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ABSTRACT 

Water scarcity and drought are major threats to water security. Quantifying and defining 

boundaries between these threats are necessary to properly assess water security of a 

region. A comprehensive assessment of water security in terms of water scarcity, water 

vulnerability and drought can address water policy issues related to hydrological conditions 

and their interactions with societal and ecosystem functioning. Therefore, study of water 

security can provide useful information to multiple stakeholders. 

The overarching goal of this thesis is to improve water security in river basins around 

the world. To demonstrate our proposed methods, we selected Savannah River Basin (SRB) 

as a case study. In addition to water security assessment of SRB, we also explored the 

combined as well as individual roles of climate, anthropogenic (e.g., urbanization, 

agriculture, water demand) and ecological elements on various aspects of water security. 

Realizing the importance of water security impacts on society and ecosystem, the following 

objectives are formulated: 

1) To investigate the blue and green water security of Savannah River Basin by

applying the water footprint concept.

2) To quantify the influence of climate variability and land use change on

streamflow, ecosystem services, and water scarcity.

3) To assess the climate, catchment, and morphological variables control over

hydrological drought of a river basin.

To summarize, the results obtained from first objective shows that our proposed 

modeling framework can be applied to investigate spatio-temporal pattern of blue and 
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green water footprints as well as water security at a county scale for SRB, thereby 

locating the emerging hot spots within the river basin. The results obtained from second 

objective indicate that the land use change and climate variability have a key influence 

(either concomitant or independent) in altering the blue (green) water and related water 

security over the basin. The results based on third objective demonstrate that in addition 

to climate variables, catchment and morphological properties significantly control short, 

medium and long-term duration of hydrological droughts in SRB. An integrated 

modeling framework was developed to achieve these objectives and additional findings 

are explained in detail through the following chapters.  
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CHAPTER ONE 

INTRODUCTION TO WATER FOOTPRINT AND WATER SECURITY 

1. Water footprint concept 

Water plays a vital role in functioning of ecological, industrial and agricultural systems. 

As a result, efficient management of water resources are important to sustain food 

production, energy sector as well as activities related to human water consumption 

(Vorosmarty et al., 2000; Molden et al., 2007; Mishra and Singh, 2010; Mishra et al., 

2015). However, it is to be noted that, water consumption for both natural and human 

activities varies not only among sectors but also with location and time. For instance, 

water usage for total crop production in USA is significantly higher than the water usage 

for total crop production in China (Mekonnen and Hoekstra, 2011). Also, the water usage 

of different irrigation practices (rain-fed, micro irrigation) considerably influences the 

total water consumption (Mekonnen and Hoekstra, 2011). Therefore, we can say that 

water consumption varies in a three dimensional structure (i.e., process-type, space and 

time). The water footprint (WF) concept was developed by Hoekstra and Hung (2002), a 

conception based on carbon footprint (Wiedmann and Minx, 2008). The concept was 

initiated to develop suitable indicators to evaluate human consumption of fresh water 

resources. 

WF can be calculated for almost any product (Chapagain and Hoekstra, 2007; Dourte 

and Fraisse, 2012), human being (Hoekstra, 2009), as well as ecosystem services 

(Karabulut et al., 2016) and river basins (Veettil and Mishra, 2016; Rodrigues et al., 

2014). Among them, issues related WF at a river basin scale are particularly relevant in 
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21st century, due to the ongoing environmental transformations of widespread human-

induced water pollution, transformation of landscapes and climate change impact on the 

water provisioning service of a river ecosystem. On the top of these issues, an 

exponential increase in the population and related transboundary conflicts in river basins 

(Gleick, 1998; Stahl, 2005) causes further strain on water security of a river basin. 

Therefore, there is an immediate need to understand the water footprint concepts and then 

further apply these concepts to study the spatio-temporal dynamics of water security of a 

river basin. Broadly speaking, the goal of assessing water footprints is to analyze how 

human activities or specific products relate to issues of water security, and to see how 

activities and products can become more sustainable from a water perspective. Therefore, 

in this thesis (chapter two) we developed a hydrological modeling framework for 

quantifying the water security of a river basin through WF concept. The study is extended 

(chapter three) for evaluating the impact of land use change and climate variability on 

water security by applying the concept of WF. The classification of WF and its 

applications are briefly applied in the following sections.  

2. Classification of water footprints 

Conceptually, the water footprint is classified into blue, green and grey water use, which 

are discussed in the following section (Figure 1).  

2.1 Blue water footprint 

The flow of water through streams, rivers, aquifers (i.e., ground water) which can be 

stored in lakes, wetlands and manmade structures (e.g., reservoirs) are categorized as blue 

water. These are directly available for human use (Falkenmark and Rockström, 2006; 
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Rockström et al., 2009; Rodrigues et al., 2014; Veettil and Mishra). Normally blue water 

flow or internal renewable water resources (Schuol et al., 2008a) can be calculated from 

total water yield and water storage in deep aquifer (Abbaspour et al., 2015a; Schuol et al., 

2008b). The blue water footprint is the water used for human consumptions from the blue 

water resources, such as, (i) domestic water (ii) industrial use (iii) water use for mining 

and (v) water use for thermo-electric power generation. The components of agricultural 

water use are (i) irrigation water (ii) water supply for livestock and (iii) water supply for 

aquaculture. Blue water scarcity in basin is the ratio of blue water footprint and available 

blue water in a particular sub-watershed area during a specific period time (day, month or 

year). 

Blue water consumption by protecting the natural fresh water ecosystem is a crucial 

part of water resource management. The presumptive standard for environmental flow 

protection developed by Richter et al. (2012) is an appropriate or best method for 

assessing the availability of blue water by satisfying the environmental flow requirement 

(Hoekstra et al., 2012). According to presumptive standard, extraction of available water 

(river flow) above 20 percent will cause ecosystem degradation and environmental 

inequality. Different eco-hydrological techniques are available for estimating 

Environmental Flow Requirement (EFR) but the recent studies (Hoekstra et al., 2012, 

Rodrigues et al., 2014) showed the presumptive method can be more reasonable in blue 

water scarcity analysis. 
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2.2 Green water footprint 

The portion of precipitation available in unsaturated layer of soil and canopies of 

vegetation, which flow back to the atmosphere as evapotranspiration is termed as green 

water (Falkenmark and Rockström, 2006; Rockström et al., 2009; Rodrigues et al., 2014). 

It can be differentiated into two components, (i) green water resource (storage), which is 

soil water content and (ii) green water flow, which is the actual evapotranspiration 

(Hoekstra et al., 2012; Falkenmark and Rockström, 2006;  Schuol et al., 2008b). Overall 

green water is an important factor for an essential part of food production and return of 

agricultural economic growth to the region. Green water footprint is the amount of green 

water consumed during the production process of agriculture and forest products.  The 

evaluation of green water scarcity has greater importance for meeting the agricultural 

water requirement in a controlled irrigation and other management practices (Calder, 

2007), it can be expressed as the ratio of green water footprint to the availability of green 

water (GW-available) and it indicates the influence of human activities for green water 

use in a specific geographic location with respect to the time (Rodrigues et al., 2014). 

2.3 Grey water footprint 

Grey water represents the amount of water (fresh water) required to dilute the 

concentration of nutrients/chemicals such that the stream reaches its natural (original) 

nutrient concentration (Hoekstra et al., 2012; Mekonnen and Hoekstra, 2011; Wu et al., 

2012; Liu et al, 2012). In other words, grey water serves as a proxy for estimating the 

level of water pollution. Further, grey water can be used to investigate water quality 

standard of available water with respect to different pollutants like nitrogen phosphorus; 
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potassium and lime (Humbird et al., 2011). Some studies states that grey water is 

fictional or a theoretical concept (Chenoweth et al., 2014), and it is difficult to measure 

the volume of water needed to assimilate as well as difficulties in acquiring accurate 

measurement of background pollutant concentration of streams. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Conceptual diagram of water footprint systems based on different application.  

 

3. Necessity of water footprint concept in changing environment 

The world is going through a rapid change in socio-environmental sector by incrementing 

the negative impact on natural resources and its future sustainability. The population 

growth leads to a tremendous need of food and energy (Hejazi et al., 2014) and the 

urbanization culture is expanding to every corner of globe (Molden et al., 2007).  The 
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following section provides an overview of necessity of water footprint applications in a 

changing environment.  

3.1 Water scarcity issues  

Water scarcity is a global crisis and typically experienced in densely populated area, 

intensive agricultural areas and arid regions including central Asia, North Africa, middle 

east, Indian sub-continent and eastern China (Rijsberman, 2006,Vörösmarty et al., 2010).  

The water scarcity can be addressed by quantifying spatio-temporal distribution of water 

resources as well as demand that is necessity for human consumption and environmental 

sustainability. Vörösmarty et al. (2010) reported the global threat to human water security 

and biodiversity by focusing on the rivers, which is the major source of renewable blue 

water. The areas with dense population and intense cultivation showed an accentuating 

risk to water scarcity and environment. At the same time, non-accessible areas of north 

and tropical zone indicated minimum risk of water security. The excessive loading of 

pollutants to the water body (Schleich et al., 1996) is another important factor that 

threatens water security. Measuring the water quality and addressing its impact on the 

water security is still a major issue. Evaluation of grey water indices for nutrient 

discharging zones can indicate degree of water quality degradation of a stream. 

Therefore, the expansion of water quality measurement gauges in the global river 

network is one of the important steps to achieve this goal (Mishra and Coulibaly, 2010).  

 According to the world’s science and policy (Baumert et al., 2005), greenhouse 

gasses directly increases the stress on terrestrial water system and the consequence of 

water scarcity leads to eradication of aqua system and extinction of species, water spread 
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diseases, conflicts between water sharing nations/states (Gleick, 1998). Long term water 

planning and technological investments (e.g., massive infrastructure) are critical for 

sustainable and improved human water security (Gleick, 2003, Vörösmarty et al., 2010).  

 Oki and Kane (2006) addressed that the total blue water abstraction for human 

use is 3800 km3/yr and majority of them is derived from the streamflow, however, the 

quantity of water flowing from land surface to sea is about 45,500 km3/yr. The amount of 

water conserved through artificial structures is almost double of total human water 

abstraction. The green water contribution, which is considered as a useful resource for 

community (especially for agricultural sector), is estimated to be more than 20,000 

km3/yr. But the unevenness in spatio-temporal distribution of blue and green water is one 

of the major reasons for human water insecurity. Based on monthly water scarcity 

analysis (Hoekstra et al., 2012), it was observed that  most of the river basin around the 

world is going through low, moderate or significant blue water scarcity for at least one 

month of a given year. The water scarcity assessment needs an integrated modeling 

framework by incorporating a hydrologic model. Such a conceptual framework can 

inform water availability and water demand information for stakeholders to develop 

appropriate policies for improving water management in a changing environment. 

3.2 Examples of conflicting water demand 

Water-food-energy (WEF) nexus: - Quantifying the interaction between water, energy, 

food and understanding the system behavior (failure) can improve the water management 

in a region. However, due to lack of policy and institutional infrastructure, the global 

water footprint of food production and energy production likely to increase. The 
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examples for energy perspective include biofuel production, hydro-power generation, 

desalination and irrigation water supply (Bazilian et al., 2011). Energy is required to 

distribute water, produce food crops, waste water treatment and transportation of 

agricultural goods.  

 Vanhan, (2014) evaluated the link between water footprint and different 

components of WEF nexus. The process of energy generation is more related with the 

blue water resources and green water contribute more towards the agriculture and food 

production. By improving the soil moisture capacity (green water resources) of an area is 

an excellent practice for reducing the opportunity cost of blue water distribution, 

specifically in the rain-fed agriculture regions. The concentration of fertilizer use in 

agricultural food production sector is increasing in developing countries (FAO, 2011), 

and it will increase the grey water requirement of the stream, especially for downstream 

users. The better productivity of water and its link between energy and food can be 

addressed by incorporating the blue, green and grey water component in water resource 

planning and policy making.  

Changes in agricultural water availability: - Agriculture is the predominant user of fresh 

water (Gleick, 2003; Shiklomanov, 2000). Rost et al. (2008) interpreted the blue and 

green water consumption of agricultural crops in a global scale. The study shows that the 

land use land cover pattern change augmented the evapotranspiration rate by 1.9% in 

irrigated regions. They also suggest irrigation efficiency can be improved by reducing the 

runoff, soil evaporation, drainage. It causes the improvement of green water storage in 

the soil. The inefficient irrigation practice make 30% global loss of irrigation water (Bos, 
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1985) and which directly affect the blue water resources and indirectly to the energy 

usage. The supply of irrigation water to the agriculture land is further scale down by the 

influence of drought in all the continents (Mishra et al., 2015; Dai, 2001; Mishra et al., 

2010). Hence the net irrigation requirement varies from crop to crop, the quantification of 

drought induced water scarcity of an agricultural land is a complex assignment. Green 

water consumption dominates over blue water consumption in global crop production 

(Rost et al., 2008; Mekonnen and Hoekstra, 2011). Majority of global food production 

(60 – 70%) is from the rain-fed agriculture in the form of green water storage 

(Falkenmark and Rockström, 2004). The blue water resource is only consumed when the 

green water storage is less than crop water requirement. Salt water intrusion (in coastal 

agriculture) due to exploitation of ground water storage (blue water component) is 

another concern which is deteriorating the global water supply to the crop field (Abarca 

et al., 2006, Goswami and Clement, 2007, Mantoglou, 2003, Sethi et al., 2002). The 

application of blue water through micro irrigation techniques, for example, drip and 

sprinkler irrigation, is an adequate way of blue water consumption during dry season for 

reducing the disorder in plant water relationship. 

3.3 Quantifying virtual water trade 

The concept of water footprint (Hoekstra and Hung, 2002) represents the human 

consumption of fresh water resources, and how it will affect the water scarcity of a 

region. The concept of virtual water initially proposed by Allen (1993) can be used to 

quantify the volume of water consumed during the whole process of product development 

(Hoekstra and Hung, 2002). The water footprint is quantitatively identical to virtual water 
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content of a particular product (Zhang et al., 2012), but water footprint can also be 

applicable at a consumer level as well as it can generate indices for water use (for 

example, agriculture, food and other industrial products). The direct export of water for 

commodity production is possible only through gravity system (Oki and Kanae, 2006; 

Lenzen, 2009). Therefore, the states/countries/continents which have limited water 

resources can solve their water scarcity issues up to an extent by importing the goods 

(with intense virtual water content) from water abundant region. The water - rich nation 

can accelerate their economic growth by the trading of virtual water to the water deficit 

nations and the practice will improve the international link between the nations 

economically and politically (Hoekstra and Hung, 2002). There is a significant increase 

(from 1986 to 2008) in blue and green water consumption due to the growth of food 

commodity trade between the nations (Dalin et al., 2012; Konar et al. 2012). The analysis 

of virtual water business is entirely complex due to the network is extremely dynamic and 

the formation of link changes spatially and temporally. Therefore, there is scope for 

network based model development that can evaluate the networks and links between the 

nation’s virtual water trades.   

3.4 Growing anthropogenic impact on blue water 

The amount of fresh water accessible to the global population is a marginal fraction of 

world’s total water (Oki and Kanae, 2006), which is referred as blue water resources. The 

global population is multiplying more rapidly (Hanasaki et al., 2006; Nilsson et al., 2005; 

Pokhrel et al., 2012; Vorosmarty et al., 2000), and it has tremendous pressure on blue 

water resources through depleting surface and ground water storages. Anthropogenic 
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factors, for example, increase in land use and land cover change further alters the spatio-

temporal patterns of hydrologic fluxes (e.g., evapotranspiration, runoff, and ground water 

flow) (Costa et al., 2003; Sahin and Hall, 1996). Sectoral water demand continues to 

grow, for example, the consumptive use of agricultural sector is about 85% (Gleick, 

2003), which has a significant influence on the normal flow in Major River networks. 

The construction of water storage structures (for example, dams, and aqueducts) had a 

direct influence on blue water resources management (Gleick, 2003). The making of 

massive structures caused unequal partitioning of blue water in between the 

Transboundary River sharing nations/States. That is leading to several international or 

state conflicts (Sathl, 2005). In addition, it also created changes in sea water level (Oki 

and Kane, 2006). 

3.5 Low flow influence on grey water footprint  

The concentration of nutrients/pollutants in stream networks are expected to increase 

with anthropogenic activities and related changes in the land use and cover (Bouraoui et 

al., 2002). The low flow in streams occurs seasonally as well as during drought events 

(Smakhtin, 2001). During the low flow period, the pollution from point and non-point 

sources hinders the availability of clean water for downstream users. Also, the low flow 

regime is characterized by high stream temperatures causing low dilution of nutrients and 

subsequently changing the pH level and dissolved oxygen content (Sprague, 2005). 

Finally, it will lead to the upsurge of grey water content in the streamflow. In agriculture, 

the grey water footprint can be reduced by constraining the application of chemical 

fertilizers and pesticides in the crop land to minimize their impact on water quality in the 
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water system through run-off from the field or by leaching. The concentration of nutrients 

in streams varies also with the season. For example, during the dry season nutrients in 

stream elevates due to intensive irrigation (Verhoeven et al., 2006). Other studies have 

indicated that the precipitation over an agricultural watershed has strong control on 

leaching of fertilizers and manure to the stream network (Sigleo and Frick, 2003).  

 Water Pollution Level (WPL) is another appropriate indicator for addressing the 

impact of pollutant in streams (Hoekstra et al., 2012). It is quantified as the ratio of grey 

water to river discharge (Wu et al., 2012). As evident from the WPL definition, the 

higher the value of WPL higher is the water pollution. Therefore, calculating WPL during 

low flow period can inform the farmers to understand the impact of fertilizers and manure 

application in a river ecosystem. However, the grey water footprint concept is considered 

as least meaningful of three water forms as it is a theoretical concept rather than an actual 

measured volume (Morrison et al., 2010). The water experts and policymakers consider 

that it is extremely difficult to determine how much freshwater will be polluted due to the 

flow of nutrients flow from point and nonpoint sources (Nazer et al., 2008). 

3.6 Model based applications 

Several modeling approaches are proposed to quantify the blue and green water footprints 

(Veettil and Mishra, 2016). The decision support tool of CROPWAT (Allen et al., 1998), 

AquaCrop model (Heng et al., 2009) and the Soil and Water Assessment Tool (SWAT) 

(Arnold et al., 1998) are commonly used to estimate the blue, green and grey water 

resources at a basin scale as well as for individual crop.For example, Abbaspour et al. 

(2015) estimated the green and blue water for the continental Europe; Schuol et al. (2008) 
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and Zang et al. (2012) used SWAT model for evaluating the blue and green water 

availability in Africa and Heihe River Basin (north east China) respectively. Rodrigues et 

al. (2014) developed a framework to quantify blue and green water in a catchment 

located at Sao Paulo, Brazil. For individual crops, the water balance model CROPWAT 

(Allen et al., 1998) is commonly used for analyzing WF (Chapagain and Hoekstra, 2011; 

Chapagain and Hoekstra, 2007; Gerbens-Leenes et al., 2009a; Kongboon and 

Sampattagul, 2012; Mekonnen and Hoekstra, 2011a). EPIC model (Williamsetal, 1989; 

Williams, 1995) is another efficient crop model that can be used for quantifying the green 

water footprint.   

 In CROPWAT, the green water and blue water footprint can be separately 

estimated based on the source of evapotranspiration (Crop Water Use) during the crop 

growth period (Hoekstra et al., 2012). Other models used for crop WF calculation that are 

dependent on water budget equation are PolyCrop (Nana et al., 2014), Decision Support 

System for Agrotechnology Transfert – Cropping System Model, (DSSAT-CSM; Dalla 

Marta et al., 2012), and Lund-Potsdam-Jena managed Land (LPJmL; Rost et al., 2008). 

4. Applications in different sectors 

The application of water footprint concept is applied in multiple sectors (e.g. food 

production, energy projects, and industry). Most of these studies have focused on water 

footprint accounting based on the methodologies applied to calculate water footprints for 

individual products/process. In this section, an overview of the application of water 

footprint concept in food production, biofuel production, and some other sectors 

including industry, mining, and energy production is provided. 
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4.1 Food production sector 

Water footprint of food crops are analyzed in several literatures (Hoekstra et al., 2011; 

Mekonnen and Hoekstra, 2011; Rost et al., 2008). The estimated amount of total water 

for 126 agricultural crops (Mekonnen and Hoekstra, 2011) showed that the global water 

footprint related to crop production was 7404 billion cubic meters per year comprising of 

78% green, 12% blue, and 10% grey water footprint. The global average water footprint 

for wheat found to be 1827 m3/ton, which consists of  green water footprint (1277 m3/ton)  

blue water footprint (342 m3/ ton) and grey water footprint (207 m3/ton). The water 

footprints of crops also vary significantly from region to region (Chapagain and 

Hoekstra, 2011). Agricultural crops often cultivated in coarse land likely to use irrigation 

water, which will have higher average blue water footprints than crops that are largely 

cultivated in rain-fed land (Vanham and Bidoglio, 2013). Rainfed agriculture is the major 

user of green water in agricultural sector, but the amount of green water exploited in 

irrigated crop land is insignificant in a global scale. The water footprint application based 

on a disaggregation (blue, green and grey water footprint) approach are maize (Nana et 

al., 2014), cotton (Chapagain et al., 2006), and tomato (Chapagain and Orr, 2009). The 

water footprint of varieties of crops is provided in the Table 1. 

 The water footprint for animal products is greater than crop products with an 

equivalent nutritional value (Mekonnen and Hoekstra, 2012). The estimated water 

footprint for beef and milk products found to be the highest among the food products. But 

the revised water footprint approach formulated by Ridoutt et al (2012) by excluding 

green water provides different results. According to the revised water footprint concept, 



 15 

the life stock grown in non-arable land has no contribution in water footprint, and hence 

is not a threat to water security. However, the water footprint concept which considers 

relative scarcity in each catchment strongly recommends the addition of green water 

footprint (Hoekstra and Mekonnen, 2012) and this concept make more environmental 

relevance in water footprint calculations. Therefore, the global animal production based 

on three components (blue, green, and grey) of water footprint concept requires about 

2422 Gm3 of water per year. In that 87.2% belongs to green, 6.2% belongs to blue, and 

6.6% belongs to grey water footprint. One third of this volume is for the beef cattle sector 

and another 19% for the dairy cattle sector.  

4.2 Bioenergy production sector 

Greenhouse gas emission is one of the most significant contributor to the climate change 

since the mid of 20th century and the majority of them coming from energy and 

transportation sector (Mint et al., 2011). Many researchers highlighted that the use of 

biofuel will significantly reduce greenhouse gas emission (Gerbens-Leenes and Hoekstra, 

2008; Kongboon and Sampattagul, 2012). The U.S department of energy aims to provide 

16% of electricity through biofuel production (Gerbens-Leenes et al., 2012) by 2020. 

Therefore the water footprint and related water security analysis due to the biofuel 

production is necessary for understanding the pressure on water resources (Dalla Marta et 

al., 2012; De Gorter and Tsur, 2010; Fargione et al., 2008; Dominguez-Faus et al., 2009). 

Generally, the sources of biomass for energy are food crops, energy crops and organic 

wastes (Minnesma and Hisschemöller, 2003). However, several other studies suggested 



 16 

that biofuels made from few food crops can contribute more greenhouse gases than the 

fossil fuels.   

 The water footprint for biofuel production varies between crops depending upon 

the climate, topography, type of crop, and crop yield (Dalla Marta et al., 2012). For 

example, Biodiesel has the largest water footprint (Gerbens-Leenes and Hoekstra, 2008), 

which is generally produced from coconut, groundnut, and cotton. Additionally, the water 

footprint of sugar cane and cassava varies considerably with respect to the region, climate 

and agricultural production system and on average water footprint of sugarcane is less 

than that of cassava (Kongboon and Sampattagul, 2012). A comparison between water 

footprints per unit energy of biomass with water footprint of oil, coal and gas (Gerbens-

leens et al.,2009) shows that the water footprint of energy from biomass is 70 – 400 times 

greater than the same quantity of energy from the above mentioned primary energy 

carriers. Therefore, the higher energy use in combination with an increasing contribution 

of energy from biomass will result in competition for water consumption with food 

production. The application of WF concept in bioenergy sector is listed in Table 2.  

4.3 Application in other sectors 

Addressing water footprint of any product or a geographic location can provide a 

sustainable water management solution. Many countries performed water footprint 

analysis at national level, for example, Hoekstra et al. (2008), Bulsink et al. (2010), Liu 

and Savenije (2008), and Verma et al. (2009). A comprehensive water footprint 

assessment of humanity is only possible through the comparative analysis based on all 

the water usage sector such as, agricultural production, industrial production, domestic 
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water supply, electricity production, and public use. International virtual water flows 

related to trade in agricultural and industrial commodities can be considered as part of 

human water footprint. Table 3 shows some important sectorial application of water 

footprint on humanity.  
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Table 1. Application of water footprint in food production sector 

Field of 

application 
Authors Major contribution 

Crops and 

crop derived 

products 

(Mekonnen 

and Hoekstra, 

2011) 

Water footprint of 126 crops and 200 crop products in a global 

scale is quantified with CROPWAT model. 

Wheat 

(Mekonnen 

and Hoekstra, 

2010a) 

The global assessment of wheat water footprint was 1830 

m3/ton, the analysis was based on a high resolution grid-

dynamic model.  

Animals and 

Animal 

products 

(Mekonnen 

and Hoekstra, 

2010b) 

The blue, green, grey water footprint of animals and animal 

product showed a maximum in beef cattle and in cow milk 

production. The calculated water footprint of animal product 

was greater than water footprint of crop products for the same 

volume.  

Agricultural 

consumption 

(Rost et al., 

2008) 

The dynamic global vegetation and water balance model (LPJ) 

is used for estimating the global crop water consumption.  

Cotton 
(Chapagain et 

al., 2006) 

The worldwide consumption of cotton products consumes 256 

Gm3 of water per year, with a maximum water footprint of blue 

water. 

Rice (Global 

Scale) 

(Chapagain 

and Hoekstra, 

2011) 

The global water footprint of rice production is 784 km3/year, 

with maximum green water consumption.  

Spanish 

tomatoes 

(Chapagain 

and Orr, 

2009) 

Water footprint analysis is applied to a local level, for the 

horticulture industry, based on the tomato consumption. The 

result showed that green water consumption is 71 Mm3/yr and 

7 Mm3/yr of nitrate grey water. 

Coffee and 

Tea 

(Chapagain 

and Hoekstra, 

2007) 

Evaluated the global water foot print of tea and coffee 

consumption in Dutch society, the calculation is based on water 

requirement in the major countries which is exporting the 

product. 

Maize 
(Nana et al., 

2014) 

PolyCrop- multiyear daily crop model is used for calculating 

the water use according to the simulated growth of maize. 
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Table 2. Application of water footprint in bioenergy sector 

 

 

 

 

 

 

 

 

 

Bioenergy 

(Gerbens-

Leenes et al., 

2009b) 

The study analyzed the water footprint of bioenergy from the 

crops, including Jatropha, which is having maximum bioenergy 

production.  

Biomass 

(Gerbens-

Leenes et al., 

2009a) 

The water footprint of primary energy carriers derived from 

biomass in different countries are evaluated and estimated water 

footprint of bioenergy was much larger than fossil energy.  

Biofuel 
(Wu et al., 

2012) 

The spatial variation of water footprint of stover ethanol 

production is estimated based on standardized water footprint 

methodology combined with hydrologic modeling.  

US 

transportation 

fuels 

(Scown et 

al., 2011) 

Explained the potential change in water footprint due to the 

increased production of biofuel and electricity. The study 

proved production of ethanol and petroleum fuels already made 

impact in aquifer storage due to over pumping. 

Bioethanol 
(Dalla Marta 

et al., 2012) 

Examined the relation between the pressure on water resources 

due to the production of biofuel and how it is affected by 

climate variability. 

Bioethanol 
(Chiu and 

Wu, 2012) 

Analyzed county level water footprint of bioethanol from corn 

grain, stover, and wheat straw in the United States.  

Sugarcane 

and Cassava 

(Kongboon 

and 

Sampattagul, 

2012) 

The water footprint of both crops varies considerably with 

respect to the region, climate and agricultural production 

system. 

Sweeteners 

and 

Bioethanol 

(Gerbens-

Leenes and 

Hoekstra, 

2012) 

Evaluated the WF of sweeteners and bioethanol from the crop 

sugarcane, sugar beet and maize.  
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Table 3. Application of water footprint in other sectors 

 

 

5. Difference between water scarcity and drought 

The water security may be defined as the capacity of a water resource system to 

safeguard sustainable access to adequate quantities of acceptable quality water for 

sustaining livelihoods. Water scarcity, water vulnerability, drought, aridity, and water 

quality are the major stress on water security of a region. In this thesis, we focused on the 

water scarcity, water vulnerability and drought. Generally, drought and water scarcity are 

interwoven in nature and this can lead to confusion in water security assessment (Van 

Loon and Van Lanen, 2013). Therefore, crafting a boundary between water security, 

water vulnerability and drought is vital for proper policy decisions. Water scarcity refers 

to long-term water imbalances in supply (Environmental Flow Requirement) and demand 

(water footprint) of water (EU, 2007). Generally, the practice that leads to water scarcity 

is the over exploitation of water during the higher demand than the water availability. 

Therefore, by incorporating human activities in a hydrological system can improve water 

scarcity assessment of a region (Van Loon and Van Lanen, 2013). 

Copper 

production 

(Peña and 

Huijbregts, 2014) 

The study from Northern Chile on extraction and 

production of high grade copper found that sea water 

use will reduce the blue water footprint by 62% in 

Copper mines. 

Electricity 
(Mekonnen and 

Hoekstra, 2011c) 

The water evaporated from 35 reservoir for producing 

electricity was equivalent to the 10% of global blue 

water footprint of crop production. 

Business 

(Gerbens-Leenes 

and Hoekstra, 

2008) 

Formed an accounting method for Business Water 

Footprint that helps to identify all the questions related 

to water footprint in business performance.  

Platinum 

mine 

(Haggard et al., 

2013) 

WaterMiner tool (program) is used for calculating the 

WF of platinum mines in South Africa.  
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Drought can be triggered due to natural deficit of water caused by low 

precipitation and high evapotranspiration. Drought is monitored and quantified based on 

the intensity, duration, severity and spatial extent by using several indices (Dai, 2011; 

Mishra and Singh, 2010). Palmer Drought Severity Index introduced by Palmer (1965) 

was the first index to quantify severity, duration and intensity of droughts. It is built upon 

a water balance model utilizing the precipitation and temperature information of a region. 

Later several indices like Crop Moisture Index (CMI; Palmer 1968), Surface Water 

Supply Index (SWSI; Shafer and Dezman, 1982), Standardized precipitation index (SPI; 

McKee et al., 1993), Soil Moisture Drought Index (SMDI; Hollinger et al., 1993), 

Reclamation Drought Index (RDI; Weghorst, 1996), Vegetation Condition Index (VCI; 

Liu and Kogan, 1996) were introduced to study various aspects of drought impacts. 

However, all these indices do not explicitly consider direct streamflow in their 

calculations. Therefore, we used standardized runoff index (SRI) (Shukla and Wood, 

2008) in our hydrological drought analysis. In chapter four we analyzed the influence of 

climate, catchment and morphological variables on water availability (hydrological 

drought) of Savannah River Basin.  

6. Limitations of hydrologic modeling framework 

The hydrological models have become increasingly sophisticated, in line with 

developments in fast computing using large amounts of data. Hydrological model can be 

used for evaluating the anthropogenic influence and climate change impact on water 

resources and as well as climate change impact assessment. The major uncertainties in 

generating streamflow using a hydrological model are (a) errors in the input data used for 
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model development, (b) bias in the model parameters, and (c) errors in the datasets used 

for model evaluation (observed streamflow data) (Butts et al., 2004). The practices to 

quantify the uncertainties in the form of probability distributions evolve high degree of 

nonlinearity and complex interactions with in the hydrological modeling framework 

(Rodrigues et al., 2014). Therefore, robust approaches are necessary for water policy 

decisions under uncertainty.  

 All specific studies presented in each chapter are related to the water security 

evaluation of Savannah River Basin (SRB), a transboundary river basin located at 

southeastern United States. Here, the variables (e.g., water yield, groundwater, and 

streamflow) associated with the water security are quantified using Soil and Water 

Assessment tool (SWAT) developed by United States Department of Agriculture (Arnold 

et al., 1998). The uncertainties associated with the input data and the model parameter 

ranges are quantified by using SWAT-CUP software (Abbaspour et al., 2004). However, 

there is possibility for model uncertainty and it can be further improved by calibrating the 

baseflow component, better representation of human interventions (e.g., reservoir 

operation, irrigation water use), and simulating low flow during the drought period.    

7. Overall research objectives 

The overall aim of this research is to evaluate the water security of Savannah River Basin 

by quantifying water scarcity and drought. Three specific research objectives have been 

identified, each of which has a number of sub-objectives: 

Objective 1:- To quantify water security by using blue and green water footprint 

concepts (Chapter one). 
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Objective 1.1: To investigate the spatio-temporal distribution of blue and green water for 

counties located in the Savannah River Basin. 

Objective 1.2: To quantify the water security for each county in terms of water scarcity 

and vulnerability. 

Objective 2:- To quantify the influence of climate variability and land use change on 

streamflow, ecosystem services, and water scarcity (Chapter two). 

Objective 2.1: To quantify the land use change and climate variability impact over 

hydrological stream network. 

Objective 2.2: To evaluate the influence of land use change and climate variability in 

controlling the ecosystem provisioning service of the basin. 

Objective 2.3: To quantify the potential influence of land use change and climate 

variability in altering the water scarcity through water footprint concept. 

Objective 3:- To assess the climate, catchment, and morphological variables control 

over hydrological drought of a river basin (Chapter three). 

Objective 3.1: To investigate the influence of (either individually or combined) of 

climate, catchment and morphometric variables responsible for triggering hydrological 

drought for SRB. 

Objective 3.2: To identify threshold limits for the climate, catchment and morphological 

variables by using decision tree approach. 
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8. Thesis organization 

This contains five chapters with the main objectives of research presented in chapter two 

to five. The chapter two is published in journal of hydrology (Veettil and Mishra, 2016). 

Here, we discussed about the spatio-temporal variability of blue and green water over a 

river basin. The spatial variation in water security is also evaluated in the chapter two. 

Chapter three discuss about the influence of land use change and climate variability on 

streamflow, blue (green) water and water scarcity. Chapter four illustrates the relation 

between hydrological drought and climate, catchment and morphological variables. 

Chapter five discusses conclusions and recommendations. The text, figures and tables in 

this thesis are modified in line with the University guidelines. 
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CHAPTER TWO 

WATER SECURITY ASSESSMENT USING BLUE AND GREEN WATER 

FOOTPRINT   CONCEPTS 

 

1. Introduction 

Availability of fresh water resources for human consumption is under threat due to 

changing climate, limited water supply and growing water demand (Mishra and Singh, 

2010; Vorosmarty et al., 2000). The major source of surface water supply is often 

complicated due to uncertainty associated with spatio-temporal distribution of rainfall as 

well as multi-year droughts (Oki and Kanae, 2006). The drought and related 

socioeconomic impact (Rajsekhar et al., 2015) are expected to increase in future, which 

will further increase the complexity in fresh water availability as well as its distribution 

among different stakeholders. The demand for water is continue to grow due to growing 

population, industrialization, agriculture, domestic use and energy production 

(Vörösmarty and Sahagian, 2000; Lumia et al., 2005; Srinivasan et al., 2013). It is 

anticipated that by 2025 about 1.8 billion people will likely to witness absolute water 

scarcity (WWAP, 2012; WWDR, 2015). Similarly the percentage of water consumption 

for energy and agriculture production will increase drastically by 2035 (IEA, 2012). 

Therefore, quantification of water availability and its vulnerability will play a critical role 

in defining and implementing sustainable water management in a changing environment. 

For example, Padowski and Jawitz (2012) provided a quantitative assessment of national 

urban water availability and vulnerability for 225 U.S. cities by incorporating renewable 

water flows as well as water stored using regulated infrastructure systems. 
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Addressing water security by classifying fresh water resources into blue, green 

and grey water (Schneider, 2013) is an appropriate method for water resources 

management.  Blue water is defined as water flowing through surface and subsurface 

medium (i.e., ground water) which are stored  in lakes, aquifers and  manmade structures, 

that can be directly used for human consumption (Falkenmark and Rockström, 2006; 

Falkenmark and Rockström, 2010; Rockström et al., 2009, Rodrigues et al., 2014; 

Hoekstra et al., 2011). The water stored in unsaturated soil layer and vegetation canopy is 

classified as green water (Falkenmark and Rockström, 2006; Rockström et al., 2009; 

Rodrigues et al., 2014). Therefore, evaluating the blue and green water consumption for 

human activities is crucial for water resources planning.  

Water Footprint (WF) concept (Hoekstra and Hung, 2002; Hoekstra et al., 2011) 

can establish the link between the depletion of water resources and increase in 

population. Blue water footprint (BWfootprint) is the human water consumption from blue 

water resources and it can be quantified based on the volume of surface and groundwater 

consumed as a result of the production of a good or service (e.g., domestic, industrial, 

power production, irrigation etc.) (Hoekstra et al., 2011; Rodrigues et al., 2014). Green 

water footprint (GWfootprint) refers to the consumption of green water resources, for 

example evapotranspiration from agriculture and forest area (Hoekstra et al., 2011; 

Rodrigues et al., 2014). Further water security (water scarcity and vulnerability) can be 

quantified as a ratio of water consumed to water available (Rodrigues et al., 2014) and it 

is considered to be a globally accepted metric (Hoekstra et al., 2011; Rodrigues et al., 

2014) to characterize and map the geographic hotspots for water stress region. The blue 
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water footprint is directly related to human water consumption but the green water 

footprint is indirectly influenced by the human activities (e.g., agriculture). Therefore, 

blue and green water footprint are related to human water consumption. The spatio-

temporal analysis of water footprint reflects the spatial distribution of potential linkage 

between climatic factors (i.e., water supply) and anthropogenic factors (i.e., water 

demand) and how do they evolve with time. Therefore, this information is particularly 

useful: (a) for quantifying water related scarcity and vulnerability, (b) it will help the 

decision makers to understand the current status of water availability, sustainable 

utilization and the importance of water resources protection of an area, and (c) to reveal 

the spatially varying pattern of geographic hotspot. 

According to Hoekstra and Mekonnen (2012), WF can be relevant to 

environmental sustainability metric by addition of green water consumption in the 

analysis.  Liu et al. (2009) estimated that nearly 80% of green water footprint are 

associated with global agriculture production, which includes wheat (Mekonnen and 

Hoekstra, 2010a), animal products (Mekonnen and Hoekstra, 2010b; Mekonnen and 

Hoekstra, 2012), cotton (Chapagain et al., 2006) and bioenergy (Gerbens-Leenes et al., 

2009). Excessive utilization of blue water from stream can damage stream ecosystem, 

therefore Environmental Flow Requirement (EFR) concept needs to be applied for 

maintaining a healthy river system (Honrado et al., 2013). Presumptive standard method 

(Richter, 2010; Richter et al., 2012) can be useful for EFR analysis as well as for 

estimating the availability of blue water in a stream. According to presumptive standard, 

extraction of stream flow greater than 20 percent likely to cause degradation in ecological 
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health and environmental balance. Various methods are developed for calculating EFR 

(Tharme, 2003; Hoekstra et al., 2011; Rodrigues et al., 2014) as well as to perform water 

security analysis. 

There are number of approaches proposed to investigate the blue and green water 

footprints.  The decision support tool CROPWAT (Allen et al., 1998), AquaCrop model 

(Heng et al., 2009) and the process based Soil and Water Assessment Tool (SWAT) 

(Arnold et al., 1998) are popular models commonly used to quantify blue and green water 

resources. For example, Abbaspour et al. (2015) estimated the green and blue water for 

the continental Europe. Schuol et al. (2008b) and Zang et al. (2012) used SWAT model 

for evaluating the blue and green water availability in Africa and Heihe River Basin 

(north east China) respectively. Rodrigues et al. (2014) developed a framework to 

quantify blue and green water in a catchment located at Sao Paulo, Brazil.  

Due to the changing pattern in climate variables and sectorial water demands, it is 

desirable to study the spatio-temporal variability of water footprints (security) indicators 

in a river basin for formulating water management practices. However, there are limited 

studies that investigated (Zang et al., 2012; Rost et al., 2008) spatio-temporal pattern of 

water footprints indicator with potential application to water resources management. The 

specific objectives of our study are: (a) to investigate the spatio-temporal distribution of 

blue and green water for counties located in the Savannah River Basin, and (b) to 

quantify the water security for each county in terms of water scarcity and vulnerability. 

The results from this study will be useful to understand the spatio-temporal pattern of 

water distribution in a river basin that is necessary for formulating best water 
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management practice and to improve water resources sustainability. Additionally, there 

were no prior studies conducted in Savannah River Basin. 

2. Study area and Data 

Savannah River Basin (SRB) is a transboundary river basin located in south-east Atlantic 

region of USA. It has drainage area of 27171 km2, out of which 11875 km2 is located in 

the South Carolina and 14965 km2 in Georgia and the remaining portion is located in the 

state of North Carolina (SCDHEC, 2010).  The land cover of SRB consists of forest 

(69%), agriculture (22%) and urban/developed (7%) areas. According to Georgia 

department of natural resources, the percentage of irrigated agricultural land in SRB has 

increased by 1.8 % between 1984 and 1995.   During the recent decade, SRB is going 

through a periodic water shortage due to a combination of drought and growing water 

consumption for domestic, industrial and agricultural sectors (Sun et al., 2008). The 

available water resources in SRB are used for domestic use (more than 1.5 million 

people), energy (hydro power generation, nuclear plants etc.), industrial and agricultural 

water uses (SCDHEC, 2010). According to Environment Georgia (a citizen based 

environmental advocacy project of Environment America), Savannah River is considered 

as the third most polluted river in the country, which further complicates the allocation of 

water resources for different sectors. 

The basin is composed of nine USGS 8-digit HUCs (Hydrologic Unit Codes) 

(03060101 to 03060109) and 31 counties (Figure 1). The SRB which serves three 

different states (North Carolina, South Carolina and Georgia) is also likely to be affected 

by trans-boundary disputes; climate and land use change as well as growing water 
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1. Rabun 11. Abbeville 21. Taliaferro 

2. Oconee 12. Oglethorpe 22. Richmond 

3. Pickens 13. Wilkes 23. Aiken 

4. Stephens 14. Lincoln 24. Burke 

5. Banks 15. McCormick 25. Barnwell 

6. Franklin 16. Greenwood 26. Screven 

7. Hart 17. Warren 27. Allendale 

8. Anderson 18. Edgefield 28. Hampton 

9. Madison 19. Columbia 29. Effingham 

10. Elbert 20. McDuffie 30. Jasper 

31. Chatham 

demands. During the last decade, the SRB was severely affected by extreme droughts that 

began in early 2006, which in turn dropped reservoir levels (Knaak et al., 2011; Roehl et 

al., 2015) faster than any previous drought on record. This situation is only likely to 

worsen because the water is shared by three states and each state is witnessing an 

increase in water scarcity issues. 

 

Fig. 1. Savannah River Basin and its land use pattern, stream network and location of 

gaging stations (Left). Spatial location of counties in the Savannah River Basin (Right).  
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2.1. Data  

 

The list of data sets used in this study and their sources are provided in Table 1. The 

digital elevation model (DEM) was obtained from National elevation data set at a 

resolution of 30m to delineate the study area and to estimate the topographic features. 

The land use and soil data were used for generating the HRUs (Hydrologic Response 

Units). The meteorological (precipitation and temperature) and stream flow data for 1990 

to 2013 were collected from National Climatic Data Centre (NCDC) and United States 

Geological Survey (USGS) respectively. The reservoir outflow data collected from 

Savannah District Water Management (US Army Corps of Engineers) was incorporated 

in SWAT model development.   

Table 1. Data used (inputs) for SWAT model development. 

Data Used Description Resolution Source 

Land use 

map 

The Crop Data Layer 

produced using Landsat 

imagery during 2013 

30 × 30 United State Department of 

Agriculture (USDA)  

Topography 

and 

Hydrograph 

Digital Elevation Model 

from National Elevation 

Data set (NED, NAD 

83) 

30 × 30 National Elevation Dataset, 

USGS 

Soils The SSURGO data base 

provides the most 

detailed level of 

information, helpful for 

county level analysis 

1:12,000  to 

1:63,360 

United State Department of 

Agriculture (USDA) 

Meteorologi

cal Data 

The daily Precipitation, 

maximum and minimum 

air temperature 

 

Daily (mm) 

National Climatic Data 

Centre  (NCDC)  

 

Stream flow 

gages 

River Discharge  Daily and 

monthly mean 

(m3/s) 

United States Geological 

Survey (USGS)  

 

Reservoir 

data 

Outflow and dimension Daily and 

monthly  

U.S. Army Corps of 

Engineers 
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3. Methodology 

The integrated modeling framework applied for generating blue and green water as well 

as to quantify water security in a river basin is provided in Figure. 2. The following 

section provides a brief overview of individual components provided in the modeling 

framework.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Modeling framework for water security assessment using blue and green water 

footprints.  
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3.1. Hydrologic modeling  

We used Soil and Water Assessment Tool (SWAT) developed by United States 

Department of Agriculture (USDA) for simulating the blue and green water resource 

components. The SWAT is a process based, semi-distributed basin scale model (Arnold 

et al., 1998; Neitsch et al., 2004) and it operates at a daily time step. The model has the 

advantage to study water quantity (stream flow), water quality (sediment load and 

nutrients flow) and crop growth in different landscapes and management practices. The 

model has been widely applied in different sectors (water quantity, quality and crop 

management) (Faramazi et al., 2009) and it can be applied to a small catchment as well as 

to a large river basin (Chu et al., 2004; Cibin et al., 2012; Gassman et al., 2007; Giri et 

al., 2014). The SWAT model is recently applied to quantify the blue and green water 

indicators in different part of the world, for example northeast China (Zang et al., 2012), 

Africa (Schuol et al., 2008b), Continental Europe (Abbaspour et al., 2015) and Brazil 

(Rodrigues et al., 2014).  

Digital Elevation Model (DEM) is used in SWAT model to delineate a river basin. The 

delineated river basin is divided into sub-basins, which are further divided in to unique 

land use/soil/slope units called Hydrologic Response Units (HRUs). The delineation of 

HRUs are performed by super imposing the soil, land use and slope map. Five classes of 

slopes used for HRU delineation are 0-2.5%, 2.5-5%, 5-10%, 10-40% and above 40%. 

The number of HRUs is controlled by adjusting the threshold (Her et al., 2015) of land 

use (3%), soil (10%) and slope (16%), which resulted in 1408 HRUs distributed over 104 
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sub-basins. We used SUFI2 algorithm for evaluating the model performance, and the 

explanation is given in section 3.2.  

Water balance is the driving force which controls all the process in SWAT.  

Surface runoff occurs whenever the amount of water on the land surface exceeds the rate 

of infiltration. Here, surface runoff is calculated by SCS curve number (CN) method and 

variable storage method is used for routing the runoff from sub-basin through river 

network and to the main basin outlet. The preprocessing of the SWAT model input was 

accomplished in ArcGIS 10.2.2 version of ESRI.  

3.2. Model evaluation and uncertainty analysis – SUFI2 algorithm 

The model was calibrated and evaluated against the observed stream flow data (source: 

USGS) located in the Savannah River Basin. We used SUFI2 optimization algorithm 

developed by Abbaspour et al. (2005) for parameter estimation and sensitivity analysis. 

The primary objective of calibration is to identify the sensitive parameters in the 

watershed that controls the runoff. The sensitivity analysis was performed using the in-

built global sensitivity option of SUFI2 algorithm, where the statistical significance of a 

parameter is estimated based on t-stat and p-value. Each model consists of uncertainty in 

predictions due to the uncertainty associated with input data and model parameters. 

SUFI2 algorithm can narrow down the range of uncertainty by identifying a range of 

parameters that reduce overall uncertainty in the output. The model output is quantified 

by 95% prediction uncertainty (95PPU) calculated at 2.5% and 97.5%. The performance 

of SWAT model was evaluated by using the goodness-of-fit criteria, such as, coefficient 

of determination (R2), Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliff, 1970), R- and 
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P-factor. R-factor is the ratio of average thickness of 95PPU band to standard deviation 

of observed data, whereas P-factor is the percentage of observed data enclosed in 95PPU 

(Abbaspour et al., 2007). The maximum value of P-factor is 1, which means 100% of 

observed data is bracketed by the 95PPU. The lower value of the R-factor indicates better 

model performance. The overall time period used in our analysis is: 1990 – 2013. The 

first three years (1990-1992) were used as warm-up period to alleviate the effects of 

unknown initial conditions and subsequently this time period is excluded from the 

analysis. We divided the discharge data set in to two periods 1993 – 2005 (calibration 

period) and 2006 – 2013 (validation period). The model calibration and validation results 

and most sensitive parameters for SWAT model are explained in section 4.1. 

3.3. Blue and green water calculation 

The blue water is calculated by applying modeling framework (Fig. 2) by combining both 

water yield (WYLD) and ground water storage. Water yield is the amount of water 

leaving the HRU and entering the main channel. Ground water storage is the difference 

between total amount of water recharge to aquifers (GW_RCHG) and the amount of 

water from aquifer that contributes to the main channel flow (GW_W) (Rodrigues et al., 

2014). Green water is divided in to green water flow (evapotranspiration) and green water 

storage (soil water content) (Schuol et al., 2008a). Green water is estimated as the sum of 

evapotranspiration (ET) and soil water content (SW) (Abbaspour et al., 2015; Schuol et 

al., 2008b; Falkenmark and Rockström, 2006).  In section 4 we analyzed the coefficient 

of variation (CV) of blue and green water based on the 21 years of simulation period. We 

used Sen’s Slope method (Sen, 1968), which is the median of all pairwise slope in the 
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data set, for estimating the annual trend of blue and green water for counties located in 

SRB. 

3.4. Quantification of green water security 

Green water security (GWsecurity) can provide information on management of fresh 

water resources (Rockstrom, 2001). GWsecurity is evaluated in terms of green water 

scarcity and green water vulnerability. 

3.4.1. Green water scarcity 

Green water scarcity (GWscarcity) in a catchment is calculated as the ratio between green 

water footprints (GWfootprint) to green water availability (GWavailability) (Hoekstra et al., 

2011). Here GWfootprint is estimated as the actual evapotranspiration, which is calculated 

by using Hargreaves method (Hargreaves et al., 1985) and it can be obtained from HRU 

output of the SWAT model (Winchell et al., 2013). The SWAT HRU output also 

provides the initial soil water (SWi) content (Winchell et al., 2013), which is the 

difference between root zone soil moisture and wilting point (DeLiberty and Legates, 

2003; Rodrigues et al., 2014). Wilting point is the minimum soil moisture content that is 

no longer available for crop (plant) sustainability. Therefore, the SW represents the 

amount of soil moisture available for the sustaining crop growth, therefore in this study 

SW is considered as GWavailability (Rodrigues et al., 2014). The GWscarcity for a county 

is estimated by using equation (1), 

/scarcity(x,t) footprint(x,t) availability( , )GW GW GW x t            (1) 
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Where, GWavailability(x,t) is the amount of initial soil water content (which is considered 

as available green water) in county ‘x’ during the period ‘t’. GWfootprint (x,t) is the green 

water consumed from a county ‘x’ during time ‘t’.  

3.4.2. Green water vulnerability 

Green water vulnerability (GWvulnerability) is calculated as the ratio between green water 

footprint to the historical low (30th percentile) green water availability. GWvulnerability is 

calculated by using equation (2), 

/( ) footprint(x,t) availability(P30)(x,vulnerability , tx t )GW GWGW           (2) 

where GWavailability(P30)(x, t) is the historical low green water availability, expressed as 

the 30th percentile (i.e., GWavailability exceeded 70% of the time) of available green water 

volume in a county. 

3.5. Quantification of blue water security 

Blue water security (BWsecurity) is evaluated using water scarcity and water 

vulnerability indicators. Blue water scarcity (BWscarcity) is defined as the ratio of blue 

water footprint (BWfootprint) to the blue water availability (BWavailability). 

3.5.1. Blue water scarcity  

Where, BWfootprint refers to the consumptive use of water based on the difference 

between water withdrawal (abstraction) and returned flow (Hoekstra et al., 2011). 
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Returned flow is defined as the part of the flow that is not consumptively used and likely 

to return to its primary source or to the same catchment area. The county level sectorial 

water demand data (e.g., human water use and agricultural use) are obtained from United 

State Geological Survey (USGS).  The human water use includes domestic, public, 

thermo-electric, industrial, mining and commercial water use, whereas, the agricultural 

water use consists of irrigation, livestock and aquaculture water use. We used this 

information to calculate the consumptive use of fresh water for human and agricultural 

water use (Carr et al., 1990; Fanning and Trent 2009; Shaffer 2008 and Solley et al., 

1998). For human water use, the water footprint of domestic, industrial and mining sector 

showed maximum of 20% of total water withdrawal. For agricultural water use, the water 

footprint of irrigation is 85% of total withdrawal. The estimated consumptive use of fresh 

water in SRB is as shown in Figure. 3. 

BWavailability is the limited amount of water which can be abstracted without 

affecting the ecology of stream. Here BWavailability is calculated (Hoekstra et al. 2011) 

based on the equation (3) and finally BWavailability is converted to the yearly scale for 

evaluating the BWsecurity over the counties located in the SRB. (The BWavailability is 

calculated by considering the amount of stream flow (river flow) which is available for 

the consumptive use (Hoekstra et al., 2011), it does not include aquifer storage). 

       (3)

  

availability(x,t) (x,t) (x,t)BW Q EFR 
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where ‘x’ represent a county with respect to time ‘t’. EFR is the environmental flow 

requirement (m3/s) and Q is the corresponding monthly stream flow (m3/s). To develop a 

practical method for quantifying the optimum water usage from available resource is 

often challenging in water resourcing planning. To overcome this limitation, the 

presumptive standard method (equation 4) is used in this study and according to this 

method 20% of the flow can be considered appropriate for withdrawal purpose (Richter, 

2010; Richter et al., 2012), 

(p) 0.8( , ) mean( , )EFR Qx t x t              (4) 

where EFR(p)(x,t) is the EFR according to presumptive standard  for county ‘x’ at time 

period ‘t’. Finally, BWscarcity is calculated according to the equation (5), 

/scarcity footprint(x,t) availabilityBW BW BW            (5) 

BWfootprint (x, t) represents the consumptive use of water (Fig. 3) by human and 

agricultural sector in county ‘x’ during time period‘t’. 

3.5.2. Blue water vulnerability 

Blue water vulnerability (BWvulnerability) can provide useful information about water use 

during low flow or drought conditions (Padowski and Jawitz, 2012; Rodrigues et al., 

2014). It is defined as the ratio of blue water abstraction to the historical minimum flow 

conditions (Rodrigues et al, 2014). The BWvulnerability is estimated based on the equation 

(6). 
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/vulnerability(x,t) abstraction availability(P30)(x,t)BW BW BW           (6) 

Where, BWavailability (P30) indicates the historical low availability of blue water that is 

exceeded 70% of the time, and is represented as 30th percentile of calculated blue water 

availability in a county. BWvulnerability more than 100% indicates that the particular 

county is environmentally vulnerable or is an ecological hotspot, where the availability of 

water for human use is below minimum during the low flow conditions. 

 

Fig. 3. Consumptive water use for human and agricultural sector in SRB. 
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4. Results and Discussions 

4.1. SWAT model development 

The calibration and validation of the SWAT model was performed with SUFI2 algorithm 

at 6 gaging stations located in upper, middle and lower part of the SRB. The location 

(latitude/longitude) of these six gaging stations are: 34°48'05"/82°44'55", 34°04'17"/ 

82°30'03", 33°58'27"/ 82°46'12", 32°31'41"/ 81°16'08", 33°22'25"/81°56'35", 32°56'20"/ 

81°30'10". The peak flow was calibrated by adjusting the sensitive parameters including 

CN2.mgt (curve number), SOL_AWC.Sol (Available water capacity of the soil layer) and 

ESCO.bsn (Soil evaporation compensation factor). We used baseflow separator program 

(Arnold et al., 1995; Arnold and Allen, 1999) to determine the ground water parameter 

‘baseflow recession constant’ (ALPHA_BF.gw). Other parameters used for adjusting the 

baseflow are v_GW_DELAY.gw (Groundwater delay time) and r_GW_REVAP.gw 

(Groundwater revap. coefficient). 

Overall 17 hydrologic parameters were evaluated during model calibration stage, 

and the SUFI2 algorithm was applied to determine most sensitive parameters as well as to 

determine their uncertainty range and 10 parameters are identified as most sensitive based 

on t-stat and p-value (table 2). The goodness of fit statistics (R2, NSE, P-factor and R-

factor) were calculated between SWAT based flow and observed flow (Table 3) and 

showed for four hydrologic stations located in the SRB. The time series plot between 

SWAT based flow and observed flow at USGS stream gauging stations 02192000 and 

021985000 are shown in Figure 4.  
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Fig. 4. Time series plot between modeled (SWAT) and observed (USGS) stream flow at 

gauging stations 02192000 and 021985000 at monthly time scale. 
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The goodness of fit statistics indicates a reasonable agreement between observed 

and modeled streamflow. Based on the graphical interpretation, the performance of 

SWAT for simulating lowflow is comparable to previous studies (Zhang et al., 2015; 

Setegn et al., 20100. However, the higher deviation was observed during 2006-2009 and 

during this time the SRB witnessed a historically severe drought (Knaak et al., 2011), 

which may be the reason for comparatively higher deviation between observed (i.e., 

USGS) and model flow (i.e., SWAT output). The SWAT model may not perform best for 

simulating low flows and specifically during drought, which was also highlighted by 

Zhang et al (2015) and Setegn et al (2010). 

Table 2. Most sensitive parameters used for the SWAT model development. 

Sensitive Parameters Explanation Calibrated range 

r_CN2.mgt Curve number -0.2 to 0.3 

r_SOL_AWC. Sol Available water capacity of the soil  -0.2 to 2 

v_ALPHA_BF.gw Baseflow recession constant 0.4 to 0.9 

v_GW_DELAY.gw Groundwater delay time (days) 30 to 450 

r_GW_REVAP.gw Groundwater revap. coefficient 0.02 to 0.2 

r_HRU_SLP.hru Average slope steepness (m/m) -0.5 to 1 

r_SLSUBBSN.hru Average slope length (m) -0.5 to 1 

r_EPCO.bsn Plant uptake compensation factor 0 to 0.7 

r_ESCO.bsn Soil evaporation compensation factor 0 to 0.4 

v_CH_N2.rte Manning's n value  0.01 to 0.4 
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Table 3. Goodness of fit statistics between modeled and observed (i.e., USGS) 

USGS flow 

station 

Station 

ID 

Calibration period Validation period 

R2 NSE 
R- 

factor 

P- 

factor 
R2 NSE 

R- 

factor 

P- 

factor 

Broad River 

near Bell 
02192000 0.88 0.87 0.89 0.81 0.81 0.77 0.57 0.71 

Savannah 

River near 

Clyo 

02198500 0.85 0.76 0.89 0.82 0.64 0.58 0.58 0.51 

Savannah 

River at 

Augusta 

02197000 0.54 0.45 0.86 0.66 0.55 0.42 0.89 0.53 

Savannah 

River at 

Burtons Ferry 

Br Nr 

Millhaven 

02197500 0.62 0.62 0.84 0.76 0.55 0.38 0.76 0.63 

 

4.2. Spatial and temporal analysis of blue and green water  

The spatio-temporal changes of blue and green water play an important role in water 

resource planning and management (Zuo et al., 2015). Hydrological components: 

Evapotranspiration (ET), Soil Water (SW), Water yield (WYLD), Ground water 

Recharge (GW_RCHG) and Ground water contribution to stream (GW_Q) obtained from 

the well calibrated SWAT model was used for calculating blue and green water at 

monthly and annual time scales. The mean annual blue water, green water flow and green 

water storage based on the simulated period (1993-2013) for counties located in SRB are 

shown in Figure 5. The spatial distribution of blue water was found to be influenced by 

the rainfall pattern. The maximum precipitation was observed in upstream of the basin 

and the annual blue water flow was found to be high in Rabun County located in upper 

SRB, where the amount of average blue water observed to be 1291 mm per year.  
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The Sen’s Slope analysis showed a marginal increasing trend for blue water in 

Rabun County (Fig. 6a). The minimum annual blue water was observed in central area of 

SRB (e.g., Lincoln and Columbia County located in Georgia), with less than 400 mm of 

blue water per year. These counties witnessed decreasing trend of blue water (Fig. 6b). 

The percentage change in blue water was evaluated and it was observed that both Rabun 

and Pickens County witnessed an increase of 64% and 70% respectively. The percentage 

change in blue water for the counties located in middle part of SRB was less than five 

percent. The annual precipitation has a decreasing pattern from upstream to downstream, 

which plays an important role in controlling the spatial distribution of blue water 

resources based on their similarity in spatial distribution.    

The spatial distribution of mean annual green water flow seems to have less 

variability in comparison to spatial distribution of blue water in most of the counties 

located in SRB (Fig.5b). The maximum green water flow was observed in Hart and 

Lincoln County with an average of more than 800 mm per year. The evaporation from 

reservoir may be a possible reason for higher amount of green water flow in both 

counties. The land use is likely to play an important role as the 75% of the farm land of 

SRB is hay and pasture, therefore the evapotranspiration from pasture cultivation likely 

to have a strong influence in controlling the green water flow throughout the basin. The 

cultivation of corn, soybean and wheat are significant in Hart County and these crops 

likely to influence green water flow and the similar findings were discussed in Rost et al. 

(2008). The Sen’s Slope indicates a decreasing trend in green water flow for all the 

counties in SRB. For example, the Sen Slope estimate of green water flow for the 
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counties located in upper SRB (Hart County) and central SRB (Lincoln County) indicates 

a decreasing trend (Fig. 7). The spatial distribution of green water flow was found to be 

minimum in Rabun County located in the upper part of the SRB.  

The mean annual green water storage showed a variation from 200 mm to 400 

mm throughout the SRB and its annual variability is comparatively small in comparison 

to blue and green water flow. The maximum green water storage was observed in 

Anderson and Edgefield County of South Carolina and Banks County of Georgia. A 

decreasing trend in green water storage was noticed in most of the counties, for example, 

the Sen’s slope for counties located in upper SRB (Anderson County) and lower SRB 

(Richmond County) indicates a decreasing trend (Figure 8).   

The coefficient of variation (CV) of blue water, green water flow and green water 

storage for the counties is presented in Fig. 9. The higher CV was observed for blue water 

and lower CV was observed for green water flow. The blue water (internal water 

resources) calculated by FAO for USA (national scale) is 2180 km3/yr (AQUASTAT, 

2013), however our study highlights the spatio-temporal variability of blue and green 

water with in SRB. The overall result indicates that, blue water varies between 24 – 68% 

of rainfall (maximum in Rabun County, average rainfall is 1892 mm per year), green 

water flow varies between 32 – 70% of precipitation (maximum in Lincoln County, 

average rainfall 1143 mm per year), and the green water storage varies between 13 – 34% 

(maximum in Anderson County, average rainfall 1228 mm per year). The results are 

acceptable for humid subtropical region (Schuol et al., 2008b and Rost et al., 2008).  
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The distribution of average blue water and green water flow at monthly time scale 

from selected counties located in upper, middle and lower part of SRB are shown in 

Figure 10. Even though the maximum rainfall in SRB occurs during June -September, the 

maximum blue water was observed in December -March (Fig. 10). This indicates a time 

lag between maximum rainfall and blue water. This may be due to higher amount of 

evapotranspiration in the basin reduces the peak discharge.  The higher rainfall and 

minimum temperature during January to March may be the reason for higher amount of 

blue water flow in March. The green water flows found to be maximum during June to 

August, and it may be due to higher temperature and rainfall pattern during this period.  



 60 

 

Fig. 5. Spatial distribution of annual precipitation, mean annual blue water, green water 

flow and green water storage over the counties located in Savannah River Basin. 
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Fig. 6. Linear trend of annual blue water for (a) Rabun County, and (b) Lincoln County 

located at upper and middle Savannah River Basin respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Linear trend of annual green water flow for (a) Hart County, and (b) Lincoln 

County located at upper and middle Savannah River Basin respectively 

 

a b 

a b 



 62 

 

 

 

 

 

 

 

Fig. 8. Linear trend of annual green water storage for (a) Anderson County, and (b) 

Richmond County located at upper and lower Savannah River Basin respectively. 

 

Fig. 9.  Coefficient of Variation (CV) of blue water, green water flow and green water 

storage for the counties located in Savannah River Basin. 

 

 

a b 
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Fig. 10. Variation of mean monthly blue water and green water flow for selected counties 

located in Savannah River Basin during simulated period (1993-2013). 

4.2. Quantification of green water security 

The computation of GWsecurity was performed in terms of GWscarcity and 

GWvulnerability at an annual scale and monthly scale. The percentage change in mean 

annual GWscarcity and GWvulnerability is represented in Figure 11. The maximum 

GWscarcity was observed in Lincoln County located in middle part of SRB and the 

counties at lower part of SRB. The GWscarcity for upper Savannah region was minimum 

(e.g., Anderson County), but Hart County showed a higher value due to the intense crop 

production and evaporation from Hartwell reservoir. The GWvulnerability result followed 

the similar pattern to GWscarcity in most of the counties. The change in average annual 

GWscarcity and GWvulnerability was less than 50%, so the green water shortage may not 
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be a serious problem in SRB. However, based on the seasonal analysis it was observed 

that majority of the counties are becoming environmental hotspots during summer (May 

– July) and the beginning of fall (August – December) season, as a result of crop growth 

and high evapotranspiration during this period (Fig. 12). The monthly and seasonal scale 

assessment of GW-security can be beneficial for agricultural planning (i.e., cultivation 

and harvesting) of a particular crop as well as possibility in crop rotation during summer 

to improve water sustainability in SRB. 

 

Fig. 11. Spatial distribution of the average annual GW-scarcity and GW-vulnerability for 

counties located in Savannah River Basin. 
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Fig. 12. Distribution of average monthly variation of GW-scarcity and GW-vulnerability 

for selected counties in the Savannah River Basin. 

4.2. Quantification of blue water security 

The spatial and temporal variation of BWsecurity was analyzed by evaluating the 

BWscarcity and BWvulnerability. The consumptive use of blue water is calculated based on 

the water use data available from USGS at a county level for the years 1995, 2000, 2005 

and 2010. For example, the spatial variation of BWscarcity and BWvulnerability (for the 

year 2010) for human and agricultural water use are shown in Figure 13. The maximum 

BWscarcity was observed in Oconee County, which consumes maximum amount of water 

due to the active nuclear power sector. According to Duke Energy (the largest electric 
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power holding company in USA), the nuclear power station located in Oconee County is 

capable for producing 2.6 million KW for supplying 1.9 million homes. According to the 

USGS, the thermo-electric plant located in lower SRB region withdraws most of its water 

supply from the Atlantic Ocean, therefore the blue water scarcity is comparatively low in 

these energy producing counties located in the lower stream area. The BWvulnerability for 

human water usage indicates Oconee and Anderson County are ecological hotspots 

(BWvulnerability greater than 100%). This blue water shortage may thus become a serious 

issue in upper SRB due to the increase in water consumption in energy sector. 

The maximum BWscarcity for agricultural water use in the SRB was nine percent 

for McDuffie County located at Georgia. The maximum agricultural BWvulnerability was 

24% for counties located in middle SRB region (e.g., Edgefield and McDuffie County). 

Overall the BWscarcity and BWvulnerability for agricultural water usage remain below 

25%. However, maximum water was withdrawn for irrigation purpose for agricultural 

sector, which is likely to increase the possibility of BWscarcity and BWvulnerability in the 

region. Therefore, the possibility of irrigating the land with desalinated water (Assouline 

et al., 2015) or by utilizing the returned flow has potential in decreasing the agricultural 

BWscarcity and vulnerability, and there by improving the water security.  
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Fig. 13. Spatial distribution of BW-scarcity and BW-vulnerability (during 2010) based on 

human and agricultural water use. 
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5. Conclusion 

We applied a hydrological modeling framework for evaluating the spatio-temporal 

variability of Blue and Green water and to quantify the water security in Savannah River 

Basin. The modeling framework incorporates both climatic and anthropogenic factors to 

quantify water security in the Savannah River Basin. Our proposed modeling framework 

can be applied to investigate and improve water security for other river basins in different 

parts of the world; however, there is room for further improvement, for example: (i) the 

performance of hydrologic modeling (e.g., SWAT) for simulating low flow can be further 

improved, specifically during drought periods, (ii) better quantification of groundwater 

contribution to baseflow, (iii) improvement in calculation of anthropogenic water 

demands for improving water security (Mishra and Singh, 2010), and (iv) better 

representation of human interventions (e.g., reservoir operation, irrigation water use) with 

in hydrologic modeling framework to improve quantification of hydrologic fluxes 

necessary for Blue and Green water assessment. Over all, the proposed modeling 

framework found to be useful for quantifying status of the water security and to identify 

‘hot spot regions’ within the watershed. The following conclusions are drawn from this 

study:  

(a) Climatic factors control spatio-temporal distributions of blue water. For example, blue 

water for counties located in the upper part of SRB is comparatively higher, which may 

be associated with the higher amount of precipitation in upper part of SRB and it 

decreases towards lower part of SRB. In general, the increasing (decreasing) trend of blue 

water was observed in areas where the blue water is comparatively high (low).  
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(b) Green water flow is influenced by the intense agriculture and water bodies (e.g., 

reservoir). A higher amount of green water flow was observed in counties which has the 

influence of intense agriculture and reservoir. The higher amount of green water storage 

was observed in the Anderson and Edgefield County during the assessment period. In 

general, a decreasing trend of green water flow and green water storage was observed in 

most of the counties located at SRB. 

(c) There is a time lag between the maximum rainfall during June-September and the 

maximum blue water in December- March. This may be due to higher amount of 

evapotranspiration which reduces the peak discharge and ground water flow responsible 

for contributing to peak discharge. The higher rainfall and minimum temperature during 

January to March may be responsible for higher amount of blue water flow in March. The 

green water flows were maximum during June to August. It is because of higher 

temperature and rainfall pattern during this period.  

(d) Analysis of green water scarcity and vulnerability indicates that counties are safe for 

practicing rain-fed agriculture during spring and fall.  Our findings suggest that blue 

water scarcity is enormously upsetting the ecological balance in upper part of river basin, 

particularly in Oconee County of South Carolina. Both Oconee and Anderson County are 

identified as ecological hotspots, where the BW-vulnerability is more than 100%.  
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CHAPTER THREE 

INFLUENCE OF CLIMATE AND ANTHROPOGENIC VARIABLES ON 

WATER SECURITY AND ECOSYSTEM SERVICES 

 

1. Introduction 

Land use and climate variables are likely to alter hydrologic process within a river 

ecosystem (Nijssen et al., 2001; Oki and Kane, 2006; Li et al., 2009; Mishra and Singh, 

2010;  Chawla and Mujumdar, 2015) and related ecosystem services, especially during 

the 21st century (Teshager et al., 2016; Ostberg et al., 2015; Howells et al., 2013). The 

unevenness in the Spatio-temporal distribution of rainfall over a period of time further 

complicates regional water resources availability (Mishra et al., 2015). For example, a 

year of uneven distribution or lack (excessive) of rainfall can create a significant effect on 

local crop yields, livestock and aquaculture production. Therefore, it is important to 

appraise the water use in the agricultural sectors to meet the compounding challenges on 

fresh water resources (Wu et al., 2010; Cao et al., 2014). Several methodologies/indices 

have been developed for addressing the water security of a region (e.g. Falkenmark, 

1989; Gleick, 1996; Ohlsson, 2000; Chavez and Alipaz; 2007).  The water security 

indices based on the water footprint concept are important tools to improve water 

resources management (Hoekstra et al., 2011; Veettil and Mishra, 2016). This approach 

can inform broad aspect of policies from environmental, social and economic 

perspectives. 

Water footprint (WF) (Hoekstra and Hung, 2002; Hoekstra et al., 2011) indicators 

can quantify the amount of water consumed in a specific river basin or from an aquifer at 
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a local or regional scale. Blue water footprint is the human water consumption from blue 

water resources (Veettil and Mishra, 2016; Hoekstra, 2011) and can be quantified based 

on the volume of surface and groundwater consumed as a result of the production of 

goods or services [e.g., domestic, industrial, power production and irrigation] (Veettil and 

Mishra, 2016; Falkenmark and Rockström, 2006; Falkenmark and Rockström, 2010; 

Rockström et al., 2009, Rodrigues et al., 2014; Hoekstra et al., 2011). Green water 

footprint (GWfootprint) refers to the consumption of green water resources (Veettil and 

Mishra, 2016; Hoekstra et al., 2011; Rodrigues et al., 2014), for example, 

evapotranspiration from agriculture and forest area. The green water footprint is relevant 

to agricultural, biofuel and forestry products. The applications of water footprint concept 

are rapidly increasing in various sectors (Hoekstra et al., 2011). The applications can be 

categorized into regional to global ecosystem for different sectors including food 

products (e.g., Mekonnen and Hoekstra, 2011a; Mekonnen and Hoekstra, 2010a; 

Mekonnen and Hoekstra, 2010b; Rost et al., 2008; Jackson et al., 2015; Yoo et al., 2014; 

Chapagain and Hoekstra, 2007), biofuel products (e.g., Gerbens-Leenes et al., 2009b; 

Gerbens-Leenes et al., 2009a; Wu et al., 2012; Scown et al., 2011; Dalla Marta et al., 

2012;  Chiu and Wu, 2012; Kongboon and Sampattagul, 2012) and other commercial 

products (e.g., copper [Peña and Huijbregts, 2014], electricity [Mekonnen and Hoekstra, 

2011c], platinum mine [Haggard et al., 2013], paper [Van Oel and Hoekstra, 2010]). 

Water footprint approaches are currently applied for water security analysis (Veettil and 

Mishra, 2016) as well as for ecosystem services (Galli et al., 2012; Karabulut et al., 

2016).  
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Ecosystem services (ES) can be defined as the benefits that are derived from the 

ecosystem by the society (TEEB-2005; Karabut et al., 2016; Egoh, 2012; Nelson et al., 

2009).  The ES play an important role in formulating environmental and water resources 

related policy making (MA, 2005). The major ES include provisioning of water, food, 

soil productivity, and use of natural areas for recreation purposes (Egoh, 2012). The 

ecosystem provides services to the livelihood of more than a billion people around the 

world and contributes to an overall economy of about $125 to 145 trillion per year 

(Karabut et al., 2016). The theory of ES is clearly defined and classified into four groups 

[Daily, 1997]: (a) provisioning service (e.g., water, food), (b) regulating service (e.g., 

climate, air and soil quality, carbon sequestration, erosion prevention), (c) supporting 

service (e.g., habitats for species and maintenance of genetic diversity) and (d) cultural 

service (e.g., recreation, tourism, and inspiration). The process and quantification of ES 

are challenging and, they require better integration of anthropogenic (e.g., society impact) 

and natural components (e.g., water availability). Researchers have already developed 

and applied modelling tools for understanding the importance and economic value (by 

using economic models) of ES to the society (Bagstad et al., 2013; Naidoo and Ricketts, 

2006; Anderson et al., 2009). The examples for modeling tools developed for quantifying 

ES (Costanza et al., 1997; Chan et al., 2006; Bagstad et al., 2013) are MIMES (Multi-

scale Integrated Model of Ecosystem Services), ARIES (Artificial Intelligence for 

Ecosystem Services), InVEST (Integrated Valuation of Ecosystem Services and 

Tradeoffs) and SWAT (Soil and Water Assessment Tool). The availability of water at a 

geographic location in terms of both quantity and quality is the most important service 
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provided by the ecosystem and one of the valuable commodity in food production 

(TEEB, 2010). 

Anthropogenic factors, such as, increase in population and water consumption 

(Hanasaki et al., 2006; Nilsson et al., 2005; Pokhrel et al., 2012; Vorosmarty et al., 2000) 

are likely to tremendously impact blue water resources through altering seasonal flow 

regime and depleting groundwater storages. Whereas, land use and land cover change 

(LULC) can upset the water balance by changing the segregation of precipitation, i.e. by 

altering the quantity of evapotranspiration, runoff and groundwater flow (Costa et al., 

2003; Sahin and Hall, 1996). For example, the agricultural sector has a consumptive use 

of about 85% to 90% (Gleick, 2003; Shiklomanov, 2000), which often reduces the 

normal flow in several river networks (Rosegrant et al., 2002). It is also recognized that 

land use change has substantial influence over water quality by altering the concentration 

of nutrients (Stonestrom et al., 2009; Schlesinger et al., 2006) and sediment budget 

(Valentin et al., 2008). This suggests anthropogenic factors potentially influence the 

water footprint indicators as well as water security and ecosystem services. As these 

substantiations are crucial for land use planning and water resources management, the 

quantification of land use change and climate variability on streamflow, ecosystem 

services, and related water scarcity can expose the current state of a river basin’s 

ecological health. The development of hydrologic models which account for the spatio-

temporal watershed characteristics can contribute an important role in quantifying the 

seasonal water availability (He and Hogue, 2012; Costa et al., 2003).  
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Although the influence of anthropogenic activities (e.g., land use change) on 

hydrologic cycle, climate and energy budget are extensively studied by applying potential 

modeling approaches (McColl and Aggett, 2007; Wijesekara et al., 2012; Choi and Deal, 

2008), the possible influence of land use change and climate variability on blue (green) 

water footprints as well as ecosystem services in the context of water security (scarcity) 

are limited. This study is important in order to identify potential influence of human 

activities on water footprint indicators leading to failure in water provisioning in 

ecosystem services. It also evaluates the sustainability of water provisioning services to 

satisfy the major food production sectors of the counties located in the Savannah River 

ecosystem. The objective of this work is therefore to quantify the individual and 

combined impact of land use change and climate variability on the water resources and 

related water scarcity of the Savannah River Basin. The specific objectives for this work 

are; i) to quantify the land use change and climate variability impact over hydrological 

stream network, ii) to evaluate the influence of land use change and climate variability in 

controlling the ecosystem provisioning service of the basin, and iii) to quantify the 

potential influence of land use change and climate variability in altering the blue (green) 

water scarcity through water footprint concept. 

2. Study area and Data 

Savannah River Basin (SRB) has a drainage area of 27,171 km2, out of which 11,875 km2 

is located in South Carolina, 14,965 km2 in Georgia and the remaining portion belongs to 

the state of North Carolina of USA (SCDHEC, 2010). The major impoundments in the 

basin are Hartwell Lake, Richard B Russel Lake and J. Strom Thurmond Lake. The 
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climate of SRB is characterized by mild winters and hot summers in the lower portions 

and cold winters and mild summers in the upper basin area. The annual precipitation 

ranges from 1000mm to 2050mm. A dry weather typically occurs between midsummers 

to fall (SCDHEC, 2010). The geographical location of SRB and the counties located 

within SRB are shown Chapter 2, Figure 2. Forestry sector constitutes a significant part 

of the economy in the SRB, with 2.4 million acres of forest used for commercial purpose 

(SCDHEC, 2010). The irrigated agriculture land in the SRB increased by 1.8% from 

1984 to 1995 and the majority of the irrigation water is used from surface water resources 

(Veettil and Mishra, 2016). The agriculture in the SRB includes livestock, crop 

production and a minor percentage of aquaculture production. Almost 75% of the farm 

land is hay/pasture cultivation with the remaining 25% including row crops. According to 

the Nature Conservancy of Georgia (DATE) (a nonprofit organization) the SRB ecology 

has abundant diversity of life, which includes more than 75 species of rare plants and 

animals.  

The percentage change in the land use and land cover pattern from 1992 to 2001 

for the SRB was analyzed by using the classified images of National Land Cover Dataset 

(NLCD). The major land use sector in the SRB includes forest and farm lands which 

constitutes about 77% of total basin area. The percentage change (Figure 1) analysis in 

land use/land cover (LULC) from 1992 to 2001 indicates that the total forest cover 

decreased by 20.5% and the developed area which includes construction land, residential 

area and commercial area increased by 247%. There is a marginal increase in open water 

body, whereas, the farm land decreased by 21%.   
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Fig. 1. The major changes developed in the land use land cover (LULC) of Savannah 

River Basin from 1992 to 2001. 

2.1. Data  

The digital elevation model (DEM) was obtained from National elevation data set at a 

resolution of 30m to delineate the study area and to estimate the topographic features. 

The land use data used for simulating the stream flow are obtained from national Land 

Cover Dataset for the years 1992 and 2001. The soil data is downloaded from SSURGO 

data base. The meteorological (precipitation and temperature) and stream flow data for 

Land use Forest 

 

Agriculture 

 

Water body 

 

Pasture Development 

 

1992 Area 

(km2) 
17538 4884 845 2007 691 

2001 Area 

(km2) 
13932 3849 870 3071 2403 

% Change 

in area 
-20.5 -21.0 +3.0 +53 +247.0 

1992 2001 
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1990 to 2013 were collected from National Climatic Data Centre (NCDC) and United 

States Geological Survey (USGS) respectively. The reservoir outflow data collected from 

Savannah District Water Management (US Army Corps of Engineers) was incorporated 

in SWAT model development.  The water use data in each county for irrigation, livestock 

and aquaculture are also collected from USGS. The list of data sets used in this study and 

their sources are provided in Chapter two, Table 1. 

3.Method 

The hydrological modeling framework applied for assessing the land use change impact 

on water scarcity and corresponding ecosystem services is provided in figure 2. The 

following sections provide an overview of individual components incorporated in the 

conceptual modeling framework. 

3.1.Hydrological model set-up 

The Soil and Water Assessment Tool (SWAT) developed by the United States 

Department of Agriculture (USDA) (Arnold et al., 1998; Neitsch et al., 2004) is used for 

simulating the hydrological fluxes of SRB. The SWAT model is widely used around the 

world for studying water quantity (stream flow), water quality (sediment load and 

nutrients flow) and crop growth in different landscapes and management practices 

(Faramazi et al., 2009). SWAT is a process based, semi-distributed basin scale model 

(Arnold et al., 1998; Neitsch et al., 2004) and it operates at a daily time step. The SWAT 

model is useful for quantifying blue and green water resources from  a catchment scale to 

continental scale (Veettil and Mishra, 2016; Zang et al., 2012; Schuol et al., 2008b; 

Abbaspour et al., 2015).  
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Fig. 2. The model framework applied for quantifying the influence of land use change 

and climatic variability on ecosystem services and related water scarcity over Savannah 

River ecosystem. 

The Digital Elevation Model (DEM) is the basic component of SWAT model 

development, which delineate the basin with respect to the topography. The delineated 

river basin is divided into sub-basins, which are further divided in to unique land 

use/soil/slope units called Hydrologic Response Units (HRUs). Two SWAT models were 

developed by incorporating the land use of 1992 and 2001. Five classes of slopes used for 
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HRU delineation were 0-2.5%, 2.5-5%, 5-10%, 10-40% and above 40%. The number of 

HRUs were controlled by adjusting the threshold (Her et al., 2015) of land use (6%), soil 

(12%) and slope (20%), which resulted 1464 HRUs in 1992 land use models and 1412 

HRUs in 2001 land use models distributed over 105 sub-basins. Three large reservoirs 

(Hartwell, Thurmond and Russel reservoirs) were included in the SRB model for 

reducing the uncertainty associated with hydrological parameter estimation. The SWAT 

hydrological parameters were calibrated and validated by using the Sequential 

Uncertainty Fitting ver. 2 (Abbaspour et al., 2005). The model was simulated and 

evaluated against the USGS (observed) stream flow data located in the Savannah River 

Basin. The developed SWAT models were simulated by using the parameters that were 

calibrated for the previous study (Chapter two, Veettil and Mishra, 2016), where the 

result of model simulation from 1990 to 2013 for SRB were consistently performed 

during the calibration and validation phase. For example the USGS station located at 

lower SRB (Savannah River near Clyo, USGS 02198500) showed a coefficient of 

determination (R2) of 0.85, Nash-Sutcliffe Efficiency (NSE) of 0.76, R-factor of 0.89 and 

P-factor of 0.82 during the calibration period (1992 - 2005). During the validation period 

(2006 -2013) R2 was 0.64, NSE was 0.58, R-factor was 0.58 and P-factor was 0.51. The 

parameterization and goodness of fit criteria adopted in the SRB model is explained in 

(Chapter two).  

3.2. Quantifying the influence of land use change and climate variability 

The effects of land use change and climate variability were quantified by analyzing   the 

four scenarios as shown in the Table 1. The hydrologic variables simulated from SWAT 
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model outputs were compared for quantifying the effect of the two factors including land 

use change and climate variability based on the four scenarios (SRB1, SRB2, SRB3, and 

SRB4). Initially, only one factor at a time was changed while keeping the other factor as 

constant. Subsequently, the analysis was extended for verifying the concomitant 

influence (i.e. analysis of both factors at a given time). 

The blue water was estimated as the combination of both water yield (WYLD) 

and ground water storage of SWAT HRU output. Water yield is the amount of water 

leaving the HRU and entering the main channel. Ground water storage is the difference 

between total amount of water recharge to aquifers (GW_RCHG) and the amount of 

water from aquifer that contributes to the main channel flow (GW_W) (Veettil & Mishra, 

2016; Rodrigues et al., 2014). Green water is estimated as the sum of evapotranspiration 

(ET) and soil water content (SW) (Veettil and Mishra, 2016; Rodrigues et al., 2014; 

Abbaspour et al., 2015; Schuol et al., 2008).  

Table 1: Different scenarios analyzed in the study 

Scenarios Land use Climate variables 

SRB1 1992 1990 – 2000 

SRB2 2001 2001 – 2013 

SRB3 1992 2001 – 2013 

SRB4 2001 1990 - 2000 
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3.3. Evaluation of blue and green water availability 

Blue water availability (BWavailability) is the amount of water that can be abstracted 

without affecting ecology of a stream. The over exploitation of blue water from a stream 

can potentially damage the river ecosystem. The concept of Environmental Flow 

Requirement (EFR) can be an appropriate method for maintaining a healthy ecosystem 

(Honrado et al., 2013). The presumptive standard method suggested by Ritcher (2010, 

2012) is used for EFR analysis in SRB. According to this method, extraction of more 

than 20% of water from a stream will likely cause ecological degradation and this amount 

can be considered as available blue water which can be used for water provisioning 

services (Veettiland Mishra, 2016; Rodrigues et al., 2014). The following equations (1 & 

2) are used to calculate EFR and blue water availability.   

                    (1) 

where EFR(p)(x,t) is the EFR according to presumptive standard  for county ‘x’ at time 

period ‘t’. 

                 (2) 

where ‘x’ represent a county with respect to time ‘t’. EFR is the environmental flow 

requirement (m3/s) and Q is the corresponding monthly stream flow (m3/s). 

The green water availability (GWavailability) is the amount of soil moisture (SW) 

available for the sustaining crop growth. In this modeling framework, the initial soil 

water (SWi) from the SWAT HRU output (Winchell et al., 2013) is considered as the 

availability(x,t) (x,t) (x,t)BW Q EFR 

(p) 0.8( , ) mean( , )EFR Qx t x t
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 
/avg( , ) ( , )

( , )
/ /avg( , ) ( , )

Q EFRx t x t
FPI x t

Q EFR q mx t x t t t




available green water to the plants (Veettil and Mishra, 2016; Rodrigues et al., 2014). The 

SWi is the difference between the root-zone soil moisture and wilting point, where the 

wilting point is defined as the minimum soil moisture available for the plant 

sustainability.  This water content is available to the plants for consumptive use 

(DeLiberty and Legates, 2003; Rodrigues et al., 2014).  

3.4. Evaluation of freshwater provision indicator 

The fresh water provision index (FPI) is measured based on quantitative amount of fresh 

water (stream flow) and EFR (Logsdon and Chaubey, 2013; Rodrigues et al., 2014). The 

FPI can provide information related to the variation in EFR due to the drought, low flow 

etc. The FPI is calculated by using equation 3. 

                                                                          (3) 

 

where FPI(x,t) is the freshwater provision index for a county during time t;  Qavg(x,t) and 

EFR(x,t)  are the average flow and Environmental Flow Requirement for a county x and 

during time t;  qt is the number of times the average flow is less than EFR and mt is the 

total number of years considered. 

3.5. Evaluation of water scarcity indicators 

Three water scarcity indicators were selected: a) Blue water scarcity, b) Green water 

scarcity, and c) Falkenmark indicators. Blue and green water scarcity are quantified based 

on the water footprint concept. The blue water footprint (BWfootprint) denotes the 
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consumptive use (i.e. the difference between water abstracted for a particular use and the 

remaining flow returned to the same watershed (Veettil and Mishra, 2016; Hoekstra et al., 

2011; Rodrigues et al., 2014)). The United State Geological Survey (USGS) provides 

county level sectorial water use data at an interval of 5 years period.  We collected water 

use data separately for irrigation, livestock and aquaculture water use and found the 

consumptive use (Carr et al., 1990; Fanning and Trent 2009; Shaffer 2008 and Solley et 

al., 1998). The consumptive water use of irrigation, livestock and aquaculture water use 

are estimated as 85%, 65% and 5% (as shown in figure 3, chapter two) of total water 

abstraction (Veettil and Mishra, 2016). The blue water scarcity (BWscarcity) is finally 

calculated as a ratio of BWfootprint to the available blue water using equation 4. 

                (4) 

where ‘x’ represent a county with respect to time ‘t’. EFR is the environmental flow 

requirement (m3/s) and Q is the corresponding monthly stream flow (m3/s). 

Green water scarcity (GWscarcity) is estimated as the ratio between green water footprints 

(GWfootprint) to the green water availability (GWavailability). GWfootprint is estimated as 

the evapotranspiration which is calculated by using Hargreaves method (Hargreaves et 

al., 1985) available in the SWAT model. In our analysis, we evaluated GWscarcity for the 

two land use change scenarios (1992 & 2001).   

           (5) 

/scarcity footprint(x,t) availabilityBW BW BW

/scarcity(x,t) footprint(x,t) availability( , )GW GW GW x t
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Where, GWavailability(x,t) is the amount of initial soil water content (which is considered 

as available green water) in county ‘x’ during the period ‘t’. GWfootprint (x,t) is the green 

water consumed from a county ‘x’ during time ‘t’. 

3.4.1. Falkenmark Index 

Falkenmark (FLK) (Falkenmark, 1989) index is one of the most widely used indicators to 

measure the stress on water resources (Rijsberman, 2006), which is defined as the 

fraction of blue water availability to the total population. According to FLK indicator, 

when the per capita water availability is less than 1700m3 per year, the area is under 

water stress. If the per capita water availability is less than 1000m3 per year the area is 

under water scarcity and if it is less than 500m3 per year the area is classified as absolute 

water scarcity. Thus the FLK indicator is a clear indication of human health and water 

economy (Falkenmark, 1989; UN-WBCSD, 2006).  

4. Results and Discussions 

4.1. Influence of climate variability and land use change on streamflow 

Streamflow simulated from four scenarios (SRB1, SRB2, SRB3, and SRB4) are 

compared for quantifying the effect of land use change and climate variability. The 

change in mean monthly runoff due to the individual and combined scenarios is shown in 

figure 3. The dissimilarity in streamflow pattern due to the land use change is shown in 

figure 3A (land use: 1992) and figure 3D (land use: 2001). The land use change from 

1992 to 2001 (i.e., comparing SRB4 with SRB1) has resulted into a significant reduction 

in simulated monthly streamflow for all the months. For example, the streamflow in 
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January is reduced from 400 cubic meter per second (cms) to less than 300cms. Overall, 

the land use change resulted in a total streamflow reduction (percentage change) of 31%. 

The variation in streamflow can be explained by considering the increase in pasture land. 

The percentage increase in pasture land is 53%. The pasture land increases the amount of 

evapotranspiration and decreases the water yield (Zhang et al., 2016). This may be a 

possible reason for decrease in streamflow of the Savannah River Basin.  

 The climate variability caused a remarkable reduction in streamflow (Figure 3A 

and figure 3C). The climate variables accounted for a streamflow percentage reduction of 

41% in the basin. The relative contribution of land use change and climate variables can 

be analyzed from Figure 3A and Figure 3B. This scenario led to a consistent reduction in 

surface runoff. For example, the streamflow during January is decreased by 80cms. The 

above result clarifies that the climate variability and land use change decreased the runoff 

generation in the SRB. It also suggests that climate variability plays a prominent role than 

land use change in impacting the streamflow generation capacity of the Savannah River 

Basin.  
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Fig. 3. Difference in monthly stream flow due to the effect of land use change and 

climate variability based on different scenarios: A) Stream flow generation from SRB1, 

B) Stream flow generation from SRB2, C) Stream flow generation from SRB3, D) 

Stream flow generation from SRB4. 
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4.2. Influence of land use change and climate variability on blue  and green water 

The influence of land use change and climate variability on spatio-temporal variations of 

blue and green water resources are evaluated based on the hydrologic fluxes (e.g., water 

yield, soil water, and evapotranspiration) obtained from the SWAT model (Veettil and 

Mishra, 2016; Rodrigues et al., 2014) based on different scenarios (SRB1, SRB2, SRB3, 

and SRB4). The spatio-temporal distribution of blue and green water are influenced by 

the spatial pattern of precipitation and land use pattern. These results indicated that in 

most of the counties there exists a significant reduction of blue water due to the influence 

of land use change and climate variability. The maximum blue water was observed in 

Rabun County in all the scenarios where the annual rainfall availability was 

comparatively greater than other counties from 1992 to 2013. The observed amount of 

blue water was nearly consistent for the four scenarios in the county. The land use 

component which affects the amount of blue water is forest cover that is directly 

proportional to the amount of rainfall they receive. In Rabun County the average rainfall 

from 1992 – 2000 was 1800 mm/year and the average rainfall from 2001 – 2013 was 

1900 mm/year, however, the forested area in the county was decreased from 96% to 88%. 

This can be a possible reason for equalizing the amount of blue water in Rabun County 

during the scenarios analyzed. The influence of land use change on blue water for each 

county is explained by analyzing SRB1 and SRB4 scenarios (figure 4A and figure 4D). 

The minimum blue water was observed in Lincoln County, Richmond County and 

Columbia County which are located in central part of SRB. These counties also showed a 

reasonable decrease in blue water quantity due to the land use change impact. For 
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example, the blue water at Lincoln County showed a 10% decrease. The forest cover 

decreased in Lincoln County (from 67% to 53%), Richmond County (from 45% to 31%), 

and Columbia County (from 70% to 55%) and could be a possible reason in reduction of 

blue water. The built-up area in Richmond County almost doubled during the time period 

(from 15% to 29%) which is likely to be another reason for decrease in the blue water in 

the county, hence the water yield is affected by the urbanization (Karabut et al., 2016). 

The maximum reduction in blue water due to the contribution of land use change was 

observed in McCormick County located in central SRB, where the forest cover was 

reduced from 78% to 70%. 

Hart County, located in the upper SRB experienced maximum reduction (338mm) in blue 

water flow due to the impact of climate variability (comparing SRB1 (Figure 4A) and 

SRB3 (Figure 4c)). Annual rainfall availability was identified as the major cause in 

substantial reduction of blue water in the county. Franklin and Anderson County also 

showed a large reduction in blue water resources. All the counties excluding Allendale 

County showed an increase in blue water flow due to the climate variability. The 

combined effect of climate variables and land use change (comparing SRB1 and SRB2) 

also caused a reduction in blue water flow in all the counties of the basin. Hart County 

showed maximum reduction in blue water flow, where the forest cover reduced from 

45% to 35% and built-up area increased from 1.7% to 10%. The spatio-temporal changes 

in blue water resources in counties located in the SRB due to the different scenarios are 

shown in figure 4.  
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Fig. 4. Spatial distribution of blue water for each scenarios analyzed. A) Blue water from 

SRB1, B) SRB2, C) SRB3, and D) SRB4.  
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Representing total water resources in an ecosystem only based on blue water 

component is not appropriate in water management and related policy making (Hoekstra 

et al., 2011). Therefore, the amount of green water in the basinwas also investigated. 

Green water has a crucial role in sustaining ecosystem services, particularly in rain-fed 

farming practice. Figure 5A and figure 5D shows the spatial distribution of green water 

due to the influence of land use change. Most of the counties showed significant increase 

in green water as a result of change in land use. Anderson County located in Upper SRB 

showed maximum increase in green water. The pasture land in the county increased from 

21% to 26%. The grass land also increased from one percent to nine percent. This can be 

considered as a possible reason for accelerating the green water amount in the county. 

The analysis also indicated that green water in most of the counties located in upper SRB 

had a significant growth (e.g. Pickens, Oconee, Rabun and Hall). All these counties also 

showed a significant increase in pasture land and grass land. Burke County located in 

middle SRB showed highest declination in green water due to the land use change. It was 

interesting to observe that the influence of climate variability on green water was 

conflicting towards the impact of land use change. The green water in most of the 

counties decreased as a result of climate variables. Figure 5A and figure 5C shows the 

spatial distribution of green water due to the influence of climate variables. 
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Fig. 5. Spatial distribution of green water for each scenarios analyzed A) Green water 

from SRB1, B) SRB2, C) SRB3, and D) SRB4. 
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Fig. 6. Difference in blue water and green water for counties located at Savannah River 

basin due to the combined impact of land use change and climate variability (Here the 

values shown are SRB2 – SRB1). 

 A B 

Fig. 7. The boxplot showing the annual A) blue water and B) green water in whole 

Savannah River Basin based on the four scenarios. 
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Most of the counties showed a significant decrease in green water amount due to 

combined impacts of both land use change and climate variability (by comparing Figure 

5A and Figure 5C). The maximum green water diminution was observed in Burke 

County, which is located in lower SRB. Agricultural land in Burke County was reduced 

from 33% to 21%. Agricultural land has relatively higher availability of saturated soil 

water content (Karabut et al., 2016; Hoekstra et al., 2011), which may influence the green 

water reduction in the county.  The annual average precipitation also decreased in this 

county. Overall, analysis showed that land use change has an important role in 

controlling green water of SRB. Therefore, the percentage change in pasture cultivation 

and other agricultural crops in SRB highly influenced the green water distribution of each 

county.  

The difference in blue water and green water due to the joint impact of land use 

change and climate variability are shown in Figure 6. The boxplot shown in the figure 7A 

illustrates the variation in annual average of blue water of whole Savannah River Basin 

due to the influence of four scenarios incorporated in the study. The median (50th 

percentile) of blue water amount is reduced from 620 mm to 550mm due to the land use 

change (by comparing SRB1 and SRB4) and it declined to 410mm because of the climate 

variability (by comparing SRB1 and SRB3). The blue water flow decreased to 430mm 

due to the combined effect of climate variability and land use change during 1990 – 2013 

(by comparing SRB1 and SRB2). The discussions on the different scenarios indicate that 

climate variability and land use change has significant control over blue water (Zhao et 
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al., 2016). Moreover, the impact of climate variability has relatively higher influences 

over the blue water over the SRB. 

The boxplot shown in the Figure 7B illustrates the variation in annual green water 

for the SRB based on the different scenarios used in the study. The median (50th 

percentile) of the green water amount is reduced from 1130 mm to 960 mm for the SRB 

due to the combined influence of land use change and climate variability. It also shows 

the land use change has dominant control over the green water of the basin. The analysis 

of green water in a geographic location is critical for agricultural planning hence the 

usage of blue water (irrigation water) and can be reduced by identifying the area is proper 

for rain-fed agriculture (Abbaspour et al., 2015). 

4.3. Combined impact of land use change and climate variability on Freshwater 

Provision Indicator 

The combined influence of climate variability and land use change on the EFR levels for 

each county is evaluated by the freshwater provision indicator (FPI).  FPI will be equal to 

one if water provisioning service meets the ecosystem conditions; otherwise FPI will be 

less than one. Our analysis showed that FPI for the SRB is less than one during the period 

of analysis. The value is further decreased as a result of control of both factors. Anderson 

County located at upper SRB showed maximum reduction in FPI. FPI of each county for 

the scenarios SRB1 and SRB2 and corresponding decrease in FPI due to the influence of 

both of these factors are shown in figure 8.  
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 A                                      B                                  C 

Fig. 8. The freshwater provision indicator for counties located at Savannah River basin 

for the scenarios A) SRB1, B) SRB2, and C) Decrease in FPI due to the combined impact 

of both the factors. 

4.4. Combined impact of land use change and climate variability on blue water 

scarcity 

Blue water scarcity (BWscarcity) associated with the water provisioning service of the 

food production sector (irrigation, livestock and aquaculture) is quantified by considering 

the blue water footprint and blue water availability in a county. The blue water 

availability is calculated as the difference between total streamflow and EFR (Ritcher, 

2010). It indicated that most of the counties experienced a significant reduction in blue 

water availability due to the combined impact of land use change and climate variability.  
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Majority of the counties showed an increase in blue water scarcity due to the 

combined influence of climate variability and land use change. The result indicated that 

McDuffie and Edgefield County located in the central SRB is most affected by the 

BWscarcity (of food production) due to both factors. In McDuffie County the BWscarcity 

increased by 6.5% and in Edgefield County it was about five percent (figure 9). The 

BWscarcity for food production in several counties only showed a slight variation during 

the analysis. A reasonable change in BWscarcity was also observed in the counties located 

in the central part of SRB. Anderson County and Hart County located in the upper SRB 

also indicated comparatively large variation in blue water scarcity. The irrigation water 

footprint is the major water consumption sector of food production in the counties located 

in SRB. Therefore, an increment in irrigation water consumption and relatively less 

availability of blue water due to the influence of land use change and climate variability 

may lead counties to higher water scarcity. The BWscarcity for both the land use period 

and change in BWscarcity during the analysis are shown in figure 9.  

4.5. Combined impact of land use change and climate variability on green water 

scarcity 

GWscarcity is quantified as a fraction of green water footprint to the green water 

availability. The Green water availability is quantified as the initial soil water content 

from the SWAT model HRU output. 
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 A B C 

Fig. 9. Blue water scarcity for counties located at Savannah River basin for the scenarios 

A) SRB1, B) SRB2, and C) Difference in blue water due to the combined impact of both 

the factors (SRB2 – SRB1). 

We observed a significant reduction in green water availability in all counties 

located in SRB due to the combined effect of land use change and climate variability. The 

counties located in upper SRB showed a substantial reduction of green water availability 

during the period. Burke County which has major agriculture production in SRB also 

indicated a large reduction in green water availability mainly due to the shrinkage of 

cropland.  

  The results indicated that the GWscarcity for all the counties located in SRB is 

significantly increased due to the impact of land use change and climate variability. 

Stephens (located in upper SRB) County and Hart County (located at upper SRB) showed 

maximum increase in GWscarcity (Figure 10). Both the counties showed 19% rise in 

GWscarcity. Minimum increase in GWscarcity was observed in Anderson County. 
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 A      B C 

Fig. 10. Green water scarcity for counties located at Savannah River basin for the 

scenarios A) SRB1, B) SRB2, and C) Difference in green water due to the combined 

impact of both the factors (SRB2 – SRB1). 

4.6. Combined Influence of land use change and climate variability on FLK 

indicator 

Population growth and land use pattern change are closely related. Communities that 

grow rapidly may cause increase in built-up area as well as industrial sectors, thereby 

affecting ecological sustainability.. In this study, the percentage change in population of 

each county located at SRBwas evaluated. In most counties, human settlement increased 

from 1995 to 2010 (figure 11A). The maximum population increase was observed in 

Richmond County located in the central part of SRB, where the built-up area increased 

from 15.3% to 29.4% and the forest area decreased from 45% to 31%. Higher percent 



 108 

increase in population (Figure 11A) was observed in Effingham (63%), Columbia (58%) 

and Edgefield (51%) counties as well as built-up area. 

The FLK indicator is calculated as a fraction of blue water availability to 

population for each county in SRB. None of the counties indicated absolute water 

scarcity (i.e., per capita water availability is less than 500m3/year) during the assessment 

period, but results indicated that fresh water availability per person is decreased. The 

minimum amount of per capita water was observed in counties located in upper SRB 

(e.g., Pickens and Anderson County) and the higher amount was observed in counties 

located in lower SRB. The counties located in lower SRB and Lincoln County (central 

SRB) showed a substantial decrease in FLK index. The change in FLK index is shown in 

figure 11B.  

 

 

 

 

 

 

 

 

 

Fig. 11. A) The percentage change in population of counties located at SRB, and B) the 

change in FLK indicator due to the combined influence. 
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The spatial mapping of ecosystem services can quantify supply (where the water 

resources are available) and demand (where the water resources are consumed) of water 

in an ecosystem (Naidoo et al., 2008; Karevia, 2011). This study evaluated the water 

scarcity in food production by analyzing the water usage and related water footprint in 

the agricultural sector based on crop irrigation, livestock production and aquaculture 

practice. Evaluating the impact of land use change in water provisioning services can 

improve the future aspect of water policy making (Polasky et al., 2011). For example, 

increasing blue water abstraction for agricultural production from the upstream of the 

basin may affect the agricultural production in the lower basin. It can be addressed 

through proper spatial mapping of ecosystem service of the basin. The green water 

scarcity evaluation of a geographic location can help to identify the possibility of rain-fed 

agriculture in a catchment, which will reduce the blue water abstraction for irrigation 

usage. In addition to blue and green water scarcity our analysis indicated that the 

combination of high population density with climate variability and land use change may 

increase water scarcity in the SRB.   

5. Conclusion 

In this study, an integrated hydrological modeling framework for evaluating the influence 

of land use change and climate variability on ecosystem services and related water 

scarcity over the Savannah River Basin was developed. The process based hydrological 

model, SWAT was used to assess the separate and joint impacts of both these factors. 

Result from the modeling framework indicated a significant impact of land use change 

and climate variability will likely affect water scarcity in the region. During 1992 – 2001, 
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the total forest cover in the basin decreased by 20.5% and the built-up area which 

includes construction land, residential area and commercial area has grown by 247% and 

the farm land has declined by 21%. The following conclusions can be drawn based on 

this study:  

a) Stream flow is influenced by land use change (forest cover and agricultural land) 

and climate variability. Climate variability plays a prominent role compared to 

land use change in reducing the potential streamflow generation capacity in the 

Savannah River Basin. 

b) Land use change and climate variability likely will reduce blue water in the SRB. 

Climate variability seems to have a strong control on blue water over the basin. 

As a result of combined influence of land use change and climate variability, blue 

water is reduced by 200mm. The impact of land use change and climate 

variability varies between counties located in the basin. Hart County showed the 

maximum reduction in blue water due to the combined influence of both factors. 

c) Green water is also impacted by land use change and climate variability. In 

contrast to the blue water, land use change plays an important role in controlling 

green water. Land use change lead to augmentation in the green water of the 

basin. The influence of land use change over the basin is more identifiable in 

Anderson County located in upper Savannah River Basin.  

d) The combined analysis of climate variability and land use change showed that 

Fresh Water Provision (FPI) of the SRB is less than one during the period of 

analysis. The value is further decreased as a result of combined influence of both 
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factors. Pickens County located in upper SRB showed maximum reduction of FPI 

compared to other counties. 

e) A reasonable change (increase) in blue water scarcity for food production is 

observed in most counties due to the combined influence of land use change and 

climate variability. The maximum increase in blue water scarcity was observed in 

McDuffie and Edgefield County located in the central Savannah River Basin. 

f) The combined influence of land use change and climate variability further 

intensified the green water scarcity in the basin. Stephens County and Hart 

County (located in upper SRB) showed maximum rise in green water scarcity. 
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CHAPTER FOUR 

ASSESSMENT OF HYDRO-CLIMATIC AND CATCHMENT CONTROL ON 

HYDROLOGICAL DROUGHT 

 

1. Introduction 

A prolonged drought has a significant impact on the socio-economic, environmental and 

ecological systems that affects millions of people in the world each year (Domeisen, 

1995; Carolwicz, 1996; Wilhite, 2000; Dai, 2011). Drought is recognized as the most 

hazardous natural disaster based on several  key indicators, such as, degree of severity, 

the duration of the event, areal extent, loss of life and economic loss (Bryant, 1991; 

Mishra and Singh, 2010). Several studies highlighted the impact of drought on multiple 

sectors, for example, annual economic loss estimated to be $ 6-8 billion in the United 

States (Wilhite,2000), mortality and conflicts (Garcia-Herra, 2010; Hsiang, 2013), 

ecology (Choat et al., 2012), and agriculture (Mishra et al., 2015) etc. Drought has a 

significant impact on water resources planning and management (Rajsekhar et al., 2015; 

Mishra and Singh, 2011) and affects water quantity (Lund, 1995) and water quality (Van 

and Zwolsman, 2008) of surface and ground water (Mishra and Singh, 2010).  

Drought quantification plays an important role in water resources planning and 

management. The definition of drought varies widely and can be defined in many ways 

(Mishra and Singh, 2010).  For example, long term (extended) deficiency in precipitation 

(WMO, 1986); the percentage of years when crops fail from the lack of moisture (FAO, 

2002); and a significant deviation from the normal hydrologic conditions of an area 

(Palmer, 1965). Drought is monitored and quantified through different indices based on 
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intensity, duration, severity and spatial extent of a drought event (Dai, 2011; Mishra and 

Singh, 2010). In recent decades, several indices have been developed for quantifying 

drought events (Mishra and Singh, 2010; Mishra et al., 2015; Rajsekhar et al., 2015). 

Palmer Drought Severity Index (PDSI; Palmer 1965), Crop Moisture Index (CMI; Palmer 

1968), and standardized precipitation index (SPI; McKee et al., 1993) are a few examples 

of commonly used indices. Indices used for categorizing (mild, medium and severe) 

hydrological droughts are based on threshold level (e.g. Variable threshold (Beyene et al., 

2014)) or standardized indices (e.g. SRI (Standardized Runoff Index), SSI (Standardized 

Streamflow Index)). Here we applied Standardized Runoff Index (SRI) developed by 

Shukla and Wood (2008). It is based on the concept employed for SPI. SRI is formulated 

based on the standardization of river flow, which estimates the periodic (e.g., 1-month, 6-

months, 12-months) loss in streamflow. Reviews on drought indices also suggest that 

representing the propagation of drought only based on meteorological (precipitation) data 

may result in inaccurate prediction of drought process in a catchment (Van Lanen et al, 

2013; Van Loon, 2015). 

The long term and short term (but severe) droughts are anticipated to increase in 

the United States due to the influence of climate change (Sheffield et al., 2012). For 

instance, in 2002 more than 50% of the North American continent was effected by 

moderate to severe drought condition (Lawrimore and Stephens, 2003; and Cook et al., 

2007). The southeast United States experienced a significant period of drought during 

1965 – 1971, 1980 – 1982, 1985 – 1988, 1998 – 2002 (USGS, 2002; Weaver, 2005) and 

2006 – 2009 (Veettil and Mishra, 2016). Water rights also intensified in the Southeastern 
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states due to the frequent droughts (Billah and Goodall, 2011). The Savannah River 

Basin, which shares boundary between South Carolina, Georgia and North Carolina Sates 

is experiencing an increased water demand, and changes in hydrologic variability (Veettil 

and Mishra, 2006). This will likely to intensify water disputes among these states during 

future drought events.  

Hydrological drought has a direct impact on multiple stakeholders,  For example, 

drinking water abstraction, irrigation, electricity generation, recreation etc. (Tallaksen et 

al., 2014; Sheffield and Wood, 2012; Van Vliet et al., 2012). In addition, hydrological 

drought indicators can be used to monitor the water supply, scarcity and dispute based on 

the water supply and demand at a given time. Key information about hydrological 

drought is necessary for better assessment of water resources rather than meteorological 

drought (Van Lanen et al., 2012). 

Several studies have been conducted to evaluate past, present and future drought 

impact from a catchment scale to the continental scale (Mishra and Desai, 2005; 

Andreadis et al., 2005; Mishra and Deasi, 2006; Shukla and Wood, 2008; Van 

Huijgevoort et al., 2012; Van Loon and Laaha, 2015). These analyses are performed by 

deriving the indices from time series simulated from hydrologic/land surface models or 

from observed data. However, hydrologic drought assessment in a catchment scale is 

difficult with observed streamflow data due to the lack of monitoring in each catchment. 

In a water resources management point of view, the duration and severity analysis of a 

hydrological drought is essential. For example, the duration of hydrological drought is 

predominantly crucial for lives in an aquatic ecosystem (Humphries and Baldwin, 2003) 
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and understanding the severity is more important for abstraction of water from a stream 

for different purposes (e.g. hydropower production, mining, domestic use etc.). 

Hydrological drought occurs when the surface flow (river flow) and lakes or reservoirs 

levels decline below long term mean (van Lanen et al., 2012; Van Loon, 2015). It can be 

also termed as streamflow drought (Clausen and Pearson, 1995). Similar to the other 

categories of drought, the anomalies in atmospheric processes initiates the hydrologic 

drought.   

The propagation of hydrological drought is not only related to the characteristics 

of climate (e.g., transmission of meteorological drought. Peters et al., 2006) but also to 

the catchment properties (Mishra and Singh, 2010; Van Loon 2015) and morphology of 

stream network (Bond, 2008). It was also observed that catchment characteristics 

influence the hydrological drought over a geographic area (Peters et al., 2006; Tallaksen 

et al., 2009). For example, a decrease in soil moisture storage in a catchment causes 

depletion in the amount of water contribution to the aquifer system and stream network. 

This causes gradual drying of ground water discharge (base flow) and tapering of stream 

flow (Huntington and Niswonger, 2012). Finally, it will lead to hydrological drought. 

Additional catchment characters which can make an impact on hydrological drought are 

land use type (area of forest, agriculture, and pastureland), elevation, soil type etc. The 

catchment characteristics influence the propagation of drought, which varies in fast and 

slow responding catchments. For example, in Savannah River Basin availability of 

rainfall in the winter is comparatively less. This may lead to a lack of recharge during 

winter. It may turn to an important catchment variable in triggering hydrological drought 
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during the summer for slow responding catchments.  Examples for morphological 

variables which control the hydrological drought includes stream order, circularity ratio, 

and drainage density.  

Although droughts are defined based on the deviation of hydro-climatic variables 

from long term average, several questions or either partly answered or remain 

unanswered: a) what are the variables that contributes to the evolution (propagation) of 

the drought event, (b) which variables are more important, and (c) how to identify 

variable thresholds that likely trigger a drought event? This study attempts to answer 

these questions with a focus on hydrological drought. In the present study, we focused on 

the potential influence of climate, catchment and morphological variables to quantify 

hydrological drought for the Savannah River Basin located which is located in a humid 

subtropical climate. Evaluating the influence of climate and catchment variables in 

controlling the hydrological drought is an emerging area in drought hydrology (e.g. Van 

Loon and Laaha, 2015; Peters et al., 2006; Tallaksen et al., 2009).There is no prior 

analysis on the impact of morphological variables on hydrological drought. This study 

investigated the influence (either individually or combined) of climate, catchment and 

morphometric variables responsible for triggering hydrological drought (based on SRI1, 

SRI6, and SRI12) at Savannah River Basin. The streamflow output from each sub-

catchment is derived from the hydrologic SWAT (Soil and Water Assessment Tool) 

model for the basin (Veettil and Mishra, 2016). In the second phase of our analysis, we 

calculated   threshold limits for the climate, catchment and morphological variables by 

using decision tree approach. This threshold limit can provide useful information for 
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decision makers to assess the short, medium and long - term hydrological drought at the 

Savannah River Basin.  

2. Study area  

The Savannah River Basin (SRB), which has a drainage area of 27,171 km2, located in 

the state of South Carolina (11,875 km2), Georgia (14,965 km2) and North Carolina (331 

km2) of Southeastern USA (SCDHEC, 2010; Veettil and Mishra, 2016). The maximum 

elevation of the basin is 1670m (figure 1). The major land use and land cover of the basin 

are forest (60%), agriculture (14%), development (10%) and open water (4%). The 

climate and physical characteristics of SRB are as follows. The annual precipitation over 

the basin ranges from 1000mm to 2050mm. The mean annual temperature of the basin is 

180C (SCDHEC, 2010). The climate of SRB is characterized by mild winters and hot 

summers in the lower portions and cold winters and mild summers in the upper basin 

area. The SRB comprises parts of the Blue Ridge, Piedmont and Coastal Plain 

physiographic provinces, which spread throughout the southeastern United States. The 

northernmost part of the SRB (approximately 1%) is within the Blue Ridge Province, 

where the headwaters arise. Stream velocity is quite fast in Blue Ridge province because 

of the steep terrain. The SRB topography varies widely across the watershed, ranging 

from nearly level to very steep, with soils being shallow to very deep, from excessively 

drained to very poorly drained, and from sandy to clayey. The major reservoirs in the 

basin are Hartwell Lake, Richard B Russel Lake, and J. Strom Thurmond Lake, which are 

controlled by the US Army Corps of Engineers. The SRB and its major land use classes 

are shown in figure 1A. 
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 A B 

Fig.1. A) Land use and land cover map of Savannah River Basin, B) topography of the 

basin. 

2.1. Data 

Digital elevation model (DEM) was obtained from National Elevation data set at a 

resolution of 30m to delineate the study area and to estimate the topographic features. 

The land use data used for simulating the stream flow were obtained from National Land 

Cover Dataset for the year 2011. The soil data was downloaded from SSURGO database. 

The meteorological (precipitation and temperature) and stream flow data for 1990 to 

2013 were collected from National Climatic Data Center (NCDC) and United States 
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Geological Survey (USGS) respectively. The reservoir outflow data collected from 

Savannah District Water Management (US Army Corps of Engineers) was incorporated 

in SWAT model development. The datasets used for developing the hydrological model 

are listed in Table 1. 

Table 1: Data and source for SWAT model development 

 

The climate, catchment and morphological variables for SRB considered in this 

study are listed in Table 2. The climate variables (Table 2A) include annual average 

precipitation, evapotranspiration, and number of wet and dry spells. Catchment variables 

(Table 2B) are area, and land use classes. Morphometric variables (Table 3C) are stream 

order, drainage density, relief, relief ratio, form factor, circularity ratio, elongation ratio 

Data Used Description Resolution Source 

Land use 

map 

The Crop Data Layer 

produced using Landsat 

imagery during 2013 

30 × 30 United State Department of 

Agriculture (USDA)  

Topography 

and 

Hydrograph 

Digital Elevation Model 

from National Elevation 

Data set (NED, NAD 

83) 

30 × 30 National Elevation Dataset, 

USGS 

Soils The SSURGO data base 

provides the most 

detailed level of 

information, helpful for 

county level analysis 

1:12,000  to 

1:63,360 

United State Department of 

Agriculture (USDA) 

Meteorologi

cal Data 

The daily Precipitation, 

maximum and minimum 

air temperature 

 

Daily (mm) 

National Climatic Data 

Centre  (NCDC)  

 

Stream flow 

gages 

River Discharge  Daily and 

monthly mean 

(m3/s) 

United States Geological 

Survey (USGS)  

 

Reservoir 

data 

Outflow and dimension Daily and 

monthly  

U.S. Army Corps of 

Engineers 



 128 

and length of overland flow. The equations adopted for calculating the morphological 

variables are also provided in Table 3C. The SWAT model developed for simulating the 

streamflow of catchments located at the SRB is explained in section 3. 

 Table 2A: Climate variables 

 

 

3. Methodology 

The modeling framework developed for quantifying the significant variables which have 

impact on the hydrological drought and its threshold to control the hydrologic drought 

duration/severity is shown in figure 2. The following sections present an outline of 

specific components incorporated in the conceptual modeling framework. 

3.1. Hydrologic Modeling description 

The hydrological parameters in the SRB catchments are simulated by using Soil and 

Water Assessment Tool (SWAT, Arnold et al., 1995; Arnold et al., 1998). The modeling 

of SRB is a challenging task hence it involves many uncertainties (e.g., meteorological 

data, streamflow data etc.). In this region, contribution or loss of water towards nuclear 

power generation, irrigation and other water consumption purpose (SCDHEC, 2010) are 

high. 

 

 

Name Climate variable definition Unit 

A.PCP Annual average precipitation mm 

A.ET Annual average evapotranspiration mm 

Wet 

Spell 

Number of months with precipitation more than average 

monthly precipitation 

- 

Dry 

Spell 

Number of months with precipitation less than average monthly 

precipitation 

- 
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Table 2B: Catchment variables 

 

 

 

     Table 2C: Morphological variables 

 

Name Catchment variable definition Unit 

Area Area of the catchment m2 

Slop Slope of catchment  % 

Length Longest flow path of stream in a catchment m 

Width Width of stream in a catchment m 

Depth Depth of stream in a catchment m 

Elev Elevation of the sub-basin m 

ElevMin Min elevation in the sub-basin m 

ElevMax Max elevation in the sub-basin m 

O. Water Percentage of open water area in a catchment % 

D. Area Percentage of developed area in a catchment % 

Barren Percentage of barren land in a catchment % 

Forest Percentage of forest area in a catchment % 

W.Land Percentage of wetland in a catchment % 

Pasture Percentage of pasture in a catchment % 

loamy Percentage of loamy soil in a catchment % 

clayey Percentage of clayey soil in a catchment % 

Sandy Percentage of sandy soil in a catchment % 

Name Morphometric variable definition Unit 

Drainage 

Density (DD) 

Ratio of stream length to Area of the basin - 

Stream order 

(S.Order) 

Hierarchical ranking of streams - 

Relief (R) Difference between maximum and minimum elevation m 

Relief ratio 

(RR) 

Ratio of relief of a catchment to basin length - 

Form factor 

(FF) 

Ratio of area of a catchment to square of the basin 

length.  

- 

Circularity 

ratio (CR) 

Calculated as 4*Pi * A / P². Where Pi = 3.14 and P is the 

square of the perimeter.  

- 

Elongation 

ratio (ER) 

ER = 2/ Basin length - 

Length of 

overland land 

flow (LF) 

LF = 1 / D * 2 - 
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These factors make the model development more complicated. Veettil and Mishra 

(2016) developed the SWAT model for SRB. The same model was used for evaluating 

the hydrological drought in the each catchment located at SRB. In this section a brief 

description of the SWAT model and its performance in streamflow generation at SRB 

catchments is described. 

SWAT is a process based, semi-distributed basin scale model (Arnold et al., 1998; 

Neitsch et al., 2004) and it operates based on the daily series of meteorological input. The 

model can be used for simulating evapotranspiration, plant growth, infiltration, 

percolation, runoff and nutrient loads, and erosion (Neitsch et al., 2011; Faramazi et al., 

2009) from a small catchment scale to a continental scale (Chu et al., 2004; Cibin et al., 

2012; Gassman et al., 165 2007; Giri et al., 2014). The SWAT model has been tested in 

different sectors (e.g., agricultural water management, water scarcity, water quality 

management etc.) and discussed extensively in the literature (Gassman et al., 2007). More 

recently SWAT modeling has been applied in drought management sector (Wu et al., 

2007; Zhang et al., 2007; Bucak et al., 2017; Kamali et al., 2015). SWAT models the 

local water balance through four storage volumes: snow, soil profile (0–2 m), shallow 

aquifer (2–20 m) and deep aquifer (> 20 m). The soil water balance equation is the basis 

of SWAT modeling algorithm. Surface runoff is estimated by a Soil Conservation 

Service-Curve Number (SCS-CN) equation using daily precipitation data and soil 

hydrologic group, land use and land cover characteristics and antecedent soil moisture. A 

more detailed description of the model is given by Neitsch et al. (2005). In this study; 

ArcSWAT 2012 with ArcGIS (ESRI-version 10.2.2) was used. 
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Fig. 2. The modeling framework applied for quantifying the significant variable and its 

threshold. 

Digital Elevation Models (DEMs) are the basic input data for Hydrologic SWAT 

modeling, and DEM uncertainty has major importance in a hydrologic model 

development (Thieken et al., 1999; Gertner et al., 2002; Chaplot, 2005). The delineation 

of the watershed is performed based on the topographic data stored in the DEM pixel 

cells (Figure 1B). In SRB model, we used National Elevation Set (NED) data of 30m 

resolution (USGS, 2009). The delineated river basin is divided into sub-basins. These 

sub-basins are further divided into Hydrologic Response Units (HRUs). The hydrological 
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response units are created based on unique land use, soil and slop data provided to the 

model. The final SRB model resulted in 1408 HRUs distributed over 104 sub-basins.  

The Soil and Water Assessment Tool Calibration and Uncertainty Analysis 

Program (SWAT-CUP) developed by Abbaspour et al (2005), was employed for 

calibrating the developed model. Calibration of river discharge rates was executed using 

the Sequential Uncertainty Fitting (SUFI-2) procedure as described by Abbaspour et al. 

(2007), implemented in SWAT-CUP. The model was simulated and evaluated against the 

USGS (observed) stream flow data located in the Savannah River Basin. For example, 

the USGS station located at lower SRB (Savannah River near Clyo, USGS 02198500) 

showed a coefficient of determination (R2) of 0.85, Nash-Sutcliffe Efficiency (NSE) of 

0.76, R-factor of 0.89 and P-factor of 0.82 during the calibration period (1992 - 2005). 

During the validation period (2006 -2013) R2 was 0.64, NSE was 0.58, R-factor was 0.58 

and P-factor was 0.51. The parameterization and goodness of fit criteria adopted in the 

SRB model are explained in Veettil and Mishra (2016). The comparison of SWAT 

simulated flow and observed flow (USGS) are provided in chapter 2. 

3.2. Hydrological drought identification 

Standardized Runoff Index (SRI) (Shukla and Wood, 2008) was used for calculating the 

drought duration and severity for SRB. The process for calculating the SRI is explained 

in the following steps: (a) The monthly series of stream flow data was extracted from the 

SWAT model; (b) Long-term streamflow record was fitted to a suitable probability 

distribution. The Gamma distribution was identified as a suitable distribution for the sub-

catchment streamflow in SRB. Several prior studies selected Gamma distribution in 
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drought studies (Lloyd-Hughes and Saunders, 2002; Sönmez et al., 2005); (c) The 

gamma distribution was used for estimating the cumulative probability of runoff for a 

desired period of accumulation. (d) The cumulative probability was then converted to 

standard normal deviate with mean zero and unit standard deviation.  This dimensionless 

standardized value (Z-value) was used for classifying the catchment as dry or wet for a 

particular period of time. Table 3 shows the classification of hydrological drought 

according to SRI (Z-value). Our study considered the SRI value less than ‘-1’ (i.e. from 

moderate drought to extreme drought). Subsequently, the duration and severity of 

moderate to extreme drought of each catchment at the SRB was evaluated. The SRI 

analysis is performed for short-term drought (accumulation period of 1 month, SRI1); 

medium term drought (accumulation period of 6 months, SRI6); and long-term drought 

(accumulation period of 12 months, SRI12). The duration of a drought period is 

estimated by counting the total number of consecutive months that the SRI value is less 

than the threshold (i.e. -1) and the corresponding Z-value is considered as the severity of 

that drought event. The average drought duration and were calculated with respect to the 

total number of drought events that occurred in each sub-catchment of SRB from 1993 to 

2013.  

3.3. Potential influence of climate, catchment and morphological variables on 

hydrological droughts. 

The relationship between hydrological drought characteristics (duration and severity) 

with respect to climate, catchment and morphological variables by using linear and non-

linear techniques was analyzed. 
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Table 3: Classification of Drought category for the SRI 

SRI Values Drought Category 

0 to -0.99 Mild drought 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

< -2.00 Extreme drought 

 

3.3.1. Selection of variables 

A preliminary analysis using correlation matrix was first conducted to evaluate the 

possible relationship among different variables and drought characteristics. It is possible 

that collinearity may exist between different variables used in the study and this 

multicollinearity may lead to wrong estimation of significant variables during regression 

analysis. Therefore, we estimated multicollinearity by plotting correlation matrix among 

the variables. The candidate variables were selected using two criteria: (1) the variables 

which are more correlated with drought features, and 2) which are not collinear with the 

other variables. In the second phase of evaluation, the association between climate, 

catchment and morphometric variables and drought features were carried out by using 

multilinear regression and automatic stepwise selection (backward selection) method. 

Primarily, the multi regression technique was applied to climate, catchment and 

morphologic variables individually, for evaluating their key role in drought generation. 

The subset selection method for identifying a subset of variables from climate, catchment 

and morphometric variable space was used. These selected variables are believed to be 
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more related to the hydrological drought response. The best model from automatic 

stepwise selection was selected by Akaike Information Criterion (AIC) (Akaike, 1974). 

3.3.2. Identifying the threshold with decision tree approach 

The threshold of each variable in generating the hydrologic drought was estimated by 

using non-linear regression tree approach. The regression tree algorithm involves the 

stratification of predictor space (climate, catchment and morphometric variables) to a 

number of simple regions, based on drought characteristics (Breiman et al., 1984; James 

et al., 2013). In order to predict a given observation, this approach normally uses the 

mean or mode of the training observations in the region to which it belongs. The set of 

splitting rules applied to divide the predictor space was represented as a tree. Therefore, 

these types of approaches are known as decision tree methods. Decision tree approaches 

are simple to use and easy to interpret. They are considered one of the best methods in 

supervised learning techniques (James et al., 2013).  

In this study, the concept of regression tree using statistical package ‘party’ 

(Hothorn et al., 2016) available in R software was applied. This statistical analysis 

package ensures the right sized tree is grown by automatic pruning and performing cross 

validation. The final tree provides the threshold and significance of a variable to control 

the hydrologic drought in the river basin. The input variables to the decision tree are 

selected from the automatic stepwise regression model, which showed higher 

significance in estimating the output response. The output tree divides data into a number 

of classes (or series of nodes) and each represents response variables in the form of a 
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boxplot. The threshold level of input variables and range of output response are explained 

in section 4. 

4. Results and discussions 

4.1. Hydrological drought analysis 

The SRI (SRI1, SRI6, and SRI12) was calculated for the 104 catchments located in SRB, 

and their spatial drought characteristics (duration and severity) are provided in figure 3. It 

can be seen that the distribution of drought severity varies in space and by increasing 

temporal resolutions of SRI. In this section, the term duration indicates the average 

duration of drought in a catchment and severity indicates the average severity of drought 

in a catchment. The hydrologic drought duration and severity showed strong correlation 

(figure 3).  The catchments located in the upper SRB showed less duration and severity in 

all three types of drought. Based on SRI6, more catchments witness higher drought 

duration while comparing with SRI1 and SRI12 indices.  The maximum duration of 

drought in SRI1, SRI6 and SRI12 was found to be 23, 54 and 89 months respectively. 

Based on SRI6, higher drought duration seems to be observed in the catchments located 

in the state of South Carolina in comparison to the state of Georgia.  The number of 

hydrological drought events varies between 4 and 27 based on SRI1 index.  Patterns of 

hydrological drought in some catchments can be identified by comparing annual average 

precipitation (figure 5A), land use pattern (figure 1A) and elevation map (figure 1B). For 

example, the annual precipitation was comparatively high in catchments located in the 

upper SRB and had a higher forest cover. Therefore, the droughts in catchments for this 

part of the river basin have the lowest duration, and similar observations made elsewhere 
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(Tran et al., 2015; Beyene et al., 2014). Higher drought durations were observed in the 

catchments located away from the mainstream network. The distribution of baseflow 

index (BFI) and stream order (S.Order) are shown in figure 5B and figure 5C 

respectively. 

  

 A B C 

 

Fig. 3. Average drought duration of A) SRI1, B) SRI6 and C) SRI12 drought 

 

The relationship between hydrological drought duration and its governing factors are 

implemented through various statistical analysis. The study did not take into account all 

the variables shown in Table 2 because some were substitutable (i.e. one variable is 

correlated with the response in the same way with another variable). For example, the 

association of variables related to elevation (MaxElev, Elev, MinElev) was obvious and 

average elevation (Elev) for further analysis. Simultaneously, linear correlation between 

all variables using the correlation matrix were evaluated. 
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Fig. 4. Correlation between average hydrological drought duration and average 

hydrological drought severity. 

Fig. 5. A) Average annual precipitation, B) Base flow index and Stream order of each 

catchment located at the Savannah River Basin.  
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Finally, a list of variables which are least multi-collinear in nature and had a 

strong role in controlling the hydrological drought duration and severity were selected. 

The capacity of variables for generating drought is further analyzed with multiple linear 

regression and decision tree approaches in the following sections. 

The association between most of the variables used in the study is shown as a 

correlation matrix (figure 6) based on the Pearson correlation (Helsel and Hirsch, 1991).  

Examples for variables which showed a negative association with SRI1 are A.PCP and 

S.Order. The variables that showed a positive association in the analysis are BFI, pasture, 

and wetland etc. The important variables which showed high correlation with drought 

characteristics are A.PCP, BFI, S.Order, pasture (%) and area of the catchment. The 

relationship of these important variables with the duration based on SRI1 and SRI6 are 

shown in figure 7 and figure 8. 

4.2. Identifying impact of climate, catchment and morphological variables 

The selection of major variables which has significant association over the hydrological 

drought of Savannah River Basin was explained in the previous section. Overall the 

SRI’s are classified as short term (i.e., SRI1), medium term (i.e., SRI6) and long term 

(SRI12). Similar classifications are made in previous studies (e.g., Mishra and Singh, 

2005 and Belayneh, 2012). Belayneh (2012) performed similar classification on 

meteorological drought based on the Standardized Precipitation Index (SPI). Primarily, 

the association between climate, catchment, and morphological variables separately on 

controlling the short, medium and long - term hydrological drought by using multi-linear 

regression technique was examined. These models were named climate model, catchment 
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model, and morphological model as shown in table 4, table 5 and table 6. (Significance 

codes given in the tables: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’) 

Fig. 6. The Pearson correlation between the variables for short term accumulation 

drought. 
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Fig. 7. Relation between SRI1 average drought duration and A) annual average 

precipitation, B) elevation of catchment, C) baseflow flow index, D) stream order, E) 

percentage of pasture in a catchment and F) area of catchments. 
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Fig. 8. Relation between SRI6 average drought duration and A) annual average 

precipitation, B) elevation of catchment, C) baseflow flow index, D) stream order, E) 

percentage of pasture in a catchment and F) area of catchments. 
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Table 4: Linear regression of climate variables with SRI1 and SRI6 drought (Climate  

model) 

 

Table 5: Linear regression of catchment variables with SRI1 and SRI6 drought 

(catchment model) 

 

4.2.1. Impact of variables on Short – term drought  

Various studies have proved the significant role of climate variables in justifying the 

hydrological drought over a river basin (Wang et al., 2015; Sheffield and Wood, 2012). 

This study indicates that A.PCP and A.ET plays an important role for predicting the SRI1 

drought characteristics (Table 4). Therefore, precipitation below normal (average) has 

strong control for the drought characteristics.  Additionally, the combination of lower 

Drought class Variable p-value R2 

SRI 1 
A.PCP 0.00283 (**) 

0.12 
A.ET 0.01049 (*) 

SRI 6 A.PCP 0.000377 (***) 0.15 

Drought class Variable p-value R2 

SRI1 

Area 0.00336 ** 

 

 

 

0.49 

Elevation 0.028494 * 

Width 1.63e-07 *** 

Pasture 0.007718 ** 

Wetland 0.000249 *** 

BFI 5.03e-07 *** 

SRI6 

Area 0.001687 ** 

0.47 
Elevation 1.57e-06 *** 

Pasture 9.74e-06 *** 

Wetland 0.000359 *** 
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precipitation with higher evapotranspiration can increase the impact of drought over an 

area. Decreased moisture availability or increased temperature in the atmosphere may 

lead to an increase in actual evapotranspiration.  This situation led to an additional loss of 

water stored in soil layer, water bodies and result in hydrological drought. The climate 

variables which showed high significance (p-value less than 0.05), in the climate model 

were able to explain 12% (R2, the coefficient of determination) of variability in SRI1 

drought duration. The significant variables selected along with their R2 and the level of 

significance are also shown in Table 4. The result of the climate model explains the 

necessity of additional variables (i.e., catchment and morphological variables) in 

quantifying the hydrological drought characteristics. The catchment variables which 

showed high significance in predicting the duration of short – term drought were Area, 

elevation, width, pasture, wetland and BFI (table 5). The catchment model was able to 

explain 49% variability with SRI-1 drought characteristics. The important morphological 

variables were S.Order and R.Ratio with a coefficient of determination of 0.18 (Table 6).  

Table 6: Linear regression of morphological variables with SRI1 and SRI6 drought 

(Morphological model) 

 

 

 

The selected variables based on the Pearson correlation matrix were added to 

stepwise regression analysis and significant input variables were selected according to the 

decrease in Akaike Information Criterion (AIC). By integrating climate, catchment and 

Drought class Variable p-value R2 

SRI1 
S.Order 0.002463 ** 

0.18 
RR 0.000306 *** 

SRI6 
RR 0.000497 *** 

0.16 
CR 0.002526 ** 
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morphological variables, the combined model was able to predict 58% of short-term 

drought duration (Table 7). S.Order, BFI, and A.PCP were the most significant variables 

in predicting SRI1 drought. The BFI cannot be defined as a catchment character but it has 

a strong role in controlling the storage capacity and response time of a catchment (Van 

Loon and Laaha, 2015). It also replicates the geological characteristics of a catchment 

(Bloomfield et al., 2009; Hidsal et al., 2004).The BFI showed a positive correlation with 

the SRI1 drought. A similar trend is also observed in Van Loon and Laaha (2015); 

Tallaksen and Van Lanen, (2004); Barker et al., (2015). During drought, the major flow 

in the stream network is contributed by ground water discharge (base flow). Therefore, 

the BFI has a strong role in controlling the hydrological drought. Moreover, the 

contribution of base flow for a long term in the catchments denote higher duration of 

drought in the catchments. This may be a possible reason for the positive association of 

SRI1 drought to the BFI. Although, a complex relationship exists between drought 

characteristics and variables, the results indicate the linear models can be applied to 

exemplify the monotonic relationship between the hydrologic drought features and 

drought generating variables. However, this study incorporated non-linear models for 

exploring the non-linear relationship between the variables and hydrological drought. 

First or second order streams are the most drought affected spatial units in a 

stream network (Cowx et al., 1984; Hakala and Hartman, 2004). This study also 

suggested an inverse correlation of S.Order with short - term drought duration. The 

maximum S.Order in this study was four (Figure 5C) and the higher order streams were 

observed in the mainstream channel network. Therefore, the drought events of higher 
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duration are typically located in the catchments far from the mainstream network. The 

land use pattern, such as, wetland (%) and pasture (%) had a positive control for drought 

events based on SRI1 index.  

Table 7: Combined linear regression model based on BWS 

 

 

 

 

 

 

 

 

It was observed that wetland showed a positive correlation with hydrological 

drought. Catchments with a larger area of wetland were more susceptible to hydrologic 

drought. Similarly, pasture land in each catchment also revealed a positive correlation 

with hydrological drought based on linear regression analysis. Therefore, pasture lands 

had a major role in controlling the hydrological drought at the SRB. It is important to 

note that 75% of the agricultural land is pasture for SRB.  

Catchment area, the length of stream network in catchment and circularity ratio 

are the other variables that had significant control on hydrologic drought duration. 

Finally, S. Order, BFI, A.PCP, and wetland were the four major governing factors which 

Drought class Variable p-value R2 

SRI1 

Area 0.00168 ** 

0.58 

Length 0.00433 ** 

Pasture 0.00302 ** 

Wetland 0.00033 *** 

BFI 3.01e-09 *** 

A.PCP 0.00965 ** 

S.Order 1.39e-10 *** 

C.Ratio 0.08345 (.) 

SRI6 

Area 2.84e-05 *** 

0.50 

Width 0.025673 * 

Pasture 2.69e-08 *** 

Wetland 0.000108 *** 

Elevation 5.77e-07 *** 

S.Order 0.039544 * 
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control the short - term hydrological drought in Savannah River basin. Here, the BFI, 

wetland and pasture land can relate to the catchment characteristics which indicate the 

catchment storage. 

4.2.2. Impact of variables on medium and long – term drought 

Similar analysis was used to evaluate the control of climate, catchment and morphometric 

variables on medium - term (SRI6) and long - term (SRI12) drought.  Annual average 

precipitation (i.e., A.PCP) was the only climate variable which had a significant role on 

SRI6 drought duration (Table 4).A.PCP showed a comparatively higher significance than 

SRI1 climate model. Multiple regression analysis of catchment variables with SRI6 

drought showed that elevation is the most important variable in predicting medium term 

drought duration. The land use patterns including pasture and wetland also showed a 

significant control on medium – term drought duration (Table 5). The combined model 

developed based on backward Stepwise Selection outputs was able to predict 50% 

variability in medium - term drought duration (Table 7).  

The combined BWS model showed that climate variables do not have an 

important role in predicting the duration of drought derived based on SRI6 index.  The 

percentage of pasture land was identified as one of the major control governing of 

medium – term drought. The pasture land had a major role in governing the surface 

detention or storage capacity. This type of vegetation also affects soil surface micro-

topography. Pasture land showed a positive correlation with the duration of medium – 

term drought. This scenario may be due to the influence of higher evapotranspiration in 

the grassed land or may be due to the control of pasture land on soil water (Gutiérrez et 
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al., 2014). After pasture land, the next highest correlation was observed between medium 

– term drought duration (based on SPI 6) and the elevation of the catchments. Maximum 

precipitation occurs at the upstream of the SRB where the elevation is high. S.Order 

seems to be the only morphometric variable that is influencing the SRI6 drought.   

Based on linear analysis, there was no clear relationship observed between 

climate variables and long – term drought derived based on SPI12. The width of stream 

and S.Order were the significant variables in the combined BWS model analysis. But the 

correlation between SRI12 drought with catchment and morphometric variables were 

relatively less in comparison with the short and medium – term drought. Based on the 

linear regression models, the drought characteristics (duration and severity) can be better 

quantified (predicted) using a combination of climate, catchment, and morphological 

variables.   

4.3. Identification of variable threshold in controlling the hydrological drought 

Non-linear regression tree analysis (decision tree) was implemented to identify the 

critical threshold of climate, catchment and morphological variables that triggers 

hydrological drought. First, the relevant variables were selected based on the correlation 

and linear regression methods discussed in previous section. Then, the decision tree 

approach was used to identify the thresholds associated with relevant variables.   

 The standard output from the decision tree analysis by using ‘party’ package is 

shown in Figure 9 to 12.   The decision tree figures outline the process of estimating the 

threshold of variables and the range of response (drought duration) in the form of a box 

plot. Figure 9 represents the decision tree output of short - term drought. The node ‘1’ 
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divides the whole data sets into two groups based on the BFI, which is the most 

significant variable in the decision tree. It was observed that, if BFI is equal to or less 

than 0.344 (≤ 0.344), there is further splits leading to the growth of branches towards the 

left of the growing tree or else to the right branch. Here p < 0.001, represents the 

significance of the correlation between the split based on BFI and response variable 

(drought duration). The node ‘2’ split into two branches based on the S.Order (p = 0.006). 

If the S.Order is ≤ 1 the branches are assigned to the left. The node ‘2’ leads to the node 

‘3’, where the partitioning is carried out based on the A.PCP. Here the precipitation 

threshold is 1308.44mm.  

 Using this decision tree concept, the critical threshold of BFI, S.Order, and A.PCP 

are identified evaluating their response on drought characteristics.  If the BFI is ≤ 0.344, 

S.Order is ≤ 1 and A.PCP is ≤ 1308.44mm the duration of short - term hydrological 

drought will vary from 6 months to 22 months and the median (50th percentile, solid line 

within the boxplot) of drought duration is 12 months. Here n = 36 represents a particular 

subgroup which consists of 36 catchment out of 104 catchments. When the A.PCP is 

more than 1308.44mm the average duration of SRI drought will range from 2 to 4.5 

months.  The right branch of the node ‘2’ explains that when S. Order > 1 and BFI of ≤ 

0.344, this will lead to an average drought duration of 5.5 months (median) at the SRB.  

The average precipitation in the SRB is 1240mm per year. Our analysis indicates 

that most of the sub-catchments receive an average annual precipitation less than the 

threshold 1308.44mm. This may be a possible reason for increasing the average drought 

duration more than 5 months. The right branch of node ‘1’ is only based on the BFI. As 
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already discussed, BFI has a positive correlation with the SRI1 drought. Since, BFI has 

maximum correlation with the SRI1 drought, a decision tree generated using BFI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Decision tree showing the threshold of climate, catchment and morphological 

variables. 
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Fig. 10. Decision tree developed for short – term drought duration using Baseflow Index 

(BFI) 

Figure 11 shows the decision tree for medium-term drought derived based on 

SPI6. The figure consists of many nodes as well as thresholds associated with variables 

which can control the particular class of drought. It was found that catchment and 

morphological variables controls the SRI6 drought duration.  The land use variable 

‘pasture’ showed maximum influence. Therefore, first split of the tree was based on this 

variable with a threshold of 12.3%. The resulting box plot in the node ‘5’ can be 

explained as follows. For a catchment with an area ≤ 20.9km2, elevation ≤ 251.345m and 

with a pasture/hay cultivation ≤ 12.3% and a wetland area of ≤ 3% likely to experience a 

drought period of 38 months (median).  
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 Fig. 11. Decision tree showing the threshold of catchment and morphological variables. 
 

The average elevation of SRB is observed as 165m and if the elevation is more 

than 251m the duration of drought seems to be reduced.  The decision tree further 

illustrates the role of land use variables in controlling the SRI6 drought. It was observed 

that S.Order can be the most significant morphological variable in this analysis. The 

long-term accumulation drought was also analyzed through decision tree approach 

(Figure 12). S.Order and Width of channels were the important variables, which have 

potential governance over the drought duration based on SRI12.  By examining the 

anatomy of a decision tree, it is possible to identify different combinations of climate, 
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catchment and morphological characters that will lead a particular catchment to 

hydrological drought.  

 

Fig. 12. Decision tree showing the threshold of catchment and morphological variables. 

5. Conclusion 

A statistical modelling framework to quantify the potential influence of climate, 

catchment and morphological variables for generating short, medium and long-term 

duration drought was developed. In this study, the hydrological drought characteristics 

(duration and severity) were generated by using a SWAT hydrologic model. The 

proposed framework was capable of identifying significant variables and their associated 

threshold levels that controls the duration of the hydrological drought of a river basin. 

The study can be also extended for an ungauged basin, where the availability of 
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hydrological data is insufficient. In the proposed framework, streamflow for each sub-

catchment in the Savannah River Basin is simulated by using Soil and Water Assessment 

Tool (SWAT) and the hydrological drought is quantified based on Standardized Runoff 

Index. The following conclusions are set forth from this analysis. 

a) The linear models developed based only on climate variables may not be capable of 

predicting the duration of hydrological drought in the Savannah River Basin. The 

performance of linear models significantly improved by combined climate, catchment 

and morphological variables and werebetter to explain the variability in hydrological 

drought duration.   

b) The short – term drought duration analysis was conducted using SRI1. It was observed 

that climate (e.g., A.PCP), catchment (e.g., BFI) and morphological (e.g., S. Order) 

variables are significant in predicting the SRI1 drought duration, but catchment and 

morphometric control on short – term drought over the SRB were dominant. 

c) The medium – term drought duration derived based on SRI6 showed higher correlation 

with catchment variables including Pasture, Wetland, Area, and Elevation. The backward 

Stepwise Selection model could not identify any climate variables which was sensitive in 

controlling the medium – term drought over the SRB. In this study we used annual 

precipitation as climate variable, which has influence on SRI1 drought duration. Annual 

precipitation did not show its influence on SRI6 and SRI12 in our analysis, however 

more analysis is required to quantify the potential influence of precipitation derived based 

on moving window of various length.  
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d) Stream order was identified as the only variable which had significant control over 

short, medium and long – term duration drought. 

e) A comparatively large number of climate, catchment and morphological variables 

using decision tree approach were explored in order to identify their threshold for 

possible controls on the hydrological drought. For example, if the storage variable BFI is 

greater than 0.344 the short – term hydrological drought will likely continue for 15 

months in the basin. This information helps stakeholders assess the variety of crops 

which can be cultivated in a catchment with respect to the drought tolerance.  
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  CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

The demand for water has increased substantially in many parts of the world due to 

increase in water use by multiple sectors, such as, agriculture, domestic, industrial, 

mining, and thermo-electric power generation sector. The water scarcity challenge is 

further compounded by uneven distribution in fresh water supplies (e.g., rainfall and 

snowfall), climate variability and anthropogenic activities (e.g., land use change). 

Therefore, quantifying water scarcity and drought will improve water security of a 

region. The specific objectives that we focused on our research are: 

1) To investigate the blue and green water security of Savannah River Basin by applying 

the water footprint concept. 

2) To quantify the influence of climate variability and land use change on streamflow, 

ecosystem services, and water scarcity. 

3) To assess the climate, catchment, and morphological variables control over 

hydrological drought of a river basin. 

Based on the above study, the following conclusions can be drawn from this study: 

1) Climatic factors control spatio-temporal distributions of blue water. For example, 

blue water for counties located in the upper part of SRB is comparatively higher, 

which may be associated with the higher amount of precipitation in upper part of 

SRB and it decreases towards lower part of SRB. 

2) Analysis of green water scarcity and vulnerability indicates that counties are safe 

for practicing rain-fed agriculture during spring and fall. Our findings suggest that 
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blue water scarcity is enormously upsetting the ecological balance in upper part of 

river basin, particularly in Oconee County of South Carolina. Both Oconee and 

Anderson County are identified as ecological hotspots, where the BW-

vulnerability is more than 100%. 

3) The land use change and climate variability cause reduction in blue water. 

Climate variability indicated a strong control on blue water over the basin. As a 

result of joint effects of land use change and climate variability, the blue water is 

reduced by 200mm. Spatially the impact of land use change and climate 

variability vary with counties located in the basin. Hart County showed the 

maximum reduction in blue water due to the combined influence of both the 

factors. 

4) A reasonable change (decrease) in blue water scarcity (in food production) is 

observed in most of the counties due to the joint influence of land use change and 

climate variability. The maximum rise of blue water scarcity was observed in 

McDuffie and Edgefield County located at the central Savannah River Basin. 

5) The linear models developed based only on climate variables may not be capable 

for predicting the duration of hydrological drought in the Savannah River Basin. 

The performance of linear models significantly improved by combined climate, 

catchment and morphological variables as well as it better explain the variability 

in hydrological drought duration. 

6) We explored a comparatively large number of climate, catchment and 

morphological variables by decision tree approach in order to identify their 
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threshold for possible control over the hydrological drought. For example, if the 

storage variable BFI is greater than 0.344 the short – term hydrological drought 

will likely to continue for 15 months in the basin. This information helps the stake 

holders to assess the variety of crops which can be cultivated in a catchment with 

respect to the drought tolerance. 

The overall results in this study indicate that the proposed modeling framework is 

capable for quantifying the water security of a river basin. By accurately evaluating and 

predicting water scarcity and droughts the decision makers can improve efficient water 

management plans and proactive mitigation to minimize social, environmental and 

economic impacts significantly. 

Recommendations for future study: In recent years, promising research is taking place, 

which examines the possibility for using big data concepts accesses water security in 

space and time. Investigating the water quality in a catchment scale is necessary in 

evaluating the ecological health of a river basin. Also, it is essential for comprehensive 

analysis of water security. But the lack of harmonized water quality data limits the grey 

water footprint analysis in the water security modeling framework. Therefore, the 

integration of multiple data sources with the local based indicator (related to water 

quality and quantity) overcome the limited information related to the water quality and 

water quantity (streamflow, blue water, and green water). 

Better quantification of groundwater contribution to baseflow, improvement in 

calculation of anthropogenic water demands can improve water security, and better 

representation of human interventions (e.g., reservoir operation, irrigation water use) with in 
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hydrologic modeling framework can improve quantification of hydrologic fluxes necessary 

for Blue water, Green water and hydrological drought assessment. 
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