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ABSTRACT

Entamoeba histolytica is a protozoan parasite that causes amoebic colitis and liver
abscess in approximately 90 million people each year, resulting in 50,000-100,000
fatalities. Even though Entamoeba poses a significant public health problem worldwide,
research dedicated to understanding the biology of this unique protozoan has been
limited. This amitochondriate parasite lacks many essential biosynthesis pathways
including the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. As aresult,
substrate level phosphorylation plays a necessary role in ATP production. Unlike the
standard glycolytic pathway, E. histolytica glycolysis requires pyrophosphate (PP by
replacing ATP-dependent phosphofructokinase and pyruvate kinase with PP—dependent

phosphofructokinase and phosphate pyruvate dikinase.

E. histolytica infects and col onizes the human colon where glucoseis limited and
short chain fatty acids (acetate, propionate, and butyrate) are plentiful. Acetateisalso a
major end product that is excreted when E. histolytica is grown axenically on glucose.
Acetate has been demonstrated to act as carbon and energy source for cellular growth in
other organisms, acetogenesis can regenerate NAD™, recycle coenzyme A, and produce
ATP when the TCA cycle or oxidative phosphorylation does not operate or when the

carbon flux into the cell exceed its capacity.

In E. histolytica, acetate can be generated by acetate kinase (ACK) and ADP-
forming acetyl-CoA synthetase (ACD). ACK converts acetyl phosphate +

orthophosphate (P;) to acetate + PP,. Previous biochemical and kinetic characterization of



recombinant ACK showed that it strongly prefers the acetate/PP;-forming direction. We
hypothesized that ACK may function to supply PP; for the PP, oriented glycolytic
pathway in E. histolytica. Recombinant ACD displayed high activity in both directions of
the reaction to convert acetyl-CoA + orthophosphate + ADP to acetate + ATP + CoA.
ACD may function to extend the glycolytic pathway to increase ATP production by 40%
per molecule of glucose, or in the aternative direction to convert acetate to acetyl-CoA to

meet the cell’s metabolic needs.

Using reverse genetics, an Ehacd silenced strain displayed a growth defect in
normal high glucose media, while Ehack silenced cells showed enhance growth in
medium without added tryptone and glucose. The presence of acetate and butyrate
showed no effect on E. histolytica growth in the absence of glucose regardiess of ACK or
ACD activity. The presence of propionate, however, improved E. histolytica growth and
impaired growth of the Ehacd silenced strain implicated ACD as the cause of this
improvement. Our data suggest ACD plays arole in increasing ATP production during
growth on glucose and utilization of propionate as a growth substrate. Our data do not
support the previously hypothesized role for ACK but instead suggest it possesses a novel

function.

The basisfor E. histolytica ACK’s divergence from all other ACKs in phosphoryl
substrate utilization was also explored. Currently, E. histolytica ACK isthe only known
ACK that uses pyrophosphate (PP;) or inorganic phosphate (P) as the phosphoryl donor
or acceptor. All other known ACKs utilize ATP or ADP. In silico structural comparison

and modeling of E. histolytica ACK against other ACKs identified structural differences



that could affect substrate binding and selection. ACK variants were generated to test
these predictions. Inhibition and structural activity relationship studies revealed an
occlusion in the ADENOSINE motif of E. histolytica ACK reduced ATP and ADP
binding affinity. However, adterationsto alleviate the constriction did not confer activity
with ATP or ADP. Our results suggest controlling access of the adenosine pocket
influences phosphoryl substrate binding but is not the sole determinant of enzyme

activity.
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CHAPTER/

LITERATURE REVIEW

INTRODUCTION:

Entamoeba histolytica, an amitochondriate parasite, infects and resides within the
human colon. Due to its reductive metabolism and lack of oxidative phosphorylation,
glycolysisis widely accepted as the main pathway of energy and carbon metabolism.
During E. histolytica growth, acetate and ethanol are the two major end-products that are
always produced. Moreover, acetate represents one of the most abundant short chain fatty
acid found in the human large intestine from fermentative metabolism by the colon flora.
Thus, acetate production and utilization by E. histolytica is of great interest. Two enzymes
identified in E. histolytica that produce acetate are acetate kinase (EnACK) and ADP-

forming acetyl CoA synthetase (ENACD) and are the subject of this dissertation research.

Acetate kinase (ACK) iswidespread in bacteria, but isfound in just one genus of
archaea and afew eukaryotic microbes. ACK interconverts acetate and acetyl phosphate
using ATP and ADP. Even though EhACK can interconvert acetate and acetyl phosphate
invitro, kinetic analysisindicates its physiological direction islikely limited to the
acetate-forming direction due to its considerable preference for this direction.
Additionally, EnACK uses pyrophosphate (PP;) and inorganic phosphate (P) instead of
ATP and ADP for catalysis. Currently, EnRACK isthe only known ACK to show this

phosphoryl substrate selectivity.



Acetate metabolism is a common process in many organisms. Acetate production
and utilization have been shown to have a significant role in growth. Moreover, acetate
has also been reported to be involved in regulating pathogenesis, histone acetylation,

gene expression and motility (7 1113, 58-59,80)

In bacteria ACK partners with phosphotransacetylase in areversible pathway to
convert acetyl-CoA to acetate to produce ATP and recycle coenzyme A. Conversely,
AMP-forming acetyl-CoA synthetase (ACS) functions unidirectionally to activate acetate
into acetyl-CoA. E. histolytica lacks ACS and instead has the bidirectional ACD.
Although acetate is a primary metabolic product during E. histolytica growth on glucose,
the majority of E. histolytica infection resides within the glucose-limited environment of
the large intestine. This presents a need to further explore alternative metabolic pathways
within this parasite. EhnACK and EhACD may present two such pathways for energy
conservation and acetate activation that allow adaptability for survival and growth by E.

histolytica in the acetate rich environment of the large intestine.

The purpose of this review isto provide an overview of the significant impact of
acetate and introduce acetate metabolism pathways. E. histolytica metabolism is
discussed with afocus on its central carbon metabolism. Lastly, a history of acetate

kinase is also provided.



ACETATE METABOLISM:

Acetate is a common short chain fatty acid (SCFA) metabolite in many
organisms. In the human colon, SCFAs compose >60% of the anion concentration (110-
120 mM) @, mainly as acetate, propionate and butyrate with arelative molar mass ratio
of 57:22:21 @, respectively. These SCFAs are rapidly absorbed by the colonic mucosa
with less than 5% SCFA produced by bacteria found in feces ®. Butyrate acts as the main
energy source for colonocytes @, propionate is readily absorb by the liver, and acetate

enters the peripheral circulation to be taken up by peripheral tissues @,

Acetate can originate from a multitude of sources. This SCFA can be obtained
from the diet, generated by the liver, or produced locally and intracellularly through
enzymatic reactions. The main source of acetate within the human body arises from
fermentation by commensal gut microbiota 19, Acetate assimilation as an aternative
carbon source has been demonstrated in bacteria cells in limited nutrient environments @,
Acetate excretion, on the other hand, is often observed to fulfill a need to generate
additional ATP and regenerate NAD™ and Coenzyme A when oxidative phosphorylation
isnonfunctional or in circumstances where the carbon flux exceeds the capacity of the
central carbon metabolic pathways (. As aresult, acetate production is often considered

to be an “overflow” metabolic pathway.

Acetate from fermentation within the colon can also traverse the blood brain
barrier and enter the brain ®. Thisresultsin an increase in hypothalamic acetate

concentration and can regulate appetite. Perry et al. © further showed increased



production of acetate in the gut can lead to metabolic syndrome such as obesity and
diabetes. Acetate has also been linked to tumor growth 8. Using [1,2-3C] acetate,
Mashimoto et al. ® have shown that as much as 50% of TCA cycle intermediates are
acetate-derived in brain tumor cells even when glucose is abundant. More strikingly, they
observed a 40% increase in acetate-derived carbon incorporated into TCA cycle
intermediates in tumor cells compared to non-tumor cells, illustrating the significant role
of acetate in meeting the high biosynthetic and bioenergetics demands of tumor cells.
Additionally, acetate has been reported to aso influence growth; motility in Escharichia
coli and Salmonella enterica; histone acetylation in yeast, mice, and human; pathogenesis
E. coli; and pathogenic gene regulation S. enterica (7 1113.5859.80) Thjsil|ustrates acetate

metabolism not only may affect the host but also the surrounding microbiome.
Acetate metabolism in bacteria

Acetate metabolism iswell studied in bacteria, most notably in Escherichia coli.
Acetogenesisin E. coli takes place through either an acetate kinase (ACK; EC 2.3.1.8)%
— phosphotransacetylase (PTA; EC 2.7.2.1)® pathway or by pyruvate dehydrogenase
(ubiquinone) (POXB; EC 1.2.5.1) &1, PTA catalyzes the reversible conversion of
acetyl-CoA to acetyl phosphate and releases coenzyme A (19 (Eq. 1). Subsequently, ACK
transfers the phosphate from acetyl phosphate to ADP to produce acetate and ATP in a
reversible reaction (EqQ. 2). Acetate can also be generated by a pyruvate decarboxylating
enzyme, POXB, which decarboxylates pyruvate to acetate, releasing carbon dioxide and

reducing ubiquinone (Eq. 3) & 7. Dittrich et al. *» found ACK-PTA was the main



acetate producing pathway during exponential growth and POXB dominated during

stationary phase.

In certain lactobacilli, Pediococcus, and Streptococcus, a second type of pyruvate
oxidase (POX-AP; EC 1.2.3.3) is present to convert pyruvate to acetyl phosphate instead
of acetate (Eq. 4) Y. Other enzymes that produce acetyl phosphate are xylul ose-5-
phosphate/fructose-6-phosphate phosphoketolase (Eq. 5), sulfoacetaldehyde
acetyltransferase (Eg. 6), and glycine reductase (Eq. 7). Xylulose-5-phosphate
(X5P)/fructose-6-phosphate (F6P) phosphoketolase (XFP; EC 4.1.2.9, EC 4.1.2.22)
cleaves X5P/F6P into acetyl phosphate and glyceral dehyde-3-phosphate (G3P)/erythose-
4-phosphate (E4P). This phosphoketolase is found in heterofermentative lactobacilli and
organisms such as Acetobacter xylinum, Butyrivibrio fibrisolvens, Fibrobacter

succinogenes and Fibrobacter intestinalis & 9,

Sulfoacetaldehyde acetyltransferase (XSC; EC 2.3.3.15) desulfonates
sulfoacetal dehyde into acetyl phosphate and sulfite. This enzyme has been identified
within several gram-positive bacteria and Proteobacteria %2V, Lastly, certain strictly
anaerobic gram-positive bacteria use glycine reductase (GR; EC 1.21.4.2) to convert
glycine (Gly), phosphate (P;), and thioredoxin (Trx) to acetyl phosphate (AcP), ammonia,
thioredoxin sulfite (TrxS), and water V. Several studies have shown these enzymes can

partner with ACK and/or PTA for anabolic metabolism or ATP production 2,

Eqg. 1: PTA Acetyl-CoA + P, <-> acetyl phosphate + CoA

Eq. 22 ACK Acetyl phosphate + ADP <> acetate + ATP



Eq. 3: POXB Pyruvate + ubiguinone + H.O - acetate + CO> + ubiquinol

Eq. 4: POX-AP Pyruvate + O2 + P, - acetyl phosphate + CO, + H202

Eq. 5. XFP X5P/F6P + P - acetyl phosphate + H20O + G3P/E4P
Eq. 6: XSC Sulfoacetaldehyde + P = acetyl phosphate + sulfite
Eqg. 7: GR Gly + P + Trx = AcP + NHz + TrxS + H20

During conditions of nutrient depletion, cells can undergo a process termed the
“acetate switch” (Figure 1.1) @, Thisis defined as when the cell shifts to utilizing acetate
as the alternative carbon source when glucose is absent and acetate is abundant. Acetate
activation can happen through either the ACK-PTA pathway or an AMP-forming acetyl-
CoA synthetase (ACS; EC 6.2.1.1), which converts acetate and ATP directly to acetyl-
CoA (Eq. 8) 12, Acetate assimilation occurs largely by ACS while dissimilation mainly
occurs through the ACK-PTA pathway. However, ACK-PTA reversibility can contribute
to acetate utilization 1. Kumari et al. *? demonstrated an acs deletion mutant grew
poorly at low acetate concentration, whereas ack and pta del etion mutants grew poorly at
high acetate concentrations and mutants with all three genes deleted did not grow at all
on acetate. This proves both pathways are used for acetate utilization but at different

environmental acetate concentrations.

Eq. 8. ACS Acetate + ATP + CoA - acetyl-CoA+ PP + AMP
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Figure 1.1: Schematic displaying the “acetate switch” during aerobic growth with
glucose as the sole carbon sour ce. The arrow denotes the point of the “acetate switch”
where glucose becomes depleted and acetate production is switched to acetate utilization.
OD: optical density, ace: acetate; acCoA: acetyl-CoA; glc: glucose. Figure obtained and

modified from [1] with permission.



ADP-forming acetyl-CoA synthetase (ACD; EC 6.2.1.13), converts acetyl-CoA
and ADP to acetate and ATP (Eq. 9). ACD activity wasfirst described in the
thermophilic archaeon Pyrococcus furiosus ¢, whereit plays a crucia role in energy
conservation during sugar metabolism 4. Though not widespread, ACD has also been
identified in several archaea, such as Pyrococcus woesei, Desul furococcus amyl olyticus,
Hyperther mus butylicus, Thermococcus celer, Archaeoglobus fulgidus, Halobacterium
saccharovorum, Haloarcula marismortui, Methanococcus jannaschii, Pyrobaculum
aerophilum and Thermococcus kodakarensis %3 2529, and has a so been identified in the
bacterium Chloroflexus aurantiancus . In prokaryotes, ACD belongs to the

superfamily of NDP-forming acyl-CoA synthetases.
Eq. 9: ACD Acetyl-CoA + ADP + P, €« acetate + ATP + CoA

Besides carbon and energy metabolism, acetate production and utilization have
been linked to pathogenesis and motility in bacteria. Fukuda et al. % reported a
prolonged survival in mice infected with E. coli O157:H7 if the mice were colonized by
Bifidobacterium longum prior to infection. Data showed acetate production increased in
the presence of B. longum. In vitro experiments demonstrated acetate inhibited the
permeability of epithelial monolayer caused by E. coli O157 infection, preventing Shiga

toxin from E. coli O157:H7 translocation into the blood from the gut % 32

In 2002, Lawhon et al. *® found acetate activates BarA, a kinase that interacts
with SirA to initiate expression of the SPI-1 virulence genesin Salmonella enterica. This

suggests acetate may act as asignal for invasive gene expression in the intestine.



Recently, Nakamura et al. ©® also reported acetate can inhibit Salmonella flagellar
motility. However, the mechanism of inhibition is still poorly understood but was

suggested to relate to regulation of the acetyl phosphate pool.

Acetyl-phosphate in signal transduction: Acetyl phosphate is a high energy compound,

possessing a greater AGP of hydrolysis (-43kJ/mol) than ATP (-30kJ/mol) ®. Thisisthe
foundation of acetyl phosphate’s suggested role as a global signaling molecule 343 py
phosphorylating members of the two components transduction system (2CTS) (& 36-39),
2CTS consists of a histidine kinase (HK) being phosphorylated by ATP. HK-P in turn
phosphorylates the second component of the signaling system, the response regul ator

(RR), to elicit aresponse.

An abundance of in vitro evidence demonstrated acetyl phosphate’s interaction
and autophosphorylation of the RR component of 2CTS pathway (Table 1.1). In vivo,
mounting evidence showed controlling the acetyl phosphate pool affects biofilm
formation, nitrogen assimilation, phosphate assimilation, flagella biogenesis, and
pathogenesis 38 39, Support for acetyl phosphate’s effect on flagellar motion was also
established. Wolfe et al. 9 reported exogenous acetate increased clockwise rotation of
E. coli flagella. Dailey and Berg “? |ater presented evidence relating acetyl phosphate
synthesis to flagellar rotational direction. In 2007, Klein et al. “? showed acetyl
phosphate can directly phosphorylate RR of the 2CTS based on the abundance of
intracellular acetyl phosphate in E. coli, further supporting acetyl phosphate proposed

role asaglobal signal.



Organism HK RR

Pseudomonas aeruginosa AlgZ AlgR
Bordetella pertussis BvgS BvgA
Klebsiella pneumonia CitA CitB
Escherichia coli CheA CheY
Snorhizobium meliloti CheA CheY1,Y2
Rhodobacter sphaeroides CheA CheY1, Y3-6
Helicobacter pylori CheVv2
Bacillus subtilis ComP ComA
Shigella sonnei, E. cali CpxA CpxR
Sreptococcus pyogenes CsrS CsR
Soirulina platensis CyaC CyaC

E. coli DcuS DcuR
Snorhizobium melilori FixL FixJ
Clostridium acetobutylicum KdpD KdpE

E. coli KdpD KdpE
Mycobacterium tuberculosis MprB MprA

E. coli NarX NarL
Bradyr hizobium japonicum NodV Nodw
E. coli NRy (NtrB) NR; (NtrC)
E. coli EnvZ OmpR
E. coli PhoR PhoB
Salmonella enterica PhoQ PhoP

R. sphaeroides PrrB PrrA
Calothrix sp. strain PCC7601 CphA RcpA
Calothrix sp. strain PCC7601 CphB RcpB
Dictyostelium discoideum RdeA RegA

E. coli, S enterica None RssB
S enterica BarA SirA
Saccharomyces cerevisiae SLN1-YPD1 SSK1
Enterococcus faecium VanS VanR

Table 1.1: List of two-component response regulator s from various microbes
previously shown to beinfluenced by acetyl phosphate. Figure obtained and modified

from [1] with permission.
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Acetate metabolism in eukaryotes

ACK, PTA and XFP were originally thought to function only in prokaryotes.
However, Blast searches have identified open reading frames for ACK, PTA and XFPin
anumber of eukaryotic microbes 3. In Chlamydamonas, acetate was observed to be one
of the major metabolites excreted during anoxic growth “4. The same study also detected
an increase in ackl, ack2, ptal, and pta2 transcripts during anaerobic growth. Consistent
with this finding, Yang et al.“*® showed disruption of ackl and pta2 expression in
Chlamydamonas substantially reduced acetate production during anoxic growth. PTA
from the oomycete Phytophtora ramorum has also been identified and characterized “9,
Cryptococcus neoformans does not possess a PTA but does contains two XFPs and an
ACK ¢4 However, to date only one C. neoformans X FP has been biochemically and
kinetically characterized “®. In Entamoeba histolytica, ACK activity has been detected
both from recombinant enzyme and cell lysate “° 59, However, distinct from other

ACKs, E. histolytica ACK (EhACK) is pyrophosphate dependent (Eg. 10).

Eg. 10: EhRACK Acetate + PP, €<-> acetyl phosphate + P;

ACS s aso present in both prokaryotes and eukaryotes. Asin prokaryotes,
eukaryotic ACS activates acetate into acetyl-CoA for energy conversion and anabolic
metabolism. Mammal's express three isoforms of ACS. ACSS2 islocalized in the nucleus
and cytosol while ACSS1 and ACSS3 are compartmentalized within the mitochondria

52). Only ACSS1 and ACSS2 have been shown to be able to use acetate as a substrate.
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Currently, the classification of ACSS3 as an acetyl-CoA synthetase remains speculative
with no report of detectable enzymatic activity. Cytosolic ACSisusually found in the
liver and plays arolein generating acetyl-CoA for fatty acid and cholesterol biogenesis
(53, Mitochondrial ACSisfound in heart and skeletal muscle 4. Acetyl-CoA generated
by mitochondrial ACS is used for energy metabolism via oxidative phosphorylation. As
such, ACS activity has been connected to tumor growth and metabolic syndrome such as

obesity and diabetes ¢®.

In other eukaryotes, two isoforms of ACS generally exist (ACS1 and ACS2) 9,
In Candida albicans, ACS2 is crucial for survival and growth on most carbon sources,
including glucose ®®. ACS has also been identified in Trypanosoma and has avital role
in fatty acid biosynthesisin procyclic Trypanosoma brucei ¢, Additionally, ACS
involvement in histone acetylation has been reported. Eisenberg et al. ©® detected
activation of ACS2 during cytosolic accumulation of acetate, triggering histone
acetylation and reducing autophagy in yeast. A similar relationship between ACS and

acetylation has been observed in both mice and human (7 5960),

Other acetate producing pathways in eukaryotes include acetyla dehyde
dehydrogenase (ALDH; EC 1.2.1.5), acetate:succinate CoA transferase (ASCT; EC
2.8.3.18), ADP-forming acetyl-CoA synthetase, and acetyl-CoA hydrolase (ACH; EC
3.1.2.1). ALDH converts acetylal dehyde to acetate with the reduction of NADP* (Eq.
11). In Saccharomyces cereviseae, ALDH partners with pyruvate decarboxylase (PDC;

EC4.1.1.1) and ACSto form a pyruvate dehydrogenase bypass for the conversion of
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pyruvate into acetyl-CoA® 62, Saint-Prix et al. Y demonstrated that deletion of the

ALDH gene decreased acetate production and reduced growth in Saccharomyces.

ACH isresponsible for the interconversion of acetyl-CoA and acetate (Eg. 12). In
Candida and Saccharomyces, ACH contributes to the utilization of acetate as an
alternative carbon source ®6 %), ACH can also function in the acetate-forming direction
to shuttle acetyl-CoA out of the mitochondriain Saccharomyces by converting acetyl-
COA to acetate for transport 9. In the cytosol, acetate can be converted back into acetyl-

CoA by ACS.

Of the acetate producing enzymes in eukaryotes, only two have been identified in
parasites;: ASCT and ACD. ASCT isa CoA transferase which produces acetate in a
succinate dependent manner. ASCT transfers the CoA moiety from acetyl-CoA to
succinate, generating succinyl-CoA and acetate (Eq. 13). ASCT can work with succinyl-
CoA synthetase (SCS) to recycle CoA, regenerate succinate and produce ATP from ADP
9, This ASCT-SCS cycle has been identified in Tritrichomonas foetus, Trichomonas
vaginalis, Faschiola hepatica, Trypanosoma brucel, Leishmania mexicana, Leishmania

infantum, Phytomonas and Neocallimastix 6672,

Eqg. 11: ALDH Acetylaldehyde + H.O + NADP* - acetate + NADPH
Eq. 12: ACH Acetyl-CoA + H,O <> acetate + CoA
Eqg. 13: ASCT Acetyl-CoA + succinate - succinyl-CoA + acetate
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ACD existsin all three domains of life but is not widespread. ACD was first
observed in Entamoeba histolytica (" and later observed in Giardia lamblia .
Recombinant ACD has been purified from E. histolytica and G. lamblia and
biochemically characterized (™ 7. Sequence analyses have aso identified ACD in

Blastocystis hominis and several Plasmodium spp 7 7.

Overal, an array of acetate producing pathways are available (Figure 1.2),
reflecting how acetate metabolism adds adaptability for survival of an organism. These

pathways also demonstrate acetate’s impact beyond carbon and energy metabolism.
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Figure 1.2: Common acetate metabolic pathways. HK: histidine kinase; HK-P:
phosphorylated histidine kinase; RR: response regulator; RR-P: phosphorylated response
regulator; ACK: acetate kinase; GR: glycine reductase; XFP: xylulose-5-
phosphate/fructose-6-phosphate phosphoketolase; X SC: sulfoacetal dehyde
acetyltransferase; POX-AP; pyruvate oxidase (acetyl phosphate forming); POXB:
pyruvate oxidase; ACD: ADP-forming acetyl-CoA synthetase; PDC; pyruvate
dehydrogenase; PFOR: pyruvate ferredoxin oxidoreductase; ACS: AMP-forming acetyl-
CoA synthetase; ASCT: acetate: succinate CoA transferase; ACH: acetyl-CoA hydrolase;

ALDH: acetyladehyde dehydrogenase; PTA: phosphotransacetylase.
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Entamoeba Histolytica:

Entamoeba Histolytica is amicroaerophilic protozoan responsible for amebiasis, a
disease that causes amebic colitis and liver abscess in humans. Even though Fedor Losch
first described intestinal amebiasisin 1875, E. histolytica was not identified as the
causative agent until 30 years later by Fritz Schaudinn . Amebiasisis prevalent in
developing areas of the world due to poor sanitation. High risk areas include India,
Africa, Bangladesh, Thailand, Mexico, and parts of South and Central America.
Annually, 90 million people develop symptomatic amebiasis, leading to 50,000-100,000

deaths 9,

E. histolytica is a nonflagellated, pseudopod forming parasite that infects humans
and possibly other primates as natural hosts ®V. As the name suggests, this parasite
causes proteolysis, tissues lysis, and host cell apoptosis ®2. Symptoms of amebic colitis
include abdominal pain, watery or bloody diarrhea, fever and weight loss that can persist
for severa weeks. Extraintestinal infection can also develop, often leading to liver
infection which includes tissue destruction and abscess. In rare cases, E. histolytica can
end up in the lung, heart, brain, or other organs. If untreated, extraintestinal infection will

lead to death.

E. histolytica existsin two life stages: cyst and trophozoite. The cyst represents
the infectious form and ranges from 10-16 um in size, whereas the trophozoite is the
motile form and is 20-40 um in size ®. E. histolytica infection is passed through an oral-

fecal route. Amebiasisisinitiated when cysts are ingested. After ingestion, the cysts will
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travel through the host’s digestive tract and begin excystation after reaching the small
intestine. During excystation, cysts differentiate into trophozoites and migrate toward the

large intestine for colonization (Figure 1.3).

In most cases, the infection remains asymptomatic and new cysts are rel eased
within the host’s stool to continue the cycle. Cyst formation provides a survival
mechanism for Entamoeba in adverse environmental conditions. The Entamoeba cyst
wall is characterized by amix of chitin and protein ® and provides environmental
resistance. The stimuli and molecular mechanism of encystation in E. histolytica remain
largely undefined due to lack of an in vitro system to stimulate E. histolytica’s stage
differentiation. However, Entamoeba invadens, arelative of E. histolytica which causes
similar invasive infection in reptiles, is used as a model system to study encystation. In E.
invadens, stimuli involved in cyst formation include glucose starvation ®, osmotic shock
(86.87) autocrine catecholamine® &), and cholesteryl sulfate ©?. Heat shock protein Y,
chitin metabolism 2 %), and enolase ** %) have aso been shown to play arolein the

process of encystation.

In some infected individuals, E. histolytica trophozoites will invade the intestinal
mucosa, causing amoebic colitis. The parasites can then enter the bloodstream and
migrate beyond the intestine to infect other organs, most commonly the liver . The host
employs a number of defense mechanism to fight against Entamoeba infection.

Unfortunately though, the parasite has developed several methods to evade host
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Cysts and tophozodes
passed in feces

Figure 1.3: Entamoeba histolytica life cycle. A: E. histolytica infection route in humans.
Infection proceeds through an oral-fecal route. Cysts differentiate into trophozoitesin the
small intestine to colonize within the colon. Cysts and trophozoites can be expunged from
the host to continue its life cycle or infect extraintestinal organs (red arrows). B: E.
histolytica differentiation cycle and life stages. Figure obtained and modified from the

CDC website®0.
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immunity. Stomach acid acts as the first line of defense against E. histolytica. Strong acid
protects against enteropathogens by |ysing acid-sensitive organisms. However, the E.

histolytica cyst cell wall allows the parasite to survive within this extreme environment.

Other immune evasion mechanisms and virulence factors deployed by the
trophozoite include Gal/GalNac | ectins, cysteine protease, amoebapore, and peroxidoxin.
Both Gal/GalNac lectin and cysteine protease have been demonstrated as crucial in E.
histolytica pathogenesis and invasion ®¢%), Gal/GalNac | ectin enables E. histolytica to
adhere to the intestinal mucus layer 6 %190 The mucus layer acts as the second layer of
innate immunity. E. histolytica overcomes this by secreting cysteine protease, causing
destruction of the intestinal mucus layer. Cysteine proteases have also been reported to

degrade complement immune factors V),

Gal/GaNac lectin aso shares similarity and cross-reactivity with CD59, allowing
the parasite to circumvent some of the host complement immunity A%, Nitric oxide and
reactive oxygen species released by host neutrophils and macrophages are also utilized to
defend against infection. However, E. histolytica kills neutrophils far more effectively
(103) and express peroxidoxin, a surface protein, to provide antioxidant properties against
oxidative defense 1%, Lastly, E. histolytica secretes amoebapore, a pore forming peptide
that causes cytolysis of host and bacteria cells (1%51%®), Zhang et al. %) have shown

amoebapore expression is required for full virulence of E. histolytica.

Treatment for amebiasis consist of acombination of drugs or surgical procedure.

Luminal infections can be treated with oral drugs such as diloxanide furnoate,
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paromomycin, and iodoquinol ®?. The drug of choice to treat invasive infection is
metronidazole. Treatment is often followed by luminal drugs to prevent relapse.
Tinidazol treats symptomatic infection as an aternative to metronidazol and has been
shown to have a higher cure rate 19, Percutaneous drainage can also be employ as a

therapy for liver infection 19,
Metabolism

E. histolytica contains a unique metabolic system. It lacks many major
components commonly present in other eukaryotes. E. histolytica is unable to synthesize
nucleotide, fatty acids, or amino acids except for serine and cysteine 2. Thus,
scavenging plays acritical rolein this organism’s ability to overcome and accommodate

its metabolic needs (113,

E. histolytica is capable of engulfing extracellular components through multiple
means. Phagocytosis allows trophozoites to consume bacteria and solid debris during
colonization of the host intestinal mucosa. Along with nutrient acquisition, phagocytosis
has been associated with virulence (14119 Alternatively, macropinocytosis allows E.
hisotlytica to uptake fluid and nutrients from the environment 19, In arecent report, E.
histolytica was a so shown to ingest host cellsin fragments in a process termed

trogocytosisinstead of engulfing them whole. This ceases when the host cell dies 7,

E. histolytica also lacks mitochondria, atricarboxylic acid cycle and afunctional
pentose phosphate pathway 9. Instead, a closely related mitochondrial organelle called

the mitosome is present. A mitosome is a metabolically specialized organellethat is
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found in many pathogens occupying low oxygen environments. The central role of the
mitosome in E. histolytica still remains undefined. However, severa studies have
indicated E. histolytica’s mitosome may be involved in iron-sulfur cluster formation and

sulfate activation pathways (119121,

Due to the absence of a mitochondrion and oxidative phosphorylation, E.
histolytica ATP synthesisis primarily restricted to substrate level phosphorylation with
glycolysis as the main ATP-generating pathway '®. Instead of having an ATP-driven
phosphofructokinase, E. histolytica uses a PPi—dependent phosphofructokinase (PPi—
PFK) to convert fructose-6-phosphate to fructose-1, 6-bisphosphate 22, Similarly, a
PPi-dependent pyruvate phosphate dikinase (PPDK) replaces pyruvate kinase in the final

step of glycolysis (Figure 1.4) (123,

Another deviation in this parasite’s glycolytic pathway is the absence of pyruvate
dehydrogenase. Inits place, pyruvate:ferredoxin oxidoreductase (PFOR) extends
glycolysis by catalyzing the oxidative decarboxylation of pyruvate to acetyl-CoA using
ferredoxin as an electron acceptor ™. Acetate and ATP are then released from acetyl—
CoA, ADP and P, by the catal ytic activity of ADP-forming acetyl-CoA synthetase
(ACD). Parallel to ACD, the bifunctional adehyde-alcohol dehydrogenase (ADHE)
converts acetyl-CoA to ethanol (EtOH) by reducing two NADH molecules per EtOH

produced (Figure 1.4).
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Figure 1.4: E. histolytica extended glycolytic pathway. PP-PFK: PP-dependent
phosphofructokinase; PPDK: PP-dependent pyruvate phosphate dikinase; PFOR:
pyruvate: ferredoxin oxidoreductase; ADHE: bifunctional alcohol-aldehyde
dehydrogenase; ACD: ADP-forming acetyl-CoA synthetase; Fd: ferredoxin. Dashed

arrows represent conversions carried out through several enzymatic steps.
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In many organisms, glycogen metabolism contributes substantially to survival and
energy metabolism during unfavorable conditions >4, Electron microscopy revesled E.
histolytica possesses dense glycogen granules %9, Later NMR analyses showed a high
concentration of glycogen in E. histolytica cell extract %6127 Accordingly, in vitro
analysis demonstrated active glycogen degradation activity from E. histolytica
homogenate ?®. A recent report by Pineda et al. *?? indicates glycogen degradation can
sustain cell viability for up to two hours before death occurs, suggesting glycogen plays a

possible role as a source of reserve carbon in E. histolytica.

Amino acids catabolism has also been suggested to generate ATP in E.
hisotlytica. In 1995, Zuo and Coombs 39 found that E. histolytica consumes five amino
acids at amarked level: asparagine, arginine, leucine, threonine, and phenylaanine.
Subsequently, genome sequences identified several enzymes capable of degrading amino
acids such as asparagine, aspartate, methionine, threonine, and tryptophan to pyruvate or
2—oxobutanoate ¥, In addition to pyruvate, PFOR can a so utilize 2—-oxobutanoate to
produce propionyl-CoA, which can then be used by ACD as a substrate for the
generation of ATP and propionate (Figure 1.5) '®. However, arecent study comparing
the ATP level after incubating E. histolytica for two hoursin PBS with and without an
amino acid source concluded that amino acids do not contribute to E. histolytica ATP
generation 2%, However, the long term influence of amino acids on ATP production

remains unresolved.
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Figure 1.5: Predicted amino acid degradation pathwaysin E. histolytica. Several
amino acids can be converted into useable substrate for pyruvate: ferredoxin
oxidoreductase and ADP-forming acetyl-CoA synthetase for the generation of ATP.

Figure obtained and modified with permission from [118].
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Ultimately, acetate and ethanol are excreted as major end—products of energy
metabolism in E. histolytica "> 13D, |nitial analysisindicated ethanol as the favorable
product from monoxenic amoebas in anaerobic condition 3V, When exposed to oxidative
stress however, acetate was shown to be the major end—product from axenic culture .
Pineda et al. (20 13) validated this finding and presented evidence pointing to ADHE

inhibition by reactive oxygen species as the cause for the acetate shift.

Besides ACD, E. histolytica can also generate acetate from cysteine synthase and
ACK (Figure 1.6). Cysteine synthase converts O-acetyl-L-serine to acetate and L -
cysteing*®, Multiple studies have shown the importance of cysteine synthesisin cellular

attachment, motility, growth and oxidative stress tolerance in E. histolytica 133137,

E. histolytica ACK (EhACK) is PP-dependent and primarily functionsin the
acetate/PP; -producing direction 59, The physiological role of this enzyme still remains
amystery. One hypothesisis ENRACK may act to supply PP; for the PP;-oriented
glycolytic pathway in E. histolytica. To date though, a source of acetyl phosphate has not

been identified and acetyl phosphate has not been detected in E. histolytica.

A recent study disputed this hypothesized role for EnACK. This study also argued
against apossiblerole for ENACD in ATP production viathe pyruvate to acetate pathway
in E. histolytica **®. However, the complete abolishment of acetate production in

EhACD silenced cellsindicated ENACD isthe primary acetate producing pathway in E.
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Figure 1.6: Acetate producing pathways in E. histolytica. ERACK: acetate kinasg;
EhACD: acetyl-CoA synthetase (ADP-forming); ENSAT: serine acetyltransferase; EhCS:

cysteine synthase.
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histolytica. Since EnACD converts one mole of acetyl-CoA, ADP, and P, to one mole of
CoA, ATP and acetate, an elimination of acetate production in ERACD silenced cells are
expected to affect intracellular ATP concentration. Though, Pineda et al. **® did not
observed achangein ATP level and no glycolytic enzyme activities from cell lysate as
accommodation in EnACD silenced cells. Thus, this presents an inconsistencies with

existing data.

Nutrient acquisition and efficiency of energy metabolism are always proportional
to fitness. Y et, our understanding regarding these topicsin E. histolytica is still lacking
and shrouded in mystery. Due to this gap in knowledge, glycolysis has long been
believed to be the main ATP generating pathway even though the maority of infections
reside in the glucose-limited environment of the colon. This presents a need for further

studies into E. histolytica metabolism.
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ACETATE KINASE:

Acetate kinase (ACK), a phosphotransferase, was discovered in 1944 139 and
first kinetically characterized in 1954 49, This enzyme catalyzes the reversible transfer
of phosphate from acetyl phosphate to a phosphoryl acceptor (S), yielding acetate and a

phosphorylated product (S-P) (Eq. 14).

Eq. 14: Acetyl phosphate + S S acetate + S-P

Previously, ACK’s presence was believed to be limited only to microbesin the
Bacteria and Archaea domains. However, in recent years ACK had also been identified
in several eukaryotic microbes such as algae, some fungi, and Entamoeba histolytica®.
Phosphoryl transfer is a common enzymatic occurrence within the cell, functioning from
cellular signaling to energy metabolism and storage. Ordinarily, ACK produces ATP or

ADP as an additional product to acetate, thus playing arolein energy conversion.

Currently, two types of ACK have been identified and characterized: ATP-
dependent and pyrophosphate-dependent (PP)) ACK. PP-dependent ACK isarare
isoform and at present, has only been identified in Entamoeba histolytica, whereas ATP-

dependent ACK iswidespread and found in all three domains of life.
ATP-Acetate Kinase

ACK isof magjor importance in prokaryote fermentative metabolism, providing
an ATP-yielding pathway during anaerobic conditions. ATP-ACK converts acetyl

phosphate to acetate by utilizing ADP as a phosphoryl acceptor to produce ATP (Eg. 1).
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In 2001, Buss et al.*) solved the first structure for the ACK from Methanosarcina
thermophila and classified it to be a member of the acetate and sugar kinase-hsp70-actin

(ASKHA) superfamily.

ACK forms a homodimer and is described to resemble a “bird with spreading
wings” (Figure 1.7) ®4D, The C-terminal domain of ACK composes the body of the bird
and acts as the interface of dimerization between the two monomers. The N-terminal
domain forms the wing portion of the bird. Both domains come together and form the

active site cleft.

Members of the ASKHA superfamily are known to experience domain motion
during catalysis. Gorrell et al. 42 previously used tryptophan fluorescence quenching to
analyze MtACK domain closure upon substrate binding. Their study found domain
motion only occurs upon nucleotide binding. The study also indicated that nucleotide
binding to one monomer of MtACK affects nucleotide binding to the other monomer,
suggesting a half-site mechanism where only one active site is substrate bound at a given
time. The ACK catal ytic reaction proceeds through a direct, in-line mechanism, though
this has not aways been the accepted truth. From early studies, two mechanisms were
proposed: the direct, in-line and the triple displacement mechanisms of phosphoryl

transfer.

Anthony and Spector ¥ discovered E. coli ACK can be phosphorylated with [y-

32P]-ATP or [*?P]-acetyl phosphate. L ater, the same group demonstrated E. coli ACK
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Figure 1.7: The structure of Methanosarcina thermophila acetate kinase. The two
monomers are displayed in green and blue, forming a homodimer complex at the C-
terminal interface. Sulfate and ADP are shown in space filling model, illustrating the

active site. Figure obtained and modified from [141] with permission.
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phosphoenzyme formation is dependent on the phosphorylating agent concentration and
is chemically competent, being able to transfer the phosphate group to ADP to produce
ATP or to acetate to produce acetyl phosphate ™. Blattler and Knowles % further
noted ACK phosphoryl transfer resulted in an inversion at the phosphorus atom. Based on
these evidence, Spector 4 concluded ACK must proceed through multiple SNa-
displacements to be compatible with both a phosphoenzyme intermediate and an inverted
phosphorus. Spector 14) proposed that ACK catalysis proceeds with two phosphoenzyme
intermediates and three phosphoryl displacements, each causing a phosphate inversion

event to yield anet inversion in the transfer of phosphate (Figure 1.8).

However, the phosphoenzyme transfer rate did not prove to be consistent with
ACK steady state kinetics (140144147 The triple displacement mechanism was further
challenged when Fox and colleagues*® reported the E. coli ACK phosphoenzyme can
also reversibly transfer the phosphoryl group to Enzyme | of the phosphotransferase
system. This suggested the true function of the ACK phosphoenzyme may not pertain to

the conversion of acetyl phosphate to acetate.

In 1974, Todhunter and Purich 49 indicated an unspecified glutamate residue
was the site of phosphorylation in E. coli ACK. Singh-Wissman et al. %9 jdentified five
highly conserved glutamate residues (Glu-32, Glu-97, Glu-334, Glu-384, and Glu-385) in

M. thermophila ACK (MtACK). Site-directed replacement of these residues and
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Figure 1.8: Schematic of the proposed ACK triple displacement mechanism of
phosphoryl transfer. The y-phosphate of ATP istransferred to a catalytic carboxyl
group and is then transferred to an unknown group (X) prior to transfer to acetate. Figure

obtained and modified from [146] with permission.
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characterization of the variants indicated Glu-384 was essentia for catalysis. Glu-385 and
Glu-97, on the other hand, were found to have arole in substrate binding; ateration of
Glu-385 affected both ATP and acetate binding but ateration of Glu-97 appeared to only
affect acetate binding. Despite these studies, the site of glutamate phosphorylation

remained unsettled.

A later study conducted by Miles et al. 5 confirmed the importance of Glu-384
in enzyme activity. Further analysis implicated Glu-384 in magnesium binding, as
evidence by the 30-fold increase in magnesium concentration required for half-maximal
activity for Glu-384-Alavariant. Additionally, Miles et al. noted the importance of Asn-7
and Asp-148 in catalysis V., Alterations at these two residues resulted in a 260 to 1800

fold reduction in keat.

The proposed direct in-line mechanism of transfer involves a single phosphate
displacement event. In this mechanism, the substrates bind to ACK in alinear
configuration that facilitates the direct transfer of phosphate from acetyl phosphate to
ADP. Thisdirect in-line transfer of phosphate is consistent with both steady state kinetic

and stereochemistry data, providing initial support for this mechanism of transfer.

Additional studies later offered unambiguous evidence that ACK proceeds
through a direct, in-line mechanism of phosphoryl transfer. Formation of an abortive
complex from using ADP — AlF3 — acetate to simulate the catalytic transition state in
ACK acted as the most substantial evident for supporting this mode of transfer 152,

Employing auminum fluoride to mimic the planar phosphoryl transition state, Miles et
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al. 152 reported MgCl,, ADP, AICl3, NaF, and acetate inhibit MtACK activity,
demonstrating that the ACK catalytic transition state requires both ADP and acetate to
form. Gorrell et al. *> co-crystallized MtACK with acetate, ADP, Al** and F. The
resulting structure showed ADP-AlFz-acetate formed alinear array within the active site
cleft 53, This piece of evidence confirmed a direct in-line transfer mechanism and

effectively ended the debate.

In the same study, Gorrell et al. 5 noted the importance of residues Arg-91 and
Arg-241in MtACK catalysis. Based on the crystal structure of MtACK, Buss et al. 44V
proposed Arg-91 interacts with the phosphoryl group of acetyl phosphate and Arg-241
interacts with the carboxyl group of acetate. Analysis of MtACK Arg-91 and Arg-241
variants argued against arole for Arg-91 in acetyl phosphate binding 5. A substantial
increased in the Kn, for acetate in both Arg-91 and Arg-241 variants supported the
proposed role for Arg-241 in acetate binding and suggested Arg-91 may share asimilar
role. In al instances, replacing Arg-91 or Arg-241 reduced ket considerably, establishing
the importance of these two residuesin catalysis. These data are in accordance with a

previous investigation to identify essential argininesin ACK by Singh-Wissman et al.

(154).

Ingram-Smith et al. 5 jdentified two essential histidine residuesin MtACK
catalysis. Using a diethylpyrocarbonate (DEP) inactivation study, two to three histidine
residues were correl ated to have been modified and inactivated MtACK. Sequence
alignment showed His-123, His-180, and His-208 are fully conserved in 56 ACK

sequences. Structural analysisindicated His-123 and His-180 are located within MtACK
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active site. Alanine variants at His-123 or His-180 showed only partial aleviation of
enzyme inactivation by DEP, suggesting both sites are needed for full inactivation by
DEP modification. Of the eight histidines present in MtACK, only the His-180-Ala
variant proved detrimental to enzyme catalysis, reducing keat by 100 fold. Further
investigation proved His-180 isimportant in catalysis but was not related to enzyme

phosphorylation.

Based on the MtACK structure, Ingram-Smith et al. % |ater reported Val-93,
Leu-122, Phe-179, and Pro-232 formed the hydrophobic site for acetate binding. The Kn
for acetate increased 7 to 26 fold in aanine variants created at each of the four residues,
indicating they do indeed play arolein acetate binding. Phe-179 also proved to be
essential for catalysis, as evidence by a480 fold decreased in keat Wwhen altered to aanine.
Combined with structural modeling, hydrophobicity was reported to have arole in
determining substrate selectivity, interacting with the methyl group and positioning the
carboxyl group of acetate. Acetyl phosphate binding proved to not rely on hydrophobic

interaction as for acetate but may depend more on the phosphoryl group interaction.

In phosphoryl substrate binding, Bork et al. " have identified three signature
ATPase motifs, designated as ADENOSINE, PHOSPHATEL, and PHOSPHATE?2, in the
ASKHA superfamily. The PHOSPHATEZ2 and ADENOSINE motifs are positioned
adjacent to one another on the C-terminal domain within the active site. The
PHOSPHATEZL motif is located on the N-terminal domain across from the
PHOSPHATEZ2 and ADENOSINE moatifsin the active site. Together, these three motifs

form the adenosine pocket and interact with ATP and ADP.
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In 2014, Y oshioka et al. % examined four residues in the ADENOSINE motif
and one residue in the PHOSPHATE 2 motif of E. coli ACK to examinetheir rolein
phosphoryl substrate determination. The candidate residues Asn-213, Gly-332, Gly-333,
Ile-334 and Asn-337 were atered to the corresponding residuesin EnACK (Thr, Asp,
GIn, Met, and Glu, respectively). These variants displayed arise in Km for ATP and
substantially decreased thermal stability when ATP was bound when compared to wild-
type. Among 2625 ACK homologs, Y oshioka et al. **® concluded Asn-337 (Glu-327 in
EhACK) as the most significant out of the five sites in determining phosphoryl substrate
specificity due to its high conservation in ACKs closely related to ERACK. Asp-337-Glu
variant did displayed approximately 45-fold increase in K, for ATP but only showed
minor decreased in catalysis, demonstrating an inconsistency with their conclusion.
Though, their data do support Gly-333 and Ile-334 playing an important rolein ATP
selectivity with Gly-333-Gln and |le-334-Met variants demonstrating over a 7-fold and 9-

fold increase in Kn for ATP and a 21-fold and 86-fold in keat, respectively.

Most recently, Ingram-Smith et al. > targeted Asn-211 in the PHOSPHATE2
motif, the highly conserved Gly-331 in the ADENOSINE motif, and Gly-239 to study the
broad NTP utilization of MtACK. These residues were individually atered to alanine or
residues present in the E. histolytica (Thr, Gln, Ser) or Cryptococcus neoformans (Ser,
Gly, Gly) ACKSs, respectively. The Gly-331-GIn variant displayed a notable 4.6-fold
increase in the Km for ATP and a 45-fold decrease in keat, evidence of steric hindrance
impacting ATP binding and catalysis. To alesser extent, the Gly-331-Ala alteration

reduced catalysis by 8-fold and exhibited arelatively minor increase in Km for ATP.
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Alterations at Asn-211 and Gly-239 diminished enzymatic activity but did not
considerably affect the Km for ATP. The investigations by Y oshioka et al. 1 and
Ingram-Smith et al.*>? demonstrated the vital role of the ADENOSINE and
PHOSPHATEZ2 motifsin ATP binding to ACK. However, the source of phosphoryl

substrate specificity determination remained unidentified.
PP; — acetate kinase

As compare to the widespread ATP-dependent acetate kinase, E. histolytica
possesses a more uncommon PP/P; — dependent ACK. Instead of using ATP/ADP asthe
phosphoryl donor/acceptor, the E. histolytica ACK (EhACK) relies solely on PP/P; asthe
phosphoryl donor/acceptor (Eq. 10) “*%9), Thisisthe only known ACK that utilizes

pyrophosphate and inorganic phosphate as a phosphoryl donor and acceptor.

EhACK was identified in 1962 and first described in 1975 by Reeves and
colleagues to be PP/P; — dependent % 199, However, due to the molecular and
biochemical limitations of the time, ENACK has only recently been thoroughly
characterized biochemically and kinetically. ERACK activity was confirmed to
exclusively depend on pyrophosphate and inorganic phosphate “9). In addition, EhRACK
was described to also follow adirect, in-line mechanism of phosphoryl transfer and
preferentially proceed in the acetate/PP; forming direction with a keat Several hundred —

fold higher than that for the acetyl phosphate/P; producing direction.

In 2013, Thaker et al. successfully solved the ERACK structure (Figure 1.9) (61,

The structure was compared to the well-studied, ATP-dependent MtACK. Overal, the

37



structure and active site of ENACK highly resembles MtACK, exhibiting a homodimeric
form and resembling like a bird with spread wings V. However, upon closer inspection,
Gly-331 and I1e-332 within the ATP binding pocket of MtACK were noted to be
replaced by glutamine and methionine at the corresponding location in ERACK (16D,
These differences were suggested to play arole in ERACK PPi/P; specificity by sterically
reducing ATP binding. Furthermore, a salt bridge between aspartate-272 and arginine—
274 in EhACK placed the arginine in a position that could further obstruct ATP binding
(Figure 1.10). Surface representation of ENRACK clearly illustrates an absent of the
adenosine binding pocket due to this obstruction. However, this has not yet been
experimentally examined and confirmed. Thus, the source of EnACK phosphoryl

substrate selectivity remained to be confirmed.

In thisthesis, | investigated the source of EnACK phosphoryl substrate specificity
using the well-studied MtACK as amodel for comparison. Additionally, acetate
metabolism in E. histolytica was also explored. Specifically, | studied the physiological
effects of silencing two acetate producing enzymes in this human parasite, acetate kinase
and ADP-forming acetyl-CoA synthetase, to identify their rolesin E. histolytica growth
and survival. My results showed that ACD plays arolein utilization of severa growth
substrates in addition to glucose, whereas ACK plays anove role unrelated to its

previously proposed rolein providing PPi for glycolysis.
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Figure 1.9: Crystal structure of E. histolytica ACK. The N-terminal domain is colored
in green and the C-terminal domain isin cyan. The putative active site is marked by oval

and triangle. Figure obtained and modified from [161] with permission.
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Figure 1.10: Active site architecture of MtACK and EhACK. A: Surface
representation of the MtACK active site. B: Close up view of the ATP/ADP binding cleft
of MtACK. C: Surface representation of the EhACK active site. D: Close up view of the
PP/P; binding site of EnACK. Residues proposed to obstruct ATP/ADP binding in
EhACK are circled along with corresponding residues found in MtACK. Figure obtained

and modified from [161] with permission.
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CHAPTERII

INVESTIGATION OF PYROPHOSPHATE VERSUSATP SUBSTRATE

SELECTION IN THE ENTAMOEBA HISTOLYTICA ACETATE KINASE

Thanh Dang and Cheryl Ingram-Smith

ABSTRACT:

Acetate kinase (ACK; E.C. 2.7.2.1), which catalyzes the interconversion of acetate
and acetyl phosphate, is nearly ubiquitous in bacteria but is present only in one genus of
archaea and certain eukaryotic microbes. All ACKs utilize ATP/ADP as the phosphoryl
donor/acceptor in the respective directions of the reaction (acetate + ATP S acetyl
phosphate + ADP), with the exception of the Entamoeba histolytica ACK (EhACK) which
uses pyrophosphate (PP;)/inorganic phosphate (P) (acetyl phosphate + Pi 5 acetate + PP,
Structural analysis and modeling of EhRACK indicated steric hindrance by active site
residues constricts entry to the adenosine pocket as compared to ATP-utilizing
Methanosar cina thermophila ACK (MtACK). Reciprocal alterations were madeto enlarge
the adenosine pocket of ENACK and reduce that of MtACK. The EhACK variants showed
a step-wise increase in ADP and ATP binding but were still unable to use these as
substrates, and enzymatic activity with Pi/PP; was negatively impacted. Consistent with
this, ATP utilization by MtACK variants was negatively affected but the alterations were
not sufficient to convert this enzyme to Pi/PP utilization. Our results suggest that
controlling access to the adenosine pocket can contribute to substrate specificity but is not

the sole determinant.
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INTRODUCTION:

Acetate kinase (ACK; E.C. 2.7.2.1) catalyzes the reversible transfer of phosphate
from acetyl phosphate to a phosphoryl acceptor (S), yielding acetate and a phosphorylated
product (S-P) [Eq.1]. ACK, nearly ubiquitous in bacteria, has been identified in just a
single genus of archaea, Methanosarcina. In recent years, ACK has also been identified in
certain eukaryotic microbes including the green algae Chlamydomonas, euascomycete and

basidiomycete fungi, and certain protists, namely Entamoeba histolytica 9.
[EQ. 1] Acetyl phosphate + S S acetate + S-P

This enzyme was discovered in 1944 @ and the first kinetic characterization was
reported in 1954 @, In 2001, Buss et al. solved the structure for the Methanosarcina
thermophila ACK (MtACK), and subsequent studieswith thisarchaeal enzyme determined
that ACK proceeds through a direct in-line mechanism of phosphoryl transfer 9. Acyl
substrate selection in ACK has been studied in the Methanosarcina enzyme. Four key
residues, Va %, Leu??, Phe!”, and Pro?*?, have been shown to form a hydrophobic pocket
for acetate binding (” which were implicated in acyl substrate selection in this enzyme. In

particular, Val®® appears to play an important role in limiting substrate length.

Ordinarily, ACK utilizes ATP/ADP as phosphoryl donor/acceptor; however, the E.
histolytica enzyme isunusual in that it is PP—dependent. Instead of using ATP/ADP asthe
phosphoryl donor/acceptor [Eq. 2], E. histolytica ACK (EhACK) can only use

pyrophosphate (PP,)/inorganic phosphate (P) as the phosphoryl donor/acceptor [Eq.3] ©

10)
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[Eq. 2] Acetyl phosphate + ADP & acetate + ATP
[Ea. 3] Acetyl phosphate + P, & acetate + PP,

Whereas most ATP-dependent ACKSs function in both directions of the reaction,
the E. histolytica enzyme strongly prefers the acetate-forming direction €9, Double
reciprocal plots of substrate concentration versus enzyme activity indicated EhACK
follows a ternary—complex mechanism @19, supporting a direct in-line mechanism of
phosphoryl transfer as seen for MtACK “©. Currently, EhACK isthe only known ACK to
utilize pyrophosphate or inorganic phosphate as a phosphoryl donor or acceptor instead of

ATP/ADP.

ACK belongs to the ASKHA (acetate, sugar kinase, heat shock and actin) enzyme
superfamily. In 1992, Bork et al. identified PHOSPHATEL, PHOSPHATE2 and
ADENOSINE as three signature ATPase motifs shared by members of this superfamily
(1), Thesethree conserved motifsform part of the adenosine binding pocket and are directly
involved in ATP binding. Thaker et al. solved the ERACK structure and noted two amino
acids substitutions in the ADENOSINE motif versus MtACK that may sterically hinder

ATP binding 42,

Here, we investigated the role of residuesin the ADENOSINE and PHOSPHATEZ2
motifsin phosphoryl substrate selection and utilization in ACK. Our results indicated that
the adenosine pocket and the ADENOSINE motif play a critical role in ATP binding.

However, ATP binding alone did not lead to utilization. Thus, although ERACK shares
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strong similaritieswith ATP-dependent ACKSs, subtle differences have dramatically shaped

itsidentity and function.
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MATERIALS AND METHODS:
Materials

Chemicals were purchased from Sigma-Aldrich, VWR International, Gold
Biotechnology, Fisher Scientific, and Life Technologies. Oligonucleotide primers were

purchased from Integrated DNA Technologies.
Site-directed mutagenesis

Site-directed mutagenesis of the E. histolytica ack (ehack) and M. thermophila
ack (mtack) genes was performed according to manufacturer’s instructions with the
QuikChange Il kit (Agilent Technologies, CA, USA). The altered sequences were
confirmed by sequencing at the Clemson University Genomics Institute. Mutagenesis

primers used are shown in Table 2.1.
Recombinant protein production

EhACK and its variants were produced in Escherichia coli strain YBS121 Aack
Apta carrying the pREP4 plasmid containing the lacl gene and purified as described in
Fowler et al. @, MtACK and its variants were produced in E. coli Rosetta2 (DE3) pLysS
and purified as described in Fowler et al. ©. Purified enzymes were dialyzed overnight in
25 mM Tris-HCI, 150 mM NaCl, and 10% glycerol (pH 7.4), aliquoted, and stored at -
80°C. Recombinant enzymes were examined by SDS-PAGE and estimated to be greater
than 95% pure. Protein concentration was measured by absorbance at 280nm using Take3

micro-volume plate (Biotek, VT, USA).
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EhACK primers

QSZSG_ M 324| F

S’GATCTTTTAGTATTTACTGATGGCATCGGATTAGAAGTTTGGCAAGTACG

QSZSG_ M 324| R

S’CGTACTTGCCAAACTTCTAATCCGATGCCATCAGTAAATACTAAAAGATC

Q323A_M324A =

5’GATCTTTTAGTATTTACTGATGCCGCGGGATTAGAAGTTTGGCAAGTACG

Q323A_M324A R

S’CGTACTTGCCAAACTTCTAATCCCGCGGCATCAGTAAATACTAAAAGATC

D272A_R274A F

5’GGTGTTAGTGAATTATCTAGTGCTATGGCAGATATTTTACATGAAATAG

D272A_R274A R

SCTATTTCATGTAAAATATCTGCCATAGCACTAGATAATTCACTAACACC

G?® Deletion F

S’GCTTGTCATCTTGGAACAGGTTCTAGTTGTTGTGGCATTGTTAATGG

G* Deletion R

5’CCATTAACAATGCCACAACAACTAGAACCTGTTCCAAGATGACAAGC

MtACK primers

GEQ-1™M F

5" GCAGTGGTCTTTACTGCACAGATGGGAGAAAACAGCGCAAGC

GS31Q_ | 332M R

5’ GCTTGCGCTGTTTTCTCCCATCTGTGCAGTAAAGACCACTGC

Table2.1: Primersused for mutagenesis.
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Determination of kinetic parameters

Kinetic parameters for the ENACK enzymes were determined using the
colorimetric hydroxamate assay for the acetyl phosphate-forming direction 317 and the
reverse modified hydroxamate assay © % for the acetate-forming direction as previously
described ©. In the acetyl phosphate-forming direction, activities for ERACK and its
variants were assayed in a mixture containing 100mM morpholinoethanesulfonic acid
(pH 5.5), 5 mM MgCl>, and 600 mM hydroxylamine hydrochloride (pH 7.5) with varying
concentrations of acetate and sodium pyrophosphate. Reactions were performed at 45°C.
For the acetate-forming direction, kinetic parameters were determined in a mixture of 100
mM Tris-HCI (pH 7.0) and 10 mM MgCl. with varying concentrations of sodium

phosphate and acetyl phosphate. Enzymatic reactions were performed at 37°C.

The acetyl phosphate produced (acetyl phosphate-forming direction) or remaining
(acetate-forming direction) was reacted with hydroxylamine to produced acetyl
hydroxamate, which was then was converted to aferric hydroxamate complex by reaction
with an acidic ferric chloride solution, making the solution change from a yellow to
brownish red color that can detected spectrophotometrically at 540 nm. Acetyl phosphate
formation or depletion was determined by measuring the absorbance at 540 nm with an
Epoch microplate spectrophotometer (Biotek) and comparison to an acetyl phosphate
standard curve. Kinetic data were fit to the Michaelis-Menten equation by nonlinear
regression using KaeidaGraph (Synergy Software) for determination of apparent kinetic

parameters.



Similarly, kinetic parameters for MtACK and its variants were determined using
the hydroxamate assay 31" and the reverse modified hydroxamate assay © 22 as
previously described. In the acetate-forming direction, enzyme activities were determined
in 100 mM Tris (pH 7.5) with varying concentrations of MgADP and acetyl phosphate.
For the acetyl phosphate-forming direction, kinetic parameters were determined in 100
mM Tris (pH 7.5) and 600 mM hydroxylamine (pH 7.5) with varying concentrations of

acetate and MgATP. Enzymatic reactions were performed at 37°C.

Acetyl phosphate formation and depletion were determined by measuring the
absorbance at 540 nm with an Epoch microplate spectrophotometer (Biotek) and
comparison to an acetyl phosphate standard curve. Kinetic data were fit to the Michaglis-
Menten equation by nonlinear regression using KaleidaGraph (Synergy Software) for

determination of apparent kinetic parameters.
Determination of inhibition parameters

Inhibition of ENACK by ATP and ADP and of MtACK by PP, was determined
using the hydroxamate and reverse modified hydroxamate assays as described above. All
inhibition assays were performed using substrates at their K concentrations, with the
exception of acetyl phosphate which was used at a concentration of 2 mM for all
reactions in the acetate-forming direction. The half maximal inhibitory concentrations
(ICso values) were determined using PRISM 5 (Graphpad Software). ATP’s mode of

inhibition of wild-type EnACK was determined by measuring enzymatic activity in the
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acetate forming direction in afour by seven matrix of varied ATP and P, concentrations,

with other substrate concentrations kept constant.
ACK sequence alignment, ConSurf analysis, and structural modeling

ACK segquences were obtained from NCBI. Accession numbers are as follows: E.
histolytica, PDB ID 4H0O; Methanosar cina thermophila, PDB ID 1TUY; Cryptococcus
neoformans, PDB 1D 4HOP; Salmonella typhimurium, PDB ID 3SLC; Thermotoga
maritima, PDB ID 2IIR; Mycobacterium smegmatis, PDB 1D 41JN; Mycobacterium
avium, PDB 1D 3P4l; Mycobacterium paratuberculosis, PDB ID 3R9P; Mycobacterium
marinum PDB |D 4DQ8. Sequences alignments were performed using Clustal Omega >
29, ACK structures were downloaded from Protein Data Bank (PDB): 4H0O (Entamoeba
histolytica), 1TUY (M. thermophila), 4HOP (C. neoformans), and 3SLC (S.
typhimurium). Structure superposition and modeling were performed using Accelrys
Discovery Studio 3.5 (Biovia). ConSurf analysis ?5?® (http://consurf.tau.ac.il) was used
to examine evolutionary conservation of ACK sequence and identify amino acids likely

to play important structural and functional roles.
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RESULTS:

Structures have been solved for six bacterial (four of which are from
Mycobacterium), one archaeal, and two eukaryotic ACKs “ 1214 Although the global
structures are similar, the percent identity and similarity between these ACK sequences
showed that the eukaryotic ACKs are less related to the bacterial and archaeal enzymes
(Table 2.2). Previous phylogenetic analysis reveal ed that fungal ACKs belong to a
distinct clade but the E. histolytica and other eukaryotic sequences group with the
bacterial and archaeal ACKs ®. Thus, the unique Pi/PP;-dependence of ERACK must be

due to localized differencesin the active site.
Structural differences between the adenosine binding pocket of PP; - and ATP-ACKs

In addition to the PHOSPHATEL, PHOSPHATEZ2, and ADENOSINE sequence
motifs, Ingram-Smith et al. > defined two other regions designated as L OOP3 and LOOP4
that also influence ATP binding in ACK. Inspection of the active site in the MtACK
structure showed that these regions surround the ATP binding site, with ADENOSINE
forming a hydrophobic pocket for the adenosine moiety of ADP/ATP *7:10.12.19  ConSurf
anaysis, which estimates the evolutionary conservation at each position based on
phylogenetic and structura analysis, indicated that the central positions in the
ADENOSINE motif have the highest conservation level (Figure 2.1). Positions 322-327 of
EhACK are of particular note as this region of the ADENOSINE motif is strongly

conserved in other ACKSs but not EhACK.
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E.hist | M.therm | C.neo | Styph | T.mari | M.smeg | M.avium | M.para | M.mari

E.hist 35/53 29/44 | 34/50 | 38/57 | 34/50 | 31/46 32/46 | 30/47
M.therm | 35/53 31/49 | 44/62 | 57/76 | 41/59 | 41/59 41/58 | 41/58
C.neo 29/44 | 31/49 33/49 | 32/48 | 3147 | 33/47 33/47 | 33/48
Styph 34/50 | 44162 33/49 46/67 | 44/58 | 40/55 41/55 | 41/55
T.mari 38/57 | 57/76 32/48 | 46/67 47/61 | 45/60 45/59 | 43/59
M.smeg | 34/50 | 41/59 3U/A7 | 44/58 | 47/61 67/77 67/77 | 67/78
M.avium | 31/46 | 41/59 33/47 | 40/55 | 45/60 | 67/77 98/98 | 73/84
M.para | 32/46 | 41/58 33/47 | 41/55 | 45/59 | 67/77 | 98/98 73/84
M.mari | 30/47 | 41/58 33/48 | 41/55 | 43/59 | 67/78 | 73/84 73/84

Table 2.2: Percent identity and similarity between ACKs.
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PHOSPHATEZ2
E. hi st 193 KI'I ACHLGTGGESSCCE Vo 210
Mtherm 203 KIITCHLGNG SSI TAVE 219

C. neo 215 NVWAHLGSG SSSCCI K 231
S. typh 205 NI TCHLGNG GSVSAIR 221
T. mari 202 KII TCH GNG ASVAAVK 218

M sneg 184 NQ VLHLGNG ASASAVA 200

Mavium 192 KQ VLHLGNG CSASAI A 208

M par a 192 KQ VLHLGNG CSASAI A 208

M mar i 192 NQ VLHLGNG ASASAVA 208
. . * -k % * -

CONSURF 857879899696923951

ADENGSI NE
E. hi st 317 LLVFTDOMELEVWQVRKA 334
Mtherm 325 AVWWFTAG GENSASI RKR 342

C. neo 355 GLVFSGE GEKGAELRRD 372
S.typh 327 AWFTGGE GENAAWREL 344
T. mar i 325 Al VFTAGVGENSPI TRED 342

M sneg 305 VI SFTAGVGENVPPVRRD 322

Mavium 313 VI SFTAG GENDAAVRRD 330

Mpara 313 VI SFTAG GENDAAVRRD 330

M mmar i 313 VWSFTAG GEHDAAVRRD 330
. * - - % *

CONSURE 456998969996111911

Figure 2.1: Partial alignment of ACK amino acid sequences. Sequences of ACKs for
which the structure have been solved were aligned and ConSurf analysis was performed to
examine sequence conservation. The PHOSPHATEZ2 and ADENOSINE motifs are shown.
The full alignment is provided in the Figure 2.2. Abbreviations and PDB accession
numbers. E.hist, E. histolytica, PDB ID 4H0O; M.therm, Methanosarcina thermophila,
PDB ID 1TUY; C.neo, Cryptococcus neoformans, PDB ID 4HOP; Styphi, Salmonella
typhimurium, PDB ID 3SLC; T.mari, Thermotoga maritima, PDB ID 2IIR; M.smeg,
Mycobacterium smegmatis, PDB 1D 41JN; M.avium, Mycobacteriumavium, PDB 1D 3P4l;
M.para, Mycobacterium paratuberculosis, PDB ID 3R9P; M.mari, Mycobacterium

marinum PDB 1D 4DQ8.
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T. mari
Mt herm
M avi um
M par a
M smeg
S.typh
E. hi st
C. neo

T. mari
Mt herm
M avi um
M par a
M sneg
S. typh
E. hi st
C. neo

T. mari
Mt herm
M avi um
M par a
M smeg
S. typh
E. hi st
C. neo

T. mari
Mt herm
M avi um
M par a
M smeg
S. typh
E. hi st
C. neo

T. mari
Mt herm
M avi um
M par a
M sneg
S.typh
E. hi st
C. neo

PHOSPHATEL

------- MRVLVI NSGSSSI KYQLI EMEGEKVLG: - - - - - - K@ AERI G EGSRLVHRVG 46
------- MKVLVI NAGSSSLKYQLI DMINESALA- - - - - - - VGLCERI Gl DNSI | TQKKF 46
MDGSDGARRVLVI NSGSSSLKFQLVDPESGVAAS- - - - - - - TA VERI GEESS- - - - - - - 46
VDGSDGARRVLVI NSGSSSLKFQLVDPEFGVAAS- - - - - - - TG VERI GEESS- - - - - - - 46
------ MVTVLVVNSGSSSLKYAVWRPASCGEFLA- ------DA | EEI G -SG ------ 38
- - - - MSSKLVLVLNCGSSSLKFAI | DAVNGDEYL- - - - - - - SGLAECFHLPEARI KWKMD 49
------ MBNVLI FNVGSSSLTYKVFCSDNI VCSG- - - - - - - KSNRVNVTGTEKPFI EHHL 47

-- IVPDKAEYLLAI NCGSSSI KGKLFAI PSFELLANLAVTNI SSSDERVKI KTTVWEEGKGK 58

* * ****

DEKHVI ER- EL PDHEEALKLI LNTLVDEKLGVI KDLKEI DAVGHRVVHGGERFKESVLVD 105
DGKKLEKLTDLPTHKDAL EEVVKALTDDEFGVI KDMGEI NAVGHRVVHGCEKFTTSALYD 106
--------- PVPDHDAAL RRAFDMLAGD- - GVDLNTAGLVAVGHRVVHGGNTFYRPTVLD 95
--------- PVPDHDAAL RRAFDMLAGD- - GVDLNTAGLVAVGHRVWHGGNTFYRPTVLD 95
--------- AVPDHDAAL RAAFDEL AAA- - GLHL EDL DL KAVGHRWHGEKTFYKPSWD 87
GSKQEAAL GAGAAHSEALNFI VNTI LAQ - - KPELSAQLTAI GHRI VHGGEKYTSSWVI D 106
NGQ | KI ETPI LNHPQAAKLI | QFLKEN- - - - - - - HI SI AFVGHRFVHGGSYFKKSAVI D 100
DSEEEADYCGDKI RYASLVPI LLDHLTNS— -- TH\/KKEEI KYVCHRVVHGGVHDKG R\/VK 115

** * k k%

- - EEVLKAI EEVSPLAPLHNPANLMSE KAAMKLLPGVP- - NVAVFDTAFHQTT PQKAYLY 161
- - EGVEKAI KDCFELAPLHNPPNVMGE SACAEI MPGTP- - WI VFDTAFHQTMPPYAYMY 162
- - DAVI ARLHELSELAPLHNPPALLG EVARRLLPG A- - HVAVFDTGFFHDLPPAAATY 151
- - DAVI ARLHEL SELAPLHNPPALQG EVARRLLPDI A- - HVAVFDTGFFHDLPPAAATY 151
- - DELI AKAREL SPLAPLHNPPAI KG EVARKLLPDLP- - H AVFDTAFFHDLPAPASTY 143
- - ESVI QG KDSASFAPLHNPAHLI Gl AEALKSFPQLKDKNVAVFDTAFHQTMPEESYLY 164
- - EWLKELKECLPLAPI HNPSSFGVI El SMKELPTTR- - QYVAI DTAFHSTI SQAERTY 156
GHEEGLI\/EI\/DKLSEFAPLHNHRAVLAVKSCI DALPHHT- - SLLLFDTI FHRTI APEVYTY 173

-** * % -k k *

PHOSPHATE2
Al P- YEYYEKYKI RRYGFHGTSHRYVSKRAAEI LGKKLEELKI | TCHI GNG ASVAAVKY 219
ALP- YDLYEKHGVRKYGFHGT SHKYVAERAAL MLGKPAEETKI | TCHLGNG: SSI TAVEG 220
Al D- RELADRWQI RRYGFHGTSHRYVSEQAAAFL DRPLRGLKQ VLHLGNG CSASAI AG 209
Al D- RELADRWQ RRYGFHGTSHRYVSEQAAAFL DRPLRGLKQ VLHLGNG- CSASAI AG 209
Al D- RELAETVH KRYGFHGTSHEYVSQQAAI FLDRPLESLNQ VLHLGNG ASASAVAG 201
ALP- YSLYKEHGVRRYGAHGT SHFYVTQEAAKMLNKPVEELNI | TCHLGNG GSVSAI RN 222
Al P- QPYQSQY- - LKFGFHGLSYEYVI NSLKNVI D- - VSHSKI | ACHLGTGGSSCCAE VN 211
ALPPPDTELTI\/PLRKYGFHGLSYASI V@LAEHL KKPSDQI NVWAHLGSG- SSSCCI KN 232

LR *** . *** *

LOOP3
GKCVDTSMGFTPLEGLVMGTRSGDLDPAI PFFI MEKEG: - - - - - - I SPQEMYDI LNKKSG 272
GKSVETSMEFTPLEGLAMGTRCGSI DPAI VPFLMVEKEG - - - - - - LTTREI DTLMN\KKSG 273
TRPLDTSMGELTPLEGLVMGTRSGDI DPSWSYLCHTAG - - - - - - MGVDDVESMLNHRSG 262
TRPLDTSMGELTPLEGLVMGTRSGDI DPSI VSYLCHTAG - - - - - - MGVDDVESMLNHRSG 262
GKAVDTSMAL TPMEGLVMGTRSGDI DPGVI MYLVRTAG: - - - - - - MSVDDI ESMLNRRSG 254
GKCVDTSMALTPLEGLVMGTRSGDI DPAI | FHLHDTLG: - - - - - - MBVDQ NKMLTKESG 275
GKSFDTSMGNSTLAGLVMSTRCGDI DPTI PI DM QQVG- - - - - - - | EK- - VWDI LNKKSG 262
GKSI DTSME.TPL EG_LC-,GT RSGT1 DPTAI FHHTEDAASDANVGDFTVSKAEI I LNKNSG 292

sk kkk . . * % ** * k% . * %
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_LOOP4

T. mari VYGL.SKGFSSDIVRDI EEAALKG: - - - - - DEVWCKLVLEI YDYRI AKYl GAYAAAMN- - - - - 321
Mt herm VLGVS- CLSNDFRDLDEAASKG: - - - - - NRKAELALEI FAYKVKKFI GEYSAVLN- - - - - 321
M avi um VWGAS- - GVRDFRRLRELI ESG- - - - - - DGAAQLAYSVFTHRLRKYI GAYLAVLG ---- 309
M par a WGES- - GVRDFRRLRELI ESG- - - - - - DGAAQLAYSVFTHRLRKYI GAYLAVLG ---- 309
M sneg VLGLG - GASDFRKLRELI ESG - - - - - DEHAKLAYDVY! HRLRKYl GAYMAVLG - - -- 301
S.typh LLG.T- EVTSDCRYVEDNYAT- - - - - - - KEDAKRAMDVYCHRLAKYI GSYTALMDG- - - - 323
E. hi st LLGVS- ELSSDVRDI LHEI ETRGP- - - KAKTCQLAFDVYI KQLAKTI GALMVEI G- - --- 313
C. neo FKALA- - GTTNFGHI | QNLDPSKCSEEDHEKAKLTYAVFLDRLLNFVAQYLFKLLSEVPI 350
ADENGSI NE
T. mari - GVDAI VFTAGVGENSPI TREDVCSYLEFLGVKLDKQKNEETI RGKEG | STPDSRVKVL 380
Mt herm - GADAWFTAG GENSASI RKRI LTG.DA G KI DDEKNK- - | RGQEI DI STPDAKVRVF 378
M avi um - HTDVI SFTAG GENDAAVRRDAVSGVEEL G VLDERRNLPGAKGAR- Qf SADDSPI TVL 367
M par a - HTDVI SFTAG GENDAAVRRDAVSGVEELG VL DERRNLAGGKGAR- Q SADDSPI TVL 367
M sneg - RTDVI SFTAGVGENVPPVRRDALAGLGGE.G El DDALNSAKSDEPR- LI STPDSRVTVL 359
S. typh - RLDAWFTGGE GENAAMVREL SLGKLGVL GFEVDHERNLAARFGKSGHI NKEGTRP- AV 381
E. hi st - GLDLLVFTDOME EVWQVRKAI CDKVKFLGAE ELDDSLNEKSMEKKI EFLTMPSSKVQVC 372
C. neo ESI DGALVFSGE_GEKGAEL RRDVL KKLAW. GAEVDEEANNSNSGGAVKCI TKEGSKLKGW 410
* - * - k. * . - % -k * . .
T. mari VVPTNEELM ARDTKEI VEKI GR- - - - - - - 403
Mt herm VI PTNEELAI ARETKEI VETEVKLRSSI PV 408
M avi um VVPTNEELAI ARDCVRVLGG: - - - ---- - - 387
M par a VVPTNEELAI ARDCVRVLGG: - - ----- - - 387
M sneg VVPTNEELAI ARACVGW- - - - - - - - - - - - 377
S. typh VI PTNEELVI AQDASRLTA- - --------- 400
E. hi st VAPNDEELVI LOKGKELFQF-- - - ------ 392
C. neo VVETDEEGAWARVAKEEFGF- - - - - - - - - - 430
*

-k ox P

Figure 2.2: ACK sequence alignment. The full ACK sequence alignment from which

Figure 2.1 was derived is shown.
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ADP/ATP-utilizing ACKs have a highly conserved Gly residue and an adjacent
lle/Va within the ADENOSINE motif (positions 331 and 332 in MtACK). Inspection of
the MtACK structure revealed a large opening to the adenosine binding pocket (Figure
2.3A) that isalso evident in the structures of other ATP-ACKs. Occlusion of the adenosine
pocket is evident in the surface representation of ENACK (Figure 2.3B). Thaker et al. 12
postulated that GIn®2Met*** within the ADENOSINE motif of ENACK may sterically

prevent ADP/ATP binding.
Role of the ADENOSINE motif in ATP/ADP versus PPi/P; utilization.

To investigate the role of the ADENOSINE motif in determining substrate
selection, ENACK variants were created that simulate the open adenosine pocket observed
in ATP-dependent ACKs. GIn*?® and Met®** were altered to Gly and lle, respectively, to
mimic the residues found at equivalent positions in MtACK. These positions were also
both altered to Ala to minimize side chain intrusions into the opening of the adenosine
pocket. The reverse alterations were made in MtACK, converting Gly**-11€**? to GIn-
Met, respectively, to determine the effect of closing the entry to the adenosine pocket. The
EhACK and MtACK variants were purified (Figure 2.4) and kinetic parameters were

determined in both directions of the reaction (Table 2.3).

The Q32G-M34 and Q32A-M3%A EhACK variants displayed similar Km values
for acetyl phosphate and slightly decreased Km values for phosphate as the unaltered
enzyme but the ke values were decreased 8.3-fold for the Q*2°G-M3*4 variant and 19-fold

for Q*2A-M3%A variant, resulting in ~7 and 11-fold reduced catal ytic efficiency,
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Figure 2.3: The ACK adenosine binding pocket. (A) Surface representation of MtACK
with bound ADP. (B) Surface representation of EnNACK. The constricted opening to the
adenosine pocket is circled. The position of bound ADP in MtACK was superimposed
into the EhACK structure. (C) Superimposition of the adenosine pocket from MtACK
(yellow) and ERACK (cyan) showing the positions of targeted residues. (D)
Superimposed PHOSPHATE2 motifs from MtACK (yellow) and EhACK (cyan),

showing the position of the additional Gly in the EhRACK PHOSPHATE2 motif.
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Figure 2.4 SDS-PAGE analysis of purified enzymes. Black vertical lines represent

separate gels.
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Enzyme Substrate Km (MM) Keat (seC?)
EhACK Acetate-forming direction
Wild-type AcP 0.57 £ 0.03 266 + 12
Q¥B3G-M34 0.47+£0.04 32+1.0
Q3BA-M32A 0.34+0.07 14+12
G*%deletion-Q33G-M3% No detectable activity
D?2A-R?"A-Q3%3G-M324 0.66 £ 0.11 0.052 + 0.005
Wild-type P 14+12 196+ 5
Q¥3G-M3 7.3+05 28+ 1.2
Q3BA-M32A 82+11 20+ 0.8
G*%deletion-Q33G-M3% No detectable activity
D?2A-R?"A-Q3%3G-M324 18+1.2 0.076 + 0.004
Acetyl phosphate-forming direction
Wild-type Acetate 166+ 7 1.4+ 0.05
Q¥3G-M3 372+ 40 0.51+0.02
Q3BA-M3%A 566 + 44 0.51+0.03
G?%®del etion-Q33G-M 3% No detectable activity
D?"2A-R*“A-Q33G-M3%4 No detectable activity
Wild-type PP 21+£0.33 0.90+0.03
Q3BG-M3 20+£0.37 0.45+0.03
Q3BA-M3%A 231041 0.36 £ 0.01
G*%®del etion-Q33G-M 3% No detectabl e activity
D?"2A-R*“A-Q33G-M3%4 No detectable activity
MtACK Acetate-forming direction
Wild-type AcP 1.2+0.09 1550 + 54
G®1Q-132Mm 1.7+0.14 12+ 0.7
Wild-type ADP 1.8+0.13 1915 + 15
G®1Q-132Mm 57+0.56 12+ 05
Acetyl phosphate-forming direction
Wild-type Acetate 20+ 0.3 789+ 16
G®1Q-132Mm 302+11 17+£4.2
Wild-type ATP 1.7 + 0.03 711+ 23
G®1Q-132Mm 9.4+0.27 14+ 0.2

Table 2.3: Apparent kinetic parametersfor wild-type and variant ERACK s and

MtACKs.
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respectively. In the direction of acetyl phosphate formation, these variants displayed
dlightly increased K for acetate but no increase in Km for PP and only mild decrease in
keat. NO activity was observed with either variant using ATP or ADP as substrate in the

respective direction of the reaction.

The G*3'Q-13%2M alteration in MtACK resulted in substantial reductionsin Keat
(Table 2.3). In the acetate-forming direction, catalysis was reduced over 100-fold, and in
the acetyl phosphate-forming direction, ke was reduced ~50-fold. This alteration resulted
in ~5-fold increase in Km for ADP and ATP, and a 15-fold increase in Kn, for acetate but
no substantial change in the K for acetyl phosphate. As with wild-type MtACK, no
activity was observed with P, or PP as substrate in the respective directions of the

reaction for the MtACK variant.

Additional structural elements may contribute to occlusion of the ATP/ADP binding

pocket

A salt bridge between Arg?’*and Asp?’? on LOOP4 of EnACK may cause further
constriction of the adenosine pocket by positioning the Arg side chain toward the pocket
(12), These two residues are conserved in MtACK but the side chain of Arg is positioned
away from the adenosine pocket. These residues are not conserved among all ACKs
though and LOOP4 does not impinge upon the adenosine pocket. The PHOSPHATE?2
motif, which interacts with the  phosphate of ATP and was suggested to have arolein
substrate positioning * 19 jslonger in ERACK and protrudes farther into the active site

than in the ATP-dependent enzymes (Figure 2.3C). Sequence alignment and structural
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superposition of the PHOSPHATEZ2 motif illustrate that this difference arises from

addition of asingle residue, Gly*® (Figures 2.1 and 2.3D).

To examine whether this salt bridge and the extended PHOSPHATE2 motif
influence substrate selection, ENACK Q**G-M®?4 variants in which the salt bridge has
been diminated (D??A-R?"*A-Q*3G-M3%24) or in which the PHOSPHATE2 motif has
been shortened (AG?®- Q*°G-M3?4) were analyzed. The D?"2A-R?“A-Q*23G-M3%4
replacement decreased keat in the acetate-forming direction by ~2,500-5,000 fold but had
little effect on Km, for either substrate (Table 2.3). This variant had no detectable activity in
the acetyl phosphate-forming direction (Table 2.3). The AG?®- Q*2G-M3*4 variant was
inactive in either direction of the reaction, and thus the effect of the Gly?® deletion
compounded onto the D??A-R?"“*A-Q33G-M3?4 adteration was not examined. No
enzymatic activity was observed with either of these variants using ATP or ADP as the

substrate in place of PP, or P..
Inhibition of ERACK and MtACK by alternative phosphoryl donors and acceptors.

Since wild-type EhACK and MtACK cannot utilize ATP/ADP or PP/P,
respectively, as aternative phosphoryl donor/acceptor, inhibition assays were performed
to determine whether these compounds can bind and inhibit activity even if they cannot be
used productively as substrate. ENACK activity was measured in the favored acetate-
forming direction in the presence or absence of 10 MM AMP, ADP, or ATP (Figure 2.5A).

Although AMP had no effect, both ADP and ATP were found to inhibit ERACK activity
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Figure 2.5: Inhibition of EnACK and MtACK by alternative phosphoryl donor s and
acceptors. (A) Inhibition of wild-type EhACK in the presence of 10 mM AMP, ADP, or
ATP in the acetate-forming direction of the reaction. (B) Inhibition of wild-type MtACK
in the presence of 20 MM P; or PP; in the acetate-forming direction. (C) Inhibition of
wild-type MtACK in the presence of 20 mM P; or PP; in the acetyl phosphate-forming
direction. Significant difference between inhibitions compared to wild-type enzyme
activity istested using an unpaired Welch t-test with R. * = p-value < 0.001, ** = p-value

< 0.00003, *** = p-value < 0.000008. Activities are the mean + SD of three replicates.

78



but to differing extents. The presence of ATP resulted in nearly 80% inhibition versus
~30% inhibition by ADP. The presence of P or PP with AMP was not sufficient to mimic
the effect of inhibition by ADP or ATP, respectively (data not shown). For MtACK, P; had
no effect on enzymatic activity. PP; inhibited the enzyme in both directions of the reaction
to differing extents, producing ~70% inhibition in the acetate-forming direction and ~90%

inhibition in the acetyl phosphate-forming direction (Figures 2.5B and 2.5C).

The mode of inhibition of ENRACK by ATP was determined by kinetic analysis
using a matrix of reactions in which the ATP concentration was varied versus P
concentration with the acetate concentration held constant. ATP was found to be a
competitive inhibitor of EhACK, as demonstrated by the results in Figure 2.6. Further
examination of ATP inhibition of the ERACK variants in the favored acetate-forming
direction of the reaction reveaed that a similar final level of inhibition of ~85-90% was

achieved for the variants and wild-type enzyme by 15 mM ATP (Figure 2.7A).

TheCso valuefor ATP, defined as the concentration of ATP required to cause 50%
inhibition of enzymatic activity, was reduced for the EnNACK variants versus the wild-type
enzyme (Table 2.4). The 1Cso values were reduced 20-30% for the two Q33-M3?* variants
versus the wild-type enzyme, whereas the quadruple variant in which both the Q32-M3
residues and the D?"2-R?"* salt bridge were altered had an 1Cso value that was reduced by
over 60%. Since ATP is a competitive inhibitor of EhRACK activity, this increase in
inhibition suggests that the D?"?A-R?"A-Q%2G-M3®?4 variant binds ATP more efficiently

than wild-type enzyme even though it cannot use it as a substrate.
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Figure2.6: ATPisacompetitiveinhibitor of EnACK. Doublereciprocal plot of ERACK
activity versus P; concentration in the absence (o) or presence of 2.5mM (e), 5SmM (O), or

7.5mM ATP (m). Activities are the mean = SD of three replicates.
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Figure2.7: Inhibition curvesfor ENACK and MtACK wild-typeand variant enzymes.
Enzymatic activity was determined for each enzyme in the presence of the indicated
concentration of ATP or PP. Activities were plotted as a percentage of the activity
observed for the wild-type enzyme in the absence of inhibitor. Activities are the mean £
SD of threereplicates. (A) ATPinhibition of ERACK anditsvariantsin the acetate-forming
direction. EhACK wild-type, (0); ENACK Q*°G-M3?4 variant (e); ENACK Q%22A-M32A

variant, (O); ERACK D?"?A-R?"A-Q*3G-M324 variant (m). (B) and (C) PP inhibition of
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MtACK and its variants in the acetate-forming (B) and acetyl phosphate-forming (C)

directions. MtACK wild-type, (0); MtACK G>1Q-13%2M variant (e)
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ATP 1Cs(mM)
Acetate-forming

EhACK direction
Wild-type 6.1+ 0.05
Q¥B3G-M34 4.2 +0.30
Q3BA-M32A 4.8 £ 0.09
D?2A-R?4A-Q35BG-M3%4 24+0.19
PPi 1Cso (MmM)

Acetate-forming Acetyl phosphate-
MtACK direction forming direction
Wild-type 3.3+£0.06 75+£0.28
G®1Q-132Mm 4.0+ 0.28 14+1.1

ND, not determined because the enzyme was inactive in this direction.

Table2.4; 1Cso valuesfor ATP inhibition of EhACK and PP; inhibition of MtACK
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For MtACK, inhibition by PP, in the acetate-forming direction was similar for the
wild-type enzyme and the G*3!Q-1%32M variant, with ~70% maximum inhibition observed
(Figure 2.7B). The I1Csp vaues for PP, were similar for both enzymes (Table 2.4). PP,
inhibition in the acetyl phosphate-forming direction was much stronger, reaching greater
than 90% for both the wild-type and variant enzymes. However, maximum inhibition for
the wild-type enzyme was achieved at lower ATP concentration (20-25 mM versus 40 mM
for the variant). Thisisreflected in the 1Cso value, which is nearly two-fold higher for the

G*1Q-1332M variant than for the wild-type.



DISCUSSION:
Substrate selection in ATP-utilizing ACKs

Thaker et al. *?, in analysis of the MtACK and EhACK structures, predicted that
P./PP, binding does not involve the adenosine pocket and PP likely binds in a position
corresponding to the position of the - and y-phosphates of ATPin MtACK. Our inspection
of structures for the four Mycobacterium ACKs and the S. enterica ACKs in addition to
those for MtACK and C. neoformans ACK showed that the opening to the adenosine
pocket is not occluded in ATP-utilizing ACKs, only in the EhACK structure. Thus, we
investigated whether phosphoryl donor selection by ACK is based primarily on

accessibility of the adenosine pocket.

Alterations were made to MtACK to determine if the substrate specificity could be
changed from ATP to PP if the adenosine pocket was occluded. Catalysis was greatly
reduced (~50-150 fold) in the enzyme variants and this was accompanied by increases in
the Km values for both acetate and ATP in the acetyl phosphate-forming direction of the
reaction. Gorrell et al. %9, using tryptophan fluorescence quenching, found that domain
closure occurs upon nucleotide binding. Thus, the effects of these alterations on MtACK
activity may be complicated to interpret as reduced catalysis could be due to inefficient
utilization of ATP and to an influence in domain closure. Notably though, substrate
specificity did not change and the MtACK variant was unable to utilize PP; as a substrate.
Thus, conversion of ATP-dependent MtACK to a Pi/PP-dependent enzyme could not be

achieved by simple closure of the adenosine pocket.
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MtACK has a broad NTP substrate range > 1) with a preference for ATP and is
highly active in both the acetate- and acetyl phosphate-forming directions. Ingram-Smith
et al. *® examined the roles of conserved active site residues in NTP substrate selection in
MtACK, and found that Gly®! in the ADENOSINE motif exerted a strong influence.
Asn?! in the PHOSPHATE2 motif and Gly?® in the LOOP3 motif were found to be

important for enzymatic activity but did not play a substantial rolein NTP preference.

Y oshioka et al. 19 studied four residuesin the ADENOSINE motif and one residue
in the PHOSPHATE2 motif of E. coli ACK for their role in ATP versus PP, substrate
determination. The candidate residues Asn?'3, Gly3®2, Gly33, 1633 and Asn®" were altered
to the respective residues present in ENRACK (Thr, Asp, GIn, Met, and Glu, respectively)
and the ability of the enzyme variantsto utilize PP, in place of ATP was examined. All five
variants displayed increased Km for ATP and decreased catalysis but none was able to

utilize PP,.

Yoshioka et al. @ also examined the distribution of the E. coli ACK candidate
residues and the corresponding residues in EhRACK among 2625 ACK homologs. They
suggested that Asn®¥’ (Glu®?’ of EhACK) is most important in determining substrate
selection as it is present in the ten ACK sequences most closely related to EhACK.
However, their kinetic results with the Asn®’ variants are inconclusive in this regard,
although the kinetic results for this and other variants do strongly support a major rolein
ATP binding for the ADENOSINE motif but do not delineate specific residues responsible

for determining ATP versus PP; utilization.
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Substrate selection in PPi-dependent ERACK

As a converse to our experiments with MtACK, we altered residues blocking the
opening to the adenosine pocket in ERACK to reduce the occlusion and evaluated the
enzyme’s ability to utilize Pi/PP versus ATP/ADP. The EhACK variants exhibited
decreased activity with P and PP, much as we expected. Although catalysis was reduced
for the Q32G-M34 and Q*A-M3*A variants, further opening of the entrance to the
adenosine pocket in the D?"2A-R?™A-Q33G-M3 variant amost completely eliminated
activity. This suggested that as the opening to the adenosine pocket increases, P and PP,

may still bind but their positioning may be suboptimal.

Although the enzyme variants were still unable to utilize ATP as a substrate, ATP
and ADP did inhibit enzyme activity. The level of inhibition increased as the opening to
the adenosine pocket was expanded, especially for the D?2A-R?™A-Q33G-M3 variant.
Thissuggested that ATP and ADP could now enter the adenosine pocket and interfere with
P binding. Such an interpretation of these results is supported by the observation that ATP

inhibition is competitive versus Pi.

The similar behavior of the Q33G-M3%| and Q32A-M3%A variants with respect to
inhibition by ATP indicated that the increased binding (as judged by 1Csp values) must be
due to expanding the entrance to the adenosine pocket rather than a specific interaction
between the altered residues and ATP. Models of the enzyme variants indicated that these
alterations to the adenosine pocket would result in decreased impairment of ATP binding

(Figure 2.8). In particular, deletion of G?* to shorten the PHOSPHATEZ loop combined
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Figure 2.8: In silico modeling of the adenosine binding pocket of ENACK variants.

Models were built using Accelrys Discovery Studio version 3.5 (Biovia). ADP binding in
MtACK was superimposed into the ENACK structure models. (A) Q33G-M3% variant. (B)

D?2A-R?A-Q35BG-M324 variant. (C) AG?®- D??A-R¥™A-Q*2G-M3*| variant.
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with alteration of the ADENOSINE motif and removal of the D?2-R?* salt bridge should
allow the pocket to accommodate ATP well (Figure 2.8C). Although the alterations made
to EnACK appeared to increase the enzyme’s ability to bind ATP, as indicated by the

inhibition results, ATP was still not an effective substrate.
Other possible PP; -dependent ACKs

Using a BLASTp search of the non-redundant protein sequence database at NCBI
with EhACK as the query sequence, we identified a small number of putative ACK
sequences that may also be PP-dependent or require a substrate other than ATP or PP.
Severa of these putative ACK sequences came from metagenome analyses of anaerobic
digestors. However, there were four putative ACK deduced amino acid sequences that
came from draft genomes for the bacteria Ornatilinea apprima, Longilinea arvoryzae,
Flexilinea flocculi, and Leptolinea tardivitalis *®2), These bacteria are al obligate
anaerobes from the phylum Chloroflexi within the family Anaerolineaceae. Three of the
four produce acetate as a main product from glucose fermentation; L. arvoryzae aso
produces acetate as a primary fermentation product but from growth on sucrose instead of
glucose. Little else is known about these bacteria beyond their initial characterization for

recognition as new species.

Alignment of these putative ACK sequences with those of the four Entamoeba
ACK sequences (those from E. histolytica, Entamoeba nuttalli, Entamoeba dispar, and
Entamoeba invadens) revealed two key findings. Within the PHOSPHATE2 motif, all

eight of these sequences have the extended |oop containing the second Gly residue (Figure
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2.9). These are the only putative ACK sequences identified to have this extended
PHOSPHATEZ loop (see Figure 1 for comparison). Within the ADENOSINE motif, al of
these sequences have a conserved Asp residue (immediately adjacent to Q%23-M32* of
EhACK) that is not conserved in any other ACK sequences (all of which have Alaor Gly
at the equivalent position, as shown in Figure 2.1). Interestingly, these bacterial ACKs
have a conserved Asp at the equivalent position to GIn3* of PP.-dependent ENACK and
the other Entamoeba ACKs. A completely conserved Gly resides at this position (Gly33!
of MtACK) in al ATP-dependent ACKs. Whether this indicates that these enzymes are
neither ATP-dependent nor PPi-dependent, or whether there is some flexibility in the

identity of the residue at this position in PP;-dependent ACK s is unknown.
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PHOSPHATE2

E. his 193 KI | ACHLGTGGSSCCA V 210
E. nut 193 KI | ACHLGTGGSSCCA V 210
E. dis 193 KI | ACHLGTGGSSCCA V 210
E.inv 193 KI VACHLGTGGSSCCAI L 210
Q app 201 KI | ACHLGTGGSSAVALK 218
L. arv 201 KLI LCHLGTGGSSWAMNK 218
F.flo 201 KFI LCHLGSGGSSI TAVR 218
L.tar 201 KLI LCHLGTGGSSVTANK 218
* *xk*k* **k*x*%
ADENCSI NE
E. his 317 LLVFTDQVGLEW\QVRKA 334
E. nut 317 LLVFTDQVGLEW\QVRRA 334
E. dis 317 LLVFTDQVGLEW\QVRKA 334
E.inv 317 MLVFTDQVGLEVPEVRKA 334
Q app 322 ALI FTDDI GLWBWQLRES 339
L. arv 323 Al VFTDDVGLKSVKLRAK 340
F.flo 323 Al VFTDDI GETSVKLREK 340
L. tar 323 Al VFTDDVGLKSVKLREK 340
* k% * *

Figure 2.9: Partial alignment of putative PPi-ACK amino acid sequences.
Sequences were aigned using Clustal Omega. The PHOSPHATE2 and ADENOSINE
motifs are shown. The full alignment is provided in the Figure 2.10. Abbreviations and
sequence accession numbers: E.his, E. histolytica, XP_655990.1; E.nut, Entamoeba
nuttalli, XP_008860710.1; E.dis, Entamoeba dispar, XP_001741606.1; E.inv, Entamoeba
invadens, XP_004254504.1; O.app, Ornatilinea apprima, WP_075061087.1; L.arv,
Longilinea arvoryzae, WP_075074878.1; F.flo, Flexilinea flocculi, WP_062279690.1;

L.tar, Leptolinea tardivitalis;, WP_062422928.1.
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PHOSPHATEL

MBNVLI FNVGSSSLTYKVFCSDN- - - - - | VCSGKSNRVNVTGTEKPFI EHHLNGQ | KI E
MBNVLI FNVGSSSLTYKVFCSDN- - - - - | VENGKANRVNVTGTEKPFI EHHLNGKI | KI E
MSNVLI FNVGSSSLTYKVFCSDK- - - - - I VCSGKANRVNVTGT TKPFI EHHLNGKVI KVE
MPHI LVFNVGSSSLTYKLFENTK- - - - - El | KGKANRVNVTGAELPFI EHHI NGKTI T1 E

- MNLLVFNCGSSSLNYKVFSGDSNSTAQ TAKGKAHRVGVKGSDPSFI EHHL SNQTVKET
- MNI LI FNCGSSSQGFKVYQT SGHDQPVVLVSGKAKNVAT QT RADAFI EVKSKI SAGSK
- MNI LVFNCGSSSQGFKVYEVDQNHAEKWVI SGKAKNVAART QSQPYL FWNIVNDKTEQKF
- MNI LI FNCGSSS@FKLYQ(EYGT TPI LVAAGKARNVATKTRADSCL D\NI'AGSQ(GSVN

--* ** kkk*k . EE

TPI LNHPQAAKLI | QFLKENHI SI AFVGHRFVHGGSYFKKSAVI DEVWLKELKECLPLAP
TPI LNHPQAAKLI | QFLKENHI SI AFVGHRFVHGGSYFKKSAI | DEVWLKELKECLPLAP
TPTLNHQQAAEFI | QFLKENHVSI AFVGHRFVHGGSYFKRSAI | DEAVLKELKECLPLAP
TGPLNHQEAARLI | KFLKENKFTI DI VGHRFVHGGSYFKTSAVI EGPVLKELKSCI PLAP
QPLETHAQAAERVLQNLRDHQ Pl DAVGHRFVHGGAYFKESAL L TEDTLARL TECLPLAP
TDLSSHRQAAGKI | Al LKELQVSVDAI GHRFVHGGTFFDKTVQ DPPVLQKLQQCLPFAP
CDLSSHRLAAQE! | Gl LNAKG QPDAI GHRFVHGGKLFQQTTRI DTNTRNLLI QCLPLAP
VELPSHREAARQ LALLRKSNLSVDA! GHRFVHGGDVFQ—ITTRI DKAVLAGLKGCFPLAP

* % ckkkkhkkhkk kK * * )\' * * *

I HNPSSFGVI EI SMKELPTTRQYVAI DTAFHSTI SQAERTYAI PQPYQS- - QYLKFGFHG
I HNPSSFGVI EMSMKELPTTRQYVAI DTAFHSTI SQAERTYAI PQPYQS- - QYLKFGFHG
| HNPSSFSVI EVSMKELPTTKQYVAI DTAFHSTI SQAERT YAl PQPYQS- - QYLKFGFHG
| HNPASYSVI EVALTELPNTKQYVAI DTAFHSTI NKTQRTYAI PEPFQS- - QYLKFGFHG
I HNPNSMSVI YT CLEHQPGCPQYVTFDTAFHAAL PPEAYTYAVPQSI RDTHTYRRFGFHG
I HNPNSYSVI EVCLEQFPDVPQFAVFDTAFHARMPEVSKQYAI PRDLVEKYGYYKYGFHG
I HNPNSFSVI EVCEQLLPSI PQYAVFDTAFHSQVPESSARYAI PGSI AEKFGFRKYGFHG

I HNPNSYSVI EVCREL L PDAAQFAVFDTAFHANVPAESRQYAL PREL VQENGYRKYGF HG
k%% % '** i * *:.':***** : ** * . : ::****
PHOSPHATEZ2 LOCOP3

LSYEYVI NSLKNVI D- - VSHSKI | ACHLGTGGSSCCG VNGKSFDTSMENSTLAGLVMST
LSYEYVI NSLKNVI D- - VSHSKI | ACHLGTGGSSCCG VNGKSFDTSMGNSTLAGLVMST
LSYEYVI NSLKNVI D- - VSHSKI | ACHLGTGGSSCCGE VNGKSFDTSMENSTLAGLVMST
LSYEFVLTSLKERMD- - VDKLKI VACHL GTGGSSCCAI LNGKSYDTSMENSTLAGLVMST
LSYHFVTQAAGPFLETPFSESKI | ACHL GTGGSSAVALKNGVPLDTSMGFTPLPGLI MST
LSYQYVSSRMLEL MGKPLEELKLI LCHL GTGGSSVVAMKNGLPLDTSMGYSPLAGLVMST
LSYQYVSTKTAQLI GKPLONSKFI LCHLGSGGSSI TAVRDGKSI DTSMGYSPLAGLVMSS

L SYQYVSARTAEYL GRPLEELKLI LCHLGT GGSSVTAI\/KDGRSIVDSSI\/GYSPL PGLVMST
* k% :* : L. *.. **** * Kk k% L : . * * %k % :.* ** **
LOOP4

RCGDI DPTI PI DM QQVGE EKWWD- | LNKKSGLLGVSELSSDVRDI LHEI ETRGPKAKTC
RCGDI DPTI PI DM QQVG EKWVD- | LNKKSGLLGVSELSSDVRDI LHEI EI RGPKAKTC
RCGDI DPTI PI DM QQVGVERVWVD- | LNKRSGLLGVSELSSDVRDI LHEI El KGPKAKTC
RCGDI DPSI PI NI VEQ G QKTVD- LLNKRSGLFGVSETSCDI RDLLKEI KENGQKAEKC
RTGDLDAQ Pl QLLKEGKSPKEI ETLLNKKSGLLG SQFSSDLRDI LARVE- - - - QDPNA
RSGDI DPEI VLEM RNGSSPDEVSQ LNNRSGLI GLSG-SSSLPEI | EASE- - - KGNADC
RSGDLDPEI | LDLVRSGYSADEVSRI LNRESGLI GLSG-SSNLAEI | DAAE- - - SGNVSC
RCGDLDPEI VLEM RR%SVDDVEFI LNNQSGLI G_SGYSSNLEEVI AEGE- - - KGNEDC

***)\' * . -** ***** *
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__ _ADENOSINE

QLAFDVY! KQLAKTI GG-MVEI GGLDLLVFTDQVEL EVWVRKAI CDKIVKFLG ELDDSL
QLAFDVY! KQLAKTI GGLMVEI GGLDLLVFTDQVIEL EVWQVRRAI CDKMKFLG ELDDSI

QLAFDVY! KQLAKTI GGLMVEI RGLDLLVFTDQVEL EVWQVRKAI CDKIVKFLG ELDNSL
ALAFDLY! NQLTKTI GG-MWEI GGLDMLVFTDQVG-EVPEVRKAVCNKL EFL GVEL DSEK
HLAFEVMAVHRLVKY! GAYAVLLGG.DALI FTDDI GLWAWQL RESVCQGLTWCGE Al DPTA
QLAYDVYAHRLETYLGAYTW.LDGADAI VFTDDVGL KSVKL RAKVCGGVQNLGVEI DAAK
Q AFDVYAQRLMEYMGAFYW.LNGADAI VFTDDI GETSWKLREKL FGGKDL L GVKL DQEL
RLAFDVYAHRL QL YLGAFFWLLNDADAI VFTDDVGLKSWKLREKVCRGVENLG LLDADA

ke PR - % . * .

*x o kkko ook . * . . %

NEKSMEKKI EFL TMPSSKVQVCVAPNDEEL VI LOKGKELFQF- - - - - - 392
NEKSMCEKKI EFL TMPSSKVQVCVAPNDEEL VI LQKGKELFQF- - - - - - 392
NEKSMCEKKI EFLTTPSSKVQVCVAPNDEEL VI LQKGKELFQF- - - - - - 392

NEKSRCKEI EFI STEKSRWKI CVWPNDEELVI LKKGSELFQFCN- - - - 394
NREAPYDRI TPl EAPDSRARVLVI PTDEEWI GQEGFALLQEGRHAYH 403

NVNAPL DRASRVSSARSKTQ WNVPTDEESVI LQEI LAQFCLA- - - - - 399
NRQATGSKPSCI SQEGSKTQ W1 PTDEEI VI LNEVRAI [ G- - - - - - - 397
NRLALPDQ TCFSSPASRTRLLTVPTDEEQVI LQEVLSQLEQA: - - - - 399
* . * . - - .

* k%% *%x

Figure 2.10: Alignment of putative PPi-ACK sequences. The full ACK sequence

alignment from which Figure 2.9 was derived is shown.
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CONCLUSIONS:

Our results demonstrate that phosphoryl donor specificity in ACK is mediated not
just by access to the adenosine binding pocket but by other elements as well, as simple
opening or occlusion of the entrance to this pocket was not sufficient to alter substrate
specificity. This suggests that the active sites of the ADP/ATP-dependent and P/PP-
dependent enzymes have evolved to optimize utilization of their preferred substrate at the
expense of the ability to use aternative substrates, and thus better suit their biological

function.
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CHAPTER 11

THE ROLE OF ADP-FORMING ACETYL-COA SYNTHETASE
AND ACETATE KINASE IN ENTAMOEBA HISTOLYTICA

Thanh Dang, Diana Nguyen, Cheryl Jones, and Cheryl Ingram-Smith

ABSTRACT:

Entamoeba histolytica is a human pathogenic protozoan that causes
approximately 90 million cases of amoebic dysentery, resulting in 50,000 — 100,000
deaths annually. This amitochondriate parasite lacks many essential biosynthetic
pathways including the TCA cycle and oxidative phosphorylation. As aresult, substrate
level phosphorylation plays a necessary and important role in ATP production. E.
histolytica produces ethanol and acetate as the major end products during growth, of
which acetate can be generated by acetate kinase (EhACK) and ADP-forming acetyl—
CoA synthetase (ENACD). ACK converts acetyl phosphate + orthophosphate to acetate +
pyrophosphate (PP;). Biochemical and kinetic characterization of recombinant EhACK
showed that it strongly prefers the acetate/PP; forming direction. On the other hand,
recombinant ERACD displays high activity in both directions to convert acetyl-CoA +
orthophosphate + ADP to acetate + ATP + CoA. Using reverse genetics, both EhACK
and EhACD were shown to play arole in E. histolytica proliferation. An acd knockdown
strain displayed a growth defect in normal high glucose media, or when exposed to
bovine serum starvation. Metabolite analysis substantiated EnACD’s role to extend
glycolysisfor ATP generation and linked reduced growth of the acd knockdownto ATP

availability. Moreover, EhRACD was found to be essential for growth on propionate,
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suggesting arole in propionate activation as carbon source. EnACK aso shared signs of
involving in growth during stress conditions; the ack knockdown strain showed enhanced
growth in medium lacking tryptone and low in glucose. Thus, ERACK may play arolein

growth under stress conditions and unlikely plays arolein glycolysis.
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INTRODUCTION:

Entamoeba histolytica is an amoebic parasite that infects an estimated 90 million
people worl dwide and causes approximately 100,000 deaths per year -2, Infection
proceeds through an oral-fecal route, resulting in E. histolytica colonization within the
large intestine. This amitochondriate parasite lacks many essentia biosynthesis pathways
including the TCA cycle and oxidative phosphorylation; thus, ATP generation is limited

to glycolysis 49,

Unlike the standard glycolytic pathway, E. histolytica glycolysisis pyrophosphate
(PP;)-dependent. Instead of ATP-dependent phosphofructokinase and pyruvate kinase, E.
histolytica possesses pyrophosphate-dependent phosphofructokinase (PP-PFK) and
pyruvate phosphate dikinase (PPDK) (Figure 3.1). Pyrophosphate, therefore, plays an
important rolein energy conservation. Ultimately, E. histolytica produces ethanol and
acetate as the mgjor end products during growth on glucose, of which acetate can
generated by acetate kinase (EhACK) and ADP-forming acetyl-CoA synthetase

(EhACD).

Acetate kinase (ACK; EC 2.3.1.8) is a phosphotransferase that interconverts
acetyl phosphate and acetate. Widespread in bacteria, acetate kinase primarily function to
generate ATP or activate acetate by partnering with another enzyme, commonly

phosphotransacetylase (PTA) (8. ACK has also been identified in one genus of archaea,
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Figure 3.1: Entamoeba histolytica extended glycolytic pathway. This schematic depicts
E. histolytica PP-dependent glycolysis in which phosphofructokinase (PFK) and
pyruvate kinase (PK) are replaced with PP;-dependent PFK and pyruvate phosphate
dikinase (PPDK). ACD and the bifunctional aldehyde-alcohol dehydrogenase (ADHE)
extend the glycolytic pathway to produce ethanol (EtOH) and acetate, which can also be

produced by ACK.
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other eukaryotic microbes, several fungi, and E. histolytica © 9. ERACK was shown to
be pyrophosphate and inorganic phosphate dependent, a stark contrast to all other
characterized ACKswhich are ATP and ADP dependent © 1V, Kinetic analysis aso
demonstrated that ENACK operates primarily in the acetate-producing direction in vitro.
Consistent with this, activity was detected only in the acetate/PP; — direction in cell
extract, supporting this as the physiological direction of ERACK Y. However, ACK’s

rolein E. histolytica remains undefined.

EhACK was hypothesized to provide supplemental pyrophosphate for the
pyrophosphate-dependent glycolysisin E. histolytica V). In a comparison between the
transcriptome of the virulent HM-1:1M SS and the nonvirulent Rahman strains, several
glycolytic enzymes including PP—PFK were found to be highly upregulated in HM—
1:IMSS in both axenic culture and during contact with human colon explant 2, This
upregul ation was thought to reflect the carbon metabolism needs during colonic mucosa
degradation and tissue destruction during intestinal anoebiasis. EhnACK was
constitutively expressed in active trophozoites and at aslightly higher level in HM-
1:IMSS versus the Rahman strain %, These findings supported the possibility that
EhACK could work in unison with PP—dependent phosphofructokinase and pyruvate

phosphate dikinase to drive glycolysis.

ACD (EC 6.2.1.13) catalyzes the conversion of acetyl-CoA to acetate to generate
ATP. Current knowledge of ACD comes from in vitro biochemical and kinetic
characterization of eukaryotic ACDs from E. histolytica ), Giardia lamblia *® and the

archaeal Pyrococcus furiosus ACD 718 ACD isbelieved to play acritical rolein
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conservation of energy by extending the glycolytic pathway, generating additional ATP
and recycling CoA®9. In vitro kinetic analysis of recombinant ENACD also showed this
enzyme catalyzes a reversible reaction, indicating potential aternative rolesin vivo @,
Based on these kinetic analyses, this enzyme may function in acetate activation during
nutrient limiting conditions as seen with AMP-forming acetyl-CoA synthetase " 19, Acd
also appears to be constitutively expressed 4, suggesting that this enzyme may be
essential in energy metabolism, survival, or proliferation. However, its significance has

yet to be investigated in depth.

A magjority of E. histolytica infections reside within the human colon, where
glucose is limiting. Alternative carbon sources and energy conservation thus can be
plausibly seen as an essential part of E. histolytica survival and growth. Here, we
investigated the functional role and contribution of ERACK and EhACD in growth,
survival and adaptation to nutrient limiting environments. Our study showed that EnACD
enhanced E. histolytica proliferation and suggested EnRACK may hold anove rolein

ViVO.
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MATERIALSAND METHODS:
Chemicals and reagents

Chemicals were purchased from Qiagen, Promega, Sigma-Aldrich, VWR
International, Gold Biotechnology, Fisher Scientific, Gemini Bio-products, EMD
Millipore, and Life Technologies. Penicillin-streptomycin and Diamond vitamins from
Life Technologies (Carlsbad, CA) and heat inactivated adult bovine serum from Gemini
(Sacramento, CA) were used for all Entamoeba media culture. Restriction enzymes were
purchased from New England Biolabs (Ipswich, MA). Primers were purchased from

Integrated DNA Technologies (Coralville, 1A).
Strains and culture conditions

E. histolytica HM-1:IMSS was grown axenically in Diamond’s TY[-S-33
medium® (17.95 g tryptone, 9.66 g yeast extract, 9.2 g glucose, 1.84 g NaCl, 0.92 g
K2HPO4, 1.15 g cysteine, 0.178 g ascorbic acid, 0.0194 g ammonium ferric chloride, 15%
v/v adult bovine serum, 1.73% v/v penicillin-streptomycin, and 2.62% v/v Diamond
vitamins per liter at pH 6.8) under standard conditions at 37°C. Log phase trophozoites
were harvested and used for all experiments. Modificationsto TY-S-33 medium were as
follows: reduced glucose, 10 mM glucose; tryptone exclusion, no added tryptone;
tryptone exclusion + low glucose, no added tryptone and glucose; reduced adult bovine
serum, 3.85% adult bovine serum; and adult bovine serum excluded. Growth on acetate,
propionate, or butyrate was performed in TY I-S-33 medium with no added glucose and

supplemented with 63 mM acetate, 24 mM propionate, or 23 mM butyrate.
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Growth curves were determined for wild-type (WT), pKT3M-luciferase (LUC),
EhACK knockdown (EhACKkd) and EhACD knockdown (EnACDkd) strains. Trypan
blue exclusion ?® was used to distinguish viable from dead cells and viable cells were
counted every 24 hours using a Luna Automated counter (Logos Biosystem, Annandale,
VA). Cultures for growth determinations were grown at 37°C in base TY-S-33 medium
with the following aterations: normal high glucose, reduced glucose, low glucose,
tryptone exclusion, tryptone exclusion + low glucose, reduced adult bovine serum, and

adult bovine serum exclusion (Table 3.1).
Construct cloning and transfection

Primers used are listed in Table 3.2. The full length Entamoeba histolytica ACK
(EHI_170010) and ACD (EHI_178960) coding sequences were PCR-amplified from E.
histolytica genomic DNA using KOD hot start polymerase (EMD Millipore, Billerica,
MA). E. hisotlytica genomic DNA wasisolated from 2 x 108 trophozoites using Wizard
genomic DNA isolation kit (Promega, Madison, WI). ENACK and ERACD RNA.I
constructs were created by cloning the amplified products into the modified pKT3M
vector in place of the resident luciferase gene using the Avrll and Xhol restriction
enzymes @Y, All final constructs were confirmed by Sanger sequencing at the Clemson
University Genomics Institute (CUGI). E. histolytica trophozoites were transfected with
the RNAI constructs by electroporation as described previously %> 23, Briefly, atotal of
2.4 x 10° cells were electroporated with 100ug of DNA using two consecutive pulses at
1.2kV and 25uF. Transfectants were selected after two days by adding 6ug/mL G418 into

the medium. Stable transfectants were maintained under G418 selection.
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Conditions Glucose Tryptone | Adult bovine serum
(mM) (% wiv) (% viv)
Normal high glucose 50 2.2 15
Reduced glucose 10 2.2 15
Low glucose Not added 2.2 15
Tryptone exclusion 50 Not added 15
Tryptone exclusion + low glucose | Not added | Not added 15
Reduced adult bovine serum 50 22 3.85
Adult bovine serum exclusion 50 22 Not added

Table 3.1: List of glucose, tryptone, and adult bovine serum alterationsto standard

TYI-S-33 medium. Bolded textsillustrate the ateration within the specific condition.
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Primer Sequences
Cloning primers
EhACK RNAI Forward 5’ CTACCTAGGATGTCTAACGTACTAATATTCAAC G
EhACK RNAI Reverse 5’ CTACTCGAGTTAAAACTGAAATAATTCTTTTCCTTT TTGTAA
EhACD RNAI Forward 5’ACACCTAGGATGCAATTTGAGCCACTCTTCAATCC
EhACD RNAI Reverse 5’ ACACTCGAGTTATGGTTGGATGACGAGGTGAGAG
RT-PCR primers
EhACK RTPCR Forward 5 AGGGTAAATGTTACAGGAACAGA
EhACK RTPCR Reverse 5" TGGTGCCACACAAACTTGAAC
EhACD RTPCR Forward 5 AGTGCCGGTTATTGGTGCAT
EhACD RTPCR Reverse 5" AGCTTCAGCAACTGCTTCGT
ssrRNA Forward 5'-AGGCGCGTAAATTACCCACTTTCG
ssrRNA Reverse 5'-CACCAGACTTGCCCTCCAATTGAT

Table 3.2: List of primersused for RNAI construct generation and RT-PCR confir mation.
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Reverse transcriptase-PCR (RT-PCR)

Primers are listed in Table 3.1. RNA was isolated from 2 x 108 trophozhoites
using the RNeasy mini kit (Qiagen, Vaencia, CA). RT-PCR was employed to determine
whether the Ehack and Ehacd were silenced by the respective RNAI constructs. RT-PCR
was performed using the One-step RT-PCR kit (Qiagen). RNA levels were normalized
for comparison using the small subunit ribosomal RNA gene (accession number:

X61116) as previously described ?4,
Enzyme assays

Ehack and Ehacd knockdowns were confirmed by measuring ACK and ACD
activity, respectively, in cell lysates. A total of 4 x 10° cells were harvested by
centrifugation and washed twice in phosphate buffered saline (PBS). Cells were
resuspended in 25 mM Tris, 150 mM NaCl (pH 7.4). Cells were lysed by vortexing with
acid-washed beads for one minute, followed by 1 minute on ice. This cycle was repeated
3 times. The lysates were centrifuged at 5000 x g for 15 minutes and the supernatant was

retained.

ACK activity was measured using the reverse hydroxamate assay as previously
described 9. Enzyme activity was assessed in a300 pl reaction containing 50 mM
sodium phosphate, 2 mM acetyl phosphate, 100 mM Tris-HCI (pH 7), and 10 mM MgCl>
and 50 pl cell lysate for 30 minutes at 37°C before quantification. Reactions were

terminated by adding 100 pl of the development solution (0.92 M trichoroacetic acid, 250
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mM FeCl,, and 2.5 N HCI). Absorbance at 540 nM was measured using a Synergy Epoch

microplate reader (Biotek, Winooski, VT).

ACD activity in the acetyl-CoA forming-direction and acetate forming-direction
were measured as described by Jones and Ingram-Smith . ACD activity was
quantitated using 10 ul of cell lysate at 37°C for 15 minutes. For the acetyl-CoA forming-
direction, the hydroxamate assay was used at substrate saturating concentrations.
Reaction contained 1 mM CoA, 20 mM Mg:ATP, 100 mM acetate, and 50 mM Tris-HCI
(7.3). Absorbance at 540 nm was measured using a Synergy Epoch microplate reader. For
the acetate forming-direction, the DNTB assay was employed. Reactions contained 50
mM Tris-HCI (pH 7.3), 300 uM 5,5-dithio-bis-2-nitrobenzoic acid (DNTB), 300 uM
acetyl-CoA, 8 mM potassium phosphate, and 5 mM Mg:ATP. Assays were performed
using 96-wells plate in 200 pl reaction volume. The change in absorbance at 412 nm was

determined using Synergy H1 microplate reader.

Total protein concentration in cell lysates was measured using the Bradford assay

(26.27) \with bovine serum albumin as the standard.
I ntracellular metabolite analysis

E. histolytica intracellular metabolites were extracted using an adapted methanol
extraction method ?® from 1 x 10°1og phase trophozoites. Cells were harvested by
centrifugation, washed three timesin ice cold 5% mannitol solution, and resuspended in
1500 pul of 100% methanol (-20°C). Trophozoites were lysed using a freeze-thaw method.

Cellswere frozen in liquid nitrogen for 5 minutes and thawed on dry ice for 10 minutes.
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This cycle was repeated 3 times. The lysate was centrifuged at 13,000 rpm for 5 minutes
and the supernatant isolated. Samples were analyzed at Clemson Multi-Users Analytic
LabviaLC-MS/MS. Intracellular metabolite concentrations were calculated by assuming
E. histolytica trophozoites have an intracellular volume of 1.3 pl per 1 x 10° cellsas

previously reported 03D,
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RESULTS:
Ehacd silencing affects growth on glucose but Ehack silencing does not

To examine the roles of ENACK and EhACD, reverse genetics was employed.
The ack and acd genes were individually silenced using the trigger-RNAi gene silencing
system developed by Morf et al. @, The ack and acd coding regions were cloned into the
modified pK T3M trigger-derived antisense small RNA vector. The pK T3M vector
containing a luciferase gene (luc) was used as a transfection control. RNA was isolated
from wild type, luc control, and the ack and acd silenced strains and RT-PCR was
performed to examine RNA levels for the silenced genes. ack and acd mRNA levels
were undetectabl e in the respective silenced strains (Figure 3.2A and B) but were
unaffected in the wild-type and luc control strains. In addition, ACK and ACD enzyme
activity was considerably reduced or abolished in ack and acd silenced cells, respectively
(Figure 3.2C-E). Taken together, this confirmed the successful silencing of these two

genes.

The ack and acd gene silenced strains, hereafter referred to as EhACKkd and
EhACDKd, both remained viable. ENnACDkd grew slower than control cells (WT and
LUC) in standard TY 1-S-33 medium containing 50 mM glucose (Figure 3.3A); This
difference in growth was statistically significant by 72 and 96 hours. However, the

EhACKKkd strain grew at a comparable rate to the WT and LUC strains.
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Figure 3.2: EhRACK and EhACD silencing by trigger antisense-derived RNA
interference. RT-PCR depicting Ehack mRNA levels (A) and Ehacd mRNA levels (B).
Control (X61116) shows RT-PCR of the small subunit RNA gene and indicates
equivalent mRNA in al lanes. C: EhACK activity from cell extractsin the acetate-
forming direction. D: ENACD activity from cell extracts in the acetyl-CoA forming
direction. E: ENACD activity from cell extracts in the acetate-forming direction. WT:
untransfected cells; LUC: luciferase control cells; ERACKkd: ACK knockdown cells;
EhACDkd: ACD knockdown cells. Enzyme activities are the mean + SD of at least three
replicates. Specific activities are represented as a percentage of the activity observed

from the wild-type strain.
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Figure3.3: E. histolytica growth in varying glucose concentr ation. Growth was assessed
by direct cell counting, using tryphan blue exclusion to indicate live versus dead cells.
Growth curves were initiated with 5 x 10* cells per tube. Cells were grown in TY-S-33
medium containing (A) 50 mM glucose (the standard glucose concentration in this
medium), (B) 10 mM glucose, or (C) no added glucose. Cell numbers are the mean = SD
of at least three biological replicates. The significance of the growth deficiency for the
ACDkd strain versus the WT and LUC strains was tested using a one-way ANOVA and

TUKEY separation of meanswith R. * = p-value < 0.05.
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We next tested whether this difference in growth for the EhACDkd strain would
persist at lower glucose concentrations. The ENACDKd strain still showed the slowest
growth when the glucose concentration was reduced to 10 mM (Figure 3.3B). However,
this growth defect disappeared when EnACDkd cells were grown in TY[-S-33 medium in
the absence of added glucose (Figure 3.3C). The EhACKKkd strain showed no difference
in growth from the WT and LUC control cells in the presence of 10 mM glucose (Figure

3.3B) and therefore growth was not assessed in the absence of added glucose.

I ntracellular metabolite levels are affected in EnACDkd and EhACKkd strains

Intracellular acetyl-CoA and ATP concentrations were measured for the WT,
LUC control, EnACDKkd, and EnACKKd strains after growth in TY [-S-33 medium
containing 50 mM glucose. Both the EhRACDkd and EhA CKkd strains showed an
accumulation of acetyl-CoA of approximately 172% vs. WT or LUC (Figure 3.4).
Consistent with the proposed role of ACD in acetate production from acetyl-CoA, the
EhACDKd strain proved to have a substantially reduced ATP pool that was

approximately 20% that observed for the EhRACKkd, LUC, and WT strains.

Since the EhACDkd phenotype changed with glucose concentration, we examined
whether ACD activity in wild-type cells varied with changes in glucose concentration in
the growth medium. EhACD activity was examined in WT cellsgrown in TY-S-33
medium containing 50 mM (standard), 10 mM, or no added glucose. ACD activity
remained constant in both the acetate-forming and acetyl-CoA-forming direction

regardless of glucose concentration (Figure 3.5).
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Figure 3.4: Acetyl-CoA and ATP level comparison between each E. histolytica cell
line. Cell extracts were prepared from 1 x 10° cells at 72 hours of growth. Samples were
anayzed viaLC-MS/MS. Intracellular metabolite concentrations were normalized to the
concentration in WT cellswhich are ATP 0.86 £ 0.09 mM and acetyl-CoA 0.22 + 0.03
mM (n = 6). The statistical significance of metabolite concentration vs. WT cell
intracellular concentration were tested using a Welch two samples T-test inR. * = p-

value < 0.001.
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Figure 3.5: ACD activity from WT cells grown at varying glucose concentrations.
Cellswere grown for 48 hoursin TY1-S-33 medium and cell extracts were prepared for
measurement of enzymatic activity. A: ACD activity in the acetyl-CoA forming
direction. B: ACD activity in the acetate-forming direction. Enzyme activity was
measured at saturating substrate concentration. Activities are the mean £ SD of at |east

three replicates.
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EhACK and EhACD expression and activity are independent from each other

If EhRACK and EhACD have related roles, changesin expression or activity of one
might be expected to influence expression or activity of the other. To this end, ERACK
and EhACD activities were compared between the wild-type, LUC control, EhA CKKkd,
and EhACDKd strains. Enzyme activity in cell extract from each strain showed no change
in ACK activity when acd was silenced and vice versa (Figure 3.6). Thus, EhACK and

EhACD do not appear to be co-regul ated.
EhACD playsarolein propionate utilization

The human colon, where E. histolytica colonizes, contains low to no glucose but
does have abundant level of short chain fatty acids (110-120mM), mainly as acetate,
propionate and butyrate with relative molar mass ratio of 57:22:21 2, respectively.
Certain anaerobic microbes can switch from producing acetate to utilizing acetate as a
carbon source when necessary, termed the “acetate switch” (. Kinetic analysis of
EhACD showed it can interconvert acetyl-CoA and acetate at relatively similar rates for
each direction of the reaction ), suggesting EnACD may be able to utilize acetate as a

growth substrate under some conditions as well as produce it during growth on glucose.

WT, LUC, EhACDkd, and EnACKKkd strains were grown in low glucose and the

presence of 63 mM acetate, 24 mM propionate, or 23 mM butyrate for 72 hours.
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Figure 3.6: ACK and ACD activity in WT and gene silenced strains. The wild-type,
LUC control, and ACDkd and ACKkd strains were grown in standard TY I-S-33 medium
for 72 hoursand ACD and ACK activities were determined in cell lysates. A: ACK
activity from cell lysate in the acetate -forming direction. B: ACD activity from cell

lysate in the acetyl-CoA forming direction. Activities are the mean £ SD of at |east three

replicates.
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Figure 3.7: Growth in low glucose (Glu) TY1-S-33 media with or without short chain
fatty acid supplementation. Cells were grown 72 hours in media without
supplementation or supplemented with 63 mM acetate (Ac), 23 mM propionate (Prop), or
24 mM butyrate (But). Growth wasinitiated with 5 x 10* cells. Cell numbers are the

mean + SD of at least three biological replicates.
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For each strain, growth in butyrate or acetate supplemented media was comparable to that
observed in the absence of glucose or short chain fatty acid. Intriguingly, strains showed
improved growth on propionate supplemented media improved growth, with the

exception of the EhRACDKkd strain (Figure 3.7).
The EhACKkd strain grows in medium lacking glucose and tryptone

Studies have shown amino acids may also act as a substrate for energy
metabolism in E. histolytica ® ©). To investigate this, we examined growth in TY1-S-33
medialacking tryptone, which is a source of free amino acids. As expected, omission of
tryptone resulted in substantial reduction in growth of the WT and control LUC strains as
well as the EnACKkd and EhACDKkd strains (Figure 3.8A). Surprisingly, when glucose
was also omitted from the medium, EnACKKkd cells showed a significant growth
advantage versus WT, LUC control, and EhACDKd strains (Figure 3.8B). Minimal

growth of these latter strains was observed and cell death was observed by 96 hours.
Growth under other nutrient limiting conditionsis also affected

Since E. histolytica encounters various environments during infection, growth
was also examined under several other nutrient limited conditions. E. histolytica exposure
to serum in the colon, which is the primary site of infection, is unlikely. Therefore, we
examined growth in the absence of adult bovine serum and found that all strains died
(data not shown), indicating a requirement for adult bovine serum for in vitro growth in
culture. Next, growth in medium containing reduced serum levels of 3.85% (v/v) instead

of the 15% (v/v) serum concentration in standard TY [-S-33 medium was measured. Slow
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growth was observed for the WT, LUC, and EnACKkd strains cultured in the reduced
serum medium (Figure 3.9). However, the EhRACDKkd strain did not proliferate and

showed signs of death by 48 hours (Figure 3.9).
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Figure 3.8: Growth of E. histolyticaWT and genesilenced strainsin TY1-S-33 medium
lacking tryptone or glucose and tryptone. A: Growth in medium lacking tryptone. B:
Growth in medium lacking tryptone and glucose. Cell counts are the mean + SD of at least
three biological replicates. The statistical significance of differencesin growth between the
EhACKKkd versus WT and LUC control strains was tested using a one-way ANOVA and

TUKEY separation of meansin R. * = p-value< 0.01.
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Figure 3.9: Growth during serum starvation. Strains were cultured in TY1-S-33

medium containing reduced (3.85% versus standard 15%) adult bovine serum. Growth
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replicates. The significance of the growth deficiency for the EnACDKd strain versus the

WT and LUC strains was tested using a one-way ANOVA and TUKEY separation of

means with R. * = p-value < 0.00001.
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DISCUSSION:

The two major metabolites produced during E. histolytica axenic growth on
glucose are ethanol and acetate. In the colon, the main site for E. histolytica infection,
glucose concentrations are low; however, short chain fatty acids are abundant with
acetate having the highest molar mass ratio 2. Acetate metabolism has been extensively
studied in prokaryotes, most notably in Escherichia coli, to havearolein ATP
generation, coenzyme A recycling, and acetate activation for utilization as a carbon
source when necessary ). In bacteria, ACK typically partners with the enzyme
phosphotransacetylase to interconvert acetate and acetyl-CoA. The other common
enzyme which interconverts acetate and acetyl-CoA is AMP-forming acetyl-CoA
synthethase (ACS), which is thought to operate only in the acetyl-CoA forming direction.
These two pathways form the “acetate switch” (- where interchange between acetate

production and utilization occurs to accommodate the cell’s needs @ 3339,

In E. histolytica, ACK and ACD are two acetate-producing enzymes and ACSis
not present. Even though ACD and ACS are not related, the fact that both are capable of
activating acetate to acetyl-CoA makesit plausible that ACD plays an analogous
physiological roleto ACS. In the same manner, although EhACK deviates from other
ACKSsin phosphoryl substrate usage (PP; versus ATP), it may still retain aparallel roleto
other ACKs. Gene expression studies have shown that both ACD and ACK are
constitutively expressed in E. histolytica at moderate and low levels, respectively 437,

This suggests these two enzymes may be an essential part of E. histolytica biology.
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Therole of ERACD in growth on glucose

Gene silencing of EhACD indicated this enzymeisinvolved in E. histolytica
growth and proliferation. The EnACDKkd strain exhibited significant growth reductionin
normal high glucose media versus the wild-type (Fig. 3.3A). Metabolite analysis reveal ed
that intracellular ATP levels decreased and acetyl-CoA increased, consistent with our
previous hypothesized role for ACD in extending the glycolytic pathway to produce ATP

by converting acetyl-CoA to acetate.

A previous study by Pineda et al. also looked at the effects of ACD gene silencing
in E. histolytica GV, Although they did detect reduced acetate production and a decrease
inintracellular CoA levels, there was no effect on intracellular ATP levels. The authors
concluded that ACD playsarolein CoA recycling during oxidative exposure but rejected
arolefor ACD in ATP production. These results conflict with our current results.
However, this difference may be explained by the fact that Pineda et al. only achieved
partial gene silencing of ACD (~10-50%) Y as compared to our current study in which
the ACD gene was effectively silenced and neither acd RNA nor enzymatic activity was
detectable. In addition, they neglected to measure growth differences in the gene silenced

strains versus the WT.

Although the EnACDKd strain grew more slowly than the wild-type at high (50
mM) glucose, both strains exhibited similar growth as the glucose concentration in the
medium was decreased (Fig. 3.3). ACD activity in extracts of wild-type cellsgrownin

varying glucose concentrations was found to be unchanged. This indicated that ACD was
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not regulated by glucose availability and the reduced growth of the wild-type strain at
low glucose was not due to changesin ACD activity. Instead, the impact of the reduced
glucose concentration on growth must be due to other reasons. One possible explanation
isthat less acetyl-CoA is produced under these conditions, thus reducing substrate

availability for ACD and subsequently reducing ATP production viathis route.
Role of EnACD in growth on other substrates

Another important aspect of acetate metabolism is acetate utilization. In vitro
characterization of ERACD showed this enzyme can function equally well in both
directions and can also utilize propionate and propionyl-CoA as substrates . Moreover,
E. histolytica naturally inhabits alarge intestine environment low in glucose but enriched
with acetate, propionate, and butyrate (approximately 63 mM, 24 mM, and 23 mM,
respectively) 2. Growth analysis showed neither acetate nor butyrate improved E.
histolytica proliferation in TY1-S-33 medium lacking glucose. However, addition of
propionate improved E. histolytica growth (Fig. 3.7). More strikingly, the EhRACDkd
strain did not show thisimproved growth upon propionate addition, indicating E.
histolytica can utilize propionate but not acetate as a growth substrate and that ENACD is

required for this.
Role of ENACK in E. histolytica

Like E. histolytica, Toxoplasma gondii also possesses a PP, oriented glycolytic
pathway. Pace et al.*® demonstrated an increase in glycolytic activity and flux when

pyrophosphatase was overexpressed, indicating aregulatory role of PP in glycolysis. If
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EhACK supplies asignificant pyrophosphate for glycolysis, EhACKkd cells would be
expected to experience a decrease in glycolytic activity, leading to reduced growth or
growth abnormalities. At lower glucose concentrations, this effect would worsen if ATP
production and conservation was further impaired by disruption of ENACK activity.
However, this was not the case as ENA CKkd cells grew normally under standard
conditions and in reduced glucose medium. This further argues against EhnACK’s role as

asignificant PP, provider for glycolysis.

In vitro kinetic analysis showed PP;-PFK and PPDK to have Kn, values of 50uM
and 470uM for PP, respectively @, Theintracellular PP; concentration in E. histolytica
is estimated to be 0.41 — 0.7 mM G149 One study reported knockdown of ERACK
(approximately 30-60% knockdown) only minimally decreased the overall concentration
of glucose-6-phosphate, fructose-6-phosphate, and pyrophosphate V. Thus, ERACK may
contribute to the PP, pool but at a marginal level that may not affect the overall activity of

PP-PFK and PPDK.
EhACD vs. glucose availability & EnACD vs. EhACK activity

Enzyme activity from cell extract was also examined to determine if ENACD and
EhACK have overlapping physiological functions. If these enzymes had overlapping
roles, manipulation of one enzyme may influence regulation of the other enzyme to
compensate. However, no significant association was observed between the two enzymes
(Fig. 3.6). Thisis consistent with current knowledge based on in vitro kinetic analysis

and the biochemical reaction associated with each enzyme.
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E. histolytica growth at limiting nutrient conditions

Entamoeba invadens, a close relative of E. histolytica that infects reptiles, also
possesses an ACD. Byers et al. “ 42 reported that exposures to short chain fatty acid
(SCFA) inhibited encystation and ploidy level in E. invadens. Further investigation
showed Entamoeba uptakes SCFA in a pH-dependent manner and causes hypoacetylation
of histone H4 3., In yeast, AMP-acetyl-CoA synthetase (ACS) involvement in histone
acetylation has also been reported. Eisenberg et al. “¥ demonstrated cytosolic
accumulation of acetate leads to ACS activation and triggering of histone acetylationin
Saccharomyces cerevisiae. This relation between ACS and acetylation had also been
reported in mice and human “5 4. EnACD, therefore, may be the connection between
SCFA, histone acetylation and encystation. However, investigation into thislink is
limited by the undetectable level of histone acetylation and alack of encystationinin

vitro axenic growth of E. histolytica HM-1:IMSS.

Based on genomic sequences, an EhACD rolein amino acid catabolism for ATP
generation was postulated ©. Recently, Pineda et al. Y reported amino acids do not
contribute to ATP production after exposing E. histolytica to PBS for 2 hours with and
without an amino acid source. Our growth data though showed a substantial reduction in
growth when tryptone was excluded , consistent with previous observation that mixture
of amino acids enhanced growth and survival of E. histolytica ©. No difference was
observed between growth of control cells (WT and LUC) and knockdown cells
(EhACKKkd and EhACDKd) in tryptone excluded medium (Fig. 3.8A). Surprisingly,

EhACKKkd cells showed enhanced growth in medium with both glucose and tryptone
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excluded (Fig. 3.8B). The molecular basis for this phenotype remains undefined but

suggests ENACK may possess a hovel function.
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CONCLUSIONS:

Our resultsindicate that ENACD has a substantial role in proliferation of E.
histolytica on glucose and other growth substrates. EnACDKd cells exhibited a growth
defect in both normal and low serum TY [-S-33 media. Growth and metabolite data are
consistent with EnACD playing aroleto extend glycolysis for ATP generation. The
substantial decreased of ATP pool in EhnACDKd cells connects the growth defect to lack
of ATP availability. Likewise, ERACD showed evidence to be involved in utilizing

propionate for growth.

Our results al'so demonstrated arole for ENACK in growth. However, itsrole to
supply pyrophosphate for glycolysis proved to be unlikely. The molecular mechanism of
EhACK growth enhancement during amino acids and glucose starvation remains

undefined. Further analysisis warranted to elucidate ENACK’s in vivo function.

132



REFERENCES:

1.

10.

11.

Stanley, S. L. Amoebiasis. Lancet 361(2003).

CDC. Amebiasis. https://www.CDC.gov/dpdx/amebiasis/ (2010).

Hague, R., Huston, C. D., Hughes, M., Houpt, E. and Petri, W. A. Amebiasis.
New England J Med 348, 1565-1573 (2003).

Clark, C. G, et al. Structure and content of the Entamoeba histolytica genome.
Adv Parasitol 65, 51-190 (2007).

Anderson, |. J. and Loftus, B. J. Entamoeba histolytica: Observations on
metabolism based on the genome sequence. Exp Parasitol 110, 173-177 (2005).

Zuo, X. and Coombs, G. H. Amino acid consumption by the parasitic, amoeboid
protists Entamoeba histolytica and Entamoeba invadens. FEMS Microbiol Lett
130, 253-258 (1995).

Wolfe, A. J. The acetate switch. Microbiol Mol Biol Rev 69, 12-50 (2005).

Kumari, S, Tishel, R., Eisenbach, M. and Wolfe, A. J. Cloning, characterization,
and functional expression of acs, the gene which encodes acetyl coenzyme a
synthetase in Escherichia coli. J Bacteriol 177, 2878-2886 (1995).

Reeves, R. E. and Guthrie, J. D. Acetate kinase (pyrophosphate). A fourth
pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem Biophys
Res Commun 66, 1389-1395 (1975).

Ingram-Smith, C., Martin, S. R. and Smith, K. S. Acetate kinase: Not just a
bacterial enzyme. Trends Microbiol 14, 249-253 (2006).

Fowler, M. L., Ingram-Smith, C. and Smith, K. S. Novel pyrophosphate-forming
acetate kinase from the protist Entamoeba histolytica. Eukaryot Cell 11, 1249-
1256 (2012).

133



12.

13.

14.

15.

16.

17.

18.

19.

20.

Thibeaux, R., et al. Identification of the virulence landscape essential for
Entamoeba histolytica invasion of the human colon. PLoS Pathog 9, €1003824
(2013).

Hon, C. C., et al. Quantification of stochastic noise of splicing and
polyadenylation in Entamoeba histolytica. Nucleic Acids Res 41, 1936-1952
(2013).

Ehrenkaufer, G. M., Haque, R., Hackney, J. A., Eichinger, D. J. and Singh, U.
Identification of developmentally regulated genes in Entamoeba histolytica:
Insights into mechanisms of stage conversion in a protozoan parasite. Cell
Microbiol 9, 1426-1444 (2007).

Jones, C. P. and Ingram-Smith, C. Biochemical and kinetic characterization of the
recombinant ADP-forming acetyl CoA synthetase from the amitochondriate
protozoan Entamoeba histolytica. Eukaryot Cell 13, 1530-1537 (2014).

Sanchez, L. B. and Muller, M. Purification and characterization of the acetate
forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate
protist, Giardia lamblia. FEBS Lett 378, 240-244 (1996).

Brasen, C., Schmidt, M., Grotzinger, J. and Schonheit, P. Reaction mechanism
and structural model of ADP-forming acetyl-CoA synthetase from the
hyperthermophilic archaeson Pyrococcus furiosus: Evidence for a second active
site histidine residue. J Biol Chem 283, 15409-15418 (2008).

Mai, X. and Adams, M. W. Purification and characterization of two reversible and
ADP-dependent acetyl CoA synthetases from the hyperthermophilic archaeon
Pyrococcus furiosus. J Bacteriol 178, 5897-5903 (1996).

Reeves, R. E., Warren, L. G., Susskind, B. and Lo, H. S. An energy-conserving
pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a
new acetate thiokinase. J Biol Chem 252, 726-731 (1977).

Diamond, L. S., Harlow, D. R. and Cunnick, C. C. A new medium for the axenic
cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med
Hyg 72, 431-432 (1978).

134



21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Morf, L., Pearson, R. J.,, Wang, A. S. and Singh, U. Robust gene silencing
mediated by antisense small RNAs in the pathogenic protist Entamoeba
histolytica. Nucleic Acids Res 41, 9424-9437 (2013).

Hamann, L., Nickel, R. and Tannich, E. Transfection and continuous expression
of heterologous genes in the protozoan parasite Entamoeba histolytica. Proc Natl
Acad i U SA 92, 8975-8979 (1995).

Vines, R. R,, et al. Stable episomal transfection of Entamoeba histolytica. Mol
Biochem Parasitol 71, 265-267 (1995).

Koushik, A. B., Welter, B. H., Rock, M. L. and Temesvari, L. A. A genomewide
overexpression screen identifies genes involved in the phosphatidylinositol 3-
kinase pathway in the human protozoan parasite Entamoeba histolytica. Eukaryot
Cell 13, 401-411 (2014).

Fowler, M. L., Ingram-Smith, C. J. and Smith, K. S. Direct detection of the
acetate-forming activity of the enzyme acetate kinase. J Vis Exp (2011).

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem
72, 248-254 (1976).

Stoscheck, C. M. Quantitation of protein. Methods Enzymol 182, 50-68 (1990).

Strober, W. 2001. Trypan Blue Exclusion Test of Cell Viability. Curr Prot
Immunol. 21:3B:A.3B.1-A.3B.2

Neubauer, S., et al. LC-MS/M S-based analysis of coenzyme a and short-chain
acyl-coenzyme athioesters. Anal Bioanal Chem 407, 6681-6688 (2015).

Scorneaux, B. and Shryock, T. R. The determination of the cellular volume of
avian, porcine and bovine phagocytes and bovine mammary epithelial cells and its
relationship to uptake of tilmicosin. J Vet Pharmacol Ther 22, 6-12 (1999).

135



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Pineda, E., et al. Roles of acetyl-CoA synthetase (ADP-forming) and acetate
kinase (PP-forming) in ATP and PP; supply in Entamoeba histolytica. Biochim
Biophys Acta 1860, 1163-1172 (2016).

Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. and Macfarlane, G.
T. Short chain fatty acids in human large intestine, portal, hepatic and venous
blood. Gut 28, 1221-1227 (1987).

Watkins, P. A., Maiguel, D., Jia, Z. and Pevsner, J. Evidence for 26 distinct acyl-
CoA synthetase genes in the human genome. J Lipid Res 48, 2736-2750 (2007).

Carman, A. J., Vylkova, S. and Lorenz, M. C. Role of acetyl CoA synthesis and
breakdown in alternative carbon source utilization in Candida albicans. Eukaryot
Cell 7, 1733-1741 (2008).

Lyssiotis, C. A. and Cantley, L. C. Acetate fuels the cancer engine. Cell 159,
1492-1494 (2014).

Dittrich, C. R., Bennett, G. N. and San, K. Y. Characterization of the acetate-
producing pathways in Escherichia coli. Biotechnol Prog 21, 1062-1067 (2005).

Gilchrist, C. A., et al. Impact of intestinal colonization and invasion on the
Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147(2006).

Pace, D. A., Fang, J., Cintron, R., Docampo, M. D. and Moreno, S. N.
Overexpression of a cytosolic pyrophosphatase (TgPPase) reveals aregulatory
role of PP in glycolysis for Toxoplasma gondii. Biochem J 440, 229-240 (2011).

Saavedra, E., Encalada, R., Pineda, E., Jasso-Chavez, R. and Moreno-Sanchez, R.
Glycolysisin Entamoeba histolytica. Biochemical characterization of
recombinant glycolytic enzymes and flux control analysis. FEBSJ 272, 1767-
1783 (2005).

VarelaGomez, M., Moreno-Sanchez, R., Pardo, J. P. and Perez-Montfort, R.
Kinetic mechanism and metabolic role of pyruvate phosphate dikinase from
Entamoeba histolytica. J Biol Chem 279, 54124-54130 (2004).

136



41.

42.

43,

44,

45.

46.

Byers, J. and Eichinger, D. Entamoeba invadens. Restriction of ploidy by colonic
short chain fatty acids. Exp Parasitol 110, 203-206 (2005).

Byers, J., Faigle, W. and Eichinger, D. Colonic short-chain fatty acids inhibit
encystation of Entamoeba invadens. Cell Micraobiol 7, 269-279 (2005).

Byers, J. and Eichinger, D. Acetylation of the Entamoeba histone H4 N-terminal
domain is influenced by short-chain fatty acids that enter trophozoites in a pH-
dependent manner. Int J Parasitol 38, 57-64 (2008).

Eisenberg, T., et al. Nucleocytosolic depletion of the energy metabolite acetyl-
coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19, 431-444
(2014).

Wellen, K. E., et al. ATP-citrate lyase links cellular metabolism to histone
acetylation. Science 324, 1076-1080 (2009).

Gao, X., et al. Acetate functions as an epigenetic metabolite to promote lipid
synthesis under hypoxia. Nat Commun 7, 11960 (2016).

137



CHAPTER IV

CONCLUSIONSAND FUTURE PROSPECTS

Acetate metabolism has attracted increasing attention due to its involvement in
tumorigenesis and metabolic disorders in humans and in pathogenesis. Typically, acetate
excretion and uptake are associated with energy metabolism and utilization as an
alternative carbon source. However, these pathways have aso been linked to histone
acetylation and protein phosphorylation and thus, play arole in regulating gene
expression and activity. Therefore, it isof great interest to further explore these pathways

in depth.

Entamoeba histolytica is a human protozoan parasite which infects around 90
million people each year, causing approximately 50,000-100,000 deaths. Acetateisa
major metabolite produced by E. histolytica during growth on glucose that can be
generated by ACK and ACD (Figure 4.1). Therole of these two enzymesin E. histolytica

metabolism has been the focus of this dissertation.

Physiological function of ERACK

Our results with antisense RNA mediated gene silencing revealed that ACK plays
arole in growth under different conditions. However, the data are not consistent with our
previously hypothesized role for ACK in providing pyrophosphate for glycolysis. An
ACK knockdown strain did show enhanced growth in medium in which glucose and
tryptone were omitted. This suggests ACK may possesses anovel rolein E. histolytica

contrary to initial expectations.
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Currently, RNAseq is underway to characterize the molecular mechanism of the
ACK knockdown phenotype during growth in the absence of glucose and tryptone.
Metabolite analysis of this strain versus the WT under normal growth conditions and in
the absence of glucose and tryptone will be performed to determine whether intracellular
ATP or acetyl-CoA pools are affected. Determination of acetyl phosphate levels within E.
histolytica should also be undertaken. Acetyl phosphate measurements have previously
been done through either an enzyme assay or two-dimensional thin layer chromatography
(-3 However, lability of acetyl phosphate can hinder accurate measurement. Since
EhACK prefersto catalyze the acetate-forming direction of the reaction, examining the
effects on intracellular acetyl phosphate concentrations remains an essential step in

understanding the physiological function of this enzyme.

Another question that has yet to be answered is what provides acetyl phosphate as
the substrate for ACK? At the moment, known acetyl phosphate producing enzymes
have not been identified within E. histolytica. However, in 1954 Harting and Velick®
showed evidence that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from yeast
and rabbit catalyzes the formation of acetyl phosphate from acetaldehyde and inorganic
phosphate. GAPDH is a commonly associated glycolytic enzyme which converts
glyceraldehyde-3-phosphate to glycerate 1, 3-bisphosphate. E. histolytica possesses three
genes encoding GAPDH. Progress is underway to purify recombinant E. histolytica

GAPDH to examine whether it has the ability to produce acetyl phosphate.

Anthony and Spector © have previously shown that Escherichia coli ACK can be

phosphorylated by ATP or acetyl phosphate. A later study showed the E. coli ACK
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phosphoenzyme s catalytically active, being able to transfer the phosphate to ADP or
acetate (. Following up on Anthony and Spector’s research, Fox et al. ® found the ACK
phosphoenzyme can also transfer the phosphate to Enzyme | of Bacterial
phosphotransferase system. This evidence suggested ACK may have an aternative role
asaprotein kinase. This possibility has not been investigated further. This raises the
intriguing question of whether ENACK roleis as a protein kinase, possible in aregulatory
role involving protein phosphorylation. Additional investigation into whether EnACK
can be phosphorylated by PP; or acetyl phosphate and identifying potential
phosphorylation partners could lead to a better understanding of the in vivo role of this

enzyme.
Physiological function of ERACD

ACD gene silencing resulted in areduction in growth compared to WT cells. This
was linked to a decrease of ATP pool in the ACD knockdown strain. The combination of
growth and metabolite analysis supported ACD’s hypothesized role to extend glycolysis
to increase ATP generation, as evidence by decreased growth, decreased intracellular

ATP concentration, and accumulation of acetyl-CoA.

ACD was aso proposed to be able to activate acetate for utilization based on in
vitro kinetic analysis. Unexpectedly, wild-type E. histolytica was found to grow on
propionate but not acetate when glucose was absent from the medium. However, growth
on propionate was impeded in the ACD knockdown strain. This supportsthat ACD is

required for utilization of propionate as an alternative growth substrate in place of
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glucose. Thisis of physiological relevance since E. histolytica infects and inhabits a host

environment abundant in propionate.

Short chain fatty acids have been shown to influence Entamoeba invadens
encystation and histone acetylation 19, E. invadensis a close relative of E. histolytica
and infects and causes similar invasive infection in reptiles. ACD is present in E.
invadens, thus raising the question of whether ACD helped mediate these events.
Regrettably, E. histolytica exhibited undetectable levels of histone acetylation * and a
mechanism to induce encystation under |aboratory conditions has not yet been
established. Thus, investigation into arole for ACD in encystation and histone acetylation
(aswell as the resulting changes in gene regulation) cannot be performed in E. histolytica

at this time and should instead be followed up on in E. invadens.

Since E. histolytica was able to grow on propionate as a growth substrate in the
absence of glucose, metabolite labeling of E. histolytica grown on C*3-propionate may
provide additional insights into propionate metabolism within this parasite. Additionally,
Ramakrishnan et al. *? have devel oped a tetracycline inducible overexpression system
for E. histolytica. An ACD and ACK overexpression study will provide added

perspective in learning about the physiological role of these two enzymes.
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Figure 4.1: Representation of our current understanding of the physiological roles of

EhACK and EhACD in E. histolytica. The pathway shown is the extended glycolytic

pathway present in E. histolyticain which glucose is converted to pyruvate and then to

ethanol and acetate in the extended pathway. Dashed orange arrows embody the

previously hypothesized role for ENACK of providing pyrophosphate. The black boxes

with a question mark represent the unknown origin of acetyl phosphate and the fate of

propionyl-

CoA. PP-PFK: pyrophosphate dependent phosphofructokinase; PPDK:

pyruvate phosphate dikinase; ADHE: bifunctional aldehyde-alcohol dehydrogenase;

ACD: ADP-forming acetyl CoA synthetase; ACK: acetate kinase.
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Basis of ENACK phosphoryl substrate specificity

This research demonstrated E. histolytica ACK’s phosphoryl substrate specificity
is not solely dependent on substrate binding. Based on the structure, EhRACK was found
to lack an adenosine pocket and utilizes Pi/PP; instead of ADP/ATP as for other ACKs.
This was attributed to having several bulkier amino acids blocking the entrance to the
adenosine pocket of ENACK. Even though opening the adenosine pocket did increase
ATP binding to the enzyme, it did not confer activity. Similarly, closure of entranceto
the M. thermophila ACK (MtACK) adenosine pocket did not force a phosphoryl

substrate switch to PP;.

Acetate kinase belongs to the acetate and sugar kinases/Hsc70/actin (ASKHA)
enzyme superfamily. Catalysis within this superfamily is characterized by domain
motion. Using tryptophan fluorescence quenching to study MtACK domain motion,
Gorrell and Ferry™® showed only nucleotide binding caused domain closure. Further
anaysisindicated that MtACK follows a half-site mechanism, where only half of the site

are bound to the ligand at any single moment.

Alterations that opened the ERACK adenosine pocket allowed ATP and ADP to
bind more effectively. However, it is unclear if thisinteraction stimulates domain motion
as would be necessary for enzymatic activity. Progress in this aspect will advance our
understanding of the nature of ENACK substrate specificity and will also improve our

understanding of ACK’s overall enzyme dynamics and catalytic mechanism.
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Currently, EhACK isthe only known ACK ableto utilize pyrophosphate and
inorganic phosphate as substrate. Identification of other PP-dependent ACKswill adin
our efforts to understand phosphoryl substrate selection and utilization by providing
additional amino acid sequences necessary to further identify unique features within PP;-
dependent ACK. Blast searches using ENACK as the query sequence identified four
hypothetical ACKs that share both bulkier amino acid residues within the ADENOSINE
motif and an extended PHOSPHATEZ2 motif with sequence identity and similarity
between 40-46% and 60-66%, respectively (Figure 3.7; refer to Chapter 111 for additional
details). Interestingly, ACK sequences that contain bulkier amino acids within the
ADENOSINE motif correspondingly possess an extended PHOSPHATEZ2 motif. Though
this correlation does not indicate that these are PP;-dependent ACK, this does warrant a

closer examination.
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APPENDIX

SUPPLEMENTAL INFORMATION

APPENDIX A: SUPPLEMENTAL FIGURES OF CHAPTER |1
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Figure Al. Inhibition curves for ENACK wild-type and variant enzymes. Enzymatic
activity was determined for each enzyme in the presence of the indicated concentration of
ADP, ATP, or PP. Activities are plotted as a percentage of the activity observed for the
wild-type enzyme in the absence of inhibitor. Activities are the mean + SD of three
replicates. (A) ADP inhibition in the acetate forming direction and (B) ATP inhibition in
the acetyl-phosphate-forming direction. Symbols for panels A-C: EhRACK wild-type, (0);
EhACK Q32G-M®| variant (e); ENACK Q%2A-M3%A variant, (O0); ENACK D?"A-
RZ4A-Q*2G-M3% variant (m) (except panel C). Symbols for panels D-E: MtACK wild-

type, (0); MtACK G>Q-13%2M variant (e);
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