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ABSTRACT 

Worldwide, enteric viruses are the main cause of acute gastroenteritis (AGE). 

Among these viruses, human noroviruses (HuNoV) are leading cause of AGE and 

account for ca. 20% of all diarrheal cases, a top-five cause of death worldwide. In 

humans, these viruses spread via person-to-person contact, food, water, and/or the 

environment. Person-to-person contact is the most common mode of HuNoV 

transmission. Yet, environmental transmission has been linked to several outbreaks and 

prolonged others. HuNoV survival and inactivation on hard environmental surfaces have 

been extensively studied. However, nonlaunderable soft surfaces, such as carpet, have 

received little attention despite epidemiological evidence suggesting their role in transfer 

and transmission of HuNoV. Currently there are no commercially available products for 

sanitizing these surface after a contamination event. Documenting the efficacy of 

sanitizers intended for virally contaminated soft surfaces is also compounded by no 

standardized method for the recovery of viruses. Therefore our aims for this study, using 

the environmentally relevant soft surface, carpet, were to (i) determine factors that 

influence the survival and inactivation of enteric viruses on nonlaunderable soft surfaces 

(ii) determine survival of HuNoV surrogates on an carpet, (iii) compare sampling

methods to determine their ability to recover HuNoV surrogates from carpet, and (iv) to 

assess two sanitizing technologies, silver dihydrogen citrate (SDC) and steam vapor, 

against a HuNoV surrogate, FCV, on carpet.  

A systematic review of the literature was conducted to determine factors that 

influence the survival and inactivation of enteric viruses on nonlaunderable soft surfaces. 
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EBSCO and Web of Science were searched for experimental studies published between 

1965 and 2015 using Preferred Reporting Items for Systematic Reviews and Meta-

Analyses methods. Titles and abstracts were screened using 3 eligibility criteria. The 

quality of all study methods was also assessed. Our search yielded 12 articles. Viruses 

survived between 0 hours and 140 days depending on surface and environment 

conditions. Virus survival was influenced by temperature, relative humidity, organic 

content, and deposition method. A variety of chemistries were tested across studies and 

were shown to have a varied effect on enteric viruses. Chlorine, glutaraldehyde, vaporous 

ozone, and hydrogen peroxide were the most efficacious against enteric viruses (> 3-log 

reduction). The efficacy of liquid and vaporous chemistries are associated with surface 

and virus type 

The survival profile of HuNoV surrogates, FCV and murine norovirus (MNV), as 

studied on carpet. First, we measured the zeta potential and absorption capacity of wool 

and nylon carpet fibers, developed a mini-spin column elution method (MSC), and 

characterized the survival of HuNoV surrogates, FCV and MNV over 60 days under 30 

and 70% relative humidity (RH) on carpets and a glass surface. Carpet surface charge 

was negative at a typical buffer pH while wool could absorb ca. 2X more liquid than 

nylon. Percent recovery efficiency with the MSC ranged from 4.34 to 20.89% and 30.71 

to 54.14% for FCV and MNV on carpet fibers, respectively. Moreover, elution buffer 

type did not significantly affect recovery of either surrogate virus. Infectious FCV or 

MNV survived between <1 and 15 or 3 and 15 days, respectively. However, MNV 

survived longer under some conditions and at significantly higher titers compared to 
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FCV. Albeit, surrogates followed similar survival trends, i.e. both survived longest on 

wool followed by nylon and glass while 30% RH provided a more hospitable 

environment compared to 70% RH. qRT-PCR signals for both surrogates were detectable 

for the entire study but FCV genomic copies experienced significantly higher reductions 

(<3.80 log10 copies) on all surfaces compared to MNV (<1.10 log10 copies). 

Virus recovery methods were compared to evaluate their ability to recover FCV 

and MNV from carpet. Specifically, we assessed and compared three recovery methods, 

i.e. bottle extraction (BE), macrofoam-tipped swabbing (MS), and the microbial vacuum

(MVAC), using HuNoV surrogates, FCV and MNV, inoculated on wool and nylon.  We 

also investigated detection issues for FCV after environmental recovery, i.e. inhibition. 

Infectious FCV and MNV percent recovery efficiency (% RE) of BE ranged from 0.44 to 

48.44 and 40.77 to 68.83%, respectively, compared to MS % RE, which was 0.02 to 

0.82% and 1.54 to 2.87%, respectively. The MVAC % RE of infectious FCV and MNV 

ranged from 7.30 to 18.29% and 52.58 to 74.67%, respectively. Percent RE of genomic 

copies of FCV and MNV with BE ranged from 0.36 to 2.53% and 3.34 to 14.97%, 

respectively, while MS % RE ranged from 1.03 to 2.24 and 2.02 to 4.25%, respectively. 

The MVAC % RE of genomic copies of FCV and MNV ranged from 2.49 to 23.72% and 

28.78 to 79.15%, respectively. Significantly more plaque-forming units and genomic 

copies were recovered using BE and MVAC compared to MS, while buffer type played a 

significant role in recovery of infectious FCV. Additionally, qRT-PCR analysis indicated 

recovery from tested carpet types inhibited amplification of FCV RNA and required 

dilution after nucleic acid extraction 
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Two sanitizing technologies, SDC and steam vapor, were evaluated against FCV 

on wool and nylon carpet carriers. First, we evaluated both technologies effect on 

aesthetic appearance on carpet, developed a neutralizer for SDC, evaluated SDC’s 

efficacy in suspension with and without 5% fetal bovine serum (FBS), SDC and steam 

vapor’s efficacy on glass, each with and without 5% FBS, and finally tested both 

sanitizers on carpets. Wool and nylon carpet carriers exhibit no obvious color changes or 

abrasions after both treatments, however SDC treatment left a residue while steam left 

minor abrasions to the surface fibers. A sodium thioglycolate-based solution was found to 

adequately neutralize and eliminate SDC cytotoxicity. SDC in suspension and on glass 

reduced FCV by 4.65 and >4.66 log10 pfu, respectively, but demonstrated reduced 

efficacy in the presence of serum. However, SDC was only efficacious against FCV on 

nylon (3.62 log10 pfu reduction). Steam vapor reduced FCV by >4.93 log10 pfu on glass 

in 10 sec, with no observed difference among serum treatments, and >3.68 log10 pfu on 

wool and nylon carpet carriers in 90 sec. There was limited reduction to FCV RNA under 

both sanitizer treatments, but RNA reductions were higher in treatments with serum. 

In this Ph.D. dissertation, we characterized wool and nylon carpet fibers based on 

their absorptive capacity and zeta potential while demonstrating that HuNoV surrogates, 

feline calicivirus (FCV) and murine norovirus (MNV), can survive for at least 15 days on 

carpets under some conditions. Additionally, we evaluated three methods’ recovery 

efficiency with FCV and MNV on wool and nylon carpets that provides key data and 

analysis of methods intended for efficacy testing and environmental monitoring. Finally, 

we assessed two sanitizing technologies, silver dihydrogen citrate (SDC) and steam-
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vapor with thermo-accelerated nano-crystal sanitation (TANCS) technology, against 

FCV, in suspension, glass, and wool and nylon carpet carriers of an experimental design 

for assessing efficacy of sanitizer intended for viruses on carpets. Results suggest SDC 

and steam-vapor with TANCS are efficacious against FCV but steam-vapor provides the 

highest level of inactivation. Ultimately, this is the first comprehensive study of HuNoV 

on carpet, an understudied fomite. Specifically, these studies estimate the survival 

characteristic of HuNoV on carpet, provide a comprehensive comparison of potential 

virus recovery methods from carpet, demonstrate the efficacy of two acceptable and 

reasonable virucidal sanitizers on carpet, and establish a much-needed experimental 

design for assessing virucidal sanitizers on carpets. 
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CHAPTER ONE 

LITERATURE REVIEW – A BREIF OVERVIEW OF NOROVIRUS, ENTERIC VIRUS 
RECOVERY METHODS, AND SOFT SURFACES 

INTRODUCTION 

Norovirus (NoV) is a large and diverse genus of icosahedral enteric viruses 

belonging to the Caliciviridae (1). Human noroviruses (HuNoV), a subgroup of 

norovirus, are associated with acute gastroenteritis (AGE). AGE is a top-5 cause of death 

among humans while HuNoV account for ca. 20% of all diarrheal cases worldwide (2, 3). 

Additionally, HuNoV’s economic burden worldwide is estimated to be $4.2 billion in 

health care costs and $60.3 billion in societal costs annually. In 2011, the Centers for 

Disease Control and Prevention (CDC), estimated that HuNoV accounted for 58% of the 

population afflicted by known foodborne disease in the United States (4, 5).  

HuNoV were first discovered in 1972 using immune electron microscopy (IEM) 

to examine isolates from an elementary school outbreak that occurred 4 years earlier in 

Norwalk, Ohio (6). Over the years, HuNoV have been colloquially known as: winter 

vomiting disease, hyperemesis emesis, the stomach flu, stomach bug, and Norwalk virus 

(6). Symptoms of HuNoV infection include diarrhea, vomiting, nausea, dehydration, low-

grade fever, muscle pains, and malaise. HuNoV are known to be shed in both vomit and 

diarrhea of infected patients. Diarrhea is due, in part, to malabsorption of carbohydrates 

and histological changes to the intestine, whereas delayed gastric emptying and motility 

are likely responsible for nausea and vomiting (2). 

Culturing of NoV is not routinely available, except for murine strains precluding 

classification of NoV into serogroup or types. As such, NoV are classified into six 



 2 

distinct genogroups (GI-GVI) consisting of 40 known genotypes based on genetic 

analysis (7). However, a new genogroup (GVII) has been adopted based on the genetic 

analysis of new 9 genotypes (7). HuNoV are located within GI, GII, and GIV, but the 

majority of HuNoV outbreaks are associated with GII.4 (Figure 1.1) (8).  

 

Figure 1.1 Norovirus classification tree for nomenclature  

Source: figure from Vinjé, Jan. "Advances in laboratory methods for detection and typing 
of norovirus." Journal of clinical microbiology 53.2 (2015): 373-381. (7). 
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PATHOGENESIS 

Until recently, HuNoV were not cultureable, which hindered our ability to answer 

key questions surrounding their pathogenesis. The use of HuNoV-like particles have 

assisted with modeling infection. Working with these particles has demonstrated that 

HuNoV’s capsid binding motifs likely attach to human blood group antigens prior to cell 

entry and replication within the intestinal milieu (9). In 2016, an ex vivo human intestinal 

enteroid (HIE) culturing system was shown to support HuNoV replication (10). Results 

of culturing HuNoV with the HIE system suggests HuNoV are capable of replicating in 

enterocytes from different segments of the small intestine. Furthermore, results also 

indicate that some strains require bile, whereas bile only enhances replication of other 

strains. With further work, this system may answer several key questions regarding 

intracellular replication and dissemination. At present the system is technically 

demanding and only available in two laboratories. But, additional studies are needed to 

make this culturing system more widely. Historically, human volunteer studies were 

conducted to answer key questions, such as infectious dose, viral shedding, and titer. The 

estimated infectious dose of HuNoV is 10 – 100 virions, which may be affected by strain 

type and host susceptibly (11). NoV’s non-enveloped structure allows for its passage 

through harsh environments, such as the gastrointestinal track of animals, ambient 

environmental conditions, and a variety of disinfecting chemistries.  
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HUMAN NOROVIRUS SURROGATES 

The lack of a routine culturing method has hampered our ability to study HuNoV. 

Even with the new HIE culture system, HuNoV research remains at a disadvantaged 

compared to other groups studying enteric viruses with adaptable cell culture models, e.g. 

rotavirus and hepatitis A virus (10). Some studies, e.g. disinfection and survival, require 

the use of infectious viruses because molecular assays, such as qRT-PCR, cannot 

differentiate between infectious and non-infectious particles. Accordingly, the 

investigators are forced to use infectious surrogates that mimic HuNoV both structurally 

and genetically. Common HuNoV surrogate viruses not infectious to humans are feline 

calicivirus (FCV), murine norovirus (MNV), tulane virus (TV), and porcine sapovirus 

(PSaV), among others (Table 1.1) (12). 

 FCV is the most recognizable surrogate used in HuNoV studies and has been 

selected based on its genetic similarities to HuNoV. Although FCV belongs to the 

Caliciviridae family, widely known for enteric viruses, it infects the upper respiratory 

track of cats (13). Many laboratories elect to use FCV because it demonstrates tropism 

for Crandell Rees kidney cells, and some strains, such as F9, have been cell culture 

adapted to form plaques.  While there have been several recent studies that demonstrated 

FCV’s susceptibility to some environmental factors and disinfectants, such as low pH and 

moderate levels of chlorine, FCV strain F9 remains the U.S. Environmental Protection 

Agency (EPA) designated surrogate for disinfectant efficacy studies (12). 

 MNV was discovered in 2003 within immunocompromised mice deficient in 

recombination-activating gene 2 (RAG2) and signal transducer and activator of 
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transcription 1 (STAT-1) and successfully cultured in a murine macrophage cell line 

(RAW 264.7) (14). Further work demonstrated murine microglial cells are susceptible to 

MNV infection. This marked the first successful cultivation of a NoV. Comparative 

studies using MNV illustrated similar qualities to HuNoV, such as size, shape, buoyant 

density, and biochemical features (15). For instance, MNV has a similar response to pH, 

temperature, and chlorine (12). An observed chemical response difference is MNV’s 

susceptibly to ethanol and isopropanol treatments compared to HuNoV and FCV (12). 

Moreover, these viruses differ both clinically and genetically. Although found in stool, 

MNV does not cause AGE or vomiting in mice. In addition, HuNoV are known to bind 

with human blood group antigens (HBGA) and infect enterocytes, whereas MNV binds 

with sialic acid to infect macrophages and dendritic cells (14). Regardless of these 

differences, MNV is a more suitable surrogate compared to FCV for environmental and 

disinfectant studies.  

 Tulane virus (TV) is the newest virus to be used as a surrogate for the study of 

HuNoV and still not recognized by International Committee of Taxonomy of Viruses 

(ICTV). Discovered in 2008 in the stools of rhesus macaques, TV belongs to the 

Caliciviridae family and is included in a unique own genus: Recovirus (16). Benefits for 

using TV, include similarities to HuNoV, such as size, shape, buoyant density, and 

biochemical features (16). TV was successfully cell culture adapted and readily infects 

African monkey kidney cells in a plaque assay format. Like HuNoV, symptoms of TV 

infection include diarrhea and TV also recognizes HBGA antigens (15). TV is a 
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promising surrogate for HuNoV, but because of its novelty, more studies are needed as 

many technologies have not been extensively evaluated against TV.  

PSaV, a surrogate commonly used for the uncultureable human sapovirus, has 

been proposed as a surrogate for HuNoV. PSaV was first cultured in 1980 within pig 

kidney cells (17). As a calicivirus, PSaV shares similar structural and genetic features to 

HuNoV, FCV, MNV, and TV, while also sharing similar biochemical features to MNV 

and TV (15). Furthermore, and like the HuNoV HIE, PSaV infects intestinal cells of pigs 

and requires additional supplements for infection, such as bile. The downsides to this 

surrogate are the low titer in cell culture compared to other surrogates and its inability to 

form plaques in culture (17).  

Overall, these 4 surrogates (FCV, MNV, TV, and PSaV) have features that allow 

us, in the absence of a reliable culturing system, to estimate the effect of interventions 

and measure environmental stability of HuNoV. But each has drawbacks that limit our 

ability to make informed decisions regarding prevention and control strategies. At 

present, the best method for the study of HuNoV is human challenge studies, but these 

studies are expensive and not warranted in many cases. It is imperative that investigators 

select the most resilient surrogates for their application, e.g. do not select MNV for 

ethanol sanitizer tests, and, if possible, test multiple surrogates within the same study. 

Until, HIE or another culturing method is developed, infectious surrogates are the safest 

options for evaluating HuNoV. 
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Table 1.1 Overview of human norovirus surrogates  

 FCV MNV TV PSaV NoV VLP AiV 

Host Feline Murine Primate Porcine None Human 

Family Caliciviridae Caliciviridae Caliciviridae Caliciviridae None Picornaviridae 

Genus  Vesivirus Norovirus  Recovirus  Sapovirus  None Kobuvirus  

Symptoms No diarrhea No diarrhea* Diarrhea Diarrhea None Diarrhea 

Virus titer 106-108 106-108 106-107 105-106 >108 106-108 

Cell line CRFK RAW 264.7 LLC-MK2 LLC-PK2 None Vero 

Assay Plaque Assay Plaque Assay Plaque Assay TCID 50 -- Plaque Assay 

*virus shed in stool but not apparent AGE symptoms.  

Source: Table composed of information from (7, 9, 14, 16–18) 
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TRANSFER AND TRANSMISSION OF HUMAN NOROVIRUSES 

HuNoV are transmitted via the fecal oral route or vomitus oral route. The most 

common exposure pathways are person-to-person contact (66%), contaminated foods 

(25%), water (0.2%) and environmental transmission (0.3%) (Figure 1.2) (19, 20). 

Symptoms of HuNoV include involuntary vomiting and diarrhea that can harbor 105-109 

HuNoV particles/g and 107 particles/30 ml, respectively (21, 22). These symptoms, 

among other reasons, contribute to the spread of HuNoV. HuNoV from both vomit and 

diarrhea can be found on hands and deposited onto surrounding surfaces, such as food 

and both hard and soft surface fomites, where they can survive for extended periods of 

time (23–25).  

Transmission infers the passage of an infectious pathogen to a competent host 

causing disease, whereas transfer means the movement of a pathogen from one surface to 

another. Episodes of transmission are often based on epidemiological reports. Person-to-

person and foodborne transmission are estimated to be the top causes of HuNoV 

transmission (19). Although there are several epidemiological investigations suggesting 

environmental transmission of HuNoV (Table 1.2). For instance, two carpet fitters 

exhibited HuNoV-like symptoms after removing carpet from a room used to cohort 

patients with HuNoV-like symptoms 16 days after the room had been vacated and 

decontaminated (25). Authors highlighted that the only intervention used on the carpet 

was a dry vacuum and the two carpet fitters had no other contact while working in the 

hospital ward. Another retrospective study found that 300 students visiting a concert hall 

were infected with HuNoV (26). A guest from the previous night experienced HuNoV 
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infection symptoms in the carpeted hallway. The highest reported attack rates (75%) were 

observed in students seated near the guest’s seat and students using the same hallway (30-

50%). Based on the negative results from food and water, and infection onset, 

investigators believed environmental transmission played a critical role in the outbreak, 

which was compounded by ineffective decontamination strategies and the environmental 

stability of the virus.  

Evidence of virus transfer has been evaluated under controlled conditions. Several 

laboratory-based studies have documented the transfer of enteric viruses between 

surfaces (Table 1.3). For example, poliovirus is capable of being transferred between 

both natural, e.g. wool, and synthetic, e.g. nylon, surfaces (27). By the same token, and in 

separate studies, poliovirus, rotavirus, human adenovirus, and MS2 phage were found to 

be transferable between a variety of both natural and synthetic soft surfaces when 

washing (28–30). More importantly, investigators have demonstrated that contact 

between some soft surfaces can transfer a HuNoV surrogate, MS2 phage, to other 

surfaces, including hands (31). Taken together, both epidemiological reports of 

transmission and controlled transfer studies with soft surfaces suggest they may be 

important and overlooked fomites contributing to HuNoV outbreaks.  
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Figure 1.2 Overview of known and hypothetical human norovirus transmission routes 

Source: Figure from Mathijs, E., et al. "A review of known and hypothetical transmission 
routes for noroviruses. Food Environ Virol 4: 131–152." (2012). (32). 
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Table 1.2 Suspected soft surface-mediated transmission of human noroviruses 

Setting Surface Cases Duration of 
Outbreak 

Disinfection 
methods  

Outcomes  Reference  

Concert 
Hall 

Carpet >300 5 days “emergency 
spillage 
compound”, 
vacuuming 

High attack rate associated with seating 
near patient-zero seat (75%) and with 
patrons using carpeted corridor (30-
50%) 

Evans, M.R. 
et al. (26) 
 
 

Airplane Carpet, 
Upholstered 
seats, 
curtains 

 27 5 days  Soft surfaces 
within 3 rows 
of incident 
removed. 
Other 
carpeted 
areas 
received 
steam 
cleaning 

All hard surface negative for HuNoV, 
suggesting survival within carpets after 
treatment  

Thornley, C. 
et al. (33) 
 
 
 
 
 

Hotel  Carpet 942 5 months Vacuuming, 
water, 
detergents 

62% samples from carpets positive 
after cleaning  

Cheesbrough, 
J. et al. (34) 
 

Hospital  Carpet 2 N/A Vacuuming HuNoV likely transmitted while 
removing carpets 13 days outbreak 
cleared and 12 days after cleaning. 

Cheesbrough, 
J. et al. (25) 
 
 

Soccer 
Tournament  

Reusable 
grocery bag  

10 N/A  N/A Soft surface contaminated via 
aerosolized HuNoV transferred to other 
surfaces 

Repp and 
Keene (35) 

Source: Yeargin, Thomas, "The role of human norovirus surrogates, feline calicivirus and murine norovirus, on non-porous 
and soft porous surfaces" (2014). All Theses. 1882. http://tigerprints.clemson.edu/all_theses/1882. (36)
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Table 1.3 Transfer of enteric viruses and surrogates from soft surfaces  

Surfaces  Virusa  Study designb Significant Results  Reference 
Cotton and wool fabrics: 
Dull nylon jersey  
Dacron/Cotton Shirting  

PV Time: 16 h 
DM: direct contact 
and aerosol  
Temp: 25˚C 
RH: 35% RH  
Treatment: 
inoculated carriers 
tumbled dried with 
sterile carriers. 

Infectious PV transferable (3 log10) between 
surface. Wool showed highest transfer rate. 
poliovirus within 10 min.  

Sidwell et 
al. (27) 

Cotton and wool fabrics: 
Dull nylon jersey  
Dacron/Cotton Shirting 

PV  Time: N/A 
DM: direct contact 
and aerosol  
Temp: 21-27, 38-43, 
and 54-60°C 
RH: N/A 
Treatment: 
Inoculated carriers 
washed with sterile 
carriers 

PV reduced by washing treatment but transfer 
did not differ significantly between treatments 
and surface type 

Sidwell et 
al. (28) 

Cotton  RV 
HAV 
ADV 

Time: 12/3 min 
cycle 
Temp: 20-23°C, 
55°C 
RH: N/A 
Treatment: Washed 
and rinsed with 
detergent 

RV, HAV, and ADV transferred 3.54, 3.18, 
and 3.4 log10 pfu/carrier, respectively, to sterile 
carrier. Transfer after drying: RV, HAV, and 
ADV 3.35, 3.43, and 3.4 log pfu/carrier, 
respectively 

Gerba and 
Kennedy 
(29) 
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Hands, cotton/polyester 
blended knit weave, 
cotton toweling, cotton 
knit weave 

MS2  Time: 16/10 min 
rinse/spin cycle 
Temp: N/A 
RH: N/A 
Treatment: Carriers 
washed in 69 L with 
sterile carriers. After, 
transferred to finger 
pad. 

Up to 3.77 log10 pfu/carrier MS2 transferred 
between carriers. MS2 could be transferred to 
finger pad after washing with average transfer 
rate of 0.19% 

O’toole et 
al. (30) 

Cellulose/cotton cloths, 
microfiber cloth, 
nonwoven cloth, cotton 
terry towel 

FCV 
PRD1 
MS2 

Time: 12/3 min 
cycle 
Temp: RT 
RH: N/A 
Treatment: sterile 
surfaces wiped 
contaminated cloths 

Surrogates transferred between 0.41 and 2.91 
log10 pfu/ml to hard surfaces. Nonwoven and 
terry cloth transferred more virus to hard 
surfaces.  

Gibson et 
al. (37) 

Cotton, polyester, paper 
currency  

MS2 Time: 10s 
Temp: RT 
RH: 15-32%, 40-
65% 
Treatment: Index, 
middle, and ring 
finger pressed 
against inoculated 
carriers 

% MS2 transfer efficiency ranged from 0.03 to 
0.4% under low RH and 0.3 to 2.3% high RH 

Lopez et al. 
(31) 

aPV: poliovirus; RV: rotavirus; HAV: hepatitis A virus; ADV: human adenovirus; MS2: MS2 bacteriophage; FCV: feline 
calicivirus; PRD1: PRD1 bacteriophage. 
bDM: deposition method; RH: relative humidity 
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DETECTION METHODS 

A variety of tools have been used for qualitative and quantitative detection of 

HuNoV and their surrogates: visualization, i.e. microscopy, cell culture-based, 

immunological-based, and molecular-based (Table 1.3) (7).  Electron microscopy (EM) 

was a popular tool in the 1970s through 1980s for visualization and confirmation (via 

immune EM). Currently, EM is a popular tool for visualizing the effect of disinfectant 

treatments against HuNoV’s capsid. Since the sequencing of HuNoV in 1990, real-time 

polymerase chain reaction (RT-PCR) has replaced EM as a diagnostic tool because EM 

requires expensive equipment and training with low throughput and sensitivity (2, 6). 

Cell culturing is the most desired method for observation and characterization of 

enteric viruses. The most common cell culture formats for quantifying enteric viruses are 

the plaque assay and 50% tissue culture infectious dose (TCID50). Plaque assays are the 

gold standard for infectious viral detection (15). Another infection detection assay is 

TCID50 that is typically used for high throughput analysis but results develop slower and 

in some cases not as sensitive as plaque assays (38). Both techniques rely upon the use of 

a virally competent cell line. But TCID50 is considered an endpoint dilution assay that 

provides qualitative results per well, which collectively can be used for quantification. On 

the other hand, plaque assays provide quantitative results per well by the development of 

individual plaques. These plaques theoretically represent a single virus. With this, 

investigators can isolate and purify clonal population, unlike the TCID50 assay. The 

downsides to both plaque assays and TCID50 are time, skills, and cost. Plaque assays 

also take 24-72 hours for completion compared to up to 1 week for TCID50 not including 
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the time it takes to prepare the assay. For example, propagating cells may take up to 1.5 

weeks before there are an adequate number of cells for an assay. Some cells are also 

delicate, heterogeneous, or may activate after numerous passages, which may create 

batch-to-batch variation. Furthermore, special care is needed when passaging the cells 

and proper neutralizers are needed when conducting disinfection studies to achieve a 

successful infection and avoid erroneous results.  

Currently, only murine stains are routinely available for cell culture. On the other 

hand, the HIE system for culturing HuNoV strains can be completed but HuNoV 

replication requires three separate media types for passage and differentiation of HIEs. 

Not to mention, the assay for cultivation of HuNoV appears to be particularly sensitive to 

bile type for the replication of some strains. HIEs are a promising culture-based method 

for studying HuNoV, but this method was only recently published and has yet to be 

replicated. Future studies should attempt to replicate this work by improving its limit of 

detection, ease of use, and burden of cost. 

Molecular-based technologies, in part, have sustained HuNoV research. Some 

common molecular tools for analyses of HuNoV include: RT-PCR, sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and HBGA  

assays (39). RT-PCR, focused on here, is the most commonly used tool for HuNoV 

detection. To detect and differentiate HuNoV genotypes, investigators rely on differences 

between their plus sense, single stranded RNA genome, which is divided into 3 open 

reading frames (ORF). Primers used to detect HuNoV focus on the ORF 1 and 2 junction 

(Figure 1.3) (11). The 3’ end of ORF 1 contains a gene sequence for the highly-
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conserved RNA-dependent RNA polymerase among the family Norovirus, which is 

required for replication. ORF 2 is considered the hyper-variable region as it codes for the 

capsid protein which frequently changes due to antigenic drift (40). Investigators used 

ORF 2 regions C and D to differentiate genotype and strains, respectively. Drawbacks to 

this method include a post-amplification step for confirmation of amplification unless 

quantitative RT-PCR (qRT-PCR) is used. This technique allows for real-time 

amplification via fluorescent dyes or probes and allows for quantification, if desired. 

Downsides to this method are the inability to distinguish between viable and non-viable 

nucleic acid, although enzyme-based protocols can be used to lyse unstable capsids and 

cleave exogenous RNA to amplify stable and presumably intact and infectious virions 

(41, 42). Moreover, other disadvantages of PCR are false-positive and false-negative 

results. This can be attributed to non-specific amplification and PCR inhibitors. The 

overriding issue with PCR, regardless of treatment, is its inability to differentiate between 

infectious and non-infectious virus. 
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Table 1.4 Overview of laboratory assays for norovirus detection 

 

Source: Data from Vinjé, Jan. "Advances in laboratory methods for detection and typing 

of norovirus." Journal of clinical microbiology 53.2 (2015): 373-381. (7).  
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Figure 1.3 Genomic regions targeted by reverse transcription-polymerase chain reaction 

(RT-PCR) assays used for norovirus detection and genotyping 

Source: Hall, Aron J., et al. "Updated norovirus outbreak management and disease 

prevention guidelines." Morbidity and Mortality Weekly Report: Recommendations and 

Reports 60.3 (2011): 1-15. (11).  Data adapted from (43–45)  

 

RECOVERY METHODS 

Environmental transmission of HuNoV is estimated to be low (19). However, 

ample epidemiological evidence suggests transmission from fomites with one controlled 

laboratory study documenting the transfer of HuNoV between surfaces and skin (31). 

Many disinfection processes have been evaluated in several studies to prevent and control 

outbreaks. However, as stated previously, there is a knowledge gap regarding the 

correlation between risk of infection and level of contamination that may influence the 
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efficacy of these disinfection processes (46). To elucidate this correlation comprehensive 

comparative sampling studies are needed. 

The bedrock of pathogen detection methods are effective sampling methods. Viral 

recovery from surfaces is dependent on a variety of factors, such as virus type, surface 

type, implement type, and eluent type. Traditionally, the implement type used for 

detection of HuNoV on environmental surfaces is swabs. Typical methods include the 

swab rinse methods, antistatic wipes, or cotton swabs as recommend by ISO 15216 (47) 

for both hard and soft surface. In fact, Julian et al. (48) completed a meta-analysis of 

recovery methods used to elute viruses from environmental samples. A subset, focusing 

on enteric viruses only, are annotated in Table 1.5. Consistent with ISO 15216, the 

majority (n=12) of studies used cotton-tipped swabs, while some (n=5) used other swab 

materials, i.e. antistatic cloth and polyester swabs. The investigators followed up their 

meta-analysis with a controlled study evaluating antistatic cloth and cotton and polyester-

tipped swabs with MS2 phage, a HuNoV surrogate. Their results indicate that polyester-

tipped swabs perform better than antistatic and cotton when assessed via infectivity 

assay. This is likely due to the irregular shaped fibers of cotton and inhibitory effect 

associated with the antistatic cloth (48). Although it should be mentioned that higher 

amounts of MS2 RNA were recovered from the antistatic cloth compared to polyester 

and cotton-tipped swabs.  

Controlled laboratory studies measuring survival or inactivation of enteric viruses 

on hard and soft surfaces can vary. An ASTM International standard mandates the use of 

cell scrapers and a neutralizing/recovery broth to elute enteric viruses from hard surfaces 
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(49). Although, there are published variations of this method including vigorous pipetting 

or vortexing the virus film for desorption and resuspension (50, 51). Correspondingly, 

these methods are also used to recover HuNoV from foods. Conversely, comparisons of 

methods used for recovery of enteric viruses from soft surfaces varied widely (Table 

1.6). But, generally, these studies used a mixture of destructive sampling methods, e.g. 

agitating, vortexing, sonicating, macerating, and stomaching. For instance, one study 

found ca. 3.5 to 6 log10 pfu/ml of FCV and MNV could be recovered from soft surfaces 

when using a combination of sonication and stomaching depending upon the surface type 

(52).  

Eluent type is another critical factor to consider when developing and evaluating 

recovery methods intended for enteric viruses. Julian et al. (48)’s combined meta-analysis 

and controlled laboratory study suggests that eluent type did not play a significant role in 

the recovery of enteric viruses. To the contrary, other studies have indicated that eluent 

type could play a critical role in the improvement of viral recovery and stabilization (53, 

54). For example, Taku et al. (54) suggested that the eluent type significantly influenced 

recovery of FCV, indicating that using solutions with low ionic strength and a pH above a 

virus’s isoelectric point (pI) recover more non-enveloped viruses. Another study supports 

claims made by Taku et al. (54) by suggesting that important components of a recovery 

buffer are: pH, ionic strength, and amino acids (55). Moreover, Fowler (56) found that a 

larger foam-topped swab could recover significantly more HuNoV compared to smaller 

swabs. This suggests that surface size could influence the recovery rate based on 

adsorption capacity (56). Unfortunately, some studies do not invest time in elution buffer 
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development and simply use a phosphate buffered-saline (PBS) solution, modified PBS 

solutions, or a complex cell culture media (37, 53).  

Overall, more advanced methods, such as destructive sampling, can be 

implemented to increase the amount of virus recovered (57). These methods may 

improve recovery but are not feasible when sampling from immovable soft surfaces, such 

as carpet and upholstery in the natural environment (52, 58, 59). The two overriding 

issues surrounding virus recovery from soft surfaces are the lack of consistency between 

studies and the lack of internationally recognized recovery methods. Furthermore, to our 

knowledge, there are no comparative studies aimed at investigating recovery methods 

intended for relevant soft surfaces i.e. carpets (58), contaminated with viruses. Therefore, 

we suggest, based on scant literature, a comprehensive comparative study should 

investigate methods intended for recovery of HuNoV from soft surfaces. 
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Table 1.5 Recovery of enteric viruses from environmental surfaces 

Author Virus Assay  Implement Eluent Surface Positive Total  Location 
Boxman et 
al. (60) 

HuNoV qRT-PCR Antistatic Ringer’s Toilet seat 
Knife grips 

3 6 Ship 

Boxman et 
al. (61) 

HuNoV qRT-PCR Antistatic Ringer’s Cash desk 
Telephone 
Handrail 
Elevator 
button 
Door 

48 119 Ship 

Bright et al. 
(62) 

HuNoV RT-PCR Rayon Amies Desks 
Computers 
Doorknobs 
Handles 
Counters 
Towel 
dispensers 

9 55 Class 

Butz et al. 
(63) 

RoV RT-PCR Cotton PBS Telephone 
Fountain 
Toilet 
handle 
Sink handle 
Plastic toys 

14 91 DCC 

Carducci et 
al. (64) 

HuNoV 
RoV 
HCV 
AdV 

qRT-PCR 
PCR 

Cotton BE General 
surgery 

1 
0 
0 
1 

114 Hospital 
Hospital 
Hospital 
Hospital 

Cheesbrough 
etal. (34) 

HuNoV qRT-PCR Cotton VTM Carpets 
Toilets 

61 144 Hotel 
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Tables 
Phones 
Cushions 

Gallimore et 
al. (65) 

AsV 
HuNoV 
RoV 

qRT-PCR Cotton Saline Game 
Console 
Toilet taps 
Phone 
Medical 
equip 

6 
28 
24 

154 
154 
155 

Hospital 
Hospital 
Hospital 

Gallimore et 
al. (66) 

AsV 
HuNoV 
RoV 

qRT-PCR Cotton Saline Toilet tap 
Light 
switch 

3 
12 
28 

242 
242 
242 

Hospital 

Green et al. 
(67) 
 

HuNoV qRT-PCR Cotton VTM Lockers 
Curtains 
Commodes 

11 36 Ward 

Jones et al. 
(68) 

HuNoV qRT-PCR Rayon Amies 
Gel 

Bathroom 
surfaces 
Kitchen 
surfaces 
Doorknobs  

11 14 Boat 

Keswick et 
al. (69) 

HuNoV Antigen  Cotton MEM Diaper pail 
Doorknob 
Sink 
Hands 

4 25 DCC 

Kuusi et al. 
(70) 

HuNoV qRT-PCR Cotton PBS Ultrasound 
handle 
Bathroom 
door 
handle, 
toilet seat 

4 30 Hotel 

Lyman et al. AdV qRT-PCR NR NR NR 16 27 DCC 
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(71) AsV 
HuNoV 
RoV 

9 
11 
38 

45 
40 
38 

DCC 
DCC 
DCC 

Morter et al. 
(72) 

HuNoV qRT-PCR Cotton Water Blood 
pressure 
machine 
Computer 
Hand rails 
Lockers 
Soap 
dispenser 

75 239 Hospital 

Ramani et al. 
(73) 

RoV 
RoV 

qRT-PCR Cotton MEM Bedclothes 
Cradle 
Toys 

30 
28 

30 
30 

Hospital 
Hospital 

Sandora et 
al. (74) 

HuNoV qRT-PCR Polyester VTM Computer 
mouse 
Desk 
Water 
fountain 

59 294 DCC 

Soule et al. 
(75) 

RoV qRT-PCR Cotton MEM Handles 
Playmats 
Cleaning 
cloths 
Tables 
Medical 
equip 
Washbasins 

22 45 Hospital 

Source: data adapted from Julian, Timothy R., et al. "Comparison of surface sampling methods for virus recovery from 

fomites." Applied and environmental microbiology 77.19 (2011): 6918-6925. (47). 
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Table 1.6 Enteric virus soft surface recovery methods  

Author Virusa Assayb Implement Eluentc Surfaced 
Dixon et 
al. (76) 

PV CCID50 Maceration BME Fabric: WB, WG, CS, CTC, CJK 

Sidwell et 
al. (77) 

PV CCID50 Maceration BME Fabric: Cotton “wash-and wear” with 
Triazone resin 

Sattar et 
al. (78) 

RoV PA 10 min 
Sonication 

NR CM: Poster card, Paper currency, Paper 
Fabric: Cotton-polyester 

Abad et 
al. (79) 

ADV 
B40-8 
HAV 
PV 

RoV 

MPNCU Vigorous 
pipetting 

20X 

3% BE 

CM: Paper 
Fabric: Cotton 

Abad et 
al. (80) 

ADV 
B40-8 
HAV 
PV 

RoV 

IFT 
MPNCU 
RT-PCR 

Vigorous 
pipetting 

20X 

3% BE 

CM: Paper 

Malik et 
al. (81) 

FCV TCID50 Agitation 
with rotary 
shaker at 
150 rpm 

3% BE-
0.05M 

glycine pH 
8.5 

Fabric: cotton, polyester, cotton polyester 
blend. 
Carpets: olefin, polyester, nylon/olefn blend 

Hudson et 
al. (82) 

FCV 
HuNoV 

PA 
qRT-PCR 
TCID50 

NR NR Fabric-- Cotton, fabric (undefined) 
Carpet-- Undefined 

Fijan et 
al. (83) 

RoV RT-PCR Swab MEM w/ 
supplements Fabric: cotton textile fabric 

Lee et al. 
(84) 

MNV PA 
qRT-PCR 

Sonication 
Vortexing 

0.3% BE CM: Diapers 
Fabrics: Gauze 

Fisher et MS2 PA Vortexing 271 CM: FFR 
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al. (85) medium 
Tuladhar 
et al. (86) 

 

PV 
RoV 
MNV 

PA 
TCID50 

Rayon 
Swab 

DMEM Fabric: Gauze 
 

Yeargin 
et al. (52) 

FCV 
MNV 

PA 
qRT-PCR 

Sonication 
Stomaching 

0.01M PBS 
w/ 0.02% 
Tween 80 

Fabric: Cotton, Polyester 

a: FCV: feline calicivirus, HuNoV: human norovirus, PV: poliovirus, RoV: rotavirus, MNV: murine norovirus 
b: CCID50: 50% cell culture infectious dose, TCID50: 50% tissue culture infectious dose; PA: plaque assay: qRT-PCR: 
quantitative polymerase chain reaction 
b: BME: Eagle’s basal medium; NR: not reported; BE: beef extract; MEM: minimal essential medium;  
d: WB: wool blanket, WG: wool gabardine, CS: cotton sheeting, CTC: cotton, terry cloth, CJK: cotton jersey knit, CM: 
complex matrix, FFR: filter face piece respirator 
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SOFT SURFACE PROPERTIES 

Soft and hard surfaces are differentiated based on porosity of the surface. 

Generally, soft surfaces are porous, whereas hard surfaces are not. Although, there are 

exceptions, such as wood and some polymers, which can be categorized as hard-porous 

surfaces. Furthermore, soft surfaces, for sanitizing or disinfecting purposes, can be 

separated into two categories: launderable and non-launderable (58). Launderable 

surfaces include linens and textiles, whereas non-launderable surfaces are immovable, 

such as carpets and upholstery. Moisture retention, moisture regain, and wettability can 

be used to characterize a soft surface’s interaction with aqueous liquids (87, 88). 

Moisture retention, i.e. absorptive capacity, is described as the volume of liquid that a 

specific weight of fiber can retain. However, moisture regain is determined by the fiber’s 

ability to absorb air moisture under ambient conditions. Finally, wettability is defined by 

the time required for a surface to absorb and wick a liquid. These factors can change 

depending upon the surface type and construction. For instance, a single fiber may 

perform differently than a woven fabric of the sample material due to differences in 

geometry created by fabrication (88).  

 Identifying a soft surface’s characteristics is an important step to characterizing 

the overall relationship with viruses (58). For instance, hydrophobic surfaces absorb 

aqueous solutions poorly compared to hydrophilic surfaces. The increased absorption 

observed in hydrophilic surfaces will theoretically provide more moisture retention, 

regain, and wettability. This may positively affect the virus survival during the 

desiccation process and survival thereafter based on data that suggests adsorbed viruses 
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survive longer as compared to free, unbound viruses (89). An additional surface 

characteristic is the electrokinetic potential, i.e. zeta potential (90). This intermediate 

value can be used to estimate a surface charge under various solution characteristics, e.g. 

pH and ionic strength. Because non-enveloped viruses behave like zwitterions they 

possess a pI (91), which may change based on the solution pH and ionic strength. 

Consequently, the zeta potential of the surface under a given condition, in addition to 

knowledge of a virus’s pI, may assist with explaining surface interactions and difference 

in recovery of viruses. Unfortunately, investigators studying the relationship between 

enteric virus and soft surfaces often fail to characterize the surface, making comparisons 

between studies difficult (58). Future studies should incorporate detailed descriptions of 

the surfaces and seek surfaces previously used.  

 

CARPETS 

Carpets can be found within homes, businesses, and most importantly, long-term 

care facilities where over 60% of HuNoV outbreaks occur in the United States annually 

(92). Additionally, epidemiological reports have suggested soft surfaces, such as carpets, 

may harbor and transmit HuNoV. As early as 1850, the risks associated with carpets were 

understood. As Florence Nightingale once wrote, “For a sick room a carpet is perhaps 

the worst expedient could by any possibility have been invented…A dirt carpet literally 

infects the room” (93). Carpets can harbor a variety of unwanted contaminants including 

allergens, mites, bedbugs, mold, bacteria, and viruses harmful to human health (94). 

Because of this association, the carpet industry has estimated a $2 million annual loss in 
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revenue from schools and hospitals between 1999 and 2003 (94). Regardless of the 

contaminants carpets may hold, they remain commonplace in a variety of other settings. 

 To combat these contaminants, a variety of technologies have been used to clean 

and sanitize the surfaces. Popular interventions include steam-cleaning, stain-resistant 

finishes, and antimicrobial finishes. Recently, ASTM International developed a standard 

method for evaluating the efficacy of liquid sanitizers intended for carpets (59). However, 

this method is only recognized for bacterial use, not viruses. Currently, the Occupational 

Safety and Hazard Administration (OSHA) and Centers for Disease Control and 

Prevention (CDC) recommend steam-cleaning carpets for 5 min at 70˚C or 1 min at 

100˚C after a suspected HuNoV contamination event. However, efficacy and 

effectiveness of steam-cleaning has not been validated against viruses on soft surfaces. 

Furthermore, there is a lack of standards for assessing the efficacy of disinfection 

interventions against viruses contaminated on carpets.  

 Carpets can be difficult to assess compared to hard surfaces. In addition to what is 

stated above in “soft surface properties”, carpets can be characterized based on their 

construction gauge/pitch, pile height, stitches/wires, face weight, finish, backing, yarn 

type, ply, material, and fiber twist, all of which contribute to their complexity. Secondly, 

carpets can also be divided into natural, e.g. wool, and synthetic, e.g. nylon, and blended, 

categories which may affect performance in the presence of soils. Bradbury et al. (95) 

underscores issues surrounding some textiles, such as wool, and our lack of knowledge 

regarding modification performed during processing. Sanitizers used on soft surfaces 

have also demonstrated limited efficacy based on the fiber’s absorptive capacity. For 
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example, gauze can remove 21.1 mg/ml of a quaternary ammonium compound (QUAT) 

while wool has been shown to remove up to 98% of an 800 ppm chlorine solution (96, 

97). The complexity of these surfaces, lack of knowledge regarding processing, and 

number of structural facets of carpets makes comparisons between studies difficult.  

 

CONCLUSION 

In summary, results from both epidemiological investigation and controlled 

studies have demonstrated that HuNoV (i) can be transferred between surfaces and hands 

and (iii) soft surfaces, such as carpets, may be a route of transmission for HuNoV. 

Furthermore, literature on HuNoV recovery and recovery efficiency is scant and presents 

a knowledge gap, which suggests the need for a comprehensive comparative study 

investigating a variety of methods for recovery of HuNoV from relevant soft surface. 
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CHAPTER TWO 
 

THE SURVIVAL AND INACTIVATION OF ENTERIC VIRUSES ON SOFT 
SURFACES: A SYSTEMATIC REVIEW OF THE LITERATURE 

 
ABSTRACT 

Worldwide, enteric viruses are the main cause of acute gastroenteritis. In humans, 

these viruses spread via person-to-person contact, food, water, and/or the environment. 

Their survival and inactivation on hard surfaces has been extensively studied; however, 

nonlaunderable soft surfaces, such as upholstery and carpet, have received little attention. 

The aim of this systematic review was to determine factors that influence the survival and 

inactivation of enteric viruses on nonlaunderable soft surfaces. EBSCO and Web of 

Science were searched for experimental studies published between 1965 and 2015 using 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses methods. Titles 

and abstracts were screened using 3 eligibility criteria. The quality of all study methods 

was also assessed. Our search yielded 12 articles. Viruses survived between 0 hours and 

140 days depending on surface and environment conditions. Virus survival was 

influenced by temperature, relative humidity, organic content, and deposition method. A 

variety of chemistries were tested across studies and were shown to have a varied effect 

on enteric viruses. Chlorine, glutaraldehyde, vaporous ozone, and hydrogen peroxide 

were the most efficacious against enteric viruses (> 3-log reduction). Environmental 

factors, such as temperature and relative humidity, can influence survival of enteric 

viruses on nonlaunderable soft surfaces. The efficacy of liquid and vaporous chemistries 

are associated with surface and virus type 



45 
 

INTRODUCTION 

Acute gastroenteritis (AGE) is among the top-5 causes of death worldwide (1). 

Most cases occur in young children in resource-poor countries, whereas in industrialized 

countries, such as the United States and in Europe, AGE sickens individuals across all 

age groups with the most common symptoms being vomiting and diarrhea. AGE 

etiologies include both microorganisms (bacteria, viruses, and parasites) and chemical 

compounds (toxins and pharmaceutical drugs). Enteric viruses are the most common 

etiology with caliciviruses, such as human noroviruses, and rotaviruses, causing most 

cases of illness (2–4). 

The primary mode of transmission (direct or indirect) of all enterics, including 

viruses, is the fecal-oral or vomitus-oral route, which occurs via person-to-person contact, 

food, water, and/or environmental surfaces (5). Although most cases of illness are due to 

person-to-person transmission, a growing body of evidence suggests contaminated 

environmental surfaces play an important role in spreading viruses (6–8). Surfaces in the 

environment can become contaminated by direct contact with vomit or feces, soiled 

hands, aerosolized virus generated by vomiting, or airborne virus that settles after 

disturbance of a contaminated surface (e.g., walking on contaminated carpeting). 

However, just because a surface becomes contaminated with an enteric pathogen does not 

mean the pathogen survives, illustrating the importance of examining their survival and 

persistence on surfaces. Survival of enteric bacteria and viruses has been studied on hard 

surfaces but little attention has been given to studying enterics, particularly viruses, on 

soft surfaces. It is presumed that intrinsic factors, such as surface properties or virus 
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characteristics, and extrinsic factors, including temperature and relative humidity of the 

environment, influence survival just as they do with enterics on hard surfaces.  

Studying survival of enteric viruses on soft surfaces, particularly nonlaunderable 

soft surfaces, is essential for 2 reasons. First, semienclosed environments, such as long-

term-care facilities, restaurants, and schools are common settings for AGE outbreaks, 

particularly norovirus outbreaks. These settings often include many soft surfaces (eg, 

carpeted floors, upholstered furniture, and draperies), which epidemiologic evidence 

suggests the surfaces may play a role in transmission of enteric viruses (9–13). Secondly, 

laboratory studies investigating transfer efficiency have demonstrated the transfer of 

infectious viral surrogates from soft surfaces to hands and inanimate objects (14, 15). 

These studies conclude that virus surface interactions influencing survival and 

transmission may be much more complex on soft surfaces than hard surfaces, presumably 

because of the porous and 3-dimensional nature of soft surfaces, so knowledge regarding 

influencing factors on hard surfaces cannot necessarily be used in relation to soft surfaces 

(16, 17). 

Identifying factors associated with survival on soft surfaces is the underpinning of 

the design of inactivation treatments, which are essential to prevent as well as control the 

spread of enteric viruses. Published literature reviews have focused primarily on the 

environmental contamination of hard surfaces by enteric viruses with limited attention 

given to soft surfaces (18–20).  

Although validated procedures have been developed to inactivate enteric viruses, 

such as human noroviruses (HuNoV), on hard surfaces, such procedures are not available 



47 
 

for nonlaunderable soft surfaces. Understanding which inactivation chemistries are 

efficacious (> 3-log reduction) against enteric viruses is also critical to understanding 

survival and persistence. To our knowledge, this has not been reviewed in detail. Our aim 

was to review published studies to answer the following 2 research questions: What 

factors influence the survival of enteric viruses on nonlaunderable soft surfaces? and, 

What chemistries are associated with the inactivation of enteric viruses on 

nonlaunderable soft surfaces? 

 

METHODS 

We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

principles to create a transparent (Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses) PRISMA, valid review (Figure 2.1). The PRISMA statement, an 

evidence-based set of 27 items used to conduct systematic reviews and meta-analyses, is 

an international standard. To be included in our analysis, each article had to meet 3 

eligibility criteria: peer-reviewed in a scientific journal, published in English, and used an 

experimental study design that examined survival and/or inactivation of AGE-associated 

enteric viruses on nonlaunderable soft surfaces. A nonlaunderable soft surface material 

was defined as a porous material that could absorb and wick liquid. Hereafter these 

surfaces are referred to as soft surfaces. Please note that raw soft surface materials, in 

general, can be used to create both launderable and nonlaunderable surfaces. Studies in 

which filters, membranes, and laundry practices were analyzed for their intended purpose 
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were excluded. Moreover, studies that examined both hard and soft surfaces were 

included but only the soft surface findings were used in our analysis. 

Two online databases—EBSCO and Web of Science—were searched for articles 

published between 1965 and 2015. EBSCO and Web of Science were selected as 

searches of multiple databases; for example, Academic Search Complete and MEDLINE 

could be simultaneously performed. Each database was searched using the search string 

presented in Table 1.2. 

 

Study selection. After the initial search, duplicates were removed then titles and abstracts 

screened to determine eligibility. A full-text article was retrieved if the title or abstract 

met our 3 eligibility criteria, as described above. Two trained reviewers analyzed all full-

text articles to determine eligibility. Articles meeting the 3 eligibility criteria were then 

analyzed and summarized by surface type, country, inoculation concentration, detection 

method, virus, treatment, and significant findings. 

 

Quality assessment. To our knowledge no quality assessment tool exists to evaluate the 

quality of laboratory-based microbiologic studies. Therefore, we identified 5 criteria to 

assess the quality of study methods and reporting: methods clearly described, adequate 

controls, studies performed at least in duplicate, appropriate detection methods, and 

statistical analysis of data (Table 2.2). Two reviewers rated each article using a pass or 

fail scoring system for each of the 5 criteria. Articles that met the criteria received a 1, 

whereas those that did not received a 0. The maximum points per article was 5. 



49 
 

RESULTS 

Literature search strategy and selection. The 2 electronic databases yielded 860 

articles (Figure 2.1). Results were cross-referenced and 261 duplicates were removed. 

The title and abstracts of the remaining articles (n = 601) were then screened. After 

screening, 526 articles were excluded based on title and abstract alone—8 were not 

published in English and 7 full-text articles were not available. Two reviewers screened 

full-text versions of the 73 remaining articles. In addition, the reference lists of these 73 

articles were checked for related articles and yielded 2 new articles. A total of 61 full-text 

articles were excluded: nonenteric virus (n = 24), hard surfaces (n = 15), laundering (n = 

4), related to food (n = 5), review articles (n = 5), transmission not fomite-mediated (n = 

3), membrane filters (n = 3), and transmission (n = 2). A total of 12 articles were eligible 

for our review. 

 

Study characteristics. The 12 eligible studies were divided into 2 groups to help us 

answer our 2 research questions about survival (n = 7) and inactivation (n = 5). All 

studies were published between 1966 and 2015. Eligible studies were conducted in 6 

countries, with most conducted in the United States (n = 5) followed by Spain (n = 2) and 

Canada (n = 2). Five virus families of importance to human health were represented in 

the studies we reviewed: Calicivirdae (n = 3), Picornaviridae (n = 2), Reoviridae (n = 1), 

Adenoviridae (n = 1), and Astroviridae (n = 1). In addition, 2 bacteriophage families, 

frequently used as surrogates when studying human enteric viruses, were also included: 

Leviviridae (n = 1) and Siphoviridae (n = 1). A variety of methods were used to detect 

viruses with most investigators using cell culture methods (n = 5) followed by molecular 
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based methods (n = 2). Type of soft surface varied greatly across studies. To simplify the 

presentation of our findings, we assigned the type of material examined in each study to 1 

of 3 categories: fabric (n = 8), complex-matrix (n = 6), and carpet (n = 4). Materials were 

classified as complex if the authors did not identify the composition of the material, such 

as diapers. 

 

Quality assessment. All articles had sound research methods (Table 2.1). Nearly all 

used appropriate controls, quantified viruses appropriately (given the time published), 

and completed ≥ 2 experiments in duplicate. One deficiency across studies was that 4 of 

10 studies did not perform statistical analysis of data. 

 

Significant findings 

Factors associated with survival of enteric viruses. Thirteen types of material and 8 

types of viruses spanning 7 families were evaluated across the studies (Table 2.3). To 

further complicate our analysis, no standard protocol was used across the studies. Surface 

size, study duration, inoculum volume and concentration, and recovery method varied 

widely. As such, many results could not be aggregated for comparison. Those factors that 

could be compared because of homogeneity include temperature, relative humidity (RH), 

organic content, and deposition method.  

Virus survival was assessed at low (−20°C – 4°C), ambient (18°C – 27°C), and/or 

high (≥30°C) temperatures but only 4 studies modified temperatures to compare its 

effects on survival (21–24). In addition to measuring temperature, RH was also 
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measured. The RH ranged from 25%-90%, and its effect on survival was only measured 

in 3 studies (21, 22, 25) (Table 2.3). All enteric viruses, except human rotavirus (RoV), 

tested in the 7 studies, followed a temperature trend of low > ambient > high on survival. 

Survival of RoV contradicted this temperature trend. The findings in 2 studies published 

by Abad et al (22, 23) showed that RoV titers at a low temperature (4°C) were similar to 

those at an ambient temperature (20°C). RoV survival also differed from other enteric 

viruses in the relationship between RH and enteric survival (22). For example, viruses, 

such as poliovirus (PV), adenovirus (ADV), and hepatitis A virus (HAV), had similar 

survival results at 50% and 85% RH, whereas RoV did not survive as well (~1.0-log 

reduction) at 50% RH compared with 85% RH. These findings are in conflict with RoV 

results from Sattar et al (21)  and PV results from Dixon et al. (25) Sattar et al. (21) 

reported that RoV survival was lower at higher RH (85%) compared with low RH (25% 

and 50%). Dixon et al. (25) reported survival of PV was lower at 78% compared with 

35% RH. The data from Dixon et al. (25) also demonstrated PV titers decreased less 

rapidly at higher RH. Deposition method (ie, direct contact, droplet nuclei formation via 

aerosolization, and virus-containing dust) was studied with 2 viruses (PV and MS2). The 

level of survival across studies was direct contact > aerosolization > virus-containing dust 

(25, 26). Dixon et al. (25) showed that PV survived < 7 days on wool fabric compared 

with ~84 and ~140 days when deposited via aerosol and direct contact, respectively, 

whereas Fisher and Shaffer (26) reported infectious MS2 bacteriophage deposited on to 

filter face piece respirators material via direct contact survived with a higher titer (~2.5 

log) compared with aerosolization. 
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The authors of 3 studies reported adding a soiling component, such as fecal 

matter, in their viral inoculum (21–23). The effect of fecal matter was not consistent 

across the 5 viruses tested. Sattar et al. (21) observed that RoV maintained a higher titer 

when deposited with a fecal suspension (FS) compared with tryptose phosphate buffer. 

FS did not provide a protective matrix or sustain a higher titer for HAV and RoV when 

compared with phosphate buffered saline (PBS) (23). In the case of some viruses (ADV, 

PV, and astrovirus (AsV), FS had a significantly lower titer compared with PBS (22, 23). 

Survival differed among enteric viruses when survival rates were compared on the 

same soft surface under the same conditions (22, 23). Generally, HAV, RoV, and 

bacteriophage B40-8 were less susceptible to desiccation (0.6- to 1.6-log reduction) 

compared with PV and ADV (1.5- to 3.7-log reduction) under all conditions assessed 

(22). AsV was shown to survive significantly longer (P < .05) and at a higher level (> 2 

log) on porous surfaces compared with PV and ADV, suggesting PV and ADV are less 

environmentally stable on porous surfaces when compared with AsV, bacteriophage B40-

8, RoV, and HAV (22, 23). 

Type of soft surface affected the ability of enteric viruses to survive. The type of 

surface providing the least and most hospitable environment for virus survival were 

poster card (0 hour) (21) and wool blanketing (140 days), (25) respectively (Table 2.3). 

For example, Abad et al. (22) reported HAV, contained in PBS, survival rates were 

significantly less (−1.19 log most probable number of cytopathogenic units/mL 

reduction) on nonlaunderable soft surfaces compared with hard surfaces, whereas the 

survival of other viruses tested were not significantly different. Other viruses, such as 
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ADV and PV, had higher infectivity losses (> 2 log) than HAV, but these results were 

consistent across the type of surface tested. Fabrication and fiber type appeared to 

influence survival (21, 24). Dixon et al. (25) reported PV could survive up to 56 days 

longer on wool than on cotton at 35% RH. Similarly, Lee et al. (24) found a ~3-log 

reduction difference between diapers and gauze over 40 days. The effect of fabrication 

was also apparent. Dixon et al. (25) observed PV could be recovered from wool blankets 

for up to 140 days but only 42 days on wool garments (gabardine) when deposited via 

direct contact and held at 35% RH. Likewise, PV survived on cotton knitted material for 

14 and 28 days less than on cotton terry cloth and cotton sheeting, respectively, although 

these results were not reported as statistically significant. 

 

Inactivation of enteric viruses. Chemical inactivation (liquid, vapor, and a premodified 

antimicrobial textile) was the only method studied with 10 chemicals assessed (Table 

2.4). Viral inactivation was always measured by log reduction with efficacy defined as a 

3-log reduction (27).  Unfortunately, authors did not comment on the aesthetics of the 

surfaces after application of the chemical. 

Application method, chemical, contact time, and surface types were all important 

factors associated with the inactivation of feline calicivirus (FCV), murine norovirus 

(MNV), HuNoV, PV, and RoV. The least effective chemical application was an 

antimicrobial (triazone with formaldehyde) impregnated into a cotton fabric, which 

showed <1-log reduction of PV within 2 hours.28 Vaporous sanitization methods, such as 

ozone and hydrogen peroxide, achieved the highest recorded reduction on the viruses 
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they assessed (3 log->5 log) (28, 29). RoV was the only virus tested that did not achieve a 

3-log reduction when using a vaporous chemicals (hydrogen peroxide > 2 log). A liquid 

version of this chemistry, accelerated hydrogen peroxide, had an effect on FCV (>3 log) 

but a limited effect on MNV (0.17 and 0.57 log) on cotton and polyester, respectively 

(30). This same study found that sodium hypochlorite (5,000 ppm) was effective at 

reducing infectious FCV and MNV by > 3 log on both surfaces within 5 minutes. Malik 

et al. (31) extensively investigated the effect of 5 liquid chemicals against FCV on a 

variety of fabrics and carpets. Only 1 liquid chemical (activated 2.6% glutaraldehyde) 

achieved a >3-log reduction of FCV on all test surfaces, excluding blended carpet. FCV 

was easier to inactivate on fabrics than carpets with the exception of 100% polyester 

fabric. Their data demonstrated a positive linear relationship between contact time and 

inactivation. 

 

DISCUSSION 

The aim of this systematic review was to determine factors that influence the 

survival and inactivation of enteric viruses on nonlaunderable soft surfaces.  

Findings from the articles presented in our review were derived from well-

designed research studies as determined by our quality assessment tool. Our analysis 

suggests temperature and RH are important extrinsic factors associated with virus 

survival in a manner similar to that of bacterial survival. We also determined, from the 

current literature, that deposition method and organic content are contributing factors to 

enteric virus survival on nonlaunderable soft surfaces. Furthermore, enteric viruses were 
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resistant, under controlled conditions, to a variety of chemistries that are otherwise 

efficacious against other microorganisms, such as enveloped viruses and vegetative 

bacteria (32, 33). Other published reviews reported similar conclusions for survival of 

viruses on a variety of surfaces, such as porous, hard nonporous surfaces, and produce 

(18–20). However, these reviews did not address the collective knowledge regarding 

enteric virus survival and inactivation on nonlaunderable soft surfaces. Controlling 

transmission through the elimination of enteric viruses on environmental surfaces, 

including nonlaunderable soft surfaces, is an important (and overlooked) step in reducing 

the burden of illness, especially in semienclosed indoor environments, a common setting 

for outbreaks of AGE. Results must be interpreted with caution because the duration of 

survival studies varied and viruses may survive longer than the 

reported time. For example, the longest low-temperature survival study was conducted 

for 90 days compared with 140 days for ambient temperature (23, 25). As such, the 

authors of ambient temperature studies reported longer survival times. 

 

Factors associated with survival. As expected, temperature is, generally, inversely 

related to enteric virus survival on nonlaunderable soft surfaces. This survival trend is 

similar to results reported about survival on hard nonporous surfaces, (18–20) which 

might explain the seasonality of outbreaks attributed to enteric viruses. Lower 

temperatures, a common method of preservation for enteric viruses and other 

microorganisms, can slow or halt biological and chemical activities in the liquid in which 

they are contained. However, nonlaunderable surfaces of concern, such as mattresses or 
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carpets, are not typically found at low temperatures (−20°C – 4°C). The most alarming 

result was how long enteric viruses survived (60-140 days) at ambient temperatures. This 

is of concern given that nonlaunderable soft surfaces are commonly found at ambient 

temperatures and in indoor settings so individuals can come in contact with contaminated 

surfaces repeatedly. Some viruses, such as RoV, demonstrated enhanced survival at 

ambient temperatures. One plausible explanation for the increased survival of RoV is that 

their genome and structure differ from other common enteric viruses because it is 

composed of an intermediate and inner capsid containing a double-stranded RNA 

segmented genome (34). These structural features may explain the ability of RoV to have 

higher survival rates at ambient temperatures 

compared with other enteric viruses. Although this trait is worrisome this should not 

lessen our concern of other enterics.  

The effect of RH on virus survival varied, particularly by virus type and 

temperature, based on the literature included in our literature analysis. As described 

elsewhere, (35) nonenveloped viruses survive better at higher RH compared with 

enveloped viruses that favor lower RH. Typically, indoor environments range from 40% 

to 70% RH, which was measured in several studies in this review (36). Theoretically, 

high RH could limit evaporation and desiccation and positively influence the survival of 

nonenveloped viruses. Evaporation of water molecules from airborne bacteria has been 

shown to decrease survival by removing essential water molecules (37). The studies 

investigating deposition method support this idea (25, 26). Moreover, this trend is 

directly related to the amount of liquid present during deposition. Aerosolized particles 
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can form droplet nuclei that stay suspended for extended periods of time so have less 

liquid than 

do droplets or virus directly applied to a surface (26). The reduced liquid content 

associated with droplet nuclei also makes the particles more susceptible to desiccation. 

As postulated previously (38), the displacement of water essential to the viral capsid 

could increase inactivation. 

These forms of deposition can be represented by vomiting, a common method of soft 

surface contamination by enteric viruses (9–12). The act of vomiting has been shown to 

deposit enteric viruses via direct contact and aerosolization at distances > 3 meters (39). 

The hypothesis 

that higher liquid volume content equals longer survival rate could explain the increased 

survival at higher RH. However, there are exceptions to this trend. The discrepancies in 

survival across studies within this review (21, 23, 25) may be attributed to experimental 

factors, such as low RH percentages ranging from 35% to ~50% RH, inoculation 

composition, surface type, and strain type. Thus, it is difficult to state a common trend for 

RH effects on enteric viruses 

contaminated on soft surfaces with the current literature. 

Mixing viruses with solutions containing organic matter, such as fetal bovine 

serum or FS, is a common practice because it can mimic the fecal-oral or vomitus-oral 

route. Therefore, it is assumed that soft surfaces contaminated with an enteric virus will 

also be contaminated with organic matter (typically from vomitus or diarrhea). Organic 

matter provides a protective matrix for bacterial and viral pathogens, making it more 
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difficult to eliminate them (18, 24, 40, 41). The varied effect of organic content presented 

in this review is unknown. However, speculations point to the adsorption state of the 

virus on a particular surface. When viruses are deposited onto a soft surface they are 

subjected to a variety of factors, such as adsorption ability of the material, electrostatic 

interactions, and can be complicated by the solution characteristics; that is, ionic strength 

(41, 42). Outside of their host, adsorbed enteric viruses are more stable under 

environmental conditions than free, unbound, virus (42). Gerba (42) stated that due to the 

low isoelectric point, organic matter may compete with viruses for available adsorption 

sites and as a result the adsorption ability of a particular virus can aid in predicting its 

inactivation. The organic component of the FS used by Abad et al (22, 23) may have 

competed for adsorption sites, resulting in shorter survival. Moreover, it is conceivable 

that fecal constituents may have interfered with the cell culture system, inhibited elution 

for AsV, PV, and ADV, or had a synergistic effect across fecal components, virus, and 

the soft surface, although no data support these hypotheses (22, 23). Nevertheless, these 

results are in contrast to the accepted theory that organic material-containing solutions 

provide a protective environment for enteric viruses. Because the sources of enteric 

viruses contaminated on soft surfaces are usually vomitus or diarrhea, this subject 

warrants further investigation. 

The relationship between surface type and virus is inconclusive because too many 

surfaces were used to aggregate the findings. Inferences could only be made in regard to 

some specific surface types and the survival of some enteric viruses. Results were as 

expected for the natural hygroscopic fibers, wool, and cotton. Wool retained PV up to 56 
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days longer than cotton, presumably because of its ability to absorb more liquid than 

cotton (43), a factor not studied when assessing hard nonporous surfaces. Materials that 

have a higher adsorption capacity have been shown to positively influence virus survival 

compared to surfaces with low absorption capacity as seen by the differences in MNV 

and RoV survival (21, 24). 

Interestingly, the higher PV survival rate (98 days) on wool blanketing compared 

with wool garments suggests the construction of a material influences virus survival (25). 

To explain this phenomenon, the authors of a single study (14) found that loose fabrics 

transfer more virus than denser fabrics and speculate that loose fabrics may not adsorb 

virus as readily compared to denser fabrics which creates higher amounts of free, 

unbound virus susceptible to desiccation. 

As stated previously (14, 20, 41, 44), viruses are more likely to remain infectious if 

adsorbed. This is due to viruses being immobilized and protected from environmental 

factors such as temperature and solution characteristics (eg pH, ionic strength) that would 

otherwise inactivate the virus (45). 

The use of different elution buffers was also mentioned by Dixon et al (25) and 

may explain the higher survival rates between surface types. Recovery efficiencies may 

decrease depending upon the eluent characteristics (eg, pH). Buffer type and the method 

used for viral recovery were shown to produce different elution efficiencies as they relate 

to MNV (24). For example, Abad et al (22) reported their elution buffer to be pH ~7.4. 

As a result, under those conditions, RoV would theoretically be positively charged (pI, 

~8.0), whereas HAV would be negatively charged (pI, ~ 2.8) (45) These differences 
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could explain why some enteric viruses survived longer or at higher levels on surfaces, 

such as the ability of HAV to survive significantly longer on hard nonporous surfaces 

than on soft surfaces while other viruses, in the same study, survived longer and at higher 

titers on soft surfaces compared to hard nonporous surfaces. To support this hypothesis, a 

more recent study (30) reported a significantly different recovery efficiency of enteric 

viruses from cotton compared with other surfaces (ie, glass and polyester fabric), even 

when destructive sampling methods were used, such as sonication and stomaching. One 

important factor not mentioned in the studies reviewed was the material’s surface charge. 

Knowing the charge of a virus and the surface are mutually important for understanding 

elution patterns. It is possible that these differences could affect elution and adsorption to 

the soft surface and may account for the difference in reported survival times. Overall, 

the results of this review were based on contact time and did not account for all human 

enteric viruses discussed in this review. Moreover, we do not believe these results can be 

generalized to all enteric viruses because the resiliency differs among them. The current 

literature underscores the need to study survival profiles of multiple enteric viruses under 

the same conditions to determine environmental resilience. Furthermore, investigating 

multiple enteric viruses can aid in determining potential surrogates for nonculturable 

viruses, such as human noroviruses. Lastly, knowledge of survival time can improve 

retrospective epidemiologic investigations and aid in selection of better chemistries to 

remove enteric viruses from nonlaunderable soft surfaces. 
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Inactivation. To reduce the burden of illness associated with enteric viruses we must 

understand the risks associated with contaminated surfaces in the environment by 

establishing survival profiles. The next logical step is to develop an effective pathogen 

inactivation treatment that could reduce or eliminate the risks. Enteric viruses of public 

health importance, such as HuNoV, HAV, RoV, PV, and AsV, lack an envelope, making 

them environmentally stable and resistant to much of the common chemistry used for 

inactivation (46, 47). For instance, triazone resin containing formaldehyde, the least 

efficacious reduction method tested on porous surfaces, was designed to make fabrics 

quick-dry so in theory the resin could lead to greater inactivation during viral attachment 

(48). The resin demonstrated some virucidal activity against PV when compared with a 

control. However, the reduction of PV was too slow to be considered as a sanitizer or 

disinfectant (<99% in 1 day). These data suggest that active ingredients, if any, present in 

the resin are not efficacious against PV or concentrations were too low to have a quicker 

effect. 

Other chemicals tested, like those from Malik et al. (31) did not reduce the 

surrogate for HuNoV adequately due to their lipophilic mode of action. The most 

efficacious chemicals tested were liquid and vaporous hydrogen peroxide, vaporous 

ozone, and sodium hypochlorite. These compounds are strong oxidizing agents that 

damage the viral capsid, nucleic acid, or a combination of both resulting in virucidal 

efficacy (49). Liquid hydrogen peroxide, although efficacious against FCV, may cause 

superficial damage to soft surfaces and would not be an appropriate treatment. In 

addition, hydrogen peroxide was shown to be ineffective against MNV depending on 
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concentration and contact time, which may discredit its efficacy against HuNoV (30). 

Unlike liquids, vaporous chemicals, such as ozone, may be an important tool for 

sanitizing soft surfaces. Vaporous chemicals can penetrate deeper into a surface 

compared with a liquid surfactant product alone. These products are also ideal for large 

institutional settings, such as long-term-care facilities and hospital wards, but are not 

recommended for household use due to chemical hazard concerns. Manufacturers and 

consumers should not consider only the pathogen-chemical interaction, but also the soft 

surface-chemical interaction. 

An observation noted by Malik et al. (31) was the difference in inactivation when 

using the same chemical compound on different types of surfaces. The limited efficacy of 

these products may be linked to the surface to which they are applied due to chemical 

adsorption. Some studies have characterized the degree to which soft surfaces interact 

with the active ingredient of a disinfectant solution (50–52). For example, cotton, wool, 

and polyester were shown to remove quaternary ammonium compounds, sodium 

hypochlorite, and benzalkonium chloride, respectively, from solutions until the 

adsorptive capacity of the fibers was met (50–52). Due to the large variety of both soft 

surfaces and disinfectants, these relationships are not universally defined. However, they 

are an essential aspect in regard to sanitization of soft surfaces because efficacy can vary 

based on the soft surface. The most effective liquid chemical in this study, tested by 

Malik et al. (31) was 2.6% activated glutaraldehyde, a widely used disinfectant in 

hospitals that has been shown to induce alkylation of key functional groups and amino 

acids on a variety of bacteria (49). These reactions are capable of damaging the integrity 
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of the viral capsid and genome. Glutaraldehyde has also been shown to resist adsorption 

by fibers, which may be another reason for its broad effectiveness (52). 

At present, bleach is the only chemical for removal of enteric viruses of 

importance, such as HuNoV, recommended by the Centers for Disease Control and 

Prevention. Bleach has been shown to be effective at reducing infectious MNV and FCV, 

2 surrogates for HuNoV, on both hard and soft surfaces and is the current recommended 

tool for eliminating HuNoV from hard nonporous surfaces (30, 53). However, bleach 

cannot be used for contaminated nonlaunderable soft surfaces as bleach will adversely 

affect the surfaces aesthetic appearance by, oxidizing the surface and damaging the 

fibers. These same adverse effects are also true for other chemistries, such as hydrogen 

peroxide, tested on soft surfaces. Another commonly recommended method is steam 

cleaning at a minimum of 70°C or 100°C for 5 minutes or 1 minute, respectively, but the 

efficacy of this method has not been determined under controlled conditions (54). 

Therefore, a limited number of tools are available to inactivate enteric viruses on 

nonlaunderable soft surfaces. 

 

FUTURE RESEARCH 

Because experimental evidence is limited in regard to survival and inactivation of 

enteric viruses on soft surfaces, this review suggests the need for additional studies. 

Future research should consult previously used methods and experimental designs. 

Investigators should also assess ≥ 2 enteric viruses under environmentally relevant 

conditions with surfaces that can easily be characterized and procured. Inactivation 
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studies should investigate chemistries that are efficacious and known to not affect the 

aesthetic appearance. 

 

CONCLUSIONS 

The literature shows that several key factors influence survival: temperature, RH, 

organic content, deposition method, and virus type. Of the studies that evaluated different 

chemistries, it was shown that chlorine, glutaraldehyde, and oxidizing vaporous products 

demonstrated the best efficacy against enteric viruses on soft surfaces. Because the EPA 

currently does not have a standard method for assessing virucidal activity of product on 

nonlaunderable soft surfaces, there are no registered products that can be reported to 

inactivate enteric viruses contaminated on nonlaunderable soft surfaces. 
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Table 2.1 Search strings used for online databases 

 

Research 
questions 

Virus  Surface  Role 

Research 
question 1 

Virus AND Fabric Or Textile OR soft surface OR porous surface 
OR fomite OR upholstery OR carpet OR rug OR 

draper 

AND Persist OR surviv OR 
recover OR 
transmission 

Research 
question 2 

Virus AND Fabric OR textile OR soft surface OR porous surface 
OR fomite OR upholstery OR carpet OR rug OR 

draper 

AND disinfect OR sanitize 
OR clean 
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Table 2.2 Quality assessment of eligible articles (n=12) based on 5 criteria. 
Quality Assessment Criteria Pass Fail %Pass 

Used adequate controls     12 0 100% 
Clear experimental design 10 2 83% 
Appropriate quantification technique employed 10 2 83% 
Experiment done in duplicate and more than 1 trial completed 10 2 83% 
Statistical analysis completed 8 4 67% 
Total 50 10 Avg: 83% 
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Table 2.3 Survival of enteric viruses on soft surfaces.  

SurfacesA 
Inoculation 

LevelB 
Detection 
MethodC VirusD TreatmentF Significant findingsF Reference 

Fabric: 
WB, WG, 
CS, CTC, 
CJK  

~5~10 log 
CCID50 

•CCID50 PV Temp: 25 °C 
RH: 35 and 
78% 
DM: Aerosol, 
direct, VCD 
SD: 140 d 

35% RH: Survived on wool for 
140 d & on cotton 84 d. 
78% RH: Survived on wool 84 
d & on cotton 42 d.  
Rapid decrease in titer on cotton 
under both 35 and 78% RH. 
Better survival via direct contact 
> aerosol > VCD. Better 
survival on WG > CTC > CKJ > 
CS 

Dixon et al. 
(25) 

CM: Poster 
card, Paper 
currency, 
Paper 
Fabric: 
Cotton-
polyester 

~5.3 pfu •Plaque 
assay 

RoV Temp: 4 and 
22˚C 
RH: 25, 50 
and 85% 
IC: FS 
SD: 12 d 

RoV survived for 2 and 10 d at 
22 and 4˚C on cotton-polyester. 
No RoV detected on poster card 
due to inhibition. Titers too low 
& variable to include for paper 
currency results. 50-80% 
recovery on paper after 3 h & 
no long-term samples taken. 

Sattar et al. 
(21) 

CM: FFR  7 log pfu •Plaque 
assay 

MS2 Temp: 22˚C  
RH: 30% 
DM: Aerosol 
& direct  
SD: 10 d 

MS2 detected up to 10 d. Direct 
contact showed higher (5.7 log 
pfu) terminal survival than 
aerosol (3.2 log). 

Fisher and 
Shaffer (26) 

CM: Paper  
Fabric: 
Cotton 

Not described •MPNCU ADV 
B40-8 
HAV 
PV 

RoV 

Temp: 4 and 
20˚C 
RH: 90 (-4˚C), 
85 and 50% 
(20˚C) 
IC: PBS or 
20% FS 
SD: 60 d 

RoV>HAV>B40-8>PV>ADV. 
PV/ADV sig. inactivated by FS. 
Excluding RoV, all survival sig. 
enhanced at 4˚C. Viruses’ 
survived for 60 d in all 
conditions, except when 
suspended in FS (7-60 d). RoV 
survived longer in high RH. 
HAV and B40-8 decreased 
survival on soft surfaces 
compare to hard surfaces. 

Abad et al. 
(22) 

CM: Paper 5~5.7 log 
MPN 

•IFT 
•MPNCU 
•RT-PCR 
 

AsV 

 
Temp: 4 and 
20˚C  
RH: 90%   
IC: PBS or 
20% FS 
SD: 90 d 

4°C: AsV survived up to 90 d in 
PBS & FS. 
20°C: AsV survived up to 60 & 
7 d in PBS & FS. 
 

Abad et al. 
(23) 

 ADV 
AsV 

HAV 
PV 

RoV 

Temp: 4 and 
20˚C at RH: 
90% 
IC: 20% FS or 
PBS 
SD: 7 d 

RoV/HAV > AsV > PV/ADV. 
AsV not sig. inactivated by FS 
at 4 & 20˚C. No sig increase for 
RoV survival at 4˚C. RoV/HAV 
similar decay rates. PV & ADV 
decreased survival at 20˚C in 
FS. 

CM: 
Diapers 
Fabrics: 
Gauze  

8 log pfu •Plaque 
assay 
•qRT-PCR  
 

MNV Temp: -20, 4, 
18 and 30 °C 
SD: 40 d  

-20°C: <2 & <1 log reduction 
on gauze & diapers after 40 d, 
respectively.  
4°C: 2 & <2 log reduction on 
gauze & diapers after 30 & 40 
d, respectively. 
18 and 30°C: 3 logs after 1 d on 
both surfaces. 

Lee et al. 
(24) 

Fabric: 
cotton 
textile fabric 

~7~4 log RT-
PCR units  

•RT-PCR RoV Temp: Room 
temp  
SD: 24 h 

After 24 h RoV RNA detected 
on cotton after traditional nested 
PCR for all inoculation levels, 
except disinfection control. 

Fijan et al. 
(55) 

A: WB: wool blanket, WG: wool gabardine, CS: cotton sheeting, CTC: cotton, terry cloth, CJK: cotton jersey knit, CM: complex 
matrix, FFR: filter face piece respirator 
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B: pfu: plaque-forming units, CCID50: 50% cell culture infectious dose, RT-PCR: reverse transcriptase-polymerase chain reaction.  
C: TCID50: 50% tissue culture infectious dose, MPNCU: most probable number cytopathogenic units, IFT: indirect 
immunofluorescences test, qRT-PCR: quantitative reverse transcriptase-polymerase chain reaction 
D: PV: poliovirus, RoV: human rotavirus, MNV: murine norovirus, HAV: hepatitis A virus, ADV: enteric adenovirus, AsV: astrovirus 
E: Non human enteric viruses: MS2, B40-8, and MNV 
F: RH: relative humidity, DM: deposition method, SD: study duration, IC: inoculum composition, FS: fecal suspension 
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Table 2.4. Inactivation of enteric viruses on soft surfaces.  

 
Surface 

Inoculum 
levelA 

Detection 
methodB VirusC TreatmentD 

Significant 
Results Reference 

Fabric: 
Cotton 
“wash-and 
wear” with 
Triazone 
resin  

10 log 
CCID50 

•CCID50 PV Chemical: Material 
impregnated with Triazone 
resin   
Contact time: 10 d 
RH: 35 and 78%  

PV survived up to 7 
d on impregnated 
cotton. 

Sidwell et al. 
(48) 

Fabric: 
cotton, 
polyester, 
cotton 
polyester 
blend. 
Carpets: 
olefin, 
polyester, 
nylon/olefn 
blend 

8 log 
TCID50 

•TCID50 FCV Chemical: Activated 2.6% 
glutaraldehyde, 4.75% o-
benzyl p-chlorophenol + 
4.75% o-phenylphenol, 10% 
NaHCO3 + 10% quaternary 
ammonium compound, 70% 
isopropanol, 2.5% NaHCO3 + 
1.3% glutaraldehyde 
Contact time—1, 5, and 10 
min. 

Activated 
dialdehyde product 
achieved 99.9% 
reduction on all 
surfaces, except 
blended carpet. All 
other products 
<99.86. Polyester 
least amenable 
fabric.  

Malik et al. 
(31) 

Fabric-- 
Cotton, 
fabric 
(undefined) 
Carpet-- 
Undefined 
  

FCV: 
5.7~6.3 log 
pfu 
HuNoV: 
Not 
described 

•Plaque 
assay, 
•qRT-PCR 
•TCID50 

FCV 
HuNoV 

Chemical: 20-25 ppm ozone 
with 5 min vapor burst  
Contact time: 20 min 
 

>3 log reduction in 
infectivity for FCV 
and RNA for 
HuNoV. 

Hudson et al. 
(28) 

Fabric: 
Gauze  

 

PV: 7.7 
TCID50  

RoV: 5.5 
TCID50 

MNV: 
6 log pfu 

•Plaque 
assay 
•TCID50 

 

PV 
RoV 

MNV 

 

Chemical: 127 ppm hydrogen 
peroxide vapor 
Contact time: 1 h 

>5, >3, >2 log 
reduction of PV, 
MNV, RoV  

Tuladhar et 
al. (29) 

Fabric: 
Cotton, 
Polyester  

FCV: 
~6.6 log pfu 
MNV: 
~6.3 log pfu 

•Plaque 
Assay 
•qRT-PCR 

FCV 
MNV 

Chemical: 5000 ppm NaOCl, 
2656 ppm AHP 
Contact time: 5 min 

NaOCl >3 log 
reduction of FCV, 
MNV on both 
surfaces. AHP 0.57, 
0.17 log reduction 
of MNV on 
polyester & cotton. 
>3 & >2 log 
reduction of FCV 
on polyester & 
cotton  

Yeargin et 
al. (30) 

A: CCID50: 50% cell culture infectious dose, TCID50: 50% tissue culture infectious dose, pfu: plaque forming units, FCV: feline 
calicivirus, HuNoV: human norovirus, PV: poliovirus, RoV: rotavirus, MNV: murine norovirus 
B: qRT-PCR: quantitative reverse transcriptase-polymerase chain reaction 
C: non-human enteric viruses: FCV and MNV 
D: AHP: activated hydrogen peroxide, RH: relative humidity, ppm: parts per million 
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Figure 2.1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis flow 

Chart describing the literature search procedure 
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CHAPTER THREE 
 

RECOVERY OPTIMIZATION AND SURVIVAL OF HUMAN NOROVIRUS 
SURROGATES, FELINE CALICIVIRUS AND MURINE NOROVIRUS ON CARPET  

 
ABSTRACT 

 Human noroviruses (HuNoV) remain the leading cause of acute gastroenteritis 

worldwide, in part, because of their ability to survive for extended periods of time on 

environmental surfaces. Furthermore, viral recovery from environmental surfaces, e.g. 

soft surfaces, remains undeveloped. Our aim was to determine survival of HuNoV 

surrogates on an understudied environmental surface, carpet. First, we measured the zeta 

potential and absorption capacity of wool and nylon carpet fibers, developed a mini-spin 

column elution method (MSC), and characterized the survival of HuNoV surrogates, 

feline calicivirus (FCV) and murine norovirus (MNV), over 60 days under 30 and 70% 

relative humidity (RH) on carpets and a glass surface. Carpet surface charge was negative 

at a typical buffer pH while wool can absorb ca. 2X more liquid than nylon. Percent 

recovery efficiency with the MSC ranged from 4.34 to 20.89% and 30.71 to 54.14% for 

FCV and MNV on carpet fibers, respectively. Moreover, elution buffer type did not 

significantly affect recovery of either surrogate virus. Infectious FCV or MNV survived 

between <1 and 15 or 3 and 15 days, respectively. However, MNV survived longer under 

some conditions and at significantly higher titers compared to FCV. Albeit, surrogates 

followed similar survival trends, i.e. both survived longest on wool then nylon and glass 

while 30% RH provided a more hospitable environment compared to 70% RH. qRT-PCR 

signals for both surrogates were detectable for the entire study but FCV genomic copies 
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experienced significantly higher reductions (<3.80 log10 copies) on all surfaces compared 

to MNV (<1.10 log10 copies). 

 

INTRODUCTION 

 Human noroviruses (HuNoV) are recognized as the leading cause of acute 

gastroenteritis worldwide as well as the most common cause of foodborne disease in the 

United States (1). Symptoms may include both diarrhea and vomit, which can contain up 

to 1011 viruses/g and 107 viruses/30 mL, respectively (2, 3). This, coupled with their 

environmental stability and low infectious dose, makes HuNoV highly contagious. 

Primary modes of transmission are fecal-oral or vomitus-oral and can occur via person-

to-person or spread via food, water, and environmental surfaces (4). Although 

environmental transmission of HuNoV is estimated to be low, environmental surfaces 

may serve as a temporary reservoir and act as a secondary source of transmission (5). 

These temporary reservoirs allow a person to become infected without direct contact with 

the primary source of infection, leading to prolonged and reoccurring outbreaks. This 

thinking is supported by epidemiological investigations attributing HuNoV outbreaks (6, 

7) to contaminated environmental fomites and laboratory-based studies that documented 

transfer between surfaces and hands (8). For example, a hotel in England experienced a 

5-month HuNoV outbreak (6). Outbreak investigators attributed this to the ability of the 

virus to survive for prolonged periods on both hard and soft surface along with 

ineffective decontamination strategies. Additionally, another research group 

demonstrated that enteric viruses and infectious HuNoV surrogates, MS2 coliphage, are 
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transferable between environmental surfaces, such as glass, cotton, and polyester, and 

hands (8).  

Understanding survival profiles under various conditions could improve 

epidemiologic investigations and microbial risk assessment in addition to answering key 

questions surrounding environmental stability, decontamination strategies, and 

seasonality of HuNoV. Most studies investigating enteric virus survival used hard 

surfaces, whereas few used soft surfaces (9, 10). These hard surface studies demonstrated 

the resiliency of HuNoV, especially under low temperature conditions, i.e. 4˚C. For 

example, Escudero et al. (11) detected HuNoV via qRT-PCR on 3 hard surfaces for up to 

42 days and infectious murine norovirus (MNV), a surrogate for HuNoV, was detectable 

for at least 14 days. Likewise, Lamhoujeb et al. (12) demonstrated a GII HuNoV genome 

was detectable for up to 56 days on PVC and stainless steel. In the absence of laboratory-

based evidence, ample epidemiological evidence suggests non-launderable, soft surfaces, 

such as carpet, may also be a HuNoV fomite. Currently, only 2 laboratory-based studies 

have documented HuNoV and their surrogate survival on soft surfaces (13, 14). 

Moreover, no Environmental Protection Agency (EPA)-registered commercial products 

are available to sanitize these fomites (15). Taken together, these findings illustrate a 

significant public health concern, especially in settings where HuNoV outbreaks and soft 

surfaces are common, such as long-term care facilities and daycare facilities. 

To our knowledge, no published studies have reported the survival of HuNoV, or 

their surrogates, on carpet. Therefore, our three specific aims were: (i) study the carpet 

characteristics, i.e. zeta potential and absorption capacity, of wool and nylon carpet 
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fibers, (ii) develop and assess the recovery efficiency of a mini-spin column based virus 

elution method, and (iii) determine the survival of HuNoV surrogates, feline calicivirus 

(FCV) and MNV, on wool and nylon carpet fibers and a glass surface (as a hard surface 

control) over 60 days under 2 relative humidities (RH), 30 and 70%, at 25˚C. As a first-

generation study, the intent was to develop an experimental model to produce infectious 

estimates for microbial risk assessments while providing an analysis of these complex 

surfaces.  

 

MATERIALS AND METHODS 

Virus propagation, cells, and plaque assay. A stock of murine norovirus (MNV) strain 

CW3 (kindly provided by Dr. Herbert Virgin at the University of Washington, St. Louis) 

was propagated by infecting 60 – 80% confluent monolayers of RAW 264.7 cells (ATCC 

TIB-71. American Type Culture Collection, Manassas, VA) at a multiplicity of infection 

(MOI) of 0.05 in a supplemented medium described elsewhere (16). Feline calicivirus 

(FCV) strain F9 (kindly provided by Dr. Jan Vinje at the Centers for Disease Control and 

Prevention, Atlanta, GA) was propagated by infecting 90% confluent monolayers of  

Crandell-Rees kidney cell (CRFK) (ATCC CCL-94, American Type Culture Collection, 

Manassas, VA) at a MOI of 0.01 in Complete Eagles Modified Essential Media (Corning, 

Corning, NY) supplemented with 10% low-endotoxin heat inactivated fetal bovine serum 

(FBS) (Seradigm, VWR International, Randor, PA), 100 U/liter penicillin (HyClone, GE, 

Boston, MA), and 100 µg/liter streptomycin (HyClone, GE, Boston, MA). Both cell lines 

were incubated at 37˚C and 5% CO2 (Symphony, VWR International, Randor, PA) until 
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complete cytopathic effect was observed (1 – 3 days). Both surrogate viruses were 

harvested from cell lysates by three cycles of freeze-thawing followed by centrifugation 

for 10 min at 5,000 x g and 4˚C then extracted with chloroform as previously described 

(16). MNV (ca. 7 log PFU/ml) and FCV (ca. 8 log PFU/ml) stocks were aliquoted and 

stored at -80˚C.  

 Infectious MNV and FCV were quantified by standard plaque assays as 

previously described with modifications (16, 17). Briefly, MNV plaque assays were 

completed by seeding 6-well dishes with RAW 264.7 cells at 1 x 106 viable cells/well and 

incubated until 60 – 80% confluent (4 – 8 hr). MNV experimental samples were diluted, 

if needed, in MNV infection medium, described elsewhere, containing 5% FBS 

(CDMEM-5) to improve plaque formation (16). FCV plaque assays were based on 

previous work with significant modifications (17). CRFK cells were seeded in 6-well 

dishes at 2.5 x 105 viable cells/well and incubated until ca. 90% confluent (2 days). FCV 

samples were serially diluted in 1X phosphate buffered saline (PBS) if needed. After a 1 

hr absorption phase, 2 ml of 1:1 mixtures of 3% seaplaque agarose (Lonza, Switzerland) 

and 2X Temin’s Modified Eagle Medium (MEM) were added to each well incubated 

until visible plaque formation (1 – 3 days). The 2X MEM was supplemented with 10% 

low-endotoxin heat inactivated FBS, 100 U/liter penicillin, 100 µg/liter streptomycin, 

10mM HEPES (HyClone, GE, Boston, MA), and 1 mM non-essential amino acids 

(HyClone, GE, Boston, MA). MNV and FCV plaques were visualized by staining 

agarose plugs with a 0.03% neutral red solution (Carolina Biological, Burlington, NC) 

mixed with 1X PBS and enumerated on a light box (Futura light box, Logan Electric, 
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Bartlett, IL). Plaque assays for both MNV and FCV contained a stock suspension of virus 

and CDMEM-5 or PBS as a positive and negative control, respectively, to test for cell 

line permissiveness and contamination. Cell lines were not passaged >25 times.  

 

RNA extraction and qRT-PCR. Viral extraction was performed as previously described 

with minor modifications (18). Viral RNA was extracted from 0.15 ml of a sample or 

virus stock with E.N.Z.A Viral RNA Kit (OMEGA Bio-Tek, Norcross, GA) per 

manufacturer instructions. Viral RNA was extracted on the day of recovery experiments 

and stored at -80˚C prior to use. qRT-PCR for FCV and MNV was completed with 

KAPA SYBR Fast Universal One-Step qRT-PCR Kit (Kapa Biosystems, Wilmington, 

MA) on a Realplex2 Mastercycler platform (Eppendorf, Hauppauge, NY). Forward and 

reverse primer sequences for FCV qRT-PCR analysis were 

GCCATTCAGCATGTGGTAGTAACC and GCACATCATATGCGGCTCTG, 

respectively whereas MNV qRT-PCR forward and reverse primer sequences were 

TGATCGTGCCAGCATCGA and GTTGGGAGGGTCTCTGAGCAT, respectively 

(19). The standard curves for both viruses were prepared by performing an 8-step 10-fold 

dilution of virus stocks. Log reductions (Equation 1) of virus RNA were performed as 

previously described (19).  

!"# $%& '()*+,-%. = (12,4512,6)
8   (Equation 1) 

where CT,t is the cycle threshold (CT) for the experiment group, CT,c is the cycle threshold 

for the control recovered at time 0, and k is the slope obtained from plotting the CT values 

vs. the log10 of the RNA copy number used for presenting the standard curve (19).  
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Carpet and carpet fiber preparation. Wool and nylon carpet panels (SDL-ATLAS, 

Rock Hill, SC) were selected from ASTM standard F655-13 (20). Carpet materials had 

no finishes, e.g. antimicrobial or stain-resistant finishes. Carpet fibers were prepared by 

shaving nylon and wool fibers from their polypropylene backings with a 22-blade scalpel 

and autoclaving prior to use in all experiments. Carpet fibers were prepared from the 

same carpet panel for the entire study, autoclaved on a 30-min dry cycle, then used for 

the entire study.  

 

Electrokinetic potential. The zeta potential (ζ) of sterile wool and nylon fibers was 

measured as previously described with modifications to surface only (21). Wool and 

nylon fibers (1 g) were packed into a SurPASS electrokinetic analyzer cylinder (Anton 

Paar GMBH, Graz, Austria). The ζ was calculated using VisioLab software from 

Streaming Potential Measurements (SPM) using the Fairbrother-Mastin equation 

(Equation 2). Flow of the electrolyte (0.001 M KCl) was directed through cells by 

linearly ramping pressure from 0 to 300 mbar in both directions. Electrodes on either side 

measured the streaming current. Two cycles of pressure ramping in each direction were 

performed and the average ζ reported. An HCl (0.1 M) and NaOH (0.1 M) titration were 

used to measure the ζ between pH 2 and 9. The pH conditions were adjusted by 

increments of 0.2 with an auto titration unit. The system was rinsed with nanopure water 

between titrations and between each trial (n=3) to reduce ionic strength build up.  

9 = 	 ;<;= ×
?

@×@A
×BC×!  (Equation 2) 
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where dU/dp is the slope of streaming potential versus pressure, η is the electrolyte 

viscosity, ε is the dielectric constant of elect, ε0 this vacuum permittivity, κΒ is the 

electrical conductivity of electrolyte outside the capillary cell, and R is the Ohm 

resistance inside the measuring cell (21). 

 

Carpet absorption capacity. To test the absorption capacity of the carpet, wool and 

nylon fibers (0.1 g) were packed into 2 ml microcentrifuge tubes (VWR International, 

Randor, PA) and autoclaved on a 30-min dry cycle. Wool and nylon fibers were saturated 

with 0.1% safranin and 0.2% crystal violet solution, respectively, in increments of 0.05 

ml up to 1 ml. After application of the indicator liquid, samples were vortexed for 30 sec, 

carpet fibers were removed, and empty microcentrifuge tubes were weighed (X564, 

Mettler-Toledo, Switzerland) for residual liquid. Absorption capacities were tested in 

triplicate in 3 separate experiments at room temperature. 

 

Recovery efficiency. Four elution buffers were assessed for their ability to elute FCV 

and MNV from wool and nylon carpet fibers using a newly designed MSC method. Virus 

samples were recovered after desiccation, i.e. 6 and 12 h for saturated nylon and wool, 

respectively, at room temperature. The buffers assessed were deionized water (DI) 

(buffer 1), Phosphate buffer (Butterfield’s buffer) (buffer 2), DI water + 0.01 M sodium 

bicarbonate + 0.02% Tween 20 (buffer 3), and 0.01 M phosphate buffered saline + 0.02% 

Tween 80 (buffer 4).  
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 Wool and nylon carpet fibers were prepared, packed, and autoclaved as described 

above. Aliquots of FCV and MNV containing a known concentration of virus were 

thawed in a 37˚C water bath (IR35 New Brunswick Scientific, New Brunswick, NJ) and 

diluted in CDMEM-5 cell culture media. Separate virus inocula were prepared for each 

carpet type based on their absorption capacity, i.e. 0.8 ml/0.1 g wool carpet and 0.4 

ml/0.1 g nylon carpet. Samples were vortexed for 30 sec followed by the removal of 

carpet fibers and placement into 60 mm dishes (Corning, Corning, NY). Residual liquid, 

if any, was pipetted back onto the carpet fibers. Samples were then placed into an open 

chamber (480 HP, VWR International, Randor, PA), with lids ajar to expose samples to 

the atmosphere.  

 To recover viruses, carpet fibers were packed into empty mini spin columns (USA 

Scientific, Orlando, FL) with sterile forceps and eluted 2 times by applying 0.5 ml 

aliquots of respective elution buffers and centrifuged (Model 5424, Eppendorf, Germany) 

at 2,000 x g for 1 min at room temperature. Each 0.5 ml fraction was combined into a 

microcentrifuge tube, vortexed, weighed, and stored at -80˚C. All samples were assayed 

via plaque assay. Recovery efficiency (RE) was tested in duplicate in 3 separate 

experiments. RE is defined as the number of pfu recovered and divided by the number of 

pfu initially seeded (22).  

 

Survival study design. Prior to characterizing the survival of surrogate viruses 

artificially contaminated on carpet fibers and a glass surface, environmental chambers 

(480 HP, VWR International, Randor, PA) were established with 30 and 70% RH 
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chambers relative humidity (RH) by maintaining with a saturated MgCl2 and 1:1 mixture 

of NaCl + KCl solution, respectively (23). 

Carpets fibers and virus inocula were prepared as described above. Glass cover 

slips (25 mm2) (VWR International, Randor, PA), included as a hard surface control, 

were rinsed in sterile DI water, 100% ethanol, and sterile DI again prior to autoclaving on 

a 30-min dry cycle. Carpet fibers and glass samples were stored at room temperature 

under ambient conditions until used.  

Wool and nylon fibers were prepared and inoculated as described above. Glass 

coverslips were inoculated with the same inoculum as nylon, i.e. 0.4 ml/25mm2. Samples 

were recovered on day 0, 1, 2, 3, 7, 15, 30, and 60. Viruses contaminated on carpets were 

recovered with the MSC method as described above using 0.01 M PBS + 0.02% Tween 

80 and 4 separate washes. Using the sample recovery buffer, glass coverslips were 

recovered as previously described (24). After elution fractions were collected, 

microcentrifuge tubes were vortexed, weighed, and stored at -80˚C. Prior to storage, an 

aliquot was removed for qRT-PCR analysis. All samples were assayed via plaque assay 

and qRT-PCR.  

 

Statistical analysis.  Statistical analysis was performed using one-way multiple 

comparisons t-test. A power analysis was performed prior to the survival study with a 

95% confidence interval. All results are expressed as mean ± standard deviation. 

Statistical significance was defined as P ≤ 0.05. Statistical analyses were conducted using 

JMP (JMP 11.2.1, SAS Inc., Cary, NC). 
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RESULTS 

Electrokinetic potential. Both wool and nylon fibers were negatively charged and the 

values inversely proportional to pH between pH 2.7 and 9 based on their electrokinetic 

potential analysis (Figure 3.1). Between pH 2.7 and 9, nylon fiber’s ζ ranged from -0.33 

to -68.20 mV, whereas wool fiber’s ζ ranged from -27.55 to -58.78 between pH 2.7 and 

8.3. Comparatively, nylon fibers maintained a higher ζ than wool fibers until pH 8.5 

when the nylon fiber’s ζ decreased to ca. -68 mV. During the HCl titration, wool and 

nylon fibers differed by ca. 25 mV between pH 2.7 and 4 then progressively grew closer. 

However, between pH 7.5 and 8.2, both fiber types showed little difference in ζ.  

 

Carpet absorption capacity. Wool absorbed up to 0.8 ml/0.1 g of saffarin solution 

whereas nylon only absorbed up 0.4 ml/0.1 g of crystal violet solution (Table 3.1). 

Although not compared statistically, because of different indicator liquids were used, 

wool fibers were capable of absorbing 2 times more liquid than nylon fibers. 

 

Recovery efficiency. Table 3.2 shows the RE percentage of FCV and MNV after 

desiccation when recovered using the MSC method with 4 different elution buffers. 

Desiccation of wool took 12 hr compared to 6 hr for nylon. For FCV, RE percentages 

from wool and nylon carpet fibers ranged from 11.44 to 20.89% and 4.34 to 8.05%, 

respectively. The recovery of MNV from wool and nylon carpet fibers ranged from 30.71 

to 38.34% and 40.89 to 54.14%, respectively. Elution buffers did not significantly affect 

the recovery of FCV and MNV when using the MSC method under ambient conditions. 
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Statistical comparisons were not conducted between carpet types due to the difference in 

absorption capacity and drying time. Though not shown, more infectious FCV and MNV 

were recovered from wool fibers compared to nylon when both surrogates were 

recovered from both fiber types at 6 hr of drying.  

 

Survival of surrogate viruses. Figure 3.2 shows the survival characteristics of FCV and 

MNV inoculated onto carpet fibers and glass under 30 and 70% RH at 25˚C over a 60-

day period. Infectious FCV survived up to 15, 3, and 3 days at 30% RH, whereas FCV 

only survived for 7, 1, and <1 days at 70% RH on wool, nylon, and glass, respectively. 

Infectious MNV survived for up to 15, 7, and 7 days at 30% RH while MNV held at 70% 

RH survived for 7, 3, and 3 days on wool, nylon, and glass, respectively. Overall, FCV 

and MNV survived longer and at significantly higher infectious levels when held at 30% 

RH compared to 70% RH. Additionally, surface type played a significantly role in the 

survival of both surrogates with wool providing a more hospitable environment. 

Generally, under each RH condition survival for both surrogate viruses was 

wool>nylon>glass. Comparatively, MNV survived longer and at a significantly higher 

titer on each surface after the first day compared to FCV.  

Figure 3.3 illustrates the reduction of FCV and MNV genomic copies 

contaminated on wool, nylon, and glass under 30 and 70% RH at 25˚C over a 60-day 

period. FCV and MNV were detected for up to 60 days on all surfaces. The maximum 

log10 copy reductions for FCV after 60 days were <1.30, <3.10, and <3.80 log10 copies, 

whereas MNV exhibited a maximum log10 copy reduction of <0.70, <1.10, and <0.80 on 
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wool, nylon, and glass, respectively, all at 70% RH. FCV genomic copies recovered from 

all surfaces were significantly different, whereas no significant difference was observed 

between MNV genomic copies among surfaces tested. Comparatively, after day 3, 

significantly more MNV genomic copies were detected compared to FCV. 

 

DISCUSSION 

 Historically, FCV and MNV have been used as surrogates to study HuNoV on 

both hard and soft surfaces (24). To date, no studies have investigated the survival of 

HuNoV or their surrogates on carpet despite ample epidemiological evidence suggesting 

soft surfaces, such as carpet, may be a mode of transmission for HuNoV (6, 7). In this 

study, we characterized the carpet fiber’s ζ and absorption capacities, developed and 

assessed a new virus elution method for carpet fibers, and provided evidence that 

infectious HuNoV surrogates, FCV and MNV, can survive for at least 15 days, depending 

on environmental conditions and on type of carpet fiber. These findings provide 

laboratory-based evidence to support published epidemiological evidence regarding the 

prolonged survival of viruses on soft surfaces, e.g. carpet. 

 It is important to note that soft surface studies can be challenging, especially when 

drawing conclusions between studies with limited information regarding surface 

characteristics (10). ζ is a useful intermediate value for estimating surface charge, which 

knowing this information may aid in a better understanding of the virus-soft surface 

interaction. Our ζ results support previous findings that suggest an inverse relationship 

with pH (25, 26). ζ is considered pH dependent because functional groups at the surface 
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can become ionized under varying pH conditions. For example, carboxylate groups, 

commonly found on wool and nylon fibers, can contribute to an increased negative ζ 

when the pH of a solution is increased (26). The difference can be attributed to absorption 

qualities of the fibers. Due to limited absorption, synthetic fibers, such as nylon, have a 

higher ζ compared to wool. Furthermore, swelling of fibers can affect a surface’s ζ (25, 

26). The SurPASS electrokinetic analyzer, used here, conducts the acid titration 

immediately after saturation, whereas the base titration is completed ca. 30 min after 

saturation. This may further explain the ζ differences between these fibers observed 

between pH 3 and 5. Carpet ζ’s reported here differ in the range of ca. 5 and 30 mV 

between pH 3 and  7 from previous findings with wool and nylon surfaces (26). Although 

values were distinct between studies, the wool and nylon trends reported were similar. 

Difference are expected because ζ measurements can be affected by many experimental 

factors, such as surface type, fiber aging and processing, porosity, dyes, electrolyte 

solution, surface treatments, and cleaning procedures (25, 26).  

 Fibers used in this study were autoclaved prior to use. Common laboratory 

procedures for cleaning fibers prior to ζ measurements include scouring by washing with 

detergents, petroleum ethers, or via Soxhlet extraction (25). Our intent was to measure 

the behavior of these fibers under their natural conditions and how they interact with 

FCV and MNV, not to assess the ζ of pure wool or nylon. Taken together, these results 

suggest that buffers, intended for the elution of HuNoV or their surrogates from wool and 

nylon fibers, should be > pH 7.25 because of reported isoelectric points of FCV (4.9) and 
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MNV (5.0 – 6.0) and fiber charge. Under pH conditions >7.25 both viruses and fibers 

would be negatively charged leading to increased repulsion and better virus recovery. 

As expected, wool and nylon fibers are capable of absorbing different amounts of 

liquid. Saffarin and crystal violet solutions were selected over traditional inocula to 

enable direct observation of liquid coverage, in addition to weighing residual liquid. 

Unfortunately, these characteristics were not reported in studies investigating the enteric 

virus-soft surface relationship (10). Like all condense-phase material, wool and nylon are 

hydrophilic in nature, but, the magnitude of hydrophilicity can vary between surfaces 

(27). By the same token, each surface’s magnitude of hydrophilicity is directly related to 

its absorption capacity. Our results are supported by observed and calculated sorption 

isotherms previously investigated (28). Hailwood and Horrobin (28) demonstrated that 

wool’s percent regain could be >4 times that of nylon, depending on the RH. The 

absorption capacity of a soft surface is a critical factor to consider. Higher absorption 

capacities may allow for higher adsorption of viruses, and, as stated previously, viruses in 

the environment are less susceptible to desiccation and inactivation when adsorbed to a 

surface (29). These relationships may explain the longer virus survival observed on wool 

compared to nylon fibers and glass surface. Previous work has demonstrated that natural 

fibers provide a more protective environment for enteric viruses, such as poliovirus, when 

inoculated at the same volume (30, 31). Because these fibers absorb different amounts of 

liquid, we chose to inoculate the carpet fibers based on their maximum absorptive 

capacity to mimic a natural contamination event but maintained the same level of 
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inoculation of each virus. Therefore, natural surfaces with high absorption capacity may 

facilitate longer survival times compared to synthetic, low absorbing surfaces. 

 The above discussions highlight the importance of assessing the characteristics of 

a soft surface, such as ζ and absorption capacity. These characteristics can be used in 

microbial risk assessments to assist in predicting the fate of a virus along with developing 

more efficient recovery buffers. As previously stated, the lack of consistency between 

soft surface studies and limited descriptions of surfaces leaves little room for adequate 

comparisons (10). Further, studies should consider characterizing soft surfaces prior to 

analysis or use the same materials from previous studies to broaden our knowledge 

regarding virus-soft surface interactions.  

 To evaluate the survival of a virus inoculated onto carpet, improved recovery 

methods and buffer optimization were needed. Previous recovery methods designed for 

carpet are time-consuming and resource intense (32, 33). Some methods, e.g. orbital 

shaking and bottle extraction, require high buffer volumes that may lower the RE and 

increase detection limits. The MSC method, developed in this study, allows for a 

simplistic, volume adaptable, and resource light approach to assess survival of non-

enveloped viruses on soft surfaces. Our results indicate that the MSC method is efficient 

at eluting both FCV and MNV from wool and nylon carpet fibers. Additionally, buffer 

type does not significantly influence % RE when using the MSC approach for both 

viruses and carpet fiber type, among tested buffers. The mechanism of recovery is likely 

a result of fiber rehydration that changes the surface charge and assists with resuspending 

the virus in solution while the centrifugal force pulls the solution into the collect tube. 
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Ultimately, the Tween 80-based solution was selected for follow-up experiments, i.e. 

virus survival assessment, as it has been used previously and is a safe storage medium for 

both virus surrogates (18).  

 Virus survival can be affected by many factors, such as temperature, RH, organic 

content, deposition method, and adsorption (10). Temperature remains the most 

important environmental factor affecting virus survival. Typically, virus’s survival is 

inversely proportional to temperature on both hard and soft surfaces (10, 34). For 

instance, Lee et al. (14) reported that MNV survived longer and at higher titers on cotton 

gauze and diapers at low (4˚C) temperatures compared to higher (18 and 30˚C) 

temperatures. However, carpet is generally found indoors with climate control where 

temperature varies little. In contrast, RH can vary indoors (40 – 70%) and has been 

shown to significantly affect the survival of enteric viruses (10). Equally important are 

the discrepancies among studies investigating effect of RH on virus survival. As 

described previously, non-enveloped viruses tend to survive longer under high RH 

conditions (34). However, other studies countered this trend by demonstrating that enteric 

viruses and their surrogates, such as rotavirus, poliovirus, MNV, and MS2 phage, favor 

low RH (10). Reasons behind these conflicting results are unclear, but can be attributed to 

difference in interactions of the follow factors: temperature, surface type, virus type, 

experimental design. In our study, FCV and MNV favored low RH on all surfaces types. 

Ideally, low RH provides a quicker time to desiccation and adsorption. Moreover, an 

adsorbed non-enveloped virion is more stable compared to a free, unbound, virion. This 

protection is thought to be garnered by aggregation and reduced accessibility (35). 
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Longer times to desiccation observed under high RH conditions permits virions to stay 

free and unbound where they are more vulnerable to environmental conditions and 

solution characteristics, e.g. ionic strength and pH (36). 

 The difference between survival profiles of FCV and MNV were not surprising as 

previous studies have demonstrated that FCV has a higher susceptibility to pH, 

temperature, and some environmental conditions compared to other HuNoV surrogates, 

such as MNV (18, 24, 37). For instance, D’Souza et al. (37) found that FCV could 

survive on 3 hard surfaces for 7 days but experienced up to 4 and 7 log pfu reduction 

after 2 and 7 days, respectively. Similarly, when compared under wet conditions, MNV’s 

survival was significantly enhanced compared to FCV inoculated onto hard surfaces (24). 

Our results, in conjunction with previously published findings, suggest that FCV may not 

be a suitable surrogate for estimating the survival of HuNoV on carpet with MNV being 

the more appropriate option.  

 Previous studies have documented the divergence among infectious and 

molecular data, i.e. qRT-PCR (11, 14). qRT-PCR should still be used in surrogate studies 

as HuNoV culturing is not routinely available. Additionally, qRT-PCR can be useful in 

determining the mode of inactivation of a virus along with assessing the fidelity of a 

recovery method after infectious virus falls below the limit of detection. Our results assist 

with confirming this trend that the presence of a viral genome does not signify infectious 

virus. Furthermore, our MNV qRT-PCR results demonstrated a limited reduction of 

genomic copies suggesting that our MSC recovery method is not affected by wetting or 

study duration. However, the reduction of FCV genomic copies over 60 days suggest that 
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capsid integrity and binding motifs may be more susceptible to environmental factors 

compared to MNV. 

 

CONCLUSION 

 In summary, results presented here demonstrated that characterizing a soft surface 

can improve our understanding of virus-soft surface interactions. Furthermore, infectious 

HuNoV surrogates, FCV and MNV, can survive for extended periods of time on carpet 

fibers. This survival can be affected by at least 2 factors: RH and surface type. 

Specifically, low RH favors FCV and MNV survival while natural fibers, such as wool, 

may provide a more protective environment compared to synthetic fibers and hard 

surfaces.  
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Table 3.1 Absorptive capacity of carpet fibers 
Samplea Volume Added (ml) Residual Weightb (g) 

Wool 0.650 0.009 ± 0.004 Ac 

0.700 0.015 ± 0.003 AB 

0.750 0.018 ± 0.003 BC 
0.800 0.021 ± 0.003 C 

0.850 0.051 ± 0.013 D 
   

Nylon 0.300 0.003 ± 0.002 A 

0.350 0.003 ± 0.003 A 

0.400 0.005 ± 0.002 A 
0.450 0.019 ± 0.005 B 

a Carpet fiber samples were 0.1 grams each. 
b Residual weight based on remaining liquid after carpet fiber removal.  
c Data are expressed as log means ± standard deviation. Means with different letters in the 
same column and surface type are significantly different (P<0.05).
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Table 3.2 Recovery efficacy of FCV and MNV from wool and nylon fibers using a mini spin column extraction method with 4 
buffer types 

 RE% (log recovery [PFU])a 

 FCV  MNV 
Material Buffer 1 Ab Buffer 2 A Buffer 3 A Buffer 4 A  Buffer 1 A Buffer 2 A Buffer 3 A Buffer 4 A 

Wool 15.38 (5.06 ± 
0.31)c 

11.44 (4.92 ± 
0.32) 

13.47 (5.02 ± 
0.23) 

20.89 (5.19 ± 
0.28) 

 38.34 (5.35 ± 0.13) 32.63 (5.28 ± 
0.10) 

30.71 (5.24 ± 
0.17) 

32.25 (5.27 ± 
0.18) 

Nylon 4.34 (4.52 ± 0.12) 6.22 (4.67 ± 0.24) 8.05 (4.80 ± 0.10) 7.23 (4.75 ± 0.13)  45.13 (5.46 ± 0.17) 40.98 (5.42 ± 
0.19) 

50.27 (5.47 ± 
0.18) 

54.14 (5.36 ± 
0.20) 

aSamples were recovered at 12 and 6 hr for wool and nylon, respective, for each surrogate 
bBuffers with different letters in the same row are significantly different (P<0.05), for each surrogate.  
cData are expressed as percent recovery (log mean ± standard deviation). 
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Figure 3.1 Electrokinetic potential analysis of wool and nylon via SurPASS titration. One 

gram of each surface, wool and nylon, was packed into a cylindrical cell to estimate each 

surface’s electrokinetic potential. Hydrochloric acid (£) titrations for nylon were 

followed by a NaOH (¯) titration. Similarly, HCl (r) titrations for wool were followed 

by a NaOH (Ð) titration. Parameters were set to assess electrokinetic potential between 

pH 2 – 9. Error bars indicated standard deviation among 12 replicates from 3 independent 

experiments. 
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Figure 3.2 Survival analysis of FCV and MNV assessed via plaque assay on nylon, wool, 

and glass surfaces at 30% RH (£) and 70% RH (r). The dotted line indicates detection 

limits. Surfaces were individually inoculated with ca. 6 log PFU of FCV and MNV and 

recovered with the MSC method using 4 washes with five hundred microliters of buffer 

on days 0, 1, 2, 3, 7, 15, 30, and 60. Data were expressed as the mean ± standard 

deviation of 6 replicates from two independent experiments 
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Figure 4.3. Survival analysis of FCV and MNV assessed via qRT-PCR on wool, nylon, 

and glass surfaces at 30% RH (£) and 70% RH (r). Surfaces were individually 

inoculated with ca. 6 log PFU of FCV and MNV and recovered with the MSC method 

using 4 washes with five hundred microliters of buffer on days 0, 1, 2, 3, 7, 15, 30, and 

60. Data were expressed as the mean ± standard deviation of 6 replicates from two

independent experiments. 
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CHAPTER FOUR 

COMPARATIVE RECOVERY OF HUMAN NOROVIRUS SURROGATES, FELINE 
CALICIVIRUS AND MURINE NOROVIRUS, FROM CARPET WITH THREE 

RECOVERY METHODS 

ABSTRACT 

Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis 

worldwide as well as the most common cause of foodborne disease in the United States. 

Prevention and control of HuNoV contaminated on soft surfaces, such as carpet, remains 

a challenge due, in part, to a lack of robust recovery methods. Our aim was to compare 

recovery methods to determine their ability to recover HuNoV surrogates from carpet. 

Specifically, we assessed and compared three recovery methods, i.e. bottle extraction 

(BE), macrofoam-tipped swabbing (MS), and the microbial vacuum (MVAC), using 

HuNoV surrogates, feline calicivirus (FCV) and murine norovirus (MNV), inoculated on 

wool and nylon carpet carriers. We also investigated qRT-PCR detection issues for FCV 

after environmental recovery, i.e. inhibition. Infectious FCV and MNV percent recovery 

efficiency (% RE) of BE ranged from 0.44 to 48.44% and 40.77 to 68.83%, respectively, 

compared to % RE of MS, which was 0.02 to 0.82% and 1.54 to 2.87%, respectively. The 

% RE of MVAC for infectious FCV and MNV ranged from 7.30 to 18.29% and 52.58 to 

74.67%, respectively. Percent RE of genomic copies of FCV and MNV with BE ranged 

from 0.36 to 2.53% and 3.34 to 14.97%, respectively, while % RE of MS ranged from 

1.03 to 2.24 and 2.02 to 4.25%, respectively. Percent RE of genomic copies of FCV and 

MNV with MVAC ranged from 2.49 to 23.72% and 28.78 to 79.15%, respectively. 

Significantly more plaque-forming units and genomic copies were recovered using BE 
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and MVAC compared to MS, while buffer type played a significant role in recovery of 

infectious FCV. Additionally, qRT-PCR analysis indicated recovery from tested carpet 

types inhibited amplification of FCV RNA and required dilution after nucleic acid 

extraction. 

INTRODUCTION 

Worldwide, human noroviruses (HuNoV) account for ca. 20% of all diarrheal 

cases (1,2).  Its economic burden is estimated to be $4.2 billion in direct health care costs 

and $60.3 billion in societal costs per year.  Control of HuNoV within the environment 

remains a challenge due to their stability and low infectious dose.  

Environmental transmission and transfer of viral pathogens has been documented 

in both epidemiological and laboratory-based studies on hard and soft surfaces (1–3). For 

example, two carpet fitters exhibited HuNoV-like symptoms after removing carpet from a 

room used to cohort patients with HuNoV-like symptoms 16 days after the room had 

been vacated and decontaminated (1). Likewise, carpet samples from a hotel, associated 

with a 5-month HuNoV outbreak, had the highest swab positivity rates (2). These high 

positivity rates were attributed to the environmental stability of HuNoV along with the 

use of ineffective decontamination strategies. However, as stated previously, there is a 

knowledge gap regarding the correlation between risk of infection and level of 

contamination that may affect the effectiveness of these disinfection processes (4). To 

elucidate this correlation comprehensive comparative sampling studies are needed. 
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The efficacy of sanitizers and disinfectants against HuNoV on hard surfaces is 

well documented (5). However, only 3 studies have tested soft surfaces, such as carpet 

(6). Currently, the U.S. Environmental Protection Agency (EPA) does not recognize a 

standard test method for evaluating the efficacy of an antiviral sanitizer intended for 

carpets. But, the EPA does have methods for other types of soft surfaces in order to make 

claims against bacteria (7). This is, in part, because of inadequate recovery methods for 

carpets, making it difficult to quantify the effect of control strategies. 

Adequate recovery methods are the underpinning of environmental detection 

methods. Improving and characterizing these methods would provide higher recoveries of 

pathogens that would increase their detection and lead to higher positivity rates. To 

improve our understanding and better detect and quantify enteric viruses, such as 

HuNoV, deposited on soft surfaces, current recovery methods should be assessed and 

compared. A meta-analysis of the literature conducted by Julian et al. (8) showed that 

only 2 of 59 studies sampled soft surfaces for HuNoV with both using cotton-tipped 

swabs (2, 9). Moreover, the laboratory-based studies investigating HuNoV and soft 

surfaces relied on destructive recovery methods, e.g. sonication, stomaching, vortexing, 

and orbital shaking (10–12), which may not be appropriate for some types of carpet.  

Common methods to recover pathogens from complex surfaces, such as carpet, 

include bottle extraction (BE), microbial vacuum (MVAC), and swabbing. BE uses both 

sonication and handshaking to recover microorganisms of interest and is the American 

Society of Testing and Materials (ASTM) recommended method for recovery of bacteria 

from carpet carriers (13). On the other hand, the MVAC, which was designed to recover 
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pathogens from food matrices, has recently been used in the forensic science field to 

recover a variety of body fluids from complex surfaces, e.g. soft surfaces (14). Even so, 

swabbing is still the most frequently used method based on a previous review of the 

literature and ISO 15216’s recommendation to use cotton-tipped swabs for recovery of 

hepatitis A virus and noroviruses from foodstuffs and food surfaces  (8, 15).  

This study’s aim was to compare viral recovery methods and improve detection of 

viruses contaminated on carpet. To our knowledge, no published studies have assessed 

recovery methods for any enteric viruses, including HuNoV, from carpet. Therefore, our 

objectives were: (i) compare applicable surface recover methods for two HuNoV 

surrogates, feline calicivirus (FCV) and murine norovirus (MNV), on wool and nylon 

carpets, with BE, MVAC, and a macrofoam-tipped swab (MS), and (ii) improve detection 

via qRT-PCR by clarifying samples prior to analysis. 

MATERIALS AND METHODS 

Virus propagation and cell culture. Feline calicivirus (FCV) strain F9 (kindly provided 

by Dr. Jan Vinje at the Centers for Disease Control and Prevention, Atlanta, GA) stocks 

were made by infecting 90% confluent monolayers of Crandell Rees feline kidney 

(CRFK) (ATTC CCL-94, American Type Culture Collection, Manassas, VA) at a 

multiplicity of infection of 0.01 in Complete Eagles Modified Essential Media (Corning, 

Corning, NY) supplemented with 10% low-endotoxin heat inactivated fetal bovine serum 

(FBS) (Seradigm, VWR International, Randor, PA), 100 U/liter penicillin (HyClone, GE, 

Boston, MA), and 100 µg/liter streptomycin (HyClone, GE, Boston, MA). Murine 
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norovirus (MNV) CW3 (kindly provided by Dr. Herbert Virgin at the University of 

Washington, St. Louis) stocks were made by infecting 60 – 80% confluent monolayers of 

RAW 264.7 cell (ATCC TIB-71. American Type Culture Collection, Manassas, VA) at a 

multiplicity of infection (MOI) of 0.05. The medium used to grow RAW 264.7 cells and 

propagate MNV was previously described (16). CRFK and RAW 264.7 cells were grown 

at 37˚C and 5% CO2 (Symphony, VWR International, Randor, PA) until complete 

cytopathic effect (CPE) was observed (24 – 72 hr). After CPE, both viruses were 

harvested by three cycles of freeze-thawing followed by centrifugation for 10 min at 

5,000 x g and 4˚C. Finally, viral suspensions were chloroform extracted based on 

previous methods (16). Stocks of FCV (ca. 9 log PFU/ml) and MNV (ca. 8 log PFU/ml) 

were aliquoted and stored at -80˚C.  

Plaque assays. Infectious MNV and FCV were quantified by standard plaque assay as 

previously described with modifications (16, 17). Briefly, MNV plaque assay was 

completed by seeding 6-well dishes with RAW 264.7 cells at 1 x 106 viable cells/well and 

incubated until 60 – 80% confluent (4 – 8 hr). MNV experimental samples were diluted, 

if needed, in MNV infection medium, described elsewhere (16), containing 5% FBS 

(complete Eagles Modified Essential medium) to improve plaque formation. FCV plaque 

assay was based on previous work with significant modifications (17). CRFK cells were 

seeded in 6-well dishes at 2.5 x 105 viable cells/well and incubated until ca. 90% 

confluent (48 hr). FCV samples were serially diluted in CDMEM-5 if needed. After a 1 

hr absorption phase, 2 ml of 1:1 mixtures of 3% sea plaque agarose (Lonza, Switzerland) 
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and 2X Temin’s Modified Eagle Medium (MEM) were added to each well and incubated 

until visible plaque formation (24 – 72 hr). The 2X MEM was supplemented with 10% 

low-endotoxin heat inactivated FBS, 100 U/liter penicillin, 100 µg/liter streptomycin, 

10mM HEPES (HyClone, GE, Boston, MA), and 1 mM NEAA (HyClone, GE, Boston, 

MA). MNV and FCV plaques were visualized by staining agarose plugs with a 0.03% 

neutral red solution (Carolina Biological, Burlington, NC) mixed with 1X PBS and 

enumerated on a light box (Futura light box, Logan Electric, Bartlett, IL). Plaque assays 

for both MNV and FCV contained a stock suspension of virus and CDMEM-5 as a 

positive and negative control, respectively, to test for cell line permissiveness and 

contamination. Cell lines were not passaged >25 times.  

Preparation of carpet carriers. Wool level loop and nylon multi-level loop carpets 

(SDL-ATLAS, Rock Hill, SC) were selected from a list provided in ASTM standard 

F655-13 ((18). The carpet fiber characteristics, e.g. absorption capacity and zeta 

potential, are described elsewhere (Buckley et al. unpublished). Carpet samples contained 

no finishes, e.g. antimicrobial or soil retardant, and were cut into 5 x 5 cm carriers with a 

mechanical cutting die (Model #1500, Freeman Schwabe, Batavia, OH) (courtesy of Dr. 

Daniel Price, Interface Inc., Atlanta, GA). After cutting, carpets were shaken by hand to 

remove loose fibers, wrapped in aluminum foil, and autoclaved on a 30-min dry cycle.  

Sampling experiments. Wool and nylon carpet carriers (5 x 5 cm), each contained in a 

petri dish, were individually inoculated with 0.1 ml of FCV or MNV. Inocula were 
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diluted in CDMEM-5 and contained ca. 7 log PFU/ml of FCV or MNV. Carpet carriers 

were dried for 1 hr in a 30% relative humidity (RH) chamber (480 HP, VWR 

International, Randor, PA) maintained with a saturated MgCl2 solution. After drying, 

three recovery procedures, i.e. BE, MS, and MVAC, were assessed for their ability to 

elute FCV and MNV from wool and nylon carpets. Additionally, two separate elution 

buffers, 0.01 M phosphate buffered saline (PBS) + 0.02% Tween 80 (T80) and ¼ 

strength Ringer’s solution (RS) were tested using the BE and MS. Due to design 

limitations, only one buffer was used for the MVAC, i.e. sterile collection solution (SRS) 

(SRS 1000, M-VAC Systems, Sandy, UT).  

The MVAC was used in accordance with required training provide by M-Vac 

Systems, Incorporated, Sandy, UT. To recover viruses from carpet carriers using the 

MVAC, carriers were moved to a 150 mm Kirby Bauer dish (VWR International, 

Randor, PA) to adequately collect residual liquid. The M-VAC head has two functions: 

dry vacuum and wet vacuum extraction. During dry vacuum extraction, the edge of the 

circular head aspirates whereas during wet vacuum extraction the head aspirates while 

simultaneously spraying SRS from the head’s center in a horizontal plane. During 

recovery, the MVAC head was passed over three separate areas of the carrier three times, 

both horizontally and vertically. On each initial pass, the wet vacuum was on, whereas 

during the remaining two passes, in each area, only the dry vacuum was on.  

Recovery of FCV and MNV from carpet carriers were consistent with BE 

methods outlined in ASTM 2966-14 (13). Dried inoculated carpet carriers were each 

placed in separate 500 ml wide mouth polypropylene bottles (Fisher Scientific) 
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containing 100 ml of buffer.  Bottles were then sonicated (FS110, Fisher Scientific 

International, Pittsburg, PA) for 1 min at 40 kHz and hand shaken for l min. After 

shaking, carriers were removed with sterile forceps.  

Due to high sample volumes associated with BE and MVAC, a concentration step 

was applied. Immediately after recovery, BE and MVAC samples were concentrated via 

ultrafiltration (Amicon Ultra-15 30K, Millipore, Billerica, MA) at 4,000 x g for 15 min at 

4˚C (Allegra X-30R, Beckman Coulter, Brea, CA). Supernatants were pooled, vortexed, 

weighed, and stored at -80˚C prior to infectivity and qRT-PCR analysis.  

The MS was designed by Puritan Medical Supply (NC1213065 ENVIROMAX 

PROTOTYPE, Medical Supply, Guilford, ME) and purchased dry. Swabs were pre-

moistened by filling sleeves with sterile buffers, mentioned above, then gently rolled for 

3 minutes. Carpet carriers were swabbed horizontally, vertically, and diagonally, twice. 

Next, the swab head was pressed and twisted within its sleeve to elute any remain liquid. 

After eluting, the swab head was discarded.  Samples were vortexed, weighed, aliquoted, 

and stored at -80˚C prior to infectivity and qRT-PCR analysis.   

 

Sample clarification. To elucidate issues surrounding recovery and detection with qRT-

PCR recovery of FCV from wool carpet with BE and 0.01 M + 0.02% Tween 80 was 

used. Virus, recovery method, and carpet were selected based on the least efficacious 

RNA recovery rates reported in the comparison of sample recovery experiments (Table 

2). Carpet samples and viral inocula were prepared and executed as described above. 

After recovery samples were clarified by either filtering with 0.2 or 0.4 µm syringe filters 
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(Sterile Syringe Filter, VWR International, Randor, PA), centrifuging at 4,000 x g for 15 

mins at 4˚C (Allegra X-30R, Beckman Coulter, Brea, CA), 10-1 dilution before FCV 

RNA extraction in diethyl pyrocarbonate (DEPC) water (OMEGA Bio-Tek, Norcross, 

GA), or 10-1 dilution after FCV RNA extraction in DEPC water. The control samples 

were recovered and concentrated as stated above with no additional treatments.  

Real time qRT-PCR. Viral extraction was performed as previously described with minor 

modifications (11). QRT-PCR assays were completed with the E.N.Z.A Viral RNA Kit 

(OMEGA Bio-Tek, Norcross, GA), per manufacturer instructions, by extracting viral 

RNA from 0.15 ml of sample or stock. MS samples were extracted directly, whereas BE 

and MVAC samples were extracted after concentration via ultrafiltration and stored at -

80˚C prior to assessment. qRT-PCR of both viruses were completed with KAPA SYBR 

Fast Universal One-Step qRT-PCR Kit (Kapa Biosystems, Wilmington, MA) on a 

Realplex2 Mastercycler platform (Eppendorf, Hauppauge, NY). Forward and reverse 

primer sequences for FCV analysis were GCCATTCAGCATGTGGTAGTAACC and 

GCACATCATATGCGGCTCTG, respectively, whereas MNV forward and reverse 

primer sequences were TGATCGTGCCAGCATCGA and 

GTTGGGAGGGTCTCTGAGCAT, respectively (19). A standard curve was generated 

for both viruses by performing a 7-step 10-fold diluting of a previously titered and RNA 

extracted virus stock. Each dilution’s threshold cycle (CT) values was used to plot against 

its corresponding plaque forming unit (PFU) and calculated as previously described (19).  
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Data Analysis. All experiments were performed in triplicate with three replicates per 

experiment. Percent recovery efficiency (% RE) was defined as the number of PFU or 

genomic copies recovered divided by the number of PFU or genomic copies initially 

seeded (8). One-way multiple comparisons to determine significance among treatments. 

All results were expressed as mean ± standard deviation. Statistical significance was 

defined as P ≤ 0.05. Statistical analyses were conducted using JMP (JMP Pro 12.2.0, SAS 

Inc., Cary, NC). 

RESULTS 

Virus recovery efficiency via plaque assay. Table 4.1 shows the % RE and log10 PFU 

recovery of FCV and MNV from wool and nylon carpet carriers as measured by plaque 

assay. Percent RE and log10 PFU recovery of infectious FCV ranged from 0.37 to 48.44% 

and 3.24 to 5.51 log10 PFU on wool carrier, respectively, compared to 0.02 to 16.24% and 

2.10 to 5.03 log10 PFU on nylon carriers, respectively. The % RE and log10 recovery for 

infectious MNV ranged from 1.87 to 68.83% and 4.48 to 6.10 log10 PFU, respectively, on 

wool, compared to 1.54 to 74.67% and 4.30 to 6.13 log10 PFU, respectively, on nylon 

carpet carriers. The recovery method and eluent used significantly affected the recovery 

of infectious FCV whereas only the recovery method affected the recovery of MNV. BE 

with T80 and RS, and the MVAC achieved significantly higher recovery rates for FCV 

and MNV than did MS, excluding recovery of FCV using BE with RS from nylon carpet 

carriers. Carpet type significantly affected recovery of FCV when using BE and MS with 

the elution buffer RS with more FCV was recovered from wool than from nylon. 
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Comparatively, significantly more infectious MNV was recovered from both carpet types 

than was FCV, regardless of method and eluent.  

 

Virus recovery efficiency via qRT-PCR. Table 4.2 shows the % RE and log10 genomic 

copy recovery of FCV and MNV from wool and nylon carpet carriers measured with 

qRT-PCR. Percent RE and log10 genomic copy recovery of FCV ranged from 0.36 to 

4.95% and 2.63 to 3.81 log10 genomic copies, respectively, on wool carpet carriers 

compared to 0.69 to 23.72% and 2.78 to 4.49 log10 genomic copies, respectively, on 

nylon carpet carriers. To the contrary, % RE and log10 genomic copy recovery of MNV 

ranged from 2.42 to 38.78% and 4.36 to 5.40 log10 genomic copies, respectively, on wool 

carpet carriers compared to 2.02 to 79.15% and 4.13 to 5.68 log10 genomic copies. 

Recovery method and eluent type significantly affected the recovery of both FCV and 

MNV on both carpet types when assessed via qRT-PCR. MVAC exhibited significantly 

higher recoveries of genomic copies for FCV and MNV compared to all other methods, 

excluding FCV recovery using MS with RS on nylon and MNV recovery using BE with 

T80 and RS. Carpet type did not play a significant role in the recovery of FCV and MNV 

genomic copies, excluding recovery of MNV using BE T80 with RS. Overall, 

significantly more MNV genomic copies were detected compared to FCV, regardless of 

method and eluent. Additionally, visible wool and nylon carpet debris was accumulated 

when using BE in both the recovery suspension and within the RNA extraction columns, 

whereas with the MVAC, only wool debris appears in the recovery suspension and RNA 

extraction columns.  
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FCV detection after sample clarification. Sample clarification results are presented in 

Table 4.3. Due to low RNA % RE from wool, FCV was further tested for optimization of 

recovery and detection. Syringe filtering with 0.2 and 0.4 µm resulted in volumes too low 

for plaque assay and qRT-PCR analysis, as such no analysis was completed for this 

treatment. Recovery of FCV genomic copies from the control treatments and centrifuged 

treatments ranged from 4.14 to 4.89 log10 copies and 3.88 to 4.90 log10 copies, 

respectively. In contrast, recovered infectious FCV from the control was 5.76 log10 PFU, 

whereas, centrifugation yielded 5.61 log10 PFU. Recovery of infectious FCV and genomic 

copies were significantly reduced with centrifugation alone compared other clarification 

methods. At the same time, amplification of the PCR target from the 10-1 dilution of both 

control and centrifuged samples after RNA extraction was significantly higher compared 

to all other clarification processes.  

DISCUSSION 

FCV and MNV are commonly used as surrogates to study the behavior of HuNoV 

in the environment (20). Recovery methods are the underpinning of environmental 

detection procedures. However, there is scant literature regarding recovery efficiency of 

methods used to detect HuNoV as well as other enteric viruses on complex soft surfaces, 

such as carpet, and of those studies, many use different recovery procedures. In this 

study, we evaluated three recovery methods’ ability to recover two HuNoV surrogates, 

FCV and MNV, from wool and nylon carpet carriers. Additionally, we attempted to 

improve detection via qRT-PCR by clarifying samples prior to analysis. Our findings 
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demonstrate the efficiency and limitations these three methods may have when used to 

recover and detect HuNoV surrogates from complex soft surfaces. 

The findings from previously published studies indicated that both recovery 

method and eluent type could significantly affect the recovery of viruses with some study 

authors suggesting that optimization of methods may improve recovery (21, 22). In our 

study, data from plaque assays, i.e. infectious data, indicated that recovery method and 

eluent type significantly affected the recovery of HuNoV surrogates, FCV and MNV. 

Among the carpet samples tested, BE and MVAC were the most efficacious methods for 

recovering infectious FCV and MNV from wool and nylon carpets. The mode of action 

for each recovery method tested relied upon fiber rehydration, which changes the zeta 

potential of the fiber and the virus surface charge. However, each recovery method 

differed in the physical removal and recovery of the virus after the elution buffer 

application. For instance, the mechanism of action for MVAC relies upon the dual use of 

a spray, which assists in desorption of virus from the fibers, while simultaneously 

aspirating the virus containing suspension. In contrast, BE uses sonication which 

weakens virus surface attachment, providing higher recovery than traditional 

handshaking (11). However, both methods are expensive and rely upon the use of high 

volumes to recover virus, which lowers the detection limit and necessitates the use of a 

concentration step. Swabs are the most frequently used tool for environmental recovery 

method because they are simple to use, economical, and low-volume, i.e. no addition 

concentration step. Nevertheless, the problem with swabbing is that it is usually 

accompanied by a significant loss in recovery efficiency. Ultimately, each method may 
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be useful based on – time, funding, technical expertise, and study type, i.e. efficacy study 

or environmental monitoring. 

Recovery of infectious virus from environmental samples can vary based on 

surface type. The surface hydrophilicity, absorption capacity, zeta potential, and chemical 

surface interactions in addition to a virus’s characteristics, i.e. isoelectric point, can 

influence both survival and recovery of the virus. For example, Yeargin et al. (11) found 

that after drying, recovery of both FCV and MNV was significantly different across 

cotton, polyester, and glass when using the same recovery method. Another study 

demonstrated higher recovery efficiency of MNV from inoculated diapers compared to 

cotton gauze (10). Unpublished data from M-Vac Systems, Incorporated, suggested some 

biological material, such as DNA, has higher recovery rates on natural surfaces, such as 

wool and cotton, compared to synthetic material, nylon and rayon (14). Consistent with 

these findings, we found that higher titers of FCV and MNV were recoverable from wool 

compared to nylon. This is likely a result of wool’s higher absorption capacity and ability 

to provide a more protective environment during desiccation (Buckley et al. chapter 3). 

This assertion is supported by a published study that examined the same fibers, 

suggesting both FCV and MNV can survive longer on wool carpet fibers than on nylon 

carpet fibers. Fabrication of soft surfaces has also been shown to influence the recovery 

and survival of enteric viruses, such as poliovirus (23). The additional fiber twist that 

accompanies a tuft carpet construction, observed in nylon carpet but not in wool carpets, 

may further prevent elution of viruses.  
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When selecting a recovery method, eluent type is a critical factor to consider 

based on recovery type, downstream assays, and storage conditions, especially when a 

concentration step is required for detection. Concentration methods can also concentrate 

inhibitors cytotoxic to cell culture systems or may interfere with PCR, e.g. degradation of 

target nucleic acid or reduced extraction efficiency from heterogeneous samples (5, 24). 

However, a meta-analysis of virus surface sampling literature suggests eluent type does 

not significantly influence recovery of viruses (8). Although, the meta-analysis conducted 

in that study did not specifically target non-enveloped viruses and most recovery methods 

used swabs. Ultimately, the authors suggested using ¼ strength Ringer’s solution with a 

polyester-tipped swab. Our results indicated eluent type can significantly influence virus 

recovery of FCV, when using BE and MS methods. Typically, eluents range from pH 6 – 

9 to buffer the solution, reduce cytotoxicity, and create a negative viral surface charge 

(25). Often, surfactants are included to assist with recovery via reduced surface tension 

and micelles formation. In this study, the addition of Tween 80 to a simple, low ionic 

strength buffer, significantly improved FCV recovery compared to using ¼ strength 

Ringer’s solution, which contains no surfactants. On the other hand, another high 

efficiency recovery method for soft surfaces using a mini-spin column-based approach 

had similar recovery rates of FCV and MNV as the BE and MVAC methods from the 

same carpet fibers but did not require high volumes or a concentration step (Buckley et 

al. chapter 3). Additionally, and consistent with the findings of Julian et al. (8), the mini-

spin column method results indicated eluent type did not significantly affect recovery of 

FCV and MNV (Buckley et al. chapter 3). Albeit, this method was not incorporated to 
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our study because it requires packable fibers, e.g. shaved carpet fibers or swatches, and 

does not mimic the scale or surface complexity needed to assess virus recovery of intact 

carpet carriers. Collectively, these findings suggest that eluent type may affect recovery 

of some viruses and is dependent upon both recovery method and virus type.  

Several published papers have detailed the inactivation profiles of HuNoV 

surrogates (6, 26). Not surprisingly and consistent across previous studies, significantly 

more infectious and genomic copies of MNV were detected compared to FCV. MNV has 

been demonstrated to be more environmentally resilient on both hard and soft porous 

surfaces and is more resistant to some chemical inactivation treatments compared to FCV 

(20, 27). Although a calicivirus, FCV is also classified as a respiratory pathogen and 

cannot survive harsh climates like the gastrointestinal system. We believe the difference 

is primarily due to capsid integrity and higher receptor sensitivity to environmental 

factors, although other structural or solution characteristics cannot be eliminated.  

The divergence between infectivity assays and molecular data, i.e. qRT-PCR, has 

been previously documented (10, 28). Traditionally, unless samples are enzymatically 

pre-treated, concentrations of RNA as measured by qRT-PCR, are higher compared to 

infectious counts. This is due to capsids becoming inactivated but not lysed, allowing for 

temporary preservation of its genome. However, there is evidence to dispute this. For 

instance, an extensive recovery comparison study using another HuNoV surrogate, MS2 

phage, showed that fractions of MS2 phage RNA recovered from environmental surfaces 

were lower than recovered infectious MS2 phage (8). Consistent with those findings, we 

found that recovery of FCV and MNV genomic copies were less than the recovery of 
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infectious FCV and MNV among undiluted, RNA extracted samples. We believe an 

inhibitor impacted our qRT-PCR amplification and/or extraction efficiency, whereas 

Julian et al. (8) suggested the lower fractional recovery may be a result of exogenously 

seeded RNA or viral aggregates (8). Degradation or lysis of capsids can occur leading to 

higher exogenous genomic copies compared to estimates of infectious counts in stocks 

and inocula. Commonly, when seeded, the exogenous RNA would degrade more quickly 

than capsid-protected RNA, leading to an inflated initial copy count, and resulting in 

lower calculated RE (28). Be that as it may, viral aggregates, may also reduce the 

recovery of RNA as they are not distinguishable within a plaque assay and may decrease 

extraction efficiency.  

In our study, the sample matrices were wool and nylon, and the fibers in 

recovered samples may have affected qRT-PCR. Therefore, sample clarification was 

studied to improve detection by removing contaminants that may interfere with the assay. 

Attempts to elucidate possible interferences with qRT-PCR via sample clarification both 

positively and negatively affected genomic copy recovery. We believed carpet fibers may 

reduce extraction efficiency based on accumulated carpet debris observed within RNA 

extraction columns. Our attempts to remove the carpet fibers via syringe filtering (data 

not shown) and centrifugation significantly lowered volume and both PFU and copy 

number, respectively. This suggests some viruses may be attached or trapped within 

pelleted fibers. At any rate, both syringe filtering and centrifuging are not recommended 

as sample clarification techniques for recovery of FCV from carpets. Dilution is also a 

simple but effective method for removing inhibitors. Our qRT-PCR results of samples 
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diluted prior to RNA extraction suggested a filterable PCR inhibitor was concentrated 

with FCV genomic RNA, prompting us to dilute the extracted RNA samples. Under these 

conditions, the inhibitor was reduced, which allowed for significantly more target 

amplification. The specific inhibitor is unknown but, as stated previously, PCR can be 

inhibited by numerous factors, such as complex polysaccharides, organic material, and 

metal ions (29). The inhibitor could have originated from a variety of sources but likely is 

due to the carpet or extraction column. Future studies designing or optimizing recovery of 

viruses from environmental samples are encouraged test for qRT-PCR for inhibition with 

specificity, i.e. fluorogenic probe, and incorporate an external standard.  

 

CONCLUSIONS 

 The assessment of recovery methods is a critical first step to improve the 

detection and quantification of viruses. Here, we tested 3 mechanistically different 

recovery methods intended for HuNoV recovery from carpets. BE and MVAC exhibited 

higher recovery efficiencies compared to MS. Furthermore, detection of FCV and MNV 

via qRT-PCR can be inhibited when recovered from wool and nylon carpets. Ultimately, 

each method demonstrates merit for use under different conditions, e.g. standard testing 

and environmental monitoring. 
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Table 4.1 Recovery efficiency percentages of FCV and MNV via plaque assay from carpet 
%RE (log recovery [PFU])a 

FCV MNV 
Recovery Methodb Bufferc Wool Nylon Wool Nylon 
BE T80 48.44 (5.51 ± 0.13)A 16.24 (5.03 ± 0.16)BC 68.83 (6.10 ± 0.09)A 60.47 (6.07 ± 0.06)A

BE RS 10.41 (4.88 ± 0.07)BC 0.44 (3.42 ± 0.30)DE 38.87 (5.88 ± 0.09)A 40.77 (5.91 ± 0.10)A

MS T80 0.82 (3.76 ± 0.16)D 0.54 (3.62 ± 0.01)D 1.87 (4.50 ± 0.17)B 2.87 (4.58 ± 0.29)B

MS RS 0.37 (3.24 ± 0.34)E 0.02 (2.10 ± 0.22)F 2.16 (4.48 ± 0.26)B 1.54 (4.30 ± 0.29)B

MVAC SRS 18.29 (5.16 ± 0.04)AB 7.30 (4.75 ± 0.01)C 52.58 (5.99 ± 0.08)A 74.67 (6.13 ± 0.15)A

aData are expressed as percent recovery (log means ± standard deviation). Within each surrogate, log10 values with different 
letters are significantly different (P<0.05), among both surfaces. 
bBE: bottle extraction; MS: macrofoam-tipped swab; MVAC: microbial vacuum; 
cT80: 0.01 M phosphate buffered saline + 0.02% Tween 80; RS; ¼ strength Ringer’s solution; SRS: sterile rinse solution 
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Table 4.2. Recovery efficiency percentage of FCV and MNV via qRT-PCR from carpet 
%RE (log recovery [genomic copies])a 

FCV MNV 
Recovery 
Methodb 

Bufferc Wool Nylon Wool Nylon 

BE T80 0.81 (2.95 ± 0.19)DE 2.53 (3.46 ± 0.21)CD 3.37 (4.44 ± 0.19)CD 8.04 (4.83 ± 0.15)ABC

BE RS 0.36 (2.63 ± 0.19)F 0.69 (2.78 ± 0.36)EF 3.34 (4.47 ± 0.12)CD 14.97 (5.15 ± 0.06)AB

MS T80 1.03 (2.95 ± 0.33)DE  1.31 (3.18 ± 0.25)CDE 4.25 (4.59 ± 0.07)BCD 3.08 (4.34 ± 0.25)D

MS RS 1.70 (3.23 ± 0.24)CDE 2.24 (3.45 ± 0.12)BC 2.42 (4.36 ± 0.03)CD 2.02 (4.13 ± 0.29)D

MVAC SRS 4.95 (3.81 ± 0.05)AB 23.72 (4.49 ± 0.09)A 38.78 (5.40 ± 0.36)A 79.15 (5.68 ± 0.27)A

aData are expressed as percent recovery (log means ± standard deviation). Within each surrogate, log10 values with different 
letters are significantly different (P<0.05), among both surfaces. 
bBE: bottle extraction; MS: macrofoam-tipped swab; MVAC: microbial vacuum; 
cT80: 0.01 M phosphate buffered saline + 0.02% Tween 80; RS; ¼ strength Ringer’s solution; SRS: sterile rinse solution 
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Table 4.3. Recovery of FCV from wool carpet with bottle extraction method after sample 
clarification  

Recoverya 

Clarification Processb 

qRT-PCR 
log copies ± 

SD 

Plaque 
Assay 

log PFU ± 
SD 

Control 4.14 ± 0.29B 5.76 ± 0.10A 
10-1 control before RNA extraction 4.36 ± 0.08B - 
10-1 control after RNA extraction 4.89 ± 0.12A - 

Centrifugation treatment 3.88 ± 0.17C 5.61 ± 0.10B 
10-1 before RNA extraction 4.27 ± 0.21B - 
10-1 after RNA extraction 4.90 ± 0.12A - 

aLog10 values with different letters in the same column are significantly different 
(P<0.05).  
bControl: unclarified FCV recovery from wool carpet; 10-1 dilution before FCV RNA 
extraction in diethyl pyrocarbonate (DEPC) water; 10-1 dilution after FCV RNA 
extraction in DEPC water; Centrifugation at 4,000 x g for 15 mins; 10-1 dilution of 
centrifuged samples before FCV RNA extraction in DEPC water; 10-1 dilution of 
centrifuged samples after FCV RNA extraction in DEPC water. 
c – not tested as there was no suspected interference. 
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CHAPTER FIVE 

EFFICACY OF SILVER DIHYDROGEN CITRATE AND STEAM VAPOR AGAINST 
A HUMAN NOROVIRUS SURROGATE, FELINE CALICIVIRUS, IN SUSPENSION, 

ON GLASS, AND CARPET 

ABSTRACT 

Human noroviruses (HuNoV) are responsible for 19-21 million illnesses each 

year in the United States while also accounting for ca. 20% of all diarrheal cases 

worldwide. Effective environmental hygiene programs are important to prevent and 

control of HuNoV outbreaks. However, despite our increasing knowledge of the role of 

soft surfaces in the transmission of HuNoV, no commercially available disinfection 

technologies have been evaluated on carpets. Our aim was to assess two disinfection 

technologies, silver dihydrogen citrate (SDC) and steam vapor, against one HuNoV 

surrogate, feline calicivirus (FCV), on wool and nylon carpet. First, we evaluated the 

effect of both technologies on the aesthetic appearance of carpet. After developing a 

neutralizer for SDC, we evaluated the efficacy of SDC in suspension with and without 

5% fetal bovine serum (FBS) and the efficacy of SDC and steam vapor on glass, each 

with and without 5% FBS.  Lastly, we tested both technologies on carpets. Wool and 

nylon carpet carriers exhibited no obvious color changes after both treatments, however, 

SDC treatment left a residue while steam resulted in minor abrasions to surface fibers. A 

sodium thioglycolate-based solution was found to adequately neutralize and eliminate 

SDC cytotoxicity. SDC in suspension and on glass reduced FCV by 4.65 and >4.66 log10 

pfu with in 30 mins, respectively, but demonstrated reduced efficacy in the presence of 

serum. However, SDC was only efficacious against FCV on nylon (3.62 log10 pfu 
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reduction) as compared with 1.82 log10 reduction on wool carpet. Steam vapor reduced 

FCV by >4.93 log10 pfu on glass in 10 sec, with no observed difference among serum 

treatments, and >3.68 log10 pfu on wool and nylon carpet carriers in 90 sec. There was 

limited reduction to FCV RNA under both treatments regardless of treatment compared 

to infectivity assays but RNA reductions were higher in sample that contained 5% serum. 

 

INTRODUCTION 

 Human noroviruses (HuNoV) are the leading causes of acute gastroenteritis 

worldwide as well as the most common cause of foodborne disease in the United States. 

Worldwide, its economic burden is estimated to be US$4.2 billion in health care costs 

alone illustrating its significance as a public health problem (1, 2). Common symptoms 

include both diarrhea and vomiting, which aid in its spread. Transmission occurs two 

ways -- the fecal-oral or vomitus-oral route through person-to-person contact, food, 

water, or environmental surfaces (1).  

Environmental transmission of HuNoV is estimated to be low (3). Even so, 

several epidemiological investigations and laboratory-based studies suggest the 

environment plays an important role in transmission as both hard and soft surfaces may 

initiate and prolong HuNoV outbreaks (4). For example, a hotel in the United Kingdom 

experienced a 5-month long HuNoV outbreak (5). Outbreaks investigators suggested, in 

addition to HuNoV environmental stability, ineffective decontamination of soft surfaces 

assisted in prolonging the outbreak.  
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Focusing on environmental sanitation is a recommended strategy to prevent and 

control HuNoV outbreaks. The challenge to effective environmental sanitation is that 

HuNoV can be shed in high titers from infected individuals. This, coupled with its 

environmental stability, low infectious dose, and resistance to many commonly used 

disinfectants, e.g. phenolic and quaternary ammonium compounds, makes HuNoV 

outbreaks difficult to control. The current recommendation for HuNoV clean-up includes 

using1,000–5,000 ppm bleach or an Environmental Protection Agency (EPA)-registered 

disinfectant (6). However, these were validated for hard surfaces not soft surfaces.  

Moreover, their use may damage the appearance of soft surfaces, such as carpet and soft 

furnishings. Furthermore, carpet and other soft furnishings can absorb toxic active 

ingredients causing irritation of the skin, eyes, and respiratory tract (7). Fogging with 

certain chemistries, e.g. ozone and H2O2, has demonstrated efficacy against some enteric 

viruses but is impractical in some settings, e.g. long-term care facilities and residential 

homes, due to temporary removal of residents and cost (8, 9). Taken together, the 

disinfectant shortcomings of current disinfectant procedures present a gap in evidence-

based control strategies for disinfecting soft surfaces contaminated with viruses 

suggesting the need to evaluate safe and practical technologies for use on soft surfaces.  

To our knowledge, only one previous study has investigated the use of 

disinfection technologies against viruses on carpets, all of which are liquid-based (10). 

Investigators found that a glutaraldehyde-based solution could achieve EPA efficacy 

standards for disinfection on soft surfaces against a HuNoV surrogate, feline calicivirus 

(FCV) (3.0 log10 reduction) but was linked to negative health effects, such as skin rashes 
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and respiratory irritation (11). Other chemistries tested were salt and quaternary 

ammonium-based products, which have shown little efficacy against HuNoV (10). 

Recently, transitional metal ions, such as silver, have demonstrated broad-range efficacy 

against microorganisms although they are more stable when generated in the presence of 

citric acid to form silver dihydrogen citrate (SDC). The benefit of SDC is that it is less 

toxic compared to other chemistries, i.e. glutaraldehyde, and may be more gentle on 

delicate soft surfaces. Previous studies with SDC have demonstrated its efficacy against 

HuNoV but these studies lack infectious data required by the EPA to be registered (12, 

13).  

The Centers for Disease Control and Prevention (CDC) and the Occupational 

Safety and Hazard Administration (OSHA) have both recommended steam cleaning for 

carpets after a suspected HuNoV contamination event (14). Steam has been shown to be 

efficacious against non-sporeforming bacteria on hard surfaces, but there is scant 

literature of its efficacy against viruses. A dry-steam vapor system with thermos 

accelerated nano-crystal sanitation (TANCS) technology (Advanced Vapor Technologies, 

Seattle, WA) is a promising tool for disinfecting virally contaminated soft surfaces. 

Previous work with MS2 phage and FCV on hard surfaces demonstrated a >6 log and >4 

log reduction in less than 5 and 10 sec, respectively (15, 16).  However, the efficacy of 

steam or moist heat against virus contamination on soft surfaces has not been measured 

under controlled conditions (17). This is due, in part, to a lack of standardized test 

methods for quantitative assessment of disinfecting solutions for carpets contaminated 

with viruses.  
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The gap in knowledge about the efficacy of soft surface disinfection technologies 

and the lack of standardized test methods for carpets warrants further exploration. To our 

knowledge, no published studies have investigated either technology against infectious 

HuNoV surrogates on carpet. The aim of this study was to assess these two disinfection 

technologies against FCV on wool and nylon carpet. Specific objectives were to: (i) 

assess these technologies in suspension, (ii) on a hard surface with current American 

Society for Testing and Materials (ASTM) International standards, and (iii) on carpets by 

adapting a current ASTM International standard.  

MATERIALS AND METHODS 

Virus propagation, cell culture, and plaque assay. A stock of feline calicivirus (FCV) 

strain F9 (kindly provided by Dr. Jan Vinje at the Centers for Disease Control and 

Prevention, Atlanta, GA) was propagated by infecting 90% confluent monolayers of  

Crandell-Rees kidney cell (CRFK) (ATCC CCL-94, American Type Culture Collection, 

Manassas, VA) at a multiplicity of infection (MOI) of 0.01 in Complete Eagles Modified 

Essential Media (Corning, Corning, NY) supplemented with 10% low-endotoxin heat 

inactivated fetal bovine serum (FBS) (Seradigm, VWR International, Randor, PA), 100 

U/liter penicillin (HyClone, GE, Boston, MA), and 100 µg/liter streptomycin (HyClone, 

GE, Boston, MA). CRFK was incubated at 37˚C and 5% CO2 (Symphony, VWR 

International, Randor, PA) until complete cytopathic effect was observed (1 – 3 days). 

FCV was harvested from cell lysates by three cycles of freeze-thawing followed by 

centrifugation for 10 min at 5,000 x g and 4˚C then extracted with chloroform as 
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previously described (18). FCV (ca. 9 log PFU/ml) stocks were aliquoted and stored at -

80˚C.  

Infectious FCV was quantified by standard plaque assays as previously described 

with modifications (19). Briefly, CRFK cells were seeded in 6-well dishes at 2.5 x 105 

viable cells/well and incubated until ca. 90% confluent (2 days). FCV samples were 

serially diluted in an infection medium described elsewhere, containing 5% FBS 

(CDMEM-5) if needed. During the plaque assay 0.2 ml of sample was added to each well 

containing 0.3 ml of CDMEM-5 and immediately swirled. After a 1 hr absorption phase, 

2 ml of 1:1 mixtures of 3% seaplaque agarose (Lonza, Switzerland) and 2X Temin’s 

Modified Eagle Medium (MEM) were added to each well incubated until visible plaque 

formation (1 – 3 days). The 2X MEM was supplemented with 10% low-endotoxin heat 

inactivated FBS, 100 U/liter penicillin, 100 µg/liter streptomycin, 10 mM HEPES 

(HyClone, GE, Boston, MA), and 1 mM NEAA (HyClone, GE, Boston, MA). FCV 

plaques were visualized by staining agarose plugs with a 0.03% neutral red solution 

(Carolina Biological, Burlington, NC) mixed with 1X PBS and enumerated on a light box 

(Futura light box, Logan Electric, Bartlett, IL). FCV plaque assays contained a stock 

suspension of virus and CDMEM-5 as a positive and negative control, respectively, to 

test for cell line permissiveness and contamination. CRFK was passaged fewer than 25 

times.  

RNA extraction and qRT-PCR. Viral extraction was performed as previously described 

with minor modifications (20). Viral RNA was extracted from 0.15 ml of a sample or 
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virus stock with ENZA Viral RNA Kit (OMEGA Bio-Tek, Norcross, GA) per 

manufacturer instructions. Viral RNA was extracted on the day of recovery experiments 

and stored at -80˚C prior to use. KAPA SYBR Fast Universal One-Step qRT-PCR Kit 

(Kapa Biosystems, Wilmington, MA) was used to detect FCV on a Realplex2 

Mastercycler platform (Eppendorf, Hauppauge, NY). Forward and reverse primer 

sequences for FCV qRT-PCR analysis were GCCATTCAGCATGTGGTAGTAACC and 

GCACATCATATGCGGCTCTG, respectively (21). The standard curve for FCV was 

prepared by performing an 7-step 10-fold dilution of virus stocks. Log reductions 

(Equation 1) of virus RNA were performed as previously described (21).  

!"# $%& '()*+,-%. = (12,4512,6)
8   (Equation 1) 

where CT,t is the cycle threshold (CT) for the experimental group, CT,c is the cycle 

threshold for the control recovered at time 0, and k is the slope obtained from plotting the 

CT values vs. the log10 of the RNA copy number used for presenting the standard curve 

(21).  

 

Preparation of surface samples. Wool-level loop and nylon multi-level loop carpets 

(SDL-ATLAS, Rock Hill, SC) were selected according to ASTM standard F655-13 (22). 

The carpet fiber characteristics, e.g. absorption capacity and zeta potential, are described 

elsewhere (Buckley et al. Chapter 3). Carpets contained no finishes, e.g. antimicrobial or 

soil retardant, and were cut into 5 x 5 cm carriers with a mechanical cutting die (Model 

#1500, Freeman Schwabe, Batavia, OH) (courtesy of Dr. Daniel Price, Interface Inc., 
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Atlanta, GA). After cutting, carpets were dusted by hand to remove loose fibers, wrapped 

in aluminum foil, and autoclaved on a 30-min dry cycle.  

Disinfection technologies. We tested two disinfection technologies: SDC and 

steam-vapor (2300SB with TANCS, Advanced Vapor Technologies, Seattle, WA). SDC 

contained 0.003% silver ion stabilized in 4.846% citric acid to form SDC. The steam-

vapor device with a TANCS processer was filled with tap water and connected to a hose 

with a ca. 2.5 cm diameter cleaning head. A standard cotton terry cloth was autoclaved, 

folded to yield 4 layers, wrapped around the cleaning head, held with a rubber band, and 

changed between each sample. Before each use the system was pre-heated by saturating 

the hose line and cleaning head with steam (ca. 20 sec). During application, the cleaning 

head was vertically guided across a surface while providing a temperature between 85 to 

104˚C and a pressure of 0.83 to 1.38 bar per the manufactures specifications.  

Cytotoxicity and neutralization testing. SDC cytotoxicity testing, validation of 

neutralization, and assessment of neutralized test substance interference with FCV 

infectivity were conducted in accordance with methods outlined in ASTM 2197-11 (23). 

Two SDC neutralizers were tested: neutralizer 1: 2.2 g/l NaHCO3, 1 g/l Na2S2O3, 0.01 M 

PBS, and 0.02% Tween 80, pH = 8.5; and neutralizer 2: 4.4 g/l NaHCO3, 3 g/l Na2S2O3, 

10 mM HEPES, 0.01 M PBS, and 0.02% Tween 80, pH = 8.5. Briefly, CRFK 

monolayers were observed under a microscope (ACCU-SCOPE, Commack, NY) for 

apparent cytotoxicity after a 1 hr contact time with dilutions (1:10 and 1:20) of SDC. 

Next, dilution with no cytotoxicity and a control, CDMEM-5, were spiked with 10 to 100 
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PFU of FCV and measured for infectivity with plaque assay. Infectivity interference was 

measured by incubating the dilutions of the SDC with CRFK monolayers for 1 hr 

followed by a standard plaque assay with similarly spiked samples and controls 

mentioned above. Neutralizers were considered suitable if 80% of the spiked FCV titer 

was recovered (23).  

 

 Quantitative suspension test. Efficacy of SDC, with and without 5% FBS, was 

tested in accordance with ASTM standard E1052-11 with minor modifications (24). 

Briefly, a FCV stock was diluted in CDMEM-5 or 1X phosphate buffered saline (PBS) to 

yield a ca. 1 x 107 pfu/ml concentration. A 100 µl volume of each inocula were combined 

with 900 µl of SDC for 1, 5, 10, and 30 min contact times. Samples were neutralized by 

mixing 100 µl of sample with 900 µl of a neutralizer containing 4.4 g/l NaHCO3 + 3 g/l 

Na2S2O3 + 10 mM HEPES + 0.01 M PBS + 0.02% Tween 80. To verify neutralization, 

neutralization and cytotoxicity controls were incorporated. Separate aliquots for each 

sample were prepared for infectivity and qRT-PCR analysis and frozen at -80˚C.  

 

 Quantitative disk carrier test. The efficacy of SDC and steam-vapor against 

FCV on a hard surface, with and without 5% FBS, were performed in accordance with 

ASTM standard E1053-11 with modifications (25). Briefly, glass coverslips (25 mm x 25 

mm) contained in a glass petri dish (Corning, Corning, NY) were inoculated with 25 µl 

(ca. 1 x 107 pfu/sample) and dried for 1 hr in a 30% relative humidity (RH) chamber (480 

HP, VWR International, Randor, PA) then maintained with a saturated MgCl2 solution. 
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After drying, virus films were inoculated with 200 µl of SDC for 1, 5, 10, and 30 min 

contact times. At each time point, 1.8 ml of a neutralizing broth, mentioned above, were 

pipetted on the cover slip. On the other hand, steam-vapor was applied for 10, 30, 60, and 

90 sec. Samples treated with steam-vapor were neutralized by applying 2 ml of a 4˚C 

chilled neutralizer (0.01 M PBS + 0.02% Tween 80) to the glass surface. To verify 

neutralization, virus, neutralization, and cytotoxicity controls were incorporated. In both 

experiments, samples were recovered as previously described, aliquoted for infectivity 

and qRT-PCR analysis, and frozen at -80˚C (26). 

Quantitative carpet carrier test. The efficacy of SDC and steam-vapor against 

FCV inoculated onto carpets was performed in accordance with ASTM E2966-14 with 

modifications (Figure 5.1) (27). Wool and nylon carpet carriers (5 x 5 cm), each 

contained in a petri dish, were inoculated with 100 µl of FCV, and dried for 1 hr at 30% 

RH. Inocula were diluted in CDMEM-5, contained ca. 7 log pfu/ml of FCV. For SDC 

treatment, carpet carriers were sprayed 5 times (6.85 ± 0.21 ml) and scrubbed clockwise 

and counter-clockwise for 30 sec each with a saturated surgical scrub brush (1.23 ± 0.41 

ml) (Becton Dickinson, Franklin Lakes, NJ) without detergent and left at ambient

conditions for a 1 hr contact time. In contrast, steam-vapor was applied to the carpet 

carriers for a 90 sec contact time. 

To recover FCV, dried inoculated carpet carriers were aseptically transferred to a 

500 ml bottle (Thermo Fisher Scientific, Waltham, MA) containing 100 ± 1 ml of their 

respective neutralizing broth, mentioned above, sonicated for 1 min at 40 KHz (FS110, 

Fisher Scientific International, Pittsburg, PA), and hand shaken for 1 min. Next, carpet 
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carriers were aseptically removed, and samples frozen at -80˚C. On a separate day, 

samples were thawed in a water bath at 37˚C  (IR35 New Brunswick Scientific, New 

Brunswick, NJ), transferred to 50 ml conical tubes (VWR International, Randor, PA), 

centrifuged at 4,000 x g for 15 min at 4˚C (Allegra X-30R, Beckman Coulter, Brea, CA), 

and concentrated via ultrafiltration (Amicon Ultra-15 30K, Millipore, Billerica, MA) at 

4,000 x g for 15 min at 4˚C. Supernatants were pooled, vortexed, weighed, aliquoted, and 

stored at -80˚C prior to infectivity and qRT-PCR analysis.  

 

Qualitative appearance test. Wool and nylon carpet carriers were treated with SDC and 

steam vapor as described above. Carriers were photographed with a camera (AX53, 

Sony, Minato, Tokyo, Japan) at time 0, 60 min, and 24 hr. 

 

Statistical analysis.  All experiments were performed in triplicate with three replicates 

per experiment except for the carpet experiment, which had 5 replicates in 3 independent 

experiments. Log reductions were calculated by Log N/N0 where N is the average of 

treatment samples and N0 is the average of control samples. Statistical analysis was 

performed using one-way multiple comparisons. All results were expressed as mean ± 

standard deviation. Statistical significance was defined as P ≤ 0.05. Statistical analyses 

were conducted using JMP (JMP Pro 12.2.0, SAS Inc., Cary, NC). 
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RESULTS 

Cytotoxicity and neutralization of SDC. Neutralizers 1 and 2 were evaluated based on 

their ability to prevent cytotoxicity and neutralize SDC. SDC showed no apparent 

cytotoxicity toward CRFK cells after 1 hr incubation and at the 1:10 and 1:20 dilutions in 

both neutralizers. Furthermore, during validation of neutralization both neutralizers 

achieved >80% recovery of FCV compared to the controls. However, FCV was unable to 

form plaques when using neutralizer 1 as all results indicated 100% cytopathic effect at 

both 1:10 and 1:20 dilutions of SDC during the assessment of neutralized SDC 

interference with infectivity testing, whereas neutralizer 2 did not show signs of 

cytotoxicity and yielded >84% recovery of FCV with a 1:10 and 1:20 dilution of SDC. 

As a results neutralizer 2 was used in the following studies. 

Efficacy of SDC in suspension. Table 5.1 shows the efficacy of SDC against infectious 

FCV with and without 5% serum between a 1 and 30 min contact time in suspension. 

With the addition of serum, infectious FCV was reduced by 4.29 log10 pfu within 1 min 

and continued to inactivate FCV up to 4.65 log10 pfu after 30 min. Conversely, SDC 

treatments of FCV with no serum were reduced by 4.51 log10 pfu within 1 min but no 

additional inactivation was observed after 5 min. Comparatively, between 1 and 10 min 

serum significantly reduced SDC’s ability to inactivate FCV compared serum-free 

treatments. Likewise, contact time significantly affected SDC in the presence of serum 

but not for treatments without serum. However, overall there was no significant 

difference observed between serum treatments after a 30 min contact time. 
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 Table 5.1 shows the efficacy of SDC against FCV evaluated via qRT-PCR. Log10 

reduction of FCV RNA ranged between 1.85 to 1.93 log10 copies and 1.72 to 1.84 log10 

copies for treatments with and without serum, respectively. Contact time did not 

significantly affect FCV’s RNA, regardless of serum presence. However, there was a 

significant difference observed among samples treated with and without serum after 5 

mins of SDC exposure, albeit, the difference was only 0.12 log10 copies. Similarly, other 

serum-free treatments exhibited lower copy reductions compared to treatments with 

serum.  

 

Efficacy of SDC and dry-steam on glass carriers. Table 5.2 shows the efficacy of SDC 

against FCV on a glass surface with and without serum between 1 and 30 min of contact 

time. On glass the initial level of FCV recovered from controls during SDC testing for 

samples with and without serum were 5.68 ± 0.24 log10 pfu and 4.50 ± 0.04 log10 pfu, 

respectively. SDC reduced FCV by >4.66 and >3.46 log10 pfu within 30 and 10 min with 

and without serum, respectively. Inactivation of FCV by SDC was significantly affected 

by time. The presence of serum demonstrated a higher log reduction compared to serum-

free treatments. However, there was significant difference (1.18 log10 pfu) among 

recovered control samples from serum and serum-free carriers. SDC qRT-PCR results 

exhibit a maximum reduction of 1.01 log10 copies over 30 min. And, like suspension 

tests, serum-free samples exhibited a lower reduction in RNA compared to serum treated 

samples.   

 Table 5.3 shows the efficacy of dry-steam vapor with TANCS against FCV on a 
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glass surface with and without serum between a 10 and 90 sec contact time. On glass the 

initial level of FCV recovered from controls during dry-steam vapor testing for samples 

with and without serum were 5.99 ± 0.20 log10 pfu and 5.17 ± 0.16 log10 pfu, 

respectively. Dry-steam reduced infectious FCV by >4.93 and >4.11 log10 pfu within 10 

sec, both with and without serum, respectively. These values represent the method’s limit 

of detection for each treatment. As such, no further inactivation of FCV was detected 

beyond the 10 sec treatment. There was no observed time effect between 10 and 90 sec. 

However, treatments with serum exhibited significantly higher reduction compared to 

serum-free samples. However, this was due to a difference in recoverable FCV from 

controls after drying. Analysis via qRT-PCR shows steam-vapor could reduce FCV’s 

RNA between 1.92 and 2.31 log10 copies. Unlike samples treated with serum, serum-free 

samples were significantly affected by time. Furthermore, qRT-PCR analysis shows a 

similar serum trend to infectious FCV treated with steam-vapor, i.e. lower reductions 

among serum-free samples.   

Efficacy of SDC and steam-vapor on carpets. Table 5.4 shows the efficacy of SDC 

and steam-vapor with TANCS against FCV on wool and nylon carpet carriers treated for 

60 min and 90 sec, respectively. On carpet, initial levels of FCV recovered from wool 

and nylon carpet during SDC testing were 5.11 ± 0.06 and 5.20 ± 0.22 log10 pfu. SDC 

reduced FCV by 1.82 and 3.62 log10 pfu on wool and nylon carpet carriers within 60 min, 

respectively. On the other hand, initial levels of FCV recovered from wool and nylon 

carpet during dry-steam testing were 5.38 ± 0.19 and 5.26 ± 0.07 log10 pfu. Steam-vapor 
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reduced FCV by 3.80 and 3.68 log10 pfu on wool and nylon carpet carriers, respectively. 

Mixed carpet type effects were observed between treatments assessed via plaque assay. 

The efficacy of SDC significantly affected by the carpet type, whereas no significant 

surface effect was observed across steam-vapor treatments. Analysis by qRT-PCR 

demonstrated little reduction among SDC and steam-vapor treatments. However, there 

was a surface type effect among both treatments. Specially, significantly more log10 copy 

reductions were observed across nylon carpet carriers compared to wool carpet carriers.  

SDC and steam-vapor effect on carpet appearance. Figure 5.2 illustrates the effects of 

both SDC and steam vapor immediately after application and after 60 min and 24 hr of 

drying. After application of SDC and scrubbing, a white film appeared over wool and 

nylon carriers but dissipated within 60 min. After 24 hr no visual effects were observed 

although the carriers had a sticky residue. After 90 sec of steam treatment carriers 

appeared wet with minor abrasion to the carriers. After 60 mins, wool and nylon carriers 

were dry but surface still appeared to have minor abrasion to the surface fibers.  

DISCUSSION 

An effective environmental hygiene program is important for the prevention and 

control of HuNoV outbreaks (28). The efficacy of a variety of technologies and 

chemistries have been tested against HuNoV and their surrogates (29). However, a 

limited number of these interventions have been evaluated for their efficacy on carpets. In 

this study, we demonstrated the efficacy of a novel liquid disinfectant, SDC in 
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suspension, on glass, and carpets as well as the efficacy of steam-vapor on glass and 

carpets against the HuNoV surrogate FCV.  

Cytotoxicity and neutralization tests are critical steps for the successful evaluation 

of chemistries intended for virucidal efficacy testing (23). A previous study investigating 

SDC against HuNoV used Dey/Engley neutralizing broth to quench silver ions and 

increase the solution pH (13). However, Dey/Engley broth is a complex medium and 

considered a universal neutralizing broth that contains a variety of neutralizers, such as 

sodium thiosulfate, sodium bisulfite, and sodium thioglycolate. Because this broth 

contains a variety of complex compounds and molecules this broth was not filterable via 

ultrafiltration, a tool essential for detection of viruses on carpet with our method, and 

necessitated the development of a targeted, filterable neutralizer. We successfully 

developed filterable sodium thioglycolate-based neutralizer based on work by Liau et al 

(30) who demonstrated silver ion’s affinity for thiol-containing groups. While the sodium

thioglycolate component was necessary for neutralization of silver ions, sodium 

bicarbonate and HEPES buffer were added to eliminate cytotoxicity caused by low pH, 

whereas the non-ionic surfactant, Tween 80, was used to assist with recovery of viruses. 

In suspension, SDC could reach the EPA standard for antiviral efficacy against 

HuNoV (4 log10 reduction) within 1 min both with and without 5% serum present. This 

contrasts with previous results with SDC against HuNoV (31). Manuel et al. (13)’s 

results suggested 5 mins are needed to reach a 4 log10 reduction of HuNoV RNA under 

pristine condition whereas a 5% soil load only reduced HuNoV RNA copy number by ca. 
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2.5 log10 in 30 mins. This discrepancy can be attributed to FCV’s documented 

susceptibility to low pH solutions compared to HuNoV (29).   

 During suspension testing, the efficacy of SDC was significantly lower in 

treatments with serum compared treatments without serum between 1 and 10 min. The 

reduced efficacy of liquid chemistries in the presence organic soil has been documented 

(13, 32, 33). For instance, Manuel et al. (13) while studying SDC’s efficacy against 

HuNoV, found similar results with and without a soil component. Furthermore, the CDC 

recommends higher concentrations of bleach, i.e. 5,000 ppm, for soiled surfaces 

compared to 1,000 ppm for pre-cleaned surface and is why the EPA requires one-step 

cleaning products to incorporate a 5% soil load (6). In this study, the lower efficacy under 

5% serum conditions is not surprising as SDC has an affinity for thiol-containing groups, 

which are present in FBS, i.e. amino acids cysteine and methionine.  

On the other hand, SDC demonstrated little efficacy against FCV’s RNA (<2 

log10 copies) in 30 mins. However, unlike Manuel et al. (13), we chose to not treat 

samples with RNase, a method commonly used in studies that evaluate strains of HuNoV 

not cultureable. This method assist with remove exogenous nucleic acid that may inflate 

the copy number. By not applying RNase and measuring infectivity of surrogates we can 

gain a better understanding of the disinfectant technology’s mode of action under certain 

conditions. The difference in log10 reduction between infectious and molecular data 

suggests the SDC primarily works against FCV’s capsid compared to the RNA genome 

and is supported by previous work (13). Counter to the trend observed in infectious data, 

lower FCV RNA log10 reductions were reported in serum-free samples compared to 
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samples with serum. The serum-free samples were diluted in inert PBS, whereas serum-

treated samples contain FBS and a variety complex molecules and compounds that may 

have reduced amplification or degraded exogenous genomic RNA but this has not been 

confirmed. However, this contrary to trends observed in infectious estimates where serum 

provides a protection against biocides.  

Results for our glass carrier test with SDC demonstrated its efficacy against 

HuNoV, albeit SDC’s efficacy is reduced compared to it efficacy in suspension. 

Generally, suspension tests overestimate the efficacy of a technology compared to hard 

surface testing. As postulated previously, this likely due to adsorption and aggregation of 

virions on the surface which provides less accessibility compared to free, unbound 

viruses in suspension with more exposure (34, 35). Regardless, hard surface testing 

simulates in-use conditions better than in suspension testing. Consistent with suspension 

tests, FCV inactivation showed a time-dependent response to SDC and limited FCV RNA 

reduction. However, inactivation was not as immediate as suspension testing because 

SDC tests took up to 30 min to achieve a >4 log10 reduction in the presence of serum. 

Nevertheless, serum-free samples treated with SDC met our limit of detection within 10 

mins due to lower recovery after desiccation.  

In contrast to SDC, steam-vapor demonstrated rapid inactivation of FCV by 

achieving a >4.11 log10 reduction in 10-sec on glass carriers. The inactivation time is a 

critical factor because typical contact times for liquid disinfectants are between 1 and 10 

mins and surfaces must be thoroughly wet. Steam vapor with TANCS technology appears 

to provide synergism between heat and municipal tap water containing natural impurities, 
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such as calcium carbonate, that can be crystalized with heat (36). In addition to the steam 

vapor, these crystals are thought to provide an additional hurdle for microorganisms by 

interacting with cell membranes, although this has yet to be confirmed. Regardless, our 

results support previous finding that steam vapor can reduce FCV and MS2 phage 

beyond the EPA standard in short contact times, i.e. <10 sec (15, 16).  

Currently, there are no standardized methods for evaluation of disinfectants 

intended for viruses contaminated on carpet but the EPA requires soft surface 

disinfectants to meet a minimum of a 3 log10 reduction (37). SDC could meet this 

requirement in 60 min on nylon but not wool carpet carriers with significantly higher 

reduction found on nylon carpets. To our knowledge, only one other study has evaluated 

liquid chemistries against viruses inoculated on carpet. Malik et al. (10) indicated that of 

the disinfectants tested only 2.6% activated glutaraldehyde was effective on synthetic 

carpets, i.e. olefin, polyester, nylon, and blended carpets. Although this may be true, 

activated glutaraldehyde, at that level, may not be safe for application on soft surfaces 

because glutaraldehyde is listed as a Category I and III for primary eye irritation and 

acute dermal exposure, respectively, according to the EPA’s toxicity rating, whereas SDC 

falls within Category IV, EPA lowest toxicity rating (38).  

It is especially important to consider toxicity of chemicals being applied to soft 

surface that can absorb liquids. Previous work with quaternary ammonium compounds 

(QUAT) and chlorine on soft surfaces demonstrated some soft surface can adsorb and 

sequester active ingredients (38). In addition to toxic residues, this ability may reduce the 

efficacy of some disinfectants. For instance, McNeil et al. (39) found that some soft 
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surfaces, e.g. gauze and yarn, could adsorb up to >40% of a QUAT while a similar study 

using chlorine determined another surface, e.g. cotton, could adsorb up to 98% of a 800 

ppm chlorine solution. Taken together, these results may explain the difference in SDC’s 

efficacy against FCV on wool and nylon carpets as wool has been demonstrated to absorb 

ca. 2 time more liquid than nylon (Buckley et al. from chapter 3). Because of this, it is 

likely more silver ions were sequestered by wool fibers than nylon, which decreased the 

availability of free silver ions.  

Heat treatments are effective at inactivating viruses both in suspension and on 

hard surfaces and have no toxicity or residues. This may be why steam treatments have 

been recommended by multiple government agencies. Be that as it may, their efficacy has 

never been demonstrated on carpets. In this study, steam vapor with TANCS met the 

EPA’s 3 log10 reduction standard for soft surfaces in 90 sec (>3.68 log10 pfu), although 

FCV was not inactivated below the limit of detection with dry-steam as it was when dried 

on a glass surfaces. Depending upon the environment, FCV has been shown to survive 

significantly better on both wool and nylon carpet fibers compared to glass (Buckley et 

al. chapter 3). It is possible these fibers do not transfer heat as efficiently as glass but 

more importantly FCV is adsorbed and trapped within the substrata of these multilayered 

fibers, which occludes the capsid and may prevent inactivation.  

Consistent with suspension tests, both SDC and steam vapor had a limited effect 

on FCV RNA when tested on glass and wool and nylon carpets. This provides more 

evidence that SDC and steam vapor primarily target the capsid. More importantly, similar 

trends between serum and serum-free treatments were found among these testes, which 



153 

support our hypothesis that serum presence may reduce amplification or degrade 

exogenous genomic RNA compared to samples that did not contain 5% serum.  

Determining a disinfection technologies mode of action is a basic component of 

any characterization study. Although not our study’s aim, our results provide evidence of 

SDC and steam vapor’s mode of action against FCV. The thermal heat provided by the 

steam vapor presumably denatures the capsid and eventually begins to degrade FCV 

RNA. Different from dry-steam vapor, the citrate in SDC may change the particles 

morphology while the silver ions attack cysteine residues important for capsid 

stabilization and formation. A previous study using a similar disinfecting technology 

found that citrate altered HuNoV virus-like particle’s morphology and their ability to 

bind to human blood group antigens (HBGA) (12). But a follow-up study only found a 

25% reduction in capsid protein and suggests silver ion either potentiates or 

synergistically impacts the efficacy of citrate (13). 

Appearance is also a critical factor to consider when developing disinfectants 

intended for soft surface. Although some may be efficacious, many chemistries can be 

damaging to soft surface. Our qualitative data of treatments using both technologies 

demonstrated little effect to the aesthetic appearance of the carpet. This suggests, if 

efficacious, these technologies can be applied with limited damage to wool and nylon 

surfaces.  

A limitation of our study is the recovery of FCV from control glass carriers. 

Regardless of disinfection technology, lower FCV titers were recovered from serum-free 

samples (ca. 1 log10 pfu and copies). Carriers for both treatments were dried, recovered, 
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and disinfected under the same conditions. But, it is commonly known that organic soils 

can provide protection to enteric viruses. It is likely the reduced organic load and 30% 

RH contributed to higher inactivation during desiccation compared to treatments 

deposited with serum. Although serum-free samples treated with both SDC and steam 

vapor were inactivated below our limit of detection, the difference between recovered 

controls represents a limitation to our study as we cannot statistically compare serum and 

serum-free treatments after they fallen below the limit of detection.  

 

CONCLUSION 

In summary, SDC was found to be efficacious against FCV in suspension, on 

glass, and nylon carpets. However, SDC is less efficacious against FCV in the presence 

of serum and wool. On the other hand, steam vapor with TANCS was efficacious on all 

surfaces tested and exhibited no loss to its efficacy in the presence of serum. 

Furthermore, treatments with these technologies do not affect the aesthetic appearance of 

the carpets. Taken together, these results suggest surfaces should be thoroughly pre-

cleaned for SDC to become efficacious while steam vapor with TANCS demonstrated 

rapid inactivation and could be an appropriate disinfection technology for virally 

contaminated natural and synthetic carpets.  
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Table 5.1 Virucidal efficacy of silver dihydrogen citrate against FCV in suspension measured by plaque assay and qRT-PCR 
Reduction* 

Plaque assay (log PFU) qRT-PCR (log copies) 

Contact time (min) With 5% serum† Without 5% serum control‡ With 5% serum† Without 5% serum 
control‡ 

1 4.29 ± 0.12Aa  4.51 ± 0.09Ab 1.93 ± 0.07Aa 1.84 ± 0.19Aa 
5 4.37 ± 0.06ABa 4.69 ± 0.28Ab 1.85 ± 0.05Aa 1.72 ± 0.17Ab 
10 4.41 ± 0.08Ba 4.67 ± 0.01Ab 1.89 ± 0.04Aa 1.84 ± 0.10Aa 
30 4.65 ± 0.11Ca 4.65 ± 0.05Aa 1.88 ± 0.07Aa 1.78 ± 0.08Aa 

*The plaque assay and qRT-PCR data are expressed as mean ± deviation of 9 replicates from 3 independent experiment.
Values with different Letters in the same column are significantly different (P<0.05), whereas values with different superscript
letters in the same row for each detection method are significantly different.
†FCV stocks concentrated via ultrafiltration were diluted in complete Dulbecco's modified eagle's medium with 5% low
endotoxin (<10 EU/ml) fetal bovine serum.
‡FCV stocks concentrated via ultrafiltration were diluted in 1X phosphate buffered saline.
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Table 5.2 Virucidal efficacy of silver dihydrogen citrate against FCV on glass measured by plaque assay and qRT-PCR 
Reduction* 

Plaque assay (log PFU) qRT-PCR (log copies) 
Contact time 

(min) With 5% serum† Without 5% serum 
control‡ With 5% serum† Without 5% serum 

control‡ 
1 1.17 ± 0.30Aa 0.77 ± 0.41Aa 0.12 ± 0.25Aa -0.85 ± 0.09Ab

5 3.71 ± 0.35Ba 2.49 ± 0.08Bb 0.53 ± 0.07ABa -0.58 ± 0.26Ab

10 3.84 ± 0.45B >3.46A 0.45 ± 0.06Ba -0.66 ± 0.10Ab

30 >4.66C >3.46A 1.01 ± 0.28Ca -0.45 ± 0.38Ab

*The plaque assay and qRT-PCR data are expressed as mean ± deviation of 9 replicates from 3 independent experiment.
Values with different letters in the same column are significantly different (P<0.05) whereas values with different superscript
letters in the same row for each detection method are significantly different.
†FCV stocks concentrated via ultrafiltration were diluted in complete Dulbecco's modified eagle's medium with 5% low
endotoxin (<10 endotoxin units/ml) fetal bovine serum. Recovered control was 5.68 ± 0.24 log10 pfu
‡FCV stocks concentrated via ultrafiltration were diluted in 1X phosphate buffered saline. Recovered control was 4.50 ± 0.04
log10 pfu
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Table 5.3 Virucidal efficacy of dry-steam vapor with TANCS against FCV on glass measured by plaque assay and qRT-PCR 
 Reduction* 
 Plaque assay (log PFU) qRT-PCR (log copies) 

Contact time (seconds) With 5% 
serum† 

Without 5% serum 
control‡ 

With 5% 
serum† 

Without 5% serum 
control‡ 

10 >4.93A >4.11A 2.31 ± 0.25Aa 0.70 ± 0.32Ab 
30 >4.93A >4.11A 1.92 ± 0.21Aa 0.20 ± 0.10Ab 
60 >4.93A >4.11A 1.94 ± 0.07Aa 0.30 ± 0.38ABb 
90 >4.93A >4.11A 1.93 ± 0.32Aa 1.03 ± 0.36Bb 

*The plaque assay and qRT-PCR data are expressed as mean ± deviation of 9 replicates from 3 independent experiment. 
Values with different letters in the same column are significantly different (P<0.05) whereas values with different superscript 
letters in the same row for each detection method are significantly different. 
†FCV stocks concentrated via ultrafiltration were diluted in complete Dulbecco's modified eagle's medium with 5% low 
endotoxin (<10 EU/ml) fetal bovine serum. Recovered control was 5.99 ± 0.20 log10 pfu 
‡FCV stocks concentrated via ultrafiltration were diluted in 1X phosphate buffered saline. Recovered control was 5.17 ± 0.16 
log10 pfu. 
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Table 5.4 Virucidal efficacy of silver dihydrogen citrate and dry-steam vapor with TANCS against FCV on wool and nylon 
carpet measured by plaque assay and qRT-PCR 

Reduction* 
Treatment† Contact time Surface Plaque assay (log PFU) qRT-PCR (log copies) 

SDC 60 minutes Wool 1.82 ± 0.19A -0.06 ± 0.26A
Nylon 3.62 ± 0.32B 0.49 ± 0.27B

Dry-steam 90 seconds Wool 3.80 ± 0.16B 0.03 ± 0.17A
Nylon 3.68 ± 0.09B 0.39 ± 0.23B

*The plaque assay and qRT-PCR data are expressed as mean ± deviation of 15 replicates from 3 independent experiment.
Values with different letters in the same column are significantly different (P<0.05).
†FCV stocks concentrated via ultrafiltration were diluted in complete Dulbecco's modified eagle's medium with 5% low
endotoxin (<10 EU/ml) fetal bovine serum.
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Figure 5.1 Flow chart for performing disinfection efficacy testing 



166 

Figure 5.2. Effect of silver dihydrogen citrate on appear of wool and nylon carpet carriers 
between 0 and 24 hr (A – P) 
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CONCLUSIONS 

HuNoV remain the leading cause of acute gastroenteritis worldwide, which can be 

transmitted via person-to-person, food, water, or the environment. Current literature 

shows that several key factors influence virus survival: temperature, RH, organic content, 

deposition method, and virus type. Of the studies that evaluated different chemistries, it 

was shown that chlorine, glutaraldehyde, and oxidizing vaporous products demonstrated 

the best efficacy against enteric viruses on soft surfaces. Be that as it may, some of these 

technologies may not be safe or practical on carpets. Furthermore, because the EPA 

currently does not have a standard method for assessing virucidal activity of product on 

nonlaunderable soft surfaces, to include recovery methods, there are no registered 

products that can be reported to inactivate enteric viruses contaminated on 

nonlaunderable soft surfaces. 

Results presented here demonstrated that characterizing a soft surface can 

improve our understanding of virus-soft surface interactions. Furthermore, infectious 

HuNoV surrogates, FCV and MNV, can survive for extended periods of time on carpet 

fibers. This survival can be affected by at least 2 factors: RH and surface type. 

Specifically, low RH favors FCV and MNV survival while natural fibers, such as wool, 

may provide a more protective environment compared to synthetic fibers and hard 

surfaces. Additionally, the assessment of recovery methods is a critical first step to 

improve the detection and quantification of viruses. Here, we tested 3 mechanistically 

different recovery methods intended for HuNoV recovery from carpets. Bottle extraction 

and the microbial vacuum exhibited higher recovery efficiencies compared to 
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macrofoam-tipped swabs. Moreover, detection of FCV and MNV via qRT-PCR can be 

inhibited when recovered from wool and nylon carpets. Ultimately, each method 

demonstrates merit for use under different conditions, e.g. efficacy testing and 

environmental monitoring. Sanitization programs are essential for prevention and control 

measures against HuNoV. Our efficacy testing found that silver dihydrogen citrate (SDC) 

was efficacious against FCV in suspension, on glass, and nylon carpet. However, SDC is 

sensitive to serum. On the other hand, steam vapor with TANCS technology was 

efficacious on all surfaces tested and exhibited no loss to its efficacy in the presence of 

serum. Furthermore, treatments with these technologies do not affect the aesthetic 

appears of the carpets. Taken together, these results suggest that SDC, to remain 

efficacious, should be used as a two-step cleaner while steam vapor with TANCS 

demonstrated rapid inactivation and could be an appropriate sanitizing technology for 

virally contaminated natural and synthetic carpets.  

Although our findings suggest HuNoV can survive for extended periods of time 

on carpet, future studies are still needed to validate the survival profiles of HuNoV. Also, 

to usher in a standard for assessing the efficacy of sanitizers against viruses intended for 

carpets, our ASTM International-adapted standard should be used as a platform in future 

studies. While surrogate testing is an acceptable alternative for the study of HuNoV, there 

are significant drawbacks. Based on SDC and steam-vapor’s efficacy demonstrated here, 

these technologies warrant further testing with the human enteroid system that support 

HuNoV propagation.  
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