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ABSTRACT 

Cardiac hypertrophy is the enlargement of individual cardiac muscle cell 

(cardiomyocyte) in both size and mass, which is achieved by addition of sarcomeres, the 

basic contractile unit. Cardiomyocytes elongate by adding sarcomeres in series and 

thicken by adding sarcomeres in parallel. Though it is generally accepted that sarcomeric 

addition can be initiated by increased mechanical loading, the sarcomeric addition 

process under various mechanical overloads on molecular level remains largely 

unknown. Previous research on sarcomeric addition largely rely on animal models of 

induced cardiac hypertrophy; those experiments provide little direct evidence for 

sarcomeric addition process as a response to increased mechanical loading, aside from 

the start and end point conditions. Studies showing the dynamic addition process of 

sarcomeric addition are rare, due to lack of in vivo-like cardiomyocyte culture models for 

mechanical assays and limited choice of live imaging techniques. 

In this project, a 3D cardiomyocyte culture model that recapitulates the in vivo-

like mechanical loading environment, was established in vitro on a 2D PDMS substrate. 

With this culture model, we, for the first time, revealed the dynamic sarcomeric addition 

process at intercalated discs and Z discs with custom-built passive pulse splitter-based 

TPEF-SHG microscope, which confirmed the long-standing hypothesis of sarcomeric 

addition at intercalated discs and Z discs. These findings may advance the comprehension 

of cardiomyocyte remodeling process on sarcomeric level during development of cardiac 

hypertrophy. 
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 CHAPTER I   INTRODUCTION 

1.1 Scope of research 

The scope of the project described herein is to develop an in vivo-like 

cardiomyocyte culture model and utilize it for real-time observation of sarcomeric 

addition process triggered with applied mechanical loads, in an effort to explore and 

reveal the mechanisms underlying cardiac hypertrophic responses to pathophysiological 

mechanical stimuli. Cardiac hypertrophy refers to the enlargement of individual 

cardiomyocyte in both size and mass, which can occur during both physiological and 

pathological mechanical stimulation and lead to either enhancement or deterioration of 

heart function. Physiological cardiac hypertrophy is often seen during postnatal heart 

development, exercise and pregnancy to meet the increased demand of blood supply; 

pathological cardiac hypertrophy is a frequent result of diseases such as valvular diseases, 

hypertension, myocardial infarction and so on, and imposes lethal outcomes of heart 

failure and sudden cardiac arrest on the affected population [1]. According to American 

Heart Association, heart failure contributes to one out of every nine deaths in the United 

States and sudden cardiac arrest causes nine deaths out of every ten victims that are 

attacked out of hospital. [2] Serious though these health issues are, there are no effective 

therapies for one of the major causes―cardiac hypertrophy. This is largely due to the 

limited understanding of cardiac hypertrophy on molecular level. Sarcomeres, as the most 

basic contractile units of cardiomyocytes, are reported to be actively involved in the 

enlargement of cardiomyocytes: cardiomyocytes elongate by adding sarcomeres in series 

and thicken by adding sarcomeres in parallel. However, the mechanism by which 



2 

sarcomeric addition occurs under various mechanical loads remains elusive. Revealing 

dynamics of the fundamental sarcomeric addition process under mechanical stimulation 

will serve to benefit the understanding of 1) the role of mechanical loads in and 2) the 

molecular-level evolution of cardiac hypertrophy. It will also shed light on possible 

medical strategies for alleviating and curing cardiac hypertrophy or gearing a 

pathological cardiac hypertrophy toward physiological cardiac hypertrophy. [1, 3] 

1.2 Backgrounds 

Cardiac hypertrophy is a common remodeling process seen in a heterogeneous 

group of myocardium diseases that are associated with mechanical and/or electrical 

dysfunction, or cardiomyopathy [4]. The remodeling process is outlined as three phases 

shown in Figure 1.1 [5]. Hypertrophy develops when the work load exceeds the normal 

capacity of a heart of a specific mass and heart function is decreased. The increased work 

load to heart mass triggers growth of the heart in compensatory hypertrophy. This phase 

may be accompanied by synthesis of new contractile proteins as well as by cell necrosis. 

Depending on hearts, the function can be restored, increased or decreased in this phase. 

When cell necrosis exceeds growth in the later stage of compensatory hypertrophy, the 

work load/mass ratio starts to increase again and the heart gradually progresses to failure. 

Physiological hypertrophy only exhibits the first two phases, while pathological 

hypertrophy is likely to progress to heart failure under chronically increased myocardial 

work load [3].  

Cardiac hypertrophy is a direct result of interaction between heart muscle and off-

balanced neurohormonal and mechanical cues. Neurohormonal cues and their induced 
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signaling pathways have been reviewed elsewhere [6, 7], and are not included in this 

review as the scope of this project is cardiac structural response to increased mechanical 

loads. Cardiac hypertrophy comes in two typical forms with respect to left ventricle 

dimensions: concentric and eccentric hypertrophy as shown in Figure 1.2 [3]. Concentric 

hypertrophy is that heart muscle thickens without decrease of the chamber size. It is a 

frequent result of hypertension and aortic stenosis and is, therefore, considered an 

adaptive process to increased afterload or pressure overload. Experimental data has 

proven that wall thickening in concentric hypertrophy is proportional to the increase in 

afterload, which returns the systolic stress to normal. [8] Eccentric hypertrophy is defined 

as dilation of the left ventricle without apparent thickening of the chamber walls. The 

Figure 1.1 Three phases of cardiac hypertrophy. 

Adapted from [5] with permission from Taylor & 

Francis, copyright 1983. 
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dilation of the left ventricle is usually caused by increased volume of returned blood, a 

phenomenon named volume overload. The dilation of the left ventricle under volume 

overload can lead to pure eccentric hypertrophy [9] or a combination of concentric and 

eccentric hypertrophy when the chamber walls thicken in proportion to increase in radius 

of the left ventricle [8]. The increase in wall thickness balances the increase in pressure in 

concentric hypertrophy and the increase in radius in eccentric hypertrophy, thus 

normalizes the systolic wall stress; this is consistent with predictions from La Place’s 

law.  

 

Though La Place’s law predicts the thickening of heart muscle in response to 

increased wall stress due to alterations in afterload and/or radius, it gives no adequate 

explanation for the increase in radius under volume overload. Recent experimental data 

Figure 1.2 Two forms of cardiac hypertrophy and illustration of La Place's law. 

Adapted from [3] with permission from Nature Publishing Group, copyright 2011. 

La Place’s law: S=PR/2h 

Pressure (P) 

Radius (R) 

Wall stress (S) Wall thickness (h) 
    Z  Sarcomere  Z 

Normal heart 

Sarcomeres added in parallel 

Sarcomeres added in series 

Left ventricular geometry 

Normal 

Concentric hypertrophy 

Eccentric hypertrophy 
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and theoretical analysis now favor a strain-based growth law, which account well for both 

the thickening and the lengthening of heart muscle during concentric and/or eccentric 

hypertrophy. [10-13] Specifically, sarcomeres, the most basic contractile unit of a 

cardiomyocyte, are added in series to maintain the optimal sarcomeric length in response 

to increased fiber strain, thus elongating cardiomyocytes; sarcomeres are added in 

parallel to maintain the interfilament lattice spacing in response to increased cross-fiber 

strain, thus thickening cardiomyocytes (Figure 1.2). [10, 14, 15]  

However, the process of sarcomeric addition under mechanical stimulation remains 

elusive. This is largely due to limitations in investigation strategies, including limited 

choices of high-throughput repeatable mechanical loading assays and absence of direct 

evaluation methods. 

Early studies are unexceptionally based on animal models with disease- or 

researcher-induced cardiac hypertrophy. Methods for inducing cardiac hypertrophy in 

vivo include constrictions of blood vessels, which mimics pressure overload [16, 17], 

fistula of blood vessels or transventricular section, which mimics volume overload [18, 

19], exercise and pregnancy, which mimics physiological hypertrophy [9, 20, 21]. 

Though these methods are clinical-relevant, the applied mechanical loads are not 

consistently controlled. Typically, It takes several days to weeks for manifestation of 

hypertrophy, which renders animal models low throughput for studying mechanical load-

induced cardiac hypertrophy. Besides, heart samples are inaccessible for conventional 

microscope, which makes the assessment of hypertrophy difficult. [22]  
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To overcome these problems using animal models, researchers begin using 

primary culture of cardiomyocytes on elastic membranes for studying cardiac 

hypertrophic response to mechanical stimuli. Mechanical loads are directly applied to 

cultured cardiomyocytes by stretching the supporting membrane. Hypertrophic responses 

of these cardiomyocytes have been confirmed on transcriptional, translational, and post-

translational level [23-28], which testifies the use of cardiomyocyte culture as an 

alternative to animal model for studying mechanical-load induced cardiac hypertrophy. 

Technical advances in last several decades have enabled alignment of cardiomyocytes on 

various substrates [29], which permits studying effects of directional strain on cardiac 

hypertrophy. Cardiomyocyte culture has become an increasing important tool for cardiac 

hypertrophy-related studies due to: 1) that it permits high throughput and controllable 

mechanical loading assays; and 2) that it is easily accessible for a variety of treatments 

and evaluation methods. [22] 

However, a concern is whether studies base on cardiomyocyte culture are clinical-

relevant. [30] Given this concern, animal models continue to be used, while other 

alternatives are being sought for. One alternative is to use explants of cardiac muscle 

from healthy animal and externally apply mechanical loads on those explants. [31] 

Another alternative is to use freshly isolated adult cardiomyocytes because sarcomeric 

structures within these cells are made in vivo and are well preserved during isolation. 

[32] The cardiac explants and adult cardiomyocytes offer the advantages of clinical

relevancy of animal models and the advantages of mechanical-loading and evaluation 

accessibility of cardiomyocyte culture. However, isolating tiny heart tissues that are 
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suitable for conventional microscope requires much practice and application of controlled 

mechanical loads can be very difficult on tiny tissues or individual cardiomyocytes.  

For cell cultures and cardiac explants, applied mechanical loads come in several 

forms, including cyclic/static stretch, uniaxial/biaxial/uniform stretch, or a combination 

of both. [24, 26, 28, 33, 34] Biaxial cyclic stretch is the most clinical-relevant because it 

is the exact form of mechanical load during heart beating. However, it is not the best 

option for research purposes. Cyclic stretch does not arouse stronger hypertrophic 

response than static stretch in in vitro studies [35], while it introduces motion artifacts 

and makes live observation impossible. Biaxial stretch obscures the study of effects of 

strain directionality on load-induced hypertrophy. Besides, more and more researchers 

believe the accumulated end diastolic strain accounts for both longitudinal and transverse 

sarcomeric addition, which can be simulated by static stretch. [10, 12, 14] Mechanical 

loads can be readily conveyed to groups of cells by stretching the supporting substrates , 

or directly applied to individual cells with carbon fibers[36], micropipette, tweezers and 

probes of atomic force microscope (AFM) [37]. Other methods for mechanical loading 

application such as hydrostatic compression and fluid shear system have never been used 

on cardiomyocytes; thus, they are not discussed here. [38]  

The major substrate for cardiomyocyte-related mechanical assays is made of 

silicone despite of its constituents [23-28, 39, 40]. Polydimethylsiloxane (PDMS) is the 

most prevalent material for cardiomyocyte culture in load-induced sarcomeric addition 

studies due to its excellent biocompatibility and flexibility. Another advantage is that 

engineering cardiomyocyte alignment that mimics the anisotropic organization of 
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cardiomyocytes in native hearts could be easily achieved on PDMS substrates. Use of 

other rubber-like elastomers, such as polyesters, has been seen exclusively in bioreactors 

for cardiac tissue engineering, which involves the application of cyclic stretch [41]. 

Currently, knowledge on load-induced sarcomeric addition heavily relies on 

stationary images produced by transmission electron microscopy (TEM), and 

immunohistochemistry. Results based on stationary images are inconclusive and can 

sometimes be misleading. Time-lapse imaging for sarcomeric addition under mechanical 

loading is demanded for understanding the process; however, related studies using time-

lapse imaging are rare. Solution for live cell imaging, such as fluorescent analog 

cytochemistry and fluorescent protein fusion techniques, have been successfully used for 

many years on primary cultures of various cells including cardiomyocytes. [42] Recently, 

we have built a second harmonic generation (SHG) microscope [43] in our lab, with 

which dynamics of myosin filaments during sarcomeric addition within mechanical-

loaded single cardiomyocytes was revealed for the first time. [28]  

Despite of the achievements that have been made, mechanisms underlying 

sarcomeric addition under cardiac hypertrophy remain elusive. Direct visualization of this 

process under controlled mechanical loads in heart samples or their equivalent 

representatives is yet to be achieved. Studies on roles of fundamental sarcomeric and cell 

structures, such as Z discs and intercalated discs, in sarcomeric addition demand live 

imaging of multiple sarcomeric components/complexes. It is challenging, but is 

substantially beneficial to understanding sarcomeric addition under mechanical loads if 

achieved. Therefore, we proposed this project, aiming at developing an in vivo-like 
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cardiomyocyte culture model that permits high throughput mechanical assays, and 

visualizing the dynamics of two sarcomeric components during sarcomeric addition 

under various mechanical stimuli. 

1.3 Research goals and specific aims 

Our long-term goal is to understand how sarcomeric addition is regulated by 

mechanical-loading conditions. The objective of this project is to test the hypotheses that 

longitudinal stretch will cause sarcomeric addition through sarcomeric protein insertion at 

Z-discs and that transverse stretch will cause sarcomeric addition either through 

longitudinal splitting of an existing myofibril (the contractile element composed of 

sequentially connected sarcomeres) or sarcomeric addition using an existing myofibril as 

a template. To test these hypotheses, we will first establish an in vivo-like cardiomyocyte 

culture model on deformable PDMS substrates, which recapitulates key features of the 

mechanical loading environment in the heart. This kind of cardiomyocyte culture will 

then be used in mechanical assays to induce sarcomeric addition, which will be non-

invasively observed with a lab-built TPEF-SHG microscope. The specific aims are: 

Aim 1: Establish a cardiomyocyte-culture model on a PDMS substrate with 

anisotropic cardiomyocyte organization and intercalated disc-like cell-cell 

interfaces. 

Aligned elongated cardiomyocytes with intercalated disc-mediated cell-cell 

coupling are one of the most important characteristics of the mechanical loading 

environment in the heart. We will use several state-of-the-art techniques to align 

cardiomyocytes on PDMS substrates, including topographical patterning and 
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microcontact printing. Cell-cell coupling at the longitudinal ends of cardiomyocytes will 

be reinforced by electrical field stimulation. Quality of cardiomyocyte alignment and 

profile of cell-cell interfaces will be evaluated by immunocytochemistry. The culture 

model with the best alignment and intercalated disc resemblance will be used in 

following mechanical assays.  

Aim 2: Determine whether sarcomeric addition can occur at intercalated discs in 

response to uniaxial static stretch 

Intercalated discs are one of the most frequently altered structure in hypertrophic 

heart. Our published data have demonstrated that when an isolated single cardiomyocyte 

is under static stretch, using the SHG channel of our lab-built confocal microscope we 

can capture the dynamics of sarcomeric myosin filaments, which represent various modes 

of sarcomeric addition. We will use this confocal microscope (the SHG channel) to 

determine the dynamics of myosin filaments in the cardiomyocyte culture model 

(established in Aim 1) in response to externally applied longitudinal and transverse static 

stretch. The goal is to examine whether sarcomeric addition can occur at intercalated 

discs. In addition to that, we will also examine whether various modes of sarcomeric 

addition observed in an isolated cardiomyocyte occur in a cardiomyocyte culture model 

in which the cell under study is in contact with other cells through in vivo-like cell-cell 

junctions.  

Aim 3: Determine the morphological changes of Z discs in response to uniaxial static 

stretch 
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In the literature, both in vitro and in vivo data have demonstrated thickening and 

longitudinal splitting of Z discs under increased mechanical load. Z discs undergoing 

these changes captured by static images have been hypothesized to be the nucleation sites 

for new sarcomeric addition in response to mechanical stimuli. We will use the TPEF 

channel of our confocal microscope to observe the dynamics of EYFP-tagged α-actinin, 

the major component of Z discs, in the culture model used in the previous aims. To 

determine the role of Z discs in sarcomeric addition, we will simultaneously use the SHG 

channel to observe the dynamics of the sarcomeric myosin filaments. The goal is to 

examine whether myosin filaments will be inserted into the broadened Z discs or attached 

to the split Z discs to finalize sarcomeric addition. 

1.4 Significance and innovation 

Understanding the sarcomeric addition process that cardiomyocytes initiate in 

response to increased mechanical load is critical to understanding mechanisms underlying 

alterations in heart function. Although the most important heart function, contraction, is 

determined by the contractility of each sarcomere, the process of sarcomeric addition in 

response to mechanical stimuli may, instead of intensifying contractility, progressively 

lead to decrease of heart function and even heart failure. Such an incurable consequence 

affects millions of people in the US alone. Of the 900,000 people diagnosed with heart 

failure annually, half die within 5 years of diagnosis [6], a huge concern in public health. 

The development of treatment for heart failure is currently hindered by the elusive 

mechanism underlying cardiomyocyte remodeling in response to increased mechanical 

load. Previous studies are almost unexceptionally based on fixed samples; results from 
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these studies are not only slow-coming but also inconclusive. The project proposes to use 

live imaging techniques on cardiomyocytes cultured in vitro for resolving these 

challenges. The proposed research is significant because 1) it will change the way that 

mechanical load-induced cardiomyocyte remodeling process―sarcomeric addition―is 

studied; and 2) it will generate solid knowledge on mechanical load-induced 

cardiomyocyte remodeling process faster when high throughput in vitro culture models 

and live imaging assays are combined. This will considerably contribute to the 

understanding of sarcomeric addition process under increased mechanical load and is 

expected to lead to development of new therapeutic strategies for treating mechanical 

loading caused heart failure.  

This proposed study is innovative in two ways. First, an in vivo-like 

cardiomyocyte-culture model, which recapitulate the anisotropic organization of 

myofibrils and intercalated disc-like cell-cell junctions, will be developed on an elastic 

substrate , which permits application of direction-controllable mechanical loads. Only in 

such an in vivo-like model, appropriate mechanical load can be added to longitudinally 

aligned sarcomeric structure in a clinically relevant manner (e.g., in vivo-like force-

exertion direction) and stimulate sarcomeric addition processes that occur in an actual 

heart muscle. This new and substantively different approach of visualizing sarcomeric 

addition processes will dramatically advance our understanding of cardiomyocyte 

remodeling in response to mechanical loading. 

Second, new sarcomeric addition involves unraveling and weaving hundreds of 

sarcomeric proteins in the correct order and at the correct location during continuous 
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contraction; hence, dynamic observation is critical. Currently, most knowledge on 

sarcomeric addition is based on static images of altered sarcomeric patterns in 

hypertrophic cardiomyocytes, and thus may not be conclusive. For example, there are 

many studies showing alterations in Z discs in the hypertrophied heart, such as broadened 

Z discs, split Z discs and misregistered Z disc, which have been posited to be 

intermediate processes of new sarcomeric addition. These suppositions require 

confirmation from dynamic imaging, which records, instead of a static image from a 

fixed cell culture, a sequence of events from a live cell culture that lead to the formation 

of new striated structures. Application of cardiomyocytes with fluorescence-tagged 

sarcomeric proteins created through GFP transfection can achieve live-cell imaging and 

has been used to successfully reveal dynamic sarcomerogenesis. However, it is still 

largely unclear whether the GFP-tagged sarcomeric protein will affect sarcomerogenesis. 

This doubt is more significant when two sarcomeric proteins are transfected, which is 

essential for a complete understanding of the sarcomeric addition process. Our novel 

SHG microscope can visualize sarcomeric myosin filaments (not myosin molecules that 

have not formed sarcomeric myosin filaments) without addition of any molecular marker. 

It can reveal any myosin filament-related dynamic sarcomeric addition process. 

Combined with the visualization of a GFP-tagged sarcomeric protein (e.g., α-actinin in 

the Z discs) simultaneously achieved using the TPEF channel, our proposed imaging 

approach is expected to reveal never-before-seen dynamic sarcomeric addition processes 

in a cell construct. 
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 CHAPTER II   LITERATURE REVIEW 

2.1 Structure of heart muscle and sarcomeres 

The heart is one of the earliest organs that become functional during embryo 

development. It has four chambers―left/right atria and left/right ventricles; they work as 

a functional syncytium under orchestra of pacemaker cells at sinoatrial node (located at 

the wall of right atrium) through the conduction system, which rapidly delivers electrical 

stimulation in a well-coordinated way. During each heartbeat, sequential mechanical and 

electrical events take place and blood is ejected out from the heart to the circulation 

system. The first event is cardiac diastole when all four chambers dilate and blood fills 

them passively. It is followed by atria systole when atria contract and fill blood to 

ventricles actively. In the last phase―ventricle systole, blood is ejected into both the 

pulmonary and aorta by contraction of ventricles. Those three phases constitute a cardiac 

cycle.  

The function of the heart as a blood pump relies on heart muscle, especially the 

heart muscle in the ventricles. The constituents of heart muscle are cardiomyocytes, 

whose phenotypes and ultrastructures vary from chamber to chamber [44]. Here, we will 

focus on describing cardiomyocytes in ventricles, because they are the cells that are 

enlarged during cardiac hypertrophy. In ventricular heart muscle, cardiomyocytes are 

usually mono- or bi-nucleated [45], branched and are end to end connected through 

intercalated discs with adjacent rod-shaped cardiomyocytes. This anisotropic 

organization of cardiomyocytes enhances the efficiency of contraction of cardiac muscle 

fiber. Extracellular matrix fills the interstitial space between cardiomyocytes and 
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provides fundamental mechanical support during each cardiac cycle. [46] The 

hierarchical structure of heart muscle is illustrated in Figure 2.1.  

 

The contraction of individual cardiomyocytes is achieved by simultaneous 

contraction of myofibrils that spans longitudinally from end to end. Myofibrils alternate 

with lines of mitochondria, which supply energy for myofibrillar contraction through 

aerobic metabolic activity. The most basic contractile unit of a myofibril is the sarcomere, 

which repeats itself along the longitudinal direction of a myofibril. A sarcomere 

comprises hundreds of ordered protein subunits. [47, 48] These protein subunits are 

organized in such a way that gives a myofibril the microscopic appearance of repeated 

interdigitated dark and light bands. The dark bands, or A bands, are primarily constituted 

of myosin filaments. The light bands, or I bands, mainly comprise actin filaments. 

Antiparallel actin filaments are cross-linked by α-actinin at the Z discs, which delineate 

Figure 2.1 Hierarchical structure of heart muscle. (OpenStax College. Anatomy and 

Physiology. OpenStax CNX. Download free at http://cnx.org/contents/14fb4ad7-39a1-

4eee-ab6e-3ef2482e3e22@8.80, accessed on April 1, 2017). 

http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.80
http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@8.80
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the boundaries of sarcomeres. [49] Antiparallel myosin filaments are associated with each 

other by myosin binding protein C [50] and cross-linked by myomesin at the M lines, 

which have an analogous role to the Z discs [51]. Titin filaments span from Z discs to M 

lines, and are believed to be a molecular ruler for thick filaments. [52] A spring portion of 

titin in the I band region contributes to passive cardiac stiffness. [52, 53]  

During pressure and/or volume overload, external forces are exerted on individual 

cardiomyocytes and arouse hypertrophic responses within cardiomyocytes, such as 

transcription and protein synthesis. Though consensus has not been reached on 

components that pick up those forces, several structures seem to play important roles in 

mechanosensing. Intercalated discs are one of those structures because 1) myofibrils 

insert F actin filaments at their ends to fascia adherens and 2) desmins stabilize Z discs to 

desmosomes; both fascia adherens and desmosomes are located at intercalated discs. [54, 

55] Another candidate is the costameres, which pass mechanical load from ECM to Z

discs through integrins. Focal adhesion kinase (FAK) and protein kinase C (PKC) are 

believed to be involved in initiating and coordinating the downstream signaling pathways. 

[56] Intracellular signaling converges to proteins at the Z discs, including telethonin,

muscle LIM protein, melusin, calcineurin and calsarcins, enigma/ENH/cypher family, 

and myopalladin [57], or converge to proteins at titin spring segment such as muscle-

specific ankyrin repeat protein (MARP) and four-and-a half-LIM domain protein-

1(FHL1) [55]. Another mechanosensor is stretch-activated channels, whose function 

involving sarcomeric addition is yet to be discovered. [58] A schematic representation of 
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intracellular sarcomeric protein complexes and their connections with membrane 

structures is shown in Figure 2.2. [55] 

  

2.2 Myofibrillogenesis 

De novo myofibrillogenesis 

De novo myofibrillogenesis refers to generation of the very first myofibril. De 

novo myofibrillogenesis is believed to be a relatively simple process when it is compared 

to myofibrillogenesis under mechanical load because it does not involve disassembly of 

preexisting sarcomeres. Understanding the process of de novo myofibrillogenesis can 

Figure 2.2 A schematic representation of intracellular sarcomeric protein 

complexes and their connections with membrane structures. Reproduced from 

[55] with permission from Wolters Kluwer Health, Inc, copyright 2015 



 18 

provide insights into myofibrillogenesis under mechanical loads, because both processes 

involve production of new sarcomeres and thus they may share similar mechanisms. 

As we have already known, sarcomeres are delicate structures that comprise 

hundreds of highly ordered proteins. The assembly of those sarcomeric proteins is 

expected to progress hierarchically so that erroneous nonfunctional sarcomeres are not 

produced. Studies based on primary cultures of embryonic chick cardiomyocytes favor a 

premyofibril model [59] as shown in Figure 2.3. Briefly, IZI complexes, composed of α-

actinin and actin, are first formed on spreading edges of a cultured cardiomyocyte. Space 

between these IZI complexes is held by non-muscle myosin IIB. These structures are

 

Figure 2.3 A illustration of the premyofibril model for myofibrillogenesis. 

Reproduced from [59] with permission from National Academy of Sciences, copyright 

1997. 
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named as premyofibrils. The premyofibrils then move away from the cell membrane 

towards the cell nucleus, during when muscle myosin is incorporated to replace the non-

muscle myosin IIB and α-actinin-rich Z bodies begin to laterally associate. The 

myofibrils in this stage are named as nascent myofibrils. In the last stage, Z bodies fuse 

together laterally to form striated Z discs and non-muscle myosin IIB is completely 

replaced by muscle myosin. A mature myofibril is hence formed.  

Plausible though the premyofibril model for de novo myofibrillogenesis in 

primary culture of embryonic chick cardiomyocytes is, it is challenged by studies 

performed with embryonic chicken heart explants. Several studies reported that no 

premyofibril-like structures could be detected in myofibrillogenesis in situ. [30, 60, 61] 

Instead, α-actinin, actin and titin fragment with only its N terminal epitope colocalized 

near the cell membrane, representing IZI like complexes. Myosin-containing thick 

filaments and actin-containing thin filaments were also found to be assembled 

independently before being associated together with titin. These studies have posed 

serious challenges on application of primary cultures of cardiomyocytes in studying 

myofibrillogenesis because doubts have been raised that whether it faithful reflects 

myofibrillogenesis in vivo. 

Myofibrillogenesis under mechanical loads 

Myofibrillogenesis in cardiomyocytes with preexisting sarcomeric structure is 

more complex than de novo myofibrillogenesis because cardiomyocytes needs to1) be 

remodeled to make room for sarcomeres that are going to be added and 2) keep 

contraction integrity during sarcomeric addition [62]. It can be induced by both 
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neurohormonal and mechanical stimuli. In this project, we try to investigate sarcomeric 

addition process under mechanical loading, so myofibrillogenesis under neurohormonal 

stimuli is not discussed in here. In native hearts, mechanical loads come in forms of 

pressure and/or volume overloads, which act as longitudinal and transverse strains on 

individual cardiomyocytes. [63] To study this issue, researchers either select to use heart 

samples from animals that are affected by pressure or volume overloads, or apply 

longitudinal and/or transverse strains directly to cultured cardiomyocytes or cardiac 

explants. 

Early studies exclusively use heart samples from animals with disease- or 

personally induced hypertrophy. Researchers examine those samples under a 

transmission electron microscope (TEM) and look for any alterations that occur only in 

hypertrophied heart samples. These alterations will be judged personally and may be 

hypothesized as indicators for potential sarcomeric addition or damage. For example, in 

normal hearts, Z discs always display as striated dark lines under TEM, while in 

hypertrophic hearts aberrant morphologies that are not seen in normal hearts, such as 

broadened Z discs (Figure 2.4A) [64], split Z discs (Figure 2.4B) [65] and misregistered 

Z discs (Figure 2.4C) [66], are hypothesized to be indicators of new sarcomere 

nucleation, because they appears to be making rooms for or generating extra sarcomeres. 

Other alterations are at the intercalated discs. Frequency of close packed intercalated 

discs that are separated by ten sarcomeres or less is significantly increased in 

hypertrophied heart samples than that in normal. Therefore intercalated discs are 

postulated to be involved in new sarcomeric addition at cell ends. [67] There are also 
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reports that folds of intercalated discs become exceptionally larger (1.5-3µm) in 

hypertrophied heart than in normal (0.5µm-1 µm), and myosin filaments are seen in this

(A) 

(B) 

(C) 

(D) 

Figure 2.4 Structural alterations that are hypothesized to be related to sarcomeric 

addition . (A) Broadened Z disc, adapted from [64] with permission from Elsevier, 

copyright 1970. (B) Split Z disc [65]. (C) Misregistered Z disc, adapted from [66] with 

permission from Nature Publishing Group, copyright 1969. (D) Transformation of 

intercalated discs during volume overload and overload removal. Reproduced from 

[70] with permission from American Society for Investigative Pathology, copyright

2010 
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enlarged folds. [66] Recently, researchers have found that Z disc proteins, α-actinin, and 

N terminal titin could be identified at the axial level of the fold apices, which would be a 

Z disc of the terminal sarcomere in the myofibril although Z disc-like structures are not 

present. [68, 69] This domain is hypothesized to permit elastic positioning of new 

sarcomeres during cardiomyocyte growth because introduction of new sarcomeres would 

not squeeze preexisting myofibrils. Yoshida et al provided supporting evidence for this 

elastic addition of sarcomeres at intercalated discs that cardiomyocyte elongation after 

acute volume overload was accompanied by periodic broadening and narrowing of 

intercalated discs (Figure 2.4D). [70]  

Later studies are predominantly based on direct application of mechanical loads 

on cardiomyocytes cultured on elastic substrates or cardiac explants. Hypertrophic 

response of cardiomyocytes is induced by both longitudinal and transverse stretch at 

transcriptional, translational and post-translational levels. [23-27] Yu et al found that 

sarcomeres were added to preexisting myofibrils by insertion and that this could occur 

throughout the cell’s length. [27] Yang et al directly captured the dynamics of sarcomeric 

addition in uniaxially and statically stretched cardiomyocytes in culture. Their results 

show that new sarcomeres could be added to the end (Figure 2.5A) and/or in the middle 

(Figure 2.5C) of preexisting myofibrils, thus elongating them. Lateral expansion of 

myofibrils was achieved mainly by longitudinal splitting (Figure 2.5D) of and sarcomeric 

addition to the side (Figure 2.5B) of preexisting myofibrils. [28] Guterl et al found that 

cardiomyocyte thickening was accompanied by cardiomyocyte shortening in 

isometrically stretched papillary muscle, indicating that myocyte thickening might have 
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(A) (B) 

(C) (D) 

Figure 2.5 Modes of sarcomeric addition observed in isolated single cardiomyocytes. 

(A) Sarcomeric addition in series at cell end. (B) Sarcomeric addition in parallel using 

an existing myofibril as template. (C) Sarcomeric insertion in the middle of a 

myofibril. (D) Myofibrillar splitting. Adapted from [28] under Creative Commons 

Attribution 4.0 International License 
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occurred partially by rearrangement of existing sarcomeres. [31]  

Studies on de novo myofibrillogenesis provide insights into the correct sequence 

of sarcomeric assembly which may be shared by myofibrillogenesis under increased 

mechanical loads. Studies on myofibrillogenesis under mechanical loads are concentrated 

on revealing the locations and modes of sarcomeric addition, which may or may not be 

shared by de novo myofibrillogenesis. For example, researchers report that myofibril 

elongation during de novo myofibrillogenesis is achieved by a lateral coalescing of 

adjacent shorter myofibrils [59]; this is yet to be discovered in myofibrillogenesis under 

increased mechanical loads. Despite the progress that has been made, many results are 

supported by few studies if not one. A lack of experimental evidences has posed serious 

concerns to the conclusions that have been made. There is still no agreement between 

researchers on the most fundamental questions such as when, where and how sarcomeric 

addition occurs under mechanical loading, not to mention the effects of different 

mechanical loading conditions on sarcomeric addition and the functional outcomes of 

sarcomeric addition. More systematic investigations are needed.  

2.3 Engineering cardiomyocyte alignment on PDMS substrates  

Cardiac function is directly related to cellular orientation and elongation. [71] 

Therefore, alignment of cardiomyocyte in culture is not only a metric of in-vivo 

similarity [72], but also a prerequisite for direction-controllable mechanical assays. There 

are many techniques for engineering cell alignment in vitro as review by Li et al, 

including topographical patterning, surface chemical treatment, mechanical loading and 
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electrical stimulation. [29] Experiments have shown that cardiomyocytes can be aligned 

using any of these techniques.  

Topographical patterning 

Topographical patterning is the most widely used and most efficient method for 

engineering cell alignment. The mechanism underlying cell alignment with topographical 

features is contact guidance, which was first described by Weiss 70 years ago. [73] 

Different types of cells have different preferential topographical patterns. For example, 

cardiomyocytes show astonishing alignment on parallel patterns such as grooves and 

wrinkles, while they barely align to upright pillars, which neurons prefer. [29] 

Grooves usually refer to the type of grooves with upright walls, though some 

irregular grooves are also used [74, 75]. Grooves for cell alignment are on micro/nano-

scale. These miniaturized features are made with micro/nano-fabrication techniques such 

as deep reactive ion etching, electron beam lithography, direct laser writing, 

photolithography, replica molding and microfluidics. [29] Similar effective though micro 

and nano grooves are in cell alignment, their underlying mechanism are different. Cell 

alignment on microgrooves is due to physical constrictions, while cell alignment on 

nanogrooves is related to more fundamental signaling pathways. [76]  

Dimensions of grooves play an important role in directing the guidance of cell 

alignment, especially the depth of grooves [77, 78]. Various studies have shown that 

different cells have different sensitivity to depth of grooves [79], though no agreements 

have been made on the responsive threshold for any cells. For effective alignment of 

cardiomyocytes, the smallest depth of grooves is about 140nm. [75] 
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Groove topography has been reported to affect the morphology and function [80] 

of cultured cardiomyocytes. Motlagh et al found that cardiomyocytes cultured in 10 X 10 

X 5µm (groove width X ridge width X groove depth) grooves with interspersed pillars 

showed increased myofibrillar height and well-established myofibrillar structure at cell 

ends. They believed that the presence of a vertical surface would promote the 

myofibrillar assembly at the interface. [81] Kim et al found that cardiomyocytes cultured 

on nanogrooves were significantly elongated and expression of connexin 43 (Cx43), one 

gap junctional proteins, was increased with increased widths of grooves and ridges. [82] 

The significant elongation could be attributed to both the facilitation of anisotropic 

features in cell extension and the inhibition in cell lateral expansion across nanogrooves. 

[83] 

Precisely periodic micro/nano grooves does not represent in vivo extracellular 

matrix, because native extracellular matrix such as collagen fibers is on several orders of 

scale. [84] To address this problem, researchers develop substrates with unidirectional 

multi-scale wrinkled substrates for cell alignment, which is first introduced by Bowen. 

[85] Unidirectional wrinkles are usually formed by unidirectional compressing a stiff

layer. As a consequence, the stiff layer buckles in the direction of the compressive strain, 

thus forming perpendicular wrinkles. The stiff layer can be made by metal sputtering or 

oxidization in a plasma or UV ozone chamber. The compressive stress can be delivered 

by differential thermal contraction, externally applied compressive force, and differential 

swelling or shrinkage. [86] The dimensions of wrinkles depend on the thickness of the 

stiff layer and the strength of the compressive strain. Studies have shown that: 1) periods 



 27 

and amplitudes of wrinkles increase with thickness of the stiff layer [87]; and 2) 

increased compressive strain is related to increased amplitudes, decreased periods and 

increased degree of wrinkle orientation. [86] Most wrinkles in literature have periods 

ranging from submicron to about ten microns and amplitudes less than 2 µm [84, 85, 87-

89] , with one exception from Efimenko et al that wrinkle periods ranges from 50 nm up 

to 400 µm and amplitude ranges from 10 nm up to 10 µm [90]. 

Studies have shown that wrinkled features have a clear alignment effect on 

various cells, including human embryonic stem cell (hESC), hESC-derived 

cardiomyocytes, neonatal cardiomyocytes, etc. Wrinkles are reported to induce an 

enhanced anisotropic electrical signal propagation [84] and an enhance distribution of 

Cx43, N cadherin and vinculin at cell-cell junctions [89] in cardiomyocyte culture, which 

implies the potential benefits of using wrinkles with respect to cardiomyocyte function. 

Chemical patterning 

Chemical patterning for cell alignment refers to patterning of culture substrates 

with cytophoblic and/or cytophilic molecules. When cells are seeded to chemically 

patterned substrates, cells can only adhere and grow in areas with cytophilic molecules. If 

the dimensions of the patterns are appropriate, cells will align. A direct and specific cell-

sensing mechanism such as integrin-ligand binding governs the chemical patterning 

process. [91] Selection of cytophobic and/or cytophilic molecules depends on cells and 

substrates. Common cytophilic molecules include poly-L-lysine (PLL), peptides, 

fibronectin, laminin and other ECM proteins. Common cytophobic molecules are 

poly(ethylene glycol) (PEG)-graft polymers and serum albumin. [29] 
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There are several approaches for chemical patterning, including microcontact 

printing, dry lift-off technique, selective molecular assembly patterning, microfluidic 

patterning, dip-pen technology, and nanopipetting. [91-93] Among these techniques, 

microcontact printing (µCP) is the most widely used method for cell alignment. 

Microcontact printing generally involves four steps: stamp fabrication using soft 

lithography technique, stamp inking with cytophilic or cytophobic molecules, printing 

molecular inks to substrates [94], and releasing stamps from substrates as shown in 

Figure 2.6. New µCP techniques stem from the common µCP, such as affinity µCP [95], 

aqueous µCP [96], enzyme-etching µCP [97], etc. 

 

The quality of cardiomyocyte alignment on microcontact printed substrates 

depends on the dimension of patterns. Cardiomyocytes show the best alignment on 5-15 

µm lanes, which support only one cell spanning the width of each lane. Besides, 

patterned cardiomyocytes display an in vivo-like bipolar distribution of N cadherins and 

Cx 43. [98] Badie et al used microcontact printing to produce a cardiomyocyte culture 

with realistic ventricular micro and macro structure, with which they found that electrical 

signal transduction in ventricles is closely related to the alignment of cardiomyocytes and 

is sensitive to local variations in cell alignment. [99] 

Figure 2.6 General procedure for microcontact printing. (A) Stamp fabrication. (B) 

Inking. (C) Printing to substrata. (D) Releasing. 

   

(A) (B) (C) (D) 
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Mechanical loading 

Mechanical loading for cardiomyocyte alignment comes in forms of uniaxial 

cyclic stretch, and is widely used in cardiac tissue engineering. Application of cyclic 

stretch to cardiomyocytes cultured on silicone dishes results in alignment of 

cardiomyocytes in parallel to the direction of stretch. N-cadherin and Rac1 are involved 

in the response of cardiomyocyte alignment to uniaxial stretch. Alignment of 

cardiomyocytes to mechanical stretch is time-dependent. Cardiomyocytes fail to align in 

the direction of stretch when stretch is applied 24 hours after cultivation. [100, 101]  

Electrical Stimulation 

Cardiomyocytes, as one of the electrical sensitive and responsive cells, are able to 

align parallel to the externally applied electric field. [102] Alignment of cardiomyocytes 

can be promoted by electrical field as low as 2.3V/cm. When electrical field stimulation 

is applied to cardiomyocytes cultured on microgrooved or micro-abraded surfaces, 

cardiomyocytes will predominantly follow the guidance of the topographical features, 

which indicates that electrical cues is a significantly weaker determinant of 

cardiomyocyte alignment than topographical cues. [103] When electrical field stimulation 

is applied in the direction of underlying topographical cues, it will enhance 

cardiomyocyte elongation and electrical properties. [104] Cardiomyocyte alignment in 

the direction of electrical field results in a larger field potential on individual 

cardiomyocytes and hence larger contraction amplitude; this might be the mechanism 

underlying alignment of cardiomyocyte.  
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Though topographical patterning, chemical patterning, mechanical loading and 

electrical stimulation are all effective techniques for cardiomyocyte alignment, the 

strength of their alignment effects is different. Topographical cues are the strongest for 

cell alignment. [104-107] Chemical cues are only slightly weaker than topographical cues. 

Mechanical and electrical cues sometimes fail to induce alignment of cardiomyocytes. 

Topographical and chemical patterning techniques are the most widely used methods in 

aligning cardiomyocytes in vitro. 

2.4 Time-lapse imaging 

Time-lapse imaging is imperative for understanding cellular and molecular 

mechanisms underlying living organisms, such as cell migration, molecular 

transportation, protein synthesis and assembly, and so on. [108, 109] Traditional time-

lapse imaging relies on widefield microscopy and image contrasts derive from phase, 

differential interference and polarization. Advances in optical theories and microscopic 

techniques have provided plenty of alternative strategies, an important one of which is 

fluorescence microscopy. [110, 111]  

The increasingly broad application of fluorescence microscopy envisioned in the 

last several decades is partially due to the advances in fluorescent probes and labeling 

method. Green fluorescent protein (GFP) and its color variants, since their discovery, 

have profoundly changed the way in which proteins and cells are studied, because they 

can be fused with almost any protein and expressed in almost any cell. Another attractive 

fluorophore is fluorescent naonocrystals, or quantum dots. They can also be coupled to 
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various proteins. They are highly photostable and the emission spectra can be easily 

tuned by adjusting the particle size. [111] 

Fluorescence microscopy is compatible with many new microscopic techniques 

including confocal, multiphoton, harmonic generation, total internal reflectance and 

super-resolution microscopy. In studies on sarcomeric dynamics using time-lapse 

imaging, one-photon excitation, two-photon excitation and second harmonic generation 

are the most widely used microscopic techniques. One-photon excitation microscopy 

generally works on a thin layer of cell culture, and it is limited by out-of-focus light (for 

widefield microscopy) and scattering (for confocal microscopy). Two-photon excitation 

fluorescence (TPEF) is a nonlinear process, in which a fluorophore simultaneously 

absorbs two photons with the same wavelength and yield one photon with a shorter 

wavelength. TPEF microscopy is inherently confocal because simultaneous absorption of 

two photons can only occur in the focal volume. Therefore, phototoxicity induced by out-

of-focus light is reduced. Another advantage of TPEF microscopy over one-photo 

microscopy is the large penetration depth. [109] The disadvantage is the low spatial 

resolution. SHG is a polarization based nonlinear scattering process, in which 

simultaneously arrived two photons with the same wavelength lead to emission of one 

photon with exactly half of the wavelength and double energy. Therefore, there is no 

energy loss during SHG and hence no phototoxicity. Similar to TPEF, SHG also has the 

advantages of large penetration depth and 3D sectioning ability. It also shares the optics 

of TPEF microscopy and can be easily built into an existing TPEF microscope with 

minimal modifications. SHG is intrinsic to noncentrosymmetric structures, which reside 
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in several biological samples [112] including collagen, myosin, tubulin, glial fibrillary 

acidic protein, starch, and cellulose, and some synthetic chemicals such as potential-

sensitive dyes, e.g. di-4-ANEPPS [113-115]. SHG microscopy endows these samples 

with free contrast so that they can be detected without protein labeling. The Jablonski 

diagrams of one-photon excitation, two-photon excitation and second harmonic 

generation are shown in Figure 2.7. [116] 

Application of fluorescence microscopy together with one-photon excitation, two-

photon excitation and second harmonic generation techniques has revealed amounts of 

information on sarcomeric dynamics. Srikakulam et al found that GFP-myosin emerged 

as globular foci at cell peripheries, evolved to short filamentous structures and was finally 

Figure 2.7 Jablonski diagram of one-photon excitation fluorescence (A), 

two-photon excitation fluorescence (B), and second harmonic generation 

(C). Adapted from [116] with permission from Elsevier, copyright 2012. 
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replaced by myofibrils; these conformational changes are attributed to the folding of the 

head and coiled-coil domains of myosin filaments. [117] Dabiri et al expressed GFP-

conjugated α-actinin in spreading chicken cardiomyocytes and found that longitudinal 

growth of myofibrils was accomplished by lateral coalescing of adjacent shorter 

myofibrils. [59] Manisastry et al simultaneously observed fluorescent protein-conjugated 

N-RAP and α-actinin/actin, and discovered the function of N-RAP as scaffolds for α-

actinin assembly. [118] SHG signal arises from the coiled-coil domain of myosin 

filaments [119]. The use of SHG microscopy on studies of myosin filaments does not 

require exogenous protein labeling. SHG microscopy permits dynamic observation of 

sarcomeric addition, and leads to discovery of many modes of sarcomeric addition, 

including sarcomeric addition at myofibril end, side, and middle part, or through 

myofibril splitting. [28, 120, 121]  

Photodamage is a primary concern of live-cell imaging because it can adversely 

affect the cellular and molecular processes being studied. Except for potential thermal 

damage, laser radiation also lead to reactive oxygen species, free radicals, direct DNA 

damage, and plasma formation. [122] Photodamage from nonlinear microscopy depends 

on configuration of the incident laser, including pulse duration, pulse repetition rate, 

center wavelength, etc. Ji et al believed that photodamage decreases more rapidly with 

decreased laser intensity than does the signal. With this belief, they introduced a passive 

pulse splitter into a TPEF microscope. The passive pulse splitter increases the pulse 

repetition rate and decreases the energy of each pulse. They found that addition of a 64X 

pulse splitter reduced photodamage in a live sample by an order of magnitude. [123] 
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Consistent with Ji et al’ results, our experiment with live cardiomyocytes showed a 13 

times decrease in photodamage when a 64X pulse splitter was introduced. [43] On the 

other hand, Donnert et al found that photobleaching could be reduced to a similar extent 

by decreasing pulse repetition rate from 40M Hz to 0.5MHz. They attributed it to the 

increased separation of individual pulses, which allowed excited fluorophores to return to 

the ground state before being excited again. [124, 125] Saytashev et al found that 

photodamage linearly depended on the energy fluence per pulse, and at the same TPEF 

signal-yielding level, it was smaller with shorter pulse. [122] Photodamage was reduced 

by local fluorophore density-based non-uniform exposing: area with weak fluorescence 

was exposed intensely while area with strong fluorescence was exposed lightly. This non-

uniform exposing method maintained adequate image quality with low dose of radiation. 

[126, 127] 
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 CHAPTER III   ESTABLISHMENT OF A CARDIOMYOCYTE-CULTURE MODEL 
ON A POLYDIMETHYLSILOXANE SUBSTRATE WITH IN VIVO-LIKE 

MECHANICAL LOADING ENVIRONMENT 

3.1 Introduction 

Clinical-relevant mechanobiological studies of cardiac muscle in vitro require an 

in vivo-like cardiomyocyte culture that recapitulates at least the native mechanical 

loading environment. This mechanical environment can be viewed into an active and a 

passive part: the active stress is caused by the contractile force of cardiomyocytes along 

their long axes; the passive stress comes from the deformation gradient of myocardium. 

[128] To allow a cultured cardiomyocyte to experience a mechanical loading equivalent

to the in vivo active and passive stress, the cell culture must be specifically designed to 

ensure appropriate force transmission between connected cardiomyocytes and between 

cardiomyocytes and their surrounding extracellular matrix (ECM); such a special design 

is not attained in the currently used cardiomyocyte culture models for mechanobiological 

studies. 

The most prevalent cardiomyocyte culture models for mechanobiological studies 

are established on deformable silicone substrates using neonatal cardiomyocytes [23, 24, 

40, 129-131]. These culture models are advantageous over animal models due to their 

simplicity, accessibility and controllability. However, cardiomyocytes are cultured 

randomly in these models, lacking the in vivo-like cell-cell and cell-ECM coupling. In 

the past two decades, researchers have become increasingly aware of the importance of a 

culture, with elongated cardiomyocytes aligned along their long axes and end-to-end 

connected in recapitulating the in vivo organization of cardiomyocytes and thus 
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mimicking the native mechanical loading environment. For example, Simpson et al 

aligned collagen fibrils on a silicone substrate to induce cardiomyocyte alignment so to 

investigate myocyte protein turnover under specific directions of stretch [25]. Yu et al, 

studied the cardiomyocyte remodeling process under uniaxial and static strain by aligning 

cardiomyocytes on microgrooved polydimethylsiloxane (PDMS) substrates. [27] 

However, synchronous active contraction and end-to-end coupling between 

cardiomyocytes were not attained or characterized in these cultures.  

 In this study, we developed a cardiomyocyte culture model on a PDMS substrate 

that recapitulated several aspects of the in vivo-like mechanical loading on 

cardiomyocytes, including synchronous active contraction, aligned organization, end-to-

end coupling between cardiomyocytes as well as cell-ECM coupling. We compared the 

effects of several state-of-the-art techniques for aligning cardiomyocytes and utilized 

electrical field stimulation to reinforce synchronous active contraction of cardiomyocytes. 

The techniques compared for cardiomyocyte alignment include microgroove pattering 

[132], wrinkle patterning [90], and microcontact printing [99]. Our study not only 

provides a useful tool for mechanobiological studies but also sheds light on formation 

and maintenance of mechanical coupling of cardiomyocytes in vivo. 

3.2 Materials and Methods 

Substrate preparation and characterization 

All substrates for cell culture were made with PDMS (Sylgard 184 silicone 

elastomer kit, Dow Corning). PDMS base and crosslinker were mixed at 10:1 ratio (w/w), 

and degased by centrifugation at 2000rpm for 5min. The mixture is referred to as PDMS 
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hereafter. To keep experimental consistency and to reduce variables, baking procedures 

for curing PDMS were the same for all substrates (65 °C overnight). Thickness of all 

PDMS membranes for cell culture was set to 75µm; thickness of PDMS membranes 

could be controlled by adjusting the spinning speed of a spinner (Laurell WS-400B). 

PDMS thickness as a function of spin speed (Figure 3.1) was well-described by Zhang et 

al. [133] As indicated in the chart, spinning speed was set to 1000rpm and spin time was 

set to 60s.  

 

To optimize performance of PDMS as substrates for cell culture, all PDMS 

substrates for cell culture would be subject to triple solvent extraction, vacuum oven 

Figure 3.1 Plot of PDMS thickness as a function of spin speed. 

Reproduced from [136] with permission from IEEE, copyright 

2004. 
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baking, and sonication if not noted otherwise. PDMS membranes would first be soaked in 

triethylamine (TEA), ethyl acetate (EA) and acetone, each for 2h. This was designed to 

remove trapped uncrosslinked PDMS monomers, and improve the biocompatibility of 

PDMS. [134, 135] Membranes were then baked at 100 °C vacuum oven overnight to 

remove any residual solvent and further crosslink residual PDMS monomers, if any. 

These PDMS membranes were bonded to a rectangular PDMS frames (interior 

dimension: 60mm X 16mm, border width: 3mm, frame thickness: 3mm) to make the final 

culture chambers. These culture chambers were autoclave, and activated by oxygen-

plasma (PDC 32G, Harrick Plasma) or UV-ozone treatment (PSD-UV, Novascan 

Technologies) as needed before being used for adhesive protein coating and cell culture.  

Fabrication of wrinkled PDMS membranes 

PDMS was spin-coated to a 4-inch wafer (University Wafer) at 500 rpm for 60s 

and baked at 80 °C for 2h. A 250 µm membrane was produced and used for fabrication of 

the first wrinkled PDMS membrane. Fifty percent of strain was applied to the membrane 

with a custom-made membrane stretcher (Figure 3.2), which was then oxygen-plasma 

treated for 30min. Strain was released gradually and wrinkles formed on top of the 

membrane. A polyurethane (PU) master was fabricated from the first wrinkled PDMS 

membrane using the method described by Desai et al [136], from which subsequent 

wrinkled PDMS membranes were fabricated. In detail, the PU master was first silanized 

with trimethylchlorosilane, and then spin-coated with PDMS at 500 rpm for 60s. The PU 

master was baked at 65 °C overnight and then soaked in TEA for 30min to enable 
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automatic release of the PDMS membrane. A schematic representation of the fabrication 

process of wrinkled PDMS membranes is shown in Figure 3.3. 

Dimensions of wrinkles were characterized by a scanning electron microscope 

(SEM). To visualize the top view, wrinkled PDMS membranes were placed directly on 

top of an aluminum support. To get the side view, wrinkled PDMS membranes were 

bonded to 1mm thick PDMS, and placed upside down on additional supporting PDMS. 

This sandwich configuration was important for reducing generation of cracks during 

cutting. PDMS sandwiches were cut in the middle with two closely spaced blades, and 

slices were flipped on their sides and bonded to aluminum supports. Wrinkled PDMS 

membranes were sputter-coated with platinum for 2min, and viewed with Hitachi S4800. 

Fabrication of microgrooved PDMS 

Microgrooved PDMS substrates were fabricated in three major steps ―mask 

design, master fabrication, and PDMS membranes fabrication. A mask with a microscale 

two-dimensional layout of geometries was designed with commercial software such as 

Figure 3.2 Custom-made membrane stretcher 
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AutoCAD, Solidworks, etc. and was laser-plotted to plastic films by commercial 

companies (CAD/Art Services, Inc). Masks printed on plastic films were used in this 

project because 1) they were less expensive than that printed on glass substrates; and 2) 

the resolution (10µm) was sufficient for the application presented here. The geometries 

used for cell culture in this project was the same as those reported by Motlagh et al [81] : 

10µm wide, 10µm spaced lines (Figure 3.4). 

Figure 3.3 A schematic representation of the fabrication process of 

wrinkled PDMS membrane. 

PDMS membrane under 
sustained stretch 

Plasma treatment during 
stretch 

Plasma 

Gradual release stretch to form 
wrinkles 

Winkled PDMS membrane is 
affixed to PDMS container 

Replicate wrinkles to 
polyurethane master 

Release polyurethane master 

Replicate wrinkled PDMS 
membrane from PU master 

Release wrinkled PDMS 
membrane 
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The depth of microgrooves was designed to be 1.5 µm to reduce preferential 

attachment of cardiomyocytes to the side walls and to increase attachment of 

cardiomyocytes to substrates. Because no commercially available series of SU-8 

photoresist (MicroChem, Corp) allows the production of the specific height of 1.5 µm 

(Figure 3.5), a customized formulation was developed by mixing SU-8 2005 and 

cyclopentanone (Acros Organics) at equal weight, which we named as SU-8 2001. SU-8 

2001 was poured onto a 2-inch wafer (1 ml per inch of wafer diameter) and was spun at 

2000 rpm for 30s to produce a thin even film of 1.5 µm. The wafer was soft-baked at 95 

°C for 2min to evaporate residual solvent and to solidify photoresist. Subsequently, the 

wafer was transferred to the stage on the Karl-Suss MJB3 mask aligner, and was exposed 

to UV radiation (75mJ/cm2) through the designed mask. The emulsion side of the mask 

Figure 3.4 The mask for fabrication of microgrooved features. Scale bar = 100µm 
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was placed downward in direct contact with the photoresist layer to reduce dimensional 

aberrations that might occur during exposure. After exposure, the wafer was hard-baked 

at 95 °C for 2min to complete the process of UV-initiated crosslinking of SU-8. 

Unexposed SU-8 was rinsed off with developer for 1min. The wafer was further hard-

baked at 150 °C for 30min to enhance bonding of microgrooves. The processing 

parameters for different film thickness of SU-8 photoresist were shown in Table 3.1.  

PDMS was spin-coated to the master, baked and cleaned using aforementioned 

method. The top and side view of fabricated microgrooved PDMS membranes were 

prepared in the same way as wrinkled PDMS membranes, and the dimensions were 

measured with a conventional widefield microscope (Axiovert 200M, Zeiss).  

Microcontact printing 

A general microcontact printing process involves creating PDMS stamps, inking 

stamps with cytophilic/cytophobic molecules, applying stamps to substrate, and stamp 

releasing. To compare the effects of microgroove patterning and microcontact printing on 

cell culture, the same mask was used for fabrication of microgrooves and stamps for 

microcontact printing. The microgrooves on stamps were made deep (7 µm) so that roof 

collapse [137] was minimized. Considering the depth of grooves on stamp, SU-8 2005 

was selected. SU8-2005 was spun at 1000rpm and parameters for lithography were 

adjusted accordingly (Table 3.1): soft-bake time 3min, exposure energy 120mJ/cm2, 

hard-bake time 4min, development time 2min. The master was further baked at 150 °C 

for 30min to enhance bonding of the microstructures. The master was placed in a 60mm 

petri dish and 8ml PDMS was poured into the petri dish. The PDMS was vacuumed to 
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release air bubbles entrapped in microgrooves and cured at 80°C overnight. These stamps 

had a final thickness of about 3mm. Square PDMS block (8 X 8 mm2) were cut out and 

used as stamps for microcontact printing without triple solvent extraction and cleaning. 

Their surface hydrophobicity/hydrophilicity was found to be optimal for protein transfer 

from PDMS stamps to UV-ozone activated PDMS membranes in the printing step. 

Table 3.1 Processing parameters for different film thickness of SU-8 photoresist 

Thickness 
microns 

Soft Bake Time 
minutes @ 

95°C 

Exposure 
Energy 

(mJ/cm2) 

Hard Bake 
Time minutes 

@ 95°C 
Development 

Time (minutes) 
0.5-2 1 60-80 1-2 1 

3-5 2 90-105 2-3 1 

6-15 2-3 110-140 3-4 2-3

16-25 3-4 140-150 4-5 3-4

26-40 4-5 150-160 5-6 4-5

Figure 3.5 Plots of SU-8 photoresist thickness as a function of spin speed. Reproduced 

from manufacturer’s (MicroChem) processing guidelines. 
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In the printing step, PDMS stamps were coated with freshly prepared 50 µg/ml 

fibronectin in deioned water for 1h. During that time, the featureless PDMS membrane in 

a culture chamber was activated by UV-ozone for 15min, which increases the affinity of 

PDMS substrates to fibronectin. UV-ozone treatment was found to be better than oxygen-

plasma treatment at enhancing fibronectin transfer. Timing of fibronectin coating and 

UV-ozone treatment were carefully adjusted so that both finished nearly simultaneously. 

Excess fibronectin solution was aspirated and stamps were blown dry with compressed 

nitrogen. With sterile tweezers, stamps were immediately brought into contact with 

PDMS substrates. A 50g weight was applied to the back of the stamps to enforce 

conformal contact. The printing process lasted for 30min at room temperature. After 

printing, stamps were lifted off carefully. 

The printed PDMS substrates were rinsed with PBS and covered with normal 

culture medium for 1h to enhance cell spreading between printed fibronectin lines. The 

PDMS substrates were then store in PBS at 4 °C until cell seeding. Normal culture 

medium is high-glucose Dulbecco’s modified Eagle’s medium (Gibco) with 10% fetal 

bovine serum (VWR) and 1% antibiotics (Gibco). To view printed lines on PDMS 

substrates, fibronectin was conjugated to fluorescein isothiocyanate (FITC) using 

FluoroTag FITC conjugation kits (Sigma Aldrich). The labeled fibronectin was mixed 

with unlabeled fibronectin at a ratio of 1:4 and was used to coat the stamp in regular 

microcontact printing. 
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Cell isolation and culture 

Ventricular cardiomyocytes were isolated from 3-day-old neonatal Sprague-

Dawley rats using a two-day protocol as described by Yang et al [28], which was 

approved by Clemson University Institutional Animal Care and Use Committee. All 

substrates for cell culture were prepared on the day of cell seeding. Wrinkled and 

microgrooved PDMS membranes were coated with freshly prepared 20 µg/ml fibronectin 

overnight before cell seeding. Culture chambers with untreated PDMS were used as 

control. All culture chambers were set on PDMS frames so that cardiomyocytes were 

cultured on hanged membranes, eliminating resistive stress from stiff supporting surfaces. 

When cells were ready, they were seeded to substrates at a density of 2 X 105/cm2 in 

normal culture medium. Medium was replaced next day with normal culture medium plus 

β cytosine-arabinoside (AraC) (Sigma Aldrich) and was replaced every other day 

thereafter. The effect of Arac on fibroblast proliferation was investigated and is shown in 

Appendix A. 

Electrical field stimulation 

Electrical field stimulation was performed using two pure carbon rods (Ladd 

Research Industries). The carbon rods were connected to a stimulator via platinum wires. 

The stimulator comprises a stimulation generator (STG1008, Multi Channel Systems) 

and a power amplifier (model UT01, Marchand Electronics). Cells were stimulated with a 

biphasic pulse train (1ms pulse duration at 2Hz) at 3 V/cm.  

 

 



 46 

Immunocytochemisty 

Cells were fixed with 4% paraformaldehyde (pH 7.4) for 10 to 15min, rinsed 

thoroughly with PBS, penetrated with 0.25% Triton X-100 for 10 to 15min, and blocked 

with 10% (v/v) donkey serum plus 0.1M glycine for 30min at room temperature (RT). 

Glycine was used for blocking uncrosslinked paraformaldehyde. Cells were then 

incubated with rabbit anti pan cadherin primary antibody (Abcam, 1:200) at 4°C 

overnight. The next day, cells were rinsed with PBS, and incubated with Alexa Fluor 

488-conjugated Donkey anti rabbit IgG (H+L) (Invitrogen, 1:200) for 2h in a dark room. 

Cells were then rinsed thoroughly and incubated with mouse anti α-actinin (Sigma 

Aldrich, 1:500) followed by Alexa Fluor 594-conjugated Donkey anti mouse IgG (H+L) 

(Invitrogen, 1:200). Cells were rinsed thoroughly with PBS and mounted with ProLong 

Gold antifade mounting solution with DAPI (Invitrogen). Cardiomyocytes cultured on 

different substrates were imaged with a spinning disc confocal microscope (DSU, 

Olympus). 

Evaluation of cardiomyocyte alignment 

Cell alignment was evaluated using an adaption of the weighed orientation order 

parameter (OOP) as described by Pasqualini et al [138]. Maximum intensity projected α-

actinin images were used as substrate for calculation. A structure-tensor orientation 

histogram was generated using an imageJ plugin―OrientationJ Distribution. OOP was 

then calculated by: 

𝑂𝑂𝑂𝑂𝑂𝑂 =
1
𝑁𝑁
�� 𝑒𝑒𝑖𝑖2𝜗𝜗𝑗𝑗 

𝑁𝑁

1
� 
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where 𝑖𝑖 = √−1 is the complex unit, e is Euler’s number, and 𝜗𝜗𝑗𝑗 is the 𝑗𝑗th orientation in 

{𝜗𝜗1,𝜗𝜗2, … ,𝜗𝜗𝑁𝑁}, which is bounded by 0 and π. OOP is bounded by 0 (for completely 

isotropic structures) and 1 (for completely anisotropic structures). Further, the orientation 

histogram was fitted with a linear mix of Von Mises Distributions 

𝑓𝑓(𝜗𝜗; 𝜇𝜇1, 𝛿𝛿1, 𝛾𝛾1,𝜇𝜇2, 𝛿𝛿2, 𝛾𝛾2) = 𝛾𝛾1
𝑒𝑒𝑒𝑒𝑒𝑒[𝛿𝛿1 cos(2𝜗𝜗 − 2𝜇𝜇1)]

2𝜋𝜋𝐼𝐼0(𝛿𝛿1) + 𝛾𝛾2
𝑒𝑒𝑒𝑒𝑒𝑒[𝛿𝛿2 cos(2𝜗𝜗 − 2𝜇𝜇2)]

2𝜋𝜋𝐼𝐼0(𝛿𝛿2)

where 𝜇𝜇1,2and 𝛿𝛿1,2represent the localization and spread parameters for the Z-disks and Z-

bodies, respectively, and 𝐼𝐼0is the modified Bessel function of order 0. Each item 

represents the probability density function (pdf) of the designated structure. The weighed 

OOP was determined by: 

𝑂𝑂𝑂𝑂𝑂𝑂1 = 2�𝑒𝑒𝑝𝑝𝑓𝑓1(𝜗𝜗) cos(𝜗𝜗 − 𝜇𝜇1)2
𝑁𝑁

1

�𝑒𝑒𝑝𝑝𝑓𝑓1(𝜗𝜗)
𝑁𝑁

1

� − 1 

𝑂𝑂𝑂𝑂𝑂𝑂2 = 2�𝑒𝑒𝑝𝑝𝑓𝑓2(𝜗𝜗) cos(𝜗𝜗 − 𝜇𝜇2)2
𝑁𝑁

1

�𝑒𝑒𝑝𝑝𝑓𝑓2(𝜗𝜗)
𝑁𝑁

1

� − 1 

𝜂𝜂 = �𝑒𝑒𝑝𝑝𝑓𝑓1(𝜗𝜗)
𝑁𝑁

1

�𝑓𝑓(𝜗𝜗; 𝜇𝜇1, 𝛿𝛿1, 𝛾𝛾1,𝜇𝜇2, 𝛿𝛿2, 𝛾𝛾2)
𝑁𝑁

1

�  

𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜂𝜂 × 𝑂𝑂𝑂𝑂𝑂𝑂1 + (1 − 𝜂𝜂) × 𝑂𝑂𝑂𝑂𝑂𝑂2 

Statistics 

All data were presented as mean ± standard deviation (SD). The quality of 

cardiomyocyte alignment on treated PDMS substrates were compared with that on 

untreated PDMS substrates using Student’s T-test. A probability value that was less than 

0.05 was considered statistically significant. 



 48 

3.3 Results 

Substrates with different alignment cues (Figure 3.6) were prepared with the 

aforementioned methods. Releasing a piece of pre-stretched and plasma-treated PDMS 

membrane led to formation of wrinkles on the top of the PDMS membrane that went 

perpendicular to the applied strain. The wrinkles showed normally distributed periods 

(3.85 ± 1.16 µm) and depths (0.80 ± 0.30 µm), and their periods and depths are positively 

correlated (R2 = 0.63) by a relating coefficient of 0.2. This coefficient suggests that a 

percentage of slightly greater than 20% of applied strain was fixed onto the PDMS 

membrane (mathematical calculations shown in Appendix B), which led to the formation 

of wrinkles. The microgroove features were designed to have equivalent groove and ridge 

widths of 10 µm. The produced microgroove features showed 2.75% to 5% shrinkage, 

inversely depending on the thickness of the supportive base. For example, when

 

Figure 3.6 PDMS substrates prepared with different techniques. (A) Wrinkled PDMS 

membrane. (B) Microgrooved PDMS membrane. (C) Microcontact-printed 

fibronectin lines on blank PDMS membrane. Top and side views are shown for both 

(A) and (B). Scale bars = 20µm. 

(B) (C) (A) 
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microgrooves were produced on thin PDMS membrane (about 75µm) for direct cell 

culture, the groove and ridge widths were 11.09 ± 0.27 µm and 7.87 ± 0.23 µm, with a 

total shrinkage of 5%; when microgrooves were produced on thick PDMS stamps (about 

3mm) for microcontact printing, the groove and ridge widths were 10.07 ± 0.28 µm and 

9.38 ± 0.20 µm, with a total shrinkage of 2.75%. Grooves with different depths were 

prepared for different purposes: for direct cell culture, groove depth was 1.50 ± 0.08 µm; 

for microcontact printing, groove depth was 7.0 ± 0.22 µm. Fibronectin could be 

transferred to UV ozone activated PDMS substrates at high resolution, resulting in a 

relief pattern of the grooves on the printing stamps. 

When cardiomyocytes were cultured on treated PDMS substrates , they 

consistently elongated in the direction of the underlying alignment cues and assumed rod 

shapes (Figure 3.7A-C ). On untreated PDMS membranes, cardiomyocytes spread 

randomly and developed polygonal shapes (Figure 3.7D). The quality of alignment was 

quantitatively evaluated by weight OOP (Figure 3.7E); results show that the presence of 

alignment cues significantly improved the quality of alignment on most culture stages. 

While chemmical cues (microcontact-printed fibronectin lines) induce better alignment 

during an early stage of culture (3 days in vitro, DIV3), they were not capable of 

maintaining the alignment to the degree that topographical cues (microgrooves and 

wrinkles) did at later stages of culture (DIV5 and 7). Further, the quality of alignment 

was consistently better for cell cultured microgrooved PDMS membranes than that on 

wrinkled PDMS membranes. 
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Immunocytochemistry results show a polarized distribution of N cadherin to the 

longitudinal ends of cardiomyocytes (Figure 3.7B-D), resembling the distribution of N 

cadherin in adult cardiac muscle. The steplike profile of cell-cell interfaces suggests the 

formation of in vivo-like intercalated discs between connected cardiomyocytes. However, 

these steplike cell-cell interfaces remodeled in subsequent culturing and returned to 

Figure 3.7 Immunocytochemistry for DIV3 cardiomyocytes cultured on (A) 

microgrooved (B) winkled (C) microcontact-printed and (D) untreated PDMS 

membranes (green: N cadherin, red: α-actinin, blue: nuclei). Scale bars = 20 µm. (E) 

Cardiomyocytes alignment on substrates evaluated at different stages by weighed 

OOP. 

(A) (B) (C) 

(D) (E) 

Microgrooved 

Wrinkled 

Microcontact-printed 

Untreated 

Cardiomyocyte alignment 
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sigmoidal cell-cell interfaces (Figure 3.8A) that naturally occur during culture [139]. The 

remodeling process was inhibited by electrical stimulation, and sigmoidal cell-cell 

interfaces were able to return to steplike cell-cell interfaces after application of electrical 

stimulation for 2 days (Figure 3.8B). Occasionally, cells in these aligned cultures showed 

automatically synchronous contraction, which macroscopically deformed the supporting 

membrane. In these cultures, the steplike intercalated discs were maintained without

(A) (B) 

Figure 3.8 Morphological changes of cell-cell interface in cardiomyocyte cultures on 

microgrooved PDMS membranes. (A) Sigmoidal cell-cell interface (white dash lines) 

shown in DIV5 culture without electrical stimulation. (B) Steplike cell-cell interface 

re-formed after application of electrical stimulation for 2 days from a cardiomyocyte 

culture with sigmoidal cell-cell interfaces. Green: N cadherin, red: α-actinin, blue: 

nuclei. Scale bars = 20 µm 
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electrical stimulation. These results suggest that the formation and maintenance of 

intercalated discs in vitro depend on mechanical coupling between cardiomyocytes. 

Abundant extracellular matrix proteins were expressed in these aligned 

cardiomyocyte cultures, such as collagen type IV (Figure 3.9A). Collagen type IV is a 

major component of basement membrane, which wraps around each cardiomyocyte in 

adult hearts. The expression of ECM proteins by cardiomyocytes suggests an in vivo-like 

interaction of cardiomyocyte with extracellular matrix and maturation of cardiomyocytes. 

Though cells are cutured on a 2D PDMS substrate , a 3D cell construct with 3 to 4 layers 

of cardiomyocytes was formed (Figure 3.9B). When treated PDMS substrates for 

alignment were bounded to stiff surfaces such as the bottom of a petri disc, 

Figure 3.9 Cardiomyocyte culture on a hanged microgrooved PDMS membrane under 

electrical stimulation showed abundant collagen type IV (green in A) and multiple 

layers of nuclei (white in B).On the contrary, cardiomyocyte culture on a bounded 

microgrooved PDMS membrane showed a monolayer of cell nuclei (white in C). 

Scale bars = 20 µm  

(B) 

(C) 

(A)
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cardiomyocytes failed to form the 3D cell construct (Figure 3.9C), which suggests that 

formation of such a in vivo-like cell contruct depend on the hanging culture arrangement, 

which mechanically mimicking a heart muscle with matched compliance.  

3.4 Discussion 

In this study, we established a 3D cardiomyocyte culture model on a 2D PDMS 

substrate that recapitulated several aspects of in vivo-like mechanical loading 

environment. Cardiomyocytes were aligned using various state-of-the-art techniques to 

form a cell construct that resembled the anisotropic organization of cardiomyocytes in 

vivo. Electrical field stimulation reinforced the active contraction of cardiomyocytes 

along their long axes, mimicking the active stress of native cardiomyocytes. 

Cardiomyocytes showed intercalated disc-like cell-cell interfaces between longitudinally 

connected cardiomyocytes, implying formation of mechanical coupling and appropriate 

force transmission between cardiomyocytes. Abundant collagen type IV was expressed in 

the cell construct, indicating the establishment of an integrated basement membrane 

around cardiomyocytes and implying the formation of cell-ECM mechanical interaction. 

Multiple layers of nuclei were distributed in the construct, suggesting the establishment 

of a 3D cell culture on a 2D PDMS substrate, which recapitulated the force transmission 

in the third dimension that is usually missing in a traditional 2D culture. In summary, the 

culture model established in this study closely imitates the in vivo-like mechanical 

loading environment and may serve as a promising tool for mechanobiological studies of 

cardiac muscle in vitro.  
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To recapitulate the anisotropic organization of cardiomyocytes, several state-of-

the-art techniques were used and compared, including microgroove patterning, wrinkle 

patterning, and microcontact printing, all of which induced effective alignment of 

cardiomyocytes on PDMS membranes. Consistent with previous reports, our results show 

that topographical cues had a stronger constraining effect than chemical cues. [105] 

Results show that the techniques used to achieve cardiomyocyte alignment did not affect 

cell-cell interaction. Among the three techniques, microgroove patterning and 

microcontact printing are widely used methods for engineering cardiomyocyte alignment. 

Winkle patterning, a new technique that has come into use in the past two decades, 

allows the use of multiple scales of the wrinkle patterns [90] that mimic the hierarchical 

structure of collagen type I fibers [140, 141]. However, the wrinkles produced in this 

study ranged from 1.7 to 6.4 µm and did not appear in multiple scales. We attribute this 

to the discrepancies of fabrication, among which the fixed amount of strain might be an 

important contributor.  

Intercalated disc-like cell-cell interfaces were formed in the culture model 

presented here. Usually, “intercalated discs” refers to the steplike membrane appositions 

between two longitudinally connected cardiomyocytes, where important structures such 

as adherens junction, desmosome, gap junction, ion channels are located.[54] Though the 

development of intercalated discs is described in both in vivo and in vitro studies [142, 

143], how intercalated discs establish the steplike profile is largely unknown. In an 

aligned cell culture, cardiomyocytes in physical contact naturally form sigmoidal cell-cell 

interfaces [144], and stabilized cell-ECM adhesions [139]. Adherens junctions are then 
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established and they grow under increasing tugging force [145] exerted by the contractile 

myofibrillar cytoskeleton; the force directs the initial formation of cell-cell interface 

perpendicular to the long axes of cells [146]. Our results show that steplike intercalated 

discs can be re-formed after application of electrical stimulation, which reinforces the 

synchronous contraction of cardiomyocytes, suggesting that the formation and 

maintenance of steplike intercalated discs depends on the tugging force on adherens 

junctions. However, this needs to be confirmed by more extensive studies. 

A 3D cardiomyocyte construct can be formed on a 2D PDMS substrate as shown 

in this study; however, the mechanism underlying the formation of a cardiac tissue with 

multiple layers of cells in vitro remains elusive. Guo et al reported that cardiomyocytes 

can migrate away from an explanted neonatal cardiac tissue and spread on stiff surfaces 

while they remain merged on soft substrates. [147] Therefore, we hypothesize that the 

hanging PDMS membranes for cell culture matched the compliance of native hearts, and 

allowed synchronous contraction of cardiomyocytes that generated the necessary 

mechanical forces between cell-cell and cell-ECM interactions for formation and 

maintenance of tissue-like structure [147]. What is in agreement with this hypothesis is 

that when bounding the PDMS membrane to a petri dish, cardiomyocytes failed to form 

the multiple layer cell construct. Supportive evidences from experiments that use 

stiffness-tunable PDMS substrates, as describe by Palchesko et al [148], are needed 

though. Besides, the formation of a 3D cell culture might synergistically enhance the 

formation of steplike intercalated discs.  
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3.5 Conclusion 

A 3D cardiomyocyte culture model that recapitulates key aspects of in vivo-like 

mechanical loading environment was established on a hanged PDMS substrate. 

Formation of intercalated disc-like cell-cell interfaces and 3D tissue like structure may 

depend on the substrate stiffness directly or indirectly. The culture model may serve as a 

tool for mechanobiological studies of cardiac muscle in vitro.   
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 CHAPTER IV   DYNAMIC OBSERVATION OF SARCOMERIC MYOSIN 
FILAMENTS IN CARDIOMYOCYTES UNDER STATIC STRETCH 

4.1 Introduction 

When the heart experiences increased mechanical loads, cardiomyocytes 

hypertrophy by adding sarcomeres in series or in parallel, to compensate the increase in 

work load. However with different inducing factors (physiological or pathological), this 

compensatory growth of cardiomyocytes can either enhance or deteriorate heart function. 

It is hypothesized that sarcomeric addition, the most obvious structural remodeling 

process during cardiomyocyte hypertrophy, must be different for the different functional 

outcomes. However, what the differences of sarcomeric addition are that lead to different 

outcomes remains unknown. Furthermore, sarcomeric addition processes in response to 

general mechanical stimuli remain elusive. Understanding the sarcomeric addition 

process under mechanical loading conditions is beneficial because it is likely to shed light 

on therapeutic strategies that may alleviate and cure cardiac hypertrophy or gear a 

pathological hypertrophy toward physiological hypertrophy [1, 3]. 

Though sarcomeric addition under mechanical stimuli is not well understood, 

studies on de novo sarcomerogenesis have provided information on sequences of 

sarcomeric assembly [30, 59, 61], which is likely to be shared by sarcomeric addition 

under mechanical stimuli. However, sarcomeric addition during pathological cardiac 

hypertrophy usually occurs in adult cardiomyocytes, whose cytosolic space is packed 

with myofibrillar crystalline structures. Addition of new sarcomeres cannot compromise 

the integrity of existing sarcomeric structure and the contractile function. When, where 

and how sarcomeric addition in mechanical-loaded adult cardiomyocytes occurs, is 
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unknown. Such studies are hindered by lack of in vivo-like cell culture model for 

mechanical assays and adequate methods of evaluation.  

Early studies are primary based on animal models of various kinds of induced 

cardiac hypertrophy. Samples from hypertrophic hearts are fixed and examined under a 

transmission electron microscope for structural aberrations. Aberrations are frequently 

found in two structures― Z discs and intercalated discs. Several such aberrations, 

including broadened Z discs [64], split Z discs [65], misregistered Z discs [66], fold 

amplitude-increased intercalated discs [70], and multiple intercalated discs [67], are 

hypothesized to be involved in sarcomeric addition. However, sarcomeric damage is also 

a frequent phenomenon in cardiac hypertrophy and it is difficult to exclude from 

investigation without time-lapse imaging, which reveals the entire process of sarcomeric 

addition. 

Recently Yang et al [28] have successfully performed time-lapse imaging for 

uniaxially and statically stretched cardiomyocytes and have confirmed several modes of 

sarcomeric addition. They find that under longitudinal stretch sarcomeres are added to the 

end, by the side or in the middle of an existing myofibril and under transverse stretch 

sarcomeres are added by the side of or by splitting longitudinally in the middle of an 

existing myofibril. Additions to the end of and by the side of an existing myofibril occur 

at cell peripheries and are similar to de novo sarcomerogenesis. Sarcomeric addition in 

the middle is similar to that on the end because the myofibril is broken and myofibrillar 

ends are exposed. Addition by longitudinally splitting of an existing myofibril supports 

the hypothesis that misregistered Z discs are involved in sarcomeric addition under 
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increased mechanical loads. Because time-lapse imaging is performed on single 

cardiomyocytes, no sarcomeric addition at intercalated discs can be observed. Whether 

the observed modes of sarcomeric addition occur in the native heart can be clarified only 

in an in vivo-like cardiomyocyte culture or cardiac explants. 

In this study, we used the cardiomyocyte culture model established by our lab on 

microgrooved polydimethylsiloxane (PDMS) for studying the sarcomeric addition 

process under mechanical stimuli with time-lapse imaging using our custom-built two 

photon excitation fluorescence (TPEF) and second harmonic generation (SHG) 

microscope [43]. We aimed to clarify 1) if modes of sarcomeric addition under 

mechanical stimuli observed in single cardiomyocytes exist in an in vivo-like 

cardiomyocyte construct; 2) if intercalated discs play a role in sarcomeric addition under 

mechanical stimuli; and 3) if other hypothesized modes of sarcomeric addition exist. 

4.2 Materials and Methods 

Design and calibration of a uniaxial cell stretching device 

A uniaxial cell stretching device was designed and fabricated to fit a commercial 

on-stage incubator (Okolab) to be installed on the TPEF-SHG microscope during time-

lapse imaging for maintenance of a physiological culture environment, as shown in 

Figure 4.1D. The frame of the stretching device (Figure 4.1C) was machined from 

biocompatible polyether ether ketone (PEEK) material. It comprises a supporting part, a 

fix mount and a moveable mount for the PDMS culture chamber. The moveable mount 

was attached to a fine pitch threaded shaft (Thorlabs) and was to slide on parallel rails 
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when the shaft was turned. The sliding of the moveable mount relative to the fixed mount 

deformed the PDMS culture chamber accordingly. The culture chamber (Figure 4.1B) 

had a large aspect ratio (about 3.6:1) to ensure the delivery of uniaxial strain across the 

short axis of the substrate. The frame of the culture chamber was fabricated with PDMS 

from acrylic modes with relieved structures. Microgrooved PDMS membranes (Figure 

4.1A) that were fabricated independently as described in CHAPTER III were bonded to 

(B) 

(D) (C) 
Figure 4.1 Uniaxial cell stretching device. (A) Phase image of microgrooved 

substrate of cell culture chamber. Scale bar = 20µm. (B) PDMS culture chamber. 

Scale bar = 10mm. (C) PEEK frame of cell stretching device with culture chamber 

mounted. (D) Cell stretching device housed in the on-stage incubator.  

(A)
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the frame to make the final culture chamber. The reasons for using microgrooved PDMS 

were that 1) it was efficient in inducing and effective in maintaining cardiomyocyte 

alignment; and 2) cardiomyocytes on microgrooved PDMS form a 3D cell construct with 

intercalated cell-cell interfaces. Culture chambers for longitudinal stretching experiments 

were made by orienting the underlying microgrooves in the direction of the short axis, 

while culture chambers for transverse stretching experiments were made by orienting 

microgrooves perpendicular to the short axis. 

Strain applied with the designed cell stretching device was calibrated to 

revolutions of the fine pitch threaded shaft using an image-based method. Briefly, one 

phase image of the microgrooved substrate was acquired before strain application and 

after each turn of the threaded shaft. Deformation field was obtained by comparing 

landmarks on images with and without stretch using BUnwarpJ, an imageJ plugin. Strain 

was calculated by averaging strain in each deformation grid. 

Cardiomyocyte culture and immunocytochemistry 

PDMS culture chambers were sonicated in 70% ethanol for 1h and activated by 

UV ozone for 15min before being mounted to the cell stretching device. A light stretch 

was applied to culture chambers to keep substrates tight. The culture substrates were 

coated with 20 µg/ml fibronectin at 37°C overnight. When cardiomyocytes were ready, 

they were plated to culture substrates at a density of 2 X 106/chamber in normal culture 

medium. Cardiomyocytes were allowed to adhere for 4h and were rinsed with normal 

culture medium (DMEM + 10% FBS + 1% AA). After overnight culture, medium was 

changed to normal culture medium supplemented with 2µM β cytosine-arabinoside 
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(AraC). Medium was then changed every other day. Cardiomyocytes were electrically 

stimulated as described in CHAPTER III, starting 48h after cell plating. 

On the fifth day in vitro (DIV5), cardiomyocytes cultured in PDMS chambers 

were fixed with 4% paraformaldehyde (pH 7.4) for 10 to 15min, rinsed thoroughly with 

PBS, penetrated with 0.25% Triton X-100 for 10 to 15min, and blocked with 10% (v/v) 

donkey serum plus 0.1M glycine for 30min at room temperature (RT). They were then 

incubated with rabbit anti pan cadherin primary antibody (Abcam, 1:200) at 4 °C 

overnight. The next day, cells were rinsed with PBS, and incubated with Alexa Fluor 

488-conjugated Donkey anti rabbit IgG (H+L) (Invitrogen, 1:200) for 2h in a dark room.

Cells were rinsed thoroughly with PBS and mounted with ProLong Gold antifade 

mounting solution without DAPI (Invitrogen). The cardiomyocyte culture was imaged 

with the TPEF-SHG microscope with laser setting at 880nm. The filter for the TPEF 

channel is 530/43 nm (Semrock); the filter for the SHG channel is 440/40 nm (Semrock). 

Time-lapse imaging of cardiomyocytes under mechanical stretch 

The lab-built TPEF-SHG microscope was modified by introducing a passive pulse 

splitter to reduce photodamage, and the modified microscope was verified for live cell 

imaging using randomly cultured cardiomyocytes on glass bottom dish (Appendix C). 

[43] To image sarcomeric addition under mechanical stretch, cardiomyocytes were

cultured in a culture chamber with microgrooved PDMS substrate for 5 days before time-

lapse imaging. On the day of imaging, the cell stretching device was transferred to the 

on-stage incubator that had been installed on the TPEF-SHG microscope. The TPEF 

channel was left idle due to absence of fluorescence; the SHG channel was used for 
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collecting signals from myosin filaments. The center wavelength of the laser was set to 

830nm and SHG signals were collected through a band-pass filter (414/46, Semrock). An 

area with well-aligned sarcomeric structures was selected as a region of interest (ROI) by 

visual judgment and a stack of images of this ROI was acquired before and immediately 

after stretch application, from which the actual strain of cardiomyocytes was determined. 

Then, images of this ROI were taken at a predefined interval (20min to 120min) for up to 

24h. The stretch to cardiomyocytes in either longitudinal or transverse direction was 

delivered stepwise to avoid damage to cardiomyocytes. 

Synchronized imaging 

After 3 days of electrical stimulation, cardiomyocytes beat at a pacing frequency 

of 2 Hz, which exceeds the 3D imaging speed (on the order of 0.1 Hz depending on size 

of stack) of the TPEF-SHG microscope. The beating of cardiomyocytes leads to motion 

artifact, which compromises interpretation of acquired images. To eliminate motion 

artifact, a method of synchronized recording was developed as described below. The 

beating of cardiomyocytes was overridden by external triggering, generated by a custom 

Matlab program (Appendix D) using the NI card for image acquisition. Imaging was only 

active for the period of time when cardiomyocytes was at rest. The trigger sequence is 

shown in Figure 4.2. Scanimage [149] was revised accordingly to achieve synchronized 

imaging (code not shown).  

Western blotting 

Cardiomyocytes were stretched longitudinally or transversely for 24h starting 

from DIV5. Stretched cardiomyocytes in each culture chamber were lysed with 300ml 
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ice-cold RIPA buffer (Thermo Scientific) for 20min; the lysate was collected by scraping 

and was centrifuged for 20min (14000rcf, 4°C). The supernatant was collected and used 

as a sample for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

Before SDS-PAGE, total protein concentration was quantified with a BCA Protein Assay 

Kit (Pierce). Equal amounts of sample were mixed with Laemmli buffer (Bio-Rad) and 

were boiled for 5min at 95°C before loading onto a 4−20% precast gradient 

polyacrylamide gel (Bio-Rad). After SDS-PAGE, proteins were blotted onto a PVDF 

membrane (Bio-Rad). The membrane was blocked for 2h at RT with 2% non-fat milk or 

3% bovine serum albumin (Bioworld). They were incubated with two primary antibodies: 

mouse anti heavy chain cardiac myosin (Abcam, 1:500), and mouse anti GAPDH 

(Abcam, 1:1000), which were relayed with an HRP-conjugated goat anti mouse IgG 

secondary antibody (Novus, 1:2000). A chemiluminescence reaction was performed with 

(A) 

(B) 

CM contraction 
(waiting) 

CM rest 
(imaging) 

Figure 4.2 Trigger sequence: (A) Trigger for CM beating; (B) Trigger for time-lapse 

imaging. 
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a commercial product (Santa Cruz), and results were obtained with a UVP detection 

system. The brightness of each band was measured in ImageJ. Brightness of myosin 

heavy chain bands was normalized with that of GAPDH bands. The normalized myosin 

heavy chain bands were further compared to those obtained from cardiomyocytes under 

no stretch to determine if the expression of myosin heavy chain were altered by 

mechanical stretch.  

Statistics 

All data was analyzed in GraphPad Prism 7.0 and was presented as mean ± 

standard deviation (SD). The slope of linear regression between strain and revolution was 

compared to the theoretical value by an F-test. Student’s T-test was used to determine 

whether concentration of myosin was significantly increased by mechanical stretch. A 

probability value that was less than 0.05 was considered statistically significant. 

4.3 Results 

Uniaxial cell stretching device was fabricated as designed. Longitudinal and 

transverse stretch was easily delivered to cardiomyocytes by turning the fine pitch 

threaded shaft on the cell stretching device. For simple strain management, strains of cell 

culture substrates were first calibrated to revolutions of the threaded shaft. Results 

(Figure 4.3C) show a linear correlation between revolution and strain (R2=0.9996), which 

is related by a coefficient of 0.0181 ± 0.0001. This coefficient was close to, but 

significantly smaller than, the theoretical value (0.0199), which can be calculated by 

pitch size (1/80 inch) over width (0.628 inch) of PDMS substrates. The initial strain was 
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Figure 4.3 Characterization of strain delivered with the uniaxial cell stretching device. 

(A) Deformation field of microgrooved substrate under 5-revolution stretch (~9%).

Scale bar = 10µm. (B) Deformation field of sarcomeric structures within 

cardiomyocytes under 5.5-revolution stretch (~10%). Scale bars = 10µm. (C) Plot of 

strain as a function of revolution. Dots are experimental data and solid line is fitted 

line of linear regression. Arrows in (A) and (B) show the direction of applied stretch. 

(A) (B) 

(C) 

Strain 
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estimated to be about 5 revolutions (~1.6mm) from the slope difference. Strain of PDMS 

substrates as indicated by the deformation field (Figure 4.3A) was uniaxial and uniform. 

When cardiomyocytes were cultured on top, the deformation field (Figure 4.3B) was 

slightly altered. Strains on PDMS substrates were conveyed to cardiomyocytes with a 

minimal deviation of (2.5 ± 3.7%). 

An aligned cardiomyocyte culture was formed on a microgrooved PDMS 

substrate in a culture chamber that had been mounted on the uniaxial cell stretching 

device. The presence of the cell stretching device did not induce cytotoxicity to the 

cardiomyocytes. After 5 days in culture, a 3D cardiomyocyte construct was formed on 

Figure 4.4 Cell culture characterization. (A) Top and side views of myofibrillar 

structures in the cell culture. (B) Colocalization of N cadherin and sarcomeric gaps. 

Top: N cadherin staining, middle: SHG image of sarcomeric A band, bottom: merge 

of N cadherin and sarcomeric A band image. Scale bars = 10 µm. 

(A) (B) 
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the microgrooved PDMS membrane (Figure 4.4A) and myofibrils within cardiomyocytes 

were parallel to underlying microgrooves. The average myofibrillar height of the 

construct was 11.83 ± 0.78µm. Cardiomyocytes in the 3D construct showed intercalated 

disc-like cell-cell interface with the polarized distribution of N cadherin, which 

frequently colocalized with sarcomeric gaps in myofibrils (Figure 4.4B). 

To determine the appropriate strains for inducing sarcomeric addition for 

dynamically imaging, cardiomyocyte sensitivities to strains with respect to sarcomeric 

damage was evaluated. Cardiomyocytes were exposed to different extents of longitudinal 

strains, 3h after which cardiomyocytes with sarcomeric structure disruption were 

counted. Cardiomyocytes showed no sarcomeric damage when they were stretched less 

than 6%. At stretch over 6%, the percentage of sarcomeric damage became larger and 

larger as strains increased. When strains exceeded 14%, sarcomeric damage occurred in 

100% of cardiomyocytes (Figure 4.5). We noticed that cardiomyocyte sensitivities to 

strain-caused damage were direction-dependent and were larger in the transverse than 

longitudinal direction. In practical experiments, we found 6% transverse stretch and 8% 

longitudinal stretch could efficiently perturb dynamics of sarcomeric assembly with low 

amount of sarcomeric damage; therefore, 6% transverse and 8% longitudinal stretch were 

primarily used in the following mechanical assays.  

When cardiomyocytes were longitudinally or transversely stretched, sarcomeric 

length or intermyofibrillar space was found to instantly increase to the same extent. 

During longitudinal stretch, sarcomeres were added in the middle of an existing myofibril 

beside a preexisting sarcomeric gap (Figure 4.6A). New sarcomeric nucleation did not 
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begin until 8h after stretch application. The space between the two sarcomeres gradually 

increased to about the size of a regular A band. During or after the increase, a thin A band 

appeared in the middle of the space. A new sarcomere was completely added 14h after 

stretch. Because sarcomeric gaps denote cell-cell interfaces at longitudinal ends of 

cardiomyocytes, it may be that new sarcomeres were inserted at an intercalated disc. 

During transverse stretch, the sarcomeric insertion at an intercalated disc was found to be 

reverted; this we define as sarcomeric deletion (Figure 4.6B). Similar to sarcomeric 

insertion at intercalated discs, sarcomeric deletion did not begin until 8h after stretch 

application. A sarcomeric A band was removed from the intercalated disc area during the 

process, which was completed within an hour. 

Several modes of sarcomeric addition, first described by Yang et al [28] in single 

cardiomyocytes, were also observed (Figure 4.7). At the intermyofibrillar spaces between 

two existing myofibrils, sarcomeres were added during both longitudinal and transverse 

Figure 4.5 Relationship between sarcomeric damage and external 

strain. 

Sarcomeric damage 
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stretch, increasing the number of myofibrils (Figure 4.7A). The number of myofibrils 

could also be increased through myofibrillar splitting (Figure 4.7B), which was only 

observed during transverse stretch. 

Figure 4.6 Sarcomeric insertion and deletion at intercalated discs. (A) Sarcomeric 

insertion into preexisting myofibrils under longitudinal stretch near an area that is 

likely to be the intercalated disc between two cells. (B) Sarcomeric deletion at 

intercalated discs. Gold arrow heads indicate the location of sarcomeric insertion and 

deletion. Time = hours after stretch application. Scale bars = 10µm. 

(B) (A) 
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10h 

14h 

08h 

09h 

10h 

11h 
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Before stretch 

00h 

02h 

(A) 

Figure 4.7 Sarcomeric addition that leads to more myofibrils. (A) Sarcomeric addition 

to intermyofibrillar space (gold arrows) between two existing myofibrils during 6% 

transverse stretch. (B) Myofibrillar splitting during 6% transverse stretch. Red 

numbers denote the original myofibril, and prime numbers denote split sarcomeres. 

Time = hours after stretch application.  Scale bars = 10 µm. 

04h 

18h 

24h 

04h 

06h 

Before stretch 

00h 

02h 
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Next, we examined if mechanical stimulation increased myosin synthesis on 

translational level. The concentration of cellular myosin was measured by western 

blotting for cardiomyocytes being stretched for 24h and was compared with the 

concentration for unstretched cardiomyocytes (Figure 4.8). When cardiomyocytes were 

stretched transversely by 6%, expression of myosin heavy chain increased by 118% 

(statistically insignificant); when cardiomyocytes were stretched longitudinally by 8%, 

expression of myosin heavy chain increased by 64% (statistically insignificant). The 

results suggest that cardiomyocytes are more sensitive to transverse stretch than 

longitudinal stretch with respect to myosin synthesis. 

Figure 4.8 Concentration of cellular myosin 24h after 

stretch application. Data is presented as percentages of 

control (no stretch). 

Effect of directional stretch on 
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4.4 Discussion 

Sarcomerogenesis under mechanical loading is one of the most important 

processes in cardiomyocyte remodeling during cardiac hypertrophy. Though many 

hypotheses have been proposed regarding sarcomerogenesis under mechanical loading, 

the process remains largely unknown due to a shortage of studies that reveal the dynamic 

process. In this study, we used a passive pulse splitter-based TPEF-SHG microscope to 

observe the dynamic sarcomeric addition process within cardiomyocytes in an in vivo-

like 3D cell culture during mechanical stretching. We, for the first time, observed the 

dynamic processes of sarcomeric insertion and sarcomeric deletion at intercalated disc-

like cell-cell interfaces. We also confirmed the modes of sarcomeric addition to the side 

of an existing myofibril and by myofibrillar splitting [28]. Our study depicts modes of 

sarcomeric addition under mechanical stretch that have not been observed before. This 

may advance the understanding of cardiomyocyte remodeling under mechanical loading 

conditions such as cardiac hypertrophy. 

Intercalated discs, among the most frequently altered structures in a hypertrophic 

heart, are hypothesized to play an important role in sarcomeric addition during 

mechanical stimulation. [66, 67] Bennett et al [68] defined a spectrin-rich domain at the 

apex of the folds at intercalated discs, which occurs at the axial level of what would be 

the final Z-disc of the terminal sarcomere. This spectrin-rich domain is named as 

transitional junction and is supposed to be related to sarcomeric addition at cell ends 

during growth. Yoshida et al reported transformation of intercalated discs among five 

modes during volume load and load removal, which they hypothesized to be related to 
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sarcomeric addition. [70] The hypothesis of sarcomeric addition at intercalated discs was 

inconclusive due to the use of fixed samples in these studies. Our dynamic observation 

showed the sequential events during the entire addition process, from the space clearing 

to the complete addition of sarcomeres. Because the uniaxial stretching device we used 

provides uniform strain to the whole cell body, the selective addition of sarcomeres to 

intercalated discs is thought to be native to cardiomyocytes. Because the structural 

integrity and the contractile function of the myofibril that were added with a sarcomere 

were not affected, we theorize that intercalated discs allow elastic addition of sarcomeres 

during mechanical stimulation. Beside sarcomeric insertion, our study showed that 

sarcomeric deletion can also occur at intercalated discs during transverse stretch. Deletion 

of sarcomeres at intercalated discs suggests that rearrangement of sarcomeres, which 

Guterl et al [31] hypothesized based on the phenomenon of accompanied widening with 

shortening of isometrically stretched cardiomyocytes, may begin by recycling sarcomeric 

proteins at intercalated discs.  

Yang et al [28] first described several modes of sarcomeric addition in a 

mechanically stretched single cardiomyocyte. Two of these modes were also observed in 

our in vivo-like 3D cardiomyocyte culture; they are sarcomeric addition to the side of an 

existing myofibril and by myofibrillar splitting. Sarcomeric addition in the 3D in vivo-

like cardiomyocyte culture occurred at a much slower rate than sarcomeric addition in 

single cardiomyocytes. The typical sarcomeric addition rate in a single cardiomyocyte 

[28]or a 2D cardiomyocyte culture [27] is 1 sarcomere or myofibril per hour, while in the 

3D in vivo-like cardiomyocyte culture, the sarcomeric addition rate is 1 sarcomere or 
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myofibril per several (6-24) hours. Sarcomeric addition in living rat hearts is 1 sarcomere 

per day [70]. Our 3D in vivo-like cardiomyocyte culture better represents the sarcomeric 

addition process in vivo regarding sarcomeric addition rate than single cardiomyocyte 

cultures and 2D cardiomyocyte cultures. 

Synthesis of cytoskeletal proteins accompanies sarcomerogenesis under 

mechanical stretch. Our western blotting results show a 118% increase of cellular myosin 

concentration in cardiomyocytes under 6% transverse stretch and a 64% increase in 

cardiomyocytes under 8% longitudinal stretch. Simpson et al [25] reported an ~50% 

increase in cardiomyocytes under 5% transverse stretch and no increase in 

cardiomyocytes under 5% or 10% longitudinal stretch. Our results show a consistent 

direction-dependent sensitivity of cardiomyocytes, and that cardiomyocytes are more 

sensitive to transverse than longitudinal stretch. We attribute the difference in synthesis 

levels of cellular myosin to the difference in cell culture, as studies have proven that a 3D 

culture environment enhances expression of some cellular protein including α-actinin and 

desmin when compared to 2D culture. [150] Given the potential influences of in vivo 

versus in vitro culture environment [30], we believe the results presented in this study 

more faithfully reflect the in vivo cardiomyocyte response to mechanical load. 

4.5 Conclusion 

With the 3D cardiomyocyte culture and passive pulse splitter-based TPEF-SHG, 

sarcomeric addition stimulated by longitudinal and transverse stretch was produced and 

dynamically observed. For the first time, addition and deletion of sarcomeres at 

intercalated discs were dynamically captured. Addition of sarcomeres to the side of 
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existing myofibrils and addition through myofibrillar splitting were confirmed in an in 

vivo-like cell culture. This study supports the long-standing hypothesis of sarcomeric 

addition at intercalated discs, and may shed light on cardiomyocyte remodeling to cardiac 

hypertrophy on sarcomeric level. 



77 

 CHAPTER V   DYNAMIC OBSERVATION OF SARCOMERIC Z DISCS IN 
CARDIOMYOCYTES UNDER STATIC STRETCH 

5.1 Introduction 

The Z disc is one of the most important sarcomeric structures. They delineate 

sarcomeric boundaries, and stabilize sarcomeric structures by interacting with 

nonsarcomeric and other sarcomeric proteins. They bind barbed ends of sarcomeric actin 

filaments and connect with myosin filaments through titin filaments, thus holding 

together major sarcomeric components. Z discs play an important role in 

mechanotransduction. Intercellular forces exerted on N cadherin and desmosomes at 

intercalated discs are relayed to Z discs through F actin and desmin; forces between 

sarcolemma and ECM are passed to Z discs through costameres. Studies have shown that 

many Z-disc proteins are involved in mechanotransduction signal pathways, including 

telethonin, muscle LIM protein, melusin, calcineurin and calsarcins, enigma/ENH/cypher 

family, myopalladin, and so on [57, 151]. 

Z discs actively participate in de novo sarcomerogenesis and are hypothesized to 

participate in sarcomerogenesis under increased mechanical load, e.g., in cardiac 

hypertrophy. Z bodies, which fuse laterally to form Z discs during de novo 

sarcomerogenesis, are the first detectable sarcomeric structures in spreading 

cardiomyocytes cultured in vitro [59] and in cardiomyocytes of developing hearts [30, 

61]. Z discs are among the most frequently altered cardiomyocyte sarcomeric structures 

in adult hypertrophic hearts, and some alterations of Z discs are hypothesized to be 

interphases of sarcomeric addition as a response of cardiomyocytes to increased 

mechanical load. These alterations include broadened Z discs [64], split Z discs [65] and 
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misregistered Z discs [66]. However, direct evidence of the role of Z discs in sarcomeric 

addition under increased mechanical load is missing. 

Time-lapse imaging is one of the most direct strategies for clarifying the roles of 

Z discs in sarcomeric addition. However, conventional widefield microscopy suffers from 

low contrast because Z discs are very thin (100-140nm in width [151]). Discovery of 

green fluorescent protein and its variants and advances in fluorescence microscopy in the 

past several decades have overcome the contrast challenge and made such studies 

feasible. [111] Simultaneous observation of Z discs and other sarcomeric structures such 

as thick and thin filaments will help identify the roles of these structures and the fashion 

of their interactions during mechanical load-induced sarcomerogenesis.  

In this study, we expressed EYFP-conjugated α-actinin in cardiomyocytes by 

transfection and simultaneously observed dynamics of Z discs and myosin filaments with 

the passive pulse splitter-based TPEF-SHG microscope. The reason for using α-actinin as 

a probe of Z discs is that α-actinin is the major component and the scaffolding protein of 

Z discs. [151] We aimed to find 1) whether Z disc alterations seen in adult hypertrophied 

heart are present in mechanically loaded cardiomyocytes and 2) whether these alterations 

are involved in sarcomeric addition. 

5.2 Materials and Methods 

Transfection 

Transient transfection was used in this study because primary cardiomyocytes is 

nonproliferative. Transient transfection expresses a transgene for a limited period of time, 

typically several days. In transient transfection, the transgene is usually subcloned into a 
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plasmid vector. In the study we report here, plasmid with a cDNA sequence of EYFP-

conjugated sarcomeric α-actinin was provided as a kind gift from Dr. Sanger’s lab [59]. 

Chicken sarcomeric α-actinin was subcloned into the HindIII site of the pEYFP-N1 

vector (Clontech). The resulting plasmids were amplified in E coli and purified with 

Qiagen Mega Kit according to the manufacturer’s instruction. Final plasmids were 

quantified with a plate reader (Synergy 2, BioTek); the concentration was estimated to be 

0.1µg/µl.  

Transfection reagent (TR) is an important determinant of transfection efficiency. 

To determine the optimal TR for cardiomyocytes, transfection efficiencies of several 

commercial TR products were compared, including Viromer Red (Lipocalyx), Viromer 

Yellow (Lipocalyx), lipofectamine 2000 (Invitrogen), TransIT-LT1 (Mirus Bio), Xfect 

(Takara), Viafect (Promega) and Fugene HD (Promega). Dilutions of each TR and the 

incubation time with plasmid were optimized as suggested by the manufacturer. 

Transfection was performed for cardiomyocytes on the first day in vitro (DIV1), and 

transfection efficiency was checked 24h and 48h after transfection. The highest 

transfection efficiency of each TR was used for comparison. The detailed protocol for 

each TR is shown in Appendix E.  

Fluorescence recovery after photobleaching 

Because expression of EYFP-conjugated α-actinin is transient, the presence of 

EYFP-conjugated α-actinin expression at the time of time-lapse imaging needs to be 

determined. A fluorescence recovery after photobleaching (FRAP) experiment was 

performed for cardiomyocytes on the day of time-lapse imaging. The laser was set to 
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850nm to maximally approach the excitation spectra of EYFP, in an effort to optimize the 

bleaching and image acquisition. The laser power was set to full (~200mW) for 

photobleaching and to 30mW for image acquisition. A rectangular ROI was selected with 

Scanimage and bleached for 1min. Fluorescence images were taken before bleaching, 

immediately after bleaching (0min), and at user-defined time points thereafter. Analysis 

of FRAP data was performed as described by Manisastry et al [118]. Intensity of 

fluorescence in the ROI was normalized to intensity of the whole image by 

𝐼𝐼𝑛𝑛 =
𝐼𝐼𝑟𝑟𝑟𝑟𝑖𝑖 − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑛𝑛𝑏𝑏
𝐼𝐼𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖 − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑏𝑏𝑛𝑛𝑏𝑏

 

Then the normalized intensity was scaled to 0 and 1 by 

𝐼𝐼𝑛𝑛𝑛𝑛 =
𝐼𝐼𝑛𝑛 − 𝐼𝐼𝑛𝑛,𝑖𝑖𝑖𝑖𝑛𝑛

𝐼𝐼𝑛𝑛,𝑖𝑖𝑏𝑏𝑚𝑚 − 𝐼𝐼𝑛𝑛,𝑖𝑖𝑖𝑖𝑛𝑛
 

The exponential recovery part of data was fitted to the curve function 

𝐼𝐼𝑛𝑛𝑛𝑛 = 𝑏𝑏 + 𝑒𝑒 �1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏� 

where 𝑒𝑒 equals to the percentage of recovery, τ is the time constant.  

Time-lapse imaging of cardiomyocytes under mechanical stretch 

Cardiomyocyte culture was prepared as described in CHAPTER IV. 

Cardiomyocytes were transfected on DIV1 with the best TR determined previously. A 

time-lapse imaging experiment was performed as described in CHAPTER IV except that 

1) the laser was set to 850nm for excitation of EYFP; and that 2) fluorescence images 

from EYFP were acquired through the TPEF channel with a 530/40nm band-pass filter 

(Semrock).  



81 

Statistics 

All data were presented as mean ± standard deviation (SD) if not noted otherwise. 

5.3 Results 

Among the seven compared transfection reagents, Xfect transfection reagent 

showed the highest transfection efficiency for neonatal cardiomyocytes; the transfection 

efficiency is 5.0 ± 0.6% (Appendix E). A FRAP experiment was performed for 

cardiomyocytes on the day of time-lapse imaging (DIV5) to determine the presence of 

EYFP-α-actinin expression in cardiomyocytes that were transfected on DIV1. As shown 

in Figure 5.1, fluorescence in the bleached region was recovered, suggesting that 

cardiomyocytes were still expressing EYFP-α-actinin on the day of time-lapse imaging.  

Next we examined if morphological changes of Z discs were induced by 

mechanical stretch. Prior to mechanical stretch, three distributive patterns of fluorescent 

α-actinin existed. They were uniformly spaced striations, which represents the normal Z 

discs, diffuse distribution, which represents erroneous assembly of α-actinin, and 

continuous distribution, which represents the stress fiber-like structures that usually 

appear at the cell periphery [152]. After stretch application, the percentages of uniformly 

spaced striations and continuous distribution were decreased. Two new distributive 

patterns of fluorescent α-actinin appeared. They were broadened distribution, which 

corresponds to the broadened Z discs [64] that are present in the hypertrophied heart, and 

nonuniformly spaced striations, which represents an enlarged sarcomere. The percentage 

of diffuse distribution was not significantly altered, suggesting that sarcomeric damage 

was not induced by mechanical stretching. Because sarcomeric addition and 
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morphological changes in Z discs both occurred after stretch application, Z discs may 

actively participate in the stretch-induced sarcomeric addition. The distributive patterns 

before and after stretch application are shown in Figure 5.2. 

Application of mechanical stretch resulted in transformation of distributive 

patterns of α-actinin. In one experiment (Figure 5.3A), the original continuously 

distributed α-actinin began to cluster 4h after 6% longitudinal stretch and appeared as 

broadened striations thereafter. The broadened striations had a width equivalent to the 

length of a normal sarcomere. The broadened striation gradually thinned back towards 

normal, when a thin sarcomeric A band was added to the longitudinal side. However, 

Figure 5.1 FRAP process in cardiomyocytes. (A) TPEF images showing the FRAP 

process within a cardiomyocyte. (B) Intensity plot of FRAP process shown in (A). 

(A) (B) 

Fluorescent intensity 



83 

addition of a normal sized sarcomeric A band was not accomplished before complete loss 

of sarcomeric structures within the imaged cardiomyocyte. In another experiment (Figure 

5.3B), a normal sized sarcomeric A band was formed on the lateral side of a broadened 

striation, into which it was partially inserted. The insertion of the sarcomeric A band split 

the broadened striation in the middle, and after the split, the broadened striation 

converted to two uniformly spaced striations. In spite of the fact that a complete 

sarcomeric addition process was not observed, these results suggest that a sarcomere can 

Uniform striation 
Diffuse distribution 

Continuous distribution 
Broadened distribution 
Nonuniform striation 

Figure 5.2 Distributive patterns of α-actinin before (A) and after (B) stretch 

application. Red arrow heads denotes the distributive pattern. The image for each 

distributive pattern has borders of the same color as each part in the pie graph, 

which is denoted by the legend on top. 

76.2% 

14.1% 

9.7% 

66.8% 
14.6% 

16.4% 

1.9% 0.4% 

(A) (B) 
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be added to Z discs to elongate a myofibril, and broadened Z discs are interphases during 

sarcomeric addition. 

Transformation from uniformly to nonuniformly spaced striations was observed 

under transverse stretch (Figure 5.4). A myofibril broke up longitudinally in the middle 

after application of 6% transverse stretch. The cardiomyocyte neither widened the Z disc 

to fill the free space at the break, nor nucleated a new Z disc and a sarcomeric A band. 

myosin 
α-actinin 

(A) (B) 

Figure 5.3 Transition of distributive patterns from continuous to broadened striation 

(A) and from broadened to uniform striation (B) under longitudinal stretch. (A) The 

continuous distribution is broadened to the size of a regular sarcomere (blue arrows), 

and the addition of a thin sarcomeric A band (gold arrow) in the longitudinal direction 

returns broadened striation to normal. Time = hours after stretch application. (B) A 

sarcomeric A band is added to the lateral side of a broadened striation, which is split in 

the middle and was returned to uniform striation. The top image is a merge of the 

bottom two images. Scale bars = 10µm 

myosin 
α-actinin 

α-actinin 

myosin 

04h 

08h 

12h 
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The Z disc attached to the sarcomere on only one side of the break, leaving a free-end on 

the sarcomere on the other side. Despite the free end, the sarcomere maintained its 

integrity at the break. This caused an increase in local sarcomeric length to twice the 

length of a normal sarcomere, as if a new sarcomere were going to be added. This result 

suggests that locally enlarged sarcomeres are potential sites for sarcomeric addition.  

5.4 Discussion 

In this study, we simultaneously and dynamically observed two important 

sarcomeric structures, Z discs and A bands, during mechanical stimulation using a 

combined technique of fluorescent protein fusion and TPEF-SHG microscopy. We found 

that Z discs actively participated in sarcomeric addition under mechanical stimulation, 

and variants of Z disc morphologies are interphases during sarcomeric addition. Our 

results support the long-standing hypothesis that broadened Z discs are active sites for 

Figure 5.4 Transformation of distributive patterns from uniformly to nonuniformly 

spaced striations during transverse stretch. Blue arrows denote where the transition 

occurs. No Z disc broadening, Z disc nucleation and/or sarcomeric A band nucleation 

was found at the denoted space. Time = hours after stretch application. Scale bar = 10µm. 
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12h 
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sarcomeric addition, and imply that sarcomeres with distance-increased Z discs are 

potential sites for sarcomeric addition. The combinative use of fluorescent protein fusion 

technique with TPEF-SHG microscopy is an intriguing attempt for simultaneous 

observation of two cytosolic proteins, which is usually achieved by bi-transfection that 

may suffer from doubled interference from protein fusions [118]. 

Z discs are among the most frequently altered sarcomeric structures in 

cardiomyocytes during cardiac hypertrophy, and some alterations of Z discs have long 

been hypothesized to be interphases of sarcomeric addition, a response by 

cardiomyocytes to increased mechanical loads, such as broadened Z discs [64]. Our 

results show the dynamic sarcomeric addition process at broadened Z discs, suggesting 

that the Z disc act as a structural support during sarcomeric addition. However, under 

what condition a Z disc broadens itself to support sarcomeric addition remains unknown. 

For example, during transverse stretch, the distance between two successive Z discs was 

increased without broadening. The absence of Z disc broadening is not due to depletion 

of EYFP conjugated α-actinin, which has been ruled out by a FRAP experiment. Because 

the integrity of sarcomeres was not compromised by the absence of a broadened Z disc, it 

is postulated that something other than a Z disc acts as a structural support for sarcomeric 

addition.  

The results of our study suggest that variants of Z disc morphologies can be 

interphases of sarcomeric addition stimulated by mechanical load (Figure 5.5). During 

mechanical stretch, normal Z discs are transformed directly or indirectly to stress fiber-

like structures [152], broadened Z discs, or Z discs with increased spaces such as in an 
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enlarged sarcomere, to allow sarcomeric addition, after which Z disc morphology is 

returned to normal. During these morphological changes, sarcomeric damage can occur 

as a result of sarcomeric addition, mechanical stress, or another cause. More studies are 

needed to verify the existence of sarcomeric addition-related transformations of Z disc 

morphologies, e.g., from sarcomeres with distance-increased Z discs to sarcomere with 

normal-spaced Z discs. 

Although the Z disc can actively participate in sarcomeric addition and act as a 

structural support, the role of the Z disc in sarcomeric addition may be much larger. The 

Nonuniform striation 
(Sarcomere with distance-increased Z discs) 

Uniform striation 
(Normal Z disc) 

Continuous distribution 
(Stress fiber-like structure) 

Broadened distribution 
(Broadened Z disc) 

Diffuse distribution 
(Sarcomeric damage) 

Figure 5.5 Transformation of distributive patterns of α-actinin. Arrows indicate 

direction of transitions. Solid lines indicate proved transitions. Dash lines indicate 

potential but unproved transitions. Text in parentheses indicates the corresponding 

state of Z discs or sarcomeres  
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Z disc plays an important role in mechanotransduction, not only in that they mechanically 

sense the intercellular and extracellular force but also because many Z disc proteins are 

involved in mechanotransduction signal pathways. The crystalline structure of the Z disc 

may indicate that it work more as a mechanical sensor than a structural support for 

sarcomeric addition. The inflexibility of the crystalline structure makes Z discs more 

likely to fail than intercalated discs, which are membrane-based.  

5.5 Conclusion 

Two sarcomeric structures, Z discs and A bands, were simultaneously and 

dynamically observed with a combined technique of fluorescent fusion protein and 

TPEF-SHG microscopy. Z discs were shown to actively participate in sarcomeric 

addition during mechanical stimulation and variants of Z disc morphologies were found 

to be interphases of sarcomeric addition. For example, broadened Z discs were found to 

be active sites for sarcomeric addition, during when they served as structural supports. 

Sarcomeres with distance-increased Z discs were also suggested as potential sites for 

sarcomeric addition. These findings have provided fundamental knowledge for 

understanding the role of Z discs in sarcomeric addition, and may advance understanding 

of cardiomyocyte remodeling during cardiac hypertrophy with respect to Z discs.  
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 CHAPTER VI   CONCLUSION, LIMITATION AND FUTURE WORK 

Heart failure is a huge public health concern; it affects about 5.7 million adults 

and contributes to 1 out of every 9 death in the United States. Of the 900,000 people 

diagnosed with heart failure annually, half die within 5 years of diagnosis [6]. Heart 

failure usually appears as a result from cardiac hypertrophy, during which individual 

cardiomyocytes are enlarged in both size and mass. The enlargement is achieved by 

addition of sarcomeres, the basic contractile units. Cardiomyocytes elongate by adding 

sarcomeres in series and thicken by adding sarcomeres in parallel. It is generally accepted 

that sarcomeric addition can be initiated by increased mechanical loading; however, the 

sarcomeric addition process under various mechanical overloads on molecular level 

remains largely unknown. Previous researches on sarcomeric addition largely rely on 

animal models with induced cardiac hypertrophy; those experiments provide little direct 

evidence for sarcomeric addition process as a response to increased mechanical loading, 

aside from the start and end point conditions. Studies showing the dynamic addition 

process of sarcomeric addition are rare, due to lack of in vivo-like cardiomyocyte culture 

models for mechanical assays and limited choice of live imaging techniques. 

The scope of this project is therefore to develop an in vivo-like cardiomyocyte 

culture model and utilize it for real-time observation of sarcomeric addition process 

triggered with externally applied mechanical loads. Our long-term goal is to understand 

how sarcomeric addition is regulated by mechanical-loading conditions. The objective of 

this project is to test the hypotheses that longitudinal stretch will cause sarcomeric 

addition through sarcomeric protein insertion at Z-discs and that transverse stretch will 
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cause sarcomeric addition either through longitudinal splitting of an existing myofibril or 

sarcomeric addition using an existing myofibril as a template. 

To test these hypotheses, we first established an in vivo-like cardiomyocyte 

culture model on a deformable polydimethylsiloxane (PDMS) substrate, which 

recapitulated key features of in vivo-like mechanical loading environment, including 

synchronous active contraction, aligned organization, end-to-end coupling between 

cardiomyocytes as well as cell-ECM coupling. In vivo-like alignment of elongated 

cardiomyocytes was achieved using various state-of-the-art techniques including 

microgroove patterning, wrinkle patterning, and microcontact printing. Synchronous 

active contraction along the long axes of cardiomyocytes was reinforced by electrical 

field stimulation. Cardiomyocytes showed intercalated disc-like cell-cell interfaces, with 

expression of abundant collagen type IV. A 3D cell culture with multiple layers of cells 

was formed on a 2D PDMS substrate. Next, we used the in-vivo-like cardiomyocyte 

culture model to study the dynamics of sarcomeric A bands during mechanical stretching. 

A custom-built cell stretching device was developed for delivery of uniaxial and uniform 

stretch to cardiomyocytes. Sensitivity of cardiomyocyte to stretch induced damage was 

evaluated, and appropriate strains for observation of sarcomeric addition were 

determined. A synchronized recording scheme was designed to remove motion artifacts. 

Cardiomyocytes were either longitudinally or transversely stretched and the dynamic 

process of sarcomeric addition was recorded with a passive pulse splitter-based two-

photon excitation fluorescence (TPEF) and second harmonic generation (SHG) 

microscope. Cardiomyocyte remodeling on translational level during sarcomeric addition 
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was evaluated by western blotting. Following that, we used the same culture model and 

studied the morphological changes of Z discs during mechanical stretching. To visualize 

Z discs, cardiomyocytes were transfected with plasmid carrying a gene of enhanced 

yellow fluorescent protein (EYFP) conjugated α-actinin. Variants of Z disc morphologies 

were determined before and after stretch application, and those Z disc morphologies that 

appeared after stretch application, was closely investigated with the passive splitter-based 

TPEF-SHG microscope. 

We found that cardiomyocytes could form a multiple layer cell culture with 

intercalated disc-like cell-cell interfaces on a 2D substrate. The formation of 3D cell 

culture and intercalated disc-like cell-cell interfaces showed no dependence on techniques 

used to achieve alignment of elongated cardiomyocytes, but may depend directly or 

indirectly on the substrate stiffness. With this in vivo-like culture model, we, for the first 

time, observed the dynamic processes of sarcomeric insertion and sarcomeric deletion at 

intercalated disc. We also confirmed the modes of sarcomeric addition to the side of an 

existing myofibril using it as a template and through myofibrillar splitting, which was 

first dynamically observed in single cardiomyocytes. Simultaneous and dynamical 

observation of Z discs and A bands results in the discovery of the role of the Z disc 

during sarcomeric addition as a structural support. Variants of Z disc morphologies, such 

as continuous Z discs, broadened Z discs, and distance-increased Z discs were found to 

be interphases of sarcomeric addition. Our results provide direct evidences supporting 

two long-standing hypotheses: 1) intercalated discs are active sites for sarcomeric 

addition; and 2) broadened Z discs are active sites for sarcomeric addition. These findings 
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may advance the understanding of cardiomyocyte remodeling on sarcomeric level to 

mechanical overloads during cardiac hypertrophy. 

 The major limitation of the presented work is the insufficiency of data. Most 

conclusions about sarcomeric addition are supported by only a few observations if not 

one. This is due to: 1) sarcomeric addition rate is low; 2) occurrence of sarcomeric 

addition is temporally diverged; and 3) long-term cell culture in on-stage incubator is 

challenging. The problem of data insufficiency is exacerbated by the low efficiency of 

data analysis, which is achieved by visual determination of sarcomeric addition from 3D 

+ t data sets. In future, I will be devoted to: 1) finding ways to increase the detection rate 

of sarcomeric addition by increasing the imaging field, and 2) developing an automated 

method for analyzing sarcomeric addition from 3D + t data sets.  

IN CONCLUSION, a 3D cardiomyocyte culture model that recapitulates the in 

vivo-like mechanical loading environment, was established in vitro on a 2D PDMS 

substrate. With this culture model, we, for the first time, revealed the dynamic sarcomeric 

addition process at intercalated discs and Z discs with custom-built passive pulse splitter-

based TPEF-SHG microscope, which confirmed the long-standing hypotheses of 

sarcomeric addition at intercalated discs and Z discs. These findings may advance the 

understanding of cardiomyocyte remodeling process on sarcomeric level during 

development of cardiac hypertrophy. 
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APPENDICES 

Appendix A 

Inhibition of fibroblast proliferation 

Fibroblast over-proliferation is a big problem in long-term cardiomyocyte 

culture.[153] Because β cytosine-arabinoside (AraC) interferes the synthesis of DNA, 

Arac is widely used as an inhibitory drug for fibroblast proliferation. Fibroblast 

proliferation is accompanied by a proportional increase in metabolic activity, especially 

in the log phase of cell proliferation curve; therefore, fibroblast proliferation can be 

evaluated by proliferation assays that measure the metabolic activity, such as MTT assay. 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a water soluble 

reagent that can be reduced to insoluble purple formazan in the mitochondria of living 

cells. The insoluble formazan can be rapidly quantified with a spectrometer or plate 

reader.  

AraC stock solution (1mM) was prepared by dissolving AraC in autoclaved 

deioned water. Fibroblasts were obtained during cardiomyocyte isolation, and were 

purified by repetitive passaging. Purified fibroblasts were seeded to 96 well plate at a 

density of 1 X 104 per well. On the first day in vitro (DIV1), MTT assay was performed 

for one set of wells. AraC was then added to other sets of wells to make a final 

concentration of 0 µM, 0.1 µM, 0.5 µM, 1 µM, 2 µM, and 5 µM. MTT assay was 

performed on DIV2, DIV4, DIV6, DIV8 and DIV10. Metabolic activities were compared 

to that measured on DIV1.  
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MTT assay was performed as described by Ciapetti et al [154]. Briefly, MTT 

(Sigma Aldrich) stock solution (5 mg/ml) was prepared by dissolving MTT in PBS, 

which was filtered through 0.22 µm syringe filter to remove undissolved crystals. When 

cells were ready, 50 µl 5 mg/ml MTT were added to each well and incubated for 3 to 4h 

in incubator, including one set of wells with no cells (control). Medium was then 

removed and 150 µl dimethyl sulfoxide (DMSO) (Fisher Chemical) was added to each 

well to dissolve the reduced product. The well plate was shaken on an orbital shaker for 

15min in a dark room. Absorbance was measured at 590nm with a commercial plate 

reader (Synergy 2, BioTek) with a reference filter set to 620nm. Results were corrected 

by blank (results from control) subtraction. 

Results (Figure A-1) show a log growth of fibroblasts in control (0 μM) from 

DIV1 to DIV6 and a decreased growth rate from DIV8 to DIV10. Fibroblast proliferation 

rate decreased with increased AraC concentration. A concentration of 2 µM AraC kept 

 Figure A-1 MTT assay for fibroblast cultured with AraC. 

Effect of Arac on fibroblast proliferation 
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number of fibroblasts nearly unchanged from DIV1to DIV8. Higher concentration of 

AraC (5 µM) decreased the number of fibroblasts. For long-term cardiomyocyte culture, 

we want to inhibit fibroblast proliferation without cytotoxicity to fibroblasts and 

cardiomyocytes. Therefore, a concentration of 2 µM was considered optimal for the 

purpose of inhibiting fibroblast proliferation. 

Appendix B 

Calculation of fixed strain by plasma treatment 

Wrinkle depths and wrinkle periods were found to be positively correlated (R2 = 

0.63) by a coefficient of 0.2. According to the circular geometry of wrinkles on the side 

view, the length of the arc was calculated based on the depth (D) and period (P) of 

wrinkles. Assuming the radius of the circle that fits the border of wrinkles is R, the 

relation of R to D and P is described by 

𝑅𝑅2 =  (𝑅𝑅 − 𝐷𝐷)2 + (
𝑂𝑂
2

)2 

The angle (θ) of the arc of wrinkle is calculated by 

tan (
𝜃𝜃
2

) = 𝑂𝑂 2(𝑅𝑅 − 𝐷𝐷)⁄  

The length (L) of the arc of wrinkle is calculated by 

𝐿𝐿 = 𝜃𝜃𝑅𝑅 

According to these formulas, we found that L equaled to 1.10P. According to the 

fabrication process, a thin PDMS membrane was stretched 50%, which means that a 

portion of PDMS membrane with a length of P would increase to 1.50P. Oxygen plasma 

treatment stiffened the surface of the membrane. After stretch release, the PDMS 
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membrane with a length of 1.50P was shortened to 1.10P. This indicates that 80% of the 

initial strain dissipated in the membrane during stretch release. Taking into account that 

the final period of the wrinkle is longer than the original length in the PDMS membrane, 

the dissipated strain is less than 80%. 

Appendix C 

Passive pulse splitter and sarcomeric addition during cell spreading 

The passive pulse-splitter was designed as described by Ji et al. [123] The optical 

scheme of the pulse-splitting unit is shown in Figure C-1. The fundamental 4X pulse-

splitting unit (Figure C-1C) was two mirrors separated by a low dispersion fused-silica 

plate and a layer of air. One beam entering the unit was split into two subbeams with 

equal energy at the interface of the fused-silica and air, where a half-transmission and 

half-reflection optical coating was present. At the designed incident angle, these 

subbeams met again at the interface after being reflected by the two precisely separated 

mirrors, and was split one more time. This resulted in two subbeams, each with two 

pulses with a temporal offset determined by the light path difference in the pulse-splitting 

unit as shown by  

∆𝑡𝑡 =
2
𝑐𝑐
�(𝑛𝑛12 − 𝑛𝑛02)(𝑝𝑝12 − 𝑝𝑝02) 

where 𝑛𝑛0,1 and 𝑝𝑝0,1 represent the reflective index and the thickness of silica plate and air 

layer. Splitting capacity was increased by incorporating more 4X pulse-splitting units, 

and it was only limited by pulse length, repetition rate and group delay dispersion. In this 

application, a 64X pulse-splitting unit (Figure C-1B) was constructed with two 4X pulse-
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splitting units and two half-transmission, half-reflection beam splitters. The two 4X pulse 

splitter unites were designed to have different internal pulse delay and the paths of laser 

were precisely controlled to avoid overlay of subpulses. The two subbeams were 

combined in the end by a polarized beam splitter. The alignment quality of each subbeam 

would affect the final resolution. For best result, each recombined beam was required to 

have a spot coincidence of less than 1mm after 10 meters’ propagation in free space. This 

64X pulse splitter was incorporated in the TPEF-SHG microscope at the very beginning 

of its light path. The optical scheme of the modified TPEF-SHG microscope is shown in 

Figure C-1A. 

When cardiomyocytes were ready, an aliquot of cardiomyocytes were stained 

with DiO for cell membrane, which were then mixed with unstained cardiomyocytes. The 

mixed cardiomyocytes were plated onto a fibronectin coated glass-bottom dish. 

Cardiomyocytes were cultured in regular incubator for 1 day and were then transferred to 

an on-stage incubator (Okolab), which was mounted onto the TPEF-SHG microscope. 

Fluorescence from DiO-stained membrane was collected through standard FITC filter 

(515-565nm) in the TPEF channel; intrinsic SHG signals from myosin filaments were 

collected through another band-pass filter (414/46, Semrock) in the SHG channel. A 

DiO-stained cardiomyocyte surrounded by unstained cardiomyocytes was selected for 

time-lapse imaging so that the shape of the cardiomyocyte could be delineated by 

fluorescence images acquired with the TPEF channel. Images were taken hourly with the 

830nm laser and the entire imaging process lasted for 24h.  
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Results show that the presence of 64X passive pulse splitter reduced photodamage 

and increased amiable laser power for time-lapse imaging from 2.8mW [120] to several 

tens of miliwatts, which substantially increased feasibility of the TPEF-SHG microscope. 

As a trade-off, resolution of the modified TPEF-SHG microscope was compromised. The 

lateral resolution decreased from 0.47µm [155] to 0.55µm, and axial resolution decreased 

from 1.2µm [155] to 2.3µm. The lateral resolution was sufficient for resolving 

sarcomeres (~2µm). When using the modified TPEF-SHG microscope for 3D imaging, 

an axial step size of 1µm was used to make full use of axial resolution. The amiable laser 
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Figure C-1 Schematic representation of (A) passive pulse splitter-based TPEF-SHG 

microscope, (B) 64X passive pulse splitter, (C) 4X passive pulse splitter. TPEF: two-

photon excitation fluorescence. SHG: second harmonic generation. 
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power for time-lapse imaging depends on cell age and image acquisition frequency. For a 

frequency of 1 image acquisition per hour, the recommended power was 15mW for 

DIV1, 20mW for DIV2, 30mW for DIV3, 40mW for DIV4 or older.  

Dynamics of sarcomerogenesis during cardiomyocyte spreading (Figure C-2), 

observed with the passive pulse splitter modified TPEF-SHG microscope, showed both 

supportive and contradictory evidences to premyofibril model as described by Dabiri et al 

Figure C-2 Sarcomerogenesis process without mechanical stretch. DiO-stained cell 

membrane is recorded in the TPEF channel and sarcomeric structure is recorded in 

the SHG channel. Cell membrane is assigned red and sarcomere green in the merged 

images. Time = hours after stretch application. Scale bars = 10µm. 

TPEF SHG Merge 

0h 

1h 

2h 

3h 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

TPEF SHG Merge 

4h 

5h 

6h 

7h 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 

Cell membrane Sarcomere Cell membrane 
Sarcomere 



100 

[59]. Striated sarcomeric A bands faded in all over cardiomyocytes after cardiomyocytes 

spread out, supporting the replacing mechanism in nascent myofibril phase when non-

muscle myosin IIB is replaced by muscle myosin. The exchanging of muscle myosin with 

non-muscle myosin is believed to be performed in units of myosin molecules and/or 

oligomers [156] instead of myosin filaments; otherwise, these myosin filaments should 

have been captured by the SHG imaging. On the other hand, length of sarcomeres and 

sarcomeric A bands was not increased during the sarcomerogenesis process, which is 

contradictory to premyofibril model that incorporation of muscle myosin filament 

increases length of sarcomeres and sarcomeric A bands. 

Appendix D 

Matlab script for synchronized imaging 

Figure D-1 User interface for synchronized imaging 
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A MATAB script was coded to generate triggering signal at user specified 

frequency, duration, and delay. The triggering signal was output by the same NI card 

used for image acquisition. The user interface is shown in Figure D-1 with the code 

shown below. 

function varargout = syncImagingGUI(varargin) 
    gui_Singleton = 1; 
    gui_State = struct('gui_Name',       mfilename, ... 

'gui_Singleton',  gui_Singleton, ... 
'gui_OpeningFcn', @syncImagingGUI_OpeningFcn, ... 
'gui_OutputFcn',  @syncImagingGUI_OutputFcn, ... 
'gui_LayoutFcn',  [] , ... 
'gui_Callback',   []); 

    if nargin && ischar(varargin{1}) 
        gui_State.gui_Callback = str2func(varargin{1}); 
    end 

    if nargout 
        [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
    else 
        gui_mainfcn(gui_State, varargin{:}); 
    end 

function syncImagingGUI_OpeningFcn(hObject, eventdata, handles, varargin) 

    handles.output = hObject; 

    %Add Zhonghai's data to guidata so that it can be passed to other callbacks 

handles.parameters.stimFreqDuringAcquisition=str2num(get(handles.stimFreqDuringAc
quisition,'String'));%Hz 

handles.parameters.stimFreqBetweenAcquisition=str2num(get(handles.stimFreqBetween
Acquisition,'String'));%Hz 
    handles.parameters.pulseDuration=str2num(get(handles.pulseDuration,'String'));%ms 
    handles.parameters.shutterDelay=str2num(get(handles.shutterDelay,'String'));%s 

handles.parameters.shutterOpenTime=str2num(get(handles.shutterOpenTime,'String'));%
s 

    %initialize tasks based on those parameters 
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    import dabs.ni.daqmx.* 
    DAQmx_Val_ChanForAllLines=1; 

    %create DI task 
    handles.daqTasks.hDI=Task('DIline2'); 

handles.daqTasks.hDI.apiCall('DAQmxCreateDIChan',handles.daqTasks.hDI.taskID,'De
v1/port0/line2','',DAQmx_Val_ChanForAllLines) 
    handles.daqTasks.hDI.apiCall('DAQmxStartTask',handles.daqTasks.hDI.taskID) 

    %create DOSti task 
    handles.daqTasks.hDOSti=Task('CellStimulation'); 

handles.daqTasks.hDOSti.createDOChan('Dev1','port0/line6:7','','DAQmx_Val_ChanPer
Line'); 
    handles.daqTasks.hDOSti.start(); 
    handles.daqTasks.hDOSti.writeDigitalData([0;0]);% set line to 0, means no 
stimulation 

    %create DOShutter task 
    handles.daqTasks.DOShutter=Task('ShutterDO'); 

handles.daqTasks.DOShutter.createDOChan('Dev1','port0/line4','','DAQmx_Val_ChanPe
rLine'); 
    handles.daqTasks.DOShutter.start(); 
    handles.daqTasks.DOShutter.writeDigitalData(0);% set line to 0, means no stimulation 

    %create DOShutter task 
    handles.daqTasks.DOAcqPauseTrig=Task('PauseTrigDO'); 

handles.daqTasks.DOAcqPauseTrig.createDOChan('Dev1','port0/line5','','DAQmx_Val_
ChanPerLine'); 
    handles.daqTasks.DOAcqPauseTrig.start(); 
    handles.daqTasks.DOAcqPauseTrig.writeDigitalData(0);% set line to 0, means no 
stimulation     

    % parameters for DI task 
    handles.parameters.pNULL=libpointer; 
    handles.parameters.pREAD=libpointer('int32Ptr'); 
    handles.parameters.pBYTESPERSAMP=libpointer('int32Ptr'); 
    handles.parameters.pDATA=libpointer('uint8Ptr',uint8(0));% pass a pointer to libaray 
function, otherwise data will not be changed 

    % prepare data for cell stimulation 
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    dataVolPer1ms=7228;% data volume per 1 ms 
    dataVol=ceil(handles.parameters.pulseDuration*dataVolPer1ms);    
    pulseData=zeros(2*dataVol+2,2); 
    pulseData(2:dataVol+1,2)=1; 
    pulseData(dataVol+2:2*dataVol+1,1)=1; 
    handles.parameters.pulseData=pulseData; 

    % Update handles structure 
    guidata(hObject, handles); 

function varargout = syncImagingGUI_OutputFcn(hObject, eventdata, handles) 

    varargout{1} = handles.output; 

function RunOrStop_Callback(hObject, eventdata, handles) 

    set(handles.output,'CurrentCharacter','@'); 
    DAQmx_Val_GroupByChannel=0; 
    acquisitionActiveFlag=false; 
    stimFreq=handles.parameters.stimFreqBetweenAcquisition; 

    if isequal(get(hObject,'String'),'Run') 
       set(hObject,'String','press any key to stop') 
    end 
    %set gcf to focus 
    set(hObject, 'Enable', 'off'); 
    set(handles.Exit,'Enable', 'off'); 
    drawnow; 
    % run the sync signals 
    tStartSti=tic; 
    while(strcmp(get(handles.output,'CurrentCharacter'),'@')) 

handles.daqTasks.hDI.apiCall('DAQmxReadDigitalLines',handles.daqTasks.hDI.taskID,
1,10.0,DAQmx_Val_GroupByChannel,... 

handles.parameters.pDATA,1,handles.parameters.pREAD,handles.parameters.pBYTESP
ERSAMP,handles.parameters.pNULL) 
        if isequal(handles.parameters.pDATA.value,0)% acquistion stopped 
            if acquisitionActiveFlag% if shutter and pause trig is still active, inactivate it 

handles.daqTasks.DOAcqPauseTrig.writeDigitalData(0);% stop pause trig 
before close shutter 

handles.daqTasks.DOShutter.writeDigitalData(0);%close shutter 
            end 
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            stimFreq=handles.parameters.stimFreqBetweenAcquisition;% switch back to 
stimFreqBetweenAcquistion 
            acquisitionActiveFlag=false; 
            if toc(tStartSti) > 1/stimFreq 

handles.daqTasks.hDOSti.writeDigitalData(handles.parameters.pulseData); 
tStartSti=tic; 

            end 
        else% data==1, acquistion is active 
            stimFreq=handles.parameters.stimFreqDuringAcquisition;% switch frequency of 
stimulation 
            acquisitionActiveFlag=true;% set flag 
            if toc(tStartSti) > 1/stimFreq 

handles.daqTasks.DOAcqPauseTrig.writeDigitalData(0);% stop pause trig 
before close shutter 

       handles.daqTasks.DOShutter.writeDigitalData(0);%close shutter 
handles.daqTasks.hDOSti.writeDigitalData(handles.parameters.pulseData);% 

output another pulse 
tStartSti=tic; 

            end 
            if toc(tStartSti) > handles.parameters.shutterDelay 

handles.daqTasks.DOShutter.writeDigitalData(1);%open shutter 
pause(handles.parameters.shutterOpenTime); 
handles.daqTasks.DOAcqPauseTrig.writeDigitalData(1);%output pause trig 

            end 
        end 
        %bring figure to focus so that user input can be captured 
        figure(handles.output); 
    end 
    %stop stimulation and sync signal 
    handles.daqTasks.DOAcqPauseTrig.writeDigitalData(0);% stop pause trig before close 
shutter 
    handles.daqTasks.DOShutter.writeDigitalData(0);%close shutter   
    handles.daqTasks.hDOSti.writeDigitalData([0;0]);% stop stimulation 
    %set back  
    set(hObject,'String','Run'); 
    set(hObject, 'Enable', 'on'); 
    set(handles.Exit,'Enable', 'on'); 
    figure(handles.output); 

function Exit_Callback(hObject, eventdata, handles) 

    handles.daqTasks.hDI.delete(); 
    handles.daqTasks.hDOSti.delete(); 
    handles.daqTasks.DOShutter.delete(); 
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    handles.daqTasks.DOAcqPauseTrig.delete(); 
    guidata(handles.output,handles); 
    close(handles.output); 
  
function stimFreqDuringAcquisition_Callback(hObject, eventdata, handles) 
  
    handles.parameters.stimFreqDuringAcquisition=str2num(get(hObject,'String'));% get 
user input 
    guidata(handles.output,handles);%update guidata 
  
function stimFreqDuringAcquisition_CreateFcn(hObject, eventdata, handles) 
  
    if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 
  
function stimFreqBetweenAcquisition_Callback(hObject, eventdata, handles) 
  
    handles.parameters.stimFreqBetweenAcquisition=str2num(get(hObject,'String'));% get 
user input 
    guidata(handles.output,handles);%update guidata 
  
function stimFreqBetweenAcquisition_CreateFcn(hObject, eventdata, handles) 
  
    if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 
  
function pulseDuration_Callback(hObject, eventdata, handles) 
  
    handles.parameters.pulseDuration=str2num(get(hObject,'String'));% get user input 
  
    dataVolPer1ms=7228;% data volume per 1 ms 
    dataVol=ceil(handles.parameters.pulseDuration*dataVolPer1ms);     
    pulseData=zeros(2*dataVol+2,2); 
    pulseData(2:dataVol+1,2)=1; 
    pulseData(dataVol+2:2*dataVol+1,1)=1; 
  
    handles.parameters.pulseData=pulseData; 
    guidata(handles.output,handles);%update guidata 
  
function pulseDuration_CreateFcn(hObject, eventdata, handles) 
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    if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 

function shutterDelay_Callback(hObject, eventdata, handles) 

    handles.parameters.shutterDelay=str2num(get(hObject,'String'));% get user input 
    guidata(handles.output,handles);%update guidata 

function shutterDelay_CreateFcn(hObject, eventdata, handles) 

    if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 

function shutterOpenTime_Callback(hObject, eventdata, handles) 

    handles.parameters.shutterOpenTime=str2num(get(hObject,'String'));% get user input 
    guidata(handles.output,handles);%update guidata 

function shutterOpenTime_CreateFcn(hObject, eventdata, handles) 

    if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 

Appendix E 

Transfection with different transfection reagents 

Transfection was performed with plasmid construct of EYFP-conjugated α-actinin 

(referred to as pDNA hereafter). The concentration of the plasmid was 0.1µg/µl. 

Cardiomyocytes were seeded to 24-well plate at a density of 1 X105/well one day before 

transfection. To find the best transfection reagent for our application, transfection 

efficiencies of several commercial transfection reagents were compared, including 
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Viromer Red (Lipocalyx), Viromer Yellow (Lipocalyx), lipofectamine 2000 (Invitrogen), 

TransIT-LT1 (Mirus Bio), Xfect (Takara), Viafect (Promega) and Fugene HD (Promega). 

All transfection protocols were adapted from product guides from manufacturers. 

Transfection with Viromer Red and Yellow 

1) Dilute 1.5µg (15µl) pDNA with 120µl Buffer Red/Yellow. This will result in 135µl

pDNA working solution at a concentration of 11ng/µl.>> Tube 1

2) Place a 0.6µl droplet of Viromer Red/Yellow onto the wall of a resh tube.

Immediately add 14.4µl of Buffer Red/Yellow and vortex 3-5s. >> Tube 2 Always

add Buffer Red/Yellow to Viromer Red/Yellow, not vice versa!

3) Pipette 135 μl of the pDNA solution from Tube 1 onto the 15 μl of the Viromer

Red/Yellow solution in Tube 2. Mix swiftly and incubate for about 15min at room

temperature.

4) Add transfection complexes from step 3 to your cells. Titrate as per the table (Table

E-1) to identify optimal conditions.

Table E-1 Recommended mass of pDNA at different transfection scales 

Transfection Scale Transfer Volume per well pDNA per well 

Low 0.5x 25µl 250ng 

Standard 1.0x 50µl 500ng 

High 1.5x 75µl 750ng 
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5) Incubate cells under their usual growth conditions. Check fluorescence of cells 24 h

after transfection.

Transfection with Lipofectamine 2000 

1) Dilute 2µl Lipofectamine reagent to 50µl OPTI-MEM I medium (Gibco). Incubate

for 5min at room temperature

2) Dilute 0.5µg (5µl) pDNA to 50 µl OPTI-MEM I medium

3) Add diluted pDNA to diluted Lipofectamine reagent. Mix gently and incubate for

30min at room temperature

4) Add pDNA-lipid complex to cells. Incubate cells for 4h in a regular incubator.

5) Change medium to normal culture medium and incubate under their normal growth

condition. Check fluorescence of cells 24 h after transfection.

Transfection with TransIT-LT1 

1) Warm TransIT-LT1 reagent to room temperature and vortex gently before using.

2) Place 50μl of Opti-MEM I Reduced-Serum Medium in a sterile tube. Add 0.5μg (5μl)

pDNA. Pipet gently to mix completely.

3) Add 1.5 μl TransIT-LT1 reagent to the diluted pDNA solution. Avoid any contact of

the TransIT-LT1 reagent with the sides of the plastic tube. Pipet gently to mix

completely. Incubate at room temperature for 20min (15–30min).

4) Add TransIT-LT1 reagent: pDNA complexes drop-wise to different areas of the wells.

Gently rock the culture vessel to evenly distribute the TransIT-LT1 Reagent: pDNA

complexes. Incubate for 4h in a regular incubator.
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5) Change medium to normal culture medium and incubate under their normal growth

condition. Check fluorescence of cells 24h after transfection.

Transfection with Xfect 

1) Change medium of cell to DMEM+10%FBS with no antibiotics

2) Warm Xfect polymer to room temperature before use. Thoroughly vortex Xfect

polymer.

3) In a sterile tube, dilute 1µg (10µl) pDNA with 15µl Xfect reaction buffer. Mix well

by vortexing for 5s at high speed.

4) Add 0.3 µl Xfect polymer to the diluted pDNA. Mix well by vortexing for 10s at high

speed. Incubate for 10min at room temperature to allow nanoparticle complexes to

form.

5) Spin down for 1s to collect the contents at the bottom of the tube. Add the

nanoparticle complex solution drop-wise to the cell culture medium. Gently rock the

plate to mix. Incubate in a regular incubator for 4h.

6) Change medium to normal culture medium and incubate cells under their usual

growth condition. Check fluorescence of cells 24h after transfection.

Transfection with Viafect 

1) Change medium of cell to DMEM+10%FBS with no antibiotics

2) Warm Viafect transfection reagent to room temperature before use. Thoroughly

vortex Viafect transfection reagent.
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3) Place 50μl of Opti-MEM I Reduced-Serum Medium in a sterile tube. Add 0.5μg (5μl)

pDNA. Pipet gently to mix completely.

4) Add 1.5 µl Viafect tranfection reagent to the diluted pDNA. Mix well by pipetting.

Incubate for 10min (5-20min) at room temperature.

5) Add the Viafect transfection reagent: pDNA complex drop-wise to the cell culture

medium. Gently rock the plate to mix. Incubate in a regular incubator for 4h.

6) Change medium to normal culture medium and incubate cells under their usual

growth condition. Check fluorescence of cells 24h after transfection.

Transfection with Fugene HD 

1) Change medium of cell to DMEM+10%FBS with no antibiotics

2) Warm Fugene HD transfection reagent to room temperature before use. Thoroughly

vortex Fugene HD polymer.

3) Place 50μl of Opti-MEM I Reduced-Serum Medium in a sterile tube. Add 1μg (10μl)

pDNA. Pipet gently to mix completely.

4) Add 3µl Fugene HD transfection reagent to the diluted pDNA. Mix well by

peppetting. Incubate for 10min (0-15min) at room temperature.

5) Add the Fugene HD transfection reagent: pDNA complex solution drop-wise to the

cell culture medium. Gently rock the plate to mix. Incubate in a regular incubator for

4h.

6) Change medium to normal culture medium and incubate cells under their usual

growth condition. Check fluorescence of cells 24h after transfection.
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Results 

Higher transfection efficiency was obtained by performing transient transfection 

at an earlier time. In this study, cardiomyocytes were allowed to adhere to and spread on 

substrates for one day before transfection. After transfection with plasmid construct 

containing cDNA of EYFP-conjugated α-actinin, cardiomyocytes showed yellow 

fluorescence after 24h cultivation. Among all tested TRs, Xfect showed the highest 

transfection efficiency, which equaled to 5.0±0.6% and was significantly larger than that 

of Viromer Yellow, Lipofectamine 2000, Viafect and Fugene HD. No obvious 

cytotoxicity was observed for any tested TR when they were used as suggested by 

manufacturers. Xfect was determined as the best TR for our application and was used in 

this project. The transfection efficiencies of all tested TRs were shown in Figure E-1. 

Figure E-1 Transfection efficiencies of several transfection 

reagents. 

Comparison of transfection reagents 



112 

REFERENCES 

[1] Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annual
review of physiology. 2003;65:45-79.
[2] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart
Disease and Stroke Statistics-2016 Update: A Report From the American Heart
Association. Circulation. 2016;133:e38-360.
[3] Gjesdal O, Bluemke DA, Lima JA. Cardiac remodeling at the population level -risk
factors, screening, and outcomes. Nat Rev Cardiol. 2011;8:673-85.
[4] Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al.
Contemporary definitions and classification of the cardiomyopathies - An American
Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart
Failure and Transplantation Committee; Quality of Care and Outcomes Research and
Functional Genomics and Translational Biology Interdisciplinary Working Groups; And
Council on Epidemiology and Prevention. Circulation. 2006;113:1807-16.
[5] Zak R. Cardiac-Hypertrophy - Biochemical and Cellular Relationships. Hosp Pract.
1983;18:85-97.
[6] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular
signalling pathways. Nat Rev Mol Cell Bio. 2006;7:589-600.
[7] Zou YZ, Takano H, Akazawa H, Nagai T, Mizukami M, Komuro I. Molecular and
cellular mechanisms of mechanical stress-induced cardiac hypertrophy. Endocr J.
2002;49:1-13.
[8] Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the
human left ventricle. The Journal of clinical investigation. 1975;56:56-64.
[9] Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular
dimensions in trained athletes. Annals of internal medicine. 1975;82:521-4.
[10] Kerckhoffs RCP, Omens JH, McCulloch AD. A single strain-based growth law
predicts concentric and eccentric cardiac growth during pressure and volume overload.
Mech Res Commun. 2012;42:40-50.
[11] Holmes JW. Candidate mechanical stimuli for hypertrophy during volume overload.
J Appl Physiol (1985). 2004;97:1453-60.
[12] Omens JH. Stress and strain as regulators of myocardial growth. Prog Biophys Mol
Bio. 1998;69:559-72.
[13] Goktepe S, Abilez OJ, Parker KK, Kuhl E. A multiscale model for eccentric and
concentric cardiac growth through sarcomerogenesis. J Theor Biol. 2010;265:433-42.
[14] Kerckhoffs RCP. Computational modeling of cardiac growth in the post-natal rat
with a strain-based growth law. J Biomech. 2012;45:865-71.
[15] Fuchs F, Wang YP. Sarcomere length versus interfilament spacing as determinants
of cardiac myofilament Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol.
1996;28:1375-83.
[16] Baker KM, Chernin MI, Wixson SK, Aceto JF. Renin-Angiotensin System
Involvement in Pressure-Overload Cardiac-Hypertrophy in Rats. Am J Physiol.
1990;259:H324-H32.



113 

[17] Sasayama S, Ross J, Jr., Franklin D, Bloor CM, Bishop S, Dilley RB. Adaptations of
the left ventricle to chronic pressure overload. Circulation research. 1976;38:172-8.
[18] Ross J, Jr. Adaptations of the left ventricle to chronic volume overload. Circulation
research. 1974;35:suppl II:64-70.
[19] Lee JD, Sasayama S, Kihara Y, Ohyagi A, Fujisawa A, Yui Y, et al. Adaptations of
the left ventricle to chronic volume overload induced by mitral regurgitation in conscious
dogs. Heart and vessels. 1985;1:9-15.
[20] Helfant RH, De Villa MA, Meister SG. Effect of sustained isometric handgrip
exercise on left ventricular performance. Circulation. 1971;44:982-93.
[21] Schannwell CM, Zimmermann T, Schneppenheim M, Plehn G, Marx R, Strauer BE.
Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women.
Cardiology. 2002;97:73-8.
[22] Jacobson SL, Piper HM. Cell-Cultures of Adult Cardiomyocytes as Models of the
Myocardium. J Mol Cell Cardiol. 1986;18:661-78.
[23] Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, et al.
Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured
rat cardiac myocytes. Possible role of protein kinase C activation. The Journal of
biological chemistry. 1991;266:1265-8.
[24] Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of
the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-
induced cardiac hypertrophy. The Journal of biological chemistry. 1992;267:10551-60.
[25] Simpson DG, Majeski M, Borg TK, Terracio L. Regulation of cardiac myocyte
protein turnover and myofibrillar structure in vitro by specific directions of stretch.
Circulation research. 1999;85:e59-69.
[26] Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, et al.
Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned
on deformable elastomers. Biotechnology and bioengineering. 2003;81:578-87.
[27] Yu JG, Russell B. Cardiomyocyte remodeling and sarcomere addition after uniaxial
static strain in vitro. The journal of histochemistry and cytochemistry : official journal of
the Histochemistry Society. 2005;53:839-44.
[28] Yang H, Schmidt LP, Wang Z, Yang X, Shao Y, Borg TK, et al. Dynamic
Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch. Scientific reports.
2016;6:20674.
[29] Li Y, Huang G, Zhang X, Wang L, Du Y, Lu TJ, et al. Engineering cell alignment in
vitro. Biotechnology advances. 2014;32:347-65.
[30] Ehler E, Rothen BM, Hammerle SP, Komiyama M, Perriard JC. Myofibrillogenesis
in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J
Cell Sci. 1999;112:1529-39.
[31] Guterl KA, Haggart CR, Janssen PM, Holmes JW. Isometric contraction induces
rapid myocyte remodeling in cultured rat right ventricular papillary muscles. American
journal of physiology Heart and circulatory physiology. 2007;293:H3707-12.
[32] Mitcheson JS, Hancox JC, Levi AJ. Cultured adult cardiac myocytes: Future
applications, culture methods, morphological and electrophysiological properties.
Cardiovasc Res. 1998;39:280-300.



 114 

[33] Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, et al. PKC 
mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and 
mitogen-activated protein kinases in cardiomyocytes. Journal of cellular physiology. 
2005;202:536-53. 
[34] Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is 
critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol-Heart C. 
2005;289:H1488-H96. 
[35] Balle SS, Magnusson SP, McHugh MP. Effects of contract-relax vs static stretching 
on stretch-induced strength loss and length-tension relationship. Scand J Med Sci Spor. 
2015;25:764-9. 
[36] Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RAB, et al. Axial 
Stretch of Rat Single Ventricular Cardiomyocytes Causes an Acute and Transient 
Increase in Ca2+ Spark Rate. Circulation research. 2009;104:787-U141. 
[37] Kamble H, Barton MJ, Jun M, Park S, Nguyen NT. Cell stretching devices as 
research tools: engineering and biological considerations. Lab Chip. 2016;16:3193-203. 
[38] Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. J 
Biomech. 2000;33:3-14. 
[39] Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, et al. Mechanical 
stretch activates the JAK STAT pathway in rat cardiomyocytes. Circulation research. 
1999;84:1127-36. 
[40] Yamazaki T, Komuro I, Kudoh S, Zou YZ, Nagai R, Aikawa R, et al. Role of ion 
channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. 
Circulation research. 1998;82:430-7. 
[41] Webb AR, Yang J, Ameer GA. Biodegradable polyester elastomers in tissue 
engineering. Expert Opin Biol Th. 2004;4:801-12. 
[42] Shimada Y, Nwe TM, Hasebe-Kishi F, Suzuki H. Dynamics of Contractile Proteins 
Constituting Myofibrils in Living Muscle Cells. In: Dube DK, editor. Myofibrillogenesis. 
Boston, MA: Birkhäuser Boston; 2002. p. 21-39. 
[43] Wang Z, Qin W, Shao Y, Ma S, Borg TK, Gao BZ. Pulse splitter-based nonlinear 
microscopy for live-cardiomyocyte imaging. Proceedings of SPIE--the International 
Society for Optical Engineering. 2014;8948. 
[44] Legato MJ. Ultrastructure of the atrial, ventricular, and Purkinje cell, with special 
reference to the genesis of arrhythmias. Circulation. 1973;47:178-89. 
[45] Paradis AN, Gay MS, Zhang L. Binucleation of cardiomyocytes: the transition from 
a proliferative to a terminally differentiated state. Drug discovery today. 2014;19:602-9. 
[46] Weber KT. Cardiac interstitium in health and disease: the fibrillar collagen network. 
Journal of the American College of Cardiology. 1989;13:1637-52. 
[47] Ehler E, Gautel M. The Sarcomere and Sarcomerogenesis. Adv Exp Med Biol. 
2008;642:1-14. 
[48] Lange S, Ehler E, Gautel M. From A to Z and back? Multicompartment proteins in 
the sarcomere. Trends Cell Biol. 2006;16:11-8. 
[49] Frank D, Frey N. Cardiac Z-disc Signaling Network. Journal of Biological 
Chemistry. 2011;286:9897-904. 



115 

[50] Vydyanath A, Gurnett CA, Marston S, Luther PK. Axial distribution of myosin
binding protein-C is unaffected by mutations in human cardiac and skeletal muscle. J
Muscle Res Cell M. 2012;33:61-74.
[51] Agarkova I, Perriard JC. The M-band: an elastic web that crosslinks thick filaments
in the center of the sarcomere. Trends Cell Biol. 2005;15:477-85.
[52] LeWinter MM, Granzier H. Cardiac Titin A Multifunctional Giant. Circulation.
2010;121:2137-45.
[53] Granzier H, Labeit S. Cardiac titin: an adjustable multi-functional spring. J Physiol-
London. 2002;541:335-42.
[54] Forbes MS, Sperelakis N. Intercalated discs of mammalian heart: a review of
structure and function. Tissue & cell. 1985;17:605-48.
[55] Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac
hypertrophy and failure. Circulation research. 2015;116:1462-76.
[56] Russell B, Curtis MW, Koshman YE, Samarel AM. Mechanical stress-induced
sarcomere assembly for cardiac muscle growth in length and width. J Mol Cell Cardiol.
2010;48:817-23.
[57] Knoll R, Hoshijima M, Chien K. Cardiac mechanotransduction and implications for
heart disease. J Mol Med-Jmm. 2003;81:750-6.
[58] Lammerding J, Kamm RD, Lee RT. Mechanotransduction in cardiac myocytes. Ann
Ny Acad Sci. 2004;1015:53-70.
[59] Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW. Myofibrillogenesis visualized
in living embryonic cardiomyocytes. P Natl Acad Sci USA. 1997;94:9493-8.
[60] Rudy DE, Yatskievych TA, Antin PB, Gregorio CC. Assembly of thick, thin, and
titin filaments in chick precardiac explants. Dev Dynam. 2001;221:61-71.
[61] Gregorio CC, Antin PB. To the heart of myofibril assembly. Trends Cell Biol.
2000;10:355-62.
[62] Michele DE, Metzger JM. Maintaining the Fully Differentiated Cardiac Sarcomere.
In: Dube DK, editor. Myofibrillogenesis. Boston, MA: Birkhäuser Boston; 2002. p. 73-
85.
[63] Yin FCP. Ventricular Wall Stress. Circulation research. 1981;49:829-42.
[64] Legato MJ. Sarcomerogenesis in human myocardium. J Mol Cell Cardiol.
1970;1:425-37.
[65] Ferrans V. Growth of the heart in health and disease. Growth of the heart in health
and disease. 1984:187-239.
[66] Bishop SP, Cole CR. Ultrastructural changes in the canine myocardium with right
ventricular hypertrophy and congestive heart failure. Laboratory investigation; a journal
of technical methods and pathology. 1969;20:219-29.
[67] Adomian GE, Laks MM, Morady F, Swan HJ. Significance of the multiple
intercalated disc in the hypertrophied canine heart. J Mol Cell Cardiol. 1974;6:105-9.
[68] Bennett PM, Maggs AM, Baines AJ, Pinder JC. The transitional junction: A new
functional subcellular domain at the intercalated disc. Mol Biol Cell. 2006;17:2091-100.
[69] Wilson A, Schoenauer R, Ehler E, Agarkova I, Bennett P. Cardiomyocyte growth
and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci. 2014;71:165-81.



116 

[70] Yoshida M, Sho E, Nanjo H, Takahashi M, Kobayashi M, Kawamura K, et al.
Weaving hypothesis of cardiomyocyte sarcomeres: discovery of periodic broadening and
narrowing of intercalated disk during volume-load change. The American journal of
pathology. 2010;176:660-78.
[71] Xu F, Beyazoglu T, Hefner E, Gurkan UA, Demirci U. Automated and adaptable
quantification of cellular alignment from microscopic images for tissue engineering
applications. Tissue engineering Part C, Methods. 2011;17:641-9.
[72] Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building
hearts and heart parts. Advanced drug delivery reviews. 2016;96:83-102.
[73] Weiss P, Hiscoe HB. Experiments on the mechanism of nerve growth. The Journal
of experimental zoology. 1948;107:315-95.
[74] Entcheva E, Bien H. Tension development and nuclear eccentricity in
topographically controlled cardiac syncytium. Biomed Microdevices. 2003;5:163-8.
[75] Lucker PB, Javaherian S, Soleas JP, Halverson D, Zandstra PW, McGuigan AP. A
Microgroove Patterned Multiwell Cell Culture Plate for High-Throughput Studies of Cell
Alignment. Biotechnology and bioengineering. 2014;111:2537-48.
[76] Zhang B, Xiao Y, Hsieh A, Thavandiran N, Radisic M. Micro- and nanotechnology
in cardiovascular tissue engineering. Nanotechnology. 2011;22:494003.
[77] Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD. Topographical control of
cell behaviour: II. Multiple grooved substrata. Development. 1990;108:635-44.
[78] Loesberg WA, te Riet J, van Delft FCMJM, Schon P, Figdor CG, Speller S, et al.
The threshold at which substrate nanogroove dimensions may influence fibroblast
alignment and adhesion. Biomaterials. 2007;28:3944-51.
[79] Biela SA, Su Y, Spatz JP, Kemkemer R. Different sensitivity of human endothelial
cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta
biomaterialia. 2009;5:2460-6.
[80] Wang PY, Yu JS, Lin JH, Tsai WB. Modulation of alignment, elongation and
contraction of cardiomyocytes through a combination of nanotopography and rigidity of
substrates. Acta biomaterialia. 2011;7:3285-93.
[81] Motlagh D, Senyo SE, Desai TA, Russell B. Microtextured substrata alter gene
expression, protein localization and the shape of cardiac myocytes. Biomaterials.
2003;24:2463-76.
[82] Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, et al. Nanoscale
cues regulate the structure and function of macroscopic cardiac tissue constructs. P Natl
Acad Sci USA. 2010;107:565-70.
[83] Yang JY, Ting YC, Lai JY, Liu HL, Fang HW, Tsai WB. Quantitative analysis of
osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove
and ridge dimensions. J Biomed Mater Res A. 2009;90A:629-40.
[84] Chen A, Lieu DK, Freschauf L, Lew V, Sharma H, Wang J, et al. Shrink-film
configurable multiscale wrinkles for functional alignment of human embryonic stem cells
and their cardiac derivatives. Adv Mater. 2011;23:5785-91.
[85] Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM. Spontaneous
formation of ordered structures in thin films of metals supported on an elastomeric
polymer. Nature. 1998;393:146-9.



117 

[86] Yang P, Baker RM, Henderson JH, Mather PT. In vitro wrinkle formation via shape
memory dynamically aligns adherent cells. Soft Matter. 2013;9:4705-14.
[87] Jiang XY, Takayama S, Qian XP, Ostuni E, Wu HK, Bowden N, et al. Controlling
mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated
continuous wavy features on poly(dimethylsiloxane). Langmuir. 2002;18:3273-80.
[88] Greco F, Fujie T, Ricotti L, Taccola S, Mazzolai B, Mattoli V. Microwrinkled
Conducting Polymer Interface for Anisotropic Multicellular Alignment. Acs Appl Mater
Inter. 2013;5:573-84.
[89] Luna JI, Ciriza J, Garcia-Ojeda ME, Kong M, Herren A, Lieu DK, et al. Multiscale
biomimetic topography for the alignment of neonatal and embryonic stem cell-derived
heart cells. Tissue engineering Part C, Methods. 2011;17:579-88.
[90] Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J. Nested self-
similar wrinkling patterns in skins. Nat Mater. 2005;4:293-7.
[91] Lim JY, Donahue HJ. Cell sensing and response to micro- and nanostructured
surfaces produced by chemical and topographic patterning. Tissue engineering.
2007;13:1879-91.
[92] Khademhosseini A, Eng G, Yeh J, Kucharczyk PA, Langer R, Vunjak-Novakovic G,
et al. Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed
Microdevices. 2007;9:149-57.
[93] Falconnet D, Koenig A, Assi T, Textor M. A combined photolithographic and
molecular-assembly approach to produce functional micropatterns for applications in the
biosciences. Adv Funct Mater. 2004;14:749-56.
[94] Ruiz SA, Chen CS. Microcontact printing: A tool to pattern. Soft Matter.
2007;3:168-77.
[95] Akbulut O, Yu AA, Stellacci F. Fabrication of biomolecular devices via
supramolecular contact-based approaches. Chem Soc Rev. 2010;39:30-7.
[96] Jang MJ, Nam Y. Aqueous micro-contact printing of cell-adhesive biomolecules for
patterning neuronal cell cultures. Biochip J. 2012;6:107-13.
[97] Liu HH, Chen RK, Yang HX, Qin W, Borg TK, Dean D, et al. Enzyme-etching
technique to fabricate micropatterns of aligned collagen fibrils. Biotechnol Lett.
2014;36:1245-52.
[98] McDevitt TC, Angello JC, Whitney ML, Reinecke H, Hauschka SD, Murry CE, et
al. In vitro generation of differentiated cardiac myofibers on micropatterned laminin
surfaces. J Biomed Mater Res. 2002;60:472-9.
[99] Badie N, Bursac N. Novel Micropatterned Cardiac Cell Cultures with Realistic
Ventricular Microstructure. Biophys J. 2009;96:3873-85.
[100] Yamane M, Matsuda T, Ito T, Fujio Y, Takahashi K, Azuma J. Rac1 activity is
required for cardiac myocyte alignment in response to mechanical stress. Biochem Bioph
Res Co. 2007;353:1023-7.
[101] Matsuda T, Takahashi K, Nariai T, Ito T, Takatani T, Fujio Y, et al. N-cadherin-
mediated cell adhesion determines the plasticity for cell alignment in response to
mechanical stretch in cultured cardiomyocytes. Biochem Bioph Res Co. 2005;326:228-
32.



118 

[102] Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional
assembly of engineered myocardium by electrical stimulation of cardiac myocytes
cultured on scaffolds. P Natl Acad Sci USA. 2004;101:18129-34.
[103] Au HT, Cheng I, Chowdhury MF, Radisic M. Interactive effects of surface
topography and pulsatile electrical field stimulation on orientation and elongation of
fibroblasts and cardiomyocytes. Biomaterials. 2007;28:4277-93.
[104] Heidi Au HT, Cui B, Chu ZE, Veres T, Radisic M. Cell culture chips for
simultaneous application of topographical and electrical cues enhance phenotype of
cardiomyocytes. Lab Chip. 2009;9:564-75.
[105] Charest JL, Eliason MT, Garcia AJ, King WP. Combined microscale mechanical
topography and chemical patterns on polymer cell culture substrates. Biomaterials.
2006;27:2487-94.
[106] Loesberg WA, Walboomers XF, van Loon JJ, Jansen JA. The effect of combined
cyclic mechanical stretching and microgrooved surface topography on the behavior of
fibroblasts. J Biomed Mater Res A. 2005;75:723-32.
[107] Vernon RB, Gooden MD, Lara SL, Wight TN. Microgrooved fibrillar collagen
membranes as scaffolds for cell support and alignment. Biomaterials. 2005;26:3131-40.
[108] Schoenebeck JJ, Yelon D. Illuminating cardiac development: Advances in imaging
add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol.
2007;18:27-35.
[109] Weigert R, Porat-Shliom N, Amornphimoltham P. Imaging cell biology in live
animals: ready for prime time. The Journal of cell biology. 2013;201:969-79.
[110] Meijering E, Smal I, Dzyubachyk O, Olivo-Marin JC. Time-Lapse Imaging.
Microscope Image Processing. 2008:401-40.
[111] Yuste R. Fluorescence microscopy today. Nat Methods. 2005;2:902-4.
[112] Recher G, Rouede D, Richard P, Simon A, Bellanger JJ, Tiaho F. Three distinct
sarcomeric patterns of skeletal muscle revealed by SHG and TPEF Microscopy. Opt
Express. 2009;17:19763-77.
[113] Campagnola PJ, Wei MD, Lewis A, Loew LM. High-resolution nonlinear optical
imaging of live cells by second harmonic generation. Biophys J. 1999;77:3341-9.
[114] Bub G, Camelliti P, Bollensdorff C, Stuckey DJ, Picton G, Burton RAB, et al.
Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro.
Am J Physiol-Heart C. 2010;298:H1616-H25.
[115] Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing
biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 2003;21:1356-60.
[116] Pappinen S, Pryazhnikov E, Khiroug L, Ericson MB, Yliperttula M, Urtti A.
Organotypic cell cultures and two-photon imaging: tools for in vitro and in vivo
assessment of percutaneous drug delivery and skin toxicity. Journal of controlled release :
official journal of the Controlled Release Society. 2012;161:656-67.
[117] Srikakulam R, Winkelmann DA. Chaperone-mediated folding and assembly of
myosin in striated muscle. J Cell Sci. 2004;117:641-52.
[118] Manisastry SM, Zaal KJ, Horowits R. Myofibril assembly visualized by imaging
N-RAP, alpha-actinin, and actin in living cardiomyocytes. Experimental cell research.
2009;315:2126-39.



119 

[119] Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA. Characterization of the
myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys
J. 2006;90:693-703.
[120] Liu HH, Shao YH, Qin W, Runyan RB, Xu MF, Ma Z, et al. Myosin filament
assembly onto myofibrils in live neonatal cardiomyocytes observed by TPEF-SHG
microscopy. Cardiovasc Res. 2013;97:262-70.
[121] Liu HH, Qin W, Shao YH, Ma Z, Ye T, Borg T, et al. Myofibrillogenesis in live
neonatal cardiomyocytes observed with hybrid two-photon excitation fluorescence-
second harmonic generation microscopy. J Biomed Opt. 2011;16.
[122] Saytashev I, Arkhipov SN, Winkler N, Zuraski K, Lozovoy VV, Dantus M. Pulse
duration and energy dependence of photodamage and lethality induced by femtosecond
near infrared laser pulses in Drosophila melanogaster. Journal of photochemistry and
photobiology B, Biology. 2012;115:42-50.
[123] Ji N, Magee JC, Betzig E. High-speed, low-photodamage nonlinear imaging using
passive pulse splitters. Nat Methods. 2008;5:197-202.
[124] Donnert G, Eggeling C, Hell SW. Major signal increase in fluorescence
microscopy through dark-state relaxation. Nat Methods. 2007;4:81-6.
[125] Ji N, Shroff H, Zhong HN, Betzig E. Advances in the speed and resolution of light
microscopy. Curr Opin Neurobiol. 2008;18:605-16.
[126] Chu KK, Lim D, Mertz J. Enhanced weak-signal sensitivity in two-photon
microscopy by adaptive illumination. Opt Lett. 2007;32:2846-8.
[127] Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe PB, Van Noorden CJF,
Manders EMM. Controlled light-exposure microscopy reduces photobleaching and
phototoxicity in fluorescence live-cell imaging. Nat Biotechnol. 2007;25:249-53.
[128] Bol M, Abilez OJ, Assar AN, Zarins CK, Kuhl E. In Vitro/in Silico
Characterization of Active and Passive Stresses in Cardiac Muscle. Int J Multiscale Com.
2012;10:171-88.
[129] Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, et al. Stretching
cardiac myocytes stimulates protooncogene expression. The Journal of biological
chemistry. 1990;265:3595-8.
[130] Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, et al. Rho family
small G proteins play critical roles in mechanical stress-induced hypertrophic responses
in cardiac myocytes. Circulation research. 1999;84:458-66.
[131] Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal
transduction pathways in cardiac myocytes: potential involvement of an
autocrine/paracrine mechanism. The EMBO journal. 1993;12:1681-92.
[132] Mansour H, de Tombe PP, Samarel AM, Russell B. Restoration of resting
sarcomere length after uniaxial static strain is regulated by protein kinase Cepsilon and
focal adhesion kinase. Circulation research. 2004;94:642-9.
[133] Zhang WY, Ferguson GS, Tatic-Lucic S. Elastomer-supported cold welding for
room temperature wafer-level bonding. Proc Ieee Micr Elect. 2004:741-4.
[134] Pirlo RK, Sweeney AJ, Ringeisen BR, Kindy M, Gao BZ. Biochiplaser cell
deposition system to assess polarized axonal growth from single neurons and neuronglia



 120 

pairs in microchannels with novel asymmetrical geometries. Biomicrofluidics. 
2011;5:13408. 
[135] Vickers JA, Caulum MM, Henry CS. Generation of hydrophilic 
poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal Chem. 
2006;78:7446-52. 
[136] Desai SP, Freeman DM, Voldman J. Plastic masters-rigid templates for soft 
lithography. Lab Chip. 2009;9:1631-7. 
[137] Perl A, Reinhoudt DN, Huskens J. Microcontact Printing: Limitations and 
Achievements. Advanced Materials. 2009;21:2257-68. 
[138] Pasqualin C, Gannier F, Yu A, Malecot CO, Bredeloux P, Maupoil V. 
SarConfoCal: simultaneous sarcomere length and cytoplasmic calcium measurements for 
laser scanning confocal microscopy images. Bioinformatics. 2016. 
[139] McCain ML, Lee H, Aratyn-Schaus Y, Kleber AG, Parker KK. Cooperative 
coupling of cell-matrix and cell-cell adhesions in cardiac muscle. Proceedings of the 
National Academy of Sciences of the United States of America. 2012;109:9881-6. 
[140] Borg TK, Caulfield JB. The collagen matrix of the heart. Federation proceedings. 
1981;40:2037-41. 
[141] Pope AJ, Sands GB, Smaill BH, LeGrice IJ. Three-dimensional transmural 
organization of perimysial collagen in the heart. American journal of physiology Heart 
and circulatory physiology. 2008;295:H1243-H52. 
[142] Vreeker A, van Stuijvenberg L, Hund TJ, Mohler PJ, Nikkels PGJ, van Veen TAB. 
Assembly of the Cardiac Intercalated Disk during Pre- and Postnatal Development of the 
Human Heart. PloS one. 2014;9. 
[143] Zhou J, Shu Y, Lu SH, Li JJ, Sun HY, Tang RY, et al. The Spatiotemporal 
Development of Intercalated Disk in Three-Dimensional Engineered Heart Tissues Based 
on Collagen/Matrigel Matrix. PloS one. 2013;8. 
[144] McCain ML, Desplantez T, Kleber AG. Engineering Cardiac Cell Junctions In 
Vitro to Study the Intercalated Disc. Cell Commun Adhes. 2014;21:181-91. 
[145] Liu ZJ, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, et al. Mechanical 
tugging force regulates the size of cell-cell junctions. Proceedings of the National 
Academy of Sciences of the United States of America. 2010;107:9944-9. 
[146] Maruthamuthu V, Sabass B, Schwarz US, Gardel ML. Cell-ECM traction force 
modulates endogenous tension at cell-cell contacts. Proceedings of the National Academy 
of Sciences of the United States of America. 2011;108:4708-13. 
[147] Guo WH, Frey MT, Burnham NA, Wang YL. Substrate rigidity regulates the 
formation and maintenance of tissues. Biophysical Journal. 2006;90:2213-20. 
[148] Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of 
polydimethylsiloxane substrates with tunable elastic modulus to study cell 
mechanobiology in muscle and nerve. PloS one. 2012;7:e51499. 
[149] Pologruto TA, Sabatini BL, Svoboda K. ScanImage: flexible software for operating 
laser scanning microscopes. Biomedical engineering online. 2003;2:13. 
[150] Soares CP, Midlej V, de Oliveira MEW, Benchimol M, Costa ML, Mermelstein C. 
2D and 3D-Organized Cardiac Cells Shows Differences in Cellular Morphology, 
Adhesion Junctions, Presence of Myofibrils and Protein Expression. PloS one. 2012;7. 



121 

[151] Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in
signalling and disease. J Mol Med-Jmm. 2006;84:446-68.
[152] Dlugosz AA, Antin PB, Nachmias VT, Holtzer H. The Relationship between Stress
Fiber-Like Structures and Nascent Myofibrils in Cultured Cardiac Myocytes. The Journal
of cell biology. 1984;99:2268-78.
[153] Boateng SY, Hartman TJ, Ahluwalia N, Vidula H, Desai TA, Russell B. Inhibition
of fibroblast proliferation in cardiac myocyte cultures by surface microtopography.
American journal of physiology Cell physiology. 2003;285:C171-82.
[154] Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of
cell/biomaterial interaction by MTT assay. Biomaterials. 1993;14:359-64.
[155] Shao YH, Liu HH, Ye T, Borg T, Qu JL, Peng X, et al. 3D Myofibril Imaging in
Live Cardiomyocytes via Hybrid SHG-TPEF Microscopy. Proc Spie. 2011;7903.
[156] Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T. Dynamics of
myosin replacement in skeletal muscle cells. American journal of physiology Cell
physiology. 2015;309:C669-79.


	Clemson University
	TigerPrints
	8-2017

	Real-time Observation of Dynamic Sarcomeric Addition in an In Vivo-like Cardiomyocyte Culture Model
	Zhonghai Wang
	Recommended Citation


	TITLE PAGE
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1  CHAPTER I   INTRODUCTION
	1.1 Scope of research
	1.2 Backgrounds
	1.3 Research goals and specific aims
	1.4 Significance and innovation

	2  CHAPTER II   LITERATURE REVIEW
	2.1 Structure of heart muscle and sarcomeres
	2.2 Myofibrillogenesis
	2.3 Engineering cardiomyocyte alignment on PDMS substrates
	2.4 Time-lapse imaging

	3  CHAPTER III   ESTABLISHMENT OF A CARDIOMYOCYTE-CULTURE model ON a Polydimethylsiloxane SUBSTRATe with in vivo-like mechanical loading environment
	3.1 Introduction
	3.2 Materials and Methods
	3.3 Results
	3.4 Discussion
	3.5 Conclusion

	4  CHAPTER IV   DYNAMIC OBSERVATION OF SARCOMERIC MYOSIN FILAMENTS IN CARDIOMYOCYTES UNDER STATIC STRETCH
	4.1 Introduction
	4.2 Materials and Methods
	4.3 Results
	4.4 Discussion
	4.5 Conclusion

	5  CHAPTER V   DYNAMIC OBSERVATION OF SARCOMERIC Z DISCS IN CARDIOMYOCYTES UNDER STATIC STRETCH
	5.1 Introduction
	5.2 Materials and Methods
	5.3 Results
	5.4 Discussion
	5.5 Conclusion

	6  CHAPTER VI   CONCLUSION, LIMITATION AND FUTURE WORK
	APPENDICES
	A. Appendix A
	B. Appendix B
	C. Appendix C
	D. Appendix D
	E. Appendix E


