for 

easier, more rapid statistical analysis, and it produces color results with more accuracy 

than the human eye (Stiglitz et al., 2016). This disruptive technology has the potential to 

improve upon our analysis methods by way of SOC prediction models, crowd-sourcing, 

and GIS manipulation of soils data. In addition, the Nix ProTM can be used to teach 
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students the importance of soil color and the many different applications it has in the field 

of soil science through a hands-on learning experience. The techniques discussed in this 

research can be utilized to improve upon BMPs at the farm-scale, crowd-source vast 

amounts of data for a more largescale soils analysis, or monitor changing soil conditions 

over time as the effects of climate change shape the world. 
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