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Abstract

With the quick progression of technology and the increasing need to process large

data, there has been an increased interest in data-dependent and data-independent di-

mension reduction techniques such as principle component analysis (PCA) and Johnson-

Lindenstrauss (JL) transformations, respectively. In 1984, Johnson and Lindenstrauss proved

that any finite set of data in a high-dimensional space can be projected into a low-dimensional

space while preserving the pairwise Euclidean distance within any desired accuracy, provided

the projected dimension is sufficiently large; however, if the desired projected dimension is

too small, Woodruff and Jayram, and Kane, Nelson, and Meka in 2011 separately proved

such a projection does not exist. In this thesis, we answer an open problem by providing

a precise threshold for the projected dimension, above which, there exists a projection ap-

proximately preserving the Euclidean distance, but below which, there does not exist such

a projection. We, also, give a brief survey of JL constructions, covering the initial con-

structions and those based on fast-Fourier transforms and codes, and discuss applications

in which JL transformations have been implemented.
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Chapter 1

Introduction

1.1 Brief Overview of Projection Methods

High-dimensional data poses challenges to tasks such as data mining and pattern

recognition. Data with a large amount of attributes, i.e., data in a high-dimensional space,

is prone to noise and irrelevant information. In addition, the computation of running tasks

on high-dimensional data is costly in comparison to low-dimensional data. Another challenge

is the curse of dimensionality: as the dimension grows, the distance between the data points

becomes indistinguishable.

Traditionally, to overcome these challenges, the data is projected to a lower dimen-

sion dependent on the inherent dimension of the data set; whereas, some modern projection

methods, such as random projections, do not take into consideration the structure of the

underlying data. Ideally, the projection, whether dependent or independent of the data, re-

tains as much of the variation as possible. There are two basic techniques of data-dependent

projections: linear and nonlinear. Linear techniques, such as Principal Component Analysis

(PCA), assume the data lies in the proximity of a linear subspace; whereas, nonlinear tech-

niques, such as multidimensional scaling (MDS), do not place any assumption of linearity

on the data.

The PCAmethod seeks to preserve as much variance of the data’s variance as possible
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by choosing dimensions along which the points are maximally spread out. It accomplishes

this by finding linear combinations of the entries with maximal variance.

The MDS method, a method to visually compare data, seeks to preserve the prede-

fined distances between points. The distances are either based on a metric or nonmetric.

Typically, MDS is used to project the data into a 2-dimensional subspace to allow the user

to visualize the relationships between the data. Due to the dependence on the data’s un-

derlying structure of both PCA and MDS, a disadvantage of both PCA and MDS is that

the projected dimension relies on the inherent dimension of the data. A description of PCA

and MDS can be found in Section 1.4 and Section 1.5, respectively.

Random projections, e.g., Johnson-Lindenstrauss transformations, are projections

not dependent on the data. Random projections have been shown, both heuristically

and theoretically, to approximately preserve the similarity of data, and are advantageous

over the prior methods in terms of speed. This thesis predominantly focuses on Johnson-

Lindenstrauss transformations.

1.2 Johnson-Lindenstrauss Transformation

Contrary to projections such as PCA and MDS, random projections do not take into

consideration the data to be projected. In a random projection, a subspace onto which the

data is to be projected, is randomly selected independent of the data. Random projections

have been shown to preserve pairwise Euclidean distance with high probability [28]. In par-

ticular, Johnson and Lindenstrauss, in [28], showed for any set of n points in a d-dimensional

space, there is a linear transformation which projects the points to a k-dimensional subspace,

independent of d, such that pairwise Euclidean distance is approximately preserved. For a

d-dimensional vector x ∈ Rd, let ‖x‖2 =
(∑d

i=1 x
2
i

)1/2
denote the Euclidean norm. The

following theorem is attributed to Johnson and Lindenstrauss.

Theorem 1 ([28]). For any 0 < ε < 1
2 and 0 < δ < 1

2 , if k ≥ C · ε
−2 log 1

δ for some absolute

constant C > 0, then there exists a probability distribution D on k × d real matrices such

2



that, for any x ∈ Rd,

ProbA∼D
[
(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

]
> 1− δ, (1.1)

where A ∼ D means matrix A is chosen uniform and at random from distribution D.

In this thesis, we write log for ln unless otherwise stated.

Definition 1. A distribution on k × d matrices such that for any 0 < ε, δ < 1
2 and x ∈ Rd

Inequality (1.1) holds is called a Johnson-Lindenstrauss (JL) distribution. Any matrix from

a JL distribution is called a JL transformation.

Observe that the projected dimension of JL transformations is not dependent on the

data; whereas, in both PCA and MDS, the projected dimension depends on the underlying

dimension of the data. Since JL transformations are independent of the data, the time

required to both construct the projection and project the data is smaller than that of data

dependent methods.

1.2.1 Computational Problems

With the quick progression of technology and the increasing need to process large

amounts of data, there has been an increased interest in applying JL transformations. The

ability to project a vector to a smaller dimension, independent of the original dimension,

while approximately preserving the Euclidean norm is highly desirable and has applica-

tions in similarity tests, streaming algorithms, data mining, compressive sensing, machine

learning, etc.

For instance, consider the bag of words scenario where each document is represented

by a vector of occurrences. That is, each entry of a vector represents the number of occur-

rences of a word or phrase in the document. According to the Oxford dictionary, there are

171, 476 words currently in use and 47, 156 obsolete words. This implies each vector, when

only considering words, will be at least 170, 000 in length. Adding in phrases, the length
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will be much larger. To store vectors of occurrences for n documents, n · d storage space is

required, where d is the length of the vector; however, if only similarity is to be preserved,

the vectors can be stored using a random projection, such as a JL transformation, requiring

only O(n log n) space. Other instances of application include, but are not limited to, rate

matrices, images, genotypes, and network connections.

For a JL distribution D to be useful in practice, there are a few desirable traits.

More precisely, we consider the following computation problems in this thesis.

Problem 1: Creating a JL distribution D such that the transforms from D are simple

to construct. That is, the construction involves a few random bits or the transform has a

simple form.

For instance, consider two distributions D1 and D2 on k × d matrices. Let D1 be a distri-

bution on matrices such that each entry of the matrix is chosen at random from the normal

distribution with mean 0 and variance 1. Let D2 be a distribution on matrices such that

each entry is chosen uniformly and at random from the set {±1}. In both cases, there are

k · d random entries; however, matrices from D2 can be constructed faster.

Problem 2: Constructing a JL distribution D such that the computation of the projection

is fast.

For instance, consider two distributionsD1 andD2 on k×dmatrices. LetD1 be a distribution

on matrices such that each entry is chosen uniformly and at random from the set {±1}. Let

D2 be a distribution on matrices such that two-thirds of the entries of each matrix are 0 and

otherwise chosen uniformly and at random from {±1}. In comparison to D1, the distribution

D2 gives a three-fold speed up in the computation of Ax for A ∼ D2.

Problem 3: For a fixed d, k, and ε, find a distribution so that the probability of failure δ

can be as small as possible.

Suppose we want to project a set of n = 210 vectors, e.g., images, to a smaller dimension.

Suppose the probability of failure for each vector is δ = 2−20. Then, the probability of
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preserving pairwise distance will be 1− δ′, where

δ′ =
δn2

2
=

1

2
.

Observe that in order to keep δ′ fixed, as the number of vectors to project increases, the

probability of failure δ must decrease. Hence, we desire to obtain a small probability of

failure for a single vector for a fixed k, d, and ε.

Problem 4: Obtaining the smallest possible projected dimension for a fixed ε and δ. The

question "What is the smallest possible projected dimension for an error factor of ε and

probability of failure of δ?" arises with this problem.

1.3 Summary of Thesis

In Chapter 2, we present major progress on problems 1, 2, and 3. We first give an

overview on the development of JL distributions. Then, we will expand on the main known

constructions in literature, focusing on speed of both the projection and the construction of

a transform.

In Chapter 3, we provide our main result, which addresses problem 4. For any ε, δ,

let k0(ε, δ) denote the minimum k such that there is a JL distribution on Rk×d. For ease of

notation, we write k0 for k0(ε, δ). In 1988, Frankl and Maehara [20] showed there exists a

JL distribution for k ≥ 9ε−2 log 1
δ , resulting in an upper bound for k0:

k0 ≤ 9ε−2 log
1

δ
.

In 1998, Indyk and Motwani [26] provided a JL distribution for

k > 2 log
2

δ

(
ε2

2
− ε3

3

)−1

,

5



resulting in an even tighter upper bound:

k0 ≤ 2 log
2

δ

(
ε2

2
− ε3

3

)−1

= 4ε−2 log
1

δ

[
1 +

ε

3− ε

(
1 +

log 2

log 1
δ

)
+

log 2

log 1
δ

]
.

It was not until 2003, when a lower bound for k0 was given. Alon [4] proved for

k ≤ C ·ε−2 log 1
δ/ log 1

ε for some global constant C > 0, there is no JL distribution. Woodruff

and Jayram [27] and later Kane, Nelson, and Meka [37] improved Alon’s result by eliminating

the factor log 1
ε . They showed for k ≤ C · ε−2 log 1

δ for some global constant C > 0, there is

no JL distribution. Hence, we have a lower bound

k0 ≥ Cε−2 log
1

δ

for some C > 0.

In Chapter 3, we provide a precise threshold for k0. Our main result is the following

theorem:

Theorem 2. For ε and δ sufficiently small, k0 ≈ 4ε−2 log 1
δ . That is,

k0

4ε−2 log 1
δ

→ 1 as ε, δ → 0.

Hence, 4ε−2 log 1
δ is a threshold for k0.

In Chapter 4, we describe the applications of JL distributions in approximate nearest

neighbors, linear algebra, machine learning, compressed sensing, and differential privacy.

For the purpose of comparison, we describe PCA and MDS in more depth, but they

will not be referenced in the thesis.

1.4 Principal Component Analysis

Principal component analysis (PCA) is a linear projection technique exploiting the

underlying structure of the data. Given a sample of n observations on d variables
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{x1, . . . , xn} ⊂ Rd, PCA retains a large proportion of the data’s variance by finding linear

combinations of the d variables with large variance and keeping the largest combinations.

The linear combinations are called principal components.

The first principal component for each point is the linear combination of the en-

tries with maximal variance. The second principal component is the linear combination

orthogonal to the first component with maximal variance. The other principal components

are similarly chosen. In essence, PCA finds the dimensions along which the points are

maximally spread out.

Let X be the data matrix whose rows consist of the n points

X =



x1

x2

...

xn


∈ Rn×d.

Let x(i)
p be the ith entry (variable) of data point xp ∈ Rd. Let x̄(i) := 1

n

∑n
j=1 x

(i)
j be the

mean of the ith variable and x̄ = (x̄(1), . . . , x̄(d)) ∈ Rd be the mean vector. Geometrically,

PCA translates the origin of the points x1, . . . , xn to the mean x̄ and then rotates the axes to

the natural axes to capture the maximum amount of variance. Let x̂p = xp− x̄ for 1 ≤ p ≤ n

be the points centered about the mean and

X̂ = X − 1

n
JnX =



x̂1

x̂2

...

x̂n


,

where Jn is the n × n matrix of ones, be the data matrix of those points. The rotation

is accomplished by applying an orthogonal linear transformation A ∈ Rk×d to each shifted

point x̂p. Let zp = Ax̂p for 1 ≤ p ≤ n. Each entry z
(i)
p = (Ax̂p)

(i) is called a principal

7



component of xp. By design of A, the first principal component z(1)
p is the linear combination

of the original entries with maximal variance.

To construct the orthogonal transform A, we must first consider the sample covari-

ance matrix S of x1, . . . , xn and its spectral decomposition. The sample covariance matrix

can be defined in terms of the shifted data matrix X̂:

S =
1

n− 1
X̂>X̂.

That is, the covariance between two variables r and t, 1 ≤ r, t ≤ d is

srt =
1

n− 1

n∑
p=1

x̂(r)
p x̂(t)

p =
1

n− 1

n∑
p=1

(
x(r)
p − x̄(r)

)(
x(t)
p − x̄(t)

)

and the variance of a variable t is

st = stt =
1

n− 1

n∑
p=1

(
x(t)
p − x̄(t)

)2
.

The variance indicates how spread out the data is and the covariance indicates how closely

related the variables are. More specifically, the sample covariance measures the linear rela-

tionship between the variables. For instance, if variables r and t are independent of each

other, the covariance is zero. Since S is a real symmetric matrix, it is diagonalizable and

has spectral decomposition

S = CDC>,

where D = diag(λ1, . . . , λd) is the diagonal matrix consisting of the eigenvalues of S and C

is an orthogonal matrix whose columns are the normalized eigenvectors of S. Let A = C>,

i.e., the rows of A consist of the normalized eigenvectors of the sample covariance matrix

S. Observe A can also be constructed using the singular value decomposition UΣV > of the

8



shifted data matrix X̂ since

S =
1

n− 1
X̂>X̂ =

1

n− 1
V Σ2V >.

That is, A = V > and Ax =


v1 · x
...

vd · x

, where vi is the ith column of V .

Since the covariance matrix of z1, . . . , zn is

Sz = ASA>

and A = C>, the covariance matrix Sz is a diagonal matrix consisting of the eigenvalues of

S:

Sz = C>SC = diag(λ1, . . . , λd).

Hence, the new variables are uncorrelated, implying that any two principal components

are orthogonal and uncorrelated as desired. In addition, the variance of the first principal

component z(1) corresponds to the largest eigenvalue, implying the linear combination has

maximal variance.

1.4.1 Reducing the Dimension

To reduce the dimension of each point xi for 1 ≤ i ≤ n, the principal components

with least variance are dropped. That is, entries vk+1 · x, . . . , vd · x are dropped and A =

(v1, . . . , vk)
>. In practice, there are four methods to determine the number of the principal

components to retain.

1. The first k principal components which account for a specified proportion of variance

are kept.

2. The principal components whose corresponding eigenvalues are greater than the aver-

age eigenvalue are kept.

9



3. Using the scree graph, a plot of the eigenvalues λi versus i, a natural break between the

eigenvalues is determined and the principal components corresponding to the eigen-

values before the break are kept.

4. A hypothesis test with the hypothesis that the last d − k eigenvalues are small and

equal can be used.

Example 1. Consider the following sample covariance matrix

S =



2.69976 3.42433 −.336648 3.0133 9.5361 1.93129 4.19314

3.42433 8.89447 −.690373 5.1144 19.6511 4.56293 4.00574

−.336648 −.690373 .190764 −1.32775 −4.00663 1.39379 −.822954

3.0133 5.1144 −1.32775 171.105 226.614 234.935 114.466

9.5361 19.6511 −4.00663 226.614 457.672 222.548 178.559

1.93129 4.56293 1.39379 234.935 222.548 779.481 172.498

4.19314 4.00574 −.822954 114.466 178.559 172.498 160.559


for samples on 7 variables. Then, the eigenvalues of S with the corresponding proportion of

variance is

Eigenvalues Proportion

1087.235 0.6879

383.487 0.2426

70.245 0.0444

29.731 0.0188

8.671 0.0055

1.129 7.3199e−4

0.104 6.5867e−5

10



The corresponding eigenvector matrix C, rounded to three decimal places, is

C =



−0.008 −0.019 0.002 −0.070 0.404 0.911 −0.047

−0.015 −0.036 −0.060 −0.167 0.892 −0.411 −0.046

0.001 0.011 0.008 0.006 −0.060 −0.023 −0.998

−0.347 −0.203 −0.041 0.902 0.150 −0.005 −0.006

−0.473 −0.727 −0.341 −0.341 −0.120 0.008 −0.006

−0.761 0.620 −0.105 −0.154 −0.021 0.005 0.005

−0.276 −0.208 0.931 −0.113 0.017 −0.025 0.003



.

Method 1: Suppose we want to keep 80% of the the variance. Observe that the variance

of λ1 and λ2 makes up approximately 94% of the data. As a result, we want to keep the

eigenvectors corresponding to the first two eigenvalues.

Method 2: The average of the eigenvalues is 225.8. Observe that only λ1 and λ2 are greater

than the average. As a result, we want to keep the eigenvectors corresponding to the first

two eigenvalues.

Method 3: The scree graph of the eigenvalues of S is given in Figure 1.1. Observe that there

is a natural break after the second eigenvalue. Again, we choose to keep the eigenvectors

corresponding to the first two eigenvalues.

As method 4 is not relevant to this thesis, we do not provide an example using it.

1.5 Multidimensional Scaling

A nonlinear projection technique that exploits the structure of the data is multi-

dimensional scaling (MDS) and is typically used to visually compare data. MDS seeks to

project data to a smaller dimension k, usually k = 2, while preserving the pairwise distance

between the points. If the distance is based on a metric, the technique is called metric

multidimensional scaling. If the distance is a similarity measure based on judgment, the

technique is called nonmetric multidimensional scaling.

11
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Figure 1.1: The scree graph is a plot of the eigenvalues, and is used in PCA to determine
which eigenvalues to retain.

Given a set of points x1, . . . , xn and distances di,j = d(xi, xj), MDS constructs a

distance matrix D = (di,j)1≤i,j≤n and scales D by −1
2 to create matrix A:

A = −1

2
(di,j)1≤i,j≤n .

Let Jn be the n× n matrix of all 1’s. Then, matrix B, from which we obtain the new set of

points to which to project, is defined as

B =

(
In −

1

n
Jn

)
A

(
In −

1

n
Jn

)
.

Since B is a symmetric real matrix, it can be decomposed into

B = V ΛV >,

where V consists of the eigenvectors of B and Λ = diag(λ1, . . . , λn) such that λi is an

eigenvalue of B. Let

Λq = diag(λ1, . . . , λq)

12



be the submatrix of Λ consisting of the first q eigenvalues. Then, the set of points to which

to project is given by

Y =


y1

...

yn

 = V Λ1/2
q .

Observe that d(xi, xj) = d(yi, yj) if and only if B is positive semidefinite of rank q, that is,

λ1, . . . , λq > 0 and λq+1, . . . , λn = 0. In practice, rank(B) is too large or B is not positive

semidefinite. In either case, if the first k eigenvalues are positive and relatively large, then

the rest of the eigenvalues can be dropped, giving k-dimensional points.

13



Chapter 2

Survey of JL Constructions

In 1984, Johnson and Lindenstrauss [28], in proving a bound on the Lipschitz con-

stant, showed that any finite set of data in a high-dimensional space can be projected into a

low-dimensional space while preserving the pairwise Euclidean distance within any desired

accuracy. In particular, for any finite set of vectors x1, . . . , xn and for any 0 < ε < 1
2 , if

k ≥ C · ε−2 log n for some constant C, then there exists a linear map A : Rd −→ Rk such

that

(1− ε)‖xi − xj‖2 ≤ ‖Axi −Axj‖2 ≤ (1 + ε)‖xi − xj‖2

for all pairs 1 ≤ i, j ≤ n. The following theorem is attributed to Johnson and Lindenstrauss

and can be seen to be equivalent to the above by setting δ = 1
n2 and taking the union bound,

defined in (2.2).

Theorem 3 ([28]). For any 0 < ε, δ < 1
2 , if k ≥ C · ε−2 log 1

δ for some absolute constant

C > 0, then there exists a probability distribution D on k × d real matrices such that, for

any x ∈ Rd,

ProbA∼D
[
(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

]
> 1− δ, (2.1)

where A ∼ D denotes that matrix A is chosen randomly from distribution D.

There has been an ample amount of literature on explicit constructions of JL dis-

tributions. The construction provided by Johnson and Lindenstrauss [28] has the following
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constraints : the rows are both orthogonal and normal, and the transformation A is spheri-

cally symmetric, that is, A and BA have the same distribution for any orthogonal matrix B.

Frankl and Maehara [20] simplified the proof of Johnson and Lindenstrauss and provided

a JL distribution where the transformations are randomly chosen from the Stiefel manifold

Vd(Rk) = {B ∈ Rk×d : B>B = Id}. Indyk and Motwani [26] relaxed the orthogonal and nor-

mal constraints and constructed a JL distribution by randomly and uniformly choosing each

entry aij from the normal distribution N(0, 1√
k
). However, these constructions are dense

and hence, are computationally inefficient. In 2003, Achlioptas [1] constructed a somewhat

sparse distribution:

aij =

√
3

k
·


1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

speeding up the process three-fold. To further speed up the computation, Ailon and Chazelle

[2] in 2009 implemented fast Fourier analysis in their construction Fast JL Transform (FJLT).

In FJLT, a Fourier transform is applied to the vector x prior to projecting x with a sparse

matrix whose nonzero entries are from the Gaussian distribution. In [36], Matousek improved

the work of Ailon and Chazelle by choosing the nonzero entries of the sparse matrix from

the set {±1} uniformly and at random. The construction of Dasgupta, Kumar, and Sarlós

[12] further simplified the complexity by utilizing hash functions to create a sparser matrix.

Furthering this idea, Kane and Nelson [29] provided an even sparser construction by utilizing

codes and graph theory to specify the placement of the nonzero entries.

We look at these constructions in more detail in the subsequent sections.
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2.1 Prerequisites

2.1.1 Results in Probability

The expected value of variable X, denoted E[X], is the weighted average of all

possible values that X can assume. In the countable discrete case,

E[X] =
∞∑
i=1

xipi,

where pi is the likelihood of X taking on value xi. When the expected value of an estimator

is equal to the true value of the parameter being estimated, the estimator is called unbiased;

otherwise, biased.

We refer to the following two inequalities throughout the paper:

Theorem 4 (Markov’s Inequality). The probability of a nonnegative random variable X

being at least a is bounded above by its expected value scaled by the factor 1
a . That is,

Prob [X ≥ a] ≤ 1

a
E[X].

Theorem 5 (Union Bound - Boole’s Inequality). For a countable set of events A1, A2, . . .,

the probability of at least one of the events occurring is bounded above by the sum of the

probabilities of each event occurring:

Prob [∪iAi] ≤
∑
i

Prob [Ai] . (2.2)

Definition 2. A set of random variables X1, . . . , Xn is k-wise independent, k ≥ 2, if for

any 1 ≤ i1 < i2 < · · · < ik ≤ n and events ai1 ∈ Ai1 , . . . , aik ∈ Aik ,

Prob [Xi1 = ai1 ∩ · · · ∩Xik = aik ] =
k∏
j=1

Prob
[
Xij = aij

]
. (2.3)

Let x iid∼ D denote when variable x is independent and identically distributed (i.i.d.)
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from distribution D. The main distribution employed in this paper is the normal distribution

with mean 0 and variance 1, denoted N(0, 1). The likelihood of x iid∼ N(0, 1) taking on value

t ∈ R is
1√
2π
e−

1
2
t2 ,

which is the probability density function of N(0, 1). A random variable X is said to be

subgaussian if there is a constant b > 0 such that for every t ∈ R,

E[etx] ≤ eb2t2/2.

An instance of a subgaussian random variable is a random variable from the centered normal

distribution N(0, σ2). By the central limit theorem, the sum of random variables, regardless

of the underlying distribution, tends to the normal distribution.

2.1.2 Notation

Let ‖x‖p =
(∑d

i=1 |xi|p
) 1
p , where x ∈ Rd, denote the `p norm for 1 ≤ p <∞. When

p = 2, the `p norm is referred to as the Euclidean norm. We write ‖ · ‖ to denote the

Euclidean norm unless otherwise specified. The set of vectors in Rd with Euclidean norm 1

is the (d − 1)-dimensional unit sphere Sd−1. Let ‖x‖∞ = maxi{|xi|} denote the `∞ norm

and ‖x‖0 denote the number of nonzero entries of vector x.

Given matrix A ∈ Rm×n, the Frobenius norm, denoted ‖A‖F , is defined as

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

,

and the spectral norm, ‖A‖2, is defined as the largest singular value of A. It will be clear

from context whether ‖ · ‖2 refers to the Euclidean or the spectral norm.

In the construction of JL transformations, two well-known transforms will be em-

ployed: normalized Walsh-Hadamard and Fourier. A d × d normalized Walsh-Hadamard
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matrix, denoted H, has entries

hij =
1√
d

(−1)〈i−1,j−1〉, (2.4)

where 〈i, j〉 is the inner product (mod 2) of the binary representation of i and j. A d × d

Fourier transform, denoted F , has entries

fjk = e−2πikj/d

for k = 0, . . . , d− 1 and j = 0, . . . , d− 1, where i =
√
−1. That is, for x ∈ Rd,

F (x) =



1 1 1 · · · 1

1 e−2πi/d e−4πi/d · · · e−2(d−1)πi/d

...
...

...
...

1 e−2(d−1)πi/d e−4(d−1)πi/d · · · e−2(d−1)2πi/d





x0

x1

...

xd−1


.

Let f(x) and g(x) be functions on R. Then,

• f(x) = O(g(x)) if and only if for some constants x0 and m > 0, |f(x)| ≥ m|g(x)| for

x ≥ x0.

• f(x) = Ω(g(x)) if and only if for some constants x0 and M > 0, |f(x)| ≤M |g(x)| for

x ≥ x0.

• f(x) = Θ(g(x)) if and only if f(x) = O(g(x)) and f(x) = Ω(g(x)). That is, there are

constants m,M > 0 and x0 such that

m|g(x)| ≤ |f(x)| ≤M |g(x)|

for x ≥ x0.

• f(x) = o(g(x)) if and only if f(x) = O(g(x)), but f(x) 6= Θ(g(x)).
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• f(x) = ω(g(x)) if and only if f(x) = Ω(g(x)) and f(x) 6= Θ(g(x)).

2.2 Dense Constructions

2.2.1 Johnson and Lindenstrauss (1984)

In the Lipschitz extension problem, one desires to find the smallest constant L such

that for a function f mapping any n-element subset X ′ of a metric space X to `2, f can be

extended to a function f̃ that maps X to `2 and for all x ∈ X ′

‖f̃(x)‖ ≤ L‖f(x)‖.

Johnson and Lindenstrauss [28], upon giving a bound to the Lipschitz constant L, proved

that any finite set of data in a high-dimensional space can be projected into a low-dimensional

space while preserving the pairwise Euclidean distance within any desired accuracy.

Their distribution consists of transformations, which are orthogonal projections to

a random k-dimensional subspace of Rd. In particular, let

Q =

 Ik 0

0 0


d×d

. (2.5)

Consider the Euclidean norm ‖Qx‖2 for x ∈ Sd−1. Observe that ‖Qx‖22 is simply the sum

of the first k entries of x squared. Consider the constant M ∈ R such that

Prob
[√

d‖Qx‖2 ≥M
]

=
1

2
= Prob

[√
d‖Qx‖2 ≤M

]
.

The constant M is called the Levy median of
√
d‖Qx‖2. Combining Q and M with an

orthonormal matrix, we obtain a transformation from the JL distribution.

Distribution: Let M > 0 be a fixed constant as described. Let Q ∈ Rd×d, d ≥ n, be

defined as in Equation (2.5). Let U ∈ Rd×d be a random orthonormal matrix. Then, let D
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be a distribution on d× d matrices such that, for A ∼ D,

A =

√
d

M
QU.

To show D is a JL distribution, it must be shown that, for x ∈ Sd−1, the sum of the

first k entries squared is sharply concentrated around
√

M
d with high probability. We will

give a brief overview of this proof. More details can be found in [28] and [35].

Lemma 1 (Levy’s Lemma). Let f : Sn−1 → R be 1-Lipschitz, that is |f(a)−f(b)| ≤ |a−b|.

Then for all t ∈ [0, 1],

Prob [f ≥ med(f) + t] ≤ 2e−t
2n/2 and Prob [f ≤ med(f)− t] ≤ 2e−t

2n/2,

where med(f) = sup{` ∈ R : Prob [f ≤ `] ≤ 1
2}.

Observe f(x) = ‖Qx‖2 is 1-Lipschitz. Let m = med(f) and t = εm, then combining

the probabilities in Levy’s lemma, we obtain

Prob [ ‖Qx‖2 −m > εm] ≤ 4e−ε
2m2d/2. (2.6)

It was shown in [35], that m ≥ 1
2

√
k
d . Substituting this inequality into Expression (2.6) and

noting that m < 1, we obtain

Prob [ ‖Qx‖2 −m > ε] ≤ 4e−ε
2k/8.

As a result,

Theorem 6 ([28]). Let Q ∈ Rd×d be defined as in Equation (2.5). Let M > 0 be the Levy

median of
√
d‖Qx‖2. Let U be a random orthonormal matrix. Let D be a distribution on

d× d matrices such that for A ∼ D,

A =

√
d

M
QU.
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Then, D is a JL distribution for k > 8ε−2 log 4
δ .

2.2.2 Frankl and Maehara (1988)

Frankl and Maehara [20] were the first to formally state the results given by Johnson

and Lindenstrauss. In addition to formally stating it, Frankl and Maehara improved it by

providing an explicit lower bound of the projected dimension.

Lemma 2 ([20]). For 0 < ε < 1
2 and n ∈ Z+, let k(n, ε) =

⌈
9
(
ε2 − 2ε3

3

)−1
log n

⌉
+ 1. If

n > k(n, ε)2, then for any n-point set S in Rd, d ≥ n, there exists a function f : S → Rk(n,ε)

such that

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

for all u, v ∈ S.

To determine the parameter k(n, ε), they constructed a distribution similar to that

given in [28] and showed it is a JL distribution.

Distribution: Let B be chosen uniform at random from the Stiefel manifold Vk(Rd) =

{B ∈ Rk×d : B>B = Id}. Then, let D be a distribution on k × d matrices such that for

A ∼ D,

A =

√
d

k
B.

To prove D is a JL distribution, Frankl and Maehara considered the k-dimensional

space, on which x is to be projected, to be fixed and the vector x ∈ Sd−1 to be uniform

random on Sd−1. With this perspective, they bounded the surface area of Sd−1 such that

inequality

‖Ax‖22 −
k

d
≥ k

d
ε

holds. To bound the surface area, they considered θ to be the angle between x and the space

of projection, i.e., ‖Ax‖22 = cos2 θ, and found the surface area when

θ ≤ arccos

√
(1 + ε)

k

d
and θ ≥ arccos

√
(1− ε)k

d
.
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With the surface area, they give an upper bound to Prob
[
|X − k

d | > ε · kd
]
:

Prob
[
|X − k

d
| > ε · k

d

]
< 2
√
k exp

(
−(k − 1)

(
ε2

4
− ε3

6

))
,

and as a result, provide the parameter

k(n, ε) =

⌈
9

(
ε2 − 2ε3

3

)−1

log n

⌉
+ 1.

2.2.3 Indyk and Motwani (1998)

Indyk and Motwani [26] simplified the construction of a JL distribution by making

two observations. First, rather than requiring the rows to be normal, a sufficient condition

is for the Euclidean norm of each of the rows of the transformation to have expected value

one. Second, it is sufficient for the projected space of k rotationally invariant vectors to be

random rather than random and orthogonal. Observe that random vectors become more

orthogonal as d approaches infinity. Exploiting these observations, they constructed the

following distribution:

Distribution: Let D be a distribution on k×dmatrices such that, for A ∼ D, Rij
iid∼ N(0, 1)

for 1 ≤ i ≤ k and 1 ≤ j ≤ d, and A = 1√
k
R.

One motivation for such a construction is it is easier to generate than the previous

constructions and in addition, due to the 2-stability of the normal distribution, we have a

concentration of measure of ‖Ax‖22, x ∈ Sd−1. In particular, ‖Ax‖22 ∼ 1
kχ

2(k), where χ2(k)

is the chi-square distribution with k degrees of freedom. To show D is a JL distribution, we

turn to the lemma provided by Achlioptas in [1].

Lemma 3 (Lemma 4.1, [1]). For any ε > 0 and any unit vector x ∈ Rd,

ProbA∼D
[
‖Ax‖2 > 1 + ε

]
< exp

(
−k

2

(
ε2

2
− ε3

3

))
and

ProbA∼D
[
‖Ax‖2 < 1− ε

]
< exp

(
−k

2

(
ε2

2
− ε3

3

))
.
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Combining these two probabilities, we obtain

ProbA∼D
[
‖Ax‖2 < 1− ε or ‖Ax‖2 > 1 + ε

]
< 2 exp

(
−k

2

(
ε2

2
− ε3

3

))
. (2.7)

When k > 2 log 2
δ

(
ε2

2 −
ε3

3

)−1
, the right hand side of Inequality (2.7) is bounded above by

δ. Hence, D is a JL distribution for k > 2 log 2
δ

(
ε2

2 −
ε3

3

)−1
.

2.2.4 Dasgupta and Gupta (2003)

Dasgupta and Gupta [13] further simplified the proof of Theorem 3 by making the

following two observations.

1. The Euclidean norm of a unit vector projected onto a random k-dimensional subspace

has the same distribution as a random unit vector projected onto a fixed k-dimensional

subspace.

2. Choosing a point uniformly at random from the (d−1)-dimensional unit sphere Sd−1 is

equivalent to choosing each entry of a point uniformly at random from the distribution

N(0, 1) and normalizing it.

Hence to prove Theorem 3, let the k-dimensional projected subspace be fixed and let x ∈ Rd

be random such that xi
iid∼ N(0, 1). Then,

E(esx
2
i ) =

1√
1− 2s

(2.8)

for −∞ < s < 1
2 and 1 ≤ i ≤ d. Combining (2.8) with Markov’s inequality, the sum of the

first k entries squared,
∑k

i=1 x
2
i , is shown in [13] to be concentrated around its expectation

k. In particular, let L = ‖Z‖2 where Z is the projection of x onto its first k coordinates.
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Then by Lemma 2.2 in [13],

Prob
[
L ≤ k

d
(1− ε)

]
≤ exp

(
k

2
(ε+ log(1− ε)

)
and (2.9)

Prob
[
L ≥ k

d
(1 + ε)

]
≤ exp

(
k

2
(−ε+ log(1 + ε)

)
. (2.10)

Using inequalities log(1 − x) ≤ −x − x2

2 and log(1 + x) ≤ x − x2

2 derived from Taylor’s

expansion, expressions (2.9) and (2.10) simplify to

Prob
[
L ≤ k

d
(1− ε)

]
≤ exp

(
−kε

2

4

)
and

Prob
[
L ≥ k

d
(1 + ε)

]
≤ exp

(
−k

2

(
ε2

2
− ε3

3

))
.

Combining these two probabilities, we obtain

Prob
[
|L− k

d
| > ε · k

d

]
≤ 2 exp

(
−k

2

(
ε2

2
− ε3

3

))
. (2.11)

The right hand side of (2.11) is bounded above by δ when

k ≥ 2 log

(
2

δ

)[
ε2

2
− ε3

3

]−1

= 4ε−2 log
1

δ

[
1 +

ε

3− ε

(
1 +

log 2

log 1
δ

)
+

log 2

log 1
δ

]
.

As a result, the distribution provided in Section 2.2.1 is a JL distribution for

k ≥ 2 log
(

2
δ

) [
ε2

2 −
ε3

3

]−1
.

2.2.5 Achlioptas (2003)

Achlioptas [1] constructed a JL distribution that is both easy to generate and is

relatively quick to compute. He deviated from previous constructions by observing that

a JL transformation does not need to be rotationally invariant, but rather it is sufficient

for the projection of a unit vector to be tightly concentrated about 1
d . This observation is

derived from the central limit theorem, which states that one obtains a "good estimate of

the original length" with a sufficient number of unbiased estimators with bounded variance.
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Hence, one just needs unbiased estimators with bounded variance. Achlioptas pointed out

for any independent set of variables {aij}, where E(aij) = 0 and Var(aij) = 1, we obtain

such estimators. That is,

E(‖Ax‖22) = ‖x‖22,

where E(aij) = 0 and Var(aij) = 1. Exploiting these observations, Achlioptas provided two

constructions of JL distributions, both of which are easy to generate and the second of which

gives a three-fold speed up for computing Ax.

Construction 1:

In his first construction, Achlioptas lets each entry of the transform be chosen uni-

formly at random from {±1/
√
k}.

Distribution: Let D1 be a distribution on k × d matrices such that, for A ∼ D1, aij
iid∼{

± 1√
k

}
for 1 ≤ i ≤ k and 1 ≤ j ≤ d.

In [1], it was shown for ε, β > 0, if k ≥ 2+β
ε2

2
− ε3

3

log 1
δ , then

Prob
[
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− δβ/2.

For sake of comparison, we let β = 2 and find for k ≥ 8ε−2 log 1
δ

[
1 + 2ε

3−2ε

]
,

Prob
[
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− δ.

Construction 2:

Unlike his first construction, the second construction is somewhat sparse and as a

result, gives a three-fold speed up in the projection of x.

Distribution: Let D2 be a distribution on k × d matrices such that, for A ∼ D2,

aij =

√
3

k
·


+1 with probability 1

6

0 with probability 2
3

−1 with probability 1
6
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for 1 ≤ i ≤ k and 1 ≤ j ≤ d.

Then for ε, β > 0,

Prob
[
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− δβ/2,

if k ≥ 2+β
ε2

2
− ε3

3

log 1
δ . Again, we are interested when β = 2 and find for

k ≥ 8ε−2 log 1
δ

[
1 + 2ε

3−2ε

]
,

Prob
[
(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− δ.

To prove both constructions are JL distributions, Achlioptas applies Markov’s in-

equality to moment generating functions. We will not go into the details of the proof, but

rather we will present a sketch of a proof provided by Matousek in [36] that envelops the

constructions of both Achlioptas and Indyk and Motwani.

Theorem 7 (Theorem 3.1, [36]). Let d be an integer, 0 < ε ≤ 1
2 and 0 < δ < 1. Let

k = Cε−2 log 2
δ for some constant C > 0. Let T : Rd → Rk be a random linear map defined

by

T (x)i =
1√
k

d∑
j=1

Rijxj , i = 1, 2, . . . , k,

where Rij are independent random variables with E(Rij) = 0, Var(Rij) = 1, and a uniform

subgaussian tail. That is, there exists a constant a > 0 such that for all λ > 0,

Prob [X > λ] ≤ e−aλ2

for each Rij . Then for every x ∈ Rd,

Prob [(1− ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖] ≥ 1− δ.

To prove Theorem 7, Matousek implements the following proposition.
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Proposition 1. Let k ∈ Z≥1. Let Y1, . . . , Yk be independent random variables with E(Yi) =

0, Var(Yi) = 1 and uniform subgaussian tail, that is

Prob [Yi < λ] ≤ e−aλ2

for same a. Then

Z =
1√
k

[∑
Y 2
i − k

]
has a subgaussian tail up to

√
k, that is

Prob [Z > λ] ≤ e−aλ2

for 0 < λ <
√
k and some constant a > 0.

Let Yi =
∑d

j=1Rijxj =
√
kT (x)i. By construction, E(Rij) = 0 and Var(Rij) = 1,

and each xi has subgaussian tail for 1 ≤ i ≤ d. It follows that E(Yi) = 0, Var(Yi) = 1, and

each Yi has a subgaussian tail for 1 ≤ i ≤ d. Then by Proposition 1, for Z = 1√
k
(Y 2

1 + · · ·+

Y 2
k − k)

Prob [Z > λ] ≤ e−aλ2 (2.12)

for 0 < λ ≤
√
k and some constant a > 0. We observe that

Prob [‖T (x)‖ ≥ 1 + ε] ≤ Prob
[
‖T (x)‖2 ≥ 1 + 2ε

]
= Prob

[
Z ≥ 2ε

√
k
]
.

By Inequality (2.12), the above is bounded in the following way

Prob [‖T (x)‖ ≥ 1 + ε] ≤ e−4aε2k. (2.13)

We note e−4aε2k < δ when k > 1
4aε
−2 log 2

δ , where a depends on (2.13). Hence, T is a JL

transformation when k > 1
4aε
−2 log 2

δ .
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2.3 Fast Fourier Transform-Based Constructions

To quicken the computation, one may turn to sparsifying the projection as done

by Achlioptas. However, a problem arises when the vector to be projected is itself sparse.

When this is the case, the projected norm may be greatly distorted by sparse projections.

For instance, when x = (0, . . . , 0, 1), x will be projected to the zero vector under the pro-

jection which takes the first k entries of x. To navigate around this problem, the vector is

preconditioned. Preconditioning of a vector consists of increasing the support of x, i.e., it

increases the number of nonzero entries with high probability. Observe that for x ∈ Sd−1,

1√
d
≤ ‖x‖∞ ≤ 1.

A sparse vector has `∞ norm closer to 1 while a dense vector has `∞ norm closer to the

lower bound 1√
d
.

2.3.1 Ailon and Chazelle (2006)

To ensure ‖x‖∞ lies close to the lower bound 1√
d
for x ∈ Sd−1, Ailon and Chazelle [2]

implemented randomized Fourier transforms before applying a sparse projection. To avoid

sparsifying an already dense vector, the Fourier transform is randomized. Let H be a d× d

normalized Walsh-Hadamard matrix as defined in (2.4). To randomize the transform, H

is multiplied by a random d × d diagonal matrix D consisting of diagonal entries chosen

uniformly and at random from the set {±1}. In [2], Ailon and Chazelle showed for a set X

of n vectors,

max
x∈X
‖HDx‖∞ ≤

√
log n

d
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with high probability. Observe as HD is an orthogonal transformation, it is Euclidean norm

invariant. That is, ‖HDx‖2 = ‖x‖2. Let P be a k × d matrix such that

pij =


pij

iid∼ N
(

0, 1
q

)
with probability q

0 with probability 1− q
, (2.14)

where q = min
{

Θ
(

log2 n
d

)
, 1
}
.

Distribution: Let H be a d × d Walsh-Hadamard matrix. Let D be a random diagonal

matrix as described above. Let P ∈ Rk×d be random as defined in (2.14). Then, let D be a

distribution on k × d matrices such that, for A ∼ D,

A =
1√
k
PHD.

Theorem 8. Let distribution D be as described. Let 0 < ε < 1. Then, for all x ∈ Rd,

ProbA∼D [(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2] ≥ 2

3
= 1− 1

3
.

Choosing a random transformation from distribution D log 1
δ times and picking the best one

will decrease the probability of failure to a desired constant δ.

The proof, given in [2], to show D is a JL distribution employs Markov’s inequality

and the bounding of moments.

2.3.2 Matousek (2008)

Matousek [36] improved Ailon and Chazelle’s construction by simplifying the nonzero

entries of the sparse matrix, and as a result, made it easier to generate the sparse projection.

In addition, he showed the number of nonzero entries per column of the transform must be

at least Ω
(
α2

ε2

)
, where ‖x‖∞ ≤ α.

Distribution: Let H be a d × d Walsh-Hadamard matrix as defined in (2.4). Let D be a

random diagonal matrix with diagonal entries chosen uniformly and at random from the set
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{±1}. Let P be a k × d random matrix such that

pij =


1 with probability q

2

0 with probability 1− q

−1 with probability q
2

,

where q = Ω
(
α2 log d

εδ

)
. Then, let D be a distribution on k × d matrices such that, for

A ∼ D,

A =
1√
qk
PHD

Theorem 9. Let distribution D be as described. Let 0 < ε < 1. Then, if k = Ω
(
ε−2 log 4

δ

)
,

for x ∈ Rd,

ProbA∼D [(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2] ≥ 1− δ.

The proof in [36] implements the subgaussian tail and is similar to his proof for the

constructions of Achlioptas and Indyk and Motwani, see Section 2.2.5.

2.3.3 Dasgupta, Kumar, and Sarlós (2010)

To allow for a sparser matrix than that provided by the previous two constructions,

Dasgupta, Kumar, and Sarlós [12] placed dependence among the entries of the sparse matrix

P . The dependence is a direct consequence of the use of hash functions to determine the

location of the nonzero entries. They present two different constructions.

Construction 1:

Let 0 < ε, δ < 1
2 . Let c = 16

ε log 1
δ log2 k

δ . Let G ∈ Rcd×d be a fixed matrix such that

gij =


1√
c

(j − 1)c+ 1 ≤ i ≤ jc

0 otherwise
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for 1 ≤ i ≤ cd and 1 ≤ j ≤ d. For example, if c = 2,

G =



1√
2

0 · · · 0
1√
2

0 · · · 0

0 1√
2
· · · 0

0 1√
2
· · · 0

...
...

. . .
...

0 0 · · · 1√
2


.

Let H be the set of all hash functions from [cd] to [k], where [n] denotes the set {1, . . . , n}.

Let h ∈ H be a random function for 1 ≤ j ≤ cd. This implies for each j ∈ [cd], h(j)

is uniform random in [k]. Let rj
iid∼ {±1} for 1 ≤ j ≤ cd. Let M ∈ Rk×cd such that

mij = δ(i, h(j))rj , where δ(i, j) = 1 if i = j and 0 otherwise.

Distribution: Let G ∈ Rcd×d be a fixed matrix as described. Let M ∈ Rk×cd be a random

matrix as described. Then, let D1 be a distribution on k× d matrices such that, for A ∼ D,

A = MG.

Theorem 10 ([12]). Let D1 be the distribution described. If k ≥ 12
ε2

log 1
δ , then for all

x ∈ Rd,

ProbA∼D1

[
(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− 4δ.

Projection Ax takes time O
(

1
ε log2 k

δ log 1
δ

)
· ‖x‖0.

Construction 2: Let 0 < δ < 1 and c = 16
ε log 1

δ log2 k
δ ≥ 1. Let b := 6c log 3c

δ and assume

b ≤ d. Let H be a b × b Walsh-Hadamard matrix as defined in (2.4). Let G ∈ Rd×d be a

random block diagonal matrix, where each of the d
b diagonal blocks of G is a b×b randomized

Hadamard matrix HD, where the matrices D are independent random diagonal matrices

such that the diagonal entries are chosen uniformly at random from the set {±1}. Let H be

the set of all hash functions from [d] to [k]. Let h ∈ H be a random function for 1 ≤ j ≤ d
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as in Construction 1. Let rij
iid∼ {±1}. Let P ∈ Rk×d be a random matrix such that

pij = δ(i, h(j))rij .

Note that P has one nonzero entry per column.

Distribution: Let D2 be a distribution on k × d matrices such that, for A ∼ D, A = PG.

To prove the latter construction is a JL distribution, the following two statements

must hold.

1. Let ε < 1 and 0 < δ < 1
10 . Then, for x ∈ Rd such that ‖x‖∞ ≤ 1√

c
,

Prob
[
(1− ε)‖x‖22 ≤ ‖Px‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− 3δ.

2. The largest entry of Gx is at most 1√
c
, i.e., ‖Gx‖∞ ≤ 1√

c
.

We will focus on step 2 and outline the proof as given in [12]. For the proof of step

1, see [12]. Ailon and Chazelle in [2] showed for ‖x‖2 ≤ 1 and ‖Ax‖2 = 1,

Prob [‖Ax‖∞ ≥ s] ≤ 2b exp

(
−s

2b

2

)
. (2.15)

Observe each b × b block of G, which will be denoted Gj for 1 ≤ j ≤ d
b , is norm invariant.

Let xj denote the block of entries of x associated with block Gj . That is,

Gx = (G1x1, . . . , Gd/bxd/b)
>.

Then, ‖Gjxj‖2 = ‖xj‖2 and since ‖xj‖2 ≤ ‖x‖2 ≤ 1,

Prob [‖Gjxj‖∞ ≥ s] ≤ 2b exp

(
−s

2b

2

)

for 1 ≤ j ≤ d
b . To show ‖Gx‖∞ ≤ 1√

c
, we consider two cases.

1. Suppose ‖xj‖2 ≤ 1√
c
for 1 ≤ j ≤ d

b . Then ‖Gjxj‖2 ≤ 1√
c
for 1 ≤ j ≤ d

b , and as a
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result,

Prob
[
‖Gx‖∞ ≥

1√
c

]
= Prob

[
max
j
‖Gjxj‖∞ ≥

1√
c

]
≤ δ.

2. Suppose ‖xj‖2 ≥ 1√
c
for some j. By substituting 1√

c
for s, Expression (2.15) becomes

Prob
[
‖Gjxj‖∞ ≥

1√
c

]
≤ 2b exp

(
− b

2c

)
for 1 ≤ j ≤ d

b
.

Taking the union bound up to c blocks, we obtain

Prob
[
‖Gx‖∞ ≥

1√
c

]
≤ c · Prob

[
‖Gjxj‖∞ ≥

1√
c

]
≤ 2bc exp

(
− b

2c

)
=

4

9
log

3c

δ
δ3 < δ.

Theorem 11. Let D2 be the distribution described. Then, for any x ∈ Rd,

ppP (1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22A ∼ D2 ≤ 1− 4δ.

The time required to compute Ax is

O
(

min

(
‖x‖0
ε

log4

(
1

εδ

)
, d

)
· log

(
1

εδ

))
.

2.3.4 Liberty, Ailon, and Singer (2008)

Liberty, Ailon, and Singer [33] sought to combine the steps of preconditioning and

projection, and accomplished this for a subset of vectors in Rd with their Lean-Walsh con-

struction. A transform from their distribution consists of a Lean-Walsh transform and a

diagonal matrix whose entries are chosen uniformly at random from {±1}.

A Lean-Walsh transform is constructed from a seed matrix, which will be denoted

B. Let B ∈ Cr×c such that r < c, |Bij | = 1√
r
, and the rows are orthogonal. For instance,
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let B be a sub-Hadamard matrix or a sub-Fourier matrix:

B =
1√
3


1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


︸ ︷︷ ︸

sub-Hadamard

or B =
1√
2

1 1 1

1 e2πi/3 e4πi/3


︸ ︷︷ ︸

sub-Fourier

.

Matrix B is called a Lean-Walsh seed and the Lean-Walsh transform A` is constructed by

recursively taking the Kronecker product of B and the previous output. That is,

A` = B ⊗A`−1 =


b11A`−1 · · · b1cA`−1

...
...

br1A`−1 · · · brcA`−1

 ,

where A1 = B. The parameter ` is chosen according to the desired dimension.

Example 2. Let B = 1√
2

1 1 −1 −1

1 −1 1 −1

. Then, A1 = B and

A2 = B ⊗B =
1√
2

B B −B −B

B −B B −B

 .

If we choose k = 4, then we stop at ` = 2.

Distribution: Let A` ∈ Rk×d be a fixed Lean-Walsh transform. Let D be a diagonal

matrix with entries dii
iid∼ {±1}. Then, let D be a distribution on k × d matrices such that

for A ∼ D, A = A`D.

Theorem 12. For a distribution D constructed from a Lean-Walsh seed B ∈ Rr×c as

described, D is a JL distribution for

{x ∈ Sd−1 : ‖x‖2 ≤ k−1/2d
1−α
4 },
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where α = log r
log c .

2.4 Code-Based Constructions

2.4.1 Ailon and Liberty (2009)

Ailon and Liberty [3] abandoned the sparse matrix of Matousek’s construction and

replaced it with a dense matrix based on Rademacher variables and BCH codes. Let Bk ∈

Rk×fBCH(k) be a 4-wise independent code matrix, where fBCH(k) = Θ(k2). That is, every

row of Bk is a row of the Walsh-Hadamard matrix, defined in (2.4), scaled by constant√
fBCH(k)

k . The dense matrix B is a result of concatenating multiple copies of the 4-wise

independent code matrix Bk:

B = [Bk, . . . , Bk] .

Distribution: Let B ∈ Rk×d be a fixed matrix as described. LetH be the Walsh-Hadamard

matrix as defined in (2.4). Let D and D(i) for 1 ≤ i ≤ r =
⌈

1
2δ

⌉
be independent random

diagonal matrices such that the diagonal entries are chosen uniformly at random from the

set {±1}. Then, let D be a distribution on k × d matrices such that, for A ∼ D,

A = BDΦ
(r)
d ,

where Φ
(r)
d = HD(r) · · ·HD(1).

Theorem 13 ([3]). Let distribution D be as described. Let 0 < ε < 1 and 0 < δ < 1. If

1
c2
ε−2 log c1

δ ≤ k ≤ d
1/2−δ, where c1 and c2 are some global constants, then

ProbA∼D [(1− ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2] ≥ 1− δ,

and it takes O(d log k) to compute Ax for A ∼ D, and O(d) random bits to construct A.

To exhibit an instance of a 4-wise independent code matrix Bk, we briefly introduce

BCH codes and their parity check matrices. We will not discuss the topic of BCH codes in
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depth, but direct those interested to [34].

Let GF (2) be the finite field of two elements, e.g., {0, 1}. The field GF (2m) contain-

ing 2m elements can be constructed by considering an irreducible polynomial f(x) of degree

m over the field GF (2). Let α be the root of polynomial f(x). Then, the field GF (2m) can

be defined as

GF (2m) = {0, α, α2, . . . , α2m−1}.

Example 3. Let m = 2. Then, f(x) = x2 + x + 1 is irreducible over GF (2). Let α be a

root of f(x). That is, α2 + α+ 1 = 0. The field GF (22) can then be defined as

GF (22) = {0, α0 = 1, α, α2 = α+ 1}.

A binary BCH code C of length n = 2m − 1 is a linear subspace of GF (2)n. The

elements of C can be defined by the kernel of the parity check matrix

W =



1 α α2 · · · αn−1

1 α2 (α2)2 · · · (αn−1)2

...
...

...
...

1 α2t (α2)2t · · · (αn−1)2t


,

where t < 2m−1 is an integer. That is, C = {c ∈ GF (2)n|Wc = 0}, and c = (c0, c1, . . . , cn−1)

is a codeword if and only if the polynomial

g(x) = c0 + c1x+ · · ·+ cn−1x
n−1

has α, . . . , α2t as roots. Consequently, by design of matrix W , 2t of its columns are linearly

independent giving us a 2t-wise independent matrix.

Example 4. Let m = 4. Then, an irreducible polynomial over GF (2) is

f(x) = x4 + x+ 1.

36



Let α be a root of f(x). Then,

GF (24) = {0, α, α2, . . . , α15 = 1}.

A parity check matrix W of a BCH code C with length n = 24 − 1 = 15 is

W =



1 α α2 · · · α14

1 α2 (α2)2 · · · (α14)2

...
...

...
...

1 α2t (α2)2t · · · (α14)2t


,

where t < 8. Observe that matrix W is a 2t-wise independent matrix, and hence, we desire

t ≥ 2.

2.4.2 Kane and Nelson (2014)

Kane and Nelson in [29] showed the DKS construction in Section 2.3.3 requires at

least Ω
(
ε−1 log2 1

δ

)
nonzero entries per column in order for the distribution to be a JL

distribution. To achieve a smaller sparsity, Kane and Nelson restricted the set H of hash

functions from which to choose. In the DKS construction, the location of the nonzero entries

are determined by a hash function chosen at random from the set of all hash functions. In

[29], Kane and Nelson present two means to determine the locations: a linear code or

hash functions chosen at random from a set H of hash functions without replacement.

They provide two constructions in which both methods can be implemented. For both

constructions, a transform has entries of the form

Aij =
1√
s
ηijσij ,

where σij
iid∼ {±1} and ηij is an indicator function dependent on a code or a set of s hash

functions. In both cases, each column contains exactly s nonzero entries.
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Construction 1 - Graph Construction:

In the graph construction, there are no restrictions placed on the location of the s

nonzero entries in each column. In this case, the indicator function ηij can be represented

by a bipartite graph G with d left vertices, k right vertices, and left degree s. A bipartite

graph is a graph with vertices which can be separated into two disjoint sets, left and right,

such that there is no edge within either set. We say G has left degree s if each left vertex

has exactly s edges.

Example 5. Let d = 6, k = 4, and s = 2. Consider the following bipartite graph G

1

2

3

4

5

6

1

2

3

4

U

V

Figure 2.1: The bipartite graph G represents the graph construction of Kane and Nelson.
Each vertex is hashed s times to the lower dimension.

Then,

A =
1√
2



σ11 σ12 0 σ14 0 0

0 σ22 0 σ24 0 σ26

σ31 0 σ33 0 σ35 σ36

0 0 σ43 0 σ45 0


,

where σij
iid∼ {±1}.

The indicator ηij can be determined by either a code or a set of s hash functions.

For the graph construction, a weight s binary code with minimum distance d = 2s−O
(
s2

k

)
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may be used or the set of hash functions H where the s hash functions are drawn without

replacement.

We define the indicator function ηij by a set of hash functions h1, . . . , hs indepen-

dently chosen from H (without replacement) in the following manner:

ηij =


1 ht(j) = i for some t ∈ {1, . . . , s}

0 otherwise
.

Example 5 (continued). Graph G in Figure 2.1 can be defined by hash functions

h1 :{1, 2} 7→ 1

{4} 7→ 2

{5, 6} 7→ 3

{3} 7→ 4

h2 :{4} 7→ 1

{2, 6} 7→ 2

{1, 3} 7→ 3

{5} 7→ 4

Construction 2 - Block Construction:

Differing from the graph construction, the block construction places restrictions on

the location of the s nonzero entries in each column. Each column is split into blocks of

length k
s , and one nonzero entry must be located in each block. The indicator function for the

block construction can also be represented by a bipartite graph. For the block construction,

we split the right vertices of the bipartite graph into s blocks:

v1, . . . , vk/s︸ ︷︷ ︸
B1

, . . . , vk−k/s+1, . . . , vk︸ ︷︷ ︸
Bs

.

Then, each of the d vertices on the left side of the bipartite graph must be adjacent to one

vertex from each of the blocks as defined, rather than being adjacent to random s of the k

vertices on the right. This creates a higher dependence among the indicators ηij , since if

ηij = 1 for one of the entries on the block, ηij must be zero for the rest of that block.

Example 6. Let d = 6, k = 4, and s = 2. Consider the following bipartite graph G
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1

2

3

4

5

6

1

2

3

4

V

V

Figure 2.2: The bipartite graph G above represents the block construction of Kane and
Nelson. Each vertex is hashed s times to the lower dimension. Each time the vertex is
hashed, it must go to a different block.

Then,

A =
1√
2



σ11 σ12 σ13 σ14 0 0

0 0 0 0 σ25 σ26

0 0 σ33 σ34 σ35 0

σ41 σ42 0 0 0 σ46


,

where σij
iid∼ {±1}.

For the block construction, an [s, k, s−O
(
s2

k

)
] code in Fk/s, field of k/s elements,

may be used to determine the indicator function. The code construction is described in

Section 2.4.2.1. Similar to the graph construction, an indicator function may also be defined

by a set of s hash functions such that the entries are hashed O
(
log 1

δ

)
-wise independently.

When the indicator is defined by the latter, sparsity Θ
(
ε−1 log 1

δ

)
is reached.

Theorem 14 ([29]). Let D be either the graph of block construction dependent on hashing

functions as defined. Then, for k = Θ
(
ε−2 log 1

δ

)
and s = Θ (εk),

ProbA∼D
[
(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

]
> δ.
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2.4.2.1 Block Construction via Codes:

We first define a code and its properties. We then explain the block construction via

a code.

Definition 3. Let Fq be the field of q elements. For x, y ∈ Fnq , the Hamming distance is

defined to be

d(x, y) := |{i;xi 6= yi}|

Definition 4. A [d,m, d(C)] code C over Fq is a linear subspace of Fdq with dimension m

and minimum distance d(C). The minimum distance d(C) of a code C is defined as

d(C) := min{d(x, y) : x, y ∈ C and x 6= y}.

The elements of C are called codewords.

Place an order on the elements of Fq. Let p : Fq → Z be the order function defined

by p(a) = z where z is the location of a in the ordering of Fq. Let C ⊆ Fsq be an [s,m, d(C)]-

code such that |C| ≥ d. Choose d codewords c1, . . . , cd from C. Let cij represent the jth

entry of codeword ci. The Fq-element cij determines the position of the nonzero element of

the jth block of the ith column. In particular, the nonzero entry occurs at entry p(cij) of

block j.

Let E : Fq → {0, 1}q defined by E(z) = ep(z) ∈ {0, 1}q such that ei is the ith standard

basis of Rq.

Example 7. Consider F4 with elements {0, 1, α, α2} ordered as listed, where α is a root of

x2 + x+ 1 over F2. Then,

E(α) =



0

0

1

0


.
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Distribution: Let Fq be a field of q elements with fixed order. Let C be a predetermined

[d,m, d(C)]-code over Fq. Let σij
iid∼ {±1} for 1 ≤ i ≤ s and 1 ≤ j ≤ d. Then, let D be a

distribution defined by code C such that, for A ∼ D,

A =
1√
s


σ11E(c11) · · · σ1dE(cd1)

...
. . .

...

σs1E(c1s) · · · σsdE(cds)

 .

Theorem 15 ([29]). Let D be either the graph of block construction dependent on codes

as defined. Then, for k = Θ
(
ε−2 log 1

δ

)
and s ≥ 2(2ε− ε2)−1 log 1

δ ,

ProbA∼D
[
(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22

]
> δ.

2.4.2.2 Block Construction via Algebraic Geometry Codes

An explicit block construction defined by a code was given by Gao et al. in [21].

In [21] they showed that the distribution D defined by a code is a JL distribution, if the

[s,m, d(C)]-code off which it is based holds the following inequality:

s2

s− d
≥ 4ε−2 [(2`− 1)!!]1/` , (2.16)

where δ = 2−`. Consequently, in order to allow for a small ε and δ, codes with high ratio

s2

s−d are desired. For such codes, Gao et al. turned to Algebraic Geometry (AG) codes.

An AG code is a good code if the ratio between the number N of rational points and

the genus g of the curve, N
g , is large. An upper bound of the ratio was given by Drinfeld

and Vladut in [18]:

lim sup
g→∞

N

g
≤ √q − 1.

An AG code, which attains the Drinfeld-Vladut (DV) bound, is called an asymptotically

good code. Garcia and Stichtenoth constructed such a code from towers.

Definition 5 (Garcia-Stichtenoth Tower). Let F := (F0, F1, . . .) denote the tower of ex-
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tensions of rational function field F0 = Fq2(x0), where q is a prime power. For i ≥ 1, let

Fi := Fi−1(xi) where

xqi + xi =
xqi−1

xq−1
i−1 + 1

.

They showed that a linear code such that the DV bound is attained can be explicitly

constructed from the towers.

Theorem 16 ([22]). Let u ≥ 1 be some integer and q ≥ 2 be a prime power. Let

s = qu(q2 − q) and g = (qb
u+1
2
c − 1)(qd

u+1
2
e − 1).

Suppose m < s is an integer and

d(C) = s−m− g.

Then one can explicitly construct a linear [s, k, d] AG code over Fq2 with code length s,

dimension m and minimum distance d(C).

The number of rational points N(Fu) of tower Fu is bounded below by

qu(q2 − q).

The genus g(Fu) of tower Fu is

g(Fu) = (qb
u+1
2
c − 1)(qd

u+1
2
e − 1).

From the parameters defined in Theorem 16, we observe s2

s−d(C) ≈
n2

m+g . Hence, as the code

is asymptotically optimal, s2

s−d(C) is large. Examples of parameters for which an AG code

holds Inequality (2.16) are presented in Table 2.1. As Inequality (2.16) holds true, these

examples can be used to define a JL transformation under the block construction.
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q u m d(C) g s = qu(q2 − q) k = s · q2 d = (q2)m ε δ = 0.5`

2 8 16 31 465 512 2048 4.29× 1009 0.30 0.54

2 9 16 47 961 1024 4096 4.29× 1009 0.42 0.58

2 13 18 237 16129 16,384 65,536 6.87× 1010 0.4 0.532

2 15 19 492 65,025 65,536 262,144 2.75× 1011 0.2 0.532

2 15 19 492 65,025 65,536 262,144 2.75× 1011 0.4 0.564

3 4 11 267 208 486 4374 3.14× 1010 0.21 0.54

3 4 11 267 208 486 4374 3.14× 1010 0.42 0.58

3 6 12 2,282 2,080 4,374 39,366 2.82× 1011 0.3 0.516

3 7 12 6,710 6,400 13,122 118,098 2.82× 1011 0.3 0.532

3 8 13 19,993 19,360 39,366 354,294 2.54× 1012 0.4 0.564

4 2 8 139 45 192 3072 4.29× 1009 0.26 0.54

4 4 9 2,118 945 3,072 49,152 6.87× 1010 0.3 0.516

4 5 10 8,309 3,969 12,288 196,608 1.10× 1012 0.3 0.532

Table 2.1: The construction of A is based on an AG code from the u-th level GS-tower over
Fq2 where q is a prime power. The parameters s, m, d(C) and g correspond to the length,
dimension, minimum distance and genus.

Those who are interested in AG codes are directed to [45] for a comprehensive study

on the matter, and those interested in the block construction via AG codes are directed to

[21].
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Chapter 3

Optimal Bounds of the Projected

Dimension

In this chapter, we focus on the problem of finding a precise threshold for k0, the

minimum dimension k such that there exist a JL distribution on Rk×d. Johnson and

Lindenstrauss [28] showed the existence of a JL transformation for projected dimensions

k ≥ C1 ·
(
ε−2 log 1

δ

)
for some constant C1 > 0. In 1988, Frankl and Maehara [20] pro-

vided an explicit construction for the projected dimensions k ≥ 9ε−2 log 1
δ . In 2003, a

threshold under which no JL distribution exists was given by Alon. Alon [4] proved for

k = O
(
ε−2 log 1

δ/ log 1
ε

)
there is no JL transformation. Woodruff and Jayram [27] and later

Kane, Nelson, and Meka [29] improved Alon’s result to k = O
(
ε−2 log 1

δ

)
. Hence, for a

projected dimension less than C2 ·
(
ε−2 log

(
1
δ

))
for some constant C2, there is no JL distri-

bution; whereas, for a projected dimension greater than C1 ·
(
ε−2 log

(
1
δ

))
for some constant

C1, there exists a transformation. The smallest projected dimension k0 lies between the

values C2 · ε−2 log 1
δ and C1 ·

(
ε−2 log 1

δ

)
.

C2 · ε−2 log 1
δ C1 · ε−2 log 1

δ

JLD ExistsNo JLD Exists
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In this paper, we provide explicit thresholds between which the smallest projected

dimension k0 lies and show these thresholds become one as ε, δ → 0 and k
d → 0. In particular,

we have the following theorem:

Theorem 17. Let 0 < ε, δ < 1
2 .

a.) If k > 4ε−2 log
(

1
δ

)
[1 + o(1)], then there exists a JL distribution.

The term o(1) is dependent on the error factor ε and probability of failure δ, and

approaches zero as ε and δ approach zero. The exact term o(1) may be found in the

proof of Theorem 21.

b.) If k < 4ε−2 log
(

1
δ

)
[1− o(1)], then there does not exist a JL distribution.

The term o(1) is dependent on the error factor ε, probability of failure δ, and the ratio

k
d , and approaches zero as ε, δ and the ratio k

d approach zero.

As a result, we obtain Theorem 2.

Theorem 2. For ε and δ sufficiently small, k0 ≈ 4ε−2 log 1
δ . That is,

k0

4ε−2 log 1
δ

→ 1 as ε, δ → 0.

In Section 3.1, we review uniform measure on unit spheres Sd−1 and show how the

metric on Sd−1 relates to metrics on Sd−k−1 and Sk−1 with k < d. In Section 3.2.1, we

provide a lower bound that guarantees the existence of an orthogonal projection from Rd

to Rk such that Inequality (2.1) holds, and hence give an upper bound to k0. In Section

3.2.2, we provide the lower bound of ProbA∼D
[
|‖Ax‖2 − 1| < ε

]
, and as a result provide a

threshold for the projected dimension, below which there does not exist a JL distribution.

3.1 Uniform Measure of Unit Spheres in High Dimensions

In this section, we review uniform measure and provide a relation between the surface

area measure on Sd−1 and that on Sd−k−1 and Sk−1, k < d. A uniform distribution on a
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unit sphere can be described as follows: let x iid∼ N(0, 1)d, then x
‖x‖2 is uniformly distributed

on Sd−1. The majority of measure lies around the equator of the sphere Sd−1. We exploit

this property in Section 3.2.1 and Section 3.2.2 to bound the measure of concentration.

3.1.1 Surface Area Measure

Let Sd−1 denote the (d− 1)-dimensional unit sphere and dΩd−1 denote the (d− 1)-

dimensional surface area measure on the sphere Sd−1. Let

Dd−1 :=

{
x ∈ Rd−1 :

d−1∑
i=1

x2
i ≤ 1

}

be the (d− 1)-dimensional disk.

Lemma 4. Let (y1, . . . , yd) with yd > 0 be coordinates of points on the upper hemisphere

of a (d−1)-dimensional unit sphere. Then, the surface area measure of the unit sphere Sd−1

is

dΩd−1 =
1

yd
dy1 · · · dyd−1.

Proof. In 3-dimensional space, the surface area measure of a sphere can be found by dividing

the domain into small rectangular regions, computing the sum of the areas of the parallel-

ograms tangent to points on the surface above the rectangular regions, and decreasing the

size of the regions to zero. In t-dimensional space, the surface area measure of a unit sphere

Sd−1 can be determined by computing the (d − 1)-dimensional volume of parallelepipeds

defined by the tangent vectors, and decreasing the size of the parallelepipeds to zero.

Let (z1, . . . , zd−1) be coordinates of points on the (d−1)-dimensional disk Dd−1. Let

φ : Dd−1 → R≥0 be defined by

φ(z1, . . . , zd−1) =

√√√√1−
d−1∑
i=1

z2
i .

Observe that yd = φ(y1, . . . , yd−1).
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Let the parallelepiped P d−1 defined by the tangent vectors at a point in Dd−1. The

tangent vectors ∆ziei have length ∆zi and direction ei, where ei is the ith standard basis of

Rd. Let P d denote the parallelepiped defined by the tangent vectors ∆ziei and the vector

hed. Then, as the vector hed is perpendicular to the tangent vectors of the disk Dd−1, the

t-dimensional volume of P d can be computed in terms of the (d− 1)-dimensional volume of

P d−1 and height h, i.e.,

Vold
(
P d
)

= h ·Vold−1

(
P d−1

)
. (3.1)

Now, consider the map Φ : Dd−1 × R→ Rd defined by

(z1, . . . , zd−1, zd) 7→ ((1 + zd)z1, (1 + zd)z2, . . . , (1 + zd)zd−1, (1 + zd)φ(z1, . . . , zd−1)) .

We first note that ΦDd−1×{0} maps the disk Dd−1 surjectively onto the upper hemisphere of

the unit sphere Sd−1, see Figure 3.1. The Jacobian of Φ when restricted to Dd−1 × {0} is

(JacΦ) |Dd−1×{0} =



z1

I
...

zd−1

− z1
φ(z1,...,zd−1) · · · − zd−1

φ(z1,...,zd−1) φ(z1, . . . , zd−1)


.

Under the map of the Jacobian, the image of the tangent vectors ∆ziei for 1 ≤ i ≤ d− 1, is

∆zi

(
fi −

zi
φ(z1, . . . , zd−1)

fd

)
,

where fi is the ith standard basis of Rd, and the image of the vector hed is the vector

h〈z1, . . . , zd−1, φ(z1, . . . , zd−1)〉.
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Observe that the vectors ∆zi

(
fi − zi

φ(z1,...,zd−1)fd

)
for 1 ≤ i ≤ d − 1 are tangent vectors to

the sphere Sd−1, and that h〈z1, . . . , zd−1, φ(z1, . . . , zd−1)〉 is the outward pointing surface

normal with length h.

Φ

Figure 3.1: Φ maps the disk Dd−1 surjectively onto the surface area on the upper hemisphere
of the d− 1 dimensional unit sphere Sd−1. We observe that Φ−1 = Π is the projection map
onto the first d− 1 coordinates.

Let Qd−1 denote the parallelepiped defined by the tangent vectors

∆zi

(
fi − zi

φ(z1,...,zd−1)fd

)
for 1 ≤ i ≤ d− 1. Let Qd denote the parallelepiped defined by the

tangent vectors of Qd−1 and the vector h〈z1, . . . , zd−1, φ(z1, . . . , zd−1)〉. Then, as the vector

〈z1, . . . , zd−1, φ(z1, . . . , zd−1)〉 is orthogonal to the tangent vectors ∆zi

(
fi − zi

φ(z1,...,zd−1)fd

)
for 1 ≤ i ≤ d − 1, the volume of Qd is that of the volume of Qd−1 scaled by its height h.

That is,

Vold
(
Qd
)

= h ·Vold−1

(
Qd−1

)
. (3.2)

In addition, we note that Qd is the image of P d under the map JacΦDd−1×{0}. As the

measure of the image is the measure of the preimage scaled by the determinant, the volume

of Qd can be computed in terms of P d:

Vold
(
Qd
)

= det (JacΦ) (z1,...,zd−1,0) ·Vold
(
P d
)
. (3.3)

The determinant of Jac(Φ) at the point (z1, . . . , zd−1, 0) can be found by forming an upper

triangular matrix by adding multiples of rows to the last row, resulting in a matrix with the

product of its diagonal elements, 1
φ(z1,...,zd−1) . Hence, the determinant of Jac(Φ) is 1

φ(z1,...,zd−1)
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and is positive. Substituting this result in Expression (3.3), we obtain

Vold
(
Qd
)

=
1

φ(z1, . . . , zd−1)
·Vold

(
P d
)
. (3.4)

Replacing Vold
(
P d
)
and Vold

(
Qd
)
with their equivalents given in Expression (3.1)

and Expression (3.2) and dividing by h, Equation (3.4) becomes

Vold−1

(
Qd−1

)
=

1

φ(z1, . . . , zd−1)
·Vold−1

(
P d−1

)
.

Note that Vol
(
Qd−1

)
and Vol

(
P d−1

)
are products of their corresponding side lengths. As

those side lengths approach zero, they become differential forms, and hence we obtain dΩd−1

and dz1 · · · dzd−1. Finally, observing that coordinates (z1, . . . zd−1) of a diskDd−1 correspond

to the first d− 1 entries of coordinates (y1, . . . , yd−1, yd) of a unit sphere, that is, yi = zi for

1 ≤ i ≤ d− 1, we have

dz1 · · · dzd−1 = dy1 · · · dyd−1 and φ(z1, . . . , zd−1) = yd.

Consequently, we have our desired result.

As we are interested in reducing a d-dimensional vector to a k-dimensional vector,

we find the surface area measure of the (d−1)-dimensional unit sphere in terms of a (k−1)-

dimensional unit sphere and a (d− k − 1)-dimensional unit sphere.

Theorem 18. Let s ∈ [0, 1] and f(s) = s
k−2
2 (1−s)

d−k−2
2 . Let Ψ : [0, 1]×Sk−1×Sd−k−1 −→

Sd−1 be defined by

s× (x1, . . . , xk)× (y1, . . . , yd−k) 7→ (
√
sx1, . . . ,

√
sxk,
√

1− sy1, . . . ,
√

1− syd−k).

The map Ψ is surjective and the surface area measure of Sd−1, in terms of the surface area
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measures of Sk−1 and Sd−k−1, is

dΩd−1 =
1

2
f(s)ds · dΩk−1dΩd−k−1.

Proof. Let (w1, . . . , wd), (x1, . . . , xk), and (y1, . . . , yd−k) be coordinates of points on the

(d−1)-dimensional unit sphere, (k−1)-dimensional unit sphere, and (d−k−1)-dimensional

unit sphere, respectively.

To show Ψ is onto, consider an arbitrary w ∈ Sd−1. Let s =
∑k

i=1w
2
i . Then,

1 − s =
∑d

i=k+1w
2
i . As a result, w can be decomposed into two unit vectors scaled by

√
s

and
√

1− s, respectively. That is, when s ∈ (0, 1),

w =
√
s

(
w1√
s
, . . . ,

wk√
s

)
×
√

1− s
(
wk+1√
1− s

, . . . ,
wd√
1− s

)
.

If s = 0, w = 0 · (1, 0, . . . , 0) × (wk+1, . . . , wd). If s = 1, then w = (w1, . . . , wk) × 0 ·

(1, 0, . . . , 0). Let x =
(
w1√
s
, . . . , wk√

s

)
and y =

(
wk+1√

1−s , . . . ,
wd√
1−s

)
when s ∈ (0, 1), x = e1 and

y = (wk+1, . . . , wd) when s = 0, and x = (w1, . . . , wk) and y = e1 when s = 1, where ei is

the ith unit vector. We observe that x ∈ Sk−1 and y ∈ Sd−k−1. Then,

(s, x, y)
Ψ7→ w.

Let (ŵ1, . . . , ŵd−1), (x̂1, . . . , x̂k−1), and (ŷ1, . . . , ŷd−k−1) be the coordinates of the

points on the disks Dd−1, Dk−1 and Dd−k−1 respectively. Let

ϕ : [0, 1]×Dk−1 ×Dd−k−1 −→ Dd−1
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be defined by

s× (x̂1, . . . , x̂k−1)×(ŷ1, . . . , ŷd−k−1) 7→√sx̂1, . . . ,
√
sx̂k−1,

√
s

√√√√1−
k−1∑
i=1

x̂2
i ,
√

1− sŷ1, . . . ,
√

1− sŷd−k−1

 .

Observe that ϕ maps the disks Dk−1 and Dd−k−1 onto the disk Dd−1 restricted to the set

of points ŵ such that the kth coordinate ŵk is positive. As the measure of the image is the

measure of the preimage scaled by the determinant, the surface area measure of the disk

Dd−1 is

dŵ1 · · · dŵd−1 = | det Jac(ϕ)| · ds · dx̂1 · · · dx̂k−1 · dŷ1 · · · dŷd−k−1. (3.5)

The Jacobian of map ϕ is

Jac ϕ =



x̂1
2
√
s

√
s · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

x̂k−1

2
√
s

0 · · ·
√
s 0 · · · 0

√
1−
∑k−1
i=1 x̂

2
i

2
√
s

−
√
s·x̂1√

1−
∑k−1
i=1 x̂

2
i

· · · −
√
s·x̂k−1√

1−
∑k−1
i=1 x̂

2
i

0 · · · 0

−ŷ1
2
√

1−s 0 · · · 0
√

1− s · · · 0

...
...

. . .
...

...
. . .

...

−ŷd−k−1

2
√

1−s 0 · · · 0 0 · · ·
√

1− s



.

Eliminating all but the kth entry of the first column by adding multiples of columns to the

first column, we obtain

det Jac(ϕ) =
1

2x̂k
s
k−2
2 (1− s)

d−k−1
2 .

Substituting this value into Expression (3.5), we have the surface area measure of Dd−1 in
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terms of the disks Dk−1 and Dd−k−1. That is,

dŵ1 · · · dŵd−1 =
1

2x̂k
s(k−2)/2(1− s)(d−k−1)/2 · ds · dx̂1 · · · dx̂k−1 · dŷ1 · · · dŷd−k−1. (3.6)

We observe that the coordinates of a disk Dt−1 correspond to the first t − 1 entries of

coordinates of a unit sphere for t = d, k and d − k. Employing the results of Lemma

4, we define the surface measure of a unit sphere in terms of the surface measure of the

corresponding disk:

dx̂1 · · · dx̂k−1 = dx1 · · · dxk−1 = xkdΩk−1

dŷ1 · · · dŷd−k−1 = dy1 · · · dyd−k−1 = yd−kdΩd−k−1

dŵ1 · · · dŵd−1 = dw1 · · · dwd−1 = wddΩd−1.

Substituting these into Equation 3.6, we obtain

dΩd−1 =
1

wd
dw1 · · · dwd−1 =

yd−k
wd
· 1

2
s(k−2)/2(1− s)(d−k−1)/2 · ds · dΩk−1dΩd−k−1

=
1

2
s(k−2)/2(1− s)(d−k−2)/2 · ds · dΩk−1dΩd−k−1,

where the last equality follows from the fact that wd =
√

1− syd−k by map ψ. Therefore,

we have

dΩd =
1

2
f(s)ds · dΩk−1dΩd−k−1,

where f(s) = s
k−2
2 (1− s)

d−k−2
2 , 0 ≤ s ≤ 1.

Parameters

We define the following parameters, which will be used throughout the remainder of the

paper:

• Let ε and δ ∈
(
0, 1

2

)
.

• Let d ∈ Z+ be even.
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• Let k ∈ Z+ be even such that k − 4 ≥ 1
ε2

and d > 2.5k.

• Let A : Rd → Rk. Observe that w ∈ Sd−1 can be decomposed into the unit vectors

µk−1 and µd−k−1 with length
√
s and

√
1− s, respectively, such that µd−k−1 ∈ ker(A),

where ker(A) denotes the kernel of map A. For the remainder of the paper, we let

s ∈ [0, 1], as described.

Let Γ(z) denote the gamma function. That is,

Γ(z) =

∫ ∞
0

xz−1e−xdx

when z ∈ R. Recall that,

Γ(z) = (z − 1)!

when z ∈ Z+. As a result of Theorem 18, we have the following corollary:

Corollary 1. Let C > 0 and 0 < ε < 1/2. Then,

Prob [|s · C − 1| > ε] = B ·
∫
s/∈( 1−ε

C
, 1+ε
C )

f(s)ds,

where B =
Γ( d

2
)

Γ( k
2

)Γ( d−k
2

)
.

Proof. Let w ∈ Sd−1. We observe that the probability may be defined in terms of the volume

as follows:

Prob [|s · C − 1| > ε] =
Vol(|s · C − 1| > ε)

Vol(Sd−1)
. (3.7)

As Vol(|s · C − 1| > ε) =
∫
|s·C−1|>ε dw1 · · · dwd and

dw1 · · · dwd =
1

2
f(s)dsdΩk−1dΩd−k−1

from Theorem 18, the volume Vol(|s · C − 1| > ε) can be defined in terms of the variable s
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and the unit spheres Sk−1 and Sd−k−1:

Vol(|sC − 1| > ε) =

∫
|C
∑k
i=1 w

2
i−1|>ε

dw1 · · · dwd

=

∫
Sd−k−1

∫
Sk−1

∫
s/∈( 1−ε

C
, 1+ε
C )

1

2
f(s)dsdΩk−1dΩd−k−1. (3.8)

Recall that the volume of an (n − 1)-dimensional unit sphere is 2πn/2

Γ(n2 )
. Substituting 2πn/2

Γ(n2 )

for
∫
Sn−1 dΩn−1 for n = k, d− k into Equation 3.8, we obtain

Vol(|s · C − 1| > ε) =
2π(d−k)/2

Γ
(
d−k

2

) · 2πk/2

Γ
(
k
2

) ∫
s/∈( 1−ε

C
, 1+ε
C )

1

2
f(s)ds. (3.9)

Substituting in Expression (3.9) into Equation (3.7), we obtain our desired result

Prob [|s · C − 1| > ε] = B ·
∫
s/∈( 1−ε

C
, 1+ε
C )

f(s)ds,

where B :=
Γ( d

2
)

Γ( k
2

)Γ( d−k
2

)
.

3.1.2 Bounds on Surface Area Measure

In this section, we bound Prob [s > C(1 + ε)] and Prob [s < C(1− ε)] when C =

1
s0

= d
k . From the proof of Corollary 1, we have

Prob [s > s0(1 + ε)] = B

∫
s>s0(1+ε)

f(s)ds and

Prob [s < (1− ε)s0] =

∫
s<s0(1−ε)

Bf(s)ds.

To bound the above expressions, we first bound B, as defined in Corollary 1.
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3.1.2.1 Bounds for B

Lemma 5. Suppose k and d are even positive integers, k < d. Then

e−2

2
√
π
· (d− 2)(d−1)/2

(k − 2)(k−1)/2 (d− k − 2)(d−k−1)/2
≤ B ≤ e−43/42

2
√
π
· (d− 2)(d−1)/2

(k − 2)(k−1)/2 (d− k − 2)(d−k−1)/2
.

Proof. Let k and d be even positive integers, k < d. Then, by the definition of the Γ

function,

B =
(d−2

2 )!

(k−2
2 )!(d−k−2

2 )!
.

To find both a lower and an upper bound for B, we use a form of Stirling’s approximation

of n! due to Robbins [42]:

√
2πnn+1/2e−ne

1
12n+1 < n! <

√
2πnn+1/2e−ne

1
12n .

Using this bound, we obtain

C0
(d− 2)(d−1)/2

(k − 2)(k−1)/2 (d− k − 2)(d−k−1)/2
≤ B ≤ C1

(d− 2)(d−1)/2

(k − 2)(k−1)/2 (d− k − 2)(d−k−1)/2
,

where

C0 =
1

2
· 1√

π
· e−1e

1
6(d−2)+1 e

−1
6(k−2) e

−1
6(d−k−2) ≥ e−2

2
√
π
, and

C1 =
1

2
· 1√

π
· e−1e

1
6(d−2) e

−1
6(k−2)+1 e

−1
6(d−k−2)+1 ≤ e−43/42

2
√
π
.

Consequently, we have the next lemma:

Lemma 6. Let f(s) be as in Theorem 18, s0 = k
d , and 2k < d. Then,

e−2

2
√
π
·
√
k ≤ Bs0f(s0) ≤ 9e−43/42

√
2π

·
√
k.

Proof. By evaluating f at s0 and replacing B by its lower bound found in Lemma 5, we

56



obtain the lower bound

Bs0f(s0) ≥ e−2

2
√
π

( √
kd√
d− k

)(
k

k − 2

) k−1
2
(

d− k
d− k − 2

) d−k−1
2
(
d− 2

d

) d−1
2

=
e−2

2
√
π

√
k

(
d− 2

d− k

) 1
2
(
k(d− 2)

d(k − 2)

) k−1
2
(

(d− k)(d− 2)

d(d− k − 2)

) d−k−1
2

≥ e−2

2
√
π
·
√
k.

Similarly, by evaluating f at s0 and replacing B by its upper bound found in Lemma 5, we

obtain the upper bound

Bs0f(s0) ≤ e−43/42

2
√
π
·
(
d− 2

d

) d−1
2

·
(

k

k − 2

) k−1
2

·
(

d− k
d− k − 2

) d−k−1
2

√
kd√
d− k

≤ 9e−43/42

√
2π

·
√
k,

where the last inequality follows from d
d−k ≤ 2, for d > 2k, and e ≤

(
x
x−2

)x−1
2 ≤ 3, for

x ≥ 3.

3.1.2.2 Bounds on Prob [s > s0(1 + ε)]

From Taylor’s expansion on log(1 + x) and log(1 − x), we derive the following in-

equalities:

log(1 + x) ≥ x− x2

2
for 0 < x < 1, (3.10)

log(1− x) ≥ −x− x2

2
− x3 for 0 < x < 0.815 and (3.11)

log(1− x) ≥ −x− x2 for 0 < x < 0.68. (3.12)

With the bounds on B and Bs0f(s0) from Lemmas 5 and 6, respectively, and In-

equalities (3.10) and (3.11), we find upper and lower bounds on Prob [s > s0(1 + ε)].
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Lemma 7. Let 0 < ε < 1
2 and 2.5k < d. Then,

Prob [s > s0(1 + ε)] ≥ e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 .

Proof. From the proof of Corollary 1, it can be seen that Prob
[
s > 1+ε

C

]
= B

∫
s> 1+ε

C
f(s)ds.

Substituting s0 in for C−1, we have

Prob [s > s0(1 + ε)] = B

∫
s>s0(1+ε)

f(s)ds. (3.13)

By the change of variables s = s0(1 + x), x > 0, Equation (3.13) becomes

B ·
∫
s>s0(1+ε)

f(s)ds = Bs0 ·
∫ 1

s0
−1

ε
f(s0(1 + x))dx. (3.14)

Let g(s) = sk/2(1− s)(d−k)/2, then, f(s0(1 + x)) can be expressed in terms of g(s), namely,

f(s0(1 + x)) =
g(s0(1 + x))

s0(1 + x) (1− s0(1 + x))
. (3.15)

To find the lower bound of Prob [s > s0(1 + ε)], we first find a lower bound for g(s0(1 +x)).

Taking the log of g(s0(1 + x)), we find

log (g(s0(1 + x))) = log g(s0) +
d

2

(
s0 log(1 + x) + (1− s0) log

(
1− s0

1− s0
x

))
. (3.16)

Assuming 0 < s0
1−s0x < 0.68, we bound the inner expression by utilizing Inequalities (3.10)

and (3.12):

s0 log(1 + x)+(1− s0) log

(
1− s0

1− s0
x

)
≥ s0

(
x− x2

2

)
+ (1− s0)

(
−s0

1− s0
x−

(
s0

1− s0

)2

x2

)

= −
(
s0(1 + s0)

2(1− s0)

)
x2. (3.17)
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We note that 0 < s0
1−s0x < 0.68 since d > 2.5k and we restrict x to

(
ε, ε+ k−1/2

)
.

Hence, by substituting Inequality (3.17) into Equation (3.16), we obtain the following lower

bound for g(s0(1 + x)):

g(s0(1 + x)) ≥ g(s0)e
− k

4
x2· 1+s0

1−s0 . (3.18)

We next note that the remaining term of Equation (3.15) is bounded by the following:

1

s0(1 + x)(1− s0(1 + x))
≥ 1

2

1

s0(1− s0)
, (3.19)

for 0 ≤ x < 1. We may assume 0 < x < 1, since we will only be using x in the range from ε

to ε+k−1/2. Substituting both Inequality (3.18) and Inequality (3.19) into Equation (3.15),

we have

f(s0(1 + x)) ≥ 1

2
· g(s0)

s0(1− s0)
e
− k

4
x2

1+s0
1−s0 =

1

2
f(s0)e

− k
4
x2

1+s0
1−s0 ,

for 0 < x < 1. As a result, we now have a lower bound for the integrand and obtain

Bs0 ·
∫ 1

s0
−1

ε
f(s0(1 + x))dx ≥ Bs0 ·

∫ ε+k−1/2

ε
f(s0(1 + x))dx

≥ 1

2
Bs0f(s0) ·

∫ ε+k−1/2

ε
e
− k

4
x2

1+s0
1−s0 dx.

Replacing Bs0f(s0) with its lower bound given in Lemma 6, the inequality above becomes

1

2
Bs0f(s0) ·

∫ ε+k−1/2

ε
e
− k

4
x2

1+s0
1−s0 dx ≥ e−2

4
√
π
e
− 1

4
(
√
kε+1)2

1+s0
1−s0 ,

1

2
Bs0f(s0) ·

∫ ε+k−1/2

ε
e
− k

4
x2

1+s0
1−s0 dx ≥ e−2

4
√
π
·
√
k

∫ ε+k−1/2

ε
e
− k

4
x2

1+s0
1−s0 dx

≥ e−2

4
√
π
e
− 1

4
(
√
kε+1)2

1+s0
1−s0 ,

which completes the proof.
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Lemma 8. Let 0 < ε < 1
2 and assume k − 4 ≥ 1

ε2
and 2k < d. Then,

Prob [s > s0(1 + ε)] ≤ 27e−43/42

√
2π

· e−
k−2
4
ε2(1− 2

3
ε).

Proof. To find the upper bound of Prob [s > (1 + ε)s0], we first bound consider f(s0(1+x)),

which appears in Equation (3.14). Using Taylor’s expansion of ex, we bound f(s0(1 + x))

as follows:

f(s0(1 + x)) = f(s0)(1 + x)
k−2
2

(
1− s0

1− s0
x

) d−k−2
2

≤ f(s0)(1 + x)
k−2
2

(
exp

(
−s0

1− s0
x

)) d−k−2
2

≤ f(s0)(1 + x)
k−2
2 e−

k−2
2
x, (3.20)

where (3.20) follows from d > 2k. Taking the integral of Expression (3.20) and employing

integration by parts, we have for any constant `, 1 ≤ ` ≤ m,

∫ ∞
x=ε

(1 + x)`e−mxdx ≤ 1

m
(1 + ε)`e−mε +

∫ ∞
ε

(1 + x)`−1e−mxdx. (3.21)

Starting with ` = k−2
2 and m = k−2

2 and repeatedly employing Inequality (3.21), we have

∫ ∞
ε

(1 + x)
k−2
2 e−

k−2
2
xdx ≤ 2e−

k−2
2
ε

k − 2

(
(1 + ε)

k−2
2 + (1 + ε)

k−4
2 + · · ·+ (1 + ε)0

)
≤ 2(1 + ε)

(k − 2)ε
(1 + ε)

k−2
2 e−

k−2
2
ε.

Noting that (1 + ε)
k−2
2 = e

k−2
2

log(1+ε) and using Taylor’s expansion of log x, we obtain

2(1 + ε)

(k − 2)ε
(1 + ε)

k−2
2 e−

k−2
2
ε ≤ 2(1 + ε)

(k − 2)ε
e
k−2
2

(log(1+ε)−ε) ≤ 2(1 + ε)

(k − 2)ε
e−

k−2
4
ε2(1− 2

3
ε).
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Since k − 4 ≥ 1
ε2
, the expression (k−2)2

k is bounded below by 1
ε2
, namely,

(k − 2)2

k
= k − 4 +

4

k
≥ k − 4 ≥ 1

ε2
,

implying (k − 2)ε ≥
√
k. As a result,

∫ ∞
ε

(1 + x)
k−2
2 e−

k−2
2
xdx ≤ 2(1 + ε)

(k − 2)ε
e−

k−2
4
ε2(1− 2

3
ε) ≤ 2(1 + ε)√

k
e−

k−2
4
ε2(1− 2

3
ε). (3.22)

Taking the upper bound to infinity of Expression (3.14) and substituting Inequality (3.20)

and (3.22) into Expression (3.14), we obtain

Bs0 ·
∫ 1

s0
−1

ε
f(s0(1 + x))dx ≤ Bs0f(s0)

∫ 1
s0
−1

ε
(1 + x)

k−2
2 e−

k−2
2
xdx

≤ Bs0f(s0)
2(1 + ε)√

k
e−

k−2
4
ε2(1− 2

3
ε).

Employing Lemma 6 we have our desired result.

We collect Lemmas 7 and 8 into the following theorem:

Theorem 19. Let 0 < ε < 1
2 and assume k − 4 ≥ 1

ε2
and d > 2.5k. Then,

e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 ≤ Prob [s > s0(1 + ε)] ≤ 27e−43/42

√
2π

· e−
k−2
4
ε2(1− 2

3
ε).

3.1.2.3 Bounds on Prob [s < s0(1 − ε)]

Lemma 9. Let 0 < ε < 1
2 . Then,

Prob [s < s0(1− ε)] ≥ e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+k−1/6)3

)
.

Proof. Recalling the result of Corollary 1 and substituting s0 in for C, we obtain

Prob [s < (1− ε)s0] =

∫
s<s0(1−ε)

Bf(s)ds. (3.23)
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By the change of variables s = s0(1− x), x > 0, Expression (3.23) becomes

Prob [s < (1− ε)s0] = Bs0 ·
∫ 1

ε
f(s0(1− x))dx. (3.24)

Let g(s) = sk/2(1− s)(d−k)/2. Then f(s0(1− x)) can be defined in terms of g(s), namely,

f (s0(1− x)) =
g (s0(1− x))

s0(1− x) (1− s0(1− x))
. (3.25)

To obtain a lower bound of Prob [s < s0(1− ε)], we first bound g (s0(1− x)). Taking the

log of g(s0(1− x)), we obtain the expression

log g(s0(1− x)) = log g(s0) +
d

2

[
s0 log(1− x) + (1− s0) log

(
1 +

s0

1− s0
x

)]
. (3.26)

Employing Bounds (3.10) and (3.11), we find a lower bound for the inner expression:

s0 log(1− x)+(1− s0) log

(
1 +

s0

1− s0
x

)
≥ s0(−x− x2

2
− x3) + (1− s0)

(
s0

1− s0
x−

(
s0

1− s0

)2 x2

2

)

=
−s0

2(1− s0)
x2 − s0x

3. (3.27)

Substituting Inequality (3.27) into Expression (3.26), we get

log g(s0(1− x)) ≥ log g(s0)− k

4

[
x2

1− s0
+ 2x3

]
,

implying

g(s0(1− x)) ≥ g(s0)e
− k

4

[
x2

1−s0
+2x3

]
. (3.28)

Since, for 0 < c < 1 and ε < x < 1, (1 − x)(1 + c · x) < 1, the remaining term of Equation
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(3.25) can be bounded by the following:

1

s0(1− x) (1− s0(1− x))
=

1

s0(1− s0)
· 1

(1− x)
(

1 + s0x
1−s0

) ≥ 1

s0(1− s0)
. (3.29)

Substituting both Inequality (3.28) and Inequality (3.29) into Expression (3.15), we obtain

a lower bound for f (s0(1− x)):

f(s0(1− x)) ≥ f(s0)e
− k

4

(
x2

1−s0
+2x3

)
, (3.30)

for ε < x < 1. Consequently, substituting Inequality (3.30) into Equation (3.24) and lowering

the upper bound to ε+ k−1/2 result in

Bs0 ·
∫ 1

ε
f(s0(1− x))dx ≥ Bs0 ·

∫ ε+k−1/2

ε
f(s0(1− x))dx

≥ Bs0f(s0) ·
∫ ε+k−1/2

ε
e
− k

4

(
x2

1−s0
+2x3

)
dx.

Replacing Bs0f(s0) with its lower bound given in Lemma 6 and evaluating the integral, we

obtain

Bs0f(s0) ·
∫ ε+k−1/2

ε
e
− k

4

(
x2

1−s0
+2x3

)
dx ≥ e−2

2
√
π
·
√
k

∫ ε+k−1/2

ε
e
− k

4

(
x2

1−s0
+2x3

)
dx

≥ e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+k−1/6)3

)
,

which completes the proof.

Lemma 10. Let 0 < ε < 1
2 and assume k ≥ 1

ε2
. Then,

Prob [s < s0(1− ε)] ≤ 18
√

2e10/21

√
π

· e−( k4 )ε2 .

Proof. To find the upper bound of Prob [s < s0(1− ε)], we first consider f(s0(1− x)) from
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Expression (3.24). Observe that

f(s0(1− x)) = f(s0)(1− x)
k−2
2

(
1 +

s0

1− s0
x

) d−k−2
2

.

Taking the log of the expression (1− x)
k−2
2

(
1 + s0

1−s0x
) d−k−2

2 and using Taylor’s expansion

of log x, we obtain

log

(
(1− x)

k−2
2

(
1 +

s0

1− s0
x

) d−k−2
2

)
≤ k − 2

2

[
−x− x2

2

]
+
d− k − 2

2

[
k

d− k
x

]
≤ x−

(
k − 2

4

)
x2 ≤ 3

2
−
(
k

4

)
x2,

for ε ≤ x ≤ 1. Hence, for ε ≤ x ≤ 1, we have

f(s0(1− x)) ≤ f(s0) · e3/2 · e−( k4 )x2 ≤ f(s0) · e3/2 · e−( k4 )εx. (3.31)

Substituting Inequality (3.31) into the integral
∫ 1
ε f(s0(1−x))dx and expanding the bounds

of integration, we get

∫ 1

ε
f(s0(1− x))dx ≤ f(s0)e3/2

∫ 1

ε
e−( k4 )εxdx

≤ f(s0)e3/2

∫ ∞
ε

e−( k4 )εxdx

≤ f(s0)
4e3/2

√
k
· e−

k
4
ε2 ,

where the last inequality holds since k ≥ 1
ε2
. Substituting the above result and the upper

bound of Bs0f(s0) from Lemma 6 into Expression (3.24), we obtain the following upper

bound:

Bs0 ·
∫ 1

ε
f(s0(1− x))dx ≤ Bs0f(s0)

4e3/2

√
k
· e−

k
4
ε2 ≤ 18

√
2e10/21

√
π

· e−
k
4
ε2 ,
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which completes the proof.

Hence, we have a lower and upper bound for Prob [s < s0(1− ε)]. We collect Lemmas

9 and 10 into the following:

Theorem 20. Let 0 < ε < 1
2 and assume k ≥ 1

ε2
. Then,

e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+k−1/6)3

)
≤ Prob [s < s0(1− ε)] ≤ 18

√
2e10/21

√
π

· e−( k4 )ε2 .

3.2 An Explicit Threshold

In this section, we prove our main theorem, Theorem 2. First, we provide an explicit

threshold k1 = k1(ε, δ) such that for any w ∈ Sd−1, there exists a JL transformation A :

Rd → Rk for k > k1. That is, A preserves the Euclidean norm of w ∈ Sd−1 for a given error

factor ε and probability of failure δ. We then provide an explicit threshold k2 = k2(ε, δ) such

that for any w ∈ Sd−1, there does not exist a JL transformation A : Rd → Rk for k < k2.

Let s0 := k
d and s ∈ [0, 1], as defined in Section 3.1.1. To obtain the threshold k0,

we find bounds on the probabilitites

Prob [s < s0(1− ε)] and Prob [s > s0(1 + ε)]

employing the results of Corollary 1.

3.2.1 Lower Bound Guaranteeing a Distribution

To obtain the threshold such that there is a JL transformation A : Rd → Rk for

all k above that point, we use the construction provided by Gupta and Dasgupta in [13].

Employing the bounds given in Theorems 19 and 20, we find the possible dimensions k for

which it is a JL distribution, and hence, providing an upper bound on the smallest possible

projected dimension k0 for any arbitrary JL distribution.
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Theorem 21. If k > 4ε−2 log
(

1
δ

)
[1 + o(1)], then there exists a distribution D on k×d real

matrices such that for any w ∈ Sd−1

ProbA∼D
[
|‖Aw‖2 − 1| < ε

]
≥ 1− δ.

The term o(1) is dependent on the error factor ε and probability of failure δ, and approaches

zero as ε and δ approach zero.

Proof. Let A : Rd −→ Rk be a linear transformation such that A =
√

1
s0

ΣV >, where

Σ =

 Ik 0


k×d

and V is orthonormal. Observe that orthonormal transformations are both measure and

norm invariant. That is, for w ∈ Sd−1, uniform random, and an orthonormal matrix B ∈

Rd×d, the projection Bw ∈ Sd−1, uniform random, and ‖Bw‖ = ‖w‖. Hence, for uniform

random w ∈ Sd−1, we have V >w ∈ Sd−1, uniform random. Let x := V >w ∈ Sd−1, uniform

random. Then,

‖Aw‖2 = ‖UΣx‖2 = ‖Σx‖2 =
1

s0

k∑
i=1

x2
i ,

resulting in

Prob
[
|‖Aw‖2 − 1| > ε

]
= Prob

[
1

s0

k∑
i=1

x2
i − 1 > ε

]
.

Let s =
∑k

i=1 x
2
i . Then, s ∈ [0, 1] and the probability above becomes

Prob
[
|‖Aw‖2 − 1| > ε

]
= Prob [s < s0(1− ε) ∪ s > s0(1 + ε)] .

66



Replacing Prob [s < s0(1− ε)] and Prob [s > s0(1 + ε)] with the upper bounds provided in

Theorem 19 and Theorem 20, we obtain

Prob
[
|‖Aw‖2 − 1| > ε

]
≤ 18

√
2e10/21

√
π

e−
k
4
ε2 +

27e−43/42

√
2π

· e−
k−2
4
ε2(1− 2

3
ε)

≤

[
18
√

2e10/21

√
π

+
27e−43/42

√
2π

]
e−

k−2
4
ε2(1− 2

3
ε)

≤ 27e−
k−2
4
ε2(1− 2

3
ε)

Observe that 27e−
k−2
4
ε2(1− 2

3
ε) < δ when

k > 4ε−2 log

(
1

δ

)[
1 +

2ε

3− 2ε
+

log(27)

log
(

1
δ

) · 1

1− 2ε/3
+

2ε2

4 log
(

1
δ

)] = 4ε−2 log

(
1

δ

)
[1 + o(1)] ,

where o(1) −→ 0 as ε, δ → 0. Hence, for k > 4ε−2 log
(

1
δ

)
[1 + o(1)], there is a distribution

of transformations such that for 0 < ε < 1
2 and δ > 0,

Prob
[
|‖Aw‖2 − 1| < ε

]
≥ 1− δ.

3.2.2 Lower Bounds for Arbitrary Projection

We now provide an explicit threshold for the projected dimension k, under which

there does not exist a JL transformation. Let D be an arbitrary JL distribution. Then, for

any w ∈ Sd−1,

ProbA∼D
[
|‖Aw‖2 − 1| > ε

]
< δ,

which implies that the following inequality must hold:

ProbA∼D
[
Probw∈Sd−1

[
|‖Aw‖2 − 1| > ε

]]
< δ.
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So, if, for all A ∈ Rk×d, Probw∈Sd−1

[
|‖Aw‖2 − 1| > ε

]
> δ, then we have the result that

there does not exist a distribution D such that

ProbA∼D
[
|‖Aw‖2 − 1| > ε

]
< δ

for any w ∈ Sd−1. We show for k < 4ε−2 log
(

1
δ

)
[1− o(1)],

Probw∈Sd−1

[
|‖Aw‖2 − 1| > ε

]
> δ

for any A ∈ Rk×d.

The layout of this section is as follows: we let A : Rd −→ Rk be a fixed arbitrary

linear transformation and let w be random. We then find a lower bound on the probability

Prob
[
|‖Aw‖2 − 1| > ε

]
and find the values of k for which this lower bound is greater than

δ. As a result, we obtain the values of k for which there does not exist a JL distribution.

Theorem 22. Let A : Rd −→ Rk be a linear transformation with d > 2k and let 0 < ε < 1
2 .

Then, for a random w ∈ Sd−1,

Prob
[
|‖Aw‖2 − 1| > ε

]
≥ e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
.

Proof. Let A : Rd −→ Rk be a linear transformation. We may assume A is onto; otherwise,

we may change the image accordingly. Let S = UΣV > be the singular value decomposition

of S. Recall that U and V are orthonormal matrices and Σ is a diagonal matrix. Recall that

orthonormal transformations are both measure and norm invariant. That is, for w ∈ Sd−1,

uniform random, and an orthonormal matrix B ∈ Rd×d, we have Bw ∈ Sd−1, uniform

random, and ‖Bw‖ = ‖w‖.
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Let w ∈ Sd−1. Then, since V is an orthonormal matrix,

V >w =


v>1 w

...

v>d w

 ∈ Sd−1,

uniform random, where vi is the ith column of V . Let x := V >w ∈ Sd−1, uniform random.

Then, as U is orthonormal,

‖Aw‖2 = ‖UΣx‖2 = ‖Σx‖2 = λ2
1x

2
1 + · · ·+ λ2

kx
2
k,

where λi’s are the diagonal entries of Σ. Let 〈H〉 denote the set of elements generated by a

set H. Let W⊥ denote the orthogonal complement of subspace W . We observe that

ker(A) = 〈vk+1, . . . , vd〉 and (ker(A))⊥ = 〈v1, . . . , vk〉,

where vi is the ith column of V . LetK := ker(A). Then, for w ∈ Sd−1, w can be decomposed

into the components wk ∈ K⊥ and wd−k ∈ K, where wk and wd−k can be represented by

their length and a unit vector in their corresponding space. In particular, since ‖w‖ = 1,

wk =
√
s · Ωk and wd−k =

√
1− s · Ωd−k,

where s ∈ [0, 1], Ωk ∈ Sk−1 and Ωd−k ∈ Sd−k−1. Since wd−k lies in the kernel of A, it follows

that

‖Aw‖2 = s‖AΩk‖2 = λ2
1x

2
1 + · · ·+ λ2

kx
2
k.

As a result, ‖AΩk‖2 = ‖Σx‖2
s and

Prob
[
|‖Aw‖2 − 1| > ε

]
= Prob

[
|s · ‖AΩk‖2 − 1| > ε

]
.
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To find a lower bound for Prob
[
|s‖AΩk‖2 − 1| > ε

]
, we first consider the probability

Prob [|s · C − 1| > ε]

for some constant C > 0. From Corollary 1,

Prob [|s · C − 1| > ε] = B ·
∫
s/∈( 1−ε

C
, 1+ε
C )

f(s)ds.

Let Ĉ = 1
s0

= d
k > 0. Then, we have two cases: Ĉ ≤ C or Ĉ ≥ C. If Ĉ ≤ C,

Prob
[
s /∈

(
1− ε
C

,
1 + ε

C

)]
≥ Prob

[
1 + ε

C
< s ≤ 1

]
≥ Prob [s0(1 + ε) < s ≤ 1] .

Replacing Prob [s ∈ (s0(1 + ε), 1]] with its lower bound from Theorem 19, we have

Prob
[
s /∈

(
1− ε
C

,
1 + ε

C

)]
≥ e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 .

Similarly, if Ĉ ≥ C,

Prob
[
s /∈

(
1− ε
C

,
1 + ε

C

)]
≥ Prob

[
0 ≤ s < 1− ε

C

]
≥ Prob [0 ≤ s < s0(1− ε)] .

Replacing Prob [s ∈ [0, s0(1− ε))] with its lower bound from Theorem 20, we have

Prob
[
s /∈

(
1− ε
C

,
1 + ε

C

)]
≥ e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+k−1/6)3

)

≥ e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
.

Taking the minimum of both cases, we have for any C > 0,

Prob [|s · C − 1| > ε] ≥ min

{
e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
,
e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 ,

}
.

Hence, as s ∈ [0, 1], chosen independent random, and Ωk ∈ Sk−1, chosen independent
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random,

Prob
[
|‖Aw‖2 − 1| > ε

]
≥ min

{
e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
,
e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 ,

}
.

As a result of Theorem 22, we have a threshold for the projected dimension, under

which there does not exist a JL distribution of linear transformations.

Corollary 2. Let A : Rd → Rk be a linear transformation, and δ > 0, and 0 < ε < 1
2 .

Then, for k < 4ε−2 log
(

1
δ

)
[1− o(1)],

Probw∈Sd−1

[
|‖Aw‖2 − 1| > ε

]
> δ.

Proof. Let A : Rd → Rk be a linear transformation. From Theorem 22, we have for random

w ∈ Sd−1,

Prob
[
|‖Aw‖2 − 1| > ε

]
≥ min

{
e−2

2
√
π
· e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
,
e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 ,

}
.

Suppose k < ηε−2 log 1
δ where η < 4. Then, in the case when the minimum is e−2

2
√
π
·

e
− 1

4

(
(
√
kε+1)2

1−s0
+2(

3√
kε+1)3

)
,

Prob
[
|‖Aw‖2−1| > ε] ≥ e−2

2
√
π

exp

−1

4

(
√
η log 1

δ + 1)2

1− s0
+ 2

(
3

√
η log

1

δ
ε1/3 + 1

)3


≥ e−2

2
√
π

exp

−
1

4
η log

1

δ
·


(

1 + 1√
η log 1

δ

)2

1− s0
+ 2

ε1/3 +
1

3

√
η log 1

δ

3




=

e−2

2
√
π
δ
η
4
·γ ,
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where γ =


(

1+ 1√
η log 1

δ

)2

1−s0 + 2

(
ε1/3 + 1

3
√
η log 1

δ

)3

. We observe that γ approaches 1 from

above as ε, δ, and s0 approach zero. We note that when d ≥ ε−3 log 1
δ , then γ approaches 1

from above as ε and δ approach zero.

In the case when the minimum is e−2

4
√
π
· e−

1
4

(
√
kε+1)2

1+s0
1−s0 ,

Prob
[
|‖Aw‖2 − 1| > ε

]
≥ e−2

4
√
π

exp

−1

4
η log

1

δ
·

 1√
η log 1

δ

+ 1

2(
1 + s0

1− s0

)
=

e−2

4
√
π
δ
η
4
·γ ,

where γ =

(
1√

η log 1
δ

+ 1

)2 (
1+s0
1−s0

)
. We observe that γ approaches 1 from above as δ and

s0 approach zero.

Hence, in either case,
e−2

2
√
π
δ
η
4
·γ > δ (3.32)

for sufficiently small ε, δ, and s0. That is, Prob
[
|‖Aw‖2 − 1| > ε

]
≥ δ for sufficiently small

δ, ε and s0. We note as η approaches 4, ε and δ must approach zero for Inequality (3.32) to

hold.

Consequently, we have a lower bound, 4ε−2 log
(

1
δ

)
[1− o(1)], for the smallest possible

projected dimension. That is,

Corollary 3. If k < 4ε−2 log
(

1
δ

)
[1− o(1)], then there is no distribution D on k × d real

matrices such that

ProbA∼D
[
|‖Aw‖2 − 1| < ε

]
≥ 1− δ.

Proof. Suppose there did exist such a distribution. Then, it follows that

ProbA∼D
[
Probw∈Sd−1

[
|‖Aw‖2 − 1| > ε

]]
< δ.
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However, from Corollary 2, we have for k < 4ε−2 log
(

1
δ

)
[1− o(1)],

Prob
[
|‖Aw‖2 − 1| > ε

]
> δ.

Combining Corollary 3 and Theorem 21, we have the following theorem:

Theorem 17. Let 0 < ε, δ < 1
2 .

a.) If k > 4ε−2 log
(

1
δ

)
[1 + o(1)], then there exists a JL distribution.

The term o(1) is dependent on the error factor ε and probability of failure δ, and

approaches zero as ε and δ approach zero. The exact term o(1) may be found in the

proof of Theorem 21.

b.) If k < 4ε−2 log
(

1
δ

)
[1− o(1)], then there does not exist a JL distribution.

The term o(1) is dependent on the error factor ε, probability of failure δ, and the ratio

k
d , and approaches zero as ε, δ and the ratio k

d approach zero.

Consequently, we have our main result as stated in Theorem 2.

Theorem 2. For ε and δ sufficiently small, k0 ≈ 4ε−2 log 1
δ . That is,

k0

4ε−2 log 1
δ

→ 1 as ε, δ → 0.
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Chapter 4

Applications

4.1 Approximate Nearest Neighbors

The nearest neighbor (NN) problem can be summarized by the following: given a

set P of points and a query point in a d-dimensional space, find a point in set P closest to

the query point. To speed up the search process, the problem is relaxed to the approximate

nearest neighbor (ANN) search, which finds the closest point up to some ε > 0. More

formally,

Definition 6. Given a metric space (X, dX), a finite collection of points P ⊂ X, and a

query point x ∈ X, an ε-ANN search finds a point p ∈ P satisfying the inequality

dX(x, p) ≤ (1 + ε)dX(x, p′)

for all p′ ∈ P .

Due to numerous applications of ANN, such as pattern recognition, computer vision,

and coding theory, there have been many publications on the subject [6, 10, 24, 32, 38, 48].

In [32], Kushilevitz, Ostrovsky, and Rabani implemented low dimensional embedding in

their ANN algorithm to obtain a point in O(dε−2 log d log n) time for any data set where n

is the number of points and d is the original dimension. To improve the time to O(d log d+

74



ε−3 log n) time while using nO(ε−2) storage, Ailon and Chazelle [2] integrated JL distribu-

tions, specifically FJLT, into their algorithm.

Their algorithm consists of two stages, the second of which utilizes the properties of

FJLT [2]. As a brief overview, stage one runs an O(n)-ANN query and returns a point q.

Then, stage two returns the closest point to x by answering an O(ε)-ANN query restricted

to a set Px ⊂ P dependent on the point q found in stage one. In particular, both stages can

be defined as follows.

Stage 1:

With input P ⊂ Rd and x ∈ Rd, the algorithm chooses a random vector v ∈ Rd and

returns the nearest neighbor with respect to pseudometric

Dv(x, p) = |v>x− v>p|.

The returned point q is an answer to an O(n)-ANN for query x. To increase the probability

of success to 1− δ, the procedure must be repeated O(log δ−1) times.

Stage 2:

Let q be the point returned in stage one. Let Px ⊂ P be defined as

Px = P ∩B2 (q, 2‖x− q‖2) ,

where B2(s, t) is the set of points within `2-distance t of point s. Let R(Px) denote the

largest possible distance between query x and a point in Px. The algorithm first applies a

JL transform to query x and the set Px, and then, searches for a point p ∈ Px such that

d(x, p) ≤ (1 + ε)`, (4.1)

where ` = R(Px). If the search returns p ∈ P such that (4.1) holds, the constant ` is

decreased and the process is repeated.

Consequently, we have the following theorem given by Ailon and Chazelle:
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Theorem 23 ([2]). Given a set P of n points in `d2, for any ε > 0, there is a randomized

data structure of size nO(ε−2) that can answer any ε-ANN query in time O(d log d+ε−3 log n)

with high probability.

4.2 Linear Algebra Applications

Embedding data into a lower dimension has applications in linear algebra techniques

such as matrix multiplication, linear `2 regression, and rank k approximation.

4.2.1 Matrix Multiplication

A common method to increase the speed of matrix multiplication is to approximate

the product by a sampling process [17]. Sampling approximates the product of two matrices

A ∈ Rm×n and B ∈ Rn×p by constructing submatrices Â ∈ Rm×r and B̂ ∈ Rr×p from A

and B, respectively, and computing the product of ÂB̂. Let

pk =
‖A(k)‖2‖B(k)‖2∑n

k′=1 ‖A(k′)‖2‖B(k′)‖2

for 1 ≤ k ≤ n be the sampling probability for index k, where A(i) and B(j) are the ith

column of A and jth row of B respectively. Let 1 ≤ i1 < · · · < ir ≤ n be r indices with

the largest sampling probabilities. Then, Â consists of the columns A(i1), . . . , A(ir) and B̂

consists of the corresponding r rows B(i1), . . . , B(ir).

Deviating from the common process of sampling, Sarlós in [44] implemented JL

distributions in approximating matrix multiplication, further reducing the computational

complexity. In Lemma 6 of [44], Sarlós showed for A ∈ Rn×m, B ∈ Rn×p, and a JL

distribution D,

ProbS∼D
[
‖AB −AS>SB‖F ≤ ε‖A‖F ‖B‖F

]
≥ 1− δ (4.2)
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by observing for a given JL distribution D and any set V ⊂ Rd of n points,

ProbS∼D [〈u− v〉 − ε‖u‖2‖v‖2 ≤ 〈Su, Sv〉 ≤ 〈u− v〉+ ε‖u‖2‖v‖2] ≥ 1− δ

for all pairs u, v ∈ V . Hence, by combining (4.2) and Theorem 3, approximations

Â = AS> and B̂ = SB

can be found such that

ProbS∼D
[
‖AB − ÂB̂‖F ≤ ε‖A‖F ‖B‖F

]
≥ 1− δ.

Approximations Â and B̂ can be found with a one-pass algorithm using

O
(
ε−2(m+ p) log(m+ p) log 1

δ

)
space and O

(
ε−2M log(m+ p) log 1

δ

)
, where M is the com-

bined number of nonzero entries in A and B.

4.2.2 Linear Regression

For A ∈ Rn×d, n > d, and b ∈ Rd, linear `2 regression finds an optimal vector xopt

minimizing ‖Ax − b‖2. Often, xopt is given by A+b, where A+ = V Σ−1U> is the Moore

Penrose matrix and UΣV > is the SVD of A. Analogous to matrix multiplication, sampling

based on sampling probabilities is used to approximate and speed up the computation of

regression. Drineas et al. [16] showed if k rows of A and b are sampled according to the

sampling probabilities, where k = poly(ε−1, d), the lower-dimensional problem gives an ε-

approximation to the original regression problem. In [44], Sarlós replaced sampling with

random embeddings implementing FJLT (Section 2.3.1). In particular,

Theorem 24 (Theorem 12, [44]). Suppose A ∈ Rn×d, b ∈ Rn. Let Z = minx∈Rd ‖b−Ax‖2 =

‖b − Axopt‖2, where xopt = A+b. Let 0 < ε < 1, S ∈ Rr×n be a transform from a JL

distribution and Z̃ = minx∈Rd ‖Sb− SAx‖2 = ‖Sb− SAx̃opt‖2, where x̃opt = (SA)+Sb.
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If r = Ω(ε−2d · log d), then

Prob
[
‖xopt − x̃opt‖2 ≤

ε

σmin(A)
Z
]
≥ 1

3
,

where σmin(A) is the first diagonal entry of Σ such that A = UΣV >.

Computing x̃opt via the FJLT takes O
(
nd log n+ d2ε−2(d+ log2 n) log d

)
time. Ob-

serve that repeating the process log 1
δ times provides the probability of at least 1− δ.

4.2.3 Rank k-Approximation

Rank k-approximation is a minimization problem, which seeks to find a rank k matrix

Ak for a given matrix A ∈ Rm×n such that ‖A−Ak‖ is minimized over all rank k matrices,

where ‖ · ‖ is either the Frobenius norm or spectral norm. Some applications include facial

recognition, web search, latent semantic indexing, text analysis, and lossy data compression.

Let A = UΣV > be the SVD of A. By the Eckar Young Theorem, we have that the best

rank k-approximation of A is

Ak = UkΣkV
>
k ,

where Uk and Vk consist of the first k rows of U and V , respectively, and Σk is a diagonal ma-

trix consisting of the first k diagonal entries of Σ. Hence, to speed up rank k-approximation,

obtaining the SVD of a matrix must be fast. To speed up the process, SVD is relaxed to

relative error SVD, which was first introduced by Har-Peled [25] in 2006. Shortly thereafter,

Deshpande and Vampala in [14] presented an algorithm, which takes Θ(k log k) passes to

obtain a rank k-approximation achieving relative error

(1 + ε)‖A−Ak‖F

with probability at least 3
4 in time O

(
M(kε + k2 log k) + (m+ n)(k

2

ε2
+ k3 log k

ε + k4 log2 k)
)
.

Sarlós in [44] cut the number of passes down to two by implementing a JL distribution, with

uniform random ±1 entries such as the construction given by Achlioptas (Section 2.2.5). In
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particular, he proved the following theorem.

Theorem 25 (Theorem 14, [44]). Let A ∈ Rm×n. Let ΠV (A) denote the projection of A

onto subspace V ⊂ Rm and ΠV,k(A) denote the best rank-k approximation of ΠV (A). Let

0 < ε ≤ 1 and r = Θ(k/ε+ k log k). If S is an r-by-n JL transform with i.i.d. zero-mean ±1

entries, then

Prob
[
‖A−ΠAS>,k‖F ≤ (1 + ε)‖A−Ak‖F

]
≥ 1

2
.

Computing the singular vectors spanning ΠAS>,k(A) in two passes over the data requires

O(Mr+ (m+n)r2) time and O((m+n)r2) space, where M denotes the number of nonzero

entries in A.

Observe the probability of success can be increased to 1 − δ for a predetermined δ

by repeating the process O(log 1
δ ) times in parallel and choosing the instance with maximal

Frobenius norm ‖ΠAS>,k‖2F .

4.3 Machine Learning

4.3.1 Background

The goal of machine learning is to construct an algorithm that can independently

learn from data and adapt accordingly to make accurate predictions on future data. Applica-

tions include email filtering, computer vision, optical character recognition, online marketing,

and detection of network intruders. There are three main types of learning:

1. Supervised: In supervised learning, the learner is provided data labeled either positive

or negative, from which, it must determine a way to accurately label future data.

Typical tasks of supervised learning include classification, e.g., email filtering, and

regression, e.g., prediction of future sales. For instance, given emails classified as spam

or not spam, the email provider desires to find a way to properly classify future emails

that is consistent with the labeled emails
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2. Unsupervised: In unsupervised learning, the learner is not provided with any labeled

data. The learner is expected to label the given data and determine a way to accurately

label future examples. A typical task of unsupervised learning is that of clustering.

In clustering, a data set is subdivided into groups without any prior knowledge of the

groups.

3. Reinforcement: Reinforcement learning is predominantly used in gaming. In rein-

forcement, the goal is to make decisions that maximize reward in the allotted time

given.

In learning, data is represented by vectors in Rd and labeled either positive, +1, or

negative, −1. A concept is defined to be either a vector or a subset of vectors in Rd, and

is used by the learner to label the data. A concept class is a set of concepts. A common

algorithm for classification is the Perceptron Algorithm and was presented by Rosenblatt

[43] in 1962. If given a set of labeled vectors xi ∈ Rd for 1 ≤ i ≤ m, which can be separated

by a hyperplane, the algorithm will return a vector w ∈ Rd such that

• w · x < 0 for negative labeled vectors x, and

• w · x > 0 for positive labeled vectors x.

The vector w is called a concept and is used in the labeling of future data according to the

sign of the inner product: if w · x > 0, x is labeled positive and otherwise, negative.

Algorithm 1. Perceptron Algorithm

Input: set S of vectors xi ∈ Rd with true label yi ∈ {±1} for 1 ≤ i ≤ m

Set w = 0 ∈ Rd

For some fixed number of iterations or until all labels are correct:

Pick a vector xi ∈ S

ŷ = sgn(w · xi)

If ŷ 6= yi:

w ← w + yixi

Output: concept w

80



A learning algorithm, such as the Perceptron Algorithm, that constructs a concept

w from given labeled vectors is said to (ε, δ)-learn if w classifies at least (1−ε) fraction of the

data distribution E with probability at least 1− δ. A lower bound to the number of labeled

examples needed in order for a learning algorithm to (ε, δ)-learn was given by Kearns and

Vazirani in [30].

Theorem 26 ([30]). Let C be any concept class in Rd. Let w be a concept from C that is

consistent with m labeled examples of some concept in C. Then, with probability at least

1− δ, w correctly classifies at least (1− ε) fraction of E provided

m >
4

ε
logC(2m, d) +

4

ε
log

2

δ
,

where C(m, d) denotes the maximum number of distinct labelings of m points in Rd obtain-

able from a concept.

4.3.2 Implementation of JL Transformations in Machine Learning

To reduce the number of samples needed to determine a concept w, Arriaga and

Vempala [5] implemented dimension reduction techniques. They restricted the case to that

of robust concept classes.

Definition 7. For any real number ` > 0, a concept class C in conjuction with a distribution

D in Rd is said to be `-robust if

Prob [x : ∃ y : label(x) 6= label(y), ‖x− y‖2 ≤ `] = 0

That is, the probability that there exists two points with different labels within distance `

of each other is zero. As a result, a few attributes of the samples can be altered without

affecting a concept from a robust concept class.

Arriaga and Vempala [5] observed that robust target concepts are preserved when

the data is projected to a lower dimension. Projecting the data to a lower dimension results
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in a smaller number of labeled vectors required and a smaller computational complexity.

Projections implemented in [5] come from JL distributions given by Indyk and Motwani

(Section 2.2.3) and Achlioptas (Section 2.2.5). Let D1 be the construction of Indyk and

Motwani. That is, for A ∼ D1, aij
iid∼ N(0, 1) for 1 ≤ i ≤ k and 1 ≤ j ≤ d. Let D2 be the

first construction of Achlioptas. That is, for A ∼ D2, A = 1√
k
B ∈ Rk×d where bij

iid∼ {±1}.

Learning of a Half-Space:

We first focus on the well-studied problem, learning of a half-space, and restrict the

vectors to the (n − 1)-dimensional unit sphere, Sn−1. The algorithm presented in [5] to

obtain concept w is as follows:

Algorithm 2. Half-Space Algorithm

Input: vectors x1, . . . , xm ∈ Rd with true labels y1, . . . , ym ∈ {±1}

1. Choose k × d random matrix R from JL distribution D1 or D2

2. Project x1, . . . , xm ∈ Rd to Rk by Rxi for 1 ≤ i ≤ m.

3. Run the Perceptron Algorithm in Rk.

Output: JL transform R and concept w.

With output R and w, a future example x is labeled by projecting x to Rk, Rx, and

labeling x positive if w ·Rx > 0 and otherwise, negative.

Theorem 27 ([5]). For an `-robust half-space, the algorithm will (ε, δ)-learn when given m

samples in n · poly
(

1
` ,

1
ε , log 1

δ

)
time, where

k =
100

`2
ln

100

ε`δ
and m =

8k

ε
log

48

ε
+

4

ε
log

4

δ
.

Learning an Intersection of Half-Spaces:

In addition to the learning half-space problem, Arriaga and Vempala [5] applied JL

transformations to learning an intersection of half-spaces. In this scenario, a concept is a set

of vectors Q = {w1, . . . , wt} in Rd. A vector is labeled positive if it lies in the intersection of
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the t half-spaces h1, . . . , ht, where hi is the half-space {x ∈ Rd : wi ·x > 0} for 1 ≤ i ≤ t, and

negative if it lies outside the region. In [5], it is assumed the hyperplane defining the half-

spaces contains the origin, i.e., the half-spaces are homogenous. The algorithm to obtain

concept Q = (w1, . . . , wt) is similar to that of learning a half-space. It first projects the

given set of labeled vectors to a smaller dimension using a JL transformation and then finds

a concept in the lower dimension.

Algorithm 3. Intersection of t Half-Spaces Algorithm

Input: vectors x1, . . . , xm ∈ Rd with true labels y1, . . . , ym ∈ {±1}

1. Choose k × d random matrix R from JL distribution D1 or D2

2. Project x1, . . . , xm ∈ Rd to Rk by Rxi for 1 ≤ i ≤ m.

3. Find a concept Q = {w1, . . . , wt} ⊂ Rk such that the intersection of the half-spaces

{x ∈ Rd : wi · x ≥ 0} for 1 ≤ i ≤ t is consistent with the given labels of the projected

vectors.

Output: JL transform R and concept Q

With the output R and Q = {w1, . . . wt}, a future vector x ∈ Rd is labeled by

projecting x to Rk, Rx, and labeling x positive if wi · Rx > 0 for all i ∈ {1, . . . , t} and

otherwise, negative.

Theorem 28 ([5]). For an `-robust intersection of t half-spaces, the algorithm will (ε, δ)-

learn when given m samples in O(nmk) +
(

48t
ε log 4t

εδ

)kt time, where

k =
100

`2
ln

100t

ε`δ
and m =

8kt

ε
log

48t

ε
+

4

ε
log

4

δ
.

Those interested in the problem learning of balls are directed to [5]. We note the

process is similar to that of learning a half-space and an intersection of t half-spaces.
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4.4 Compressed Sensing

The goal of compressed sensing is to efficiently reconstruct a sparse signal from a

limited number of measurements by exploiting the sparseness property. A recovery algorithm

R satisfies a recovery guarantee called the `2/̀ 1 guarantee if, given Φ ∈ Ck×d,

‖R(Φx)− x‖2 ≤
c√
m

inf
y∈Cd
‖y‖0≤m

‖x− y‖1

for all x ∈ Rd for some global constant c > 0 where ‖x‖0 = m. That is, the error between the

recovered signal and the original signal is less than the scaled distance between the original

signal and the best m-sparse approximation. A matrix Φ with the restricted isometry

property (RIP) is sufficient for the `2/̀ 1 guarantee.

Definition 8. Matrix Φ ∈ Ck×d has the (ε,m)-RIP if for all x ∈ Cd such that ‖x‖0 ≤ m,

(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22.

In particular, the `2/̀ 1 guarantee is satisfied for Φ ∈ Ck×d if Φ is an (ε,m)-RIP for

ε <
√

2 − 1 [11]. As the definitions of matrices with RIP and those from a JL distribution

are similar, there has been effort to connect these two. In [7], Baraniuk, et al., showed a

transform from a JL distribution is a k×dmatrix with RIP for sparsity up tom ≤ c1δ2k/log d

m
.

In particular, they prove the following theorem:

Theorem 29 (Theorem 5.2, [7]). Suppose that k, d and 0 < ε < 1 are given. If the

probability distribution generating the k×d matrices Φ satisfies the concentration inequality

Prob
[
(1− ε)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− 2 exp

(
−c0ε

2k
)

(4.3)

where ε = δ and c0 is an absolute constant, then there exists absolute constants c1, c2 such
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that with probability at least 1− 2 exp
(
−c0δ

2k
)
, the RIP

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

holds for Φx with the prescribed δ and any m ≤ c1k/ log(d/m).

Observe that JL distributions satisfy (4.3), and as a result, Φ chosen from a JL

distribution is a matrix with RIP. A variation on the converse was provided by Krahmer

and Ward in [31].

Theorem 30 (Theorem 3.1, [31]). Fix δ > 0 and 0 < ε < 1. Let S be an n-point set in Rd.

Set m ≥ 40 log 4n
η , and suppose that Φ ∈ Rk×d satisfies the (η,m)-RIP where η ≤ ε

4 . Let D

be a d× d diagonal matrix consisting of diagonal entries uniformly at random chosen from

{±1}. Then for all x ∈ S,

ProbD
[
(1− ε)‖x‖22 ≤ ‖ΦDx‖22 ≤ (1 + ε)‖x‖22

]
≥ 1− δ.

That is, given a matrix Φ with (ε,m)-RIP, a JL distribution can be constructed by

multiplying each of the columns of Φ by a random sign change.

Example 8. An example of a matrix with RIP is that with Gaussian or subgaussian entries.

Consider Φ ∈ Rk×d such that Φi
iid∼ N(0, 1). Then, a JL distribution D can be constructed

from Φ with RIP in the following way: for A ∼ D, A = ΦD where D ∈ Rd×d is a diagonal

matrix with diagonal entries uniformly at random chosen from {±1}.

Observe that the RIP matrices from Example 8 are dense and have computation time

O(kd). An example of a RIP matrix allowing for computation O(d log d) is a submatrix of

a Hadamard or discrete Fourier transform.

Those interested in the recovery of a signal are encouraged to read [9, 15, 19, 23, 40,

39, 46].
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4.5 Differential Privacy

One application of JL distributions discovered by Blocki et al. [8] is that of differ-

ential privacy.

Definition 9. We say matrices A and B are neighboring if the matrix (A−B) has rank 1

and ‖A−B‖1 ≤ 1. A probabilistic distribution A of maps gives (α, β)-differential privacy,

if for all neighboring matrices A and B and all subsets S in the range of A ,

Probf∼A [f(A) ∈ S] ≤ exp(α)Probf∼A [f(B) ∈ S] + β.

That is, for neighboring matrices A and B, a map f preserves differential privacy if

f(A) and f(B) are indistinguishable. Blocki et al. [8] showed a JL distribution with random

Gaussian entries as in Section 2.2.3 preserves differential privacy; whereas, Upadhyay showed

in [47], that the sparse distributions defined by Nelson et al. [41], Kane and Nelson [29],

Dasgupta et al. [12], and Ailon and Liberty [3] as given in Section 2.3 do not preserve

differential privacy.

To prove these constructions do not preserve differential privacy, Upadhyay in [47]

gave a counterexample and provided two neighboring matrices for which they are not dif-

ferentially private.

Answering an open question, Upadhyay [47] provided a sparse JL distribution that

preserves differential privacy. As done for other sparse constructions, the vector is first pre-

conditioned by a randomizedWalsh-Hadamard matrixHD, whereH is the Walsh-Hadamard

matrix as defined in (2.4) and D is a d×d diagonal matrix such that the diagonal entries are

uniform random {±1}. The entries are then permuted by a permutation matrix Π before

being projected by a sparse matrix P . The sparse matrix P is constructed as follows:

1. Choose d random subgaussian samples gi for 1 ≤ i ≤ d with mean 0 and variance 1.
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2. Set g = (g1, . . . , gd) and divide g into blocks of d/k elements:

φi = ith block = (g(i−1)d/k+1, . . . , gik).

3. Let P be the block diagonal matrix:

P =



φ1

φ2

. . .

φk


.

Then, let D be a distribution on k× d matrices such that, for A ∼ D, A = 1
kPΠHD, where

both matrices P and D are random. Each matrix A ∈ D can be generated with 3d random

samples, and computing Ax takes O(d log d) time. Distribution D is shown in [47] to be

differentially private for a restricted set of matrices.

Theorem 31 ([47]). If the singular values of a matrix B ∈ Rm×d are at least
ln
(

4
β

)√
16k log 2

β

α ,

then for A ∼ D, AB> is
(
α, β + 2−Ω((1−ε)2d2/3)

)
-differentially private.
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