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ABSTRACT 

Thermal ionization mass spectrometry (TIMS) and alpha spectroscopy are 

powerful analytical techniques for the detection and characterization of Pu samples. 

These techniques are important for efforts in environmental monitoring, nuclear 

safeguards, and nuclear forensics. Measurement sensitivity and accuracy are imperative 

for these efforts. TIMS is internationally recognized as the “gold standard” for Pu 

isotopic analysis. Detection of ultra-trace quantities of Pu, on the order of femtograms, is 

possible with TIMS. Alpha spectroscopy has a long history of use in the detection and 

isotopic analysis of actinides and can be a simpler and less expensive alternative to mass 

spectrometer based techniques. The sensitivity and accuracy of both techniques is highly 

dependent upon the method of sample loading. High quality sample loading is often 

tedious, time consuming, and expensive. In this work, we sought to simplify and improve 

high quality sample loading for TIMS in an effort to expand the utility and improve the 

sensitivity of this technique. During these efforts a promising sample loading method for 

alpha spectroscopy was developed. 

Three improvements were developed for sample loading procedures for isotope 

ratio measurements of ultra-trace quantities of Pu using (TIMS). Firstly, a new filament 

geometry, the “dimple”, was developed. The bead loading method was used for these 

analyses. Beads were loaded with New Brunswick Laboratory certified reference material 

(NBL CRM) Pu128 (239Pu and 242Pu) from an 8M HNO3 matrix. Overall ion counts and 

isotopic ratios measured using the dimpled filament geometry were compared to those 

measured when using the established V-shaped filament geometry. The average number 
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of Pu counts detected when using dimpled filaments was approximately 34% greater than 

ion counts detected using V-shaped filaments. The accuracy and precision of isotopic 

ratio measurements were unaffected by the use of dimpled filaments. The well-like 

geometry of dimpled filaments aids in sample loading and alignment. Additionally, the 

use of dimpled filaments was found to reduce sample losses inside the ion source. Over 

the course of 25 measurements, no sample losses were experienced on dimpled filaments, 

in contrast to 15% total sample loss experienced with v-shaped filaments. 

Secondly, a polymer fiber architecture for TIMS sample loading was developed 

using similar sample loading procedures as those used in bead loading. Fibers with 

diameter of approximately 100 μm were prepared from triethylamine-quaternized-

poly(vinylbenzyl chloride) cross-linked with diazabicyclo[2.2.2]octane. Total ion counts 

(239Pu + 242Pu) and isotope ratios obtained from fiber-loaded filaments were compared to 

those measured bead loading. Fiber loading was found to improve sensitivity, accuracy, 

and precision of isotope ratio measurements of Pu compared to the established resin bead 

loading method, while maintaining its simplicity. The average number of detected Pu+ 

counts was 180% greater and there was a 72% reduction in standard deviation of ratio 

measurements when using fiber loading. An average deviation of 0.0003 (0.033%) from 

the certified isotope ratio value of NBL CRM Pu128 was measured when fiber loading 

versus a deviation of 0.0013 (0.133%) when bead loading. The fiber formation method 

can be extended to other anion-exchange polymer chemistries, and therefore offers a 

convenient platform to investigate the efficacy of novel polymer chemistries in sample 

loading for TIMS.  
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Thirdly, a sample loading procedure was developed that is based on a polymer 

thin film architecture. Rhenium filaments were degassed, dip-coated with a thin (~180 

nm) hydrophobic base layer of poly(vinylbenzyl chloride) (PVBC), and spotted with an 

aqueous solution of triethylamine-quaternized-PVBC and a cross-liking agent 

(diazabicyclo[2.2.2]octane). Spotting resulted in the formation of a toroidal, hydrophilic 

extractive polymer disk surrounded by the hydrophobic base polymer. Thin film coated 

filaments were direct loaded with NBL CRM Pu128 from a 9 M HCl matrix. Aqueous 

sample droplets adhered to the extractive polymer spot, facilitating sample loading. The 

influence of spot thickness upon ion production was investigated. Overall ion counts and 

isotopic ratios obtained from thin film coated filaments were compared to those produced 

by the established resin bead loading method. Isotopic ratios were within error of those 

measured using the bead loading method with few background interferences. The average 

number of detected Pu+ counts was 175% greater when using thin film coated filaments 

with 20-30 µm thick toroidal spots. The use of dimpled filaments further aided sample 

loading by providing a well-shaped substrate to deposit the sample droplet. No sample 

loss was experienced with the thin film loading method over the course of 65 sample 

analyses. Finally, thin films used in this design were found to slow filament aging under 

atmospheric conditions, facilitating the bulk production of filaments for future analyses.  

During this work, an unreported form of rhenium surface oxidation was 

discovered. Rhenium is the most common ionization filament material for Pu analysis by 

TIMS. Degassing is a common preparation technique for rhenium filaments and is 

performed to clean filaments before analysis. Degassing involves resistively heating the 
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filaments under high vacuum to volatilize and degrade contaminants. Collaborators at 

Savannah River National Laboratory reported anecdotally that the use of excessively 

aged filaments (on the order of 2 months of aging in atmosphere after degassing) 

decreased the sensitivity and precision of TIMS analyses. Although optimization studies 

regarding degassing conditions have been reported, little work has been done to 

characterize filament aging after degassing. In this study, the effects of filament aging 

after degassing were explored to determine a “shelf-life” for degassed rhenium filaments, 

and methods to limit filament aging were investigated. Zone-refined rhenium filaments 

were degassed by resistance heating under high vacuum before exposure to ambient 

atmosphere for up to 2 months. After degassing, the nucleation and preferential growth of 

oxo-rhenium crystallites on the surface of polycrystalline rhenium filaments was 

observed by atomic force microscopy and scanning electron microscopy (SEM). 

Compositional analysis of the crystallites was conducted using SEM-Raman 

spectroscopy and SEM energy dispersive X-ray spectroscopy, and grain orientation at the 

metal surface was investigated by electron back-scatter diffraction mapping. Spectra 

collected by SEM-Raman suggest crystallites are composed primarily of perrhenic acid. 

The relative extent of growth and crystallite morphology were found to be grain 

dependent and affected by the dissolution of carbon into filaments during annealing 

(often referred to as carbonization or carburization). Crystallites were observed to 

nucleate in region specific modes and grow over time through transfer of material from 

the surface. The roles of atmospheric humidity and carburization on the oxidation 

characteristics (i.e. aging) of rhenium filaments were studied. Degassed and carburized 
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filaments were aged for up to 79 days under dry and humid conditions, and the growth of 

oxo-rhenium crystallites was investigated intermittently by SEM to construct growth 

profiles. SEM images were analyzed to determine average crystallite size, number 

density, and percent surface coverage. Crystallite growth was found to be suppressed by 

both filament carburization and dry storage conditions (~13% relative humidity). Under 

humid conditions (75% relative humidity), crystallite growth progressed steadily over the 

investigatory period, reaching >2.3% surface coverage within 79 days of aging. Atomic 

ion production of Pu+ was suppressed by approximately 20% and the standard deviation 

of isotope ratio measurements was increased by 170% when filaments with 1% oxide 

surface coverage were used in sample loading. Measurement sensitivity and 

reproducibility are imperative for applications involving ultra-trace analysis of Pu by 

TIMS. These findings offer validation for observations regarding the detrimental effect of 

excessive filament aging post-degassing, improve the understanding of conditions that 

impel the oxidation of rhenium filaments, and provide practical means to suppress the 

growth of oxides. PVBC nanolayers were found to slow the growth of oxo-rhenium 

crystallites on the filament surfaces and may serve as an alternative carbon source for 

filament carburization. 

A novel substrate for the simultaneous concentration of actinides and sample 

preparation for alpha spectroscopy was developed using thin films originally intended for 

TIMS sample loading. Substrate preparation involved forming ultrathin films (10-180 

nm) of quaternary amine anion-exchange polymers on glass and silicon by dip-coating. 

Samples were loaded by submerging the polymer-coated substrates into acidified 
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solutions of Pu or natural water with elevated uranium concentrations. High resolution 

(25-30 keV) alpha spectra were acquired from these substrates under certain loading 

conditions indicating that through further development they may be a useful, inexpensive, 

and potentially field deployable platform serving national security and environmental 

sampling applications. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Mass spectrometry refers to a family of analytical techniques that sort gas phase ions 

based on their mass-to-charge ratio. These techniques generally are used to determine the 

chemical or elemental composition of a sample. Mass spectrometers can be broken into three 

major components: the ion source, the mass analyzer, and the detector(s). Briefly, the sample is 

introduced into the ion source where gas phase ions are created and accelerated into the mass 

analyzer using electric potentials. The gas phase ions are then separated in the mass analyzer 

based on their mass-to-charge ratio. This separation is achieved through the use of magnetic 

fields. Heavier ions with greater momentum will be deflected less by the magnetic field than 

lighter ions (assuming equivalent ion charges). After separation, the ions beams are directed onto 

a detector for counting. Many variations of these three major components have been developed 

over the last 60 years and mass spectrometers have become cornerstone analytical tools in many 

fields.  

In this work, our objective was to improve ion source performance for thermal ionization 

mass spectrometric (TIMS) analysis of ultra-trace quantities of Pu and simplify sample loading. 

TIMS is an older form of mass spectrometry with a relatively simple ion source design. For 

TIMS, the sample is loaded onto a thin metallic filament that is resistively heated to create 

thermal ions of the sample. Despite the apparent simplicity of TIMS ion sources, sample loading 

is often tedious and time consuming, and ionization mechanisms are not well understood. 

Sample loading methods have been shown to influence the sensitivity of TIMS measurements by 

several orders of magnitude [3]. Filament additives, sometimes referred to as “ionization 
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enhancers”, are believed to alter the dominant mechanism of ionization from the filament surface 

[4]. Figure 1.1 graphically illustrates the classic model of thermal ionization and ionization of 

actinides in the presence of carbonaceous additives. It is believed that carbonaceous additives 

lead to the creation of carbide intermediates which stabilize the sample on the ionization surface, 

leading to greater levels of ionization upon decomposition of the carbide [4]. Ionization 

mechanisms in the presence of filament additives have remained theoretical due to the 

difficulties of in situ measurements of chemistries present on filament surfaces during these 

analyses due to high filament temperatures (>1200 °C) and high vacuum (~10-5 Pa). Research 

efforts in this area traditionally have been confined to the implementation of new loading 

methods to increase sensitivity, but fail to truly elucidate the ionization mechanism. Thus, vast 

improvements may still exist for TIMS. 

 

 

Figure 1.1 Classic model of thermal ionization (left) where the vaporized sample is ionized 

through interaction with a thermionically emitted electron, and the proposed ionization 

mechanism for actinides in the presence of carbonaceous filament additives (right). 
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TIMS is used actively in geo- and cosmochronology [5-7], nuclear safeguards, nuclear 

forensics, and environmental monitoring [1, 8, 9]. In these efforts, many sample loading 

procedures have been developed for various analytes. The selection of filament material and 

filament additives depends on the analyte of interest. Table 1.1 shows a survey of TIMS sample 

loading conditions for common analytes. 

 

Table 1.1 A survey of sample loading chemistry, filament materials, and measured ions that has 

been reported in literature for various analytes. Under the category of filament type, (S) refers to 

a single filament assembly, (D) refers to a double filament assembly, and (T) refers to a triple 

filament assembly. Multiple filament assemblies can be used to decouple evaporation and 

ionization processes [1]. 

Atomic 

Number 
Analyte Additives 

Filament 

Type 
Measured 

Ion 
References 

3 Lithium H3BO3 

Ta (S), Re 

(S, D) Li2BO2
+ [10-12] 

 

  H3PO4 
Re (D, T) Li+ [13-18] 

5 Boron CsOH Ta (S) Cs2BO2
+ [19] 

 

  

Graphite, CsCO3, 

H3PO4 (ionization 

depressor, suppresses 

isobarics)[20], mannitol 

(optional) 

Ta (S), Re 

(S) 

Cs2BO2
+ [20-25] 

 

  

Mannitol, graphite, 

Rb2CO3 

Ta (S) 

Rb2BO2
+ [26] 

  None Re (S) BO2
- [27] 

16 Sulfur 

H3PO4, Silica Gel, 

Sample converted to 

As2S3 before loading 

Re (S) 

AsS+ [28-30] 

17 Chlorine 

Graphite (Neutral water 

matrix, Cs2Cl) 

Ta (S) 

Cs2Cl+ [31-34] 

  

AgNO3 
Re 

 

[35] 

19 Potassium H3PO4, Silica Gel  

Ta (S) [aged 

1 month K+ [36] 
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after 

degassing] 

[Re (S),(D) 

and W also 

investigated] 

20 Calcium H3PO4 Ta (S) Ca+ [37] 

 

  Ta2O5 Re (S) Ca+ [38] 

  

None Re (T) Ca+ [39] 

23 Vanadium Graphite 

Re (S) 

[carburized 

with 

graphite] V+ [40] 

24 Chromium 

Silica Gel, H3BO3, Al, 

(HCl matrix) 

Re (S) 

Cr+ [7] 

  

None* (HNO3 matrix, 

Cr(NO3)3*9H2O) 

Re (D) 

Cr+ [41] 

  

*Zinc (enriches 

ionization of light 

isotopes) 

Re (D) 

Cr+ [41] 

26 Iron 

BaF2, AgNO3, (HF 

matrix, FeF3 form) 

Re (D) 

FeF4
- [42] 

  

BaF2, Silver Flouride Re (D) FeF4
- [43] 

  

H3PO4, Al2O3, Silica 

gel 

Re (S) 

Fe+ [44-46] 

28 Nickel 

H3PO4, AlCl3, Fumed 

Silica, (HNO3 matrix, 

NiNO3 form) 

Pt (S)- 

Special 

Cleaning Ni+ [47] 

30 Zinc H3PO4, Silica Gel Re (T) Zn+ [48] 

32 Germanium 

Cellulose Nitrate 

Adhesive (Ge powder 

mixed with adhesive) 

Re (D) 

Ge+ [49] 

37 Rubidium   Re (T) 

 

[50] 

38 Strontium 

H3PO4, TaF5 (HCl 

matrix) 

Re (S) 

Sr+ [51] 

  

H3PO4 (HCl matrix) Re (D) Sr+ [52] 

40 Zirconium None (HNO3 matrix) Re (D) Zr+ [53] 

42 Molybdenum      

43 Technetium 

Collodion, Amyl 

Acetate, Anion-

Exchange Resin Bead  

Re (S) 

Tc+ [54] 

  

La2O3, Ca(NO3)2, 

NH4OH 

Re (S) 

TcO4
- [55] 

44 Ruthenium    

  48 Cadmium      
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52 Tellurium 

Ba(OH)2, NaOH (HCl 

matrix) 

Re (S), W 

(S) Te- [56] 

55 Cesium None (HNO3 matrix) Re (S, T*) Cs+ [57, 58] 

60 Neodymium 

H3PO4 (HCl matrix, 

NdCl3) 

Re (D, T) 

Nd+ [52, 59-63] 

  

None (HNO3 matrix, 

Nd in nitric form) 

Re (D) 

Nd+ [64] 

62 Samarium H3PO4 (HCl matrix) Re (D) Sm+ [63] 

63 Europium None (HNO3 matrix) Re (T) Eu+ [65] 

74 Tungsten La2O3, Gd2O3, O2 (g) 

Re (S) [Ta, 

Pt also 

investigated] WO3
- [66] 

75 Rhenium   

Pt (S), Ta 

(S) ReO4
- [67] 

76 Osmium Ba(OH)2, Na (optional) Pt (S) OsO3
- [67] 

  

La2O3 Pt (S) OsO3
- [67] 

77 Iridium    

  

82 Lead 

H3PO4, Silica Gel/Acid 

Colloid (HNO3 matrix 

for natural samples) 

Re (S) 

Pb+ [68-73] 

88 Radium    

  90 Thorium H3PO4, Graphite Re (S) Th+ [74] 

  Graphite (Aquadaq) Re (S) Th+ [75] 

  

Graphite, Ir Re (S) Th+ [75] 

  

H3BO3 Re (T) Th+ [75] 

91 Protactinium Graphite  Re (S) Pa+ [76] 

 

 In this work, we are concerned with the analysis of Pu by TIMS. Pu contamination is 

widespread in the environment primarily arising from atmospheric and oceanic nuclear weapons 

testing [77]. Global fallout contamination is further exacerbated by localized contamination from 

nuclear weapons production, reprocessing of irradiated fuel, disposal of nuclear waste, 

commercial nuclear operations, and nuclear accidents such as Chernobyl and those at the Tomsk-

Seversk nuclear facility [78, 79]. Although global contamination of Pu is typically at trace levels, 

the radiotoxicity and persistence of many of its isotopes are of great concern to public health and 

safety. In addition, the isotopic signature of Pu can reveal the source of the contamination, a 

critical component in nuclear forensic measurements, health risk assessments, environmental fate 
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and transport systems, geologic dating, and nuclear safeguard measurements [80]. The isotopic 

ratio of 239Pu/240Pu can differentiate between Pu sources such as global fallout from weapons 

testing; undetonated weapon grade sources of Pu, spent nuclear fuel, and from failures at 

commercial nuclear reactors [2]. As such, it is desirable to have validated analytical techniques 

that can accurately and efficiently quantify the Pu concentration in a sample as well as its 

isotopic composition. Table 1.2 shows isotopic content of Pu from various sources. 

1.2 Methods of Pu analysis 

Alpha spectroscopy is commonly used to quantify alpha emitting radionuclides [81]. 

While this technique is powerful, it does not provide the necessary resolution to readily 

determine the isotopic 239Pu/240Pu ratio due to the small differences in alpha emission energy 

[82]. Furthermore, even if peak deconstruction is used to resolve the 239Pu and 240Pu alpha peaks, 

the levels are often so low that the sample must be counted for days to obtain the necessary  

 

Table 1.2 The distribution of Pu isotopes from various sources [2]. Determining the isotopic 

content of a Pu sample can aid in determination of the sample source. 

Pu source 238Pu 239Pu 240Pu 241Pu 242Pu 

Global fallout, northern 

hemisphere (average)  
83.5 15 1.2 0.3 

Commercial light water reactor: 

20 GWd/t burn-up 
0.5 73.5 20 5 1 

Commercial light water reactor: 

30 GWd/t burn-up 
1 60 22 13 4 

Commercial light water reactor: 

60 GWd/t burn-up 
4.4 46.3 24.9 12.7 11.7 

Chernobyl nuclear accident 0.21 66.2 21.98 4.7 1.2 

Weapons grade, <1 GWd/t burn-

up 
0.04 93.3 6 0.6 0.04 

Nagasaki, nuclear explosion 1945   94.5 5.5     
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number of counts for statistical purposes [83]. Mass spectrometric techniques are the most 

powerful analytical tools for ultra-trace isotopic analysis of stable isotopes or radionuclides with 

long half-lives [2] and can determine the composition of Pu isotopes accurately in trace level 

environmental samples [1, 8]. TIMS provides one of the lowest detection limits for Pu analysis 

and is capable of detecting Pu on the femtogram scale [83]. Although inductively coupled 

plasma-mass spectrometry (ICP-MS) has achieved comparable detection limits for certain 

elements, it has yet to achieve the detection limit for Pu analysis that TIMS maintains [2]. 

Additionally, the accuracy of ICP-MS analysis of Pu is hindered by the presence of 238U, which 

interferes with the measurement of 239Pu by the formation of the isobaric 238UH+ ion in the 

plasma source [83]. Finally, as gaseous radioactive fumes are produced during the operation of 

an ICP-MS, implementation of an ICP-MS requires additional radioprotective measures [8]. 

Despite these shortcomings, ICP-MS generally is seen as a complimentary method to TIMS and 

is used routinely for bulk analysis of environmental samples and determination of elemental 

impurities that provide information related to material origin and processing history [8]. In 

general, TIMS is used for measurements requiring high sensitivity and accuracy [84]. 

Accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have 

been shown to provide sensitivity for Pu that is comparable to TIMS [2]; however, the usefulness 

of AMS is limited by expense and lack of available tandem accelerators [83, 85], and no RIMS 

systems are commercially available [86]. Table 1.3 shows a comparison of reported Pu detection 

limits for various analytical techniques. 
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Table 1.3 A comparison of Pu detection limits for various techniques [2]. The detection limit for 

ICP-MS is reported for a quadrupole system. 

Analytical 

Technique 

Pu Detection Limit 

[g] 

α - Spec. 10-11 – 10-13 

ICP - MS 10-11 

RIMS 10-15 – 10-16 

AMS 10-15 – 10-17 

TIMS 10-15 – 10-17 

 

1.3 TIMS sample loading methods for Pu 

1.3.1 Direct loading 

TIMS often is selected as an analytical tool due to a need for high levels of sensitivity. 

Since sample loading methods effect the sensitivity of TIMS measurements, optimization of 

these methods has been the subject of many investigations. Direct loading is the simplest but 

most primitive form of sample loading. In direct loading, a small volume (0.5-2 µL) is deposited 

directly onto a degassed filament with the use of a micropipette and allowed dry. Drying may be 

expedited using a heat lamp or by resistively heating the filament [3]. Total efficiencies (atoms 

loaded to atoms detected) are typically less than 0.1% for direct loading [2], providing an 

experimental detection limit for 239Pu of approximately 1011 atoms [3]. Direct loading onto a 

freshly degassed filament often causes the solution to spread across the filament. This outcome is 

undesirable as it causes spreading in the resulting ion beam during operation and a lower 

throughput of ions into the spectrometer. Anecdotal evidence suggests that freshly degassed 

filaments should be allowed to sit for several weeks (when direct loading onto bare filaments) to 

allow for a small degree of oxidation to occur on the rhenium surface. The ingrowth of rhenium 

oxide helps to keep the solution stationary and not spread across the filament. Direct loading 
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commonly is used when a large amount of sample is available [87]. Trace level samples require 

lengthier operation times and alternative loading techniques to obtain reliable data.  

1.3.2 Electrodeposition 

Electrodeposition of an analyte directly onto a metallic substrate has been used 

extensively in alpha spectroscopy analyses as it can be performed on many different ions [88]. 

Electrodeposition produces a thin, uniform layer of analyte, which is essential for making high 

resolution measurements. Electrodeposition also has been used in TIMS analyses; however, not 

nearly as universally as the other loading methods. A variety of parameters such as current, time, 

temperature, solution volume, distance between electrodes, pH, buffering solution, and 

electrolyte concentration will affect the quality and yield of the samples and so these parameters 

must be chosen carefully depending upon the analyte of interest. When optimized, deposition 

yields generally exceed 85% for actinides from purified samples [88-94]. Since optimization 

varies depending upon the analyte, extensive sample purification is often necessary to produce 

high yields and a quality spectrum free of interferences. Purification is especially important for 

environmental samples that contain a host of ions and organic matter which must be removed 

prior to deposition. Small concentrations of organic carbon drastically reduce deposition yields, 

and thus wet-ashing with nitric acid is a necessary step for environmental samples to remove 

organics [92]. 

Electrodeposition provides slightly higher ionization efficiencies than the direct loading 

method and aids in further purification from the sample matrix, especially for ions such as Na 

and K that are often difficult to remove [89]. The addition of an overcoat of Re or Pt further 

increases ionization efficiency and reduces the effect of isotopic fractionation [2, 84]. The 

addition of an overcoat is performed as a subsequent electrodeposition step, as sputtering of the 
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metal to form the overcoat often exhibits poor reproducibility in thickness and consequently poor 

reproducibility in the measurement [89]. 

U, Pu, and other actinides are deposited most commonly from a buffered ammonium 

sulfate solution (Talvitie method), although ammonium chloride, ammonium oxalate, and 

dimethylsulfoxide have been used [89-92, 94, 95]. In the Talvitie method, electrodeposition takes 

place from a 0.5-1.0 M ammonium sulfate solution that is adjusted to pH 2.0-2.3 [95]. 

Concentrated base (typically NH4OH) is used to adjust the pH prior to deposition. The addition 

of concentrated base can cause localized areas of increased pH prior to thorough mixing, which 

can induce hydrolysis or polymerization of Pu, resulting in reduced yields. To combat this 

problem during Pu deposition, a small amount (<0.01 M) of chelating agent such as ethylene 

diamine tetraacetic acid (EDTA), diethyl triamino pentaacetic acid (DTPA), or nitrile triacetic 

acid (NTA) may be added to prevent these undesirable reactions [91, 95]. 

1.3.3 Bead loading 

Ion-exchange resin bead loading has long been used in TIMS as it reproducibly provides 

one of the highest ionization efficiencies and produces a stable ion beam [4, 84]. This sample 

loading technique was the model system for our investigations and is discussed extensively in 

chapter 2, so the details of this method will not be introduced here. 

1.3.4 Micro porous ion emitter 

The micro porous ion emitter (PIE) has been developed recently to take advantage of the 

multitude of advancements for increased ionization efficiency in TIMS operation while 

maintaining good reproducibility in the measurement. The PIE consists of a 50/50 (w/w) mixture 

of rhenium and platinum powders combined with hot binder glue. The mixture is drawn into a 

syringe and extruded into a small diameter rope and allowed to cool. Prior to its use, the cooled 
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extruded mixture is cut with a scalpel into ~100 µm thick slices and positioned in the center of a 

rhenium filament. The PIE is initially attached to the filament by heating to 150 ˚C for 1 minute 

in a convection oven. A subsequent heat treatment is performed by heating the filaments with the 

attached PIE under vacuum to 1900 ˚C over a span of 15 minutes. Once the temperature is 

reached it is held at this temperature for 20 minutes to volatilize the binder glue and to melt the 

platinum (MP = 1768 ˚C). The melted platinum alloys with the rhenium and sinters the PIE to 

the filament. After the heat treatment, a highly porous matrix sintered to the rhenium filament is 

available for use in TIMS analyses. To provide sites for analyte binding, an ion-exchange 

polymer is wicked into the porous structure and allowed to dry. Often it is necessary to dilute the 

ion-exchange polymer to reduce its viscosity. The reduction in viscosity allows for appropriate 

capillary action to wick the polymer into the structure. Once the polymer is dried, the analyte is 

wicked into the PIE and allowed to dry. The sample is then ready for analysis.  

The PIE pore size was determined to be a function of the Re powder since the Pt powder 

melts and alloys with the Re during preparation of the PIE. It was discovered that the smallest 

mesh Re powder produced a more compact PIE, and that the sample utilization efficiency was 

higher and more reproducible under these conditions [84]. The highly porous structure brings the 

analyte into closer contact with the metal allowing for more interactions between the volatilized 

element of interest and the hot metal surface of the PIE, increasing the chances of ionization as 

the gaseous analyte moves out of the PIE framework. The sintering of the PIE to the filament 

assures the matrix will not move or become dislodged from the filament during operation as 

sometimes occurs with the bead loading method. Additionally, the work function of Pt (5.65 eV) 

is higher than rhenium (4.96 eV) or rhenium carbide (5.25-5.36 eV), which is advantageous for 

increased formation of ions [84, 96, 97].   
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Early investigation by Delmore showed the PIE outperformed the bead loading method 

for uranium analyses [96]. Analyses with PIEs resulted in 2% ionization efficiency on average, a 

factor of 4 increase over that obtained from analyses of resin beads amended with uranium [2, 

84, 96]; however, the ionization efficiency was not improved for Pu analysis. On average, Pu 

sample utilization efficiency was only 0.8% with the PIE, lower than the average of 1.2% with 

the bead loading method [96]. This outcome was perplexing as the ionization potential for Pu 

(6.06 eV) is lower than that of U (6.19 eV), and, therefore, Pu should undergo ion formation 

more readily. By varying the soaking times of the resin beads (in Pu bearing 8 M HNO3) it was 

found that longer soaking times increased the ionization efficiency. It was hypothesized that the 

longer soaking times allowed the analyte to diffuse further into the bead structure, which aided in 

carbide formation upon pyrolysis of the resin bead. This hypothesis was tested by exploring the 

relative ionization efficiencies of praseodymium and lutetium. These two lanthanide elements 

were chosen due to their similar ionization potentials (5.464 eV for praseodymium and 5.426 eV 

for lutetium) but large mass difference within the lanthanide elements. When the sample 

preparation method for converting the analyte to the carbide was varied, the ion intensity for 

lutetium varied by up to two orders of magnitude, while the ion intensity for praseodymium 

remained essentially constant [96]. The variation in sample utilization efficiency between the 

elements was attributed to the ease with which the analyte underwent carbide formation (which 

is believed to increase ionization efficiency as will be discussed in chapter 2). It was discovered 

that praseodymium formed anionic nitrate complexes; whereas lutetium did not, and so only 

praseodymium would chemically associate with the anion-exchange polymer within the PIE. 

This interesting observation led to the conclusion that the analyte needs to be associated with the 

carbon matrix to efficiently convert the analyte to the carbide [96]. Unfortunately, funding for 
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PIE research ran out before this hypothesis could be tested. Research into the PIE design has 

since been continued at Los Alamos National Laboratory with additional funding. 

1.4 Isotope dilution 

Frequently in TIMS analyses the isotope of interest is present with a concentration near 

the detection limit of the instrument. This makes quantification difficult, if not impossible, and 

adds considerable uncertainty. The technique of isotope dilution often is used in these cases to 

increase the detector signal through the addition of a well characterized sample. A spike of 

known isotopic composition and concentration (often a certified reference material) is added to 

the sample and allowed to equilibrate. After equilibration, the “new” isotope ratio (spike + 

natural sample) is measured by mass spectrometry. Deviation from the certified isotope ratio of 

the spike solution is attributed to the isotopic composition of the sample [98]. When performed 

properly, isotope dilution can provide precise measurements with a relative standard deviation of 

<0.1% for minor isotopes and <0.05% for major isotopes [80, 98]. 

1.5 Dissertation structure 

In this dissertation, I report work towards improving sample loading of Pu for analysis by 

TIMS and alpha spectroscopy. Chapter 2 discusses the evolution of a thin film loading strategy 

for TIMS. Chapter 3 discusses our discovery of an unreported form of rhenium surface oxidation 

and the effect of rhenium filament oxidation on TIMS analyses. Chapter 4 discusses the use of 

ultra-thin films for simultaneous concentration of radionuclides and sample preparation for alpha 

spectroscopy. Chapter 5 discusses our conclusions and my recommendations for future 

investigations. 

  



 14 

CHAPTER TWO 

DEVELOPMENT OF IMPROVED SAMPLE LOADING TECHNIQUES FOR THERMAL 

IONIZATION MASS SPECTROMETRY 

 

2.1 Introduction 

Thermal ionization mass spectrometry (TIMS) with isotope dilution is recognized 

internationally as the gold standard for obtaining isotopic ratios and mass amounts of Pu [1]. 

Isotopic analysis of ultra-trace quantities of Pu is possible by TIMS [83, 99], a technique that 

remains important in the fields of nuclear safeguards [8], nuclear forensics [100], and 

environmental monitoring [101]. TIMS analysis, while expensive and time consuming, is used 

for analyses requiring high levels of sensitivity and accuracy [84]. Sample preparation 

techniques have a large influence on Pu detection limits by TIMS (direct loading ≈ 1011 atoms; 

electroplating ≈ 1010 atoms; resin bead loading ≈ 107 atoms) [3] and, in some cases, contribute 

significantly to the time investment associated with analysis [80]. 

Use of carbon-based additives in sample preparation methods for the thermal ionization 

of actinides dates back to at least the 1960s, when carbon addition was identified as a means to 

suppress sample oxidation in early vacuum systems [102]. Since this early development, 

methods of carbon incorporation have evolved and carbon-based additives are believed to 

provide at least three additional benefits to sample utilization:  

 

1) Carbonaceous additives promote the formation of Pu-carbides [103]. The conversion of Pu to 

the carbide form is believed to stabilize the sample against thermal ionization, resulting in 

ionization occurring at elevated temperatures [4]. As described by the Saha-Langmuir equation 
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(equation 2.1) [104], when the difference between the work function of a surface and the 

ionization energy of the deposited sample is negative (rhenium work function ≈ 4.7 eV [105]; Pu 

first ionization = 6.06 eV [96]), thermal ionization efficiency is positively related to the 

temperature of ionization; therefore, ion production occurring at elevated temperatures vis-à-vis 

Pu carbide formation results in increased ionization efficiency.  

𝑛+

𝑛0
=

𝑔+

𝑔0
𝑒

𝑊−𝐼

𝑘𝑇          (2.1) 

n+/n0 is ionization efficiency, g+/g0 is the ratio of statistical weights of the ionic and atomic 

states, W is the work function of the ionization surface, I is the ionization energy of the sample, 

T is the temperature of ionization, and k is the Boltzmann constant. 

 

2) “Carburization” or “carbonation” of rhenium filaments provides a more favorable surface for 

sample ionization to occur[106]. In thermal ionization processes, the work function of an 

ionization surface is related exponentially to ionization efficiency (equation 2.1); therefore, high 

work function materials are desired in the construction of TIMS ionization filaments (for the 

production of positive ions, referred to as P-TIMS). Rhenium is a preferred filament material for 

TIMS analysis of Pu, in part to its high work function [107], which can be increased further 

through carbon dissolution at high temperatures (>1500°C)[108]. Modern carburization 

processes often involve exposing rhenium filaments, under vacuum, to volatile organic 

compounds while restively heating the filaments [106, 109]. This process is estimated to increase 

the average work function of polycrystalline rhenium by ~0.4 eV [110]. Localized filament 

carburization also may occur with methods such as “bead loading”, where small (40–200 μm) 

polymer beads are affixed directly upon rhenium ionization filaments [111]. Other carbonaceous 

additives, such as collodion, aquadag, and graphite, which are applied directly to the filament 
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before analysis, have been tested for use in Pu analysis by TIMS[106] and will contribute to 

filament carburization when heated[112].  

 

3) Extractive polymeric materials, such as anion-exchange resin beads, are capable of 

concentrating the sample into a geometrically small region on the ionization surface, producing a 

narrower ion beam [111]. This aides in ion-beam focusing, resulting in increased ion 

transmission into the mass spectrometer [84]. Bead loading, involving extraction of Pu on a 

small exchange resin beads [113], has shown improved ionization efficiency in comparison to 

more dispersed means of sample loading, such as electrodeposition and simple direct loading [3]. 

Anion-exchange resins often are used in the cases of Pu sample loading, as Pu readily forms an 

anionic complex in concentrated nitric [114] and hydrochloric acid [115].  

 

Various filament materials have been reported in the literature for use in TIMS systems, 

and rhenium has been the preferred material in the low-level analysis of Pu [2]. Platinum has a 

higher work function than rhenium, but its melting point is close to ionization temperatures for 

Pu. Tungsten has better thermal properties than rhenium, but a lower work function. Efforts have 

been made to utilize platinum, due to its high work function, in platinum/rhenium composite 

filaments [9] and porous ion emitters [84]. Composite filaments were prepared by electroplating 

platinum over a loaded rhenium filament (with the Pu sample first loaded onto the rhenium 

filament by electroplating), and porous ion emitters include platinum in a dispersion with 

rhenium, which is sintered onto rhenium filaments forming a porous bimetallic structure [85]. 

Other metallic additives, such as gold and silver, also have been tested as coating materials 

[116].  
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Ion source geometries other than flat ribbon filaments have been studied in efforts to 

increase ion yields and focus ions emitted from the ion source. Modified filament designs have 

aimed at increasing contact, or the number of interactions, between the sample atoms and the 

ionization surface. In TIMS analysis of Pu, the majority of the loaded sample is emitted from the 

filament as neutral gas atoms (ionization efficiency: direct loading ≈ 0.01 - 0.1%; resin bead 

loading ≈ 0.1 – 1.0%) [2]. By loading the sample in a concave ionization source, neutral gas 

atoms emitted from the initial point of loading have opportunities to interact with the ionization 

surface multiple times. In one design, the cavity source, high ionization efficiencies (~10%) 

relative to other methods were achieved by loading the Pu sample into the back of a capped 

rhenium tube heated by an electron gun [117]. It is theorized that neutral gas atoms produced at 

the closed end of the tube will scatter along the inside of the tube, thus having multiple 

opportunities to collide with the tube surface and become ionized. Porous ion emitter designs 

have emulated this concept by creating micro-porous rhenium structures on electrically heated 

filaments [84]. Other ion source geometries include the “boat” or V-shaped filament, where 

rhenium ribbon is crimped into a trough shape. V-shaped filaments have been shown to increase 

ion focusing [118] and aid in sample loading [106]. 

The goals for this work were to simplify sample loading for TIMS analysis of Pu while 

retaining the sensitivity afforded by the established bead loading method and eliminate sample 

loss often experienced with the bead loading method (up to 25% in some cases [84]). Aggarwal 

et al. recently reported a membrane-based method of sample loading utilizing phosphate-bearing 

extractant polymers [119]. Two methods of membrane loading are reported by Aggarwal et al.: 

1) membrane sections were submerged in sample-bearing solution before washing and being 

placed onto filaments; and 2) membrane sections were loaded in solution, washed, then held in 
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contact with the filament by hand while slowly heating the filament, melting and depositing the 

sample bearing polymer onto the filament. Although novel, these loading methods result in a 

more dispersed ion production region and lower sensitivity than in the case of bead loading. 

Additionally, membrane sections must carefully be manipulated by hand after exposure to 

radioisotopes, a challenge shared with the bead loading method. In this work, we sought to 

develop a filament pre-coating that retains the measurement sensitivity and accuracy afforded by 

the bead-loading method while also making direct loading by pipette possible, eliminating the 

need to directly handle and position radioisotope bearing anion-exchange material.  

It was hypothesized that the introduction of a thin film of an extraction medium directly 

onto the rhenium ribbon would facilitate sample loading and eliminate sample loss due to 

explosive decompression. Explosive decompression of anion-exchange resin beads during 

heating (due to entrapped water) has been proposed as a possible mechanism by which high 

sample losses occur with the bead loading method. It was theorized that thin films would be 

better suited to releasing entrapped gasses than highly cross-linked resin beads. Additionally, the 

planar geometry of the thin film will ensure close proximity of the sample to the filament 

surface, potentially increasing the efficiency of the sample ionization as more of the sample may 

interact with the ionization surface. Furthermore, application of a thin film extractant would 

allow the use of alternative rhenium ribbon physical geometries that will increase the ionization 

of the neutral gas phase Pu atoms. An increase in either evaporation or ionization can increase 

the sensitivity of TIMS analysis. 

In work by Smith et al. [111], it was shown that a graphitic, actinide-bearing residue 

remains on filaments after heating beads, indicating that incomplete dissolution of the anion-

exchange material into rhenium filaments occurs in the case of bead loading. Carbon is 
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understood to be soluble in rhenium at elevated temperatures [108]. It was hypothesized within 

our group that more complete dissolution of anion-exchange material, and thus sample transport 

to the ionization surface, could be achieved with a thin film design through optimization of film 

thickness. One reason for selecting an ion-exchange polymer is that Delmore [96] hypothesized, 

after work on the micro ion source program at Idaho National Laboratory, that the sample 

species must react chemically with carbon additives to effectively be converted to the carbide 

form. A quaternary amine-bearing polymer was selected for Pu loading due to a history of use in 

radiochemistry[120] and because the bead loading methodology uses Q-type resin beads [113]. 

This chapter details the evolution of work on polymer thin-film coatings in the development of 

improved sample loading strategies for TIMS analysis of Pu. 
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2.2 Experimental 

2.2.1 Materials 

The following materials were used as received from Sigma-Aldrich: chloroform (Reagent 

Plus® ≥ 99.8% with 0.5-1.0% ethanol as stabilizer, CAS# 67-66-3); 1,4-

diazabicyclo[2.2.2]octane (DABCO), (Reagent Plus® ≥99%, CAS# 280-57-9); hydrogen 

peroxide solution containing inhibitor (30 wt% in water, CAS# 7722-84-1); poly(vinylbenzyl 

chloride) (PVBC), (60/40 mixture of 3- and 4- isomers CAS# 121961-20-4); and sulfuric acid 

(95-98%, ACS reagent grade, CAS# 7664-93-9). NaCl (reagent grade) was obtained from VWR, 

and NaNO3 and NaNO2 (reagent grade) were obtained from Mallinckrodt.  

Hydrochloric acid (Optima® grade for ultra-trace elemental analysis, CAS# 7647-01-0, 

7732-18-5), nitric acid (Optima® grade for ultra-trace elemental analysis, CAS# 7697-37-2, 

7732-18-5) and triethylamine (TEA, 99%, reagent grade, CAS# 121-44-8) were used as received 

from Fisher Scientific.  

Silicon substrates were acquired from Nova Electronic Materials as 4” N/Ph <100> 1-10 

Ohm-CM 500-550 μm thick SSP prime grade Si wafers diced to 1 cm × 3 cm pieces. Soda-lime 

glass capillaries (5 ± 0.05 µL type II glass) were acquired from Kimble Glass, Inc. Anion-

exchange resin beads were obtained from Bio-Rad (AG® 1-X2 Anion-exchange Resin, 

analytical grade, 50–100 mesh, chloride form). Collodion solution (flexible, CAS# 60-29-7, 

9004-70-0, 8001-79-4, 76-22-2, 64-17-5) was acquired from J.T. Baker. Rhenium ribbons (0.76 

mm W × 0.03 mm H) and wafers (1 cm × 3 cm × 0.1 cm) were made of zone-refined rhenium 

(minimum of 4-pass zone refined; 99.999% Re) from H. Cross Company.  

Pu solutions for TIMS measurements were prepared from a dilution of a primary standard 

containing New Brunswick Laboratory (NBL) certified reference material (CRM) 128 with a 
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certified  239Pu/242Pu atom ratio of 0.99937 ± 0.00026 (determined October 1, 1984) at Savannah 

River National Laboratory (SRNL). Based on the half-lives of 239Pu and 242Pu, the approximated 

239Pu/242Pu ratio would be 0.9985 on October 1, 2017. The decay corrected 239Pu/242Pu ratio 

(October 1, 2017) was used for calculating the deviation of measured ratios from the certified 

value. Two sources of Pu were used at Clemson University for uptake and kinetic experiments. 

A 238Pu source was obtained from Eckert and Zeigler Isotope Products (Valencia, CA), and, for 

higher Pu mass loading experiments, certified reference material 130 (CRM 130) from New 

Brunswick Laboratory containing >99% 242Pu by mass was used. Pu solutions at Clemson 

University were prepared using ultrapure deionized (DI) water from an Elga Purelab Flex 

system.  

DI water with a resistance of 18.2 MΩ prepared from distilled water that was passed 

through a Milli-Q water purification system (EMD-Millipore) was used for polymer preparation 

and deposition. 

 

2.2.2 Construction and degassing of rhenium ionization filament assemblies 

Degassing was performed prior to sample loading to clean filaments. Briefly, by heating 

filaments to high temperatures under vacuum, contaminates such as uranium and halogens can be 

driven from the filaments, thereby reducing measurement interferences. Rhenium strips (0.76 × 

0.03 × 15.9 mm) were cut and spot-welded onto posts for electrical heating at SRNL where the 

TIMS system and degassing chamber reside. After mounting, filaments were crimped into either 

standard V-shapes, described elsewhere [118, 121] and commonly used at SRNL, or a novel 

filament geometry, referred to as the “dimpled” geometry, that was developed for this work. 

Figure 2.1 shows an image of V-shaped and dimpled filaments. After crimping, filament 
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degassing was performed in a vacuum chamber at a pressure of around 10-5 Pa. Each sample 

filament was heated incrementally from 0.5 Amps to 3.0 Amps using 0.5 Amp increments lasting 

15 min each with 15 min cooling periods at 0 Amps between each step. Filaments were held at 

3.0 Amps for a total time of 45 min, consisting of three 15 min heating periods and two 

intermittent 15 min cooling periods at 0 Amps. After the heating/cooling cycles were completed, 

the filaments were allowed to cool under vacuum at 0 Amps for at least 2 h before removing 

from the degassing chamber. Pyrometry was used to approximate filament temperatures at the 

conditions used for degassing. Three Amps of filament current was found to correspond to a 

filament temperature of approximately 1460 °C. Rhenium filament oxidation arising from 

atmospheric exposure has been shown to negatively impact the ionization efficiency and the 

precision of isotope ratio measurements of Pu [122], therefore, all filaments were used for 

analysis within 1 week of degassing when no filament coating was applied. In cases where 

polymer coating was applied to degassed filaments (vide infra), the coatings were deposited 

within 1 week of degassing, unless this was logistically impossible. 

 

Figure 2.1 a) Traditional “boat” or V-shaped filament design and b) dimpled filament design 

presented in this work. 

a b 
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2.2.3 Silicon and glass substrate preparation for polymer coating 

Silicon substrates (1 cm × 3 cm) were removed from their adhesive backing and etched 

with sample numbers. Glass substrates were prepared by cutting standard borosilicate glass 

slides into approximately 2.5 cm × 2.5 cm squares. Piranha wash solution was prepared by 

slowly adding 1 part 30 wt% hydrogen peroxide to 3 parts concentrated sulfuric acid. (Caution: 

To prepare this solution, hydrogen peroxide was poured slowly into the concentrated sulfuric 

acid under a hood. Piranha solution is a very strong oxidant that may react violently if it comes 

in contact with organics.) Substrates were cleaned first by sonication (Aquasonic 75HT, VWR 

Scientific) with DI water for 15 min. Next, each substrate was placed in either a test-tube with 10 

mL of piranha solution (silicon substrates) or a 100 mL glass jar with 30 mL of piranha solution 

(glass substrates) and heated in a water bath to 85°C for 1 h. The used piranha solution was 

collected for safe disposal, and each test tube with substrate was washed with DI water 3 times 

before 15 min of sonication in DI water. The substrates were washed a final time with DI water 

and dried with compressed nitrogen. 

 

2.2.4 Polymer film formation by dip-coating 

After degassing (in the case of rhenium filaments) or piranha washing (in the case of 

silicon or glass), substrates were dip-coated from solutions of PVBC in chloroform with and 

without the addition of a cross-linker. The thickness of films produced by dip-coating depends 

on solution properties, such as density and viscosity, as well as processing parameters, such as 

the withdrawal rate[123]. To produce a film with a thickness of approximately 120 nm, the 

substrate was withdrawn from a 2 wt% PVBC solution at a withdrawal rate of 340 mm/min using 

a Qualtecs Product Industry QPI-128 dip coater. Figure 2.2 shows the relationship between 
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withdrawal rate and film thickness for different solution polymer concentrations. When 

preparing cross-linked films, DABCO was spiked into the solution immediately before dip-

coating to serve as a cross-linker. The molar amount of DABCO added was limited by 

stoichiometry based on a 1:2 reaction of DABCO to benzyl chloride sites along the PVBC 

chains. A ratio of 18.4 mg DABCO:1 g PVBC was used to prepare films with approximately 5% 

cross-linking. Approximately 10 min after dip-coating, filaments were placed in an 80°C oven 

for 24 h to accelerate cross-linking of the films. A 5% degree of cross-linking was determined to 

be the minimum level of cross-linking to prevent film dissolution in chloroform after baking for 

24 h at 80 °C. Films with 0.5, 1.0, and 2.5% cross-linking also were prepared in this manner but 

were not used in any other experimentation. Film thicknesses were determined with multi-angle 

ellipsometry (described in section 2.2.10). Figure 2.3 shows a graphical representation of the dip-

coating process and the chemicals involved. In some cases, DABCO addition to the dip-coating 

solution was excluded from this procedure to prepare non-cross-linked PVBC films. PVBC films 

with no cross-linking were prepared to determine the influence of DABCO cross-linking on acid 

stability and Pu uptake. 

 

2.2.5 PVBC-DABCO film quaternization process 

 PVBC films cross-linked with DABCO were cast on silicon, glass, and rhenium 

substrates by dip-coating and then submerged in neat TEA or a 5 wt% TEA solution in 

chloroform at room temperature for 48 h to produce quaternary amine functional groups. Figure 

2.4 depicts the reaction between TEA and PVBC. After exposure to TEA, films were removed 

from solution with tweezers and lightly blown dry with a nitrogen gun connected to a 

compressed nitrogen cylinder (regulator pressure of 69–103 kPa). Film thicknesses were 
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measured before and after quaternization by multi-angle ellipsometry, described in section 

2.2.10. 

 

 
 

Figure 2.2 Thickness measurements for PVBC-DABCO films formed by dip-coating from 

chloroform solutions. Percentages in the legend indicate weight percent PVBC in chloroform. 

Directly prior to dip-coating, a solution of DABCO in chloroform was added to the polymer 

solution resulting in a 5% cross-linked film based on stoichiometric amounts of DABCO relative 

to benzyl chloride groups (1:2 reaction). Error bars represent ± 1 standard deviation based on a 

minimum of 5 measurements. 
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Figure 2.3 Dip-coating procedure and resulting film chemistry (PVBC-DABCO cross-linked 

film). A rhenium filament is represented in this illustration but the procedure also was applied to 

silicon and glass substrates. 

 

2.2.6 Formation of localized quaternary amine functionalization within thin films of 

DABCO cross-linked PVBC 

 A method was developed using capillaries to create localized regions of TEA 

quaternization within PVBC-DABCO films. Figure 2.4 shows the chemicals involved and the 

synthetic design. Jigs were constructed from aluminum stock to hold and align capillaries filled 

with a mixture of TEA and chloroform in perpendicular contact with PVBC-DABCO films. 

After coating with a PVBC-DABCO film, rhenium filaments and silicon wafers were mounted 

into the jigs and then placed into a jar containing a reservoir of chloroform (Figure 2.5). The jar 

was sealed and a capillary was threaded through a hole in the lid of the jar and then through 

holes drilled in the jig, aiding in the alignment of the capillary on the substrate surface. Once in 
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place, the capillary was lifted slightly off the surface of the ribbon, and filled with approximately 

2 µL of 5 wt% TEA in chloroform. Once filled, the capillary was lowered slowly to the polymer 

film coated substrate. The capillary was positioned such that the glass was not in direct contact 

with the film, as this would often damage the film, but close enough that a fluid bridge would 

form between the end of the capillary and the polymer coated substrate. The TEA solution 

diffused out of the capillary over the course of 3-4 h to produce a small hydrophilic spot of TEA 

quaternized PVBC-DABCO within the polymer matrix. Capillaries were refilled to produce 

spots with larger diameter. Contact times ranged from 4 to 24 h, with 24 h contact time requiring 

the capillary to be refilled approximately 7 times. This method was used to modify both PVBC-

DABCO coated rhenium filaments and silicon wafers. 

 

2.2.7 Polymer preparation for small toroidal polymer spots 

A 10 wt% solution of PVBC in chloroform was prepared and 0.33 g TEA/g PVBC was 

added while stirring the solution magnetically. This solution was stirred continuously for 

approximately 48 h until TEA-quaternized PVBC separated as a viscous polymer-rich phase. 

The excess chloroform was decanted from the viscous polymer-rich liquid phase and discarded. 

The polymer-rich liquid phase was dried under vacuum (~85 kPa vacuum) for 48 h before being 

ground with a glass stir rod inside the scintillation vial used to perform the quaternization 

reaction and placed under vacuum for an additional 24 h. TEA-quaternized PVBC modified in 

this manner is water soluble. Assuming ideal conversion, 0.33 g TEA/g PVBC results in 

approximately 50% conversion of chlorobenzyl groups to quaternary amine sites. 
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Figure 2.4 Synthetic methods developed to produce chemically stable films with small 

quaternary amine functionalized spots. 
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Figure 2.5 Equipment used to create localized quaternary amine functionalization on PVBC-

DABCO coated substrates (left: silicon substrate, right: rhenium filament assembly) inside 500 

mL glass jars. 

 

2.2.8 Toroidal polymer spot formation using the “needle method” 

Solutions from 0.5 to 15.0 wt% TEA-quaternized PVBC in deionized water were 

prepared alongside solutions of DABCO (0.275 g DABCO/g quaternized PVBC) in DI water. 

The TEA-quaternized PVBC and DABCO solutions were mixed for approximately 1 min 

immediately prior to spotting. Small spots were formed on PVBC-DABCO coated filaments and 

silicon wafers by the “needle method” (illustrated graphically in figure 2.6), which deposited a 

small droplet of the solution onto the PVBC-DABCO films. Based on the dimensions of 

deposited polymer spot (determined by 3-dimensional scanning electron microscopy and atomic 

force microscopy; described in sections 2.2.12 and 2.2.13), droplets formed by the needle 

method are approximately 5–50 nL in volume. Spotted substrates were allowed to dry for 20 min 
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at room temperature before being placed into an 80°C oven for 24 h to accelerate cross-linking 

both within the deposited polymer spot and between singly bound DABCO within the polymer 

spot and chlorobenzyl groups of the PVBC-DABCO film. Cross-linking within polymer spots 

prevents dissolution of the quaternized PVBC spots in aqueous Pu loading solutions, and cross-

linking between singly bound DABCO within the polymer spot and the PVBC-DABCO film 

anchors the spots to the substrate, preventing spot detachment when it is swollen by contact with 

aqueous solutions. Figure 2.6 shows a graphical illustration of the chemistry and dimensions of 

deposited polymer spots. Spot thickness was controlled by manipulating the concentration of 

polymer in the spotting solution, and spot diameter was manipulated by controlling deposited 

droplet volume. 

 

 

Figure 2.6 “Needle method” used to cast small polymer spots onto polymer coated rhenium 

filaments. Conversion values represent ideal conversion based on stoichiometry. 
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2.2.9 Anion-exchange fiber formation 

A 30 wt% PVBC solution in chloroform (10 g total) was prepared alongside a solution of 

DABCO (18.4 mg DABCO/g PVBC) in 0.5 g chloroform. The PVBC and DABCO solutions 

were mixed for approximately 1 min immediately prior to fiber formation. Figure 2.7 illustrates 

the fiber formation method, which involved (a) drawing the PVBC/DABCO solution into a glass 

pipette, depositing 5–20 μL onto aluminum foil, and allowing it to dry for 2 min to a tacky state; 

(b) using the pipette to form a 5 cm long fiber by contacting the tip with the tacky solution, 

slowly drawing the tip upward, and holding the wetted fiber in place for approximately 1 min to 

allow it to dry partially; and (c) applying tension to the fiber after 1 min of drying to keep fibers 

from curling and to reduce fiber diameters. The fiber is held under tension for 1 min before 

cutting both ends with scissors. To attain fiber diameters of approximately 100 μm, the target 

final length of the fiber was 10 cm. After drying for approximately 1 h at room temperature, the 

polymer fiber was heated at 80 °C for 24 h to accelerate cross-linking with DABCO. Figure 2.3 

depicts the reaction between PVBC and DABCO. Fibers were removed from the oven and 

submerged in a solution of 5 wt % TEA in chloroform for 48 h at room temperature. Figure 2.4 

depicts the reaction of TEA with chlorobenzyl sites of PVBC to form quaternary amine sites 

capable of anion exchange. After soaking in the TEA solution, fibers were dried under vacuum 

(~85 kPa vacuum) at room temperature for 2 h. Figure 2.8 shows an image of a PVBC-DABCO-

TEA fiber prepared by this method. 

 



 32 

 

Figure 2.7 Method of forming ion-exchange polymer fibers with glass pipettes: a) 5–20 μL of a 

viscous polymer solution is deposited onto aluminum foil and allowed to dry to a tacky state (~2 

min). b) A pipette is used to draw a fiber from the tacky droplet by contacting the tip and 

drawing upwards. c) After approximately 1 min of drying the fiber is placed under tension, 

increasing its length and narrowing, before drying for 1 min under tension. 

 

 

Figure 2.8 An image of a fiber prepared using the fiber formation method. Note: a fiber with a 

diameter of ~300 µm was imaged due to difficulties imaging thinner fibers without 

magnification. 
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2.2.10 Determination of film thicknesses by ellipsometry 

Film thicknesses were measured by multi-angle, single wavelength ellipsometry 

(Beaglehole Instruments, Picometer). Silicon wafers were used as surrogate substrates for 

thickness determination, as the geometry and roughness of rhenium filaments made direct 

measurements of films deposited on filaments by ellipsometry unreliable. The incident beam was 

produced by a 632.8 He-Ne laser source. Measurements were done at incidence angles from 62° 

to 80° with a step increment of 3°. The reported thickness is an average of five random locations 

on each wafer. A PVBC-silicon dioxide-silicon substrate three-layer model was applied to fit the 

data. PVBC thickness and refractive index based on a Cauchy model were allowed to vary and 

were calculated by IgorPro Software v4.0A. 

 

2.2.11 Optical microscopy of anion-exchange fibers 

Optical microscopy was used to determine the diameter of fibers and select fibers with 

diameters of approximately 100 μm for sample loading. An Amscope B-series binocular 

microscope with an Amscope MU900 USB digital camera and FMA 050 adapter was used to 

capture images of fibers at a magnification of 10x; an image of a fiber is shown in Figure 2.9a. A 

stage micrometer was used to calibrate size measurements and can be seen in Figure 2.9b. Major 

units on the stage micrometer represent 100 μm. Fibers were placed between microscope slides 

for imaging. 
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Figure 2.9 Optical microscopy image of a) ~100 μm diameter polymer fiber before sectioning 

and b) the stage micrometer used to determine the diameter of fibers. Major scale bar increments 

represent 100 μm. 

 

2.2.12 3-Dimensional scanning electron microscopy and scanning electron microscopy 

energy dispersive X-ray spectroscopy  

3-Dimensional scanning electron microscopy (3D SEM) was performed on a Hitachi 

S3400 variable pressure SEM at a pressure of 30 Pa. Variable pressure 3D-SEM was used to 

create 3D profiles of toroidal polymer spots to determine spot dimensions. The following 

instrument settings were used for 3D imaging: 10 mm working distance, 15 kV acceleration 

voltage, 50 μA of probe current, backscatter mode, and a magnification of 100x. Silicon wafers 

that had been dip-coated and deposited with toroidal polymer spots were attached to SEM grids 

with carbon tape. 3D profiles were created using 3-D Image Viewer version 1.01 by combining 

images from four opposing backscatter detectors and calculating dimensions based on shading. 

a 

b 
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SEM imaging in secondary electron mode, SEM backscatter imaging, and SEM-energy 

dispersive X-ray spectroscopy (SEM-EDS) was used to map the elemental composition of 

filaments that broke during analysis. This work was performed at SRNL. A 20 kV acceleration 

voltage and a working distance of ~8.5 mm was used for these analyses. SEM imaging of 

dimpled filaments was performed at Clemson University on a Hitachi SU6600 Variable Pressure 

SEM under high vacuum. These images were collected in secondary electron mode with an 

acceleration voltage of 20 kV and a working distance of ~9.5 mm. 

 

2.2.13 Atomic force microscopy  

Atomic force microscopy (AFM) images were obtained using a Bioscope AFM (Bruker, 

Inc.) with NanoScope III A controller. Silicon cantilevers (MikroMasch, Inc., 

NSC15/Si3N4/AIBS/50) were used as probes for the tapping mode measurements. AFM images 

were taken with 256 × 256 pixel resolution over areas of 1-10000 μm2 at scan rates of 0.25-1.0 

Hz. Toroidal polymer spots were deposited on transparent glass that had been dip-coated with a 

PVBC-DABCO film so that spots could be located using the optical microscope attached 

underneath the AFM stage. The AFM has a maximum Z-range of 7 µm, so only a portion of the 

toroidal polymer spots could be imaged using AFM. 

 

2.2.14 Batch Pu uptake study 

David Locklair performed the work presented in this section using sample substrates that 

I prepared. He carried out the uptake measurements during his graduate studies under the 

advisement of Dr. Brian Powell. Batch Pu uptake experiments performed by David Locklair are 

described in his Master’s Thesis [124]. 
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2.2.15 Determination of binding capacities 

David Locklair performed the work presented in this section using sample substrates that 

I prepared. He carried out the uptake measurements during his graduate studies under the 

advisement of Dr. Brian Powell. Binding capacity experiments performed by David Locklair are 

described in his Master’s Thesis [124]. 

 

2.2.16 Alpha Spectroscopy  

David Locklair performed the majority of the work presented in this section using sample 

substrates that I prepared. He carried out the alpha spectroscopy during his graduate studies 

under the advisement of Dr. Brian Powell. Alpha spectroscopy experiments performed by David 

Locklair are described in his Master’s Thesis [124]. 

 

2.2.17 Acid stability of thin films 

 Rhenium and silicon wafers were dip-coated with PVBC-DABCO films following the 

procedure described in section 2.2.4, and a portion were quaternized with TEA following the 

procedure described in section 2.2.5. After casting, film coated substrates were soaked in DI 

water for 24 h to remove any unreacted TEA or DABCO physically entrapped in the film. 

PVBC-DABCO-TEA films (and PVBC-DABCO) on silicon wafers were exposed to either 8 M 

HNO3 or 9 M HCl by submerging for up to 72 h. After exposure, films were allowed to drip-dry 

(suspended above reservoirs of the respective acid solution) for approximately 24 h. Film 

thicknesses were measured using the procedure described in section 2.2.10 before and after acid 

exposure (only performed with silicon substrates). Polymer coated rhenium wafers (1 cm × 3 cm 
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sheets) were placed in 8 M HNO3 for 5 h. Coated rhenium wafers were weighed and 

photographed before and after exposure to nitric acid. 

 

2.2.18 Bead-loading and TIMS analyses  

The bead loading method is described elsewhere [3] and commonly used by team 

members at SRNL. Four anion-exchange resin beads were contacted in 50 μL of 8 M HNO3 

containing 10 pg of NBL CRM Pu-128 to extract the Pu sample, in the form of a Pu(NO3)6
2- 

anionic complex, into the bead structure. Figure 2.10 shows a depiction of this equilibrium 

reaction. Beads were submerged in solution and agitated using a Tekmar VSR-S10 shaker for a 

minimum of 4 h before being removed and glued to degassed filaments using 10 μL flexible 

collodion solution. The four beads were loaded onto a single filament in a line at the center of a 

V-shaped or dimpled filament. After gluing beads, several filament assemblies were loaded into 

the TIMS sample turret for analysis. Each filament assembly represents one sample. A consistent 

instrument methodology was used for all analyses including alternative sample loading strategies 

described in other sections. 

 

 

Figure 2.10 Equilibrium between Q-type anion exchange resin and Pu(NO3)6
2- in concentrated 

nitric acid solutions. 
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2.2.19 Sorption of Pu onto thin-film coated filaments 

Thin film coated filaments (films prepared with localized TEA quaternization, section 

2.2.6 and toroidal polymer spots, sections 2.2.8) were direct loaded with 10 pg of NBL CRM 

Pu128 from either a 9 M HCl or 8 M HNO3 matrix (5 μL deposited volume) onto the hydrophilic 

region of the film and dried using a heat lamp. In the case of toroidal spot sample preparation, 

loading from an 8 M HNO3 matrix was found to result in degradation of the rhenium substrate 

and subsequent sample loss; therefore, 9 M HCl was used for the majority of these trials. After 

direct loading and drying filament assemblies were placed in the TIMS sample turret and 

analyzed. 

 

2.2.20 Anion-exchange fiber loading 

Fibers were cut into six 2.5 mm sections. Each was placed in 50 μL of 8 M nitric acid 

containing 10 pg of NBL CRM Pu128 and agitated using a Tekmar VSR-S10 shaker for a 

minimum of for 4 h. Thereafter, the Pu loaded fibers were removed from solution and glued to 

degassed V-shaped filaments (degassing described in section 2.2.2) using 5 μL of collodion 

solution. After gluing fibers filament assemblies were placed inside the sample turret of the 

TIMS system.  
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2.3 RESULTS AND DISCUSSION 

2.3.1 Determination of baseline TIMS performance using the established bead-loading 

technique 

 The bead-loading technique described in section 2.2.18 is used regularly by our 

collaborators at SRNL for ultra-low-level isotopic ratio measurements of Pu. As described in 

section 2.1, the method has been in use for several decades and is considered the “gold standard” 

for low-level determination of isotopic ratios and mass amounts of Pu. A major detraction to the 

method is that sample loading for Pu is time-consuming, difficult, and expensive. Collaborators 

at SRNL state that the cost of analysis using this method, when charging external clients, is 

between $1,500 and $2,500 per purified sample. The cost of analysis doubles if sample 

purification is required. Due to the high monetary costs of these measurements, a limited set of 

control samples were analyzed using the standard loading procedure at SRNL. These samples 

were used as a comparative baseline for the performance of alternative sample loading 

techniques, and a summary of these data is shown in table 2.1. 

A performance metric not shown in table 2.1 is sample loss. Of the 7 control samples run, 

one resulted in total sample loss during the tuning phase of analysis due to a filament failure (i.e., 

a broken filament). This represents approximately 15% sample loss for our trials; however, due 

to the small number of control runs, this metric is difficult to quantify statistically for the 

standard method. Up to 25% sample loss has been reported in the literature when using the 

standard bead-loading technique [84]; however, our experienced operator at SRNL has stated 

this figure is closer to 20%. Sample loss when using the bead loading technique can occur either 

from filament failure or bead detachment. To mitigate the latter phenomenon, 4 beads are loaded 

onto filaments at SRNL; however, this practice is believed to reduce the sensitivity of the method 
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as ion production is more dispersed across the filament (as opposed to the case where a single 

bead is loaded) and more of the actinide sample may remain entrapped on the filament in the 

graphitic skeleton that forms when using bead loading [111]. The cause of bead detachment is 

unknown but it has been hypothesized that it is the result of explosive decompression due to the 

vaporization of water entrapped in rigid Dowex anion-exchange resin beads. It also has been 

noted by collaborators at SRNL based on post-run observations of filaments that beads migrate 

from their original location of deposition during the heating process; therefore, beads may simply 

migrate to a filament edge and fall off of the filament. 

 

Table 2.1 TIMS runs conducted using the standard SRNL bead loading method with V-shaped 

rhenium ionization filaments. Ten picograms of NBL CRM Pu128 were loaded onto beads from 

an 8M HNO3 matrix and attached to filaments using a flexible collodion solution. Pu239 + Pu242 

counts refers to the number of Pu atoms detected and represents relative measurement sensitivity. 

Runs that resulted in 0 Pu atom counts due to filament failure are not shown or included in 

statistical calculations reported. 

Sample # Pu239 + Pu242 Counts Pu239 / Pu242 Ratio 

1 369,054 1.001 

2 45,125 1.004 

3 208,767 1.001 

4 166,263 1.003 

5 452,711 0.999 

6 361,867 1 

Average 267,298 1.001 

Standard 

Deviation 152,755 0.002 

Relative 

Standard 

Deviation 57.1 % 0.186 % 
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 Table 2.1 shows that the relative standard deviation in the total counts acquired from a 

series of runs (~57%) is two orders of magnitude greater than the relative standard deviation in 

the measured isotopic ratio (~0.19%). This behavior is typical in TIMS systems, and is why 

isotope dilution is used for quantity measurements (described in Chapter 1). The sample 

utilization (defined as atoms detected per atoms loaded; represented by total measured counts in 

table 2.1) can vary by up to an order of magnitude between samples prepared identically. This 

behavior is well known but not understood at this time. It has been theorized that inter-sample 

variability may be due to the polycrystallinity of rhenium surfaces, as different crystalline planes 

of rhenium exhibit significantly different work functions [105]; however, this theory is not 

supported by studies that have shown that polycrystalline rhenium filament surfaces are highly 

oriented in the basal (0001) direction [125]. The work function of a thermal ionization surface is 

proportional to the ionization efficiency of a loaded analyte, as described in section 2.1. Efforts 

were made in our group to map the orientation of polycrystalline rhenium filament surfaces used 

in this study [126] and are described in chapter 3. Our work also indicated that these surfaces are 

highly oriented in the basal direction with few non-basal grain orientations being present. Non-

basal oriented grains represent a small fraction of the surface and cannot fully account for the 

ubiquitous inter-sample variability in ionization efficiency measured using these analyses. We 

propose an alternative theory [122] regarding this behavior in chapter 3. 

 The average sample utilization efficiency (defined as [atoms loaded / atoms detected] × 

100%) using the standard SRNL bead loading procedure is approximately 0.001% given a 10 pg 

load of Pu standard. Sample utilization is a measure of overall efficiency and is a function of the 

ionization efficiency, instrument ion transferal efficiency, and detection efficiency. Sample 

utilization using the SRNL TIMS system and bead loading procedure is below some efficiencies 
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reported in the literature for the method (approximately 0.1 – 1.0 % overall efficiency [106]). 

This difference is the result of several factors. Most importantly, the SRNL TIMS is operated in 

what is known as a “peak-hopping” (a.k.a. peak –jumping) mode. Figure 2.11 shows a typical 

mass spectrum produced by the SRNL TIMS system used for all analyses in this study. In peak-

hopping mode, the ion detector is physically moved within the apparatus, scanning a mass range 

defined by the physical position of the detector. Ions pass through a magnetic field produced by a 

permanent magnet; therefore, the magnetic field strength is constant during a run and the 

trajectories of ions with a given mass-to-charge ratio (m/z) are constant. Moving the detector 

across the various streams of ions in periodic sweeps scans a defined mass range based on the 

trajectory of the ion beams. Figure 2.12 shows a graphical representation of this concept. Peak-

hopping can also be performed with a static detector by altering the magnetic field strength in the 

mass analyzer or the electrostatic potentials within the system. The width of the peaks shown in 

figure 2.11 are a result of the detector size and slight differences in the trajectory of ions, arising 

from differences in the physical origin of ions and/or differences in kinetic energy. A downside 

to the peak-hopping method of detection is that it inherently leads to loss of some fraction of the 

sample while the detector is out-of-place for a given ion beam. Multi-collector systems have 

been developed in recent year to overcome this limitation and improve overall efficiencies. In 

multi-collector systems, multiple ion detectors are used simultaneously; thus, the detectors do not 

have to be moved and sample atoms are not lost due to the position of the detector. The study 

reporting overall efficiencies from 0.1 to 1.0% used this multiple ion counting strategy to 

improve sample utilization [106]. Differences in ionization efficiency also can arise from the 

type of detector, as these have improved greatly in terms of detection efficiency in recent years 

[1], the use of total evaporation techniques (running a sample to exhaustion) [127], and the 
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efficiency of ion optics within the TIMS system. All trials in this study were limited to a 

maximum of 4 h of analysis time due to operator constraints. Due to these factors, sample 

utilization efficiencies presented in for this body of work do not represent highest achievable 

efficiencies using a given sample loading procedure. A consistent instrument methodology was 

used for all trials to allow for valid comparison of the relative performance of various sample 

loading methods and procedures. 

 

 

 

Figure 2.11 A typical mass spectrum acquired when analyzing NBL CRM Pu128 using the bead 

loading method. NBL CRM Pu128 has a certified Pu239 / Pu242 ratio of 1. To obtain an isotopic 

ratio, counts under each peak are summed and the quotient of counts is taken. Note: no 

interference or peak tailing can be seen in this mass spectrum. Random interferences across the 

entire mass spectrum usually are related to organic interferences, while natural uranium 

contamination usually is identified as a peak at m/z = 238. 
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Figure 2.12 Depiction of a TIMS system operated in “peaking hopping” detection mode with a 

magnetic sector. Low m/z ions are deflected to a greater extent than high m/z ions by the 

constant magnetic field due to differences in momentum. 

 

2.3.2 Effect of the “dimpled” filament geometry on TIMS analyses of ultra-low-level Pu 

samples using the established bead-loading technique 

Thermal ion source geometries used in TIMS analyses have been studied in efforts to 

increase ion yields and focus the transmission of ions into the mass spectrometer [84, 117, 118, 

128]. A goal in some ion source designs has been to increase contact, or the number of 

interactions, between the sample atoms and the ionization surface. In TIMS analyses of Pu, the 

majority of the loaded sample is emitted from the filament as neutral gas atoms (maximum 

ionization efficiency: direct loading ≈ 0.01 - 0.1%; resin bead loading ≈ 0.1 – 1.0%) [2]. By 

loading the sample in a concave thermal ion source, neutral gas atoms have opportunities to 

interact with the ionization surface multiple times [128]. In one design, the cavity source, high 

ionization efficiencies (~10%) relative to other methods were achieved by loading sample-

bearing resin beads into the back of a capped rhenium tube heated by an electron gun [117]. It is 
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theorized that neutral gas atoms produced at the closed end of the tube will scatter along the 

inside of the tube, thus having multiple opportunities to collide with the tube surface and become 

ionized. Porous ion emitter designs have emulated this concept by creating micro-porous 

rhenium structures on electrically heated filaments [84]. Other ion source geometries include the 

V-shaped filament (a.k.a. “boat” or “canoe” type filaments), where the rhenium ribbon is 

crimped into a long channel. V-shaped filaments have been shown to increase ion focusing [118] 

and aid in sample loading [106]. In this study, we investigated the use of a new concave filament 

geometry, the “dimple”. 

 The dimple filament geometry was developed to simplify sample loading and improve 

the performance of thin-film based TIMS sample loading procedures that were under 

development by our group [129], but it has been extended to the bead-loading strategy. It was 

hypothesized that dimpled filaments would improve sample utilization over that of V-shaped 

filaments when employing the bead loading method due to three mechanisms: 1) The more 

concave geometry of dimpled filaments would present greater opportunity for neutral gas atoms 

to interact with the ionization surface after volatilization. 2) The more confined geometry of 

dimples would limit the migration of beads on the ionization surface during analysis, aiding in 

ion focusing and retaining a concentrated ion production region. 3) The cup-shape of dimpled 

filaments would allow for greater direct interaction between beads and the ionization surface. 

Figure 2.1 shows a comparison of the V-shaped and dimpled filament geometries. The crimped 

region of dimpled filaments is limited to the geometric center of the filaments, aiding in sample 

alignment during loading. Proper sample alignment improves transference efficiency of ions into 

the TIMS system. Figure 2.13 shows an SEM image of the crimped region of dimpled filaments. 
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The dimpled region is approximately 400 μm × 400 μm. The small size of dimples helps to 

maintain a concentrated ion source aiding in ion focusing into the mass spectrometer. 

 

 

Figure 2.13 SEM image of the crimped region of a dimpled rhenium filament. 

 

 Dimpled filaments were loaded with beads in the same manner as V-shaped filaments 

and the average sample utilization and isotopic ratios measured using the filament geometries 

were compared. Table 2.2 shows a comparison of ion production (atom counts) between the 

standard V-shaped filament design and dimpled filaments. The average number of Pu counts 

detected using dimpled filaments was approximately 34% greater than that using the standard V-

shaped filament geometry. The average isotope ratio measured for NBL CRM Pu128 when using 

dimpled filaments was comparable to the average ratio measured using V-shaped filaments 

(1.0018 versus 1.0013). More importantly, no sample losses were experienced when beads were 

loaded onto dimpled filaments (25 samples), compared to the 15% sample loss experienced with 

V-shaped filaments (7 samples). Sample loss is a notorious problem when employing the bead 
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loading method [84], so overcoming it represents a major accomplishment. We hypothesize that 

the reduction in sample loss when using dimpled filaments is the result multiple points of, or 

greater, contact between beads and the ionization surface. Additionally, the use of dimpled 

filaments limits the migration of beads on the surface of heated filaments. The frequency and 

necessity of ion beam refocusing was reduced in analyses using dimpled filaments compared to 

cases where V-shaped filaments were used. Inspection of V-shaped filaments post-analysis 

suggest that beads move from their point of deposition when heated in the ion source. This 

behavior was significantly suppressed when dimpled filaments were used. Section 2.3.9 

describes the used of dimpled filaments with the thin film loading strategy. 

 

Table 2.2 A comparison of TIMS performance using the bead-loading method and 10 pg Pu 

loads between the V-shaped and the dimpled filament geometries. Uncertainties represent 95% 

confidence intervals. Runs that resulted in 0 Pu atom counts due to filament failure are not 

shown or included in statistical calculations reported. 

Filament Geometry V-Shaped Dimpled 

Average Detected Pu 

Counts 
267,298 ± 122,229  360,394 ± 69,348 

Standard Deviation in Pu 

Counts (RSD) 
152,755 (57%) 176,908 (49%) 

239Pu/242Pu Ratio 1.0013 ± 0.0015 1.0018 ± 0.0009 

Standard Deviation in 

Isotope Ratio 

Measurements (RSD) 

0.0019 (0.19%) 0.0024 (0.24%) 

Number of Measurements 7 25 

Number of Filament 

Failures 
1 0 
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2.3.3 Development of quaternary amine bearing thin-films for rhenium filament coating 

and characterization of Pu uptake kinetics 

Functionalized films composed of PVBC cross-linked with DABCO and quaternized 

with TEA were prepared by methods described in section 2.2.4 and 2.2.5 on silicon substrates for 

Pu uptake characterization. PVBC-DABCO films cast from 2 wt% PVBC in chloroform solution 

were approximately 120 nm in thickness prior to TEA modification. Film thicknesses increased 

to approximately 180 nm after modification with TEA in chloroform. Substrates modified using 

the “neat TEA” method (with no DABCO cross-linking) were not used in this study as these 

films did not swell in aqueous solutions and there were concerns regarding film dissolution due 

to the lack of cross-linking. TEA does not dissolve or swell PVBC, and so neat-TEA treatment 

could be used to create quaternized films of PVBC without cross-linking. Neat TEA also does 

not swell PVBC-DABCO films (with 5% cross-linking). In the case of neat TEA conversion, we 

have hypothesized that quaternization is limited to a thin layer near the surface of films due to 

the lack of swelling, thus, penetration into the PVBC film. When TEA is mixed with chloroform, 

the mixed solution swells PVBC-DABCO films during the conversion process, creating 

quaternary amine sites within the bulk of the films. This method could not be performed with 

non-cross-linked PVBC films as the TEA/chloroform solutions would dissolve the films.  

 Polymeric films were functionalized with TEA to produce quaternary amine anion-

exchange sites for binding PuCl6
2- and Pu(NO3)6

2- anions. A quaternary amine-bearing polymer 

was selected for Pu loading due to a history of use in radiochemistry [120] and because the bead 

loading methodology uses Q-type resin beads [113]. PVBC is commercially available and offers 

a convenient platform to produce quaternary amine sites from a variety alkyl-amine reagents. 

TEA was selected as the amination reagent due to its ease of use. Unlike trimethylamine, TEA is 
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in a liquid state at room temperature. DABCO, a diamine, was used as a cross-linking agent to 

prevent dissolution of the TEA-quaternized PVBC films when exposed to aqueous solutions. 

Quaternary amine sites are produced in the reaction between DABCO and PVBC; therefore, it 

was theorized that high levels of cross-linking could be achieved without great sacrifice to ion-

exchange capacity or hydrophilicity of the film. PVBC films and PVBC-DABCO films with no 

TEA modification were prepared as controls. PVBC and PVBC-DABCO films are hydrophobic 

while PVBC-DABCO-TEA films are hydrophilic. Five percent cross-linking, based on a 1:2 

reaction of DABCO to chloride sites along the PVBC chains, was determined to be the minimum 

level of cross-linking required to prevent film dissolution in chloroform after baking films at 80 

°C for 24 h. Although the reaction between DABCO and PVBC creates quaternary amine sites, it 

was theorized that by minimizing the level of cross-linking, films with a high degree of swelling 

could be created that would improve uptake kinetics. However, this theory was not tested, as the 

thin-film loading strategy was abandoned early in development as irreconcilable problems were 

identified with the strategy. These issues are discussed in section 2.3.5. Despite the abandonment 

of the initial thin-film loading design, the following work forms the basis of our understanding of 

the PVBC-DABCO-TEA system with regards to anionic-Pu complexation. This general polymer 

formulation was used for all other work towards the development of an alternative sample 

loading strategy for Pu analysis by TIMS. 

In addition to the TEA functionalization, cross-linking of the films by DABCO also 

produces possible binding sites and so the uptake of Pu(IV) was examined for three sets of films. 

The first set was PVBC only. The second set was PVBC with 5% cross-linking by DABCO. The 

third set was PVBC with 5% cross-linking by DABCO and functionalized with TEA. All film 

types were cast on silicon substrates. The decrease in activity of the aqueous phase as determined 
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by ICP-MS and LSC was attributed to the ion exchange of the Pu species onto the polymer. 

Experiments were conducted to ensure that the silicon substrate or container walls were not 

appreciably contributing to Pu uptake from solution.  

Batch uptake experiments are described in detail in David Locklair’s Master’s Thesis 

[124]. The following analyses, discussion, and data are recreated with permission from David 

Locklair. The data were fit to a linear distribution coefficient (Kd) that relates the mass of sorbed 

Pu per kg of sorbent (molPu kg-1
sorbent) to the equilibrium aqueous phase concentration (molPu L

-1 

solution). The concentration of sorbed Pu on the thin-film sorbent ([Pu]solid) is given by equation 

2.2 where [Pu]aq(0) represents the initial Pu concentration at time zero, [Pu]aq(t) is the aqueous Pu 

concentration at equilibrium, V is the volume of the solution (L) and msorbent is the mass of the 

sorbent (kg). The linear distribution coefficient is defined in Eq. (2.3) as the ratio of the 

concentration on the solid at equilibrium ([Pu]solid) to the concentration of Pu in the aqueous 

phase at equilibrium ([Pu]aq(t)). 

 

[𝑃𝑢]𝑠𝑜𝑙𝑖𝑑 =
([𝑃𝑢]𝑎𝑞(0)− [𝑃𝑢]𝑎𝑞(𝑡))∗𝑉

𝑚𝑠𝑜𝑟𝑏𝑒𝑛𝑡
      (2.2) 

𝐾𝑑 =  
[𝑃𝑢]𝑠𝑜𝑙𝑖𝑑

[𝑃𝑢]𝑎𝑞(𝑡)
         (2.3) 

 

The Kd of the 5% cross-linked, TEA functionalized films showed relatively good 

reproducibility with an average Kd of 9070 ± 2960 L kg-1 (shown in figure 2.14). The average 

calculated Kd is slightly lower but comparable to the approximate value of 10000 L kg-1 for 

Dowex 1 anion-exchange resin commonly employed in TIMS measurements. Differences in the 

Kd value calculated from the three replicates in figure 2.14 may be due to sample-to-sample 

variation in the degree of conversion during TEA functionalization or differences in the polymer 
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mass. Determining the mass of polymer films was difficult due to the very low mass of films and 

the hygroscopic nature of these films. It is unknown exactly what conversion was achieved for 

each of the three replicate samples; therefore, an assumed total mass of the film (0.001 g) was 

used in the Kd calculation based on the average mass of 20 films weighed in the presence of 

desiccant. Silica gel desiccant was placed inside the microbalance chamber and the film was 

allowed to equilibrate for ~10 min before recording the mass.  

 

 

 
 

Figure 2.14 Recreated with permission from David Locklair. Sorption isotherm of 238Pu (IV) on 

5% cross-linked films with TEA functionalization. The corresponding Kd calculations were 

10485 L/kg, 9208 L/kg and 7531 L/kg for trial 1, 2, and 3. All R2 values were > 0.999. The 

uncertainty value is given as 2σ. 

 

Uptake of Pu(IV) on the PVBC-DABCO films were examined for comparison and are 

given in Figure 2.15. The PVBC films exhibited virtually no uptake and so are not given in the 
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plot. The data in figure 2.15 are plotted as the average of triplicate measurements and the 

uncertainty is given as 2σ. The data indicate a 103-fold increase in uptake for the PVBC-

DABCO-TEA films. A Kd was not calculated for the PVBC and PVBC-DABCO films due to the 

low uptake onto those films. 

 

 

Figure 2.15 Recreated with permission from David Locklair. Sorption isotherm results for 238Pu 

(IV) PVBC-DABCO-TEA films represented by blue diamonds and PVBC-DABCO films 

represented by red squares. The unfilled blue diamond is from an uptake experiment with CRM 

150 (mainly 242Pu by mass). All data are the average of triplicate measurements and the 

uncertainty is represented as 2σ. The equation for the linear model fit is given by [Pu]solid = 

9057[Pu]aq + 8.62 × 10-10.  

 

The solid-state 238Pu mass was quantified with alpha spectroscopy for comparison to the 

LSC measurements. The LSC data compared very well with the alpha spectroscopy data for the 

1000, 100, and 10 dpm mL-1 solutions. A mass balance was calculated for the Pu systems using 
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the LSC data to calculate the aqueous phase Pu mass and alpha spectroscopy data to calculate the 

bound Pu mass. The sum of the masses from LSC and alpha spectrometry data was divided by 

the known mass of Pu in each system to provide a percent balance. The calculated percent mass 

balances for the 10–1000 dpm mL-1 solutions gave values of 88-100%. The lower working 

concentration of 1 dpm mL-1 did not have enough radioactivity to obtain sufficient LSC counts 

or a good enough alpha spectrum to accurately compare the two methods. 

Figure 2.16 shows a typical alpha spectrum from the 242 Pu batch uptake experiments with 

the PVBC-DABCO-TEA film. This is an excellent quality alpha spectrum with resolutions on 

the order of 25-30 keV, comparable to values obtained from electrodeposited samples for our 

detectors. Alpha spectra for the PVBC and PVBC-DABCO films (not shown) exhibited 

significantly lower count rates by 3 orders of magnitude with considerably poorer spectral 

quality. Chapter 4 discusses our investigation of PVBC-DABCO-TEA films for alpha 

spectroscopy sample preparation. 

 

 

Figure 2.16 Recreated with permission from David Locklair. Alpha spectrum of 5% cross-

linked, TEA functionalized films (PVBC-DABCO-TEA) submerged in CRM (242Pu, 239/240Pu, 

238Pu). 
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Figure 2.17 demonstrates rapid ion exchange under the experimental conditions for both 

acid systems. Equilibrium between the sorbed Pu species and aqueous Pu was reached within 15 

min. The figure is plotted as the fraction of final equilibrium state ([Pu]solid(t) / [Pu]solid(eq)) versus 

the duration of 242Pu exposure. The fraction of final equilibrium state was calculated by 

dividing the solid Pu concentration at the designated time by the solid Pu concentration at the last 

data point (t = 15 min). Values were constant past 15 min, however these data are not plotted for 

simplicity. 

 

 

Fig 2.17 Recreated with permission from David Locklair. Uptake of Pu(NO3)6
2- and Pu(Cl)6

2- on 

poly(vinylbenzyl chloride) functionalized with tri-ethyl amine on silicon substrates as 

determined by ICP-MS measurements of aqueous Pu242 (NBL CRM 130). 
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2.3.4 Determination of binding capacities 

Binding capacity experiments are described in detail in David Locklair’s Master’s Thesis 

[124]. The following analyses, discussion, and data are recreated with permission from David 

Locklair. An experiment was devised to calculate the total binding capacity of the films per unit 

mass. For this experiment, radioactive 36Cl was spiked into a 0.02 M NaCl solution to produce a 

10,000 dpm/mL working stock solution. A functionalized film was submerged in 10 mL of the 

36Cl solution and allowed to equilibrate for 24 h to saturate the binding sites with 36Cl- and Cl-. 

The assumption is that the radioactive chlorine-36 will bind to the polymer with the same molar 

ratio as is present in the solution. The film is then removed from the solution, blotted dry, and 

placed in 10 mL of a 1 M NaNO3 solution for 24 h. The nitrate effectively displaces the bound 

chlorine. Figure 2.18 shows the proposed reaction.  

 

 
 

Figure 2.18 Recreated with permission from David Locklair. Reaction scheme for binding site 

capacity determination. 

 

The nitrate solution was then isolated, and the aqueous 36Cl was measured with LSC. To 

ensure that all of the bound chlorine was displaced, the film was placed in a third solution of 1 M 

Na2SO4. Sulfate is a much stronger nucleophile than Cl- and should displace any remaining 36Cl-. 

The aqueous phase concentrations of both solutions were determined and the binding capacity 
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was back calculated based on the molar ratio of radioactive chlorine to the total chlorine present 

in the system. 

The binding site capacity of PVBC-DABCO-TEA films was found to be 1.25 × 10-4 ± 

1.07 × 10-5 eq g-1
polymer, which is an order of magnitude lower than the Dowex 1 anion-exchange 

resin capacity of 3.1 × 10-3 eq g-1 of resin. The full mass of the polymer film was used in the 

calculations, as the percentage conversion to functionalized anion-exchange polymer is 

unknown. The binding capacity of the Dowex 1 resin reported by the manufacturer was verified 

using the same experimental approach. 

 

2.3.5 Acid stability of quaternary amine bearing films on silicon and rhenium substrates 

The conditions needed to load Pu onto Q-type anion-exchange resin requires exposure to 

high acid concentrations (up to 8 M HNO3 or 9 M HCl). Nitric acid is used more commonly than 

hydrochloric acid in separations involving U and Pu, such as in the industrial scale PUREX 

process that was used extensively in the manufacture of nuclear weapons. Nitric acid is used 

commonly in Pu sample loading for TIMS, and is used in the standard TIMS sample loading 

procedure at SRNL. Pu chemistry is complex, and at near neutral pH many oxidation states of Pu 

can exist simultaneously, including colloidal forms. At very low pH, Pu exists predominately in 

the +IV oxidation state, and at high HNO3 concentrations will form the Pu(NO3)6
2- anion 

allowing for separations with anion-exchange materials. The Pu(NO3)6
2- complex reaches peak 

thermodynamic stability at around 8 M nitric acid. Similarly, in concentrated hydrochloric acid, 

Pu will form the PuCl6
2- anion, reaching a peak thermodynamic stability at 9 M HCl. Due to the 

commonality of its use, 8 M HNO3 was first tested for Pu loading onto anion-exchange polymer 

films.  
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To ensure that high acid concentrations do not destabilize the polymer extractant 

coatings, experiments were done to test stability in HNO3 and HCl. Table 2.3 summarizes our 

findings for films cast on silicon wafers. For both PVBC-DABCO and PVBC-DABCO-TEA 

films, film thicknesses remained the same within measurement uncertainties after soaking in 8 M 

nitric acid for 2 h and 9 M HCl for 72 h. It is clear that the films are stable over the timeframe 

needed for sample loading (<15 min, described in section 2.3.3), but exposure to 8 M HNO3 for 

greater than 2 h often led to film delamination. PVBC-DABCO-TEA films are not covalently 

attached to rhenium or silicon substrates, and are held in place by electrostatic interactions. We 

hypothesize that delamination from silicon substrates in nitric acid solutions after long periods of 

exposure (>2 h) is due to interruption of electrostatic interactions, possible due to strong 

interactions between NO3
- anions and silanol groups on the piranha washed silicon surface. One 

interesting result was that thickness increased for PVBC-DABCO-TEA films after exposure to 8 

M HNO3. We hypothesize that the increase in thickness is due to exchange of NO3
- for Cl-, 

resulting in an increase in polymer density that manifests as a change in thickness. In contrast, 

film thickness did not increase appreciably for samples exposed to 9 M HCl. This result supports 

our hypothesis that increased thickness is due to exchange of NO3
- for Cl- as these films are 

natively in a chloride form after synthesis.  
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Table 2.3 Results of film stability testing in 8M HNO3 and 9M HCl. All films were on cast on 

silicon wafers. Uncertainties represent standard deviations among five measurements. 

 

Film Type 
Original Film 

Thickness 

Thickness after 

Treatment 
Treatment Type 

 
[nm] [nm] 

 

PVBC-DABCO (no TEA) 131.4 ± 1.7 131.2 ± 1.4 8M HNO3 - 2 h 

PVBC-DABCO-TEA 174.1 ± 2.1 183.0 ± 3.6 8M HNO3 - 2 h 

PVBC-DABCO-TEA 178.1 ± 1.5 174.9 ± 1.0 9M HCl - 1 h 

PVBC-DABCO-TEA 177.2 ± 2.4 176.6 ± 3.4 9M HCl - 17 h 

PVBC-DABCO-TEA 183.2 ± 3.0 178.4 ± 2.8 9M HCl - 3 d 

PVBC-DABCO-TEA 184.3 ± 1.9 180.3 ± 4.1 

1 month aging in 

atmosphere, no acid 

exposure 

 

 

Figure 2.19 presents representative AFM images at two scales for PVBC-DABCO-TEA 

films before and after soaking in 8 M nitric acid for 2 h. The film morphology remains 

unchanged by the acid exposure. This supports our hypothesis that film delamination in nitric 

acid is due to interactions of NO3
- with the silicon substrate rather than degradation of the film 

via oxidation or other mechanisms. We do not believe that delamination after long exposure to 

nitric acid occurs due to film swelling, as films swell rapidly (near instantaneously) upon 

exposure to aqueous solutions and no delamination was seen in the case of long term exposure to 

HCl solutions (72 h) when films are also in a swollen state. We hypothesize that films have 

greater stability in HCl solutions, in terms of delamination resistance, is due to weaker 

interaction between Cl- anions and the silanol groups on the oxidized silicon surface than in the 

case of NO3
- anions, which are capable of hydrogen bonding with OH groups. Interaction 
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between NO3
- anions and the oxidized silicon substrate may disrupt electrostatic interactions 

between the substrate and the polymer film, thus, leading to delamination of the film.  

Similar acid stability tests were conducted with polymer coated rhenium substrates in 8 

M HNO3. Although polymer films were stable on silicon substrates for up to 2 h in 8 M HNO3, 

and showed no signs of chemical degradation during this period of time, a major issue was 

encountered when these experiments were performed with rhenium substrates. Rhenium is 

soluble in nitric acid, and degradation of the rhenium surface begins immediately upon exposure 

to nitric acid solutions even when rhenium is coated with polymer. Figure 2.20 shows images of 

PVBC, PVBC-DABCO, and PVBC-DABCO-TEA coated rhenium wafers after 5 h of nitric acid 

exposure.  

All film types were almost entirely detached from the rhenium substrate after 5 h of nitric 

acid exposure. Additionally, the rhenium substrate surface was chemically etched away. Coated 

substrates on average lost 21% of their mass during this treatment. Film detachment began 

within 5 min of acid exposure, as the rhenium substrate became oxidized and dissolved to form 

perrhenic acid. Hydrochloric acid is a reducing acid; therefore, rhenium substrates have good 

stability in HCl as the substrate does not become oxidized. The realization that rhenium 

substrates rapidly corrode in HNO3 lead our group to investigate the acid stability of the steel 

rhenium filament mounts that are used for electrically heating filaments. Both HNO3 and HCl 

solutions were found to rapidly corrode the steel posts. These corrosion issues, along with other 

concerns, lead our group to reevaluate our initial loading strategy and film design. 
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Figure 2.19 AFM images of PVBC TEA modified films before (left side) and after (right side) 

treatment in 8 M nitric acid for 2 h. Images on top are 100 μm × 100 μm with a 20 nm height 

scale. Images on the bottom are 2 μm × 2 μm with a 40 nm height scale.  
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Figure 2.20 Films cast on rhenium substrates 

 

 Originally it was envisioned that rhenium filaments assemblies would be coated with 

extractive polymer, then submerged into the sample bearing acid solution, extracting and 

concentrating the Pu sample onto the polymer coated filament. Corrosion of the rhenium 

filament and steel mounting posts in HNO3 and HCl made this strategy impractical. The original 

film design was a uniformly functionalized film where Pu would be distributed evenly across the 

film. It was brought to our attention, by experts in the TIMS community, that one of the benefits 

of bead loading is that the method concentrates the sample into a geometrically small region of 

the filament, producing a narrower ion beam that is more efficiently transferred from the ion 

source chamber into the mass spectrometer. By loading the Pu sample in a dispersed manner, 

across the entire area of the filament, this focusing would be lost. To overcome this limitation of 

our thin film design with regards to ion focusing while attempting to limit filament/steel post 

corrosion (due to acid exposure), direct loading onto filaments was proposed. Direct loading 

refers to simply placing the Pu sample dissolved in a small (~5 µL) droplet onto the center of the 

filament. This method is sometimes used for TIMS sample loading of higher quantity samples 

where high sensitivity is not required. (TIMS sensitivity for Pu is several orders of magnitude 

5 Hours in 8M Nitric Acid No Nitric  

Exposure 
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lower using direct loading compared to bead loading.) However, direct loading onto uniformly 

functionalized PVBC-DABCO-TEA films was problematic, as the films are hydrophilic and the 

aqueous sample wets the entire film. Additionally, droplets deposited onto hydrophilic filaments 

tend to pool towards the “legs” of the filament (the space between the filament and mounting 

post), which hinders ion focusing. To combat these issues and create coated filaments that are 

easily direct loadable, a method was developed to create films where quaternization with TEA is 

restricted to a small area of the film coating. This approach is described in section 2.3.6. 

 

2.3.6 Development and TIMS performance of PVBC films with localized quaternization 

 After abandonment of the initial design of a uniformly TEA-quaternized PVBC-DABCO 

film, the idea was proposed to restrict the quaternization reaction with TEA to a small area of the 

film. It was theorized that by limiting the conversion of chlorobenzyl sites to quaternary amine 

sites to a geometrically small region of the film, the extraction of Pu would be concentrated into 

this area, and ion focusing would be improved (over that of a uniformly quaternized film) by 

limiting the size of the ion point of origin from the filament. Additionally, the base PVBC-

DABCO film is hydrophobic, while functionalized PVBC-DABCO-TEA is hydrophilic. 

Therefore, by creating a small region of hydrophilic polymer amid a hydrophobic polymer film, 

the aqueous load solution could be contained in a geometrically small region rather than 

dispersing across the entire filament area when direct loading. Various methods were attempted 

to limit TEA functionalization of a base PVBC-DABCO film, including simply placing a small 

drop of TEA onto the center of films. This approach was unsuccessful, as TEA would rapidly 

evaporate (<5 min) before appreciable quanternization of the PVBC-DABCO film could occur. 

To functionalize a small region of the PVBC-DABCO film with TEA, a method had to be 
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developed to maintain contact between liquid phase TEA and the PVBC-DABCO film surface 

for longer periods of time (ideally on the order of 24 h to mimic TEA exposure times used with 

uniformly quaternized films described in previous sections). 

 The capillary spotting technique, described in section 2.2.6, was developed to produce 

localized TEA-quaternization of PVBC-DABCO films (PVBC-DABCO film thickness of ~120 

nm). Contact between liquid phase TEA and PVBC-DABCO films was maintained for up to 4 h 

(one capillary load) using this method. Capillaries could be refilled (6–7 times) to reach 24 h of 

contact time between the PVBC-DABCO film and liquid phase TEA. Jigs were constructed to 

align the capillary, as rhenium filaments are small (< 1 mm in width) and capillaries were 

difficult to align centrally in the filament without the aid of a guide. Additionally, the jigs 

maintained a consistent capillary location on the film between refillings of the capillary. 

Rhenium filaments are delicate; therefore, capillaries were raised off the surface of filaments 

when refilling the capillaries to prevent deforming the filament. Maintaining a consistent 

capillary location on the film was necessary to create a concentrated region of TEA 

quaternization. Figure 2.21 shows a comparison of films quaternized using the capillary method 

with and without the aid of a jig to align the capillaries between refillings. After filling a 

capillary, a droplet would form at the capillary tip, and the capillary was lowered until this 

droplet contacted the film forming a “liquid bridge” between the capillary and the film. Direct 

contact between the glass capillary and the film was avoided, as this would often damage the 

film. As the solution dried from the film surface, more was drawn from the capillary and the  
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Figure 2.21 Two PVBC-DABCO films prepared on silicon wafers (1 cm x 3 cm) with localized 

regions of TEA quaternization. The base PVBC-DABCO film is blue while the TEA quaternized 

region is yellow/red. The left film was modified using the capillary method without the aid of a 

jig to align the capillary, while a jig was used to align the capillary on the right film. Notice the 

small red spot of high TEA conversion at the center of the quaternized spot on the right film 

while the quaternized spot on the left film is larger and less circular. 

 

“liquid bridge” was maintained. A TEA/chloroform solution was used to fill capillaries rather 

than pure TEA to limit the size of the TEA-functionalized spot. When the droplet on the 

capillary tip first touched the film surface, the droplet would spread across the entire film surface 

before drying over the course of ~20 min. After several capillary fillings, this process produced 

large regions of quaternization. Using chloroform solutions with a low concentration of TEA (~ 

5 wt% TEA) restricted quaternization to regions of the film wetted continuously by the capillary 

(i.e., the area within about 1 mm of the liquid bridge). The capillary aided quaternization process 

was conducted under a chloroform atmosphere in a closed container to slow the rate of drying 

from the capillary and to swell the base PVBC-DABCO film with chloroform. It was found that 

No jig alignment Jig used to align capillary 
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quaternization of the PVBC-DABCO film occurred more rapidly when exposed to TEA in the 

swollen state.  

Using this method, films with small (~1-2 mm diameter) quaternized spots were created. 

These spots formed “hydrophilic wells” that adhered aqueous droplets, as needed for direct 

loading. Figure 2.22 shows an image of a film with a capillary quaternized spot before and after 

submersion in water. 

 

 

Figure 2.22 Silicon wafer dip-coated to form a hydrophobic PVBC-DABCO film and 

quaternized in a restricted region using the capillary method. After quaternization using the 

capillary method and submersion in water, a droplet will cling the hydrophilic spot. We refer to 

this design (a hydrophilic spot within a hydrophobic film) as the “hydrophilic well”.  

 

 Capillary quaternized films prepared on degassed rhenium filaments were the first thin-

film loading design that was tested on the TIMS instrument at SRNL. These film-coated 

filaments were each direct loaded via pipette with 10 pg Pu from an 8 M HNO3 matrix. (Sample 

Hydrophilic Functionalized 

Spot 

Hydrophobic Bulk Film 

Submerge in 

Water 
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loading with thin film coated filaments is described fully in section 2.2.19.) The film-coated 

filaments performed poorly compared to filaments prepared using the bead loading method, and 

provided similar sample utilization to that of direct loading onto bare rhenium filaments. These 

data are shown in table 2.4, where sample utilization is represented by the total number of 

detected Pu counts. Due to the similarities with direct loading, it was concluded that the films 

were too thin (~ 120 nm), and that the carbon of the film dissolved rapidly into the hot rhenium 

filament (>1500 °C during analysis), thus, performing similarly to filaments that had no film 

present. This hypothesis was supported by short ion production periods of approximately 15 min 

(where beads produce ions for at least 4 h of heating). 

 We decided to test thicker films with localized TEA conversion. PVBC-DABCO base 

films with a thickness of ~1µm were cast on rhenium filaments by dip-coating and localized 

TEA quaternization was created using the capillary method with ~24 h of TEA contact time. 

These films produced more counts than thinner films, but were still well under the performance 

of filaments prepared using the bead loading method. In addition, these samples had a 

significantly higher rate of filament failure (8 of 12 filaments with ~1 µm polymer films broke 

during analysis; 4 filaments broke before any Pu atom counts were detected). These data also are 

shown in table 2.4. At the time, we were unsure of the cause of these filament failures, but 

believed that further increasing film thickness in an attempt to further increase sample utilization 

would likely result in an even higher rate of filament failure since the thinner films (120 nm) 

resulted in none. Additionally, it would be difficult to produce thicker films using dip-coating 

due to limitations of the dip-coater (withdrawal rate) and the limited solubility of PVBC in 

chloroform. There were additional concerns related to organic interferences due to high carbon 

loading, as several runs with ~1 µm thick films produced highly erroneous isotope ratios. The 
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certified ratio of 239Pu/242Pu in CRM Pu128 is 1, whereas one trial with ~1 µm thick films 

resulted in a measured 239Pu/242Pu ratio of 26). Therefore, it was decided to develop a multi-layer 

thin film design that would increase carbon loading in the region of Pu deposition, while 

minimizing the polymer loading elsewhere on the filament. This design strategy, in some ways, 

mimics the physical distribution of polymer on a filament when using bead loading. 

 

Table 2.4 Comparison of the standard SRNL bead loading method and direct loading to film 

coated filaments with localized TEA quaternization. Runs that resulted in 0 Pu atom counts due 

to filament failure are not shown or included in statistical calculations reported. 

Trial # 

SRNL 

bead 

loading 

method 

Direct 

loading onto 

bare 

filament 

Capillary 

method - 

120 nm film 

Capillary 

method- 

1000 nm film 

 Total 239Pu + 242Pu Counts (Atoms) Detected 

1 411,884 12,524 276 84 

2 369,054 
 

1,200 490 

3 45,125 
 

5,719 83,939 

4 208,767 
 

4,717 44 

5 166,263 
 

13,027 15 

6 452,711 
 

11,308 46,121 

7 361,867 
  

16,932 

8 
   

10 

Average 287,953 12,524 6,041 18,454 

Standard Deviation 149,772   5,198 31,019 

N Trials 7   6 8 

95% Confidence 

Interval 
110,952   4,159 21,495 

Minimum Counts 45,125 12,524 276 10 

Maximum Counts 452,711 12,524 13,027 83,939 

Filament Failure 

Rate 
1 of 8 0 of 1 0 of 6 8 of 12 
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2.3.7 Initial development of the toroidal polymer spot loading technique 

 To better mimic the physical distribution of anion-exchange polymer achieved when 

using the bead loading technique, a method was developed to deposit small anion-exchange 

polymer spots on rhenium ionization filaments. The goal was to increase the amount of deposited 

anion-exchange polymer that interacts with the Pu sample while maintaining a concentrated ion 

source and minimizing the overall amount of polymer deposited onto rhenium filaments. The 

selected approach was to created small polymer disks on rhenium filaments by applying anion-

exchange polymer in a small droplet of solvent. To keep the spot size on the order of anion-

exchange resin beads (40–300 µm), the droplet volumes had to be on the order of nanoliters. 

This small volume precluded the use of standard pipettes to deposit the polymer-bearing droplet. 

Commercial devices capable of dispensing droplets on the nanoliter scale are available but are 

expensive. Prior to investing in a nanoliter dispenser device, we decided to test this concept 

using an inexpensive method. The “needle method” was developed and is described in section 

2.2.8. Briefly, a nanoliter scale droplet is formed on the outside of a steel needle by plunging the 

needle into a polymer bearing solution, which is then deposited on a substrate by sweeping the 

needle across the surface. The substrates are coated with PVBC-DABCO prior to spot 

deposition. This underlayer serves two purposes. First, the PVBC-DABCO coating is 

hydrophobic, causing the deposited droplet to “bead up”. This ensures that the deposited droplet 

remains small. Conditions that lead to the deposited droplet wetting the substrate result in a 

dispersed deposition of Pu extractive polymer. Second, this PVBC underlayer provides a coating 

to which the deposited polymer spot can be cross-linked, anchoring the spot to the surface. 

Thirty-five percent DABCO cross-linking was determining to be the minimum level of cross-

linking required to prevent both spot dissolution and detachment from the coated filament 
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surface upon swelling in aqueous solutions. Fifty percent TEA converted PVBC was used 

because this was the minimum level of TEA conversion to cause phase separation of the polymer 

in chloroform within 48 h. (The synthesis of water soluble PVBC-TEA polymer is described in 

section 2.2.7.) 

 Spots created by the needle method were imaged and profiled with 3D SEM, described in 

section 2.2.12. Upon 3D-SEM investigation it was discovered that polymer spots created using 

the needle method were toroidal in shape, with a thick outer rim. This geometry is caused by a 

phenomenon known as the “coffee ring effect”, where capillary forces in the drying droplet drive 

solute towards the edges [130]. We have defined the spot “thickness” as the maximum height of 

the toroidal ring. Spots cast from 15 wt% PVBC-TEA in water were found to be approximately 

30–50 microns in thickness and between 200 and 500 µm in diameter. A 3D SEM image of a 

deposited spot can be seen in figure 2.23, and height profiles of two spots measured using 3D 

SEM can be seen in figure 2.24. A range of droplet sizes was studied, and the diameter range of 

200 to 500 µm does not represent the natural error in this spotting method. Deposited polymer 

spots were hydrophilic, adhering aqueous droplets (demonstrated in figure 2.25). We refer to this 

bilayer film design comprising a hydrophobic base PVBC-DABCO film with a hydrophilic spot 

as the “hydrophilic well” design. This design aids in direct loading filaments, as aqueous samples 

will dry into the hydrophilic extractive polymer spots positioned at the ion optical center of 

filaments.  

Fifteen rhenium filaments were prepared using the needle method and shipped to 

collaborators at SRNL for Pu loading and analysis. Toroidal spots with a thickness of 30–50 µm 

and diameters of 200–500 µm were found ubiquitously to cause filament failure upon heating in 

the SRNL TIMS system. The cause of these failures was unknown and was explored to 
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understand why rhenium filaments with toroidal spots deposited by the needle method resulted in 

high failure rates while anion-exchange resin beads with a diameter of 40 – 300 µm did not. 

These efforts are discussed in section 2.3.8. 

 

 

Figure 2.23 3D SEM image of a polymer spot deposited (15 wt.% polymer in water) by the 

needle method onto a PVBC-DABCO coated silicon wafer. Notice: the polymer spot is torroidal 

in shape, with a thick outer rim and thinner center region. 
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Figure 2.24 Height profiles of two spots measured using 3D SEM. Orangeand yellow lines 

represent the cross-section of a larger spot with a diameter of ~450 µm and maximum thickness 

of ~50 µm, while blue and grey represent the cross-sectional profile of a smaller spot with a 

diameter of ~400 and maximum thickness of ~37 µm. 
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Figure 2.25 A droplet of water placed on a rhenium ribbon adheres to the hydrophilic quaternary 

amine-functionalized polymer spot prepared using the needle method. The hydrophobic PVBC-

DABCO base film aids in preventing aqueous load solutions from spreading from the center of 

the filament, where the hydrophilic spot is located. When direct loading, the sample solution is 

dried down completely before loading filaments in the TIMS system, the Pu load solution dries 

into the hydrophilic spot, concentrating the Pu sample in the center of the filament on the TEA-

functionalized toroidal spot. 

 

2.3.8 Investigation of filament failure 

Figure 2.26 shows optical microscope images of a dip coated rhenium filament before 

and after spotting using the needle method. The polymer mound can be seen clearly in the right 

image of 2.26 and is slightly thicker than the filament itself. The polymer spots were measured to 

be 30–50 µm thick, while rhenium filament material is reported by the manufacturer to be ~30 

µm thick. No filament damage was found from inspection of 20 filaments prepared using the 

needle method. Of note: inspection by optical microscopy was performed at Clemson University 

prior to shipping filaments to SRNL for loading and analysis; therefore, damage incurred during 
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the shipping process could not be ruled out as a possible cause of filament failure described 

below. 

 

  

Figure 2.26 Rhenium filament before (left) and after (right) applying spots of PVBC-DABCO-

TEA polymer using the needle method. No filament deformation is visible after spotting. 

 

Eight filaments with PVBC-DABCO-TEA toroidal polymer spots were loaded with Pu 

by direct loading with a pipette and heated in the TIMS instrument; however, all filaments broke 

prior to the tuning step (during the initial ramp-up of filament current). The filaments broke in 

the middle, near the point of polymer deposition, as shown in Figure 2.27. Anecdotally, when the 

filaments break using the bead loading method, the point of failure is located near the spot weld 

connecting the filament to the mounting post. The expert TIMS operator at SRNL stated that 

filament failure occurring at the center of filaments was unusual, and the high rate of filament 

failure (100%) suggested that some detrimental interaction was occurring between the filament 

and the deposited spot. Damage incurred from using the needle method was not supported by 

optical microscopy, and filament failure occurring consistently at the center of filament seemed 

unlikely to be related to shipping related damage, as damage incurred from shaking the package 
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would result in random bending of the filament rather than consistent damage at the point of 

polymer deposition. 

 

 
 

Figure 2.27 Image of filament showing break point. Dr. Charles Shick, Jr., the expert TIMS 

operator at SRNL, stated that breaks at the center of filaments are uncommon when bead 

loading. Rather, filament failure usually occurs near the weld locations on the mounting posts. 

 

Two broken filaments were examined by SEM and SEM-EDS (procedure described in 

section 2.2.12) to assess the cause of breakage. Both filaments showed obvious signs of 

overheating (figure 2.28), and, therefore, it was suggested that a melting event occurred causing 

ultimate failure.  
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Figure 2.28 (Top) Rounded smooth termination indicates overheat-melt failure mode. (Bottom) 

Notice melted Re under filament. 
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Results shown in the secondary electron detector and Z contrast backscatter electron 

detector images (figure 2.29), elemental x-ray maps (figure 2.30), and EDS spectra (figure 2.31) 

all showed regions with elevated amounts of chlorine and carbon. In addition, figure 2.32 shows 

that Re had been vaporized and deposited onto the post, which is not to be expected given the 

high vaporization temperature of metallic rhenium (5630 °C). Based on this evidence, we 

hypothesized that chlorine from the polymer coating reacted with the Re filament to form ReClx 

compounds. Compared to Re, these ReClx compounds have much lower boiling points and 

decomposition temperatures (under 1000 °C). For example, ReCl5 has been used in chemical 

vapor deposition chambers to form Re films. This may explain why Re was deposited on the 

posts and appeared to have melted. 

 

 
 

Figure 2.29 (Left) Secondary electron detector image. (Right) Z contrast backscatter electron 

detector image. The dark areas are related to low atomic weight species that produce lower levels 

of backscatter electrons. EDS analysis indicated these areas correlate with high levels of Cl and 

C. 
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Figure 2.30 Elemental X-ray maps of fractured filaments. 
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Figure 2.31 EDS spectra. Notice that spectrum-2 was taken in one of the backscatter dark areas 

and shows an elevated amount of Cl. 
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Figure 2.32 Image of post showing that Re was vaporized and deposited from the filament onto 

the post. 

 

Based on these findings, it was hypothesized that reducing the amount of polymer (and 

thus chlorine) on the surface may reduce etching of the filament from formation, and subsequent 

melting/evaporation, of ReClX species. In addition, as a precaution, from this point forward 

filaments were exchanged in person between Clemson and SRNL staff to prevent filament 

damage incurred during shipping. A method was also developed to investigate the efficacy of 

PVBC-DABCO-TEA polymer for TIMS sample loading and is described in section 2.3.9. 

 

2.3.9 Development of the anion-exchange polymer fiber loading technique 

The apparent detrimental interaction between PVBC-DABCO-TEA polymer and Re 

filaments (resulting in the formation of ReClX species as described in section 2.3.8) led our group 

to develop a direct method to test the efficacy of this polymer chemistry for TIMS sample 
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loading by removing other potential variables. Although SEM and SEM-EDS analysis of failed 

filaments supported the hypothesis that ReClX species were formed, resulting in melting and 

vaporization of the filament, it was unknown if the geometry of deposited spots promoted the 

creation of ReClX species or resulted in other detrimental effects. It was hypothesized that the 

spotted filament design, placing the anion-exchange polymer in close proximity with filaments, 

would lead to greater interaction between the polymer and the filament surface than in the case 

of bead loading. This design was hypothesized to be beneficial, as more of the Pu sample would 

be in close proximity to the ionization surface than in the case of bead loading, providing greater 

opportunity for interaction with the ionization surface and, thus, leading to greater sample 

ionization. However, after discovery of the ubiquitous filament failure when using the toroidal 

polymer spot design, there was concern that this design may be flawed beyond ReClX formation. 

Carbon forms a solid phase solution with rhenium at elevated temperatures and enbrittles the 

rhenium filaments. Rhenium filaments expand and sag when heated in the TIMS system, and 

there was concern that overly brittle filaments could break when heated due to stresses from 

expansion and sagging. Figure 2.33 shows an images of sagging filaments. 

PVBC-DABCO-TEA fiber formation and sectioning, described in section 2.2.9, was seen 

as a simple means of producing anion-exchange material with physical dimensions similar, in 

part, to resin beads used in bead loading. By avoiding use of the needle method, and loading 

PVBC-DABCO-TEA in a method similar to that of beads, the effects of polymer chemistry 

could be isolated from geometric effects of the toroidal spots or potential damage incurred from 

deposition of the polymer. Additionally, fibers were created at Clemson and loaded onto 

filaments at SRNL, so shipping filaments was avoided. It was proposed that if PVBC-DABCO-
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TEA fibers resulted in filament failure rates similar to when needle method spotting was used 

(section 2.3.7), then an alternative polymer would be investigated for sample loading. 

 

 

Figure 2.33 Sagging filament assemblies imaged after heating to high temperatures (>1500 °C). 

  

Fiber sections with a diameter of approximately 100 μm were selected for these analyses 

to maintain a concentrated ion source. Figure 2.10 shows an optical microscope image of a 100 

μm diameter fiber (method of obtaining optical images of fibers is described in section 2.2.11). 

Fibers appeared non-porous at the magnifications studied and possessed a uniform diameter over 

lengths of several centimeters. Fibers were sectioned and loaded with 10 pg of Pu from 8 M 

nitric acid in a fashion that mimics the bead loading method used at SRNL (described in section 

2.2.18 and 2.2.20). Pu uptake studies were conducted previously by our group using thin films 
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composed of TEA-quaternized-PVBC with the same level of DABCO cross-linking that was 

used in preparation of fibers [129] (also described in section 2.3.3). Figure 2.34 (left axis and 

solid bars) shows a comparison of ion production (total number of detected Pu atoms) between 

the standard SRNL bead loading method and the new fiber loading method. The average number 

of Pu counts detected using fibers was approximately 180% greater than the number of counts 

detected when using the standard bead loading method, given a 10 pg load of Pu in both cases. 

Figure 2.34 (right axis and round symbols) shows a comparison of average isotope ratios 

measured for NBL CRM Pu128 with fiber and bead loading. The average and standard deviation 

represent the values from six measurements for each loading technique. The standard deviation 

for isotope ratio measurements was decreased by 72% when fiber loading was used and the 

accuracy of the average measured isotope ratio was improved. An average deviation of 0.033% 

from the certified isotope ratio value of NBL CRM Pu128 was measured when fiber loading 

versus a deviation of 0.133% when bead loading.  These findings are statistically significant. At 

a 99% confidence level (using a two-sample F-test, one-tail), the variance in measured isotopic 

ratio is larger when using bead loading versus fiber loading. At a 95% confidence level, the 

measured isotope ratios are unequal (using a two-sample t-test, two tails).  

In addition to the accuracy of the isotope ratio measurement, the sample utilization 

performance also improved. At a 95% confidence level the average measured counts is greater 

using fiber loading versus bead loading with 10 pg of Pu (using a two-sample t-test, one-tail). 

The mechanism(s) leading to the observed improvements in ion production and the 

accuracy/precision of isotopic ratio measurements when using PVBC-DABCO-TEA fibers is not 

fully understood at this time, but we hypothesize that increased ionization efficiency is due to 

greater contact between the anion-exchange material and the ionization surface than is present in 
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the case of bead loading. These results are somewhat counterintuitive to the common notion 

within the TIMS community that ion sources must be “point-like”, as fibers sections were 2.5 

mm in length. The volume of fibers prepared and used in this study were approximately 0.02 

mm3. Bead diameters ranged from 150 to 300 μm (50 – 100 mesh), and 4 beads were loaded onto 

each filament relating to an overall resin volume of 0.007 to 0.057 mm3 in the case of bead 

loading. The volume of fibers is within the range of resin loaded onto filaments; therefore, we do 

not believe increased ionization efficiency with fiber loading is related to the mass of 

carbonaceous material loaded onto filaments. 

 

 

Figure 2.34 Comparison of the average ion yield and average isotope ratios obtained from the 

standard SRNL bead method and the fiber-based method using a 10 pg load of Pu. Average 

values are from six replicates and error bars represent 95% confidence intervals. 
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This study was undertaken, in part, to determine the efficacy of TEA-quaternized-PVBC 

as an ion-exchange material for TIMS loading. The method of fiber formation also has been 

applied successfully to quaternized- poly(2,2-dimethyl,1,4-phenylene oxide) and quaternized-

poly(4-vinylpyridine). Fibers appear to be a versatile and simple platform for investigation of 

novel polymeric ion-exchange materials for TIMS sample loading. Delmore hypothesized that 

Pu must react chemically with carbon additives to effectively be converted to the carbide 

form.[96] If this hypothesis is true, then chemical properties of the polymer ligand, such as 

actinide binding energy or elemental content may have an effect on the propensity for carbide 

formation and hence ionization efficiency. The potential for fiber formation as a means to screen 

or design polymer chemistries for TIMS sample loading is discussed in the conclusions and 

recommendations section.  

No filament failures occurred when loading fibers composed of PVBC-DABCO-TEA. 

This result suggested to our group that the high failure rate of toroidal polymer spots described in 

section 2.3.7 was likely to be associated with either the geometry of these spots or the method of 

depositing toroidal polymer spots. Although the PVBC-DABCO-TEA fiber loading technique 

was successful, surpassing the established bead loading method in terms of measurement 

sensitivity and the accuracy/precision of isotope ratio measurements, fiber loading does not 

improve TIMS sample loading in terms of difficulty. Fiber loading was actually viewed as being 

more difficult and time consuming than bead loading by the expert TIMS operator at SRNL. 

Fibers are difficult to handle and manipulate into place onto rhenium filaments. Additionally, 

fiber loading does not eliminate the need to manually handle anion-exchange materials loaded 

with radionuclides, as fibers were soaked in Pu bearing solutions before being manually glued 

into place on degassed rhenium filaments. Due to these drawbacks with fiber loading, our group 
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decided to reinvestigate the thin film loading strategy with the goals of creating a film on 

rhenium filaments that could be direct loaded by pipette and perform at a similar or better level 

than that of the bead loading method in terms of sensitivity and/or accuracy. These efforts are 

described in section 2.3.10. 

 

2.3.10 Reinvestigation and refinement of the toroidal polymer spot loading technique 

 Positive results obtained through development of the anion-exchange polymer fiber 

loading technique suggested that successful sample loading with PVBC-DABCO-TEA could be 

achieved. It was concluded that the toroidal polymer spot architecture had contributed to the 

filament failures described in section 2.3.8, and that by manipulating the dimensions of toroidal 

polymer spots a direct-loadable film could be created that did not result in high rates of filament 

failure. This hypothesis was supported by observations made during the development of films 

with localized TEA-quaternization (described in section 2.3.6), where high rates of filament 

failure were encountered with thick films (~1 µm) but not with thin films (~120 nm). Similarly, 

it was hypothesized that the deposition of thinner spots, using the needle method, may reduce the 

rate of filament failure that was experienced with thicker spots (30–50 µm thick spots described 

in section 2.3.7 and 2.3.8).  

 Variable pressure 3D SEM and AFM were used to image and obtain height profiles of 

spots cast on PVBC-DABCO coated silicon and glass substrates respectively. Experimental 

methods for 3D-SEM analysis are described in section 2.2.12 and AFM analysis is described in 

section 2.2.13. The use of variable pressure SEM allowed the polymeric spots to be imaged 

without the addition of a conductive coating. AFM was used to image thinner spots (<7 μm in 

height due to limitations of the AFM) and determine spot thickness; however, complete imaging 



 86 

of spots by AFM was not possible due to the small viewing window (100 × 100 μm) allowed by 

the AFM. Figure 2.23, acquired via SEM, showed that the deposited spots are toroidal in shape 

with a thick outer rim. This shape was found to be consistent with thinner spots as well; an image 

collected via AFM of the outer rim of a thin spot (~3 µm) can be seen in figure 2.35. Spot 

thickness was manipulated by altering the concentration of polymer in the aqueous deposition 

solution from 0.5 wt% to 15 wt% while maintaining a consistent droplet size. Figure 2.36 shows 

the relationship between polymer concentration and spot thickness acquired by AFM. The 

maximum height measureable by the AFM used in this study is 7 μm; therefore, thickness 

measurement of spots cast from >2.25 wt% polymer was not possible by AFM. The relationship 

shown in Figure 2.36 was used to estimate the thickness of spots with intermediate thicknesses 

(7–30 μm), which were difficult to profile by 3D SEM due to low levels of shading. 

 Rhenium filaments were degassed at SRNL and exchanged in person for toroidal PVBC-

DABCO-TEA spot deposition at Clemson, followed by in person exchange back to SRNL staff. 

In-person filament exchanges were used as a precaution to avoid damage from shipping of 

delicate filaments. Spotted filaments were loaded with Pu by direct loading and analyzed on the 

TIMS system at SRNL. The first batch of spotted filaments tested on the SRNL TIMS system in 

this reinvestigation of the toroidal spot design was prepared by the needle method with a 

maximum rim height of 1.0–1.5 µm (deposited from an aqueous solution containing 0.5 wt% 

polymer). HNO3 and an HCl were investigated as the direct loading matrix. Table 2.5 shows 

these data with comments from the SRNL TIMS expert. No filaments in this batch failed from 

breaking; however, 3 of the 5 filaments loaded from an HNO3 matrix produced no Pu counts. It 

was theorized that the HNO3 matrix corroded the rhenium filament, leading to toroidal spot 

detachment and sample loss. As was discussed in section 2.3.5, nitric acid aggressively corrodes 
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rhenium surfaces, even when these surfaces are coated with a hydrophobic PVBC-DABCO film. 

In contrast, Pu counts were measured from all samples loaded from an HCl matrix. An HCl 

direct loading matrix was used for all other investigations regarding the toroidal spot design. 

 

Figure 2.35 (left) AFM height profile and (right) height image (100 µm × 100 µm viewing 

window) of a toroidal PVBC-DABCO-TEA spot deposited on PVBC-DABCO coated glass with 

a maximum rim height of ~3 µm. 
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Figure 2.36 The relationship between polymer concentration in spotting solution and resulting 

polymer spot thickness (maximum); thicknesses determined by AFM measurements and the 

fitted relationship was used to estimate spot thickness for solutions with greater than 2.25 wt. % 

polymer. 

 

Results from the first batch of filaments with toroidal spots confirmed our hypothesis that 

filament failure could be avoided with this design by reducing the quantity of polymer on the 

filament surface; however, filaments with 1.0–1.5 µm thick spots performed poorly in 

comparison to the bead loading method in terms of measurement sensitivity. These filaments 

only produced Pu ions for approximately 1 h, while beads produce ions for at least 4 h. Table 2.6 

shows these data. It was proposed that slightly thicker toroidal spots might increase the duration 

of ion production and, therefore, measurement sensitivity, by extending the time for dissolution 

of the carbon into the rhenium filament. 
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Table 2.5 The performance of thin spots [1.0–1.5 µm] loaded from 8M HNO3 and 9M HCl; 

sample losses experienced when loading from 8M HNO3 led to the use of 9M HCl for all direct 

loading on thin film coated filaments. All filaments were loaded with 10 pg of NBL CRM 

Pu128. 

Matrix 

Total counts 

(Pu242 + 

Pu239) 

Uncorrected 

Pu239/Pu242 

ratio 

Comments 

8M HNO3 
  

No counts for Pu-242/Filament NOT BROKEN 

8M HNO3 18,550 1.002 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

8M HNO3 46,140 0.993 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

8M HNO3 
  

No counts for Pu-242/Filament NOT BROKEN 

8M HNO3 
  

No counts for Pu-242/Filament NOT BROKEN 

9M HCl 44,400 0.998 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

9M HCl 8,132 1.012 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

9M HCl 73,580 1.001 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

9M HCl 842 0.987 
Low counts but good agreement with certified 

value for Pu239/Pu242 ratio 

9M HCl 249 0.742 
Low counts and not good agreement with 

certified value for Pu239/Pu242 ratio 

 

In an effort to increase the duration of ion production, the thickness of the toroidal anion-

exchange spots was increased by 300% by increasing polymer concentration from 0.5 wt% to 1.5 

wt% in the deposition solution and maintaining consistent volume of the deposited droplet. 

These thicker spots were found to produce ions for approximately 3 h on flat filaments, a 

proportional increase in duration of ion production; however, the total counts produced by these 

spots [3.0– .5 µm] was ~10 times that of the thinner spots [1.0–1.5 µm], reaching levels of 

ionization efficiency comparable to that of the resin bead method. These data are shown in table 

2.6. 
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 Up to this point in our investigations of toroidal spot design, all spots had been deposited 

on flat filaments. The efficacy of the dimpled filament geometry, described in use with the bead 

loading method in section 2.3.2, was explored in combinations with the toroidal spot design in an 

effort to further increase ionization efficiency. Toroidal anion-exchange polymer spots with a 

thickness of 3.0–4.5 μm were formed on dimpled filaments, resulting in a 25% increase in the 

duration of ion production (increased from 3 to 3.75 h) and a 43% increase in the average total 

counts compared to similar spots cast on flat filaments. Table 2.6 presents the results, which 

show that average sample utilization using dimpled filaments with 3.0–4.5 µm toroidal spots 

surpassed sample utilization afforded by the resin bead loading method. We submit that the 

increased ionization efficiency experienced with dimpled filaments is the result of a concave 

filament structure, similarly to that of the cavity sources. When the sample is loaded into the 

“pit” of a concave dimple, neutral gas atoms have opportunity to interact with the ionization 

surface after volatilization from the load region, resulting in higher ionization efficiencies. Dip-

coating allowed for the formation of a thin polymer PVBC-DABCO underlayer on the complex 

geometry of dimpled filaments, a task that would not be possible with other film formation 

methods, such as spin-coating. Dimpled filaments also aid in direct sample loading as they allow 

for the sample to be placed in a cup-like substrate. In combination with the hydrophilic islands 

created by the bi-layer film design, direct loading an aqueous sample in a small region at the 

geometric center of a dimpled filament is much simpler and easier than other methods of direct 

loading. Due to the benefits of dimpled filaments they were used for the remainder of 

investigations within this study. In addition to improved measurement sensitivity, no filament 

failures were experienced over the course of analyzing 45 filaments with toroidal spots less than 
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4.5 µm thick, a significant improvement over the reported failure rate of ~25% with the bead 

loading method. 

 

Table 2.6 A comparison of ion production from various toroidal spot designs and the established 

bead loading method given a 10 pg load of NBL CRM Pu128. Resin beads were loaded from an 

8M HNO3 matrix while all spotted filaments were direct loaded from a 9M HCl matrix. 

 

SRNL bead 

loading 

method 

1.0 - 1.5 μm 

spots on flat 

filaments 

3.0 - 4.5 μm 

spots on flat 

filaments 

3.0 - 4.5 μm spots 

in dimpled 

filaments 

 Total 239Pu + 242Pu Counts (Atoms) Detected 

Average 287,953 25,441 229,081 434,572 

Standard 

Deviation 149,772 32,465 125,889 291,459 

N trials 7 5 10 30 

95% 

Confidence 

interval 110,952 28,457 78,027 104,297 

Minimum 

Counts 45,125 249 51,342 58,650 

Maximum 

Counts 452,711 73,580 428,100 1,179,000 

Filament 

Failure Rate 1 of 8 0 of 5 0 of 10 0 of 30 

 

In an effort to continue improving sample utilization provided by the toroidal spot design, 

anion-exchange spot thickness was increased by depositing with 2.25, 3.25, 5.0, and 10.0 wt% 

polymer solutions, relating to spot thicknesses of 4.5–6.8, 6.5 – 9.8, 10 – 15, and 20 – 30 μm 

respectively, in dimpled filaments. Figure 2.37 and table 2.7 shows TIMS data for these samples. 

Toroidal spots with a thickness of 20–30 µm provided the greatest levels of sample utilization, 

surpassing the sample utilization of the standard SRNL bead loading method by 175%. 

Additionally, no filament failures were experienced over the course of analyzing 65 filaments 

with toroidal spots. 
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Figure 2.37 A comparison of the average sample utilization of various toroidal spot thicknesses 

in dimpled filaments and the established bead loading method (with V-Shaped filaments) given a 

10 pg load of Pu; error bars represent 95% confidence intervals. Included is the sample 

utilization of the bead loading method with dimpled filaments. All spotted filaments were direct 

loaded from a 9M HCl matrix and beads were loaded with Pu from 8M HNO3. 

 

Figure 2.38 shows a comparison of uncorrected isotopic ratios obtained from thin film 

coated filaments and the established bead-loading method. All toroidal spotted filaments were 

within error of isotope ratios acquired using the standard bead loading method at 95% confidence 

level. These finding are in good agreement with the certified 239Pu/242Pu ratio for CRM Pu128 

and indicate that the production of organic interferences is low for the toroidal spot loading 
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method with spot thicknesses below 30 µm. We believe that isotope ratios measured using the 

4.5–6.8 µm thick toroidal spots deviated the greatest from the certified value of CRM Pu128 due 

to the low number of trials conducted at this spot thickness (5 trials). 

 

Table 2.7 A comparison of the average sampled utilization of various toroidal spot thicknesses 

in dimpled filaments and the established bead loading method (with V-Shaped filaments) given a 

10 pg load of Pu. Included is the sample utilization of the bead loading method with dimpled 

filaments. All spotted filaments were direct loaded from a 9M HCl matrix and beads were loaded 

with Pu from 8M HNO3. 

 

 

 

SRNL 

bead 

loading 

method

Bead 

loading with 

dimpled 

filaments

3.0 - 4.5 μm 

Spots in 

Dimple

4.5 - 6.75 

μm Spots 

in Dimple

6.5 - 9.8 

μm Spots in 

Dimple

20 - 30 μm 

Spots in 

Dimple

Average 287,953  464,920    434,572     387,596  449,282    793,801    

Standard 

Deviation 149,772  286,870    291,459     267,702  263,987    443,480    

N Trials 7             20             30              5             15             15             

95% 

Confidence 

Interval 110,952  125,726    104,297     234,651  133,596    224,432    

Mininmum 

Counts 45,125    124,268    58,650       105,070  176,980    138,274    

Maximum 

Counts 452,711  1,339,968 1,179,000  732,300  1,027,500 1,899,644 

Failure Rate 1 of 8 0 of 20 0 of 30 0 of 5 0 of 15 0 of 15

Total
 239

Pu + 
242

Pu Counts (Atoms) Detected
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Figure 2.38 A comparison of isotopic ratios obtained from spotted filaments of various 

thicknesses with dimpled filaments and the SRNL bead method (with V-shaped filaments); error 

bars represent 95% confidence intervals. Also included is isotope ratio data obtained from the 

bead loading method with dimpled filament. The certified 239Pu/242Pu ratio for CRM Pu128 is 1. 

 

 The greater sample utilization achieved with the toroidal spot loading technique, 

compared to bead loading, may be due to increased transport and interaction with the ionization 

surface. Smith et al. [111] showed that a graphitic, actinide-bearing residue remains on filaments 

after heating beads, indicating that incomplete dissolution of the anion-exchange material into 

rhenium filaments occurs in the case of bead loading. Carbon is understood to be soluble in 

rhenium at elevated temperatures [108]. It was hypothesized within our group that more 

complete dissolution of anion-exchange material, and thus sample transport to the ionization 
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surface, could be achieved with a thin film design through optimization of film thickness. One 

reason for selecting an ion-exchange polymer is that Delmore [96] hypothesized, after work on 

the micro ion source program at Idaho National Laboratory, that the sample species must react 

chemically with carbon additives to effectively be converted to the carbide form. Conversion of 

the Pu sample to the carbide form is believed to increase ionization efficiency by stabilizing the 

sample on the ionization surface to higher temperatures, resulting in a greater proportion of ions 

being emitted from the surface upon volatilization [4]. We submit that increasing the thickness of 

toroidal spots to 20 -30 µm improved sample utilization by promoting the formation of Pu-

carbides through higher Pu/C ratios. It is now evident that there must be a balance between 

minimizing carbon so that sample transport to the ionization surface can occur and maximizing 

carbon so that the formation of Pu-carbides is promoted. Therefore, an optimum spot thickness 

exists that balances these two competing phenomena. Additionally, the integrity of the filament 

must be maintained, as it appears there is a limit at which the filament fails due to either high 

carbon loading or reaction with species such as Cl. We would have continued to investigate the 

role of spot thickness in an effort to find this optimal value, but project funding ended. Future 

directions for this study are discussed in the conclusions and recommendations section. 
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2.4 Conclusions 

 Three improvements to sample loading procedures for TIMS analysis were achieved in 

this study. Firstly, a new filament geometry, the dimple, was developed and found to improve 

sample utilization when using the bead loading method. Additionally, sample loss was 

suppressed markedly through the use of dimpled filaments. Dimples facilitate sample loading by 

aiding in sample alignment and providing a well-like substrate to deposit samples. Finally, 

dimples limit the migration of beads on the filament surface, reducing the need for refocusing 

during analysis. Further investigation is needed to determine the influence of dimple dimensions 

on sample utilization. 

Secondly, a general method for the formation of anion-exchange polymer fibers was 

developed using equipment found in most laboratories. Fibers composed of TEA-quaternized 

PVBC with DABCO cross-linking were found to outperform anion-exchange beads in terms of 

ion production and the accuracy/precision of isotope ratio measurements. Further investigation is 

needed to determine the mechanism(s) responsible for these improvements. Fiber formation can 

be applied to a variety of anion-exchange polymers, and offers a convenient and versatile 

platform to investigate novel polymer chemistries for TIMS sample loading. 

Thirdly, a sample loading strategy based on polymer thin-film coatings was developed 

that surpasses ionization efficiencies afforded by the bead loading method. The coating 

simplifies sample loading by enabling direct loading in the geometric center of filaments. Coated 

filaments also eliminate sample loss, a problem often encountered when employing the bead 

loading strategy. Although preparation of coated filaments requires a two-step process, the thin 

film design allows for automated bulk production of pre-coated, analysis-ready filaments. This 

capability is a major advancement over the bead loading method and other methods that rely on 
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the material being submerged in the sample bearing solution before being individually 

manipulated and affixed to the filament. In addition, as will be shown in Chapter 3, applying a 

thin polymer underlayer coating is effective for preventing rhenium filament oxidation and 

increasing shelf-life.  

A quaternary amine-bearing polymer was used in this study; however, the general 

methodology of polymer thin-film and spot production can be extended to other polymer and 

ligand systems. The level of improvement (over the bead loading method), in terms of sample 

utilization when fiber loading (180%) or thin film loading (175%), is greater than that reported 

for other methods of TIMS sample loading currently under development, such as the porous ion 

emitter (PIE) design (154%) [131]. This finding illuminates the importance of anion-exchange 

material design in the development of improved sample loading techniques for TIMS. We 

hypothesize that that PIE design is limited by poor transport of actinide species into the depth of 

the porous structure. Similarly to the shell theory mentioned previously, it is likely that small 

quantities of actinides are deposited near the outside of anion-exchange polymer filled pores. 
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CHAPTER THREE 

CHARACTERIZATION OF RHENIUM IONIZATION FILAMENT SURFACE AGING AND 

EFFECTS OF OXIDATION 

 

 

3.1 Introduction 

 

Rhenium has been used widely as an ionization surface in thermal ionization mass 

spectrometry (TIMS) for isotopic analysis of Pu [125, 132]. Rhenium is the preferred material in 

these analyses for its high work function and melting point that is well above ionization 

temperatures for Pu [133]. Rhenium also has been employed as an ionization surface for a 

variety of other analytes [36, 54, 65, 66, 134]. The use of rhenium in other high-temperature 

applications has been limited by its oxidation characteristics [135]. It readily oxidizes above 600 

°C when exposed to atmospheric oxygen and water vapor [136, 137]. High vacuum, thus low 

oxygen partial pressure, environments produced in TIMS systems are what enable the successful 

use of rhenium as a thermal ionization filament. Despite its susceptibility to oxidation and 

terrestrial scarcity, rhenium has remained an important material in the production of turbine 

blades[138], catalysts[139], and heating elements[140]; consequently, rhenium has been the 

subject of scientific investigations for many decades[141-149]. Despite these efforts, little is 

known about the chemical identities of species involved in catalytic[150] and surface ionization 

mechanisms[4, 110] due to the challenges associated with in-situ analysis. 

Over decades of use in TIMS systems, various pretreatment methods for rhenium 

filaments have been developed to improve ionization efficiency [109, 134, 151, 152]. In cases of 

Pu analyses, these treatments can include carburization and degassing. Many reactions take place 

on the hot filament surface during these analyses. Reactions that promote the production of 
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atomic ions (Pu+) are favored for ultra-low-level isotopic measurements of Pu, while those that 

promote the creation of oxide species (PuO+ and PuO2
+) are undesired due to the introduction of 

error based on the isotopic composition of natural oxygen. 

Carburization of rhenium filaments has been shown to increase overall efficiency (atoms 

detected to atoms loaded, a.k.a. sample utilization) for Pu by up to an order of magnitude, and 

involves the dissolution of carbon into filaments through exposure to a carbon source, such as 

benzene vapor, at high temperatures [106]. Carburization is believed to positively impact Pu 

sample utilization (i.e., generation of Pu+) by increasing the work function of rhenium [125] and 

acting as a reducing agent, suppressing the formation of oxide species [106]. The presence of 

carbon may also lead to the formation of actinide-carbides [106] that have a decreased propensity 

for oxidation [134] and stabilize the sample on the filament surface to higher temperatures, 

improving ionization efficiency upon dissociation to atomic ions [4]. Pu oxidation can occur 

when the C/Pu ratio is low [103] or when oxygen containing species are present on the filament 

[153].  

The most common filament pretreatment method is referred to as “degassing” or 

“outgassing” and is performed prior to sample loading and analysis. Degassing involves 

resistively heating the filaments under high vacuum for a specified duration of time. Degassing 

generally is performed to reduce isobaric interferences and background signals that arise from 

contaminants within the rhenium filaments [127, 154]. Filament contaminants, such as 

hydrocarbons, uranium [155], and alkali elements [156], are volatilized or decomposed during 

the degassing process due to the high temperature and ultralow pressure. Studies have sought to 

optimize this process by monitoring the background signals of particular contaminants produced 

by blank rhenium filaments after various degassing conditions[155]. Degassing also volatilizes 
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rhenium-oxides that may be present on filament surfaces and alters surface features, such as 

grain boundaries [126] and grain sizes, as recrystallization of rhenium occurs around 1400-1600 

°C [157]. 

The oxidation behavior of polycrystalline rhenium surfaces is complex due in part to the 

large number of oxidation states exhibited by rhenium[158], shifts in O-Re binding energy 

arising from non-local interactions with neighboring oxides[159, 160], and the propensity for 

high energy anisotropic planes of the hexagonal close packed surface to undergo oxygen-induced 

meta-stable morphological transformations[161, 162]. The binary oxides of rhenium at near 

ambient pressures are ReO4, Re2O7, ReO3, and ReO2 containing rhenium in the VIII, VII, VI, 

and IV oxidation states. The vaporization temperatures of these oxides are reported to be 220, 

362, 614, and 1362°C. [163] ReO3 is reported to undergo disproportionation to ReO2 and Re2O7 

between 400 and 537°C, and ReO2 disproportionates to Re metal and Re2O7 between 850 and 

1077°C[164]. Filament currents used for resistive heating during degassing are often similar to 

those used during analysis to ensure that volatile compounds released at sample ionization 

temperatures are driven from the filaments prior to sample loading. In the case of Pu analyses, it 

can be expected that filament temperatures reached during degassing are >1500°C[99, 106, 154]. 

The motivation for this work was to determine a “shelf life” for degassed rhenium 

filaments. Excessive filament aging post-degassing has been observed anecdotally by SRNL staff 

to reduce sample utilization of Pu and decrease the precision of isotopic measurements. Protocols 

have been developed to avoid the use of overly aged filaments; however, studies regarding the 

effects of aging on filament conditions, and the ramifications on TIMS performance, are sparse 

in the literature. Although the viewpoint that filament aging negatively impacts TIMS analyses 

was anecdotal, the consistency and frequency of this observation across the TIMS community 



 101 

suggested to our group that it warranted further investigation. Additionally, methods and storage 

conditions that may limit the effects of atmospheric aging were investigated in an effort to 

extend the “shelf life” of degassed filaments. It is well known that TIMS sample preparations are 

generally difficult, time-consuming, and costly[109]. Extending the shelf-life of rhenium 

filaments post-degassing could reduce the time associated with TIMS analysis by enabling bulk 

production of degassed rhenium filaments, thus, improving sample throughput and expanding the 

general utility and feasibility of TIMS analyses. The effects and mechanisms involved in long-

term aging of polycrystalline rhenium surfaces must be understood to achieve these goals 

rationally. 
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3.2 Experimental 

3.2.1 Materials 

 The following materials were obtained from Sigma-Aldrich and used as-received: 

chloroform (Reagent Plus® ≥ 99.8% with 0.5-1.0% ethanol as stabilizer, CAS# 67-66-3) and 

poly(vinylbenzyl chloride) (PVBC), 60/40 mixture of 3- and 4- isomers (CAS# 121961-20-4). 

Desiccant (t.h.e. ® desiccant 8 mesh non-indicating silica gel, CAS# 63231-67-4), high vacuum 

grease (Dow Corning, silicone compound), and sodium chloride (BDH VWR analytical ACS, 

CAS# 7647-14-5) were used as received from VWR. Nitric acid (Optima® grade for ultra-trace 

elemental analysis, CAS# 7697-37-2, 7732-18-5) and xylenes (histological grade, CAS# 1330-

20-7, 100-41-4) were obtained from Fisher Scientific and used as received. Anion-exchange 

resin beads were obtained from Bio-Rad (AG® 1-X2 Anion-exchange Resin, analytical grade, 

50–100 mesh, chloride form). Collodion solution (flexible, CAS# 60-29-7, 9004-70-0, 8001-79-

4, 76-22-2, 64-17-5) was purchased from J.T. Baker. Pu solutions were prepared from a dilution 

of a primary standard containing New Brunswick Laboratory (NBL) certified reference material 

(CRM) 128 with a 1:1 atom ratio for 239Pu/242Pu. Rhenium ribbons were zone-refined rhenium 

(minimum of 4 zone-refinement passes; 99.999% Re purity) from H. Cross Company (0.762 mm 

× 0.030 mm). Deionized (DI) water with a resistance of 18.2 MΩ was prepared in-house from 

distilled water that was passed through a Milli-Q water purification system (EMD-Millipore). 

 

3.2.2 Degassing and carburization of rhenium filaments 

 Rhenium strips were cut (0.762 mm × 0.030 mm × 15.9 mm) and spot-welded onto posts 

for electrical heating at SRNL. Degassing was performed in a vacuum chamber at a pressure of 

around 10-5 Pa. Section 2.2.2 describes the filament degassing procedure used when no 



 103 

carburization was performed. In cases where carburization was performed, filaments were 

incrementally heated to 2.8 Amps following the same heating regime as degassed filaments, with 

the exception of a final 2.5 to 2.8 Amp step increase. After two 15 min heating periods at 2.8 

Amps, the turbo pump gate valve was closed and xylene vapor was introduced to the vacuum 

system until a pressure of ~60 Pa was reached inside the degassing chamber. Filaments were 

then subjected to a 15 min heating cycle at 2.8 Amps in the presence of xylene vapor. After 

exposure to xylene, the chamber was roughed out (with a roughening pump) before the turbo 

pump gate valve was reopened. Carburized filaments were allowed to cool under vacuum at 0 

Amps for at least 2 h. Pyrometry was used to approximate filament temperatures at the 

conditions used for degassing and carburization. 2.8 and 3.0 Amps of filament current were 

found to correspond to filament temperatures of approximately 1360 and 1455 °C. In cases 

where bead loading was performed, filaments were crimped into “dimple” geometries before 

degassing to aid in sample loading. Flat filaments were used for SEM investigations involving 

aging under dry and humid conditions. 

 

3.2.3 Filament aging under atmospheric conditions 

Degassed (no carburization) and carburized filaments were prepared at SRNL and 

delivered to Clemson approximately 1 week after removal from high vacuum (filaments were 

sent by mail). After removing ribbons from mounts and securing to SEM grids, ribbons were 

allowed to age in covered polystyrene petri dishes under atmospheric conditions for up to 3 

months after preparation. Samples were covered to prevent dust build-up. 
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3.2.4 Filament aging under controlled conditions 

 Degassed (no carburization) and carburized filaments were prepared at SRNL and 

delivered to Clemson on the same day of removal from high vacuum. After removing ribbons 

from mounts and securing to SEM grids with carbon tape, filaments were stored under dry and 

humid conditions and monitored intermittently by SEM for up to 79 days. Dry conditions were 

maintained by storing filaments in a 2.4 L glass desiccator filled with 250 g of silica gel 

desiccant (~13% relative humidity measured with an Extech 445814 hygro-thermometer), and 

humid conditions were maintained by storing filaments in a desiccator filled with saturated 

aqueous NaCl solution (relative humidity of ~75% [165]); both desiccators were sealed with 

high vacuum grease. 

 

3.2.5 Thin polymer film formation  

After degassing, filament assemblies were dip-coated from solutions of PVBC in chloroform. 

Film thickness depends on polymer concentration and withdrawal rate[123]. To produce a film 

with a thickness of approximately 120 nm, the substrate was withdrawn from a 2 wt% PVBC 

solution at a withdrawal rate of 340 mm/min using a Qualtecs Product Industry QPI-128 dip 

coater. Nominal film thicknesses were determined with multi-angle ellipsometry using silicon 

substrates as surrogate substrates for rhenium filaments. 

 

3.2.6 Determination of film thicknesses 

Film thicknesses were measured by multi-angle, single wavelength ellipsometry (Beaglehole 

Instruments, Picometer) as described in section 2.2.10. 
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3.2.7 Atomic force microscopy  

Atomic force microscopy (AFM) images were obtained using a Bioscope AFM (Bruker, Inc.) 

with NanoScope III A controller as described in section 2.2.13.  

 

3.2.8 SEM/SEM-Raman/SEM-Energy Dispersive X-ray Spectroscopy/Electron Back-

Scatter Diffraction  

SEM imaging performed on a Hitachi S4800 High Resolution SEM at Clemson University. 

Ribbons were removed from mounts used for degassing and secured to SEM grids with carbon 

tape. SEM-Raman and SEM energy dispersive X-ray spectroscopy (SEM/EDS) were performed 

at SRNL. A 785 nm laser and 30 s acquisition time were used for Raman analysis. SEM/EDS 

also was performed at Clemson University on a Hitachi SU6600 Variable Pressure SEM under 

high vacuum. Electron back-scatter diffraction (EBSD) mapping was performed at Clemson 

University on a nanoDUE’T double beam microscope NB5000. 

 

3.2.9 SEM imaging for surface coverage determination and image processing 

 A Hitachi SU-6600 SEM was used for this study and a consistent magnification of 600x 

was used for all processed images. Crystallites with areas less than 0.1 μm2 were excluded from 

counting to prevent the misidentification of stray pixels as crystallites. Images were processed 

with ImageJ version 1.50i to determine the average particle size, particle count, and percent 

surface coverage of crystallites. Image processing was performed by first converting images to 

black and white based on a brightness threshold. Crystallites generally appeared as bright spots 

under SEM illumination. Images were further processed individually to decrease the brightness 

of non-crystallite features, as occasionally grain boundaries and defect sites were similar in 
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brightness to crystallites. Finally, the ImageJ Analyze Particles tool was used with the following 

settings: size [μm2] of 0.1 – infinity and circularity of 0.00 – 1.00. 

 

3.2.10 TIMS analyses 

 A batch of 17 filaments was degassed and aged prior to sample loading using the 

methods described in sections 3.2.2 and 3.2.4. Fourteen of the filaments were sent to SRNL for 

TIMS measurements and three were kept at Clemson University for characterization. 

Quantification of the level of oxide growth (as described in section 3.2.9) was performed on the 

three Re filaments at Clemson University within 1 week of the TIMS analyses performed using 

the 14 filaments that were sent to SRNL. The bead loading method was used for these analyses. 

Briefly, four anion-exchange resin beads were contacted in 50 μL of 8 M HNO3 containing 10 pg 

of NBL CRM Pu-128. Beads were submerged in solution and agitated using a Tekmar VSR-S10 

shaker for a minimum of 4 h before being removed and glued to filaments using 10 μL flexible 

collodion solution. Analyses using freshly degassed filaments followed the same sample loading 

procedure and instrument methodology as analyses using aged filaments. After degassing, “fresh 

filaments” were stored under vacuum until directly prior to sample loading and analysis. 
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3.3 Results and discussion 

3.3.1 AFM analysis of degassed filaments aged under atmospheric conditions 

 Zone-refined flat rhenium ribbon was cut and spot-welded onto posts for electrical 

resistance heating at SRNL. In this study, degassing parameters are based upon those used at 

SRNL for the isotopic analysis of ultra-low-level samples of Pu. Figure 3.1 shows images 

collected by AFM of a polycrystalline rhenium surface before and shortly after degassing. Prior 

to degassing, rhenium surfaces were found to be rough and possessed a variety of morphological 

features including surface ridges, mounds, and ill-defined grain boundaries, seen in figure 3.1a. 

The extent of atmospheric exposure experienced by these samples prior to degassing is unknown. 

Figure 1b shows the rhenium surface shortly after degassing (within 2 days of degassing). 

Morphological features witnessed prior to degassing (figure 3.1a) were absent; surfaces had 

comparatively smooth grain surfaces and clearly defined, well-formed grain boundaries.  These 

surfaces were monitored intermittently over the course of 1 month of aging under atmospheric 

conditions after degassing, during which the in-growth of surface protrusions was detected via 

AFM (figure 3.2). The size and coverage of the protrusions were found to be grain dependent, 

making direct measurements of temporal growth by AFM difficult.  

 

 



 108 

 

Figure 3.1. AFM images of rhenium surface (a) before degassing and (b) after degassing (<1 

week atmospheric exposure). Scale is 10 μm × 10 μm. Height scale is 200 nm for image (a) and 

250 nm for image (b). 

 

 

 

Figure 3.2 Ingrowth of surface protrusions detected by AFM over the course of 1 month of 

atmospheric exposure. Notice the grain dependency of surface protrusions. Scale is 10 μm × 10 

μm. Height scale is 250 nm for all images. 

 

 

1 Week 2 Weeks 3 Weeks 

a b 
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3.3.2 SEM imaging of rhenium filaments aged under atmospheric conditions 

Grain dependent growth of surface protrusions was supported with observations made by 

SEM and can be seen in figure 3.3a. After approximately 2 weeks of atmospheric exposure, 

densely covered grains were found that were surrounded by relatively bare, protrusion-free 

grains. Upon closer inspection with SEM, these surface protrusions, which appeared as lumps or 

mounds on the AFM due to broadening from probe artifacts, were found to be crystallites (figure 

3.3b).  

 

 

 
 

Figure 3.3 SEM images of polycrystalline rhenium filament surface after approximately 2 weeks 

of atmospheric exposure: (a) In-growth of surface protrusions was found to be grain dependent. 

(b) Surface protrusions were found to be crystallites. 

 

After longer periods of atmospheric exposure (approximately 5 weeks), significant 

crystallite growth was found on most surface grains; however, crystallite nucleation density and 

average crystallite size varied and appeared to be grain dependent (shown in figure 3.4).  These 

initial studies performed at Clemson University were confirmed by similar analyses on an 

a b 
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independent set of aged rhenium filament samples at SRNL. Measurements made after 

approximately 1 month of atmospheric exposure indicated that crystallite sizes ranged from <100 

nm up to several microns (long axis). 

 

  

Figure 3.4 SEM image of rhenium filament surface after approximately 1 month of atmospheric 

exposure. Crystallites were found to be present on most grains; though, inter-granular differences 

were noted including crystallite size, abundance, and growth patterns. 

 

3.3.3 SEM-EDS analysis of rhenium filaments aged under atmospheric conditions 

Elemental mapping of these surfaces by SEM/EDS demonstrated a clear correlation 

between crystallite location and elevated concentrations of oxygen, seen in figure 3.5. Rhenium, 

carbon, and nitrogen spectral mappings showed substantially less correlation with the location of 

crystallites than that of oxygen; though, some correlation can be noted in spectral mapping of 

nitrogen.  
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Figure 3.5 SEM/EDS mapping of polycrystalline Re surface demonstrates correlation between 

crystallite locations and elevated oxygen. Colors in b – e indicate elemental abundance on a blue 

- yellow scale representing low and high abundance respectively. (a) original SEM image of 

interrogated region of filament surface. (b) mapping of oxygen showing highest level of 

correlation with crystallite locations, (c) rhenium, (d) carbon, and (e) nitrogen. 

10 µm  

a 

b c 

d e 
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3.3.4 SEM Raman analyses of crystallites on rhenium filaments aged under atmospheric 

conditions 

Identification of the oxo-rhenium species present in the crystallites was attempted 

through SEM-Raman analysis. Measurements on small crystallites were difficult due to 

sublimation; however, spectra were collected successfully from crystallites larger than ~1 µm. 

These spectra were compared with those reported for binary rhenium oxide species and were 

found to correlate with Re2O7 [166] (figure 3.6). The spectra were then compared with those for 

perrhenic compounds, as perrhenic acid is the hydration product of Re2O7, and strong correlation 

was found with those reported for perrhenic acid [167, 168]; a comparison of Raman shifts for 

crystallites and those reported in literature for perrhenic acid can be seen in table 3.1. Differences 

in spectra collected from surface crystallites and bulk samples from the literature can be 

attributed to surface effects, crystal orientation, and weak signal intensity.  

 

 

Figure 3.6 SEM-Raman spectra collected from micron sized crystallites that grow on the Re 

surface: (a) relatively large crystallite (>1 µm) selected for analysis due to issues with 

sublimation of small crystallites (b) Raman spectrum from an individual crystallite. 

 

2 µm 

b a 
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Table 3.1 Raman shifts for crystallites and those reported in literature for perrhenic acid. 

Crystallites 

(this study) 

Perrhenic acid with assignment 

[168]   

967 (s) 961 (s) ʋ1s Re-O 

916 (m) 928 (w) ʋ3as Re-O 

893 (m) 891 (m) ʋ3as Re-O 

  375 (w) ʋ4 O-Re-O 

    ʋ O-Re-O 

333 (b/s) 337 (w) ʋ2 O-Re-O 

 

 

3.3.5 Analysis of crystalline form 

Tetragonal crystalline forms were common among crystallites observed by SEM, seen in 

figure 3.7. Re2O7 is reported to crystallize in the orthorhombic crystalline form [169]; whereas 

perrhenic acid has been shown to crystalize in the tetragonal system [170, 171], further 

supporting SEM-Raman identification of the crystallites as perrhenic in nature. 

 

 

Figure 3.7 Crystallites appear to be predominately tetragonal in form, and 4-fold axis and 2-fold 

tetragonal dipyramidal axes of symmetry can be seen directed outward from the surface. 
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3.3.6 EBSD mapping of rhenium filament surfaces to determine grain orientations and 

phases 

It was theorized that the preferential oxidation of certain grains might be due to grain 

orientation at the surface with some particular orientations possessing a greater propensity for 

ambient oxidation. EBSD mapping images were collected 2 and 7 weeks after degassing rhenium 

samples to understand the orientation of grains and monitor the in-growth of rhenium oxide 

phases. The data indicate that shortly after degassing, the surfaces are composed primarily of Re 

metal phase with some occurrences of a ReC phase (figure 3.8a). Measurements of crystalline 

orientation indicate that the surfaces are dominated by the [0001] basal plane with minimal 

differences among grains with respect to the measured z-component of the Euler angle (figure 

3.8b). Isolated grains were imaged that deviated from this basal surface orientation (figure 3.8c); 

however, these misoriented grains account for a small fraction of the overall surface. These low-

occurrence non-basally oriented grains, highlighted in figure 3.9, cannot fully account for the 

heterogeneity witnessed across these surfaces at more mature levels of crystallite growth (figure 

3.4), but may account for the isolated grains that were found to be highly oxidized compared to 

neighboring grains and the surface as a whole. 
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Figure 3.8 EBSD mapping of polycrystalline rhenium surface: (a) Phase mapping with red 

indicating metallic rhenium and blue indicating rhenium-carbide (of note: these filaments were 

not intentionally carburized and the source of carbon is unknown at this time.) (b) z-component 

of Euler angle for basally oriented region. Colors relate to crystalline orientation outlined by 

inverse pole figure map above with the basal [0001] orientation in red. (c) z-component of Euler 

angle for region possessing an isolated misaligned grain seen in blue (circled in black to 

highlight this grain). Colors relate to crystalline orientation outlined by inverse pole figure map. 

 

 

 

a b 

c 

Inverse Pole Figure Map 
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Figure 3.9. (a) Basally oriented region displaying predominately growth along grain boundaries 

after ~2 weeks of atmospheric exposure. (b) Isolated grain found to be covered in a high density 

of crystallites after ~2 weeks of atmospheric exposure surrounded by relative barren grains. (c) 

EBSD mapping of polycrystalline surface where an isolated non-basal grain was discovered. (Of 

note: (b) and (c) are not the same region of the surface, these figures are intended to demonstrate 

a possible correlation.) 

 

3.3.7 Identification of region specific mode of crystallite growth 

Four region-specific modes of crystallite growth were identified by SEM and AFM 

examination of these polycrystalline rhenium surfaces: 1) growth along grain boundaries, 2) 

growth along linear surface dislocations, 3) random growth within relatively flat and seemingly 

defect-free planes, and 4) growth upon defect sites or faceted regions. The first three modes of 

a 
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crystallite growth can be seen in figure 3.10a, defect growth can be seen in figure 3.10b, and 

growth upon a faceted grain can be seen in figure 3.10c. It is unclear at this time whether 

crystallites migrate or diffuse from their point of nucleation. Crystallite growth along linear 

surface dislocations was found to be common and results in the formation of crystallite lines, 

seen in figure 3.10a. Within a grain these crystallite lines often are parallel; however, 

misalignment with crystallite lines on neighboring grains (figure 3.10b) indicates these linear 

surface dislocations are not a direct artifact of tooling.  

Among intra-granular modes of growth, crystallite formation along linear surface 

dislocations appears to be the inceptive mode of growth for many of the observed grains. The 

result can be seen within multiple grains in figure 3.4, where parallel lines of crystallites traverse 

otherwise barren intra-granular regions. This inceptive growth along dislocations may catalyze or 

further nucleate crystallite growth within smooth intra-granular regions of the surface, although 

this hypothesis has not been tested. Growth within flat intra-granular regions was found to be the 

slowest mode of growth for most grains. The relative rate of growth on faceted grains and defect 

sites was difficult to determine due to the low occurrence of these features on degassed samples; 

however, it can be inferred that growth at these sites would likely be more rapid than growth 

within flat intra-granular regions as was witnessed with growth along grain boundaries and linear 

surface dislocations. Thus, the overall rate of crystallite growth on a given surface should depend 

in part upon the relative abundance of these non-planar features. Processes that reduce the 

roughness of filament surfaces are therefore expected to reduce the rate of oxide growth upon 

these surfaces. The use of higher degassing temperatures leading to greater filament annealing 

may be a relatively simple means to acquire smoother surfaces and slow oxidation.  
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Figure 3.10 (a) SEM image of surface region displaying (1) growth along grain boundaries, (2) 

growth along a linear surface dislocation. (3) growth within a flat plane. (b) AFM image 

displaying growth at defect sites (and other modes) [scale is 5 μm × 5 μm, height scale is 100 

nm]. (c) SEM image of crystallite growth upon a faceted plane. 

 

 

a 
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Figure 3.11 SEM images of (a) crystallite growth along a linear surface dislocation and (b) 

collection of grains exhibiting growth along parallel linear surface dislocation (of note: growth 

lines are parallel within a grain but not among neighboring grains). 

 

Due to varying growth rates and differences in the potential extent of growth among the 

regions, the dominant mode of growth (in terms of surface coverage) transitions over time. 

Crystallite growth along grain boundaries was found to be a dominant mode for degassed 

samples after intermediate (1-2 weeks) levels of atmospheric exposure (figure 3.9a). After longer 

exposure times (4-5 weeks) crystallite growth at grain boundaries is a minor contributor to 

overall crystallite surface coverage (figure 3.4). Determination of a dominant mode of growth at 

a given point in time is thus dependent upon the average grain size of the polycrystalline surface. 

Temporal growth of these crystallites is evident, indicating that some transfer of material occurs 

between the surface and crystallites. The mechanism involved in the transfer of material from the 

surface is not clear at this point.  

We hypothesize that the grain dependent growth seen at mature levels of oxidation 

(figure 3.4) is largely due to intragranular differences in the abundance and nature of defect 

regions within these grains. H. Cross Company states that rhenium ribbons are manufactured by 

powder metallurgy, where rhenium powder is pressed and then sintered. We hypothesize that this 

a b 
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method of manufacture will result in heterogeneous stresses amongst grains due to differences in 

geometry, size, and localized packing, resulting in intragranular differences in the abundance and 

type of defects introduced by this method of manufacture. 

 

3.3.8 Examination of filaments aged under atmospheric conditions for years 

 Figure 3.12 shows SEM images of filaments exposed to atmosphere for years (exact 

duration unknown) in covered containers. The images suggest that after long periods of ambient 

atmospheric exposure, the surface crystallites grow in size and eventually begin to fuse creating 

a confluent coating. This theory is supported by the discovery of fused crystallites on samples 

exposed to atmospheric conditions for only 1 month, seen in figure 3.12b and 3.12c. In some 

regions of the highly aged samples (multiple years of atmospheric exposure), the confluent 

coating appeared to have flaked off revealing a relatively smoother subsurface (images not 

shown). It is unclear if this loss of portions of the oxide over-layer is due to spallation or another 

cause. 

 

Figure 3.12 (a) Highly aged sample (multiple years of atmospheric exposure) showing that the 

crystals continue to grow and merge to entirely cover the rhenium surface. (b, c) fused 

crystallites found on surface after approximately 1 month of atmospheric exposure (crystallites 

shown in b & c are approximately 300 nm in width). 

a b c 
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3.3.9 Effects of carburization on filament morphology and oxidation under atmospheric 

conditions 

 The oxidation characteristics of carburized (a.k.a. carbonized) filaments also were 

investigated. Carburization procedures are incorporated into some TIMS sample preparations 

and involve resistance heating of the filaments under high vacuum in the presence of a carbon 

source. In this study, xylene vapor was injected into a custom-built degassing chamber. 

Carburized filaments were exposed to ambient conditions alongside filaments that had 

undergone no carburization process during degassing. Figure 3.13 compares 120° three-point 

grain intersections found on carbonized and non-carbonized filaments after approximately 1 

month of atmospheric exposure. Numerous differences can be noted: (1) Carbonized ribbons 

possess generally more defects near the grain boundaries than non-carbonized ribbons. (2) 

Average crystallite sizes were smaller on carbonized ribbons than non-carbonized ribbons. (3) 

Small gray, non-crystalline spots can be seen on carbonized ribbons that appear to be 

concentrated on particular grains. SEM-Raman suggests that these non-crystalline spots are 

carbonaceous deposits indicated by broad peaks near 1350 and 1550 cm-1 that were detected in 

these regions (figure 3.14).  

The incorporation of carbon through carburization procedures has been shown to increase 

the effective work function of polycrystalline rhenium [106, 125, 172], and changes in the 

effective work function of metallic surfaces can be related to changes in the redox potential of 

surfaces [173]. Qualitative observations by SEM suggest that at a given level of atmospheric 

exposure the average crystallite size is significantly smaller on rhenium surfaces that were 

subjected to carburization procedures than those that were degassed in the absence of a carbon 

source (figure 3.13). Carburization of filaments (or simply carbon incorporation) has been 
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credited with benefiting TIMS analysis by: 1) facilitating formation of actinide carbides that 

stabilize actinide analytes on filament surfaces to high temperatures, increasing ionization 

efficiency; 2) maintaining a reducing environment on the surface of the filament, promoting the 

production of metallic ions and suppressing analyte-oxide formation; and 3) increasing the work 

function of the filaments, which increases ionization efficiency. Findings within this study 

suggest that carburization also increases the “shelf life” of filaments used in TIMS analysis. 

Section 3.3.12 discusses the reinvestigation of this theory. We hypothesize that the observed 

passivation afforded by carburization is due to an increase in the work function of these surfaces, 

which increases the activation barrier for oxidation. 

 

  
 

Figure 3.13 Comparison of carbonized rhenium ribbons (a) and non-carbonized rhenium ribbons 

(b). Carbonized ribbons have a rougher surface with more defects near the grain boundaries than 

non-carbonized ribbons. Crystallites generally are smaller on carbonized ribbons than non-

carbonized ribbons at equivalent durations of atmospheric exposure. Graphitic deposits seen as 

small dark spots appear on carbonized ribbons and are concentrated on particular crystalline 

planes. 

 

a b 
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Figure 3.14 SEM-Raman analysis of dark spots witnessed on carbonized ribbons (top image 

with arrow to indicate the spot which was analyzed) that were found to correspond with broad 

carbonaceous peaks near 1350 and 1550 cm-1 (bottom Raman spectrum). 

 

3.3.10 Hydrophobic polymer films as a means to slow oxidation under atmospheric 

conditions 

 The efficacy of hydrophobic thin polymer films as a means of passivating filament 

surfaces was investigated. Within 1 week of degassing, rhenium filaments were coated with a 

~120 nm film of PVBC by dip-coating. These coated filaments were then exposed to 

atmospheric conditions for 3 months, during which the in-growth of crystallites was absent. 
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AFM was used for these analyses rather than SEM to prevent degradation of the thin polymer 

coating. Figure 3.15a shows a coated filament surface after 3 months of atmospheric aging. To 

ensure that the polymer coating was not obscuring the visualization of any crystallites, filaments 

aged for 1 month in atmosphere were coated with a thicker (~500 nm) layer of polymer and 

imaged via AFM. It was known that these filament surfaces possessed a significant coverage of 

crystallites at the time of coating. Crystallites under the 500 nm film were clearly visible through 

AFM imaging, appearing as mounds, and can be seen in figure 12b. This control experiment 

validates the observation that thin polymer films passivate the surface to oxidation. 

 

 
 

Figure 3.15 AFM images of thin polymer film coated filaments. (a) Re filament coated with 180 

nm film after ~1 week oxidation in atmosphere, then exposed to atmosphere for more than 3 

months. (b) Re filament oxidized in atmosphere for 1 month and then coated with 500 nm film. 
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PVBC was selected as the coating material in this study for its chemical similarity to 

Dowex anion-exchange resins, commonly used in bead loading methods, and its hydrophobicity. 

It is unclear at this point if passivation of these coated surfaces is due to reduced oxygen 

diffusion, reduced exposure to water, or a combination thereof. Dip-coating was selected as the 

film formation method for its simplicity and applicability to complex substrate geometries, such 

as filament assemblies. In work reported in chapter 2, it was found that thin films of PVBC (on 

the order of 120 nm) are non-interfering with TIMS analysis of Pu, behaving similarly to bare 

rhenium filaments. 

 

3.3.11 The effects of humidity on the growth of perrhenic acid crystallites 

The ingrowth of oxo-rhenium crystallites on degassed filaments was reported by our 

group [126]. Crystallites were identified as Re2O7(H2O)2, the hydration product of Re2O7, based 

on SEM-EDS, SEM-Raman, and crystalline form. Three hypotheses arose during this initial 

study: 1) The formation of Re2O7(H2O)2 crystallites is dependent upon relative humidity of 

storage conditions. 2) Filament carburization slows the formation of Re2O7(H2O)2. 3) The build-

up of surface oxides is, at least in part, the cause of decreased performance (in terms of sample 

utilization (Pu+) and/or the precision of isotopic ratio measurements), which has been reported 

anecdotally in the TIMS community when using excessively aged rhenium filaments for ultra-

low-level measurements of Pu. We undertook a second study, detailed in sections 3.3.11, 3.3.12, 

and 3.3.13, to test these hypotheses. 

At 79 days of aging (where degassing was done on day 0), crystallite surface coverage on 

degassed, non-carburized filaments stored under humid conditions (statically controlled with a 

saturated NaCl salt bath at ~75% relative humidity [165]; water activity of ~0.7528 [174]) was 
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34 times greater than crystallite surface coverage on filaments stored under dry conditions (~13% 

relative humidity). Crystallites were approximately 12 times larger on filaments stored under 

humid conditions (based on projected area). Approximately 100 to 500 crystallites were captured 

for analysis in each image. Figure 3.16 compares humid versus dry crystallite growth rates on 

degassed filaments, in terms of percent surface coverage. Crystallites grew steadily on filaments 

aged under humid conditions, reaching approximately 2.3% surface coverage at 79 days of 

aging. No crystallite growth, beyond the initial population of crystallites, was observed on 

filaments stored under dry conditions. In other metal systems, such as magnesium, the rate of 

atmospheric corrosion is highly dependent upon the relative humidity of the environment. At 

9.5% relative humidity, neither pure magnesium nor any of its alloys exhibit evidence of surface 

corrosion after 18 months. At 30% relative humidity, only minor corrosion may occur. At 80% 

humidity, the surface may exhibit considerable corrosion [175]. The lack of crystallite growth 

under dry conditions supports the hypothesis that the atmospheric corrosion of rhenium is 

sensitive to relative humidity. Other means of reducing the availability of water in the storage 

environment, such as storing under vacuum or inert atmosphere, may also suppress the corrosion 

of rhenium surfaces.  

Average equivalent circular diameters (ECD) of crystallites were calculated from 

projected areas provided by ImageJ particle analysis. Figure 3.17 compares the size distribution 

of crystallites for a) humid and b) dry conditions at 9 and 79 days of aging. Crystallites grown 

under humid conditions reached an average ECD of approximately 2 μm after 79 days, while no 

quantifiable increase in crystallite size was observed on degassed filaments stored under dry 

conditions. The presence of an initial population of crystallites at the first point of interrogation 

by SEM (2 days after degassing) and of lack growth under dry conditions may indicate that this 
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initial population of crystallites formed in the degassing chamber. This hypothesis has not been 

tested; however, the lognormal crystal size distribution seen in figure 3.17a is consistent with 

decaying-rate nucleation accompanied by surface-controlled crystal growth (growth with an 

essentially unlimited supply of nutrients) that occurs in other crystalline systems [176, 177].  

 

 

Figure 3.16 Comparison of crystallite surface coverage for degassed filaments stored under 

humid and dry conditions over the course of aging for 79 days. Error bars represent a 95% 

confidence interval based on the various images processed at each time step. 
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Figure 3.17 A comparison of crystallite size distribution (based on equivalent circular diameter) 

on degassed filaments aged under a) humid and b) dry conditions at 9 and 79 days of aging. 

 

Figure 3.18 shows a highly oxidized grain that was imaged repeatedly at 44, 65, and 79 

days of aging. The growth of crystallites is apparent in figure 3.18; however, the number of 

crystallites remained constant. This finding is consistent with other areas that were imaged 

repeatedly over the course of aging. The lack of new crystallite nucleation supports the 
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hypothesis that crystallite seeding occurs at some point during the degassing process, prior to our 

SEM investigation. Additionally, crystallite growth appears to be non-uniform and weighted 

towards certain regions of the surface. As seen in figure 3.18, crystallites located at or near grain 

boundaries tend to grow more rapidly than those located in intragranular regions. 

 

 

Figure 3.18 A highly oxidized grain imaged at (a) 44 days, (b) 65 days and (c) 79 days of aging 

under humid conditions (image scale is approximately 28 µm x 32 µm). Filament was degassed 

only (no carburization). Number of crystallites in the image remains constant over this time span, 

but their growth is apparent, particularly for crystallites located on or near grain boundaries. 

 

3.3.12 Effect of filament carburization on the growth of perrhenic acid crystallites under 

humid and dry conditions 

Very few crystallites were observed on carburized filaments over the course of 79 days of 

aging in both humid and dry conditions. At 65 days of aging, some crystallites were found on 

carburized filaments stored under humid conditions; however, at the moderate magnifications 

(600x) used for imaging, the crystallites were too small to quantify. No crystallites were 

observed on carburized filaments stored in dry conditions during the 79 day aging period. 

a b c c 
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Carburization greatly suppresses the growth of crystallites, either through alteration of the 

surface redox potential or by interfering with their nucleation. Figure 3.19 shows a comparison 

of each filament treatment under the four conditions investigated in this study. 

 

 

Figure 3.19 SEM images of filaments aged for 65 days under various conditions: a) degassed 

filament stored under humid conditions (~75% relative humidity), b) degassed filament stored 

under dry conditions, c) carburized filament stored under humid conditions (~75% relative 

humidity), d) carburized filaments stored under dry conditions. Bright spots most clearly seen in 

image a) are crystallite locations. 
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3.3.13 Effect of filament oxidation on the sensitivity and accuracy of TIMS measurements 

of Pu 

Atomic ion production (as determined by total detected 239Pu + 242Pu ion counts) and 

isotopic ratio measurements were made using filaments with 1.0% oxide surface coverage and 

were compared to those made using freshly degassed filaments. Table 3.2 shows a summary of 

these data. The standard deviation of isotope ratio measurements increased by 170% when using 

aged filaments and the average isotopic ratio had 60% greater deviation from the certified value 

for NBL CRM Pu128. Furthermore, average atomic ion production (Pu+) was approximately 

20% lower with a 40% higher standard deviation when oxidized filaments were used. These 

findings are statistically significant: at a 99% confidence level (using a two-sample F-test, one-

tail), the variance in measured isotopic ratio is larger for aged than fresh filaments, and at a 95% 

confidence level, the measured isotope ratios are unequal (using a two-sample t-test, two tails). 

In regard to signal loss, at a 90% confidence level the variance in the measured counts is greater 

for aged filaments than fresh filaments (using a two-sample F-test, one-tail), and at a 78% 

confidence level the average measured counts is greater for fresh filaments than aged filaments 

(using a two-sample t-test, one-tail). No runs could be removed as outliers based on low counts 

using the modified Thompson tau technique (α = 0.05).  

As was found in our previous study on the atmospheric oxidation of rhenium filaments, 

the distribution of oxide crystallites is grain dependent [126]. If the interaction of oxides with the 

sample occurs on a local level, then, due to the small size of resin beads used for loading (150–

300 μm diameter), the level of interaction may depend on the proximity to highly oxidized 

grains. Samples loaded onto relatively barren regions of aged filaments (with regard to oxide 

crystallites) may be impacted negligibly, while beads located on or near highly oxidized grains 
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may interact significantly with oxides. Given longer aging periods in an oxidation-promoting 

environment, as these surfaces become more uniformly covered by oxide crystallites (as was 

observed in our previous study [126]), we hypothesize the impact of oxidation will become more 

significant and uniform across sample sets. 

Based on the findings, we submit that oxides are, at least in part, the cause of decreased 

performance that has been observed with aged filaments; moreover, we theorize that suppressed 

atomic ion production is due to the formation of Pu-oxides. 

 

Table 3.2 Comparison of TIMS analytical performance, using the bead loading method and 

dimpled filament geometries, for freshly degassed filaments and filaments with 1.0% surface 

coverage of oxides. 

Filament Condition Fresh Filaments 1.0% Oxide Surface Coverage 

Average Detected Pu 

Counts 360,394 301,196 

Standard Deviation in 

Pu Counts (RSD) 176,908 (49%) 243,212 (81%) 
239Pu/242Pu Ratio 1.0018 0.9971 

Standard Deviation in 

Isotope Ratio 

Measurements 0.0024 0.0065 

Number of 

Measurements 25 14 

 

  



 133 

3.4 Conclusion 

The long-term exposure of polycrystalline rhenium surfaces to ambient air was 

investigated and preferential ingrowth of oxo-rhenium crystallites was observed. Crystalline 

form, SEM-Raman vibrational spectroscopy, and SEM-EDS support identification of these 

crystallites as perrhenic acid, the product of Re2O7 hydration. Identification of crystallites as 

Re2O7(H2O)2 is consistent with the observed absence of growth under dry conditions and 

accelerated growth under humid conditions. More investigation is needed to determine if 

crystallite nucleation originates during some stage of degassing and to identify the surface 

conditions that lead to crystallite nucleation. Factors known to influence the rate of crystallite 

ingrowth include (1) average grain size due to preferential growth at grain boundaries, (2) grain 

orientation, (3) relative abundance of defect sites, (4) length of exposure, (5) relative humidity of 

the environment, and (6) carbon incorporation through carburization. Controlling these factors 

may increase shelf lives of degassed rhenium filaments used in TIMS analyses. In addition, 

polymer coatings appear to slow oxidation to a greater degree than carburization, though, the 

magnitude of this difference is yet to be quantified. 

 Further investigation is needed to fully elucidate the mechanism(s) that result in 

decreased ionization efficiency when Pu samples are loaded onto aged filaments, but filament 

aging resulting in even low levels of oxide surface coverage (1%) was found to markedly reduce 

atomic ion production and the accuracy and precision of isotopic ratio measurements. Strategies 

such as carburization, storage under dry conditions, or polymer coating that limit oxide growth 

are recommended for storage of filaments prior to TIMS analyses. 

 Variance in atmospheric humidity may, in part, account for inter-laboratory discrepancies 

in the shelf life of TIMS filaments. Due to the influence of humidity it is not possible to simply 
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equate equivalent durations of aging. Future studies on the impact of filament oxidation therefore 

must account for the actual quantity of surface oxides present at the time of analysis, not simply 

the duration of filament aging. 

 

  



 135 

CHAPTER FOUR 

ALPHA SPECTROSCOPY SUBSTRATES BASED ON THIN POLYMER FILMS 

 

4.1 Introduction 

The ability to rapidly and efficiently produce samples capable of quantifying actinide 

concentrations and isotope ratios by alpha spectroscopy has applications in water monitoring, 

emergency response, nuclear materials processing, nuclear forensics, and nuclear safeguards. For 

example, knowing the isotope ratio of U or Pu bearing samples can help to understand the source 

and/or intent of the material [178]. In many cases within both nuclear security and environmental 

applications, the ability to measure ultra-trace level (pg) quantities of actinide elements is 

necessary to nuclear security applications. Oftentimes, such sensitivity can only be achieved 

using mass spectrometric techniques. Alpha spectroscopy can be a simpler and cheaper 

alternative to mass spectrometry if samples can be prepared with sufficient resolution and 

capture efficiency. However, preparation of high quality alpha spectroscopy samples is a difficult 

task because the high linear energy transfer of alpha particles limits the distance an alpha particle 

can travel through virtually any media. Thus, high quality alpha spectroscopy substrates must be 

1) flat, 2) stable, and 3) have a means of chemically or physically sequestering the radionuclides 

on the surface.  

There are several currently employed techniques to prepare alpha spectroscopy samples 

to avoid self-absorption of the alpha particles, which can have deleterious effects on the 

resolution of the alpha spectrum. Self-absorption occurs when alpha-emitting isotopes must pass 

through a portion of the solid source material, which causes energy loss of the particle and leads 

to a broadening of the spectrum. The result is low energy tailing in the spectrum that makes 
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isotope discrimination more difficult if not impossible. This phenomenon rules out most porous 

materials, including many crystalline metal oxides, as sorbents since they would produce spectra 

with excessive tailing. Rapid methods, such as lanthanum fluoride microprecipitation, can 

produce samples with high alpha energy resolution but require hazardous chemicals (i.e. 

hydrofluoric acid), which is not ideal for field application. Electrodeposition can produce good 

samples but requires specialized equipment and adds another time-consuming step to sample 

preparation. Thus, a primary objective of this work was to develop a new method based on thin 

polymer films for the rapid, inexpensive, and efficient preparation of alpha spectroscopy samples 

that retains the high resolution of those prepared by electrodeposition or microprecipitation. 

Organic films recently have been studied as a potential platform for the development of 

robust alpha spectroscopy substrates capable of rapid field deployment [179]. A variety of film 

formation techniques have been employed, including common techniques such as spin-coating 

and solvent casting, and less common methods such as fixing crushed anion-exchange resin 

beads to a surface [180]. A chemical strategy has been the use of polymer-ligand films [181] or 

polymer inclusion membranes [182] where a ligand is dispersed with a polymer in solution and 

co-deposited on the substrate surface. In concept and in preparation, polymer-ligand films are 

simple, but they present a number of engineering challenges for use as substrates for alpha 

spectroscopy. The ligands in these films are not bound covalently to the polymer matrix and, 

thus, are susceptible to leaching. To prevent excessive leaching of the ligand, the polymer matrix 

must have a low degree of swelling under aqueous loading conditions, which leads to slow 

uptake kinetics due to the high resistance for transport of aqueous ions into the polymer matrix. 

In these systems, a significant fraction of bound ions is likely to be deposited below the film-
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fluid interface, within the polymer matrix, contributing to energy tailing seen in spectra produced 

from thicker (2-3 µm) polymer-ligand films [183].  

In this work, we prepared and tested a novel substrate for the rapid concentration of 

actinides and simultaneous sample preparation for high-resolution alpha spectroscopy analysis. 

The substrate comprises an ultra-thin (10-180 nm), lightly cross-linked polymer film with 

covalently bound quaternary ammonium chloride pendant groups for actinide anion exchange. A 

thickness of 10-180 nm minimizes tailing due to energy deposition in the film while providing 

adequate mass of anion-exchange material to complex measurable quantities of actinides. The 

functionalized films are hydrophilic and readily swell in aqueous systems, eliminating the need 

for plasticizers to aid in ion transport within the film. Dip-coating was selected as the film 

formation method for these studies over solvent casting or spin coating. It offers a high degree of 

reproducibility and control over film thicknesses in the range of 10-1000 nm, produces highly 

uniform and smooth films apart from edge effects, is more easily scalable than comparable 

methods, and can be applied to a variety of substrate geometries. The dip-coating film formation 

procedure can be applied to virtually any polymer system and provides a simple, rapid, and 

inexpensive means for preparing large batches of ready-to-use substrates for alpha spectroscopy. 

Quaternary amine resins and polymers have a long history of use in the production and 

purification of actinides. The characteristics of actinide-lanthanide binding with quaternary 

amine bearing resins has been well characterized and found to be non-selective with 

complexation generally occurring at elevated acid concentrations. This is due to the formation of 

anionic complexes such as Pu(NO3)6
2- or Pu(Cl)6

2- at high acid concentrations which undergo 

anion-exchange with the resin. As such, to promote actinide uptake upon quaternary amine 

bearing polymer films, actinide samples must be dissolved in concentrated acid solutions. The 
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necessity of sample acidification combined with the non-selectivity of complexation limits the 

potential field deployability of quaternary amine based substrates; loading upon quaternary-

amine based anion-exchange polymer films from complex environmental samples will likely 

require purification procedures to prevent degradation of spectral quality from matrix 

interferences. A simpler loading scheme may be achieved through the use of more selective 

ligands; however, quaternary amine based films present versatile platform from which to explore 

the influences of various film parameters under ideal loading conditions. The effects of film 

properties such as thickness, cross-linking content, and active site distribution upon resulting 

alpha spectral quality are largely unexplored. Quaternary amine polymer films provide an 

adaptable base wherein these parameters can be readily modified. Additionally, the non-

selectivity of these polymers provides a near universal substrate to explore mass loading effects 

from various actinide species. Elucidation of these characteristics will guide future efforts in the 

development of polymer thin-film alpha spectroscopy substrates possessing more selective 

ligand chemistries that can operate under a wider range of loading conditions. 
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4.2 Experimental 

4.2.1 Materials 

The following materials were obtained from Sigma-Aldrich and used as-received: 

chloroform (Reagent Plus® ≥ 99.8% with 0.5-1.0% ethanol as stabilizer, CAS# 67-66-3); 1,4-

diazabicyclo[2.2.2]octane (DABCO, Reagent Plus® ≥99%, CAS# 280-57-9); hydrogen peroxide 

solution containing inhibitor (30 wt% in water, CAS# 7722-84-1); poly(vinylbenzyl chloride) 

(PVBC), 60/40 mixture of 3- and 4- isomers (CAS# 121961-20-4); sulfuric acid (95-98%, ACS 

reagent grade, CAS# 7664-93-9). Triethylamine (TEA, 99%, reagent grade, CAS# 121-44-8) 

was obtained from Fisher Scientific. Syringe filters were 17 mm 0.45 µm glass/PTFE filters from 

Maine Manufacturing, LLC. Silicon substrates were acquired from Nova Electronic Materials as 

4” N/Ph <100> 1-10 Ohm-CM 500-550 μm SSP prime grade Si wafers diced to 1 cm × 3 cm 

pieces. Deionized (DI) water with a resistance of 18.2 MΩ was prepared in-house from distilled 

water that was passed through a Milli-Q water purification system (EMD-Millipore). 

 

4.2.2 Substrate preparation for coating 

Silicon and glass substrates were prepared according to the procedure given in section 

2.2.3.  

 

4.2.3 Dip-coating 

After cleaning, substrates were dip-coated from solutions of PVBC in chloroform. To 

produce a film with a thickness of approximately 10 nm, the substrate was withdrawn from a 0.5 

wt% PVBC solution at a withdrawal rate of 100 mm/min using a Qualtecs Product Industry QPI-

128 dip coater. Film thickness increases with increasing polymer concentration and withdrawal 



 140 

rate [123]; film thicknesses up to approximately 120 nm were produced by increasing polymer 

concentration to 2 wt% PVBC and withdrawal rate of 340 mm/min. Polymer solutions were 

filtered using 0.45 µm glass/PTFE syringe filters before dip-coating or the addition of DABCO 

cross-linker. Film thicknesses were determined with multi-angle ellipsometry (described in 

section 2.2.10). Immediately before dip-coating, DABCO was spiked into the solution to serve as 

a cross-linker. The molar amount of DABCO added was limited by stoichiometry based on a 1:2 

reaction of DABCO to chloride sites along the PVBC chains, as depicted in figure 4.1. It was 

determined that to prevent dissolution of the polymer film in chloroform during the subsequent 

functionalization step, a minimum of 5% cross-linking was needed. A ratio of 18.4 mg 

DABCO:1 g PVBC was used to prepare films with 5% cross-linking. Films with 50% cross-

linking also were prepared. After casting, films were heated in an oven at 80°C for at least 24 h 

to complete cross-linking. 

 

 

Figure 4.1 Synthetic methods developed to produce chemically stable hydrophilic films with 

quaternary amine functionality 
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4.2.4 Functionalization of Polymer Thin-films 

Substrates coated by the cross-linked polymer films were submerged in a 5 wt% solution 

of TEA in chloroform for 24 h at room temperature. After functionalization, the substrates were 

removed from solution and dried with compressed air. Film thicknesses were measured by 

ellipsometry before and after TEA functionalization. Film thickness increased from 120 nm to 

~180 nm from the TEA functionalization process. 

 

4.2.5 Atomic force microscopy 

 Atomic force microscopy images were obtained using a Bioscope AFM (Bruker, Inc.) 

with NanoScope III A controller as described in section 2.2.13. 

 

4.2.6 Stability Analysis of Polymer Films 

 Loading conditions for actinides on quaternary amine functional groups require high acid 

concentrations that can produce anionic actinide complexes (such as PuCl6
-2 in 9 M HCl). 

Therefore, to ensure that these conditions do not destabilize the polymer ion-exchange coatings 

on the substrates, experiments were performed to investigate stability in HCl. Films were 

prepared without cross-linking and with 5% cross-linking by DABCO. Prior to testing, the films 

were washed thoroughly and soaked in water for 24 h to remove any residual TEA. The film-

coated substrates were suspended in 25 mL of 9 M hydrochloric acid for up to 3 days. Films 

were removed from solution and allowed to dry in a hood before analysis. Film thicknesses 

before and after the acid challenge were measured by multi-angle ellipsometry. 
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4.2.7 Actinide Loading and Alpha Spectroscopy 

To demonstrate environmental applicability, uranium uptake studies used a groundwater 

sample collected from a well at Roundhouse point on Lake Jocasee in South Carolina on August 

27, 2013. The water contains naturally occurring uranium at relatively high levels (166.5 ± 2.1 

g/L (ppb) 238U) as determined by direct analysis of the groundwater solution using ICP-MS 

after acidification to 2 wt% HNO3. A NIST traceable uranium calibration solution was obtained 

from High Purity Standards (Charleston, SC) to determine the aqueous U concentration using 

ICPMS. The uranium bearing groundwater samples were acidified to 3 M, 5 M, and 9 M HCl for 

uptake studies. Aliquots of each acid stock solution were placed in a petri dish to give the 

equivalent of 2.5 mL groundwater prior to dilution with the acid (i.e. to maintain a fixed uranium 

mass in each sample). A glass slide with a 5% cross-linked, TEA functionalized film was 

submerged in each solution with no agitation. The solution was allowed to air dry completely 

and the bound uranium was quantified by alpha spectroscopy using an EG&G ORTEC Octête 

PC Alpha Spectrometer bank with phosphorous doped silicon detectors. A calibration standard 

for counting efficiency determination was prepared by spotting five 10 µL drops of a 2966 

dpm/mL 238Pu solution across a 5% cross-linked, TEA functionalized film that was carefully 

“smeared” using a pipette tip to cover the area of the film. Films from batch uptake studies were 

allowed to air dry prior to analysis. Each detector was energy calibrated using a NIST 

traceable238Pu, 241Am, 235U, and 238U bearing source electroplated on a 25mm diameter steel 

planchet. Due to the different geometry, this source could not be used as an efficiency standard.   

 Pu uptakes onto the 10 nm thick functionalized films were measured in the same manner 

as the uranium uptake experiments. However, to utilize a Pu source with higher specific activity, 

a 10 Ci/mL 238Pu stock solution was obtained from Eckert and Zeigler Isotope Products 
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(Valencia, CA). Two 238Pu(IV) working solutions were prepared at ~1000 dpm/mL (1.1 × 10-10 

mol/L 238Pu) and ~100 dpm/mL  (1.1 × 10-11 mol/L 238Pu) in 9 M HCl using the same method 

described above for the uranium bearing samples. Separate films were submerged in 5 mL of 

each solution and allowed to air dry completely, and then the amount of 238Pu on the film was 

quantified using alpha spectroscopy.  

 

4.2.8 Pu Loading onto 180 nm Films 

Certified Reference Material 130 (New Brunswick Laboratory) was used as a Pu source and 

contains mostly 242Pu by mass but also has measurable concentrations of 238Pu, 239Pu, and 240Pu. 

The Pu stock solution in 4 M HNO3 was evaporated to incipient dryness then reconstituted in 9 

M HCl to produce a 4.3 × 10-6 M 242Pu stock. To maintain Pu in tetravalent state, NaNO2 was 

added to reach a concentration of 1 mM. The final oxidation state of Pu in the working solution 

was verified as Pu(IV) using solvent extraction and coprecipitation. The working solution was 

spiked into ~100 mL of 9 M HCl to produce a 4.3 × 10-8 M (1 μg/L) dilution. This solution was 

mixed with a magnetic stir bar and the substrates were submerged and supported with a Teflon 

jig to avoid contact between the magnetic stir bar and the substrate. Substrates were allowed to 

contact solution for 2 h. After contact the sample was removed from solution and blotted to 

remove excess loading solution before allowing the substrate to air dry. This source was selected 

for these studies because higher mass loading was desired for the thicker films. 

 

4.2.9 Preparation of electrodeposited substrates 

Preparation of electrodeposition solutions: for each sample, 1 mL of 1000 dpm/mL Pu238 

in 9 M HCl solution containing sodium nitrate was diluted with 9 mL of DI water. Methyl yellow 
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(2-3 drops) was then added to solution and mixed by shaking. Sodium hydroxide solution (2 M) 

was added dropwise while shaking until a peach color was achieved indicating a pH of 3.2-3.8. 

This pH was confirmed with litmus paper.  

Electrodeposition of Pu238: four stainless steel planchets were prepared by first removing 

the protective coatings. The planchets were then loaded into four separate fluoropolymer 

electrodeposition cells that were mounted to a fluoropolymer bracket. Electrodeposition solution 

was added to each cell (10 mL per cell), and a platinum anode was submerged below the surface 

of the solution and mounted in place. Care was taken to ensure the platinum anode was not in 

contact with the stainless steel planchets. The cathode was then attached to the planchet and the 

power supply was tuned to 2 A (0.5 A/cell). Covers were placed over the cells to reduce 

evaporation of the electrodeposition solution while under current load. Current was applied for 2 

h to complete the electrodeposition. Prior to turning off the power supply, approximately 1 mL 

of 2 M NaOH was added to the cell to prevent re-dissolution of deposited Pu once the current 

was removed. The cells were removed from their mounts and the deposition solution was poured 

out of each cell. The planchets were dried in air before placing within the alpha spectrometer. 
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4.3 Results and Discussion 

4.3.1 AFM imaging of thin films 

PVBC-DABCO films produced through dip-coating and activated with TEA were 

smooth apart from edge effects at all thicknesses upon inspection with AFM (figure 4.2). Excess 

cross-linker was found to induce porosity within the film; however, films with 0-95% cross-

linking with DABCO remain smooth and non-porous. 

 

 

Figure 4.2 AFM images of smooth PVBC films on silicon substrates after cross-linking and 

TEA activation. Left image is film with 5% cross-linking with DABCO; right image is film with 

95% crosslinking with DABCO. Images are 2 μm × 2 μm with a 30 nm height scale. Note: these 

films are smoother than those shown in figure 2.19; we hypothesize this is due to filtering the 

polymer solutions which was not done in the preparation of films shown in figure 2.19. 
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4.3.2 Acid stability testing of thin films 

TEA activated films with 5% cross-linking were found to be stable in 9 M HCl. Stability 

was determined by measuring film thickness before and after acid exposure. Film thicknesses 

measured by multi-angle ellipsometry for stability testing are provided in table 4.1. Thicker films 

(~180 nm) were used for these studies so that small changes in thickness would be more evident. 

Film thicknesses remained the same within measurement uncertainties after soaking in 9 M HCl 

for 3 days. Delamination of the films was found to occur after multiple weeks of acid exposure; 

however, it was determined that contact times longer than 3 d were far longer than the time that 

is required to reach equilibrium in batch uptake studies (described in section 2.3.3). 

 

Table 4.1 Results of film stability testing in 9 M HCl; uncertainties represent 95% confidence 

intervals based on five measurements. 

Film Description 
Original film 

thickness 

Thickness after HCl 

exposure 
Treatment 

  [nm] [nm]  

5% CL PVBC/TEA 

modified 
184.3 ± 3.7 180.3 ± 8.0 

Aged for 1 month in 

atmosphere with no acid 

treatment 

5% CL PVBC/TEA 

modified 
178.1 ± 2.9 174.9 ± 2.0 9 M HCl – 1 h 

5% CL PVBC/TEA 

modified 
177.2 ± 4.7 176.6 ± 6.7 9 M HCl – 17 h 

5% CL PVBC/TEA 

modified 
183.2 ± 5.9 178.4 ± 5.5 9 M HCl – 3 day 

 

 

4.3.3 Quantification of Pu uptake onto PVBC-DABCO-TEA films 

A maximal uptake of approximately 12% was measured when loading from 1000-100 

dpm/mL solutions of 238Pu(IV) and was achieved within 30 min of contact. These samples were 
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loaded by simply submerging the substrate in actinide bearing acid solution for a given allotment 

of time and these data are shown in table 4.2.  

 

Table 4.2 Pu (IV) sorption onto ~180 nm 5% cross-linked PVBC-DABCO-TEA films. 

Sample 
Mass Loading of 238Pu 

(pg) 

Percent Uptake 

(%) 

Loading from 5mL of 1000 dpm/mL 
238Pu(IV) working solution 

31.4 ± 4.65 12.1 ± 1.79 

Loading from 5mL of 100 dpm/mL 
238Pu(IV) working solution 

3.21 ± 0.76 12.2 ± 2.88 

 

 

4.3.4 Alpha spectroscopy with Pu loaded thin films and comparison to electrodeposited 

substrates 

Despite low uptake on 5% cross-linked PVBC-DABCO-TEA films, the resulting alpha 

spectra have a resolution of 25-30 keV, which is comparable to electrodeposition (Figure 4.3). 

The high resolution provided by these substrates resolved the shoulder of the 238Pu alpha peak, 

which represents different alpha energies from the alpha decay: 5.499 MeV (70.91%) and 5.457 

MeV (28.98%). 
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Figure 4.3 Uptake of Pu(IV) out of 9M HCl onto a 180 nm 5% cross-linked, TEA activated 

PVBC substrate coated on silicon substrates; data determined by alpha spectroscopy (450 mm2 

detector) after: 22 h (thin film substrate) and 24 h (electrodeposited substrate). 

 

4.3.5 Effect of acid concentration on U uptake with PVBC-DABCO-TEA films 

Figure 4.3 demonstrates that the HCl concentration strongly affects the uranium uptake 

onto the film. This result was expected as anion exchange within the polymer film occurs with 

the PuCl6
-2 or UO2Cl4

-2 anionic species, which becomes the dominant aqueous species for Pu and 

uranium at high acid concentrations. The chloride:actinide ratio increases with increasing HCl 

concentration owing to formation of AnClx
4-x and AnO2Clx

2-x complexes [8]. Due to the low 

specific activity of natural uranium, efforts were made to maximize the amount of uranium 

loaded onto these films by allowing the loading solutions to fully dry while in contact with the 

substrates. During drying the liquid phase abundance approaches zero, which drives the 

complexation equilibrium towards the solid phase resulting in near complete uptake under 

certain conditions (figure 4.4).  
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Figure 4.4 Fraction of sorbed uranium on 10 nm 5% cross-linked, TEA activated PVBC film 

after total evaporation of uranium solution; data determined from alpha spectroscopy after: 240 h 

(9 M), 300 h (5 M), and 435 h (3 M) of count time. 

 

Although the alpha peaks for uranium were clearly evident (figure 4.5), the spectra 

showed considerable peak broadening especially at low acid concentration. Energy resolutions 

for the 238U peaks at 4.2 MeV were 35 keV (9 M), 32 keV (5 M), and 54 keV (3 M). The 

relatively poor-quality uranium spectra are attributed to several factors. While although the mass 

loading of uranium is high, the specific activity of its naturally occurring isotopes is low, and so 

several days of counting is necessary. The high mass loading also results in a large degree of 

self-attenuation of the alpha particles, causing tailing of the alpha peaks and subsequently 

decreased resolution. In addition, the uranium daughter products can be observed in the 

spectrum. These daughters can overlap with uranium peaks. For example, 226Ra has an alpha 
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peak at 4.870 MeV that overlaps with the 234U peak at 4.859 MeV and hampers isotopic analysis 

without effectively purifying the solution prior to uptake. 

  

 

Fig. 4.5 Alpha spectra of uranium from natural well water loaded onto 10 nm 5% cross-linked, 

TEA activated PVBC substrate in 3 M HCl (a), 5 M HCl (b), and 9 M HCl (c); data determined 

from alpha spectroscopy after: 240 h (a), 300 h (b), and 435 h (c) of count time. 

 

4.3.6 Effect of mass loading on spectral resolution obtained with PVBC-DABCO-TEA films 

To examine the influence of uranium mass loading on the sample, one film was initially 

loaded by submerging in a “clean” solution containing 238Pu(IV) and the alpha spectrum was 

collected. Then the same film was returned to a petri dish and loaded with natural uranium by 
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allowing the natural uranium bearing solution to fully evaporate onto the substrate. Figure 4.6 

shows the spectra for the films after each uptake period. The 238Pu prior to addition of uranium 

shows 25-30 keV resolution and relatively little tailing (though it is exaggerated on the 

logarithmic y-axis of figure 4.6). After loading the same substrate with natural uranium, the Pu 

peak shows a substantially reduced count rate (by about an order of magnitude) at the max peak 

energy, as well as extensive tailing. The tailing arises from attenuation of the Pu alpha particles 

due to the large mass loading of precipitates covering the Pu. Well water used in this study was 

not purified prior to loading and thus contained an abundance of natural salts that were deposited 

during drying. Due to the low specific activity of natural uranium isotopes, the uranium does not 

have sufficient activity to be observed above the substantial tailing of the 238Pu peak.  

 

 

Figure 4.6 Alpha spectroscopy of 238Pu on 10 nm 50% cross-linked, TEA activated PVBC 

substrate loaded from 9 M HCl (black line) and spectrum after film was re-submerged in 5 mL of 

well water in 9 M HCl (grey line). The data for 238Pu only below 5300 keV are equivalent to 

background so the data cannot be plotted on the log y-axis. Original Pu alpha spectrum was 

collected over a 50 min acquisition time; after uranium exposure a 90 h acquisition time was 

used to collect the alpha spectrum.  
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4.4 Conclusions 

Thin-film polymer substrates yielded alpha spectra for Pu (IV) with high resolution that 

is comparable to electrodeposition under ideal loading conditions. High acid concentrations were 

needed to drive uptake of actinides into the films, requiring special considerations if these are to 

be used in a field deployable method; however, this is a limitation of the selected polymer 

chemistry. Substrates loaded with uranium sorbed from natural well waters performed poorly 

when compared to thin film substrates loaded from “clean” Pu solutions. Removing or 

preventing deposition of precipitates on the surface of the films and purification of the uranium 

solution to remove daughter products is needed to improve analyses for samples loaded from 

natural waters. Complete drying of natural samples upon the substrates exacerbated problems 

associated with complex sample matrices and should be avoided as a loading method. 

The influence of film thickness and active site distribution on substrate performance 

needs further elucidation. Plasma cleaning of the substrates can be used as an alternative method 

to piranha washing to minimize hazards associate with the substrate fabrication method. 

Extending this general method of alpha spectroscopy substrate preparation to other 

polymer/ligand systems may allow to actinide loading in less acid conditions, making the method 

better suited for field deployment. 

 

  



 153 

CHAPTER FIVE 

CONCLUSIONS AND RECCOMENDATIONS 

 

 Three improvements to sample loading procedures for TIMS analysis were achieved in 

this study including a new filament geometry and two sample loading techniques. The dimpled 

filament geometry improved measurement sensitivity when bead loading and employing the 

toroidal spot loading technique. Unfortunately, the dimpled filament geometry was not used with 

the anion-exchange fiber loading technique due to time and budget constraints. Due to the 

improvements when employing dimpled filaments with other sample loading strategies, I 

recommend the investigation of dimpled filaments in conjunction with the fiber loading 

technique. The trough-like geometry of dimpled filaments may compliment the geometry of 

fibers and aid in positioning fibers at the geometric center of filaments. Additionally, the 

influence of dimple dimensions on the resulting measurement sensitivity were not investigated. 

Preparation of filaments with “deeper” dimples may better mimic the geometry of the cavity 

source and provide greater opportunity for neutral gas atoms to interact with the ionization 

surface. The preparation of dimpled filaments is similar in difficulty to that of V-shaped 

filaments that commonly are employed in some labs, and so the only barrier to adoption of this 

filament geometry is the lack of commercially available crimping devices to create the dimpled 

geometry. Improvements in terms of sample losses may be adequate impetus for investment in 

the construction of custom-made crimping devices. 

 The fiber loading method was found to markedly improve the sensitivity, accuracy, and 

precision of Pu isotope ratio measurements by TIMS over that of the bead loading method. The 

average number of detected Pu+ counts was 180% greater and there was a 72% reduction in 
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standard deviation of ratio measurements when using fiber loading. An average deviation of 

0.0012 (0.117%) from the certified isotope ratio value of NBL CRM Pu128 was measured when 

fiber loading versus a deviation of 0.0028 (0.284%) when bead loading. Similarly to the dimpled 

filament geometry, the influence of fiber dimensions was not explored in this study due to budget 

constraints and instrument availability. Investigation into the thin film loading strategy indicate 

that the quantity of exchange polymer on the filament effects measurement sensitivity to a large 

degree. I hypothesize that measurement sensitivity when fiber loading will be affected in the 

same way by the quantity of polymer loaded onto filaments. This hypothesis could be tested by 

either altering the diameter or length of fibers used in sample loading. I hypothesize that 

increasing the length of loaded fiber sections may reduce sensitivity of analysis due to the 

creations of a more dispersed ion origin. The fiber formation method may serve as a convenient 

platform to study the influence of complexing polymer chemistry on measurement sensitivity. 

The fiber formation method is simple and applicable to other polymer chemistries. In addition to 

the fibers described in chapter 2, fibers were prepared composed of N,N-dimethylhexylamine 

quaternized poly(2,6-dimethyl phenylene oxide) and iodohexane quaternized poly(4-

vinylpyridine). Unfortunately, due to budget and time constraints these fibers were used in 

sample loading for TIMS.  

As was stated previously, it has been hypothesized that Pu-carbides are beneficial 

intermediate species in thermal ionization of Pu [4, 103], as the carbide form stabilizes Pu on the 

ionization surface to higher temperatures, increasing ionization efficiency upon carbide 

decomposition. It has been hypothesized further that actinides must be chemically associated 

with carbonaceous material to be converted to the carbide form effectively [96]. A study was 

carried out to better understand thermal ionization mechanisms for U in the presence of carbon 
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[112]. The formation of uranium-carbides was supported by this study; however, the investigated 

carbon sources were all graphitic in nature and no difference in the propensity for carbide 

formation was observed among the different non-complexing graphitic carbon sources. No 

known study has been reported that investigates the effect(s) of carbon source chemistry 

(complexing polymer versus non-complexing) on the effectiveness of actinide-carbide formation 

despite the hypothesized importance of this process in TIMS. Furthermore, knowledge of the 

impact(s) of complexing polymer properties, such as actinide binding energy or elemental 

composition, on ionization efficiency is lacking. Actinides form nitrides [184-187], phosphides 

[188, 189], sulfides [188, 189], carbonitrides [190], oxycarbides [190], and nitridehalides [191] 

at high temperatures. Thus nitrogen, phosphorous, sulfur, oxygen, or halides in complexing 

polymers may promote the formation of these phases and impact thermal ionization behavior. 

We suspect that in the case of bead loading with quaternary amine bearing polymers, the 

formation of Pu-nitride intermediate may contribute to improved ionization efficiencies, as the 

thermal degradation of Pu-nitrides occurs near 1700 – 1900 °C [187], consistent with the peak 

ionization temperatures of 1600 – 1900 °C [8] for Pu in TIMS. Formation of Pu-carbides may be 

more or less desirable than Pu-nitride, as PuC has a lower vaporization temperature (1550 °C) 

than Pu-nitride; whereas Pu2C3 may have similar or greater thermal stability (vaporization T 

>1800 °C) [192]. Lower vaporization temperatures of Pu-phosphide (~1400 °C)  and Pu-sulfide 

(~1500 °C) [188] suggests that the formation of these phases would suppress ionization in 

comparison to cases where Pu-carbides or Pu-nitride are formed; therefore, the use of 

phosphorous or sulfur bearing exchange resins may be undesirable for TIMS sample loading. 

Commercial porous carbon fibers could be used as non-complexing control fibers. Polymer 

fibers with quaternary amine and trialkylphosphite chemistries could be used as complexing 
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polymers. Additionally, porous carbon fibers with strong anion-exchange groups [20] could be 

compared to porous carbon fibers with no Pu-extractive ligands. Aqueous Pu samples would be 

dried onto fibers to ensure equivalent Pu loading in all cases. 

Despite the productive collaboration with researchers at SRNL, TIMS instrument time 

was limited and sample turnaround time was on the order of 2 months. In addition, the 

instrument was down for maintenance for long periods during the project. In an effort to expedite 

the development of a thin film loading strategy, a thermal ionization source was constructed at 

Clemson University, which is shown in figure 5.1. This ion source was originally designed and 

constructed to aid in screening thin film designs; however, we began to receive positive results 

from SRNL near the time of its completion and it was not used for this study. The instrument is 

capable of recreating conditions found in TIMS ion sources and comprises a filament power 

supply (capable of providing 0 – 5 A of filament current), an alpha spectroscopy planchet holder, 

and pumps that attain pressures down to 10-5 Pa. The alpha spectroscopy planchet is located 

orthogonal to the ion beam and is floated to a negative electric potential to attract positive ions 

towards the plate. Ionization efficiencies can be determined by alpha counting the planchets after 

runs.  

 The thermal ion source constructed at Clemson has been tested by loading an acidic 

solution of Pu onto a rhenium ionization filament and alpha counting the planchet after 4 h of 

heating at 3.5 A of filament current. Pu was successfully transferred to the planchet during this 

trial. This thermal ionization instrument has various ports where analytical instruments (e.g. 

Raman and/or IR probes) can be used for in situ measurements of filament conditions or sample 

chemistry. Ionization efficiencies can be compared between complexing and non-complexing 

fibers using this instrument. Additionally, investigation into the effects of filament or dimple 
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geometries could be carried out using the instrument. Finally, great strides in our understanding 

of thermal ionization mechanism(s) could be made through direct interrogation of chemistries 

present on filaments under different loading conditions. 

 

 

Figure 5.1 Thermal ion source created at Clemson University. 

 

 A successful thin-film loading strategy was developed during this work that increases 

TIMS sensitivity for Pu and greatly simplifies sample loading; however, the method was not 

fully optimized during this study. I believe sensitivity may be increased further through the 

creation of thicker toroidal spots. We avoided creating spots with thicknesses above 50 µm as 

this had originally resulted in ubiquitous filament failure. However, these original investigations 
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were carried out on flat rhenium filaments. Our collaborator at SRNL has hypothesized that the 

use of dimpled filaments stabilizes the filament through some unknown mechanism. I believe 

toroidal spots with thicknesses greater than 50 µm should be reinvestigated with dimpled 

filaments to determine if this hypothesis is true, and determine if measurement sensitivity can be 

increased further through the use of thicker toroidal spots. Additionally, if the thin film design is 

to be used for bulk production of analysis-ready filaments, a replacement for the hand-spotting 

technique described in chapter 2 must be developed. A piezo-electric nanodropper was acquired 

from Biofluidix (PipeJet P9 nanodispenser) for this purpose. These nanodroppers can be installed 

in automated arrays that could be used to prepare large batches of filaments. Additionally, I 

hypothesize that the reproducibility of the method could be improved by better controlling the 

quantity of polymer deposited onto filaments. The nanodropper has been assembled and tested 

using 3D SEM to ensure that toroidal spots prepared with the nanodropper are similar in 

dimensions to those prepared by hand. A batch of filaments was prepared using the nanodropper 

and delivered to SRNL for testing. 

 An unreported form of rhenium surface oxidation was discovered during this work. TIMS 

measurements support the theory that this oxidation detrimentally impacts the performance of Pu 

isotopic analysis by TIMS with the bead loading method. Our theory that grain dependent 

growth of oxides is due to local grain morphology and defects needs to be interrogated more 

deeply to support or refute this theory. Defect sites could be examined with methods such as 

scanning tunneling microscopy or transmission electron microscopy before and after dosed 

exposure to oxygen and water vapor to better understand the affinity of these reagents to various 

defect sites. This sort of investigation is outside the scope or expertise of our group, and we hope 
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that members of the scientific community with such expertise undertake these endeavors to 

better understand this phenomenon. 

 A new method of sample preparation for alpha spectroscopy was developed based on thin 

films originally intended for use in TIMS. High resolution alpha spectra were collected using 

these films; however, their use as a field deployable substrate is limited by the need to acidify 

samples to promote actinide complexation with quaternary amine sites within the films. The 

general methodology and design of creating cross-linked ultra-thin films could be extended to 

other polymer-ligand systems with better actinide complexation characteristics at near-neutral 

pH values. Additionally, methods of covalently attaching films to substrate surfaces could be 

explored to reduce the occurrence of film delamination during prolonged exposure to acidic 

solutions. Finally, the influence of factors such as film thickness and levels of cross-linking on 

the resulting resolution of alpha spectra could be explored to optimize these systems. I 

hypothesize that highly cross-linked films may suppress diffusion into films, resulting in sample 

deposition near the film surface. This may be advantageous to improve spectral resolution, but 

would likely result in lower overall levels of sample uptake. This work provides a foundation for 

future exploration of ultra-thin film based alpha spectroscopy substrates that may one day be 

field-deployable and a useful tool in nuclear safeguards and environmental monitoring 

applications. 
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