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ABSTRACT 

In recent years, aging infrastructure has become a major concern for the power 

industry. Since its inception in early 20
th

 century, the electrical system has been the

cornerstone of an industrial society. Stable and uninterrupted delivery of electrical power 

is now a base necessity for the modern world. As the times march-on, however, the 

electrical infrastructure ages and there is the inevitable need to renew and replace the 

existing system. Unfortunately, due to time and financial constraints, many electrical 

systems today are forced to operate beyond their original design and power utilities must 

find ways to prolong the lifespan of older equipment. Thus, the concept of preventative 

maintenance arises. Preventative maintenance allows old equipment to operate longer and 

at better efficiency, but in order to implement preventative maintenance, the operators 

must know minute details of the electrical system, especially some of the harder to assess 

issues such water-tree. Water-tree induced insulation degradation is a problem typically 

associated with older cable systems. It is a very high impedance phenomenon and it is 

difficult to detect using traditional methods such as Tan-Delta or Partial Discharge. 

The proposed dissertation studies water-tree development in underground cables, 

potential methods to detect water-tree location and water-tree severity estimation. The 

dissertation begins by developing mathematical models of water-tree using finite element 

analysis. The method focuses on surface-originated vented tree, the most prominent type 

of water-tree fault in the field. Using the standard operation parameters of North 

American electrical systems, the water-tree boundary conditions are defined. By applying 

finite element analysis technique, the complex water-tree structure is broken down to 

homogeneous components. The result is a generalized representation of water-tree 
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capacitance at different stages of development. The result from the finite element analysis 

is used to model water-tree in large system. 

Both empirical measurements and the mathematical model show that the 

impedance of early-stage water-tree is extremely large. As the result, traditional detection 

methods such Tan-Delta or Partial Discharge are not effective due to the excessively high 

accuracy requirement. A high-frequency pulse detection method is developed instead. 

The water-tree impedance is capacitive in nature and it can be reduced to manageable 

level by high-frequency inputs. The method is able to determine the location of early-

stage water-tree in long-distance cables using economically feasible equipment. A pattern 

recognition method is developed to estimate the severity of water-tree using its pulse 

response from the high-frequency test method.  

The early-warning system for water-tree appearance is a tool developed to assist 

the practical implementation of the high-frequency pulse detection method. Although the 

equipment used by the detection method is economically feasible, it is still a specialized 

test and not designed for constant monitoring of the system.  The test also place heavy 

stress on the cable and it is most effective when the cable is taken offline. As the result, 

utilities need a method to estimate the likelihood of water-tree presence before subjecting 

the cable to the specialized test. The early-warning system takes advantage of naturally 

occurring high-frequency events in the system and uses a deviation-comparison method 

to estimate the probability of water-tree presence on the cable. If the likelihood is high, 

then the utility can use the high-frequency pulse detection method to obtain accurate 

results. 
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Specific pulse response patterns can be used to calculate the capacitance of water-

tree. The calculated result, however, is subjected to error margins due to limitations from 

the real system. There are both long-term and short-term methods to improve the 

accuracy. Computation algorithm improvement allows immediate improvement on 

accuracy of the capacitance estimation. The probability distribution of the calculation 

solution showed that improvements in waveform time-step measurement allow 

fundamental improves to the overall result. 
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Chapter 1 

Introduction 

 

1.1 Research Objectives: Water-Tree in Insulated Cables 

 

Power system is one of the oldest research fields in electrical engineering. The 

ability to implement and maintain a stable electric grid remains the cornerstone of 

industrial society. The research-focus of power system study shifts according to the 

demands of power industry and society as a whole. In the recent decade, there has been 

an increasing concern on infrastructure aging and its effect on the electric systems. 

A number of factors contribute to these concerns. The root of the issue is simply 

the age. For example, the US electrical infrastructure has begun its development more 

than a century ago. While many system components have been replaced and redesigned 

over the years, a surprisingly large number of the old equipment continues to operate 

today. This is especially true for electro-mechanical components and stationary 

infrastructures. These components naturally have long lifespan and their service is further 

lengthened by factors such as financial constraint and opportunity cost. In many 

situations, decisions such as funding, labor availability and service interruption may force 

utilities to refurbish old systems instead of replacing them. 

The transmission and distribution (T&D) systems are particularly affected by 

these decisions. The T&D systems are the backbone of the electric grid. Thus, the utilities 

are highly motivated to keep the system operating at optimal capacity. In theory, aged 

equipment would be closely monitored and replaced as soon as possible. In practice, 
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however, it is often difficult or impossible to do so. For example, monitoring individual 

segments of long-distance under-sea cable will require large numbers of waterproof, 

pressure resistant devices to be installed across a long distance. Replacing the entire cable 

will incur cost such as labor and service interruption. Due to these factors, the associated 

operation cost quickly escalates and becomes impractical. As the result, aged equipment 

must remain in service beyond their original design. 

1.1.1 Water-Tree in Aged Infrastructure 

 

 One particular problem associated with aging cables infrastructure is the 

appearance of water-tree induced fault. Water-tree fault is a type of line-to-ground (LG) 

fault typically observed in older insulated-cables, such as Cross-Link Polyethylene 

(XLPE) cables. It occurs in cables that have been exposed to a high level of moisture. 

Typically, the phenomenon affects infrastructures that have been in service for more than 

a decade. Figure 1 shows the result of a water-tree fault. 

 

Figure 1: Water-Tree Fault in Old Cables 
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In recent years, water-tree has received increasing amount of attention from the 

research community. This is mainly due to two reasons. The first reason is the gradual 

aging of US power transmission and distribution infrastructure. Older infrastructures tend 

to be more vulnerable to water-tree development and there is an increasing chance for 

water-tree induced faults to occur. 

  The second reason is the overall increasing presence of insulated cables. 

Traditional electrical grids have been dominated by overhead lines, but insulated cables 

have become more popular in recent years. This is partly due to the increasing wind-

power penetration around the world. Wind-power has gained such prominence that land-

based wind-power is no longer sufficient to satisfy many countries around the world. To 

supplement the existing capacity, the industry has begun to exploit ocean-based wind 

resources. In these offshore windfarms, wind-power is often delivered to the grid through 

high-voltage long-distance transmission cables. Since water-tree is a problem uniquely 

associated with insulated cables, the increasing presence of these cables in the grid 

resulted in a higher priority for water-tree research. 

Monitoring and maintaining long-distance cables have proven to be difficult 

comparing to their in-land counterparts. Among the myriad of problems, water-tree 

induced fault is a particular nuisance. Water-tree fault is a category of very-high 

impedance faults. It is difficult to monitor and detect using standard techniques. The issue 

is particularly problematic for long-distance cables. For these cables, the innate 

impedance of the cable masks the presence of the water-tree fault. The high cost of 

replacing these cables also means maintenance and repair must be done at the precise 

location of the water-tree instead of the whole cable segment. Thus, there is the need for 
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understanding their behavior in long-distance cables, detecting their presence and 

estimating their severity. 

1.1.2 Water-tree Modeling 

 

One important challenge is creating a functional mathematical model for the 

water-tree. By nature, water-tree formation is a highly random process. The tree growth 

process depends on a number of factors, such as environment condition, physical stress 

from the installation process, operational electric field intensity and frequency, load 

switching, manufacturing defects in the cable, molecular structure of the insulation 

material and many more. As the result, each water-tree is unique even under near 

identical developmental conditions. 

Despite its random nature, however, the water-tree development process follows 

certain trends. Its characteristics can be extrapolated and estimated based on parameters 

such as cable specification and service data. By taking advantage of advancements in 

computer-assisted modeling techniques, it becomes possible to estimate certain electrical 

properties of the water-tree, such as capacitance and resistance. These parameters can be 

used to determine water-tree behavior in large systems. 

1.1.3 Water-tree Detection 

 

The second challenge associated with water-tree study is its high impedance. In 

theory, water-tree faults can be detected and observed like other types of electrical faults. 

In practice, equipment limitations severely restrict possible methods for the water-tree 

detection process, especially in long distance transmission cables. For example, the 

typical low-impedance fault on low-voltage cable can be detected and analyzed with 
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minimal difficulty and equipment. As the fault impedance increases, the accuracy 

requirement of the instrument increases accordingly. Beyond a certain threshold, the cost 

for higher instrument accuracy begins to increase exponentially. Unfortunately, fault 

impedance from water-tree can be eight orders of magnitude greater than most LG fault. 

Thus, instrument limitation and cost becomes an important factor in designed water-tree 

detection process. 

A potential method for water-tree detection is taking advantage of the capacitive 

nature of the water-tree structure. In low-impedance faults, the resistive element is the 

main-focus of the detection process. In water-tree faults, however, the resistive element is 

simply too high; therefore, the capacitive element becomes the only choice. Comparing to 

the unchanging resistive impedance, the impedance associated with the capacitance 

element can be altered. By utilizing very-high frequency (VHF) methods, the required 

instrument accuracy can be reduced to a manageable level. 

1.1.4 Early-Warning of Water-tree Appearance 

 

The next issue associated with the water-tree detection process is the actual 

implementation of the method. Although VHF method is effective on locating and 

estimating the characteristic of the water-tree, it still requires specialized instruments. In 

addition, the test itself also place heavy stress on the cable. Thus, a supplementary 

method is developed to serve as an early-warning system for water-tree appearance. 

The goal of the early-warning system is to estimate the probability of water-tree 

presence without the need of specialized instruments. Many high-frequency events 

naturally exist in a system. Although their magnitude and frequency are lower than a 

dedicated high-frequency pulse generator, they still cause small disturbances and 
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deviations in the system. Over a long period, certain trends can be observed from these 

deviations. They can be used to estimate the probability of water-tree presence and if 

additional tests are justified.  

1.1.5 Water-Tree Capacitance Estimation 

 

 Remote estimation of water-tree capacitance provides many important advantages. 

With accurate information on the corrosion progress and development rate, the 

maintenance plans become much more efficient. There exist, however, many limitations 

on the estimation process. For example, measurements are subjected to error. 

Mathematical model may deviate from actual behavior. Calculated results may contain 

error. As the result, it is necessary to understand the factors that influence the accuracy of 

the estimation process. These factors also present future improvement direction for water-

tree detection. 

1.2 Literature Review 

1.2.1 Underground Cable Operation 

 

Insulated cables have many advantages over exposed wire. Chief among them is 

the ability to prevent electricity from discharging into the earth due to direct contact. In 

addition, armored/shielded insulation layer can also be designed to resist a number of 

environmental hazards, such as corrosion, physical impact and radiation, but since 

insulated cable is more expensive than exposed-wire, exposed-wire connections dominate 

over insulated cable in applications such as overhead transmission. On the other hand, for 

many underground and surface-level applications, insulated cable is a necessity. In these 
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situations, contact with earth, flowing water and other types of hazards are inevitable; 

therefore, insulated cables must be used despite their higher expense. 

The development of insulated cable has a long history. The idea of an electricity 

carrying wire proofed against contact leakage is older than any large-scale 

implementation of power system. There had been records of insulated cable utilization as 

early as 1812. According to the records, an individual from Russia name Schilling has 

used insulated cables to detonate ores remotely [1].  

Utilization of insulated cable in an actual power grid came much later. In United 

Kingdom, insulated cable was first deployed for public grids in 1890. Dr. Ferranti 

designed a connection for London Electric Supply Corporation. A section of the 

connection used insulated cables. The design utilized multi-layer laminated dielectric 

insulation in 20 feet segments. The overall line length was 30 miles and there were more 

than 7000 slices along the connection [1]. The project was fully commissioned on 

February 15, 1891. It would continue to operate until 1933, more than four decades later. 

In United States, Thomas Edison built the first central power station in 1882. 

Before the station itself was operational, however, Edison already registered a patent on 

his version of insulated cable.  In his US Patent No. 251,552 dated December 27, 1881, 

Edison described a form of insulated cable under the title “Street Pipes”. By September 4, 

1882, the Pearl Street Station was deliver 110V DC current to local customers using the 

patented insulated cable. Specifically, the patent described a form of insulated cable using 

copper bars as conductors. The conductors were wrapped by jute and placing in an iron 

tube. The space in the iron tube was filled with a bituminous or wax compound [2].  
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Across the ocean, other types of insulated cables saw their early use as well. In 

1923, Dr. Emanueli of Pirelli invented the first oil-insulated cable. Comparing to paper, 

wax or rubber insulated cables, oil-filled (OF) cables are more suitable for high voltage 

applications, especially when higher operational temperature is expected. Seven years 

after its invention, the first commercial OF cable circuit went into operation at Tokyo, 

Japan [3]. The connection delivered 66kV currents in OF cables. 

Along with rubber and oil, other types of insulation material were also explored in 

the early years of cable development. For example, as early as 1870, both United 

Kingdom and France utilized porcelain and glass insulated cable in sewers. Unfortunately, 

although porcelain and glass are resistant to high temperature and chemical corrosion, 

they are susceptible to both thermal shock and physical impact [1]. It is also problematic 

to perform maintenance on ceramic insulations, especially for long apparatus such as 

cables. 

The early history of cable development is dominated by oil, rubber, wax and 

paper insulated cables. Each type of material has its strength and weakness. For example, 

oil is suitable for applications with high operational temperature. Its dielectric breakdown 

strength, however, is lower than rubber. At the same time, long OF cables segments are 

also much more difficult to maintain. Another example is plant-fiber based insulations 

such as paper or Edison’s jute insulation. Plant-fiber insulations have good thermal 

expansion properties and they are relatively easy to produce. In addition, the later wax 

paper insulations also have good dielectric breakdown strength, but they are much more 

susceptible to organic decay and chemical corrosion. 



9 

 

Eventually, polymer insulation became the mainstream choice. This is due to both 

technological progressions in the chemical industry and increasing demands in the power 

industry. The earliest polymer insulations are represented by rubber. The dielectric 

breakdown strength of rubber insulation such as neoprene rubber is between 15.7MV/m 

to 26.7MV/m. In comparison, silicone and mineral-based oil’s dielectric breakdown 

strength is between 10MV/m to 15MV/m and much more difficult to maintain. Wax-

paper insulation does offer stronger dielectric breakdown strength. Its breakdown 

strength is generally between 40MV/m to 60 MV/m. Newer polymer materials such as 

polyethylene, however, can reach dielectric breakdown strength up to 160MV/m. 

Polymer material is also more resistant to corrosion and decay, which significantly 

reduce the maintenance need. 

Many types of polymers have been developed over the years to replace rubber. 

The most common type today is polyethylene and its derivatives. Polyethylene had been 

synthesized in laboratory conditions as early as 1898 by Hans Von Pechmann. The first 

industrial viable synthesis, however, was not done until 30 years later by Eric Fawcett 

and Reginald Gibson. Their process is later refined to a mass-production version by 

Michael Perrin in his high-pressure synthesis method. The method produces low-density 

resin of polyethylene. It is used in the later cross-link polyethylene (XLPE) development 

[4].  

Polyethylene is a thermoplastic material. As the result, it can be easily molded at 

high temperature and retain its shape after cooling. The polymer possesses high ductility 

and impact strength. Thus, it is resistant to long-term physical wear. Chemically, 

polyethylene consists of non-polar, saturated and high molecular weight hydrocarbons 
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and has a tendency to crystalize. Overall, it is resistant to both acid and base corrosion. It 

also has low gas and water permeability. This makes it an ideal material for underground 

cable insulation applications. Later improvement such as XLPE changes the material type 

from thermoplastic to thermoset. This allows the cable to retain its shape during high 

temperature operations. In general, XLPE retain its strength in environment up to 150̊ 

Celsius. The first commercial XLPE insulated cable is developed by General Electric 

Company in 1963 [4]. Since then, XLPE has gained wide acceptance as cable insulation 

material. For example, by 1991, more than 90% of the installed cables in Japan utilize 

XLPE as insulation material [5].  

1.2.2 Aging Infrastructure 

1.2.2.1 State of the Overall Power Infrastructure 

 

In recent times, aging infrastructure has become one of the central research topics. 

The phenomenon is observed in many fields of studies, including power system and the 

power utility industry. Due to the nature of power industry, aging infrastructure can have 

a significant ripple effect. It has far-reaching consequences for other parts of the society 

that depend on the continued and stable delivery of electricity. 

In the past, many studies and assessments have been carried out on the problems 

faced by power utilities. A sample case study focuses on Minnkota Power Cooperative, 

Inc. It is a conglomerate power-utility, which focuses on generation and transmission. It 

is located in upper Midwest, USA. The company has eleven sub-members and twenty-

five regionally associated electrical suppliers. Together, they serve more than 112,000 

customers in North Dakota and northwestern Minnesota. In 2006, a study is carried out 

by the company in order to assess the condition of their existing infrastructures, 
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specifically, the condition of the power poles. In their study, it is discovered that their 

pole rejection rate is increasing at about 1% every decade since 1980. Rot has also been 

observed in the cross arms and it is increasing at a rate of 5% every decade. Equipment 

previously believed to be safe, such as pole anchors, is also showing signs of degradation 

and in need of maintenance. In summary, out of the 2,000 miles of 69kV lines maintained 

by the company, 33% are over 50-years old [6].  

The situation experienced by Minnkota is not an isolated case. After the 2003 

Northeast blackout, the US-Canada Power System Outage Task Force reported that the 

North American electrical grid included more than 200,000 miles of transmission lines 

operating at 230kV and higher, 950,000MW of power generation capacity and nearly 

3,500 power utilities, which serve more than 100 million customers. A 2001 assessment 

from American Society of Civil Engineers (ASCE) gave the US energy infrastructure a 

rating of D+. The rating degraded to D in 2003 and continued to 2005. Assessment in 

2013 gave the energy industry infrastructure a rating of D+ and it estimated that by 2020, 

there will exist an investment gap of 56 billion USD in distribution and 37 billon USD in 

transmission [7].  

There are several reasons for the harsh assessment of US energy infrastructure. 

These reasons include natural cycles in infrastructure development, financial constraint 

and cultural shift. The electrical industry itself is more than 110 years old. During this 

time, it has become more and more important to the society. Thus, it continues to expand 

and grow. The overall expansion rate, however, is not linear. There were historical 

periods of rapid development where the infrastructure expanded at accelerated rates. The 

most relevant period to the current infrastructure-aging problem is the rapid expansion 
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between 1950 and 1960. It is estimated that in many power utilities, as much as 50% of 

the equipment is installed in the time-period between 1950 and 1960. This means by 

2016, a large portion of the grid is operating equipment more than 50-years old [8].  

The very nature of development cycle leads to the next cause of infrastructure 

aging---financial constraints. Rapid infrastructure expansion over a short period means a 

large portion of the existing infrastructure also reaches replacement age over a short 

period. Although this is a common phenomenon in many industries, the effect on power 

industry is somewhat different. For power infrastructures, the end of a cycle is marked by 

investments in very large amount of fixed sets. Understandably, this also means high 

capital requirement. As the result, the replacement process has been slow and in some 

cases, they are halted completely. 

The culture shift is a complex issue. On the surface, culture shift can be observed 

in form of the aging work force in the power industry. In the Minnkota case mentioned 

above, one of the main difficulties faced by the maintenance team is reduction in 

available work force. The total number of employee in Minnkota has steadily declined 

since 1979. In 2006, Minnkota employs 320 employees at both headquarter and 

generation plants. The company asset includes 2,143 miles of 69kV lines, 226 miles of 

11kV lines, 577 miles of 230kV lines and 465 miles of DC lines. The construction and 

maintenance of these lines are coordinated by merely four employees. On the operations 

sides, company has 28 linemen at both headquarter and in the field. They are expected to 

serve a 34,500 square miles region [6]. The decrease in available work force means there 

is insufficient number of personnel to service and operate the equipment, even if the 

equipment itself is physically intact. 
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A deeper part of the culture shift lies with fundamental understanding of power 

infrastructure. Research on the effect of aging on infrastructure performance had begun 

almost as soon as power system itself becomes reality. Due to the development cycle 

issue, however, until 1990s, maintaining aging infrastructure was not deemed a critical 

issue. Before 1990s, vast majority of the grid is less than 30 years old. Since the industry 

operates in a priority system, the need to mitigate the effect of aging equipment is 

overridden by other tasks. Although the need for replacement does continue to occur, the 

relative young-age of the infrastructure means the industry devoted little effort on 

research new technologies and techniques on prolonging the operational lifespan of the 

equipment. During this period, infrastructure aging is generally viewed as an issue that 

will eventually occur, but it will be far enough in the future and not an immediate 

concern. As the result, many engineers and managers in the industry did not gain any 

experience or skill in preventing infrastructure aging. In fact, some of the traditional 

measures on aging equipment management actually atrophied during this time-period [8]. 

The combined effect of development cycle, financial constraint and culture shift means 

the new generation of power engineers must face an issue that is long overlooked and 

overdue.  

1.2.2.2 Underground Cable in Aging Infrastructure 

 

Among various aspects of the power system, underground cable system is one of 

the worst affected. According to US Department of Energy, there are about 5000 circuit-

miles of underground transmission cables in US. These cables generally have a designed 

service life of 40 years. By the current decade, almost half of the underground cables in 
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US are approaching the limit or already exceeded it. In comparison, it is estimated that 

about 40% of the transformers are approaching the limit of their service life [9].  

When assessing the condition of underground cable system, an important piece of 

information to remember is the cyclical nature of infrastructure development also implies 

periods of slow expansion. WWII is one example of slow expansion in power 

infrastructure. Another example is discovered after researching into overall US power 

pole replacement. The research indicated that immediately following the rapid expansion 

in the 1950s, there is a period of limited expansion. Specifically, in late 1960s, the oil 

embargo from Arabic states triggered a period of slow expansion in US power industry 

[10].  

From financial perspective, this means there are periods of “calm”. In these 

periods, less number of equipment needs to be replaced and capital availability is less 

constrained. These periods represent opportunities for the industry to catch up on its 

infrastructure investment gap. In order to take advantage of these periods, it becomes 

important to prolong the lifespan of the existing equipment. 

Over the past decade, the industry has discovered a number of procedures that 

allow power utilities to extend the lifespan of their equipment. In general, these 

procedures focus on proper maintenance of the equipment [11~12]. They can be 

summarized in the following steps: 

1. Understanding Aging Effect on the Equipment 

2. Monitoring Status of the Equipment 

3. Performing Preventative Maintenance Procedures on Any Observed/Predicted 

Issues 
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In this dissertation, the effort will concentrate on understanding the effect of 

water-tree in long-distance cables, methodology on monitoring the system for water-tree 

appearance and assessing the condition of water-tree affected system. 

1.2.3 Water-Tree Characteristics 

 

 Water-tree is a material degradation process typically associated with non-

metallic materials such as cable insulation. The process occurs in the presences of liquid 

(primarily water) and changing electric field. If aged electrical infrastructures are exposed 

to high level of humidity for prolonged period, there will be high possibilities of water-

tree formation. 

Water-tree formation is characterized by strings of ellipsoidal micro-fracture 

chambers forming within the insulation material. These strings are referred as branches. 

The micro-fractures are the main sites of cable insulation breakdown. Typically, the 

fracture chambers will be a few microns to a few hundred microns in diameter. Adjacent 

chambers will be interconnected by additional, smaller fractures in the shape of thin tubes. 

These tubes are a few microns in diameter [13].  

The mechanic behind water-tree growth is still a subject of ongoing research. One 

hypothesis is that the micro-fractures are created by Maxwell-Wagner interaction induced 

by the shifting electric field across the water/XLPE interface. Specifically, when there is 

sufficient amount of moisture present, water and XLPE insulation will form a material 

interface within the fracture sites. According to Maxwell-Wagner polarization theory, a 

shifting electric field will cause a charge-separation at the material interface, even if the 

individual material is not responsive to the electric field by itself. The process is 
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accelerated by the presence of impurities. This charge-separation may create fracture 

chambers through two difference mechanisms:  

First, it is observed that under Maxwell-Wagner polarization, the charge 

separation generates a shifting mechanic stress across the material interface [14]. This 

stress causes physical breakdown of the insulation layer through mechanical wear.  

Secondly, the charge separation itself leaves ionic residue at the material interface, 

thus increasing the possibility of oxidation of the material [15].  

` Currently, certain cables are manufactured with tree retardant property. For these 

cables, the insulation layer is doped with additional chemicals to inhibit charge separation 

at the material interface. Long-term exposed to strong, shifting electric field, however, 

will force many of these chemicals to migrate. Consequently, these cables may lose its 

tree retardant property after a few decades in service [16].  

Unlike the more commonly recognized electrical-trees, water-tree formation is a 

significantly slower process. For electrical-trees, strong overload can create intense 

corona discharges. The resultant heat will burn through the cable insulation in the matter 

of minutes. In comparison, water-tree growth is not accompanied by secondary 

phenomenon such as corona discharge [17]. As a result, water-tree formation often 

requires years or even decades. On the down side, it is a mechanical/chemical process 

and it will continue to occur as long as moisture and electric field are present. The 

process occurs regardless of temperature; therefore, electrical-tree prevention methods, 

such as insulation, do not completely inhibit water-tree growth. Currently, the main 

treatment for water-tree is sealing the breach at the affected section of cable using 

adhesive fillings. 
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The presence of a fracture chamber nearby tends to weaken insulation integrity. 

As the result, strings of the fracture chambers tend to show tree like growth pattern. It 

starts from a certain origin and grows into branch like structure. The origin of a specific 

water-tree can appear due to a number of reasons. For example, it can be irregularity in 

chemical composition in form of impurities. Alternatively, it may be physical in nature 

such as small damage to the cable insulation surface or manufacturing defects such as 

micro-crack in the insulation material. One of the laboratory methods to stimulate water-

tree growth is using sand paper to create physical wounds on cable insulation. 

The growth pattern for a specific water-tree can be random. In particular, water-

tree growth experiments in the past have demonstrated that even under identical 

laboratory conditions, water-tree can grow into different shapes [18]. This random nature 

makes difficult to build a mathematically model for water-tree. Fortunately, water-tree 

growth does have a number of common trends. For example, stronger electric field 

strength tends to produce long tree branches. Overall shape of the water-tree is tied 

directly with the frequency composition of the applied electric field [19]. As a result, it is 

possible build a general model for water-tree using parameters from typical operating 

conditions of the cable. 

1.2.4 Effect of Water-Tree in Power System 

 

 The presence of water-tree can lead to a number of problems. Depending on 

terminal-stage development, water-tree can be classified into two categories: 

Category-1 water-tree faults, hereby referred as hybrid-tree faults, are 

characterized by the appearance of severe electrical-treeing in the final stage of insulation 

breakdown. They can be seen below in Figure 2: 
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Figure 2: Hybrid-Tree Faults 

In hybrid-tree faults, after water-tree corrodes through a large portion of the 

insulation (but not completely), the service voltage of the cable becomes sufficiently high, 

which the remainder of the insulation can no longer withstand the electrical stress. The 

insulation rapidly burns out in catastrophic electrical discharges. Depending on the 

severity of the discharge, the insulation material above the discharge point can be damage 

as well. 

Unlike water-trees, the terminal-stage electrical-trees can be created in seconds 

instead of years. Hybrid-tree faults have short creation time and high voltage/current 

requirement; therefore, they are mainly influenced by system transients instead of steady 

state conditions. 

Category-2 water-tree faults, hereby referred as pure-tree faults, are caused by 

water-tree branches fully breaching the insulation layer. They are can be seen below in 

Figure 3: 

 

Figure 3: Pure-Tree Faults 
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In pure-tree faults, the sole conducting channel is formed by water-tree branches. 

Although these final-stage tree branches are larger comparing to their developing 

counterparts, they are still only a few hundreds of microns in diameter. As the result, 

pure-tree faults have significantly higher fault impedance due to smaller insulation-

breakdown passageways.  

The creation of pure-tree faults is mainly influenced by the steady state operating 

condition of the system. A unique characteristic of purely-tree faults is that the 

conductivity of the fault region fluctuates with environmental moisture. Specifically, 

when the environmental moisture is low, purely-tree faults impedance increases and 

sometimes become unidentifiable by conventional observation and detection techniques. 

When the moisture content is high, pure-tree fault impedance decrease and may produce 

noticeable voltage drop in the system. 

Although purely-tree faults appear to be the lesser issue to the grid stability, 

especially if the moisture content is low, the very presence of a breach in the insulation 

layer means possibility for future corona discharge. A sufficiently large transient will 

break through the weakened insulation layer and the resultant discharge will rapidly 

breaks down the insulation material; therefore, pure-tree faults should be treated with the 

same level of caution as its hybrid-tree fault counterparts. 

1.2.5 Detection of Water-Tree  

 

Due to its random nature, water-tree modeling is a relatively new topic only made 

possible by computer-assisted analysis. The detection processes, however, have existed 

much longer. The industry has long been aware of the existence of water-tree. Over the 

years, a number of attempts have been made to detect the presence of water-tree in cable 
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insulations. In general, two classes of methods have been used to assess the condition of 

cable insulation: Tan-Delta and Partial-discharge. 

1.2.5.1 Tan-Delta 

 

Tan-Delta measurement is one of the most common testing methods used in the 

industry. The principle behind Tan-Delta assumes ideal cable insulation behaving as a 

capacitive element in the system; therefore, electrical current passing through the cable 

will exhibit similar behaviors to current in a perfect parallel-plate capacitor. The voltage 

and current will be phase-shifted 90 degrees apart. If the insulation is not perfect, 

however, then the phase shift will no longer be 90 degrees. The irregularity in the 

insulation will appear as resistive current. These elements will cause the voltage-current 

shift to become less than 90 degrees apart. The Delta part of the method refers to the 

angular difference between the ideal phase shift and the actual phase shift angle as show 

below in Figure 4 

 

Figure 4: Voltage and Current Phase Shift in Tan-Delta Method 
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The x-axis and y-axis are voltage and current for ideal insulation. The phase 

difference between the ideal current and actual current is referred as the loss angle. 

Greater loss angle indicates more degradation in the cable insulation.  

There are several ways to apply Tan-Delta testing method and they can be broadly 

classified into three categories: very low frequency (VLF), operational power frequency 

(OPF), and very high frequency tests (VHF). 

The VLF test takes advantage of the fact that the impedance of the capacitive 

element increases drastically at near-DC frequency. Under VLF, the cable degradations 

functions as resistive elements and become more visible in the output readings. As the 

result, VLF reduces the power requirement for the test and it is the more practical method 

in the field. In general, VLF tests are conducted at the frequencies between 0.1Hz and 

1Hz. 

In theory, OPF test (50Hz or 60Hz depending on the area) should reveal the 

exactly behavior of the cable under standard operating conditions. Unfortunately, 

Medium and high voltage cables often have very large innate capacitance; therefore, to 

perform the Tan-Delta test, a large charging current is required. The equipment 

requirement may make OPF tests impractical in the field [20].  

Although VLF method proves to be effective in many situations, its low 

frequency can be a hindrance in other situations. For example, when dealing with very-

low capacitance and very-high resistance phenomenon such as water-tree growth, low 

frequency can be a hindrance. Field-testing indicates that for low capacitance situations, 

the dielectric current from VLF testing method is simply too small to be identified [21].  
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For these situations, VHF methods are used. Similar to VLF methods, VHF 

methods take advantage of the behavior of capacitive elements in different frequencies.  

Under high frequency, the impedance of the capacitive elements is greatly reduced and 

the result becomes more visible to the observer. There are several methods for analyzing 

the result from VHF tests. Some of the methods observe the terminal voltage/current 

phase shift. Other method such as capacitor tests are developed to observe material 

behavior. The testing frequency for VHF tests can range from 300kHz to several GHz 

[22].  

In the past, all three categories of the Tan-Delta methods have been applied to 

water-tree detection. The tests yielded various results depending on the specific 

conditions of the test. In one OPF test, the source voltage was injected to medium-voltage 

underground XLPE cables. The testing voltage started at 2kV and increased in 2kV 

increments all the way to 10kV. The test indicated that for cables with sufficient amount 

of moisture, OPF method delivers tan-delta reading at scale satisfactory to IEEE 

standards. Unfortunately, it is also indicated that for dry scenarios, the resultant Tan-

Delta is much smaller [23].  

VLF water-tree detection also had success in certain situations. In one case, 22 

kV-rated cables were submerged under water for 45 days due to flash flooding. 

Afterwards, VLF tests were performed in 6kV increments all the way up to 23kV. The 

test determines that the IR values of the cables were in the range of 3GΩ to 4GΩ. 

Subsequent DC test at 50kV also revealed leakage current from 73µA to 76µA. Similar to 

the OPF test, the VLF test indicated that the primary reason for the large leakage current 
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reading is significant water ingress into the cable, including reasons such as cracked 

insulation layer due to poor workmanship [24].  

There exists other example of water detection using VLF tan-delta methods. For 

example, Hong Kong authorities discovered that the Tan-Delta loss factor is also highly 

influenced by water ingress into cable joins [25].  

In general, successful examples of VLF and OPF water-tree tests have a common 

theme. In all the successful examples, water-tree has already made significant 

advancement into the cable insulation and the insulation layer has been fully breached, by 

water-tree itself or other environmental damage. Unfortunately, this condition is not 

necessarily true for every water-tree related situation. For example, in preventative 

maintenance, water-trees are general small and still in development. These water-trees 

may not breach the insulation layer for decades. In these situations, VHF testing methods 

are significantly more effective. Many of the VHF methods, however, such as the 

aforementioned capacitor method, have very limited range. Other methods such as 

traveling-wave methods are only useful to determine the presence of degradation, but not 

its severity.  

1.2.5.2 Partial-Discharge 

 

Partial-Discharge (PD) refers to both a physical phenomenon and a method for 

detecting weakness in cable insulation. The physical phenomenon refers to an event in 

which the electrical current flows into unintended destination via break in insulation. In 

this sense, partial-discharge and line faults are similar. In practice, partial-discharge 

typically refers to the specific phenomenon where the insulation material is broken down 
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by events such as high electrical stress or physical wear and electrical currents are leaking 

through.  

At the same service voltage level, partial-discharge current is generally lower than 

line-to-ground fault current; therefore, partial-discharge’s immediate threat to system 

stability is smaller than line faults. Unfortunately, partial-discharge is an evolving 

phenomenon. Prolonged presence of partial-discharge may weaken insulation material 

and allows other disruptions to occur. For example, if electric field strength is high, 

partial-discharge may evolve into corona discharge. In this case, the ionization of the 

surrounding air will produce large amount of heat and permanently damage the insulation 

material. Furthermore, partial-discharge may be create large scale, permanent break in the 

insulation material and allows line-to-ground faults to occur. 

The Partial-Discharge detection method is used to detect potential weaknesses in 

the insulation material by searching for signs of partial-discharge. Comparing to the 

capacitive-element focused Tan-Delta, PD test focuses on leakage current and conductive 

pathways. As the result, PD methods emphasize on resistive aspect of the system. In 

some situations, both Tan-Delta and PD tests can be carried out simultaneously [20].  

PD test may be carried out both online and offline. Currently, offline test is the 

preferred method for two reasons: First, since the magnitude partial-discharge 

measurement is typically much smaller than the operational voltage/current level, the 

measurement is best taken without interference from other sources. Second, PD tests 

place heavy stress on the cable. In some situations, the test itself may shorten the lifespan 

of the cable; therefore, it is preferable to use the less stressful offline test. 
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Similar to Tan-Delta tests, PD tests can be conducted at various frequency ranges. 

Although Tan-Delta method prefers the low power requirement of the VLF tests, the 

effect of PD test is better at OPF since larger voltage source directly increases the clarity 

of the test result [26].  

The International Electrotechnical Commission (IEC) has established key 

guidelines for offline cable test. The standards are available at IEC60270 and IEC60885-

3. Offline PD test can be conducted using these standards [27].  

In off-line tests, one of the most commonly used methods is time-domain 

reflectometry (TDR). TDR shares the same principle as other detection methods such as 

travelling-wave. In both cases, the target location (fault or partial-discharge site) will 

function as a discontinuity in the line and creates reflected waveform that can be analyzed.  

In case of the PD test using TDR, the current source is typically capacitive-

coupled to the cable terminal. A pulse is generated by the current source and travels along 

the cable. The current profile at the cable terminal is recorded and interpreted to 

determine if partial-discharge is present.  

In practice, TDR has a few limitations. For example, if the partial-discharge site is 

too close to the other end of the cable segment, the TDR test may encounter difficulty in 

differentiating the reflected waveform of the partial-discharge site and the reflection from 

cable terminal. 

In general, proper interpretation techniques are critical for successfully 

performing PD tests. In the past, data interpretation from PD test can be classified into 

three categories: time-domain, frequency-domain and impulse response. 
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In time-domain analysis, the data interpretation focuses on pattern recognition. 

Since the partial-discharge sites represent a fixed set of weakness in the insulation layer, 

the reflected pattern should be relatively stable and predictable. By identifying the 

waveform patterns, it is possible to determine if a partial-discharge site has appeared on 

the cable. 

In frequency-domain analysis, the emphasis is on proper separation of the 

frequency bands produced by potential partial-discharge sites from other sources. By 

applying Fourier-Transformation on the TDR data, the time-domain representation is 

converted to a range of frequency responses from the cable. Similar to the time-domain 

analysis, since the potential partial-discharge sites are relatively stable features, it will 

generate a predictable set of frequency responses. 

The principle of impulse response approach is similar to the other methods. In this 

approach, band pass filters are applied to the terminal reading at predicted range. The 

resultant impulse response of the filter is proportional to the actual partial-discharge event 

and can be used to determine if a potential site has appeared [28].  

One of the main issues associated TDR interpretation is the presence of noise. 

Unlike faults analysis, the scale associated with PD test parameters is significantly 

smaller. Thus, the test result is much more susceptible to interference from noise. In all 

three approaches, noise elimination is a critical part of the actual implementation process.  

Noise is an even more significant issue for online PD tests. Both the fundamental 

and harmonic components of the operational voltage/current may generate noise. In 

addition, the operational waveform itself may negatively affect data clarity. In recent 

years, however, improved frequency filtering methods and more accurate measurement 



27 

 

instruments have brought renewed interest in online PD tests. Although the cable stress of 

online test remains high, it does not require the line to be disconnected. In this case, the 

benefit of maintaining critical grid connection may out weight the risk for cable damage. 

Another significant issue associated with TDR is the range of the detection 

process. Due to the small scale of PD test parameters, distance attenuation sets a limit on 

the length of cable segment. Experiment results indicated the maximum range of TDR in 

PD test is determined by the following parameters: insulation material characteristic, 

high-frequency cable characteristic, types of shielding and cable dimensions. Combined 

with the filtering methodology and the instrument accuracy, these parameters determine 

the maximum range of the TDR in PD test [29].  

The presence of noise also affects the range of the test. Distance attenuated signal 

is further degraded by the presence of noise. In certain situation, if the noise is too great, 

the effective range of TDR may be greatly reduced. 

The relationship between PD test and water-tree detection is complex. Depending 

on the stage of water-tree development, the effectiveness of PD test varies drastically. If a 

water-tree has fully breached the insulation layer, its structure is more resistive than 

capacitive. In this case, PD test is often more effective than VLF or OPF Tan-Delta tests. 

On the other and, early-stage water-tree is capacitance-dominant in nature and it exhibits 

very limited amount of partial-discharge. 

Empirical experiment showed that under the current technology, PD measure is 

observable for insulation voids greater than 3mm [30]. Since early-stage water-tree 

micro-fracture chambers are often measure in microns, the accompanied partial-discharge 
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is insignificant. Overall, PD tests are more effective on later-stage water-tree detection 

instead of preventative maintenance.  

1.3 Research Contribution 

 

Currently, water-tree is still a less researched phenomenon. In particular, there is a 

notable deficiency of mathematical evaluation of water-tree characteristics. For example, 

empirical measurement of water-tree impedance has been available for decades. There is 

however, limited research on the specific mechanic of water-tree impedance. 

As the result of this deficiency, the currently available water-tree detection 

methods are general reactionary. Their methodology and implementation are both under 

the assumption that water-tree has developed into a certain stage and its behavior is 

relatively stable. For example, although Tan-Delta methods exists for water-tree detection, 

the method emphasize on water-trees that have already developed enough to cause a 

phase shift in the output waveform. Similarly, PD methods suffer range limitation on 

very long distance cables and they can only be used for late-stage water-trees. 

Due to the rapidly aging power infrastructure, reactionary detection is no longer 

sufficient. For example, if water-tree develops to the point that it is visible to the 

conventional PD method, then its leakage current is already strong enough to reduce the 

remaining service life of the cable. If the situation worsens and the partial-discharge 

develops into a full-fledge line to ground fault, then the customers may suffer prolonged 

power outage. As the result, utilities prefer potential issues to be resolved by preventative 

maintenance instead of reacting to a power failure. In order to perform preventative 

maintenance, however, the utilities must be able detect and locate water-trees when they 

are still in early development stage. 
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To meet this demand, mathematical models must be constructed to understand 

water-tree behavior in all development stages. Next, a method must be developed to 

detect and locate water-tree in early development stage. Finally, the implementation of 

the method must be reasonable.  

1.3.1 Mathematical Modeling of Water-Tree in Underground Cable Insulation 

 

The first step of understanding water-tree behavior is developing a mathematical 

model. In past, the main challenge on constructing the mathematical model has been the 

randomness of the water-tree structure. Water-tree growth is motivated by a very large 

number of parameters and many of these parameters are highly random as well. As the 

result, model construction and analysis have not been practical. Recent advancements in 

computation and modeling technology, however, have reduced the difficulty of the task; 

therefore, it is now possible to construct generalized water-tree models in order to 

observe the effect of early stage water-trees on the system. 

Empirical observations from Tan-Delta tests indicate that early-stage water-tree is 

primarily a capacitive structure. Physically, the capacitance of water-tree afflicted cable 

insulation is determined by the local material composition. Specifically, it is decided by 

the arrangement of dielectric insulation material and water passageways. Thus, at 

fundamental level, the physical structure of water-tree afflicted insulation shares 

similarity with multi-dielectric capacitors and the model can be built using similar 

principles. 

The structure of water-tree afflicted insulation is more much complex than the 

average cylindrical capacitor with multi-dielectric; therefore, the mathematical 

representation must be adjusted accordingly. Fortunately, under finite element analysis 



30 

 

scales, the complex structure of water-tree can be simplified and mathematical resolution 

becomes feasible. 

Determining the mathematical model of the water-tree offers several advantages: 

First, mathematical model allows understanding and prediction of cable parameters 

associated with water-tree growth. Second, the model can be integrated in larger system 

studies and determine its effect on overall system. Third, the model can be used to test 

potential detection and estimation methods. 

1.3.2 High Frequency Pulse Detection of Water-Tree  

 

Results from the mathematical model shows that an early stage water-tree is 

primarily capacitive and its magnitude is in pico-Faraday range. Since the impedance is 

extremely high and no conductive path is available, PD methods cannot be directly 

applied. Due to the low capacitance, VLF and OPF Tan-Delta methods also cannot be 

applied to early stage water-tree detection. 

In the past, VHF Tan-Delta methods have proven to be useful in detecting low-

capacitance cable insulation weakness. After testing the VHF Tan-Delta method using 

synchronous PMU measurement, however, Tan-Delta method proved to be ineffective 

due to the extremely low amount of phase shift; therefore, new method must be 

developed. 

The main issue associated with Tan-Delta test in early-stage water-tree test is the 

small phase shift. Fortunately, TDR based PD tests in the past have proven to be effective 

on dealing with the particular issue; therefore, the new method will consist of elements 

from both Tan-Delta and Partial-discharge test.  
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By applying TDR to the cable under VHF conditions, a visible response can be 

obtained from the early-stage water-tree. The new method is named High-Frequency 

Pulse Detection Method (HFPD). 

TDR data is not useful without corresponding data interpretation method. 

Experiments show that for early-stage water-tree of a specific capacitance, a 

corresponding frequency range can determined using the HFPD Method. The frequency 

range will produce a distinct response pattern on the TDR waveform and it is named the 

benchmark frequency range. A method is then developed to determine the water-tree 

capacitance using cable parameters and the benchmark frequency range. 

The HFPD method and the mathematical interpretation method will allow utilities 

to determine the location and severity of an early-stage water-tree. Using the information, 

utilities can estimate the remaining lifespan of the cable and site of the eventually 

breakdown. Thus, preventative maintenance can be performed to prolong the lifespan of 

the cable. In addition, determination of water severity and development rate also allow 

utilities to estimate the urgency of the maintenance process and allocates resources 

accordingly. 

1.3.3 Early-warning of Water-Tree Presence using Deviation Comparison Method  

 

Although the HFPD and its interpretation method can determine water-tree 

location and severity, its practical implementation has a few issues. Like all high-

frequency methods, HFPD requires a large magnitude input pulse. The required 

instrument is commercially available, but it places high stress on the cable; therefore, it 

must be a selective test. The implication is that before HFPD Method can be applied, the 

utilities must already be certain of water-tree presence in the cable segment. To this end, 
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a method is developed for estimating the probability of water-tree presence in the cable 

and serves as the early-warning system for water-tree appearance. 

Since the method is meant to be omnipresent, it cannot use specialized 

instruments such as high-frequency pulse generator of any kind. VLF and OPF methods 

remain ineffective, thus the only alternative is utilizing naturally existing high-frequency 

events in the system, such as very high frequency switching transients and greater than 

3kHz harmonics. 

From HFPD results, it is known that the naturally occurring high-frequency 

events in the system meet the minimum requirement for identification purpose. Their 

frequencies, however, are sufficiently low, in which data clarity is an issue. The high-

frequency events also vary greatly in both magnitude and frequency. In addition, their 

magnitudes in general are small comparing to the requirement for HFPD. These factors 

greatly reduce the accuracy of the data interpretation process. It is determined that the 

original data interpretation process for HFPD Method is not sufficient.  

A new data interpretation method is developed for the early-warning system. The 

deviation-comparison method determines the difference between predicted data and 

actual data. The difference is then compared across multiple time intervals. Finally, the 

resultant standard deviation is compiled. Experiment results show that potential sites of 

water-tree appear as large spikes in the complied standard deviation comparison graph. 

The method is highly sensitive and does not requirement specialized instruments and it 

estimates the probability of water appearance on the cable segment. 

The early-warning system is a critical part of implementing the early-stage water-

tree detection process. Without the early-warning system, water-tree detection process is 
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simply too resource intensive and potentially damaging to the grid infrastructure. In 

addition, the principle behind the early-warning process can be modified and adapted for 

other types of cable monitoring process. 

1.3.4 Computational Margin Accumulation in Water-Tree Analysis 

 

Even after the implementation of the HFPD method and early-warning system, it 

is important to improve their accuracy and reliability continuously. Error and margins 

exist for many engineering methods and techniques, particular for high sensitivity 

processes such as early-stage water-tree detection; therefore, it is necessary to explore 

potential directions that will further refine these methods. 

The first task is developing a mathematical solution to the capacitance of water-

tree. The solution will allow the utilities to estimate the progression of water-tree 

corrosion. The next task is to determine potential sources of error margins associated with 

the solution. Since the water-tree detection process is subjected to many limitations, such 

as accuracy of the measuring instrument and modeling accuracy, error margins inevitably 

appear in the computation process. More importantly, these margins will accumulate and 

adversely affect the accuracy of the final capacitance estimation. 

The detection methods can be improved in many ways. Short-term solution such 

as numerical averaging can eliminate certain amount of error. Improvement at 

fundamental level, however, can only be made by increasing the quality of the raw data 

measurement. The standard deviation distribution of the final solution demonstrated that 

error margins in water-tree detection process are fundamentally dominated by system 

time-measurement; therefore, it is possibly to greatly advance and improve the water-tree 
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detection process by developing better technologies and techniques for operational time-

measurement. 

1.4 Chapter Summary  

 

For utilities, information has become more precious by the day. The aging power 

infrastructure created the need for preventative maintenance and the process is entirely 

dependent on the obtaining proper operational information from the system. Early-stage 

water-tree detection is part of this need and solution is only possible due to continued 

advancement in computation and measurement tools. 

By constructing a mathematical model for water-tree using computer assisted 

analysis techniques, water-tree behavior in power system can be studied in detail. HFPD 

and its data interpretation method are developed based on this mathematical model and 

they demonstrate potential abilities to locate and assess the condition of cable insulation 

using only terminal data. The early-warning system ensures proper implementation of the 

method. Finally, the error margin analysis shows potential direction to refine the accuracy 

and reliability of these methods. 
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Chapter 2 

Mathematical Modeling of Water-Tree in Underground Cable 

Insulation 
 

Establishing a mathematical model for water-tree is advantageous for many 

reasons. First, the mathematical model can be used to determine the behavior of water-

tree in large systems. Throughout its development stage, changes in water-tree 

characteristic are represented by gradual expansion of tree branches into adjacent cable 

insulation. The shift in physical structure produces corresponding electrical changes. For 

water-tree, these changes can be observed as long-term change in cable parameters. By 

studying these changes, it becomes possible to develop appropriate detection techniques 

for water-tree.  

Second, mathematical models allow better understanding on the effect of tree-

branch distribution. One of the fundamental issues associated with water-tree detection is 

that many water-tree characteristics are only made into mathematically viable and 

computable data through estimations and generalizations. One such example is the 

relative permittivity for different regions of water-tree afflicted cable insulation material. 

Technically, the specific location and dimension of each individual tree-branch can be 

observed using microscope and they can be recreated in 3D simulation. The computation 

power and time investment required for such an approach, however, is simply too large to 

be practical; therefore, viable method of water-tree modeling needs to analyze the 

distribution of tree-branches at a higher and more generalized level. For example, 

assuming the water-tree case is an average representation of the phenomenon, the 
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relatively permittivity of the insulation material changes linearly and gradually from one 

material boundary to another. 

Third, mathematical models provide theoretical support and validation for 

empirical measurements of water-tree characteristics. Currently, vast majority of the 

available water-tree related studies are limited to empirical observations. These studies 

were carried out by separate groups and often yielded vastly different results. A 

mathematical model will provide better understanding on the significance of these 

empirical measurements. It will also explain the cause of discrepancies in the previous 

studies. 

For these reasons, building a mathematical model is the first step towards 

developing accurate detection methods for early-stage water-tree in long-distance 

underground cable insulations.  

2.1 Water-tree Formation and Structure Analysis 

 

Physically, water-tree is the collective representation of a series of insulation 

cracks and fractures. A sample insulation material is shown below in Figure 5:  

 

Figure 5: Insulation Material: Front View (Left) vs Side View (Right) 
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The micro-fracture chambers are small, ellipsoidal voids in the insulation layer. 

They are ellipsoidal structures and represent the smallest unit in the water-tree structure. 

Depending on the corrosion progression of water-tree, their sizes may vary from a few 

microns to hundreds of microns. A sample fracture-chamber is shown below in Figure 6: 

 

Figure 6: Micro-Fracture Chamber in Cable Insulation 

2.1.1 Water-tree Formation 

 

The micro-fracture chambers can be created by a number of processes. These 

processes can be either mechanical or chemical in nature. For example, manufacturing 

defects may leave cationic impurities in the material such as sodium, potassium, and iron 

deposits [31~36].  

 Alternatively, the impurities may also be ionic in nature, such as chloride. These 

impurities may create fracture chambers in two processes: heating and impurity diffusion. 

Both processes are characterized by a disruption in the established polymer chain. The 

disruptions weaken the crystallinity of the polymer insulation material. When these weak 
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points are exposed to both strong shifting electric field (but not strong enough to cause 

outright dielectric breakdown) and moisture, fractures can occur due to chemical 

corrosion and mechanical breakdown through Maxwell-Wagner force. 

Chemical breakdown of the insulation material can be the result of oxidation. The 

oxidation process may be driven by the free alkyl radical to alkoxy radical process [37]. 

As of 2016, most of the commercial underground-cable insulation utilizes cross-

linked polyethylene. Comparing to the traditional high-density polyethylene, XLPE tends 

to have better thermal characteristics, but it does not possess direct resistance to the alkyl 

radical oxidation process. It is observed that higher operational temperature may 

accelerate the process. 

Another cause of micro-fracture chamber formation is localized oxidation due to 

ionic impurity migration. In this process, electrical field drives the existing ionic 

impurities within the cable insulation layer into new locations. If the new location is 

exposed to oxygen, such as surface of the insulation layer or pre-existing micro-fracture 

chamber, then localized oxidation may occur. The ionic impurity migration is especially 

significant in DC cables lines [38~45].  

In both processes, the immediate result is a break in the polymer chain; therefore, 

the crystallinity of the material is weakened and micro-fracture formation becomes more 

likely. Although the oxidation processes are accelerated by the presence of water and the 

alkyl radical process itself does produce water as a byproduct, both processes can also 

occur without the presence of water. This is in contradiction with the empirically 

observed water-tree formation conditions. Namely, water-tree formation is only observed 

when there is significant amount of moisture present (greater than 65% humidity) [46].  
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Additionally, the oxidation process typically occurs in localized regions. 

Although pre-existing micro-fracture chambers weakens the material, the oxidation 

process alone is insufficient to create the long chains of micro-fracture chambers in the 

typical water-treeing process. For example, in ionic-migration oxidation, although it is 

certainly possible for the process to create a single or clusters of localized micro-fractures, 

creating a long chain of micro-fracture chambers like the water-tree branch will require 

ionic impurities to be present at the entire length of the chain. Furthermore, a single 

water-tree may include dozens to hundreds of branches. The likelihood is very low for 

ionic impurities to be available along the all the branch locations. Thus, additional 

mechanics must exist for the water-tree formation process. 

One likely cause of the continued chamber-formation process is the Maxwell-

Wagner force generated by liquid/material interfaces [47]. In Maxwell-Wagner model, 

the interface of two materials, especially when one is a dielectric material, will react to a 

frequency shifting electrical field. In particular, a directional mechanical force will be 

generated and it will be repeated applied to the interface. In the case of the micro-fracture 

chambers, when sufficient amount of moisture is present, the accumulated water in the 

chamber will form an interface with the insulation material at the fracture-chamber wall. 

When sufficient electric field is applied, the generated Maxwell-Wagner force will apply 

repeated mechanical stress to the chamber wall. Although the force is relatively small 

comparing to the structural integrity of the insulation material, prolonged application of 

the stress may eventually wear down the material. This is consistent with the empirically 

observed water-tree growth rates in the field. 
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There are other hypotheses on the factors that influence water-tree formation. For 

example, previous laboratory testing indicates that water-tree development in 

polyethylene with the presence of aqueous salt solutions is influenced by the diffusion 

constant of the salt in the polymer. Salt molecules will accumulate in locations with 

increased electric fields and serve as condensation nuclei for liquid water. Aqueous 

solution of the salt will be formed as result. Reduction of saturation pressure for the salt 

solution will attract additional water through the diffusion. Specific chemical property of 

the salt does not seem to have a major effect [48].  

Water-tree growth is still a less understood subject. For example, under with the 

Maxwell-Wagner force hypothesis, the formation of inter-fracture chamber connection is 

not explained. An inter-micro-fracture chamber connection is show below in Figure 7: 

 

Figure 7: Interconnections between Micro-Fracture Chambers 
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A “branch” of the water-tree is formed by dozens of interconnecting ellipsoidal 

micro-fracture chambers. The chambers are connected by very thin tubular structures, 

which are less than five microns in diameter [49]. From electrical perspective, these 

tubular structures represent high impedance choke points during the formation of water-

tree. Once the final breakdown occurs, however, the tubular structures will rapidly widen 

due to dielectric heating. 

The initial breakdown point of the insulation material is referred as the root of the 

water-tree. It is shown below in Figure 8: 

 

Figure 8: Root Micro-Fracture Chamber of Water-Tree 
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The latest sites of insulation breakdown are referred as the crown of the water-tree 

as shown below in Figure 9: 

 

Figure 9: Crown of the Water-Tree 

The diameter of micro-fracture chamber will gradually decrease from the root of 

the water-tree to the crown.  

For large water-trees, the diameter of a micro-fracture chamber at the root may be 

dozens of times larger than the diameter of a chamber at the crown. A sample 

representation is shown below in Figure 10: 
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Figure 10: Branch Diameter Comparison 
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A single large micro-fracture chamber can be connected to multiple small 

chambers. When a large chamber is connected to two or more smaller chambers, this is 

referred as a branching point. Multiple water-tree branches may split off from the same 

root as shown below in Figure 11: 

 

Figure 11: Water-Tree Branching Point 

The physical cause of a branching point is poorly understood. One hypothesis is 

that sites of polymer molecule chain breaks are somewhat randomly distributed in the 

insulation material and branching may occur at these sites. 

Additionally, laboratory aging experiments have demonstrated that the “spread” 

of water-tree is heavily influences by frequency characteristic of the service conditions. 

Specifically, the number of zero-crossings is directly related to the spread and direction 

of water-tree branch development [50~55]. In field conditions, the service voltage and 

current generally compose of various frequency components. Experimental results show 
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that when the overall service waveform has less zero-crossings, the water-tree tends to 

cluster together in a closely packed ball shape. In comparison, if the overall waveform 

has more zero-crossings, the water branch will be spread out like a hand. The comparison 

is shown below in Figure 12: 

 

Figure 12: Ball-Shaped Tree (Left) vs Hand Shaped Tree (Right) 

The overall picture of an actual water-tree is shown below in Figure 13. The 

picture is a cable insulation sample-slice containing water-tree. The central metallic 

conductor has been removed for the ease of slicing. 

 

Figure 13: Sample Cable Slice of Containing a Water-tree 
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Large numbers of micro-fracture chambers are interconnected together and they 

form the water-tree branches. These tree branches are originated from a single starting 

point referred as the origin of the water-tree.  

2.1.2 Bow-Tie Tree 

 

Depending on the specific location of the origin, water-tree can be broadly 

classified into two categories: bow-tie tree and vented tree. Figure 14 shows a 

representation of the bow-tie tree: 

 

Figure 14: Sample Representation of a Bow-Tie Shaped Water-Tree 

The Bow-Tie trees are named as such because the shape of the tree-branch 

development tends to resemble a bowtie. The origin of the bow-tie trees is located in the 

middle of the insulation layer. Due to the effect of Maxwell-Wagner force, the micro-

fracture chambers will develop along a path that is approximately perpendicular to the 

central conductor. The path will be referred as the central development axis. Since the 

origin is located within the insulation layer, the tree branches will develop towards both 

the center conductor and the outer surface. Along the central development axis, micro-

fracture chambers will also branch off into slightly different directions and form a fan 

shaped area (cone shaped when viewed from three-dimensional perspective). 
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It is observed that the specific amount of spread is determined by the frequency 

composition of the service voltage [56]. In comparison, the development along the central 

axis is primarily driven by the strength of the electric field. Thus, the two bows of the 

bow-tie tree may not be developing at the same rate (without factoring in other issues that 

may affect the water-tree development rate, such as distribution of chemical impurities). 

In general, the bow towards the inner conductor will develop quicker due to increasing 

electric field strength. 

Although the origin of water-tree may appear due to a number of reasons, the 

main cause of bow-tie tree is generally manufacturing defect. Air bubbles or localized 

impurity cluster due to manufacturing detect can create the initial micro-fracture chamber 

that serves as the origin of water-tree. Micro-fracture chamber alone, however, is not 

sufficient for the appearance of water-tree. Another key factor in the appearance of water-

tree is the presence of sufficient amount of moisture. There are several potential source of 

water in this situation. For example, some of the ethylene propylene rubber (EPR) 

insulation may absorb environmental water after prolong exposure [57]. The absorbed 

water may collects in the micro-fracture and serves as the source of water-tree.  

Comparing to EPR, XLPE is more resistant to water absorption, but aging test 

indicates that XLPE is not immune to bow-tie tree [58]. In fact, as the service 

temperature increase, XLPE tends to have an increase number of bow-tie trees and the 

trees tend to have greater length. Submergence test indicates XLPE is still vulnerable to 

environment water seepage despite its greater resistance than EPR. The water-absorption 

remains the main factor aiding the development of bow-tie trees. 
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The specific location of the origin has significant impact on the potential risk of 

water-tree breakdown. For example, if the origin is located near the outer surface of the 

insulation, the bow-tie tree may quickly breach the remaining insulation between the 

surface and origin. From that point, the tree will then develop as a vented tree. A similar 

case will occur if the origin is very close to the inner conductor. Technically, when origin 

is closer to the inner conductor, the water-tree will initially develop at faster rate. From 

the long-term risk perspective, however, a bow-tie tree located near the outer-surface of 

the insulation will present a greater risk. The specific reason will be covered in the model 

assumption section along with surface-originated vented trees. 

2.1.3 Vented Tree 

 

A vented water-tree refers to a water-tree with its origin at the insulation surface. 

Depending on the location of the origin, vented tree can be classified into two categories: 

surfaced-originated vented tree and conductor-originated vented tree. Figure 15 shows 

the appearance of both types of vented trees: 

 

Figure 15: Vented Trees: Surfaced Originated (Left) and Conductor Originated 

(Right) 

As the name described, the origin of surface-originated vented trees is located at 

the outer surface of the cable insulation. Similar to bow-tie trees, vented trees will grow 
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along the central development axis. In the case of surface-originated trees, the water-tree 

will grow towards the center conductor (or the shield for tape-shielded cables). 

In comparison, the conductor-originated tree refers to vented trees that grow from 

current conducting components to the outer surface. In the case of concentric neutral 

cables, it is generally from the central conductor to the outer surface. In the case of taped 

shielded cables, it can be a vented tree that grows either from the shield to the outer 

insulation or from the central conductor to the shield. 

There are two key differences between surface-originated and conductor-

originated trees. The first difference is the initial formation condition. Second, the 

potential risks posed by the two categories of vented trees are also significantly different 

Similar to bow-tie trees, conductor-originated water-tree may be the result of 

manufacturing defects. One of the potential causes is protrusions on the metallic surface 

of the conductor. For a normal, smooth conductor surface, the electric field distribution is 

uniform. A protrusion, on the other hand, will cause a localized spike in the electric field 

intensity. Similarly, the protrusion may generate high heat due to the combination of 

higher resistance and skin effect. If the protrusion is sufficiently sharp, the heat and 

electrical stress may cause micro-chambers to appear and form conductor-originated 

vented trees. 

The surface-originated vented trees, on the other hand, have a large variety of 

causes. These causes can be categorized in a number of ways. For water-tree modeling, 

the causes can be divided into two types, type-one causes produce non-uniform clusters 

of tree origins and type-two causes produce uniform clusters as part of the tree 

origination process. 
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In general, type-one causes are events with short time intervals. Certain events 

will rapidly damage the outer insulation surface of the cable. For example, construction 

work may accidentally damage the buried cable. In comparison, type-two causes often 

occur over long time. For example, chemical corrosion from ground water seepage may 

damage the cable surface and in this case, the event occurs over a long time interval. 

The key difference between type-one and type-two causes is the structure of the 

water-tree origin. In type one surface-originated vented trees, the initial fracture chamber 

at the tree origin is often larger and deeper into the insulation layer. More importantly, 

from the modeling perspective, the two types of the surface-originated vented trees have 

different distribution patterns for the electric permittivity at the base of the tree. 

The categorized water-tree characteristic can be seen below in Figure 16: 

 

Figure 16: Categorized Water-tree Characteristics 

2.2 Building the Model 

 

 By understanding the formation process and general structure of water-tree, it 

becomes possible to build mathematical models for specific types of water-trees. The 
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goal of this section is to develop a mathematical representation of water-tree. The model 

will be used to study the effect of water-tree in large systems such as long distance cables. 

2.2.1 Model Building Background 

 

In chapter one, the historical background of underground cable development is 

discussed. The academia and industry have been aware of water-tree since 1940s. After 

World War 2, the rebuild process saw rapid expansions of power infrastructure around 

the world. Underground cable deployment and its corresponding research have 

progressed accordingly.  

For water-tree related studies, progress in the decades following World War 2 was 

generally in form of empirical observation and measurement on water-tree characteristics, 

such as physical dimension, structure, chemical composition, dielectric strength and 

equivalent impedance. Despite the achievements, however, there was precious little 

progress on developing a fully fledge mathematical model for water-trees, especially the 

ones that are still in early development stage. This is due to a number of reasons: 

The first reason is relatively low industry awareness. In chapter one, the concept 

of infrastructure development cycle has been introduced. Much of the modern day power 

infrastructure is developed in the 1960s. Since water-tree growth rate is measured in 

decades, water-tree simply did not cause any significant impact on power-system 

performance until the recent decades. As the result, the overall industry aware of the issue 

is quite low and there is simply insufficient amount of effort invested into the issue. 

The second reason is the difficulty on modeling a complex structure like water-

tree. The previous sections in this chapter illustrated the randomness in water-tree branch 

development. Each individual branch will cause its own dielectric interaction with the 
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rest. Although it is possible to simplify some of the details, water-tree remains a very 

complex structure. As the result, it is difficult to create an accurate representation.  

The third reason is the limitation on computation technology. Hand calculation on 

complex electromagnetic phenomenon is both time consuming and prone to error. 

Computation tools such as personal computers did not become widely available until 

1990s. The processing power of these early PCs was also limited. Back then, the 

available computation and simulation algorithms simply could not adequately represent 

complex structures such as water-tree. For example, finite element analysis is an 

excellent tool on managing complex physical phenomena, but its accuracy and resolution 

speed is directly dependent on the available process power. As the result, mathematical 

modelling of water-tree did not become possible until recent years. Even with the 

computation power available in 2016, it is still ill advised to insertion full water-tree 

models into large system simulations. 

The fourth reason is the auxiliary equipment limitation. Technically speaking, 

both computation limitation and model complexity fall under equipment limitation. The 

auxiliary equipment limitation specifically refers to the limitation of necessary equipment 

used in water-tree model verification process. For example, many verification processes 

require high accuracy voltage and current sensors. Without appropriate advancement in 

these auxiliary technologies, mathematical model of water-tree remains a theoretical 

process and it cannot be reliably verified. 

Nowadays, water-tree received much more attention. The task of building and 

testing a mathematical model for water-tree also become feasible. This is primarily due to 

advancement in technology and shifting demand. In chapter one, the demand for 
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prolonging the lifespan of the equipment is discussed. As of 2016, the power 

infrastructure built immediately after World War 2 has been in service for more than 

sixty years. Since underground cables generally have a service life of forty years, many 

of these cables are past the original design limit and in dire need of preventative 

maintenance. As the result, industry has devoted more attention and resource to study the 

behavior of water-tree and explore potential methods for water-tree prevention. 

It is difficult to pin down the exact date for invention of the finite element 

analysis technique, but as early as 1950s, engineering projects have been resolved using 

similar principles. The development in this field allowed complex structures to be broken 

down into smaller and easier to analyze pieces. In combination with the rapidly 

advancing computer-assisted analysis tools, mathematically resolution of water-tree 

becomes possible. 

Finally, advancement in voltage and current measuring device resulted in higher 

data accuracy. Estimation techniques also help to further refine and improve the accuracy 

of the measurement result. Due to these advancements, it is now possible to build a 

mathematical model for water-tree. 

2.2.2 Modeling Building Concept 

 

From system perspective, early stage water-tree mainly exists as a capacitive 

anomaly. Figure 17 shows the appearance of water-tree branch in a cable insulation layer: 
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Figure 17: Water-Tree Branches in Insulation Layer 

Figure 18 shows a localized view of the insulation layer and the water-tree branch: 

 

Figure 18: Localized View of Water-tree Branch and the Insulation Layer 

The scales and water-tree branch distribution in Figure 17 and 18 are not to scale. 

They are intended for the easy of viewing. One key observation can be made from the 

Figures: early stage water-tree is a capacitive phenomenon because the interaction 

between water filled tree branches and the insulation material. Specifically, water-filled 

tree branches acts as material of certain dielectric strength and the original insulation acts 

as another material with different dielectric strength. 

This configuration is remarkably similar to a capacitor with multiple dielectric 

materials. In fact, Figure 19 shows a cylindrical capacitor with multiple dielectrics: 
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Figure 19: Capacitor with Multiple-Dielectric Material 

Structure wise, water-tree branch distribution is equivalent to interlacing materials 

of difference dielectric strength. The materials are mixed together much more finely than 

any multiple-dielectric capacitor. The principle, however, remains the same and the 

mathematical model can be developed using this concept.  

From the cable impedance perspective, water-tree behaves as an additional shunt 

capacitor added to the existing cable system. Although there are many models for 

underground cable, a simple, generalized cable π-section model is shown below in Figure 

20: 

 

Figure 20: Sample Cable π-Model 

 The shunt capacitance of an underground cable includes both the conductor-

conductor capacitance and the conductor-ground capacitance. The components of the 
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shunt capacitance have different distances between conducting surface and material 

media have potentially different electrical permittivity. Their values, however, are 

ultimately determined with respect to the main conducting path. Thus, they can be 

represented by a shunt element connected to the conductor. Similarly, the water-tree 

capacitance is determined with respect to the central conductor. As the result, it behaves 

like an additional shunt element as shown in Figure 21: 

 

Figure 21: Sample Cable Model with Water-Tree Present 

2.2.3 Model Building Assumptions 

 

Although the advancements in computation tool and methodology allow the 

water-tree to be modeled, it is still necessary to make adequate assumptions. The 

assumptions reduce computation complex and assist the analysis process. 

2.2.3.1 Assumption #1: Tree Type Selection: Surface-Originated Vented Tree 

 

The three possible choices of water-tree types are surface-originated vented tree, 

conductor-originated vented tree and bow-tie tree. Out of the three types of water-trees, 

the surface-originated water-tree is responsible for majority of the incidents in the field. 

(As mentioned earlier in the chapter, a bow-tie tree with origin near the surface will 

behave like a surface-originated vented tree.) This is due to the interaction between 

water-tree and the cable electrical field.  
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The growth of water-tree is a process driven by the electrical field. Stronger field 

will cause the growth to speed up and weaker field will reduce the growth rate. For both 

bow-tie trees and conductor-originated vented trees, they must grow away from the 

central conductor before it can fully breach the insulation layer. The electrical field 

weakens as it moves away from the central conductor.  

The electric field strength around the cable is similar to the relationship between 

the electric field strength at a certain space point and an infinite line charge. As the result, 

the electric field strength experienced by the water-tree is inversely proportional to its 

distance away from the conductor. For bow-tie and conductor-originated water-trees, two 

scenarios may occur: 

Scenario #1: The field weakens to the point that micro-fracture chamber 

formation no longer occurs. In this case, the water-tree growth will stop and cable will 

not suffer water-tree related breakdown. 

Scenario #2: The field is sufficiently strong that micro-fracture chamber continues 

to occur even close to the insulation surface. This is, however, a rarer scenario comparing 

to surface-originated trees. If bow-tie trees and conductor-originated vented trees can 

grow, then high amount of moisture must be present in the environment. If the field from 

the normal service voltage level is sufficiently strong to cause micro-fracture formation 

near the surface, then the condition allows surface-originated tree to occur as well. 

Essentially, if the condition allows bow-tie trees and conductor-originated trees to cause 

insulation breach, then the same condition also allows surface-originated trees to induce 

insulation breach. On the other hand, the reverse is not true. 
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Surface-originated vented tree will experience increasing electric field strength as 

it develops. The root of the tree is also on the surface; therefore, if the environment has 

sufficient amount of moisture to initiate water-tree formation, then the same environment 

condition will continue to supply water to the tree formation process. As the result, 

surface-originated trees are more likely to fully breach the insulation layer and create 

water-tree faults than other types of water-trees. Thus, they will be the primary focus in 

the modelling work. 

2.2.3.2 Assumption #2: Tree Cause Selection: Type-Two Origination Cause 

 

Technically, water-tree develops faster in non-uniform cluster situations. Non-

uniform clusters are typically created by strong impact and these impacts leaves rougher 

impact sites. The sites are hosts to more material/water interface and they cause faster 

water-tree development than uniform cluster origins. In addition, slashing impacts may 

also cut deep into the insulation material. In this case, water-tree effectively bypasses the 

initial insulation layers and the time required to breach the insulation is greatly reduced. 

On the other hand, non-uniform cluster trees are also easier to locate than uniform 

cluster trees. The impact events for non-uniform cluster tree creation, such as 

construction work or landslide, can be tracked through alternative methods like 

construction record or weather report. 

Uniform cluster trees, on the other hand, occur under more subtle conditions. 

Small impact, chemical corrosion all tends to create uniform cluster trees and they can 

only be tracked using water-tree detection techniques; therefore, uniformed origin water-

tree will be the focus of the study. 
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2.2.3.3 Assumption #3: Tree Shape Selection: Ellipsoidal Distribution Area with Fixed 

Axial Ratio 

 

Aging experiments have shown that the tree branch distribution of water-tree is 

determined by the frequency of the service voltage.  

In US, the normal service frequency is 60Hz. For European grid, the service 

frequency is 50Hz. The other parts of the world also use either 50Hz or 60Hz as the base 

frequency for their power grid. Aging experiment shows that for 50Hz~60Hz range, the 

water-tree distribution tends to resemble an ellipsoid. The axial ratio of such an 

ellipsoidal area is also within a certain range; therefore, the modeling will be made using 

these parameters. 

2.2.3.4 Assumption #4: Tree Electrical Permittivity Distribution: Linear 

 

The final assumption is the distribution of the material permittivity in water-tree 

afflicted region. Under uniformed tree cluster condition, the tree branch diameter changes 

linearly from the base to the tip of the water as shown below in Figure 22:  
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Figure 22: Tree-Branch Diameter Change along Central Development Axis 

The density of the tree branch cluster also decreases proportionally to the distance 

away from the root of the water. The electrical permittivity of the water-tree affected 

region is complex. Fortunately, localized the tree branch-insulation mixture is relatively 

even. Thus, a simplified representation is simply a multiple direction linearly shifting 

electric permittivity. Higher tree branch concentration and larger branch diameter results 

in electrical permittivity closer to water than XLPE. The reverse is also true.  
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2.2.4 Finite Element Analysis of Water-tree 

 

Under the assumptions in section 2.2.3, it is possible to build a mode for the 

water-tree. For a localized region, water-tree affected insulation material will be treated 

as a homogeneous dielectric material. The overall capacitance can be calculated using the 

same principle of cylindrical capacitor with multiple dielectric materials. 

2.2.4.1 Conception Design Based on Cylindrical Capacitor Model 

 

The standard, single material cylindrical capacitor is shown below in Figure 23: 

 

Figure 23: Cylindrical Capacitor Model 

Deriving from Gauss’ Law, the electric field is for cylindrical capacitor is: 

������ � �	
���
�…………………………………………………………………(1) 

The Potential Difference is: 

���� � � ∮ ��������
� � � �	
��� ∮ �
� ��
� �
� �	
��� �� 
�…………………………………..(2) 
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Evaluate between the outer and inner conductor: 

������������ � ���� � ���� � 0 � �	
��� �� �� � 	 �	
��� �� �� …………………..(3) 

Therefore, the resultant capacitance is: 

! � 	 "�#�$�#%&'
�(�#�$�#%&'
� � �)*+,--�./01 � 	
���)23	01 ………………………………………..……(4) 

Where: 

a is the radius of the inner conductor 

b is the radius of the outer conductor 

r is the radius of the current material layer 

L is the length of the capacitor 

λ is the charge per unit length 

Q is the overall charge of the cylinder 

ε is the relative permittivity of the dielectric 

45 is the permittivity of air 

Next, expanding to the capacitance of cylindrical capacitor with two dielectrics, 

the Diagram is shown below in Figure 24: 

 

Figure 24: Cylindrical Capacitor with Two Dielectrics 
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Since the later finite element analysis will break down the water-tree affected 

insulation region in arc shaped pieces, the sample two-dielectric capacitor will also have 

the different dielectric materials arranged in arcs, therefore: 

For the inner capacitor, 

�� � ∮ ����#� �6………………………………………………………..……………(5) 

7���8	9 � 4�45��:� � 4�45��2<�= → �� � ?	

)�@�� ……………………….….(6) 

∴ �� � ∮ ?	

)�@�� �� � ?	

)�@�� �� #�#� …………………………………..………...(7) 

For the outer capacitor, 

9 � 4�45�	:	 B1 � D	
E � 4	45�	:	 D	
 � [4�45 B1 � D	
E � 4	45 D	
]�	:	 …..….(8) 

∴ 	 �	 � ?[�@��B�H I+,EJ�+�� I+,]K+ � ?[�@��B�H I+,EJ�+�� I+,]	

)…………………..……….(9) 

�	 � L �	�# �6 � L ?[�@��B�H I+,EJ�+�� I+,]	

)�# �� � ?[�@��B�H I+,EJ�+�� I+,]	
) �� �# ……(10) 

�&'&�. � �� � �	 � ?	
) �23BM1E�@�� � 23	�0M��@��B�H I+,EJ�+�� I+,� ……………………………...(11) 

!&'&�. � 	
)NOBM1E-@-� J NO	�0M�-@-�B@P I+,EQ-+-� I+,
……………………………….......(12) 

Where: 

a is the radius of the inner conductor 

b is the radius of the outer conductor 

c is the radius of the layer, which the different material begins 

L is the length of the capacitor 

Q is the overall charge of the cylinder 



64 

 

4� is the relative permittivity of the first material 

4	 is the relative permittivity of the second material 

45 is the permittivity of air 

α is the angle of the range of 2
nd

 dielectric material, in radians 

The result from the two-dielectric material capacitor can be generalized to create 

an equation for a capacitor with n additional dielectric materials and in m layers, the 

equation is: 

!&'&�. �

�2<=�
� 23BM1E�RSTUTV1W�� � 23B0@M E�RSTUTV1W��B�HI@@+, HI+@+, …HIV@+, EJ�@��I@@+, J�+��I+@+, J⋯J�V��IV@+,� 23B0+0@E�RSTUTV1W��B�HI@++, HI+++, …HIV++, EJ�@��I@++, J�+��I+++, J⋯J�V��IV++,� 23B0Z0+E�RSTUTV1W��B�HI@Z+, HI+Z+, …HIVZ+, EJ�@��I@Z+, J�+��I+Z+, J⋯J�V��IVZ+,� ⋯� 23B 0[0[P@E�RSTUTV1W��B�HI@[+, HI+[+, …HIV[+, EJ�@��I@[+, J�+��I+[+, J⋯J�V��IV[+,

\ …

………………………………………………………………………………………...(13) 

Where: 

a is the radius of the inner conductor 

�] is the radius of different layers of difference dielectric material 

c is the radius of the layer, which the different material begins 

L is the length of the capacitor 

Q is the overall charge of the cylinder 

4� is the relative permittivity of the first material 
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4	 is the relative permittivity of the second material 

45 is the permittivity of air 

^%_ 	is represents the angle of ith material angle with different permittivity in the 

jth layer as demonstrated below in Figure 25: 

 

Figure 25: A Capacitor with j Additional Dielectrics and in i Layers 

This generalized equation is the main principle behind the finite element analysis 

of water-tree.  

2.2.4.2 Finite Element Breakdown on Location Region 

 

In Figure 25 above, it is shown that capacitor with n additional dielectric materials 

and arrange in m layers can be resolved by the generalized equation. The same principle 

is applied to water-tree analysis. By increasing the n and m value, the dielectric materials 

of the water-tree can be divided into smaller and smaller components. At very n and m 

high value, each localized region, is effective a homogenous piece of material and its 

permittivity is determined by its distance from the water root. 
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The specific permittivity of each localized region is determined by its position in 

the ellipsoidal bounded area. The very root of the tree, the permittivity value will be 

approach the relative permittivity of water at 2.3. As the position moves away from the 

water root (either in x-axis or y-axis), the permittivity will gradually increase. At the very 

edge of the ellipsoidal bounded area, the relative permittivity of the localized region will 

be approach the relative permittivity of the XLPE at 6.9. The resolution of the relative 

permittivity at a specific region follows Figure 26 below: 

 

Figure 26: Resolution of Relative Permittivity at a Specific Region 

`5,	a5,	`], Z and T are known parameters 

a] � b ∗ d………………………………………………………………………(14) 

The line segment equation is: 

a
 � e�f� ∗ `
……………………………………………………………………...(15) 

The ellipse equation is: 

fS+f[+ � BeSHg[+ E+
e[+ � 1……………………………………………………………...(16) 
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Resolving the previous two equations yield: 

`
 � f[e[f�	f�+e[+J	e�+f[+ ∗ �`]a5 � h3`5	a]	 � 4a5	`]	� …………………….(17) 

a
 � f[e[e�	f�+e[+J	e�+f[+ ∗ �`]a5 � h3`5	a]	 � 4a5	`]	�……………………..(18) 

Length of the line segment is given by: 

�]�f � k�`
 � 0�	 � �a
 � 0�	 � k`
	 � a
	 ………………………………..(19) 

The distance of the specified point to the tree root is: 

�5 � k�`5 � 0�	 � �a5 � 0�	 � k`5	 � a5	…………………………………..(20) 

The relative permittivity of the specified point is: 

4$'%/& � �4%/lm.�&%'/ � 4n�&o
� ∗ 
�
[1p � 4n�&o
 ………………………………...(21) 

Where 

`5 is the x-axis coordinate of the specific point (set parameter) 

a5 is the y-axis coordinate of the specific point (set parameter) 

`
 is the x-axis coordinate of the ellipsoid intercept of the line segment through 

origin and specified point 

a
is the y-axis coordinate of the ellipsoid intercept of the line segment through 

origin and specified point 

`] is the horizontal ellipsoid axis bound (set parameter) 

a] is the vertical ellipsoid bounded area (determined using Z) 

Z is the water-tree progression indicator (set parameter.) 

T is the thickness of the total thickness cable insulation (set parameter) 

r is the length from the specific point to the root of the water-tree 

�]�f is the total length of the line, which the resolution point is on.  
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4n�&o
	is the relative permittivity of water 

4%/lm.�&%'/is the relative permittivity of the insulation layer 

45 is the air electric permittivity 

The water-tree root is taken as the origin of the measurement.  

Z is the indicator for the water-tree corrosion process. For example, Z=0.8 

indicate water-tree has corroded through 80% of the insulation layer. 

�]�f	represents the line segment that starts at the tree root. It passes through the 

resolution point and ends at the boundary of the ellipsoidal bounded area. 

The angle ^%_  in the generalized multiple-dielectric material equation can be 

resolved using `5 and	a5. For example, if the finite element analysis algorithm placed 

origin at the center of the conductor as shown in Figure 27: 

 

Figure 27: Resolving the Dielectric Material Angle with Conductor as Origin 

Then angle α for a specific point can be solved as: 

^ � tanH� f�tJ
MRVuvMwRSHe� ……………………………………………………….(22) 
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�#'/xm#&'
	represents the radius of the conductor. 

The equation set can also be expended to include z-axis for three-dimensional 

evaluation.  

2.3 Model Result 

 

It is necessary to remember that water-tree is a very complex structure. The main 

objective of the current mathematical model is provide understand and insight into the 

overall characteristic of the water-tree behavior. 

The result from this section is calculated from a 2-dimensional cross section 

model. The capacitance has two distinct large layers: the inner layer without water-tree 

and the outer layer with water-tree as shown below in Figure 28: 

 

Figure 28: Equivalent Circuit of Simulated Capacitance 

The healthy insulation layer is represented by 	!yo�.&ye. The water-tree afflicted 

insulation layer is represented by !#']$
']%lox.  

In the finite element analysis algorithm, the cable insulation will be broken down 

into individual, thin rings shapes referred as layers. Each layer consists of two parts: 
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healthy insulation and regions affected by water-tree. The permittivity of the water-tree 

afflicted region will depend on its specific coordinate within the boundary region. The 

permittivity values will be integrated to obtain the corresponding value used in the 

generalized water-tree capacitance formula derived in the previous section. 

In the simulation algorithm, a number of parameters are needed: 

Relative Permittivity of the Insulation: The value will be 2.3 in the following 

simulation. It is the relative permittivity of XLPE. 

Relative Permittivity of Water-Tree Root: Close to the Permittivity of Water (88 

in the following simulation) 

Cable Radius: Depending on the Scenario (2.27cm in the following simulation, 

arbitrarily chosen) 

Conductor Radius: Depending on the Scenario (1.24cm in the following 

simulation, arbitrarily chosen) 

Ellipsoidal Ratio of the Water-Tree Afflicted Area: Depending on the Scenario 

(narrow axis = 0.2*long axis in the following simulation, arbitrarily chosen) 

The arbitrarily chosen values in the following simulations are chosen to resemble 

a real world cable. 
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Figure 29 shows the simulation result from the finite element analysis algorithm. 

The vertical axis is capacitance in Farads/m. The horizontal axis shows the water-tree 

corrosion process from 0% to 100%. Zero percent represents a completely healthy cable 

and one hundred percent represents a cable segment with fully breached insulation layer.  

 

Figure 29: Capacitance of Water-Tree Afflicted Area 

The capacitance/length information in the figure refers the overall capacitance of 

the ring-shaped layer containing the water-tree. The simulation is represents the 

capacitance/length obtained from a two-dimension slice. 

!#']$
']%lox is the capacitance of the ring shaped slice if it contains water-tree. 
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 !#']$
']%lox!�z��8z8�� is a comparison plot. It represents the capacitance of 

a complete healthy insulation layer resolved using the same algorithm. A zoomed-in 

version of the figure is shown below in Figure 30: 

 

Figure 30: Capacitance of Water-Tree Afflicted Area (Zoomed-in) 

According to the model, the capacitance difference between a healthy system and 

water-tree afflicted system is in the range of nF/m. This result illustrates the main 

challenge associated with water-tree detection. The innate capacitance of underground 

cable generally ranges from 0.2µF/km to 0.7µF/km. The capacitance of water-tree 

afflicted section is only slightly different from a healthy section of the same dimension. 

By extension, the water-tree is only differentiated from the characteristic capacitance of 

healthy cable segment by nF range capacitance increases. 

A graphical representation of these values is shown below in Figure 31: 
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Figure 31: Graphical Representation of C_compromised Value 

The values in the previous graphs represent the capacitance of the ringed shaped 

layer, including both healthy insulation and the water-tree bounded region. The 

comparison plot represents a ring-shaped layer, which is completely healthy. 

As the water-tree corrosion depth increases, the thickness of the ring-shaped layer 

increases as well. As the result, the capacitance value natural decreases due to increased 

distance between charged surfaces. 

The overall capacitance of water-tree under various stage of corrosion is shown 

below in Figure 32: 
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Figure 32: Overall Capacitance of Water-Tree at Different Developmental Stages 

The capacitance of water-tree will gradually increase as it breaches the insulation 

layer. Prior to the critical breakdown, however, the overall magnitude change of water-

tree capacitance is relatively small.  

The finite element analysis method provides two-dimension values of the water-

tree afflicted cable slices. Due to the very complex electromagnetic interactions from the 

three-dimensional water-tree structures, it is necessary to use a simplified model for the 

three-dimensional water-tree capacitance estimation. An approximation is obtained by 

multiplying the two-dimension capacitance/length value with the narrow axis length from 

the water-tree boundary condition. Since water-tree is approximately cone-shaped in 3D, 

the narrow axis length is roughly enough to three-dimensional width of the water-tree 

afflicted area.  
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2.4 Chapter Conclusion 

 

By learning its underlying mathematical principle, water-tree behavior in large 

systems can be studied and predicted; therefore, modeling is the first step in developing a 

reliable method for water-tree location and estimation. 

Due to the complexity of water-tree structure, appropriate assumptions and 

approximations must be made for the modelling process. Since surfaced–originated, 

uniform cluster vented trees are the most common and significant type of water-tree, it 

becomes the focus of the study. The final capacitance calculation for a three-dimension 

water-tree is estimated using the values obtained from the two-dimension cable slices. 

The principle and approach developed in this chapter is not limited to the given 

assumptions. Finite element analysis is a valuable tool in water-tree modeling because the 

method can be modified and expanded to fit many situations. For example, by changing 

the permittivity distribution pattern, the method can be altered to study bow-tie tree or 

conductor-originated vented tree. By adding weight ratios to the generalized multiple 

dielectric-material equation, non-uniform cluster water-tree can be modeled. By changing 

the boundary conditions for the water-tree afflicted region, water-tree developed from 

other voltage and current sources can be modeled. It is a flexible method with potential to 

fit many complex scenarios. 
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Chapter 3  

High Frequency Pulse Detection Method for Water-tree 

3.1 General Background on High-Frequency Pulse Detection 

 

Currently, the fault detection techniques in the power industry tend to focus on 

VLF and OPF methods. High-frequency methods, however, do exist for some 

applications. Although they may not be directly applicable to early-stage water-trees 

detection, their results have yielded useful information and provided potential solutions 

for water-tree detection using VHF methods. 

Previously, Texas A&M University has done research on high-impedance fault 

detection using VHF method. The specific method focused on high-impedance arcing 

faults. During the research, 86 separate faults stages were studied across six different 

feeders. Their system responses were collected and analyzed. The results showed that 

high-impedance arcing faults produce drastically increased amount of high frequency 

components. Using this observation, a detection method was developed to track the 

“signature” of the fault through identification of high frequency component composition 

[59~64].  

The arcing fault detection technique provides valuable insight on potential 

methods for water-tree detection. Similar to arcing faults, water-tree is a complex 

structure and produces a number of high-frequency components. Thus, it is theoretically 

possible to build signature profiles for different water-tree corrosions progress.  
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Adaptation of the technique to early-stage water-tree detection, however, is much 

more challenging due to a few key differences. These differences are illustrated by the 

high frequency characteristics of water-tree. 

Swedish Royal Institute of Technology has carried out research on high-frequency 

characteristics of water-tree afflicted cable. In their experiments, both laboratory-aged 

and ex-service XLPE cables were tested for their insulation leakage conductivity and 

water content. The experiment was done using a two-port setup. The result showed that 

for cables with a water content of 13% and 7%, the corresponding conductivities are 

approximately 0.005S/m and 0.22S/m [65~70].  

The implication is that the conductivity of water-tree is entirely dependent on the 

water content of the cable. By extension, it also depends on the continuous water 

pathways in the insulation layer. In the field, the real-time water content of the cable may 

vary with the environment. For normal operating conditions, the cables will not be 

submerged in high concentration of moisture/water over prolonged period. Although it is 

possible for events such as large-scale flooding or collapse of cable housing structure to 

place the cable in watery environment, such events are highly visible from outside and 

the affected cable segment can be tracked using methods much simpler than water-tree 

detection. For the scenarios where remote location of water-tree is the only viable option, 

the water content of the cable tends to be significantly less comparing to its counterpart 

under the laboratory condition. This results in very low conductivity; therefore, the 

expected water-tree structure will be almost purely capacitive as discussed in chapter two. 

Experiments also showed that the high-frequency characteristic of water-tree is 

different from the characteristic of an arcing fault. Specifically, TDR reading were taken 
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for a water-tree afflicted cable segment utilizing 300kHz to 300MHZ generated waves. 

The readings showed significant high-frequency attenuation. The attenuation was not 

attributed to water-tree, but it still served to hinder the detection process [71~77].  

In chapter two, it is shown that early-stage water-tree capacitance ranges from 

1nF to 12pF. The basic concept of the VHF model is reducing the equivalent impedance 

of the water-tree into a more manageable level.  

Since it is impractical to insert full physical models of the water-tree into a large 

system, simplified representations must be used. Fortunately, water-tree develops at a 

very slow rate; therefore, its physical characteristics remain constant over a short period. 

Thus, a lump model is sufficient for observing the water-tree frequency response.  

The required frequency for water-tree detection is inversely proportional to the 

equivalent impedance of water-tree. Due to the small capacitance of a developing water-

tree, the required frequency is very large. At this frequency, measurements will be 

subjected to high-frequency attenuation. The presence of high-frequency attenuation 

unrelated to water-tree also means that the attenuation itself cannot be used as an 

indicator of water-tree presence and it exists purely as a hindrance to the detection 

process. 

The various attenuation effect experienced by VHF method is not limited to the 

high-frequency range. The innate high impedance of a developing water-tree renders 

standard Tan-Delta or Partial Discharge methods ineffective, especially in long cables. 

For example, dielectric spectroscopy measurement showed that an early-stage water-tree 

had limited frequency dependent response. The Tan-Delta deviation was very small at 

less than 0.5°. The overall result was a significantly weaker travelling wave [78~82].  



79 

 

There are several issues associated with a weak travelling wave. For example, 

equipment sensitive is a significant problem. At the same technology level, more precise 

instrument means higher cost.  

Other problems include mathematical singularities in the detection algorithm. 

Traditionally, traveling wave is analyzed through various transformation algorithms. 

Unfortunately, low-amplitude and heavily attenuated travelling waves tend to create 

many singularity points. Thus, frequency domain observations of weak travelling waves 

are often unreliable [83~92].  

3.2 High-Frequency Pulse Detection of Water-Tree 

  

From economical perspective, VHF methods are not the first choice for cable 

testing. They are complex testing methods that require specialized instruments and can 

potentially place heavy stress on the cable. They are, however, uniquely suited in this 

situation detection due to the high-frequency characteristic of water-tree. 

3.2.1 Motivation for High-Frequency Pulse Detection Method 

 

In recent years, there has been an increasing demand for renewable energy. Due 

to the rising cost of fossil fuel and greater awareness on the environment, nations around 

the world have focused their effort on creating clean and renewable supplies of electrical 

power. For this purpose, wind power has received large amount of attention. 

By 2014, the installed wind-power capacity in United States has exceeded 60GW 

and it is increasing each year [93~96]. Researchers have dubbed the recent years the “era 

of wind”. Wind power expansion is characterized not only by the increasing capacity, but 

also by the greater integration with the grid [97~98]. The expansion process, however, is 
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not without challenges. One significant issue is encountered by southeastern power 

utilities. In eastern United States, owing to its high population density, new wind farms 

have gradually become cost ineffective due to limited wind availability and land 

acquisition expense. Thus, utilities must now secure new sources of wind. Amongst the 

potential choices, oceanic locations have emerged as a potent solution to the problem. 

 Oceanic wind facilities as such offshore windfarms offer many advantages. For 

example, lacking geographical barriers, oceanic wind is generally stronger comparing to 

its inland counterpart. In addition, the different heat capacities of rock and water also 

serve to create stronger wind current during day/night cycle. Finally, the land acquisition 

cost of oceanic locations is greatly reduced, especially for high population density 

regions. 

 There are, however, some significant issues associated with offshore windfarms. 

For example, one aspect of the issue is technological limitation, such as platform 

construction in deep water or equipment operation in high moisture environment. Legal 

limitation is also a potent issue for offshore facility placement. In South Carolina, state 

law prevents offshore windfarms to be placed near shore; therefore, the turbines have to 

be constructed in federal water instead. In United States, federal water generally refers to 

regions more than 30 miles (50 kilometers) from the shore. Other reasons may influence 

windfarm placement. For example, they may be placed far away from the shore to take 

advantage of locations with particularly strong wind. 

 In either case, power delivery to the grid is an unavoidable issue. Although power 

transmission to a distance target has always been a basic function of the electric grid, 

delivering power across the ocean is much more challenging. On land, long-distance 
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transmission is typically handled by high-voltage overhead lines. In ocean, however, 

building transmission towers for overhead lines is much more expensive. In addition, 

locations ideal for wind facilities are guaranteed to experience strong wind and by 

extension, strong waves as well. In this case, overhead transmission lines are also 

vulnerable to environmental hazards. As the result, cross-ocean connections tend to favor 

submarine transmission cables instead of overhead lines. 

 Submarine cable is a sub-category of underground cables. Like inland 

underground cables, submarine cables are conducting wires protected by insulation. Since 

construction on ocean floor is both technologically challenging and economically 

prohibitive, the cables are generally placed directly on ocean floor instead of cable ducts. 

Due the oceanic hazards, the submarine cable is also protected by armor or other type of 

protective wrapping. 

A very important characteristic of submarine cable is the individual segment 

length, especially for transmission level voltage. Since these cables are typically point-to-

point power cables by design, there is reduced need for underwater splices. In addition, 

splices also tend to increase the risks of failure (for both electrical and mechanical 

reasons). As the result, submarine cable segments are generally significantly longer 

comparing to their inland counterparts. 

 In chapter one, the effect of aging power infrastructure and the role of 

underground cable in the situation is discussed. The aftermath of a submarine cable 

failure also compounds the problem. Due to the high service voltage for transmission 

cables, a critical stage water-tree has a high probability of developing into a hybrid-tree. 

The hybrid-tree is characterized by creation of electrical-trees in the final insulation 
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breakdown stage. Thus, hybrid-tree induced faults have significantly lower fault 

impedance and larger fault current. The large fault current may also create secondary 

effects that amplify the problem.  

Point-to-point transmission cables also serve to deliver large amount of power 

across the grid connection. Consequently, a fault on submarine cable may also drop large 

amount of generation from the grid and creates further imbalance in the system. 

Repairing a submarine cable fault is also problematic. After disconnecting the 

service and identifying the fault location, specialized vessels must be dispatched to the 

region. Optimistically, the process can still take up several days.  

Due to the resource cost of the repair work and the service interruption, it is 

highly desirable to locate the water-tree before it reaches the critical stage. Researches 

have indicated that preventative maintenance is the key for ensuring long, healthy cable 

operational lifespan. Unfortunately, extracting operational information from submarine 

cables is not an easy task. The oceanic environment prohibits most forms of direct 

observational techniques and the long cable segment creates problems for remote 

detection techniques. The situation is especially problematic for water-tree detection, due 

to the extremely high impedance of early-stage water-tree.  

Thus, it is necessary to develop a detection method, which can identify an early-

stage water-tree despite its high impedance. The method needs to be a remote-location 

technique and does not require the utilities to dive under the ocean. The method must also 

be able to determine the severity of the water-tree for preventative maintenance. Finally, 

the method must be none destructive so the cable may resume normal operation 

afterwards. 
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3.2.2 Methodology for High Frequency Pulse Detection 

 

Early-stage Water-tree detection in long distance cables can be separated into two 

objectives: locating the water-tree and estimating its severity.  

For locating the water-tree, the main challenge is overcoming the innate high 

impedance of the water-tree structure. In chapter one, the advantages and disadvantages 

of various detection methods are discussed. Most of these methods are ineffective against 

an early-stage water-tree. An early-stage water-tree is simply not visible under OPF or 

VLF. More specifically, under OPF and VLF, the accuracy requirement for the 

instrument is simply too high for economical implementation. Fortunately, VHF methods 

have shown more promise. In VHF method, the high frequency lowers the impedance 

associated with the capacitance portion of the tree. For sufficiently high frequency, the 

water-tree impedance is reduced to a level that commercially available instruments are 

sufficient to differentiate healthy and water-tree afflicted insulation. By locating the pulse 

reflection from the cable discontinuity created by water-tree, the specific location of the 

water-tree can be determined. 

For estimating water-tree severity, it has been observed that for water-tree of a 

given capacitance, there exist certain pulse frequencies that generate specific and 

computer-recognizable reflect patterns. Thus, it is possible to estimate the water-tree 

capacitance, by extension its corrosion progress, using pattern recognition techniques. 

A VHF pulse detection method is developed using these principles. The method 

generates a high-frequency pulse at one of the cable segment terminals and observes the 

pulse response pattern at the same terminal. The location of the water-tree is determined 

by the pulse reflection time and the severity of the water-tree is determined by the pulse 
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reflection pattern under various frequencies. The method will be referred as High-

Frequency Pulse Detection (HFPD) method. 

3.2.3 Method Testing Preparation 

3.2.2.1 Water-Tree Model 

 

Before HFPD method can be tested, it is necessary to setup an appropriate 

simulation system. A mathematical model for water-tree is provided in chapter two. Since 

the finite element analysis method for water-tree is very computation intensive, it is 

impractical to insert the full water-tree model into the system simulation; therefore, for 

the HFPD tests, simplified lump models will be used to represent the water-tree. The 

lump models are shown below in Figure 33: 

 

Figure 33: Lump Model for Water-Tree: Late Stage (Left) vs Early-stage (Right) 

 There are two choices for the lump model. The lump model on the left represents 

a late-stage water-tree where the water-tree branches have penetrated more than 80% of 

the cable insulation. The lump model on the right represents the early-stage water-tree 

where less than 30% of the insulation layer has been breached. Between 30% and 80% 

corrosion, either model can be used for HFPD purpose. 
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 It is necessary to note that the capacitance value for lump models used in this 

chapter will be arbitrarily chosen within a reasonable range. According to the 

mathematical model obtained in chapter two, the developing water-tree is primarily a 

capacitance structure. More specifically, the resistance value is simply too high. Since the 

resistance value cannot be altered by changing input frequency, it will remain too high 

for detection purpose. Thus, the HFPD method only concerns the capacitance of water-

tree. For this purpose, the lump models will consist of a capacitive element of variable 

magnitude and a parallel resistive element greater than 1GΩ. 

From chapter two, water-tree is modelled for cable shown in Figure 34: 

 

Figure 34: Water-Tree Afflicted Cable Segment 
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The water-tree is placed under finite element analysis as shown below in Figure 

35: 

 

Figure 35: Water-Tree under Finite Element Analysis 

The water-tree capacitance parameter is obtained using the following formula 

based on finite element analysis: 

!&'&�. � 	
)NOBS� SM{ E-+ J NOBST S�{ E-@∗ I+,Q-+∗B@P I+,E
………………………………………………….(23) 

Where: 

L is the length of the segment 

�% is the radius of the cable 

�5 is the radius of the inner ring of insulation 

�# is the radius of the conductor 

^ is the angle of the area with permittivity of 4�  

 The capacitance value in the lump model will be determined using the equation 

above. The resistance value is determined empirically. 
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3.2.2.2 Pulse Generation 

  

The simplest pulse generation strategy for the test system is the lightning pulse 

shown below in Figure 36: 

 

Figure 36: Lightning Pulse Model 

 The lightning pulse generator provides a simple mathematical model for the 

capacitance estimation process. The model can also be modified to include the 

fundamental component as shown below in Figure 37: 

 

Figure 37: Lightning Pulse Model with Fundamental Component 

 Experimental results show that the difference between the two models is minimal 

in regards to the HFPD test. 

Mathematically, the lightning pulse is modelled by the equation below: 

a��� � : ∗ �8H|& � 8H}&�……………………………………..……………….(24) 

 Where: 
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A: Controls the magnitude of the pulse. Commercially available pulse generator 

can generate a pulse up to 10kA 

B and C: (C > B): Controls the frequency of the pulse. For fixed C values, larger 

B value results in higher pulse frequency 

3.2.2.3 Testing System Conditions 

 

There are several variations of the testing system: DC, AC, online and offline. 

Many of the European submarine transmission systems are HVDC based. In contrast, 

United States systems tend to favor HVAC instead.  

A sample HVDC system is shown below in Figure 38: 

 

Figure 38: Sample HVDC System 

A sample HVAC system is shown below in Figure 39: 

 

Figure 39: Sample HVAC System 

It is necessary to note that for offline test, DC and AC systems have no significant 

difference. 

For HVDC simulations, the pulse generator can either be placed on the AC side or 

the DC side of the converter. Due to the frequency elimination effect from the converter,  

the pulse generator should be placed on the DC side as shown below in Figure 40: 
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Figure 40: DC Side Lightning Pulse Generator in HVDC System 

Similar, HVAC simulation also has two potential pulse-generator placement 

locations: low-voltage side and high-voltage side of the transformer. Like the converter, 

the transformer may also eliminate certain pulse responses. Thus, the pulse generator is 

placed on the high-voltage side as shown below in Figure 41: 

 

Figure 41: High-Voltage Side Lightning Pulse Generator in HVAC System 

In regards to the online and offline test comparison, the pulse response is 

proportional to the magnitude of the input pulse. Since the magnitude of the water-tree 

response is small, it is preferable to use an input pulse of large magnitude.  It should be 
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noted that like many PD tests, exceedingly large input pulse may cause permanent 

damage to the cable insulation; therefore, it is preferable to perform the offline test. 

For offline tests, DC side of HVDC system and high-voltage side of HVAC 

system has no practical difference. Both cases can be represented by a single cable 

system as shown below in Figure 42: 

 

Figure 42: Offline Test System: Without Water-Tree (Top) vs With Water-Tree 

(Bottom) 

For offline tests, the pulse generator is the sole source of voltage and current in 

the system as shown below in Figure 43: 

 

Figure 43: Pulse Generator in Offline Test System 

3.2.2.4 Test Procedure 

 

1) The high frequency pulse is triggered at time = zero, the voltage at the input 

terminal is recorded until pulse reflection from the other cable terminal appears. This is 

referred as a single cycle of the test procedure. 

2) The water-tree pulse response waveform is recorded for comparison purpose. 
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3) The lightning pulse parameters are altered to obtain responses for different 

frequencies. 

4) The water-tree parameters are altered to obtain responses for different water-

tree capacitances. 

5) The water-tree locations are altered to obtain responses for different water-tree 

distances. 

The HFPD test is done in PSCAD and the following parameters are utilized: 

1) For the high-frequency pulse generator blocks in Figure 43, the subtraction 

block is based e; coefficient of base is one and the coefficient of exponent is 

fixed at -3e9. 

2) For the addition block of the high-frequency pulse generator, the block is 

based e; coefficient of base is one and the coefficient of exponent will be 

varied between -1e4 and -2e9 to adjust the input pulse frequency. 

3) The cable model uses the PSCAD frequency dependent underground cable 

model. The parameters are shown below in Figure 44. Depending on the 

specific need of the user, the cable parameters should be adjusted to match the 

condition of the actual cable. 
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Figure 44: PSCAD Cable Test Parameters 

4) The length of the cable segments will be varied to represent cables of different 

lengths. 

5) The cable is divided into two segments. By varying the length of each 

segment, the location of water-tree can be adjusted. 

6) The resistance value of the lump model will remain fixed at 15.51e9. The 

capacitance value will be varied to simulate water-trees of different severities. 
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3.2.3 Test Case Results 

 

The shape of the high-frequency pulse is shown below in Figure 45: 

 

Figure 45: High Frequency Input Pulse: Initial Moment (Left) and Overall (Right) 

3.2.3.1 Water-Tree Pulse Response Cases 

 

The first test case result is from a three-system comparison case as shown below 

in Figure 46: 

 

Figure 46: Three-System Comparison Case 
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The three systems are, from top to bottom: healthy system without water-tree, 

high corrosion depth water-tree and low corrosion depth water-tree.  

The result from the full cycle is shown below in Figure 47: 

 

Figure 47: Overall Pulse Response from HFPD Method 

The particular test is an offline system test with a 2km cable for 60Hz system. The 

lump model water–tree capacitance is 13pF. The test pulse is 60kHz and the water-tree is 

placed 1.5km from the input terminal. The two large pulse responses correspond to the 

initial pulse and reflected pulse from the other cable terminal.  

A zoomed in version on the pulse response is shown below in Figure 47: 

 

Figure 48: Pulse Response from Water-Tree 
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Depending the test pulse frequency, there are three potential patterns for the pulse 

response as shown below in Figure 48: 

 

Figure 49: Pattern Identification Possibilities 

 The three cases are under-frequency, benchmark-frequency and over-frequency. 

For under-frequency response, the applied frequency is too low. Thus, it cannot 

effectively reduce the water-tree capacitance; therefore, the pulse response pattern from 

water-tree afflicted system is essentially the same as the healthy system. The minor 

deviation is difficult to identify since there is no healthy system response comparison in 

actual field. 

 Benchmark-Frequency represents a unique “plateau” pattern as shown below in 

Figure 50: 
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Figure 50: Benchmark Frequency Pattern 

For water-tree of certain capacitance, there is a small range of frequencies that 

generate the flat plateau pattern. In section 3.1, the possibility of building a frequency 

component profile for high-impedance faults is discussed. Using the same principle, for 

water-tree of certain capacitance (corrosion depth), there will be a corresponding 

benchmark-frequency range that serves as its HFPD response signature. 

The over frequency case refers to the situation where the applied frequency is too 

high. In this case, the pulse response from water-tree afflicted system is significantly 

different from the healthy system. For example, when the applied pulse frequency is 

increased to 6MHz for the 13pF, 2km cable system, the water-tree pulse response is 

shown below in Figure 51: 
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Figure 51: Over Frequency Water-Tree Pulse Response from 6MHz Pulse 

Although the over frequency case is useful for locating the water-tree, it lacks 

distinct, quantifiable features; therefore, it is not useful for estimating the water-tree 

severity. 

The process of determining the benchmark frequency range is referred as 

benchmark-frequency identification. The three potential cases are summarized below in 

Table 1: 

Table 1: Water-Tree Pulse Responses from HFPD Method 
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3.2.3.2 Pulse Response Pattern Identification 

 

In essence, benchmark-frequency identification is a pattern identification 

technique, which searches for signature patterns in water-tree pulse response. These 

patterns are the results of variations in important cable test parameters. 

The benchmark frequency is created by the superposition of the sending pulse and 

reflection pulse from water-tree as shown below in Figure 52: 

 

Figure 52: Establishment of the Benchmark Frequency 

The variation in the input pulse frequency affects the magnitude of the residual 

pulse. Since frequency variation also change the water-tree impedance and by extension, 

the reflection coefficient of the water-tree discontinuity, it affects the magnitude of the 

reflect pulse as well. Experiments show that for the same water-tree capacitance, location 

and cable length, varying the frequency will produce a gradually shifting pulse response 

pattern corresponding to the shifts in frequency. 

Other parameter variations also induce pattern shifts in water-tree pulse response. 

For example, a test case is shown below in Figure 53: 
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Figure 53: Water-Tree Response Trend Test Case for 1 Meter Cable under 1085kHz 

Pulse 

The test case uses 1085kHz input pulse on one meter cable. The water-tree 

capacitance is varied for comparison purpose. The test case also shows gradual shifts in 

the water-tree pulse response pattern corresponding to parameter variation.  

The benchmark frequencies are unique points in these pattern shifts. For a certain 

water-tree capacitance and cable length (water-tree location), there is only be one 

benchmark frequency range at maximum. In some situations, no benchmark frequency 

range can be established. The specifically relationship is shown below in Table 2. The 

table uses the three primary variables for the HFPD test cases: cable length, fault 

capacitance and the corresponding benchmark frequency. 
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Table 2: Benchmark Frequency under Different Test Case Parameters 

 

The zero entries in the table refer to the combinations of cable parameters where 

benchmark frequency does not exist.  
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3.2.3.3 Benchmark Frequency Trends 

 

Certain trends exist for benchmark frequencies. These trends represent the 

relationship between various HFPD test characteristics and the resultant pulse response. 

Figure 54 shows the relationship benchmark frequency and distance of water-tree from 

the input terminal: 

 

Figure 54: Water-Tree Distance vs Benchmark Frequency 

 The water-tree distance is represented by the cable length. Variations in cable 

length move water-tree into different locations. For a certain fault capacitance, the 

benchmark frequency (log scale) is linearly proportional to water-tree distance (log scale) 

with a slope of approximately -0.5. 
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A trend also exists between the relationship of water-tree capacitance and 

benchmark frequency. The trend is shown below in Figure 55: 

 

Figure 55: Water-Tree Capacitance vs Benchmark Frequency 

The test case is done for 10km cables and the water-tree is located 5km from the 

input terminal. The x-axis can be viewed as a gradually developing water-tree and the y-

axis is the corresponding benchmark frequency at different development stage. Under log 

scale, the benchmark frequency is approximately inversely proportional to the water-tree 

capacitance. It is also shifted along both x-axis and y-axis. 

Figure 56 shows a three dimensional view of the relationship between water-tree 

distance, water-tree capacitance and the benchmark frequency. All parameters are under 

log scale. 
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Figure 56: Water-Tree Distance vs Water-Tree Capacitance vs Benchmark 

Frequency 

The following trends are observed for the benchmark frequency: 

1. For the same water-tree distance, larger water-tree capacitance results in lower 

benchmark frequency. 

2. For the same water-tree capacitance, farther water-tree distance results in lower 

benchmark frequency. 

3. For very far or very close water-tree, no benchmark frequency can be 

established. 

4. For very large or very small water-tree capacitance, no benchmark frequency 

can be established. 

 The benchmark frequency trends are summarized below in Figure 57: 
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Figure 57: Benchmark Frequency Trend 

3.3 Chapter Conclusion 

 

The high-frequency pulse detection method allows remote detection of water-tree 

location and estimation of its severity. The method, however, does contain some 

weaknesses. For example, it is shown that HFPD method cannot establish a benchmark 

frequency for very large capacitances or very short water-tree distances.  

It is necessary to remember that the HFPD method is not the sole method for 

water-tree detection. Different methods exist for practical reasons and different 

techniques can supplement each other.  For example, although the effectiveness of HFPD 

method diminishes after water-tree capacitance exceeds certain limits, the effectiveness 

of many traditional detection techniques such as travelling-wave methods will increases. 

Thus, HFPD method complements the traditional methods. 
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The high-frequency pulse detection method and benchmark-frequency 

identification technique specialize in early-stage water-tree detection for long-distance 

cables. It has the best performance on water-trees with small capacitance and in long 

cables. Thus, it is well suited for preventative maintenance on long-distance cables.  
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Chapter 4 

Early-Warning of Water-Tree Presence using Deviation 

Comparison  

4.1 Motivation for the Early-Warning System 

 

In the previous chapter, a method is developed to locate water-tree in long 

distance cables. The benchmark identification method is designed to supplement the 

HFPD method and it allows estimation of water-tree severity. 

There is, however, a significant conundrum associated with practical 

implementation of the HFPD method. The key element for HFPD method is a pulse with 

sufficiently high frequency and amplitude. The high frequency is responsible for reducing 

water-tree impedance to a manageable level and the high amplitude adds greater visibility 

to the output.  

Although commercially available pulse generators are capable of producing the 

required high-frequency pulse, it is still an expensive piece of equipment. Thus, a utility 

will only purchase a few of the devices and the availability for high-frequency pulse 

generators is expected to be limited; therefore, the HFPD test can only be realistically 

performed on priority targets. 

In addition, the magnitude of the generated pulse is very large. As the result, 

offline test is the preferred choice for HFDP method. Unfortunately, since long-distance 

cables are often critical connections in the grid, taking these cables offline will result in 

significant interruption to the grid service. Consequently, it is necessary to limit both the 

number and duration of the HFPD tests. 
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Performing HFPD test is also stressful to the cable insulation and cable tests 

causing damage to the insulation is well documented. Since the method is developed to 

provide information for preventative maintenance, its ultimate subjective is prolonging 

the service life of the cable. If the test itself damages the cable insulation, then it is 

counterproductive.  

As the result, although HFPD method is capable of obtaining accurate information 

on early-stage water-tree, it should only be performed on selective targets; therefore, 

there is the need for a new process, which can identify potential candidates for the HFPD 

method. 

4.2 Methodology 

4.2.1 Method Requirements 

 

The early-warning system is designed as a supplement to the HFPD method. Its 

goals are monitoring the overall condition of the cable connections and assisting the 

utilities on locating potential targets for the HFPD test. With the goals in mind, the 

system must meet the following requirements: 

1) The system must be relatively inexpensive: Specialized instrument implies 

increased operational expense and increased expense leads to less system coverage. The 

goal of the early-warning system is to monitor and evaluate the conditions of all the long 

distance cables in service; therefore, the coverage must extend to all the cable 

connections in the service system. To reduce the corresponding expense, no specialized 

equipment should be used. 

2) The system must be able to monitor the cables over prolong period: Water-Tree 

is a slow developing phenomenon. The initial appearance and final breakdown can be 
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separated by years or even decades. In order to develop an economically feasible 

preventative maintenance schedule, the cables monitoring process must be long term. 

Although the system coverage does not have to be continuous, it is beneficial for the 

system to cover as much time as possible. With greater time coverage, more data can be 

accumulated and the probability estimation is more reliable. 

3) The system must be able to monitor the cables without interrupting normal 

operation: Many long distance cables are critical grid connections and they cannot be 

taken offline for extended period of time. Thus, long-term monitoring of the cable system 

must be done in online conditions. 

4) The system must not place significant stress on the grid stability and safety: 

Since the early-warning system is a long-term process added to the standard system, it 

will naturally have an impact on the grid stability and safety. As the result, it is necessary 

to minimize any disturbances. 

It should be noted that the early-warning system would not directly determine the 

characteristics of water-tree. Rather, the purpose of the system is to estimate the 

probability of water-tree presence on certain cable segments. For example, in HFPD 

method, a reflected pulse pattern from a none-terminal part of the cable will indicate a 

discontinuity and if the pulse response matches certain patterns, then it is a clear indicator 

of water-tree presence. The HFPD method presents clear information on water-tree 

characteristic such as location and capacitance.  

In the early-warning system, there will not be a clear indication of cable 

discontinuities. The observational result will be pattern anomalies in the operational 

waveforms. These anomalies represent probability of water-tree appearance on the cable 
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segment. Iterations of the results produce the accumulated probability estimation. If the 

estimation reaches a certain threshold, then the cable segment becomes a candidate for 

the more specialized HFPD test. 

4.2.2 Naturally Occurring High-Frequency Phenomena in the System 

 

 In chapter three, the crux of water-tree detection is discussed. The HFPD method 

is designed to overcome the very high impedance of early-stage water-tree. As the 

supplement to HFPD method, the early-warning system must deal with the same issue. 

Both the mathematical model from chapter two and empirical measurement indicated that 

steady state water-tree impedance can be as high as 1GΩ for a standard 60Hz system. As 

the result, observing water-tree response under steady-state conditions is very difficult; 

therefore, high frequency remains the most practical and cost effective tool to deal with 

the water-tree impedance. Without a dedicated pulse generator, however, the early-

warning system must use alternative sources of high-frequency input. 

 There are many potential sources of naturally occurring high-frequency events 

(NOHFE) in the system. For example, offshore windfarms may use wind turbine 

transformers to raise the transmission voltage.  It is observed that when a fault is cleared 

on the low voltage side of the wind turbine transformer, a recovery voltage can be 

triggered on the primary-side circuit breaker. The frequency of the recovery voltage can 

reach as high as 47kHz [99~102]. Windfarms may also experience other types of high-

frequency transients, such as loading or breaker switching [103~109].  

Another major source of NOHFE in the system is the very high order harmonics. 

Although harmonic control is a well-established field in power systems, modern day 

control system tends to focus on the suppressing the 3
rd

, 5
th

, 7
th

, 11
th

, 13
th

 order harmonics 
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[110~118]. These harmonics are typically generated by control system components such 

as diodes and thyristors. For the purpose of water-tree detection, they are low-order 

harmonics and irrelevant to the detection process. In comparison, transistor-based control 

system components, such as IGBT, can generate very high order harmonics. These high 

order harmonics has been observed to reach 40
th

 order and beyond. They are sometimes 

referred as supra-harmonics and they range from 2.4kHz to 180kHz (2kHz to 150kHz for 

European systems) [119~124].  

 From system simulations, it is determined that the threshold for the early-warning 

system is approximately 3kHz. Greater frequency and amplitude will increase the clarity 

of the system response.  

The DC system is a unique situation. Water-tree structure is primarily capacitive 

and its impedance is extremely high under DC frequency. Experiments, however, show 

that the DC ripples can also produce sizable response from water-tree. 

4.2.3 Extrapolation-Comparison Method 

 

Although the frequency and magnitude of NOHFE is insufficient for HFPD 

method, they are sufficiently high that water-tree afflicted system begins to exhibit small 

differences from a healthy system. In chapter three, it is shown that when the water-tree 

is subjected to high-frequency events, there are three potential responses as shown below 

in Figure 58: 



111 

 

 

Figure 58: Water-Tree Response to High-Frequency Events 

 Although the benchmark frequency case is ideal for water-tree detection and 

estimation, the frequency and magnitude of NOHFE is generally too low. As the result, 

vast majority of the water-tree response experienced by the early-warning system belong 

to the under-frequency response case. 

 In under-frequency response case, the response shape from a water-tree afflicted 

system closely resembles it counterpart from a healthy system. Although the response 

waveform does exhibit minor deviations, they are very difficult to identify in practice. 

For example, Figure 59 shows the water-tree response from a high-frequency pulse: 

 

Figure 59: Overall View of Water-Tree Response from a High-Frequency Pulse 
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 The pulse at t = 0.00 second and t = 0.28 millisecond are the input pulse and the 

pulse reflection from the cable terminal. The response portion correspond to the water-

tree is not visible in the figure. The zoomed-in version is shown below in Figure 60: 

 

Figure 60: Specific View of Water-Tree Response from a High-Frequency Pulse 

Essentially, the water-tree response is a 0.02V drop in the waveform over three 

microseconds. In combination with noise and other attenuation effects, it is difficult to 

identify the response through direct observation; therefore, there is a need to develop an 

identification method. The method must not only capture the differences caused by 

water-tree presence, it also needs to be able to recognize the source of these differences. 

The extrapolation-comparison method consists of two parts: recognizing 

anomalies in the system through data extrapolation and identifying the potential cause of 

the anomalies through deviation comparison. 
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4.2.3.1 Extrapolation 

 

A sample waveform from normal operation is shown below in Figure 61: 

 

Figure 61: Normal Operation Waveform 

The figure above contains the fundamental, third, fifth and seventh order 

harmonics.  Since these frequency components are well below the 3kHz threshold, when 

viewed from the time scale of the water-tree detection process, the system will resemble 

Figure 62 below: 

 

Figure 62: Normal System Operation in the Time Scale of Water-Tree Detection 
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Without the presence of water-tree, the healthy system waveform should be a 

straight line when viewed from the time-scale of water-tree detection. The presence of 

water-tree, on the other hand, will cause disturbances observable and only observable in 

this time scale. 

The simplest extrapolation scheme is straight-line extrapolation using two 

previous data points as illustrated below in Figure 63: 

 

Figure 63: Straight Line Extrapolation Using Two Data Points 

In two data-point straight-line extrapolation (2DSL) scheme, two data points are 

used to extrapolate the third data point. The extrapolated data point is then compared with 

the actual third data point and the difference is recorded. The difference is referred as 

data deviation from the expected norm, or deviation for short. 
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Depending on the specific situation, the extrapolation scheme can be modified 

and expanded. For example, a straight-line extrapolation can use n data points with time 

stamp t and voltage v. The extrapolated value can be obtained by: 

~] � ∑ �&TH&̅���TH���V@∑ �&TH&̅�+V@ �] � �~̅ � &̅ ∑ �&TH&̅���TH���V@∑ �&TH&̅�+V@ �………………………………..…(25) 

If the waveform is expected to contain known high-frequency background 

components or the time-scale is large, then it is also possible to use non-straight line 

extrapolation schemes. 

 For the simple 2DSL scheme, the deviation can be solved in the steps below: 

)()()( tMtEtD −= ………………………………………………………….….… (26) 

Where: 

D(t) is the deviation value.  

M(t) is the measured value obtained from the system voltage record.  

E(t) is the estimation value from previously measurement points.  

The healthy system is approximately a straight-line over the observation time 

interval. E(t) can be represented by the equation below: 

)2()(*2)( ttMttMtE ∆−−∆−= ………….……………………………………...… (27) 

Where ∆t is the sampling time step. 

Now to determine the water-tree response parameter, the water-tree junction is 

shown below in Figure 64: 
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Figure 64: Water-Tree Junction 

The water-tree response pattern is the super-imposed form of the residual input 

pattern and water-tree reflection pattern. The junction can be modelled after a cable 

bifurcation and the reflection coefficient is shown in the equation below: 
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Where: 

dl is the characteristic impedance for the first half of the cable. 

d
 is the characteristic impedance for the second half of the cable. 

dn	is the characteristic impedance for the water-tree. 

dl and d
 	are equal under normal conditions. 

Thus, the measured pulse will be represented by: 

)2(**)1()()()( τ∆−Γ−++= tPtPtCtM …………………………………… (29) 

Where: 

C(t) is the base operation waveform, including low-order harmonics.  

P(t) is the NOHFE. 
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τ∆ is the NOHFE travel time from the measurement point to the water-tree 

location. 

Since C(t) is a straight-line over the observation interval: 

)]2()22(
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∆−+∆−∆−+

∆−∆−Γ−+∆−+∆−=
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………………….… (30) 

Since P(t) is observable, the deviation D(t) can be used to determine if there is a 

reflection coefficient caused by water-tree. 

 A simplified deviation equation is shown below: 

�/J	 � �/J	 � [��/J� � �/� ∗ ^ � �/J�] …………………………………...…(31) 

Where: 

^ is a compensation parameter 

�/ is the deviation at time step n 

�/ is the actual voltage read at time step n 

 The compensation parameter can be changed according to the extrapolation 

scheme. For the simplest 2DSL scheme, the value is one. 

4.2.3.2 Comparison 

 

The previous portion of the method will determine the deviation values of the 

response waveform. These values are not meaningful by themselves. The deviation 

values need to be compared with the other deviation values from certain time-steps back 

as shown below in Table 3: 
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Table 3: Deviation Comparison Table 

 

The left vertical column represents the deviation value at certain time-step. The 

top horizontal row represents the time-step interval between the current deviation value 

and the comparison value.  The row items will be referred as time-step interval. They 

represent the time difference between the two deviation values. The data entries are the 

ratios between the current deviation value and the deviation value from certain time-step 

interval in the past. 

The key idea is that water-tree is a fixed, slow developing phenomenon. Thus, it 

represents a fixed distance for disturbance to appear. Since the short-term travelling 

speed of the waveform remains the same, fixed time-step interval means fixed distance. 

In essence, fixed-distance phenomenon like water-tree will produce fixed distance 

response. 

4.3 Implementation 

 

In HFPD method, multiple frequencies must be tried before the benchmark 

frequency can be established. Similarly, the early-warning system requires multiple input 

iterations to make reliable estimation. The system flow chart is presented below in Figure 

65: 
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Figure 65: Flow Chart for Early-Warning System 

The system will provide long-term and continuous coverage of the cables. In ideal 

conditions, the operator will continuously record all voltage data at the cable terminal and 

extract deviation values from these data. The deviation values will then be analyzed 

through the deviation comparison table.  

It should be noted that the length of time-step interval (row items) presented in 

Table 3 does not have to exceed certain limits. As long as the time-step interval allows 

the waveform to travel across the entire cable segment length and back, it will be 

sufficient for deviation comparison purpose. 

If computation power is limited, then the extrapolation-comparison algorithm can 

also be selectively triggered. The flow chart in Figure 65 above shows the process. When 

NOHFE is detected in the system, the data around NOHFE will be collected and analyzed 

through the deviation comparison method. If the analysis indicates potential presence of 
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water-tree at certain locations, then the locations will be recorded. When another NOHFE 

occurs, the process will be repeated. If there is a consistent indication of water-tree 

presence at a fixed location, then the operator may choose to apply HFPD method and 

determine the exact status of the cable. 

4.4 Observational Results 

4.4.1 System Response for Naturally Occurring High-Frequency Event 

 

A test system is developed to illustrate the effect of naturally occurring high-

frequency events on water-tree detection. The system is charged by a lightning pulse. 

Unlike the test cases for HFPD method, however, the frequency will significantly lower. 

The lightning pulse serves as an approximation to NOHFE in the system. The system 

parameter is the same as chapter three simulations. 

 Four cables systems are tested using the same lightning pulse: 

1) Healthy System without Water-Tree 

2) System with a Single Water-Tree 

3) System with a Single Water-Tree with High Pass Filter at Input 

4) System with both Water-Tree and Low Impedance Fault 

The water-tree capacitance is set at 10pF and its resistance is set at 1551MΩ. 

These values are taken from the mathematical model in chapter two. They represent a 

water-tree, which has corroded through 80% of the insulation layer. 

The low impedance fault has a fault resistance of 300Ω. The test system is shown 

below in Figure 66: 
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Figure 66: Testing System for Early-Warning System Detection 
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The system response to an amplified 3kHz pulse is shown below in Figure 67: 

 

Figure 67: System Response to 3 kHz Lightning Pulse 

 These are the typically deviations experienced by the early-warning system. Since 

the lightning pulse is an amplified pulse for easier viewing, the absolute scale of the 

difference is bigger than normal. The ratio between the healthy system reading Vin and 

the water-tree afflicted system reading Vin2 is the same as a response using unamplified 

pulse. Specifically, the 3kHz amplified pulse generated a 0.018% deviation in the water-

tree afflicted system.  
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The deviation cause by the low-impedance fault is significantly bigger. The low-

impedance fault response from the same 3kHz pulse is shown below in Figure 68: 

 

Figure 68: Low-Impedance Fault Response to 3kHz Pulse 

The percentage deviation from the low-impedance fault is 4.23%. It is more than 

200 times larger comparing to its counterpart from the water-tree. 

The deviation between healthy and water-tree afflicted system is linearly 

proportional to magnitude of the applied pulse. When the fundamental component is 

removed, the ratio between the deviation and the remaining voltage waveform is constant 

at the same NOHFE frequency. This ratio will be referred as the percentage deviation.  

Depends the fault type, the corresponding percentage deviations have specific 

ranges. For example, the percentage deviation value of low-impedance faults is 

significantly different from the percentage deviation caused by water-tree. This allows 
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the extrapolation-comparison method to categorize its results and attribute the deviations 

to different causes. 

From the test case, two key issues can be observed concerning the feasibility of 

the early-warning system: instrument accuracy requirement and instrument measurement 

error. 

Instrument accuracy is an issue common to the entire water-tree detection process. 

It is a key issue in the motivation of HFPD method and the cost of high-accuracy is the 

factor that motivated the development of the early-warning system. The water-tree 

response to NOHFE demonstrated that the difference between a healthy system and a 

water-tree afflicted system is very small; therefore, the feasibility of the early-warning 

system depends on its ability to identify differences at this scale while upholding its 

method requirements. Fortunately, there exist methods that can boost measurement 

accuracy through mathematical analysis techniques. For example, digital synchronous 

sampling has been known to detect harmonic distortions up to 95
th

 order. The method can 

measure uncertainties as low as 0.0001% [125]. Thus, the accuracy is sufficient to 

identify the percentage deviations in the early-warning system. 

The second issue is measurement error. Measurements from real world 

instruments will contain random errors. Their effect is particularly significant for high 

sensitivity measurements in the early-warning system, but since the percentage deviation 

remain constant for the same fault parameter and frequency, multiple iterations from 

different NOHFE can eliminate large amount of these errors. It should be noted that since 

the frequencies of NOHFEs are random, operators should strive for a large sample size 

and by extension, better clarity and reliability. 
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4.4.2 Effect of Filtering on the Result 

 

The third cable segment in the test system is an alternative approach on data 

acquisition. Instead of mathematically removing the fundamental component in data 

analysis, a high-pass filter is directly applied to the system. The main benefit for such an 

approach is reducing measurement magnitude. Since the early-warning system is an 

online process, cable terminal waveforms are obtained directly from the system. As the 

result, measurements often require step-downs from voltage/current transformers. It is 

possible for valuable data to be lost in the step-down process. In comparison, the filtered 

data will have lower magnitude from the start; therefore, it is possible to use delicate, but 

more accurate instrument for the measurement. The test case result is shown below in 

Figure 69: 

 

Figure 69: Filtered Results from the Test Case 
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The graph on top shows the systems without filtering. The graph on the bottom 

shows the filtered response. The filter is a 2.2kHz first order RLC high pass filter. The 

lightning pulse frequency is increased to 250kHz for easier viewing. Each graph contains 

two systems: healthy and water-tree afflicted system. 

The filtered response has lower magnitude and it is easier to measure. 

Unfortunately, the test result also shows two disadvantages:  

1. The percentage difference becomes larger after filtering.  

2. The pulse response shape is not preserved by the filter.  

In essence, filtering the response is a trade-off between measurement accuracy 

and analysis reliability. The filtered results have better accuracy in raw data, but the 

analysis process itself becomes less reliable in the process. 

In actual application, the source of the NOHFE also affects the result. For 

example, high frequency transients offer larger pulse magnitude and the results are easier 

to observe. They are, however, rarer than high-order harmonics. This results in smaller 

sample pool and potential vulnerability to random measurement error.  

High-order harmonics, on the hand, are more common comparing to high 

frequency transients. They will provide a larger sample pool. Their magnitude, however, 

is significantly lower. Higher instrument sensitivity is required to measure the resultant 

deviation. 

4.4.3 Deviation Comparison Results 

 

The deviation comparison table provides direct views on the potential location of 

water-tree. Since the data entries requires deviation value in the past, a table starting at 
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time=zero will resemble a lower triangular matrix. In contrast, if the monitoring process 

is constant, then the table will be fully filled.  

Part of a sample deviation-comparison table is shown below in Table 4: 

Table 4: Sample Deviation-Comparison Table 

 

 The table is not meaningful by itself. Further analysis must be performed to 

transform the table into a more presentable form. The zeroes in the table represent data 

entries that are not available, discarding these entries and take the standard deviation of 

the remaining data in the column will generate a plot between standard deviation of the 

deviation values and the time-step interval.  
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The output will resemble Figure 70 below and they will be referred as standard 

deviation charts: 

 

Figure 70: Time-Step Difference vs Standard Deviation 

It is important to remember that the input cable terminal is represented by the 

right most part of a cycle. Specifically, at the rightmost terminal, deviation comparison is 

made from deviation readings that are exactly one cycle apart. Without factoring in other 

types of attenuation, the ratio remains the same and the standard deviation is much lower. 

The large spike on the leftmost portion is created by two factors: 

1. The deviation comparison matrix is lower triangular. Thus, the standard 

deviation on the left side is naturally higher. 

2. The left most side compares the deviation from adjacent values. When tracing 

the deviation value closer in the past, the comparison ratio will become 
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smaller. This is because the denominator effectively becomes larger due to the 

decay pattern of the source NOHFE. 

For water-tree afflicted systems, the water-tree behaves similar to a cable 

termination and generates the same effect; therefore, when viewing the standard deviation 

chart of a water-tree afflicted cable segment, the water-tree location will appear in 

corresponding positions. 

The standard deviation chart of a healthy cable system is shown below in Figure 

71: 

 

Figure 71: Time-Step Difference vs Standard Deviation for Healthy System 

The cable is a 20km long. The applied frequency is 155kHz and the test is done 

offline. The figure covers a single cycle. More specifically, the maximum range of time-
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step interval allowed the pulse to travel from the input terminal to the other end of the 

cable and then back to the input terminal. The spike near time-step interval=zero is 

created by the other terminal of the cable. Since there is no water-tree present, the rest of 

the graph is smooth and continuous. 

 For the same system, a water-tree is added. The water-tree is placed 10km away 

from the input terminal, or exactly in the middle of the cable. The comparison graph is 

shown below in Figure 72: 

 

Figure 72: Time-Step Difference vs Standard Deviation with Water-Tree in the 

Middle 

 There is a large spike in the standard deviation chart. The locations correspond to 

the location of water-tree (counting from the rightmost end of the cycle). 
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 The same system is done over four cycles, the healthy system is shown in Figure 

73 and water-tree afflicted system is shown in Figure 74: 

 

Figure 73: Healthy System Over Four Cycles 

 

Figure 74: Water-Tree Afflicted System over Four Cycles 
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 The cycles after the first have similar patterns, but their magnitude is significantly 

smaller; therefore, the time-step interval range only needs to extend over the first cycle. 

The water-tree is now moved to 5km from the input terminal. The resultant 

deviation comparison table is shown below in Figure 75: 

 

Figure 75: Water-Tree at 5km from the Input Terminal (15km from the Other 

Terminal) 

The standard deviation chart shows a spike at the corresponding water-tree 

location. Since the spike is closer to the rightmost end of the cycle, its magnitude is 

smaller, but it is still clearly visible. 
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For the same system setup, the standard deviation graphs of multiple water-trees 

are condensed together into a single figure. It is shown below in Figure 76: 

 

Figure 76: Standard Deviation Graphs of Multiple Water-Trees 

A zoomed in view is shown between in Figure 77: 

 

Figure 77: Standard Deviation Graphs for Multiple Water-Trees (Zoomed in) 
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The water-tree capacitance and resistance parameters remain the same. The water-

trees are place at the following distance from the input terminal: 2km, 5km, 7.5km, 10km, 

12.5km, 15km and 18km. The difference in spike size is purely caused by the lower 

triangular nature of the deviation-comparison table. 

For the same system, the test is now done online. The water-tree is located 10km 

from the input terminal. The responses from both offline and online tests are compared 

below in Figure 78: 

 

Figure 78: Comparison between Offline (Left) and Online (Right) Test 

 Both online and offline tests show similar spikes at the water-tree location. The 

absolute magnitude of the standard deviation value is lower for online test; therefore, 

offline test is still the better test condition. Although the point is irrelevant for the early-

warning system, since it must be online, the extrapolation-comparison method can be 

used to analyze results from HFPD method as well. 

From the observation, it can be seen that the early-warning system still requires 

frequencies past certain thresholds. For example, if the water-tree capacitance is 

approximately 13pF, then the threshold is between 20kHz to 60kHz. 
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If the voltage data is not continuous monitored, the resultant deviation comparison 

table will be lower triangular. This can create issues for detecting water-trees close to the 

cable terminals. For lower triangular table cases, the standard deviation of water-tree near 

input terminal will have very low in magnitude. If the water-tree is near the other 

terminal, then it may be masked by the cable terminal reflection. 

4.4.4 Impact of Harmonics on Deviation-Comparison Chart 

 

Real world power system operations are complex and a number of factors may 

interfere with the early-warning system and the deviation-comparison chart output. For 

example, the presence of harmonics is both a source of NOHFE that may aid the 

detection method and a source of potential interference that may disrupt the result under 

other circumstances. 

Figure 79 below shows the deviation-comparison chart output in the presence of 

four harmonics typically observed with six pulse converters: 

 

Figure 79: Deviation-Comparison in the Presence of 5
th

, 7
th

, 11
th

 and 13
th

 Order 

Harmonics 



136 

 

 The magnitudes of the injected harmonics are listed in percentage of the 

fundamental components: 5
th

: 0.02%; 7
th

: 0.03%; 11
th

: 0.05% and 13
th

: 0.08%. 

 If the magnitude of the harmonics increases, then they may start to interfere with 

the measurement. For example, a healthy system output with larger harmonics injected is 

shown below in Figure 80: 

 

Figure 80: Healthy System Deviation-Comparison Output with Large Harmonic 

Injection 

 The very high spike is a mathematical creation and does not reflect any actual 

cable discontinuity. The magnitudes of the injected harmonics are 5
th

: 0.3%; 7
th

: 0.4%; 

11
th

: 0.5% and 13
th

: 0.8%. They are ten times larger than the harmonics in the previous 

figure. Since the random spike is very high magnitude, some of the latter comparisons 

will use log scale for the y-axis. 



137 

 

Figure 81 below shows the comparison between healthy and water-tree afflicted 

system under large harmonics injection: 

 

Figure 81: System Comparison with Large Harmonics 

 The water-tree spike did not disappear, but its magnitude is significantly smaller 

than the random spike. Figure 82 shows the zoomed-in view of the water-tree afflicted 

system output in normal scale: 

 

Figure 82: Zoomed-In View of Water-Tree Afflicted System Output 
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Figure 83 below shows the comparison, but with 11
th

 and 13
th

 order harmonics 

removed: 

 

Figure 83: System Comparison with only 5
th

 and 7
th

 Harmonics 

 Figure 84 below shows the comparison, but with 5
th

 and 7
th

 order harmonics 

removed: 

 

Figure 84: System Comparison with only 11
th

 and 13
th

 Harmonics 

Different orders of harmonics will leave different impacts on the deviation 

comparison chart. To illustrate an extreme example, a 43
rd

 order harmonic is injected to 

the system at 0.3% of the fundamental. The output is shown below in Figure 85: 



139 

 

 

Figure 85: System Response with 43
rd

 Order Harmonic 

At the frequency of 43
rd

 order harmonic, the time-step size of the input data starts 

to because an issue. The random spikes generated by the harmonic begin to interfere with 

the estimation process for water-tree presence. As the result, in order to actually take 

advantage of the very high-order harmonics, the time-step must be very small. 

The locations of the random spikes change for different harmonic frequencies. In 

comparison, the water-tree spike remains at the same location throughout the process. As 

the result, water-trees and other fixed location discontinuities can be identified by their 

fixed position in the deviation-comparison output chart. Their position will remain fixed 

through iterations of extrapolation-comparison method regardless of frequency-

compositions. 

It can be observed that very high-order harmonic does respond to the presence of 

water-tree. Due to the random spikes, however, it is preferable to use naturally occurring 
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high-frequency transients instead. If very high-order harmonics are used, additional 

comparisons must be made across multiple iterations to ensure the accuracy of the result. 

4.4.5 Impact of Noise on Deviation-Comparison Chart 

 

 In any process involving precise measurement, an important issue is the presence 

of noise in the system. There are many potential sources of noise: 

Thermal noise is generated by random thermal movement of charge carriers such 

as electrons.  

Shot noise is produced by the delay of electrons when crossing a physical barrier. 

This results in random fluctuation of the current level.  

Flicker noise is a random noise associated with frequency spectrum.  

Burst noise consists of sudden voltage step-changes associated with 

semiconductor components.  

Many more types of noises exist and any delicate measurement process must 

consider their presence. Collectively, they can be represented by white noises in cables. 

Fortunately, transmission system cables are less affected by the presence of white 

noise comparing to the control system circuits. The main reason is that transmission 

systems typically carry much higher power than control circuits; therefore, the signal to 

noise ratio (SNR) of the transmission system is much larger. 

The SNR is the ratio between the power of the signal and the power of the noise. 

Using the low harmonic scenario from section 4.4.4, Gaussian white noise is added to the 

system output to simulate the effect of noise.  
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Figure 86, 87, 88 and 89 shows extrapolation-comparison output at various noise 

levels: 

 

Figure 86: Water-Tree Afflicted System with SNR of 30 

 

 

Figure 87: Water-Tree Afflicted System with SNR of 150 
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Figure 88: Water-Tree Afflicted System with SNR of 300 

 

Figure 89: Water-Tree Afflicted System with SNR of 1000 
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 It is necessary to remember that the SNR of transmission cables, particularly 

ultra-high voltage transmission cables associated with offshore windfarms, are much 

higher than control or low voltage circuits. For example, an offshore windfarm is 

delivering 90MW to the grid through three phase ultra-high voltage AC system. Three 

cables are used per phase. Thus, the power per cable is 90MW/3 phase/3 cable= 10MW. 

At SNR =300, the noise power is 10MW/300 = 33.3kW. Thus, the white noise must 

reach up to 33.3kW to have a SNR of 300.  

As the result, white noise generally does not affect the extrapolation-comparison 

process. In addition, the water-tree spikes will remain in fixed locations regardless of 

noise level; therefore, comparing the result over multiple iterations of the extrapolation-

comparison process will further eliminate any effect from random noise.  

4.5 Chapter Conclusion 

 

The early-warning system is a supplementary method to the high-frequency pulse 

detection method. It utilizes naturally occurring high-frequency events in the system to 

estimate if water-trees are present on the cable. 

The system is an online process and does not require specialized instrument such 

as high-frequency pulse generator. It may also be fitted with filters to improve 

measurement accuracy, but at the cost of reliability. Ideally, the early-warning system 

will collect and analyze data continuously. 

The feasibility of the method is supported by mathematically enhance detection 

algorithm. The estimation accuracy can be improved through iterations of NOHFE 

response. Although the magnitude of water-tree spikes can change, they will remain in 
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fixed locations regardless of system frequency composition. Results from multiple 

iterations of the extrapolation-comparison method can be used to determine if such these 

fixed-location events are present on the cable. 

The standard deviation chart provides clear visual identifications of water-tree 

location. It should be noted, however, the presence of water-tree spike could be masked if 

there are high-magnitude low-frequency disturbances in the system. Essentially, the 

method requires the magnitude of the NOHFE to reach certain thresholds with respect to 

the system waveform. 

The extrapolation-comparison method of the early-warning system can also be 

used to monitor other type of faults. It is especially effective on high-impedance faults. 
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Chapter 5 

Computational Margin Accumulation in Water-Tree Analysis 

 

Preventative maintenance plans are critical components in ensuring the long-term 

wellbeing of the power infrastructure. Effective formulation of the plans requires detailed 

information from the system. In chapter four, an early-warning system is developed to 

estimate the probability of water-tree presence in the cables. By applying the early-

warning system, the power utilities can constantly monitor the status of cable connections 

and if necessary, utilize HFPD method to determine the exact condition of the cable 

insulation. In this chapter, some of the critical assessment details will be discussed. 

5.1 Accurate Water-tree Estimation using Terminal Voltage Data 

5.1.1 Motivation 

 

The HFPD method is not limited to locating the water-tree. It allows the operator 

to determine the exact capacitance of the water-tree. 

Remote determination of the water-tree capacitance provides an important 

advantage. The capacitance of water-tree is closely associated with the depth of water-

tree corrosion through insulation layer. By determining the corrosion progression and its 

advancement rate, it becomes possible to predict and project the potential fail-date of the 

cable. The fail-date is uniquely important for water-tree fault due to its development rate.  

In today’s power industry, resource constraints are very realistic issues in treating 

and preventing system failure. When developing preventative maintenance procedures 

and schedules, these factors must be taken into consideration. For example, if the 
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expected fail-date of a cable segment is five years in the future, then immediate resources 

can be relocated to high priority issues. 

Alternatively, ascertaining the corrosion progress may allow alternative solutions. 

Figure 90 below shows two cables with different level of corrosion: 

 

Figure 90: High Corrosion Progression (Left) Vs Low Corrosion Progression (Right) 

For high corrosion progression cables, the water-tree has already breached 

significant part of the insulation. In this case, the cable must be “patched” to prevent 

further degradation. The patching process involves physically accessing the water-tree 

site. The micro-fracture is then filled with adhesive/polymer fillings. The root of the tree 

is also patched and physically reinforced. In extreme cases where water-tree corrosion is 

too severe, the cable segment must be completely replaced. Such procedures, however, 

require large amount of investment in labor, time and fund. Depending on the location, 

the operation itself may cause further problems; therefore, these procedures should not be 

performed unless they are necessary. 

On the other hand, if the water-tree is a low corrosion progression tree, then 

alternative treatment method can be used. In chapter two, the water-tree formation 

process is discussed. The tree-growth is primarily motivated by the presence of water and 

electric field. Although it is difficult to remove water without physically accessing the 

site, the electric field strength can be reduced by load balancing. In worst-case scenario 

where water-tree growth cannot be halted, accurate determination of expected fail-dates 
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allows repair work to be flexibly scheduled in advance. In many cases, the flexible 

schedule itself will greatly reduce the expenditure. 

These plans are contingent on the ability to determine the exact progress of water-

tree corrosion in the cable insulation. Thus, accurate water-tree capacitance estimation 

using terminal voltage data is a very valuable ability. 

5.1.2 Capacitance Estimation Process 

 

It is possible to estimate the capacitance value of the water-tree using the previously 

established water-tree model and HFPD method. The water-tree can be estimated using 

the following parameters: 

• Cable Parameter: Cable Characteristic Impedance 

• Pulse Parameters: Modeling Parameters of the High-Frequency Pulse, The 

Frequency  

• Pulse Reflection Parameters: Pulse Time, Pulse Reflection Time 

The test system is shown below in Figure 91: 

 

Figure 91: Pulse Reflection Experiment Setup 
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The test utilizes the radio frequency pulse (between 20kHz to 10MHz in extreme 

cases) to determine the capacitance of water-tree. 

From the HFPD method, it is determined that potential pulse responses will fall 

under three categories: Under-Frequency, Benchmark-Frequency and Over-Frequency. 

The early-warning system is based on under-frequency response cases. Estimating the 

water-tree capacitance, on the other hand, requires the benchmark-frequency cases. It has 

been determined that the benchmark-frequency is part of a range of frequencies 

associated with the particular water-tree capacitance and it is unique. Thus, the 

benchmark-frequencies can be used to calculate the capacitance associated with the 

particular water-tree. 

Mathematically, the pulse waveform (in form of the lightning pulse) can be 

represented by: 

 ���� � ��8H�& � 8H#&�…………………………………………………….……(32) 

Where 

a, b and c are pulse parameters 

t is the time of central plateau point 

The benchmark frequency phenomenon is created by the super-position of 

decaying sending pulse and its reflection from the water-tree branch. At the plateau, the 

nth derivative of the super-position equation becomes zero. The n parameter is 

determined by the “flatness” of the plateau pattern. In practice, the benchmark-frequency 

represents a range of frequencies that allows a plateau like pattern to appear. The 

situations are illustrated below in Figure 92, Figure 93 and Figure 94: 
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Figure 92: Non-Plateau Pattern 

In this figure, the super-positioned waveforms do not form a plateau pattern. This 

means at n=1, the values of the waveforms are non-zero.  

 

Figure 93: Plateau Pattern (N=1) 

In this figure, the super-positioned waveforms show the beginning of the 

benchmark-frequency range. Specifically, at the start of the range, at n=1, the value is 

zero, but at n=2 or greater, the values are non-zero. 
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Figure 94: Plateau Pattern #2 (N>2) 

This figure shows a frequency is in the middle of the benchmark-frequency range. 

At these frequencies, the n>= 2 derivatives of the super-positioned waveform are zero. 

The maximum value of n depends on the specific water-tree. 

From the equation below, the super-imposed waveform is: 

���� � ��8H��&H�� � 8H#�&H��� � ���8H�& � 8H#&� ……………………………(33) 

Where 

τ is the time before the reflection pulse reaches the terminal 

Г is the reflection coefficient from the water-tree 

���� � �8H��&H�� � �8H#�&H�� � ��8H�& � ��8H#& ……………………..……..(34) 

 � ′��� � ���8H��&H�� � ��8H#�&H�� � ���8H�& � ���8H#& ………………....…(35) 

�n��� � ��1�/�[�/8H��&H�� � �/8H#�&H�� � ��/8H�& � ��/8H#&] …………..(36) 

Let �n��� � 0, then: 

0 � ��1�/�[�/8H��&H�� � �/8H#�&H�� � ��/8H�& �
��/8H#&] ………………...……..(37) 
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0 � �/8H��&H�� � �/8H#�&H�� � ��/8H�& � ��/8H#& …………………...……..(38) 

Solving for � yield: 

Γ � � �VoP0�wP��H#VoPM�wP���VoP0wH#VoPMw …………………………………………………..…..(39) 

The reflection junction model is shown in Figure 64 in chapter four. The 

reflection coefficient is: 

Γ � ����J	�� ………………………………………………………………………(40) 

Where: 

d5 is the characteristic impedance of the cable 

dn is the per-unit length capacitance of the water-tree  

dn � ��H���	� � �@@��� J@� ……………………………………………………………(41) 

Since R is extremely large for developing water-tree 

dn~ �_�} …………………………………………………………………………(42) 

! � �_��� � 	�_�����H�� � H	0V�P0�wP��PMV�PM�wP��0V�P0wPMV�PMw_�����J0V�P0�wP��PMV�PM�wP��0V�P0wPMV�PMw � ……………………………(43) 

It is equivalent to: 

! � �_��� � 	�_�����H�� � 	0V�P0�wP��PMV�PM�wP��0V�P0wPMV�PMw_����0V�P0�wP��PMV�PM�wP��0V�P0wPMV�PMw J�� ……………………………(43) 

Resolving the equation yields: 

! � � 	�VoP0wo0�H	#VoPMwoM�	
�����VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw� …………………………(43) 
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The result of the equation includes both real and imaginary parts. Since the 

resistive component is not used in the initial calculation, an imaginary part is left. Thus, 

the real part represents the capacitance value.  

The capacitance value is: 

! � �8���� 	�VoP0wo0�H	#VoPMwoM�	
�����VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw��………………………..…(44) 

Where 

d# is the cable characteristic impedance 

f is the frequency  

b and c are pulse parameters 

t is the time of central plateau point 

τ is the time before the reflection pulse reaches the terminal 

n is the derivative number, which yields a flat plateau pattern 

Since the benchmark-frequency is a range, the two edge frequencies are positions 

that represents n=1. The estimated capacitance value represents the range of estimated 

capacitances. 

5.1.3 Test Case Result 

 

For the test case, a 1nF capacitance is used in the water-tree branch. The pulse 

frequency is varied until a threshold benchmark pattern is established as shown below in 

Figure 95. 
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Figure 95: Threshold Benchmark Frequency 

At the threshold benchmark-frequency, the frequency is very close to the values 

that will establish the flat plateau pattern. Mathematically, this means both edge of the 

benchmark frequency range are close to each other. 

At the threshold benchmark-frequency range, the following parameters are 

determined: 

b=1.63e5 

c=3e9 

f=57.2kHz 

t=2.19e-6 (seconds) 

τ =6.7075e-5 (seconds) 

Using the following additional parameters: 

n=1 (at the edge of the benchmark frequency range) 

z0=70+j70Ω (cable impedance) 

Resultant Calculated capacitance: 

Capacitance =39nF 
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Since the capacitance associated with water-tree develops in log-scale, the value 

is fairly close to the expected value of 1nF. 

The test case proves that the mathematical determination algorithm represents a 

method to estimate water-tree capacitance using HFPD test data. The algorithm only 

requires terminal readings and does not require the operator to access the water-tree site 

physically.  

5.2 Error Accumulation in Water-tree Detection 

 

In chapter four, the impact of white noise on early-warning system is examined. 

Other source of error may also influence the accuracy of the water-tree detection process. 

For example, a potential cause of the inaccuracy is due to measurement errors associated 

with the parameters in the solution. For example, frequency measurement is measure 

from the 5% peak value mark at the start and the 5% peak value mark at the end. The 

actual pulse shape is shown below in Figure 96: 

 

Figure 96: Pulse Frequency Measurement 
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Depending on the measurement points, the resultant frequency value can change. 

Consequently, there is certain amount of error associated with the measurement. 

The threshold benchmark-frequency also includes certain amount of error. In the 

test case, the threshold benchmark-frequency is established close to the value that 

generates the plateau pattern. Due to the cumbersomeness of the lightning pulse model, it 

may contain certain amount of error. As the result, a slightly higher or lower frequency 

also resembles the threshold benchmark-frequency. Since the b, c parameters vary 

exponentially in the model and capacitance calculation, the error margin is greatly 

amplified in the process. 

5.2.1 Water Detection Limitations 

 

There are several limitations associated with the water-tree detection process. 

They place upper limits on the accuracy of the process. Depending on their specific 

nature, they may be eliminated using different methods. Alternatively, they can also be 

critical issues that will only be resolve through future technological development. These 

limitations can be separated into three categories: material, computational and 

fundamental. 

5.2.1.1 Material Limitation on Water-Tree Detection 

 

The material limitation refers to the natural limitations associated with the 

physical aspects of the process. For example, the structure of water-tree is highly random 

and it places a limit on the water-tree modeling process. The small size of water-tree 

components also means it is difficult to obtain accurate measurements on its 

characteristic. 
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Another aspect of material limitation is that the physical characteristic of the 

material limits applicable detection methodology. For example, VLF and power 

frequency methods are generally ineffective due to the physical characteristic of the 

water-tree. For VHF, the withstand strength of insulation must be considered when 

applying a high magnitude pulse. 

The location of the water-tree is also a material limitation. For example, it is very 

difficult to access long-distance submarine cables. Thus, the water-tree detection process 

must use terminal readings far from the actual water-tree site. This results in issues such 

as signal attenuation and impedance masking. 

5.2.1.2 Computational Limitation on Water-Tree Detection 

 

Computational limitations tend to appear in analysis algorithm and calculation 

process. For example, a key computational limitation is the accuracy and sensitivity of 

terminal voltage readings. With sufficiently advanced voltage sensor, even VLF and OPF 

methods can detect an early-stage water-tree. This is, of course, impractical in 

implementation.  

The processing power of the computation device is another important limitation. 

Water-tree has been a long observed phenomenon. The water-tree model and early-

warning system proposed in the previous chapters, however, would not be possible 

without recent advancements in computation technology. For example, the deviation-

comparison table uses greater than 10^5x10^5 matrices. The amount of processing power 

required is only practical in the recent decade. 

Analytical algorithm is also part of the computational limitation. In the actual 

system, signals and parameters extracted by the water-tree detection process can be 
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contaminated with noise and other random variables. This is especially true for multiple 

water-tree cases. If the trees are sufficiently close, their pulse response may interfere with 

each other. In these events, analytic algorithms are required to filter and isolate individual 

response.  

As discussed previously, many frequency-domain techniques form 

mathematically singularities when dealing with weak signal in long-distance cables. 

Time-domain techniques, on the other hand, may suffer from error margin amplifications. 

As the result, the analytical algorithms themselves must be carefully selected. Sometimes, 

multiple algorithms must work together and supplement each other. 

5.2.1.3 Fundamental Limitation on Water-Tree Detection 

 

The fundamental limitation of water-tree detection process is the fact that water-

tree is a difficult to observe phenomenon and its characteristic must be determined from 

secondary data such as terminal voltage and current. In essence, it is a high-sensitivity 

measurement and requires very high accuracy, but it can only be calculated using 

secondary data. The secondary data themselves also contain various degree of error. As 

the result, there is an upper limit on the accuracy of the water-tree capacitance estimation. 

The limit cannot be overcome without fundamental improvement in secondary data 

accuracy. 

5.2.2 Errors Margins in Water-Tree Capacitance Estimation 

5.2.2.1 Error Accumulation 

 

For computation using variables with error margin, an important phenomenon is 

the propagation and accumulation of errors in the result. Table 5 illustrates the situation: 
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Table 5: Error Accumulation: Percentage Error vs Number of Variables 

 

The vertical axis represents percentage accuracy in each variable. The horizontal 

axis represents the number of variables in the calculation. For example, a four variable 

calculation with 9% error in each variable will result in 41% error in the end-result. 

The table demonstrates the propagation of error from variable to the calculation 

result. The table is the error accumulation in simple multiplicative equations. For 

equations with exponential variables, such as the water-tree capacitance solution, the 

error accumulation is even more severe. 

5.2.2.2 Material Limitation Induced Error Margins 

 

Material limitation can create several sources of error margins in the water-tree 

detection process. They are ellipsoid axial ratio, water-tree branch distribution and tree 

branch dimension. 

The ellipsoid axial ratio is part of the assumptions in the water-tree model. Since 

water-tree branch spread and distribution is controlled by the zero crossing of the service 

voltage, it is reasonable to assume that the water-tree afflict area is bounded in an 

ellipsoid area with a certain axial ratio. In practical, the relationship between the axial 

ratio and the service voltage is not one-on-one. Instead, the ratio can also be influenced 
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by minor parameters such as material crystallinity, voltage harmonic composition, 

transients and various other factors. The effects from these factors are relatively small 

comparing to the zero crossing of the service voltage and the waveform magnitude, but 

combined, they generate a noticeable error margin in the capacitance calculation. 

Similar to the ellipsoidal area axial ratio, the water-tree branch distribution is also 

subjected to certain amount of random error. Material crystallinity, cause of water-tree 

origin and its uniformness can influence the tree branch distribution. Variation in these 

factors can cause error margins, which manifest in form of axial ratio estimation errors. 

Finally, the tree branch dimensions are also affected by the physical characteristic 

of the cable insulation layer. For detection methods, the influence of tree branch 

dimension mainly appears in the boundary of the ellipsoidal area. For thin branches that 

are spread out, a significant portion of the tree branch tips are sufficiently small that their 

dielectric permittivity is essential indistinguishable from healthy insulation. In this case, 

the estimated ellipsoidal bounded area, by extension the corrosion progress will be 

smaller than the actual condition. The reverse is also true, physical fracture of the 

insulation layer due to manufacturing defect may result in higher capacitance and the 

detection method may overestimate the water-tree corrosion progression. 

5.2.2.3 Computational Limitation Induced Error Margins 

 

The computational limitation may also cause error margins in the analysis. These 

sources of errors include error in frequency estimation, error in benchmark-frequency 

estimation, error in time measurement and error in pulse modeling. 

Figure 96 has shown potential error margin in frequency estimation. In practice, 

the relationship between the water-tree impedance and the high-frequency pulse is much 
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more complex than the simple capacitor/high-frequency wave relationship. Water-tree is 

modelled as a capacitor with multiple dielectrics. It is, however, a simplification of the 

actual interactions between the tree branch electrical field and the insulation material at 

microscope level. Although the high-frequency characteristic of water-tree resembles the 

capacitor, it also includes non-linear components. 

Similarly, estimation of benchmark-frequency range may contain error margin. 

There are two approaches in determining the benchmark-frequency: Single-Frequency 

Approach and Two-Frequency Approach.  

In single-frequency approach, the test pulse frequency is adjusted until the 

observed waveform begins to show the plateau pattern. This threshold frequency is then 

used to calculate the water-tree capacitance. In this approach, the threshold hold 

frequency represents a point where the two boundaries of the benchmark-frequency range 

is roughly equal. As the result, the capacitance estimation is a single value instead of a 

range of potential values. 

The second approach is the two-frequency approach. In this approach, the pulse 

frequency is adjusted until a large flat plateau pattern appears. The two boundaries 

frequencies are used to estimate the potential water-tree capacitance. In this approach, the 

estimation result will be a range instead of a single value.  

The boundaries frequencies are generally more accurate than the threshold 

frequency in the single-frequency approach. In either case, certain amount of error 

margin is expected. 

Time measurement is a critical component in the water-tree capacitance 

estimation. Similar to frequency measurement, the time stamp of the waveform pattern is 
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subjected to certain amount of error. Assuming the measurement devices themselves are 

accurate, the process of defining the start and finish of the pattern may still create error. 

For example, field practice tends to choose 5% rise and 5% fall mark as the measurement 

point for high frequency pulse. This definition is somewhat an arbitrary decision based on 

past-experiences and ease of measurement. This is especially true for slow decaying 

pulses where 5% and 3% fall points may have a large time difference. 

Finally, the pulse model itself may have error associated with it. There are many 

commercially available high-frequency pulse generators. Their principle of pulse 

generation varies. It is also unreasonable to assume that the generated pulses will strictly 

follow a simple, easy to understand mathematical model. Due to the sensitive nature of 

the water-tree detection process, any deviation between the mathematical model and the 

actual, physical pulse form may generate error in the final-result. 

Table 6 below shows the types of error margins expected in the water-tree 

capacitance estimation process using a lightning pulse model: 

Table 6: Source of Error in Water-Tree Capacitance Estimation 

 

The errors can be separated into two categories: voltage measurement induced 

errors and equipment sensitive related error. The voltage measurement errors are 
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associated with computational limitations and the equipment sensitivity related errors fall 

under material limitations of the water-tree detection process. 

5.2.3 Potential Method for Improvement on Fundamental Limitation 

 

The fundamental limitation is more difficult to overcome comparing to the other 

two limitations. Once improvement occurs at the fundamental level, however, the entire 

processes benefit from it. 

There are certain methods to deal with the fundamental limitation of the detection 

process. For example, numerical averaging is one of the common methods used to reduce 

random errors. In numerical averaging, the estimation results are compiled into a 

probability distribution. Additional iterations expand the distribution pool. 

Alternatively, better instrument precision greatly improves the accuracy of the 

final-result. Under the same technological level, higher precision instrument generally 

means higher cost and the cost increases exponentially as the sensitive approaches the 

technological limitation. Technological advancement naturally reduces the cost for the 

same accuracy level. Alternatively, it may allow better instrument accuracy for the same 

cost.  

In practice, technological advancement is an incremental effort and it can be 

heavily influenced by research focuses; therefore, it is beneficial to establish a cost-

effective focus direction. In order to find the most efficient direction for improving water-

tree capacitance estimation, it is necessary to understand the dominant factor influencing 

the estimation accuracy. 

The numerical resolution of the water-tree capacitance using a lightning pulse 

model is listed below: 
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! � �8���� 	�VoP0wo0�H	#VoPMwoM�	
�����VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw� ……………….………..…(45) 

The equation is effectively created by the lightning pulse medal equation: 

���� � ��8H�& � 8H#&�……………………………….…………………………(46) 

Since the amplitude does not appear in the final solution. The main parameters in 

the lightning pulse model are measurement parameters (t and voltage value	����) and 

modeling parameters (b and c). 

Observing the effect of errors in measurement parameters: 

� � Δ� � 8H��&J��� � 8H#�&J��� ………………………………………………..(47) 

ln	�� � Δ�� � ln	�8H��&J��� � 8H#�&J����  ……………………………………....(48) 

ln��� � ln B1 � �(( E � ln�1 � 8��H#��&J���� � ��� � Δt�  ...……………..….....(49) 

The error in voltage measurement is a flat shift depending on the percentage 

voltage-measure error. For voltage measure error of 5%: 

��� � 0.0488 � ln	�1 � 8��H#��&J���� � ��� � Δt�  ...…..………………….......(50) 

Let ln�1 � 8��H#��&J���� � z and 1 � 8��H#��&J��� � � 

7] � �V�Ho�0PM��wQ� � ………………………………….…………………………...(51) 

Where S represents the standard deviation of the probability distribution 

7/ � 8��H#��&J���7��H#��&J∆&� � 8��H#��&J���|� � �|7∆& ………………………...(52) 

To resolve the standard deviation distribution: 

7] � �V�Ho�0PM��wQ� �…………………………..…………………………………...(53) 

Since b is greater than c, for	8��H#��&J��� ≪ 1,  

7] � 8��H#��&J���|� � �|7∆&……………..……………………………………...(54) 

Rearrange equation (50): 
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� � 23	��Ho�0PM��wQ� ��H�./(J5.5¤¥¥��&J��� � ]H�./(J5.5¤¥¥��&J���  .………………….…….......(55) 

As the result, the basic spread of b is entirely dependent on the standard deviation 

of time measurement. 

Using the same principle, it can be determined that the standard deviation of the 

probability distribution of the time is the dominant factor in the water-tree capacitance 

estimation process. 

Evaluation the capacitance solution equation: 

! � �8���� 	�VoP0wo0�H	#VoPMwoM�	
�����VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw� …………………………...(56) 

Resolving the standard deviation of the top part of the equation: 

=� � 2�/8H�&8�� ……………………………………………………...……..…(57) 

=	 � 2�/8H#&8#� ………………………………………………………..………(58) 

7�V � ��/ �0� � √2��/H�7∆& ………………………………………………...…(59) 

7oP0w � 8H�&7H�& � 8H�&��hB�0� E	 � B�∆w& E	
…………………………………...(60) 

7o0� � 8��7�� � 8���§hB�0� E	 � B�∆�� E	
…………………..…………………...(61) 

7)@

� �/8H�&8��¨2�	�	/H	7∆&	 � 8H	�&�	�	 ©ª7�� «	 � ª7∆&� «	¬ � 8	���	§	 ©ª7�� «	 � ª7∆�� «	¬ 

…………………………………………………………………………………..(62) 

∵ 7� � √27∆& � √27∆� � 7#……………………………………………………(63) 

7)@ ≅ �/8H�&8��√2�	�	/H	 � 8H	�&�	 � 8	���	 ∗ 7∆& ……………………….(64) 

∵ 8H	�&�	 � 8	���		�6	6z��� 
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∴ 7)@ ≅ √2��	/H�8H�&8�� ∗ 7∆& ………………………………………………..(65) 

∴ 7)+ ≅ √2��	/H�8H#&8#� ∗ 7∆&………….……………………………………..(66) 

7&'$ � h7)@ 	 � 7)+ 	 � √2�k��	/H�8H�&8���	 � ��	/H�8H#&8#��	 ∗ 7∆& ……(67) 

Resolving the standard deviation of the bottom part of the equation: 

=¯ � �/8H�& …………….…………………………..……………………..……(68) 

=¤ � �/8H#& ……………….………………………………...………………..…(69) 

Using the same process and elimination: 

7)Z ≅ √2��	/H�8H�& ∗ 7∆& …………….…………………………………..……(70) 

7)° ≅ √2��	/H�8H�& ∗ 7∆& …………….…………………………………..……(71) 

7�'&&'] � √2�k��	/H�8H�&�	�8�� � 1�	 � ��	/H�8H#&�	�8#� � 1�	 ∗ 7∆& …..(72) 

7&'&�. � ± 	�VoP0wo0�H	#VoPMwoM��VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw± hB�wR²&'$ E	 � B�0RwwR[�'&&']E	
……………(73) 

Standard Deviation of the Resolution 

7&'&�. �
												√2� ± 	�VoP0wo0�H	#VoPMwoM��VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw± ∗
												¨��+VP@oP0wo0��+J�#+VP@oPMwoM��+�	�VoP0wo0�H	#VoPMwoM��+ � ��+VP@oP0w�+�o0�J��+J�#+VP@oPMw�+�oM�J��+��VoP0wo0�H#VoPMwoM�J�VoP0wH#VoPMw�+ ∗
7&%]o……………………………………………………………………………………..(74) 

From the standard deviation calculation, it can be determined that the standard 

deviation of both parameter measurement and capacitance estimation is directly 

proportional to the accuracy of the time measurement. 
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5.3 Chapter Conclusion 

 

Estimation of water-tree capacitance is a necessary step on designing effective 

preventative maintenance process. Successful determination of water-tree status allows 

utilities to efficiently organize their resource and avoid unnecessary service-interruptions. 

At the same time, it is necessary to remember that the estimation process is subjected to 

material, computational and fundamental limitations. The central theme of water-tree 

detection research is reduction of measurement error while working under resource 

constraints.  

In the short-term, more advanced mathematical technique and computation 

algorithm is the key for immediate improvement, but at the end of the day, improvement 

in measurement tools accuracy, especially in dominant parameters such time 

measurement, will provide the fundamental improvement to the reliability of the water-

tree detection and estimation process. 
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Chapter 6 

Conclusion 

 

The Water-Tree Modelling and Detection for Underground Cables study focuses 

on mathematical modelling of the water-tree, detection of its location and estimation of 

its capacitance in long-distance transmission cables. It is an effort to understand the 

physical implications of water-tree structure, its interaction with the grid and developing 

methods to combat water-tree related power failures. 

 The research is primarily motived by power infrastructure aging around the world. 

In particular, cable transmission systems around the world are rapidly approaching the 

end of a development cycle. The end of this cycle naturally heralds gradual degradation 

of power transmission system, in both reliability and quality. Due to economic constraints, 

however, replacement and renewal efforts have become stagnant in many parts of the 

world; therefore, the utilities are forced to operate the cable systems beyond their original 

design life. Consequently, prolonging the lifespan of the current system becomes a top 

priority.  

Among the successful attempts to revitalize the existing system, preventative 

maintenance plans have proven to be cost-effective. Successful plans prevent system 

degradation to reach critical stage and improve the performance of older equipment. In 

order to develop preventative maintenance plans, the operators must have detailed 

information on the cable system status and parameters, especially potential issues that 

may negatively affect the system in the future. In essence, the operator can only prevent a 

problem if they are aware of it in the first place.  
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Assessing the system status and parameters is not an easy task. Older system often 

implies more issue, both in quantity and complexity. Among the issues associated with 

older cable system, the water-tree phenomenon is especially important. They are slow 

developing, but difficult to detect prior to critical breakdown. In addition, many difficult 

to detect water-trees reside in critical connections such as long-distance transmission 

cables. The length of the cable not only hinders the detection process, but also amplifies 

the potential impact. Their failures often result in significant economic loss, both in the 

repair cost and service interruption.  

Prevention of water-tree is a difficult endeavor. Water-tree characteristic, its 

development process and system interaction are less understood subjects. Without these 

understandings, it is difficult to develop preventative maintenance plans suitable for 

water-tree prevention. As the result, research is needed to understand the water-tree 

structure, its interactions with the cable system and developing the corresponding 

detection methods. 

 Thus, the first step in understanding water-tree modelling and detection in 

underground cables is building a mathematical model for the particular phenomenon. 

Water-trees are complex structures with complicated electromagnetic interactions with 

the insulation. Fortunately, many of its physical characteristics follow certain trends and 

their boundary conditions can be estimated using system operating parameters. Although 

water-tree electromagnetic interactions are difficult to quantify, recent advancements in 

analytical technique and computation technology can breakdown the complex topic into 

manageable parts. By applying finite element analysis to the water-tree, its capacitance is 
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estimated. The results are confirmed by empirical measurement results and 

electromagnetic simulations. 

 The mathematical model is able to highlight key characteristics in the developing 

water-tree. It is a primarily capacitive phenomenon with Giga-ohm range impedance. The 

next logical step is developing techniques for locating water-trees in the system. Due to 

the impedance, traditional detection methods are ineffective on early-stage water-trees, 

especially if they are located in long-distance cables. With the help of the mathematical 

model, however, it becomes possible to overcome the high impedance. Since 

mathematically model shows that the water-tree is a capacitive structure, very high 

frequency input will effectively reduce the detection difficulty. The resultant high 

frequency pulse detection method utilizes MHz range input to neutralize the water-tree 

impedance. The result is a method that can successfully detect the location of an early-

stage water-tree. In addition, the pulse response patterns can be used to estimate the 

corrosion progress of water-tree. 

 After developing the detection method for water-tree, it becomes necessary to 

consider its implementation. The transfer from laboratory theory to actual 

implementation must always be tempered with practical constraints. Although the high-

frequency pulse detection method allows accurate detection of water-tree, it is also a 

specialized test requiring specific and most importantly, expensive equipment. The cost 

of instrument is a very real concern for the utility. In addition, the potential risk in test 

stress and economic cost in service interrupt also become factors to be considered. Due to 

these constraints, the high-frequency pulse detection method should be selective and only 

performed when necessary. As the result, a supplementary system is developed to 
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identify potential targets for the high-frequency test. The early-warning system is 

designed to assess cable status using naturally occurring high-frequency events in the 

system. Its extrapolation-comparison method allows the operators to identify cable 

waveform anomalies without specialized equipment. These anomalies are analyzed 

through standard deviation charts and potential sites of water-tree are indicated. By using 

the early-warning system, operators can assess the probability of water-tree presence on 

the cable segment. If the cable is likely to be afflicted with water-tree, it becomes a 

candidate for the high-frequency pulse detection method. 

 The research now contains implementable detections methods that assess the 

probability of water-tree presence in the cable system. The potential candidates are tested 

using an accurate detection method that allows accurate determination of water-tree 

location. Supported by the mathematical model, it becomes possible to estimate the 

capacitance of water-tree through mathematical analysis and the cable high-frequency 

pulse response. The analysis results allow the operators to determine water-tree corrosion 

progress and prepare the appropriate response. In addition, it also becomes possible to 

evaluate measurement parameters that affect the accuracy of water-tree detection and 

estimation process. Mathematical analysis revealed that time-step measurement is the 

dominant factor on water-tree detection accuracy. Future technology advancement in this 

regard will allow fundamental improve to the overall water-tree detection and estimation 

process. 

 In addition to provide a reasonable method for water-tree detection and estimation, 

the water-tree develop in power system research also offer other benefits: 



171 

 

  The mathematical modelling process can be expanded and extended to other types 

of structures in the cable insulation. 

 The high-frequency pulse detection method can be retooled for other types of 

faults in long-distance cables. 

 The early-warning system can monitor the appearance of many types of cable 

faults and degradations. 

 The error margin analysis in water-tree detection process can show cost-effective 

direction for future technological development. 

 In the future, it will be beneficial to explore methods of improving measurement 

accuracy. For example, digital synchronous sampling has been known to increase the 

accuracy of very high-order harmonics. Due to error margin accumulation and 

propagation, potential improvements in base parameter measurements will provide large 

benefits to the water-tree detection process. 
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APPENDIX A Sample Finite Element Analysis Code for Water-Tree 

Model 
 

The overall structure of the finite element analysis algorithm is shown below in Figure 97: 

 

Figure 97: Finite Element Analysis Algorithm Flow Chart 

The codes below are sample finite element analysis algorithm for Chapter 2. 

%water tree capacitance of a ellipsoid area using  
%linearly change permittivityt 
  
clear all 
  
hold on 
 
 
 
 
%user input data 
e0=8.854187817e-12;       %permittivity of vacuum 
e2=2.3*e0;                   %relative permittivity of the insulation 
e1_relative=88; 
e1=e1_relative*e0;                 %relative permittivity of at the base of the 
tree 
f=60;                     %frequency in Hz 
rho_base=10e-2;           %conductivity at the base of the tree 
rho_tip=10e-16;           %conductivity at the tip of the tree 
%end user input data 
 
 
 
  
%data preparation 
radius_cable=(4.547e-2)/2;      %radius of the cable 
radius_conductor=(2.474e-2)/2;  %radius of the conductor 
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w=2*pi*f; 
healthy_percent=0.05; %starting percentage depth of insulation layer that is 
                     %healthy data range is from 0 to 1 (0% to 100%)      
upper=0.95;           %upper limit on health calculation 
health_layer=10000;   %the number of different health depth to check 
health_step=(upper-healthy_percent)/health_layer;  
                     %each increment between health depth 
trim=0.05;            %how much of the ellipsoid ends are trimmed off 
length_layer=10000;   %the number of finite element layers for each case 
%end input data preparation 
  
 
 
 
%data storage matrice and arrays 
L_stored=zeros(1,health_layer); 
dimension=zeros(3,health_layer); 
C_series=zeros(1,health_layer); 
C_series_complement=zeros(1,health_layer); 
C_parallel=zeros(1,health_layer); 
R_parallel=zeros(1,health_layer); 
C_total=zeros(1,health_layer); 
C_total2=zeros(1,health_layer); 
R_total=zeros(1,health_layer); 
corrosion=zeros(1,health_layer); 
r_collection=zeros(1,health_layer); 
%end data storage matrice and arrays 
 
 
 
 
 
%loop data 
t=healthy_percent; 
counter=1; 
%end loop data 
 
 
 
 
%start capacitance calculation 
while t <= upper 
                  
L=(radius_cable-radius_conductor)*(1-t)/2;    
                     %dimensional term for ellipsoid shape calculation 
a0=L;                %vertical axis radius of the ellipsoid shape 
b0=0.2*L;            %horizontal axis radius of the ellipsoid shape 
c0=0.2*L;            %depth axis radius the ellipsoid shape 
z0=radius_cable-2*L; %healthy depth 
radius_healthy=z0; 
L_stored(1,counter)=L; 
dimension(1,counter)=a0; 
dimension(2,counter)=b0; 
dimension(3,counter)=c0; 
  
C_series(1,counter)=(2*pi*e2)/log(radius_healthy/radius_conductor); 
C_series_complement(1,counter)=(2*pi*e2)/log(radius_cable/radius_healthy); 
%series capacitance calculation 
length_step=2*L/length_layer; 
r=radius_healthy; 
accumulate=0; 
counter_2=1; 
    while r <= radius_cable 
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        A=(b0/a0)^2-1; 
        B=-(2*z0+2*L*(b0^2)/(a0^2)); 
        C=r^2-z0^2; 
        y3_1=(-B-sqrt(B^2-4*A*C))/(2*A); 
        y3_2=(-B+sqrt(B^2-4*A*C))/(2*A); 
        if y3_1>y3_2 
            y3=y3_1; 
        else 
            y3=y3_2; 
        end 
        x0=abs(sqrt(r^2-(y3+z0)^2)); 
        alpha=atan(x0/(y3+z0)); 
       if alpha < 10e-8; 
            etotal=0; 
       else 
            etotal=2*r*(e1-e2)*sin(alpha)/(2*L)+2*alpha*(e2-z0*(e1-e2)/(2*L)); 
       end 
       accumulate=accumulate+log((r+length_step)/r)/(e2*(1-
2*alpha/(2*pi))+etotal/(2*pi)); 
 %       y3_collection(counter,counter_2)=y3; 
 %       x0_collection(counter,counter_2)=x0; 
 %       alpha_collection(counter,counter_2)=alpha; 
       counter_2=counter_2+1; 
       r=r+length_step; 
    end 
r_collection(1,counter)=r;     
%start paralll resistance calculation     
L=(radius_cable-radius_conductor)*(1-t)*(1+2*trim)/2;    
                     %dimensional term for ellipsoid shape calculation 
a0=L;                %vertical axis radius of the ellipsoid shape 
b0=0.2*L;            %horizontal axis radius of the ellipsoid shape 
c0=0.2*L;            %depth axis of radius the ellipsoid shape 
z=a0/1.2;             %half of the vertical height after the trim 
L_stored(1,counter)=L; 
dimension(1,counter)=z; 
dimension(2,counter)=b0; 
dimension(3,counter)=c0; 
length_step=2*z/length_layer; 
r=0; 
accumulate_2=0; 
    while r <= 2*z 
        y=z-r; 
        x2=(1-(y/a0)^2)*(b0^2); 
        rho=(rho_base-rho_tip)*r/2/z+rho_tip; 
        accumulate_2=accumulate_2+length_step/(rho*pi*x2); 
        r=r+length_step; 
    end 
corrosion(1,counter)=(1-t)*100; 
R_parallel(1,counter)=accumulate_2; 
%end paralll resistance calculation 
 
 
  
corrosion(1,counter)=(1-t)*100; 
C_parallel(1,counter)=2*pi/accumulate; 
E=1/(w*C_series(1,counter))+w*(R_parallel(1,counter)^2)*C_parallel(1,counter)/(
1+w*(R_parallel(1,counter)^2)*(C_parallel(1,counter)^2)); 
D=R_parallel(1,counter)/(1+w*(R_parallel(1,counter)^2)*(C_parallel(1,counter)^2
)); 
C_total(1,counter)=1/(w*E); 
C_total2(1,counter)=1/(1/C_parallel(1,counter)+1/C_series(1,counter)); 
R_total(1,counter)=D; 
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counter=counter+1; 
t=t+health_step; 
end 
%end capacitance calculation 
  
 
 
 
 
 
 
%start plot output 
plot(corrosion,C_series,'r') 
xlabel('Water Tree Percent Growth Across Insulation') 
ylabel('Capacitance (F/m)') 
legend('C_h_e_a_l_t_h_y') 
figure 
hold on 
plot(corrosion,C_series_complement,'r') 
plot(corrosion,C_parallel,'--b') 
xlabel('Water Tree Percent Growth Across Insulation') 
ylabel('Capacitance (F/m)') 
title(['Relative Permittivity at the Base of the Tree is 
',num2str(e1_relative)]) 
legend('C_c_o_m_p_r_o_m_i_s_e_d complement','C_c_o_m_p_r_o_m_i_s_e_d') 
hold off 
figure 
hold on 
plot(corrosion,C_total,'b') 
legend('C total with Resistor') 
xlabel('Water Tree Percent Growth Across Insulation') 
ylabel('Capacitance (F/m)') 
figure 
hold on 
plot(corrosion,C_total2,'b') 
legend('C_t_o_t_a_l') 
xlabel('Water Tree Percent Growth Across Insulation') 
ylabel('Capacitance (F/m)') 
figure 
plot(corrosion,R_total,'m') 
legend('R total') 
xlabel('Water Tree Percent Growth Across Insulation') 
ylabel('Resistance (ohm/m)') 
%end plot output 
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APPENDIX B Cable Parameters for Benchmark Frequency 

Identification 
 

The figures below shows basic PSCAD configuration used in benchmark frequency 

identification. 

 

Figure 98: Cable Dimensions 
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Figure 99: Lightning Pulse Generation 

 

Figure 100: Overall System with Harmonics Injected 
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APPENDIX C Deviation Comparison Chart Code for Two Point 

Extrapolation Scheme with Gaussian Noise 
 
 
 

The overall structure of the Deviation-Comparison Chart Output for the Early Warning 

System is shown below in Figure 101: 

 

Figure 101: Deviation-Comparison Chart Output Algorithm Flow Chart 

The codes below are sample deviation-comparison chart generation for Chapter 4. 

 
 
clear all 
  
%the program require minimum FIVE sets of data to yield any meaningful 
%analysis, the plot function require at least five sets of data to run 
  
%this is a test file made to work with offline impulse reaction test output 
with four 
%columns of output data.  
%The first column is the time 
%The second column represents healthy system with no water tree. 
%The third column represents system afflicted with water tree using parallel 
only fault capacitance. 
%The fourth column represents system afflicted with water tree using series-
parallel fault impedance. 
  
  
load simfile.txt                   %importing voltage profile into program 
voltage_profile_0 = simfile;         %voltage profile array without noise 
%voltage_profile_0 = voltage_profile_1*100;  %amplifying original waveform 
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%case study 
voltage_profile=awgn(voltage_profile_0,200,'measured');          %voltage 
profile array with noise,  
                                                                %scalar value 
refers to the SNR, higher SNR result in lower noise  
t_interval=voltage_profile_0(2,1)-voltage_profile_0(1,1);            %time step 
s=size(voltage_profile);        %dimension of the voltage profile array 
length=s(1,1);                  %length of the array 
raw_analysis_matrix1=zeros(length, length+2); %creating empty analysis matrix 
for deviation ratio 
raw_analysis_matrix2=zeros(length, length+2); 
raw_analysis_matrix3=zeros(length, length+2);  
std_dev_deviation1=zeros(1,length+2); %creating empty array for the column 
standard deviation observation 
std_dev_deviation2=zeros(1,length+2);  
std_dev_deviation3=zeros(1,length+2);  
alpha=1;                        %weighting modification parameter alpha, 
default=1; 
  
 
 
 
%Calculation: Generate Deviation value and Deviation Ratio 
index_1=1;      %row index 
while index_1 <=length 
  
        raw_analysis_matrix1(index_1,1)=voltage_profile_0(index_1,1); %time 
axis 
        raw_analysis_matrix2(index_1,1)=voltage_profile_0(index_1,1); 
        raw_analysis_matrix3(index_1,1)=voltage_profile_0(index_1,1); 
                                                    %on the first column 
        if index_1 >= 3                               %populating raw deviation 
value                             
            raw_analysis_matrix1(index_1,2)=voltage_profile(index_1,2)-
(1+alpha)*voltage_profile(index_1-1,2)+alpha*voltage_profile(index_1-2,2); 
            raw_analysis_matrix2(index_1,2)=voltage_profile(index_1,3)-
(1+alpha)*voltage_profile(index_1-1,3)+alpha*voltage_profile(index_1-2,3); 
            raw_analysis_matrix3(index_1,2)=voltage_profile(index_1,4)-
(1+alpha)*voltage_profile(index_1-1,4)+alpha*voltage_profile(index_1-2,4); 
        else 
            raw_analysis_matrix1(index_1,2)=0; 
            raw_analysis_matrix2(index_1,2)=0; 
            raw_analysis_matrix3(index_1,2)=0; 
        end 
        index_2_1=1;          %column index 
        index_2_2=1;          %column index 
        index_2_3=1;          %column index 
        while index_2_1 <= length 
            if index_1-index_2_1 <= 0     %preventing program from accessing 
times that are not available 
                raw_analysis_matrix1(index_1,index_2_1+2)= 0; 
                index_2_1=index_2_1+1; 
            elseif raw_analysis_matrix1(index_1-index_2_1,2)== 0;   %preventing 
program from accessing raw deviations that are not available 
                raw_analysis_matrix1(index_1,index_2_1+2)=0; 
                index_2_1=index_2_1+1; 
            else 
                
raw_analysis_matrix1(index_1,index_2_1+2)=raw_analysis_matrix1(index_1,2)/raw_a
nalysis_matrix1(index_1-index_2_1,2);  %calculating deviation ratio 
                index_2_1=index_2_1+1; 
            end 
        end 
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        while index_2_2 <= length 
            if index_1-index_2_2 <= 0     %preventing program from accessing 
times that are not available 
                raw_analysis_matrix2(index_1,index_2_2+2)= 0; 
                index_2_2=index_2_2+1; 
            elseif raw_analysis_matrix2(index_1-index_2_2,2)== 0;   %preventing 
program from accessing raw deviations that are not available 
                raw_analysis_matrix2(index_1,index_2_2+2)=0; 
                index_2_2=index_2_2+1; 
            else 
                
raw_analysis_matrix2(index_1,index_2_2+2)=raw_analysis_matrix2(index_1,2)/raw_a
nalysis_matrix2(index_1-index_2_2,2);  %calculating deviation ratio 
                index_2_2=index_2_2+1; 
            end 
        end 
        while index_2_3 <= length 
            if index_1-index_2_3 <= 0     %preventing program from accessing 
times that are not available 
                raw_analysis_matrix3(index_1,index_2_3+2)= 0; 
                index_2_3=index_2_3+1; 
            elseif raw_analysis_matrix3(index_1-index_2_3,2)== 0;   %preventing 
program from accessing raw deviations that are not available 
                raw_analysis_matrix3(index_1,index_2_3+2)=0; 
                index_2_3=index_2_3+1; 
            else 
                
raw_analysis_matrix3(index_1,index_2_3+2)=raw_analysis_matrix3(index_1,2)/raw_a
nalysis_matrix3(index_1-index_2_3,2);  %calculating deviation ratio 
                index_2_3=index_2_3+1; 
            end 
        end 
         
        index_1=index_1+1; 
end 
  
 
 
 
%Chart Output: Generate the Column Deviation Value 
index_3_1=2;    %column index for populating column standard deviation 
observation 
index_3_2=2;     
index_3_3=2;     
  
while index_3_1<=length+2 
    index_4_1=1;    %index for eliminating empty blocks for each column 
    temp=zeros(length-index_3_1,1); 
    while index_4_1+index_3_1<=length 
        temp(index_4_1,1)= raw_analysis_matrix1(index_3_1+index_4_1,index_3_1); 
        index_4_1=index_4_1+1; 
    end 
    std_dev_deviation1(1,index_3_1)=std(temp); 
    index_3_1=index_3_1+1; 
end 
while index_3_2<=length+2 
    index_4_2=1;    %index for eliminating empty blocks for each column 
    temp=zeros(length-index_3_2,1); 
    while index_4_2+index_3_2<=length 
        temp(index_4_2,1)= raw_analysis_matrix2(index_3_2+index_4_2,index_3_2); 
        index_4_2=index_4_2+1; 
    end 
    std_dev_deviation2(1,index_3_2)=std(temp); 



182 

 

    index_3_2=index_3_2+1; 
end 
while index_3_3<=length+2 
    index_4_3=1;    %index for eliminating empty blocks for each column 
    temp=zeros(length-index_3_3,1); 
    while index_4_3+index_3_3<=length 
        temp(index_4_3,1)= raw_analysis_matrix3(index_3_3+index_4_3,index_3_3); 
        index_4_3=index_4_3+1; 
    end 
    std_dev_deviation3(1,index_3_3)=std(temp); 
    index_3_3=index_3_3+1; 
end 
  
%data matrix display (Warning, do not display for large data sets) 
%raw_analysis_matrix1 
%std_dev_deviation1 
  
%raw_analysis_matrix2 
%std_dev_deviation2 
  
%raw_analysis_matrix3 
%std_dev_deviation3 
  
  
index_5_1=1;   %index used to generate plotting array 
time_m=1; %multiplier used to populate x1 
x1=zeros(length+2-4-2,1); 
y1=zeros(length+2-4-2,1); 
y1log=zeros(length+2-4-2,1); 
while index_5_1<=length+2-4-2; 
    x1(index_5_1,1)=time_m*t_interval; 
    y1(index_5_1,1)=std_dev_deviation1(1,index_5_1+2); 
    y1log(index_5_1,1)=log(std_dev_deviation1(1,index_5_1+2)); 
    index_5_1=index_5_1+1; 
    time_m=time_m+1; 
end 
  
 
 
 
%Final Output: Generating Deviation-Comparison Chart Output 
%x1 
%y1 
figure % opens new figure window 
plot(x1,y1) 
title('Healthy System') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column') % y-axis label 
  
figure % opens new figure window 
plot(x1,y1log) 
title('Healthy System') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column (Log Scale)') % y-axis 
label 
  
  
index_5_2=1;   %index used to generate plotting array 
time_m=1; %multiplier used to populate x1 
x2=zeros(length+2-4-2,1); 
y2=zeros(length+2-4-2,1); 
y2log=zeros(length+2-4-2,1); 
while index_5_2<=length+2-4-2; 
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    x2(index_5_2,1)=time_m*t_interval;      %multiple of time step 
    y2(index_5_2,1)=std_dev_deviation2(1,index_5_2+2); 
    y2log(index_5_2,1)=log(std_dev_deviation2(1,index_5_2+2)); 
    index_5_2=index_5_2+1; 
    time_m=time_m+1; 
end 
%x2 
%y2 
figure % opens new figure window 
plot(x2,y2) 
title('Water-Tree with Parallel Model') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column') % y-axis label 
  
figure % opens new figure window 
plot(x2,y2log) 
title('Water-Tree with Parallel Model') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column (Log Scale)') % y-axis 
label 
  
  
  
index_5_3=1;   %index used to generate plotting array 
time_m=1; %multiplier used to populate x1 
x3=zeros(length+2-4-2,1); 
y3=zeros(length+2-4-2,1); 
y3log=zeros(length+2-4-2,1); 
while index_5_3<=length+2-4-2; 
    x3(index_5_3,1)=time_m*t_interval; 
    y3(index_5_3,1)=std_dev_deviation3(1,index_5_3+2); 
    y3log(index_5_3,1)=log(std_dev_deviation3(1,index_5_3+2)); 
    index_5_3=index_5_3+1; 
    time_m=time_m+1; 
end 
%x3 
%y3 
figure % opens new figure window 
plot(x3,y3) 
title('Water-Tree with Series-Parallel Model') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column') % y-axis label 
  
figure % opens new figure window 
plot(x3,y3log) 
title('Water-Tree with Series-Parallel Model') 
xlabel('Time Step Interval') % x-axis label 
ylabel('Standard Deviation of the Associated Column (Log Scale)') % y-axis 
label 
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