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Abstract

This thesis investigates two nonlinear systems of time-dependent partial dif-

ferential equations that model a filtration process. Existence and uniqueness results

for the governing equations is established. For each system, a finite element scheme

capable of approximating the solutions is investigated. Accompanying numerical ex-

periments corroborate the analytical findings. Finally, an optimization application

concerning the design of a filter is discussed and supported with a numerical study.
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Chapter 1

Introduction

Fluid flow through porous media is a ubiquitous process in our everyday lives.

From the routine activities such as: The preparation of espresso coffee in the morning

[39], the water we drink from the faucet [76], and the car we drive to work [66]. To

the less obvious but not less important such as: The absorption of nutrients in the

small intestine [58], the cleansing of blood in the kidneys [51], and the prevention

of postoperative infections [59]. All these phenomena rely on the separation of some

solid from a fluid by means of a medium that is permeable to the fluid but (mostly)

impermeable to the solid. This mechanism of operation is what defines filtration.

This thesis presents a filtration model that aims to be applicable to the pu-

rification industry. To understand the underlying equations, Chapter 2 is devoted to

the derivation of the fundamental flow equations the we consider. Namely, the Stokes

and Darcy equations. Moreover, we discuss some relevant physical parameters such

as the viscosity, the porosity, and the permeability.
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Subsequently, in Chapter 3, we introduce and justify the core ideas of this work.

The Darcy problem with deposition. Therein, the existence and uniqueness of the

modeling equations is established.

Next, in Chapter 4, a finite element scheme for the Darcy problem with deposition is

investigated. It is shown that it possesses a unique solution and optimal convergence

properties. Numerical examples that corroborate the analytical findings and explore

the performance of different filters, are also included.

Chapter 5 is the major contribution of this thesis. It generalizes the system of equa-

tions discussed in Chapter 3 by coupling the Stokes equations to the Darcy problem

with deposition. Chapter 5 starts with a motivation for the model and a short litera-

ture review. Later, the notation and main assumptions are stated for ease of reference.

The well-posedness of the system of equations with appropriate boundary conditions

follows. Finally, the chapter closes showing some nonnegativity and boundedness re-

sults related to the porosity.

Afterwards, Chapter 6 introduces a finite element scheme for the coupled problem.

We show that the approximation scheme is capable of preserving the nonnegativity

and boundedness of the porosity in the continuous setting. Furthermore, the scheme

can be fully decoupled, allowing for the parallel solution of the Stokes and Darcy sub-

problems. The chapter concludes with numerical experiments that are in agreement

with the expected convergence rates.

The penultimate chapter of this thesis, Chapter 7, is concerned with the design of a

filter through optimization. Specifically, we consider a multicriteria objective func-
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tion that aims to maximize the lifetime of the filter and the amount of particulate

captured throughout its lifetime. The decision variable is the initial porosity profile,

and the constraints correspond to the system of equations describing the coupled

Stokes-Darcy problem with deposition. Numerical experiments in 2D and 3D explor-

ing linear and parabolic profiles are given at the end of this chapter.

Finally, we conclude this thesis in Chapter 8 summarizing the obtained results and

discussing future avenues of research.

3



Chapter 2

Derivations

2.1 Stokes equations

The objective of this section is to derive a set of equations suitable to model

a highly viscous or creeping flow. The main ingredient for the subsequent derivations

is the continuity equation. This expression describes a local conservation law. Before

we state this law, we introduce a few definitions.

Definition 2.1. Let Ω ⊂ Rd be a fixed bounded domain. Let Q denote a scalar

or vector property that is being transported by a velocity vector field u : Ω → Rd.

Furthermore, assume that the density of Q, i.e., amount of Q per unit volume at a

given point in the flow is given by Q. Then, we say that the flux of Q at x ∈ Rd is

q(x) = Q(x) u(x). Note that the units of q are quantity of Q per unit area per unit

time.

In order to state a conservation law, we need to understand how the amount of

a certain property can vary through time. We make this precise in the next definition.

Definition 2.2. The rate of change of Q in Ω is defined as the sum of all the sources

4



that generate Q in Ω, minus all the sinks that consume Q in Ω, plus a balance of

incoming minus outgoing fluxes of Q across the boundary of Ω.

The mathematical statement corresponding to Definition 2.2, is given by the

following equation.

Definition 2.3 (Continuity equation). Let f denote the net rate of consumption or

generation of Q in Ω per unit volume and let n denote the outward unit normal vector

to ∂Ω. Then,

∂

∂t

∫
Ω

Q dΩ =

∫
Ω

f dΩ−
∫
∂Ω

q · n dS.

Equivalently, assuming Q has enough regularity, we can exchange the integration and

differentiation operator, apply the divergence theorem to the boundary integral [14],

and take the limit as the volume of Ω tends to zero, to obtain the differential form

∂Q
∂t

+∇ · q = f. (2.1)

Letting Q in (2.1) denote mass per unit volume, i.e., density (ρ) and assuming

there are no sinks or sources, yields the following expression for the conservation of

mass.

Definition 2.4 (Conservation of mass).

∂ρ

∂t
+∇ · (ρu) = 0 in Ω. (2.2)

Remark 2.1. In this work we assume that ρ is constant in space and time throughout

5



Ω. Consequently, from (2.2), it follows that

∇ · u = 0 in Ω. (2.3)

Whenever we say that that a fluid is incompressible, we mean that it satisfies (2.3).

Now letting Q in (2.1) represent momentum per unit volume (ρu) and h the

sources and sinks, yields the following expression for the conservation of momentum.

Definition 2.5 (Conservation of momentum).

∂(ρu)

∂t
+∇ · (ρu⊗ u) = h in Ω, (2.4)

where u⊗ u is a square matrix, whose entry i, j corresponds to the product uiuj with

ui indicating the i-th component of the vector u.

Expanding the term ∇ · (ρu ⊗ u) in (2.4) and using the conservation law

(2.2), we obtain Newton’s second law (the rate of change of momentum is directly

proportional to the acting force)

ρ
Du

Dt
= h, (2.5)

where the operator D( · )
Dt

is the convective or substantial derivative

D( · )
Dt

=
∂( · )
∂t

+ u · ∇( · ). (2.6)

Before we characterize the force density h as a sum of surface and body forces, we

introduce an important law in rheology [17].

6



Definition 2.6 (Newton’s law of viscosity). Let ui denote the i-th component of the

velocity vector u. Assume a layer or element of fluid is moving in the j-direction and

rubs against a plane P normal to the i-direction. As this layer moves, a force per

unit area in the j-direction is experienced on P. This quantity is called a stress and

is denoted by τij. If for a given fluid there exists a proportionality constant µ (the

dynamic viscosity) such that the expression

τij = −µ
(
∂uj
∂xi

+
∂ui
∂xj

)
, (2.7)

is satisfied, we say that the fluid is Newtonian.

Define D(u) = 1
2
(∇u + (∇u)T ). Then, the tensor τ = (τij) = −2µD(u) is called

the viscous or deformation tensor.

We state a few remarks related to Newton’s law of viscosity.

Remark 2.2. The viscosity µ has SI units Pa s (pascal second), but sometimes is

measured in centipoise (cP), where 1 cP is 10−3 Pa s.

Remark 2.3. Consider two static layers of fluid. If we put into motion the lower

one, we would observe that due to the stress between these surfaces, the upper layer

would also start to move. Thus, τij can also be understood as the flux of j-momentum

in the positive i-direction.

Remark 2.4. Let a, b ∈ R with a < b. The negative sign in (2.7) is due to the

convention that τij is the force per unit area in the j-direction exerted by the fluid

located at a lower layer (a plane of the form i = a) on the fluid located at an upper

layer (a plane of the form i = b). For example, in the setting described in Remark

7



2.3, the velocity gradient
duj
dxi

is negative. Thus, in view of the adopted convention the

corresponding stress τij is positive.

The object that captures the effect of surface forces is the stress tensor T, which

is a function of the velocity (u) and the pressure (p). For incompressible Newtonian

fluids, the type of fluids that we consider in this work, T is given by

T = −2µD(u) + pI, (2.8)

where I is the identity tensor.

Notation 2.1. If we relate the coordinates (x, y, z) to the numbers (1, 2, 3), the no-

tation Tyx indicates the (2, 1)-entry of the tensor T. Moreover, the expression Tx

denotes the column vector composed of the elements in the first column of T. Any

other combination of x, y, z is treated similarly.

In view of Definition 2.6, we can characterize the force acting on a surface due

to the stress tensor T through the following definition.

Definition 2.7. Let n be a normal vector at a point q on a surface S. Then, the

stress or traction vector T at q, which describes the force per unit area due to the

friction of the fluid with S and the pressure is given by T = n · T = T · n.

Remark 2.5. From Remark 2.3 it follows that the tensor T in (2.8) describes the

combined effects of momentum flux due to friction between layers of fluid and the

pressure to which it is subjected. Moreover, note that since the pressure only acts

normal to a surface, the pressure tensor necessarily has to be of the form pI.

Now we return to the characterization of the force density function h in (2.5).

Consider a fixed infinitesimal hexahedral element C with one vertex at the position

8



(x,y,z)

∆x

∆y
∆z Flow

�zx

�yx
�xx

Figure 2.1: Balance of x-momentum across the faces of an infinitesimal cube. As the
fluid flows in the x-direction, the pressure and the friction between the fluid particles
generate stresses Txx, Tyx and Tzx on the x-, y-, and z-planes, respectively.

(x, y, z) and another one at (x+ ∆x, y+ ∆y, z+ ∆z). We compute the contributions

on C due to surface and body forces. A graphical depiction of C is given in Figure 2.1.

We begin with the surface forces. First consider the balance of x-momentum across

the faces of C. Following the convention of Definition 2.2, i.e., incoming momentum

flux minus outgoing momentum flux, we obtain

Net flux =
(
Txx|x − Txx|x+∆x

)
∆y∆z +

(
Tyx|y − Tyx|y+∆y

)
∆x∆z

+
(
Tzx|z − Tzx|z+∆z

)
∆x∆y,

which is equivalent to

(
Txx|x − Txx|x+∆x

∆x
+

Tyx|y − Tyx|y+∆y

∆y
+

Tzx|z − Tzx|z+∆z

∆z

)
∆x∆y∆z. (2.9)

Dividing (2.9) by ∆x∆y∆z and taking the limit of the volume of C to zero, yields

the net x-momentum density contribution −∇ ·Tx. Proceeding analogously with the

balance of y- and z-momentum, we obtain the function −∇ · T, which should be

9



interpreted as a vector whose i-th component is the divergence of the i-th column

of T. Finally, letting ρf denote the density of body forces in Ω, e.g., gravity times

density, we can rewrite h in (2.5) to obtain

h = −∇ · T + ρf in Ω. (2.10)

Expanding the definition of the substantial derivative (2.6) in (2.5) and replacing h

with (2.10), yields the Cauchy momentum equation.

Definition 2.8 (Cauchy momentum equation).

ρ

(
∂u

∂t
+ u · ∇u

)
+∇ · T = ρf in Ω. (2.11)

Furthermore, if we assume that the medium is isotropic, i.e., the viscosity and

the density do not change in space, make use of the incompressibility condition (2.3),

and expression (2.8) for the stress tensor, we obtain the Navier-Stokes equations.

Definition 2.9 (Navier-Stokes equations).

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u +∇p = ρf in Ω,

∇ · u = 0 in Ω. (2.12)

What remains is to show that Navier-Stokes equations simplify when the vis-

cous effects dominate the convective effects. For that purpose, we normalize (2.12)

by introducing the dimensionless variables and operators

ũ =
u

u0

, x̃ =
x

l0
, t̃ =

t u0

l0
, p̃ =

p

µ u0 l0
, ∇̃ = l0∇, ∆̃ = l20 ∆, (2.13)

10



where u0 and l0 are scaling factors whose magnitude typically matches the average

or maximum speed of the flow and the dimension of the domain, respectively. Sub-

stituting (2.13) into (2.12) and omitting the function f , yields

∂ũ

∂t̃
+ ũ · ∇̃ũ− µ

ρ l0 u0

∆̃ũ +
µ

ρ l0 u0

∇̃p̃ = 0 in Ω,

∇̃ · ũ = 0 in Ω. (2.14)

Before we simplify (2.12), we introduce an important parameter that characterizes a

flow.

Definition 2.10. The dimensionless group

Re =
ρ u0 l0
µ

is called the Reynolds number and describes the ratio between the inertial forces and

the viscous forces.

In view of Definition 2.10 and (2.14), it follows that when Re << 1 the time

derivative and the nonlinear term in (2.12) are negligible with respect to the other

terms. Hence, (2.12) simplifies to the Stokes equations.

Definition 2.11 (Stokes equations).

−µ∆u +∇p = ρf in Ω,

∇ · u = 0 in Ω. (2.15)

Remark 2.6. If one applies the same dimensional analysis to the Cauchy momentum

equation (2.11), one obtains an expression more general than (2.15) that requires the
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specification of the stress tensor. The system

∇ · T = ρf in Ω,

∇ · u = 0 in Ω, (2.16)

is also called the Stokes equations.

In the next chapter we introduce and derive a set of equations that model the

flow of a fluid in a porous, homogeneous medium.

2.2 Darcy equations

The theory of fluid flow through porous media is extensive [53, 11, 52, 2, 55,

70, 32, 33]. In this section we discuss the standard model in porous media flow, the

Darcy equations

µκ−1 U +∇p = f in Ω, (2.17)

∇ ·U = 0 in Ω, (2.18)

subject to suitable boundary conditions. The vector function U denotes an averaged

fluid velocity, f represents an external force density, µ is the dynamic viscosity of

the fluid, κ is a constant that depends on the permeability of the medium and p

is the pressure that the fluid experiences throughout the bounded domain Ω. The

Darcy equations are named after the French engineer Henry Philibert Gaspard Darcy

who studied laminar flow through porous media and whose research resulted in the

equations that bear his name.
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2.2.1 Darcy’s experiment

We now describe the experiment that Darcy conducted in the city of Dijon,

France, in 1855 [29]. A long vertical cylinder of cross section A, total length ∆h and

covered at the bottom with a net, is filled with some granulose material up to some

height L. Then, an impermeable barrier is inserted and the cylinder is filled with

water. Subsequently, the barrier is removed, the volume of water in the cylinder is

kept constant through a separate mechanism and the volumetric flow rate Q at the

bottom is measured. Under the aforementioned conditions Darcy found that

Q = KA∆h /L, (2.19)

where K is a constant dependent on the porous medium which is called hydraulic

conductivity in hydrogeology. Dividing both sides of (2.19) by A, one obtains the

filtration speed U = Q/A, which should not be confused with the position dependent

velocity throughout the porous medium. Further experimentation revealed that K

varies inversely with the dynamic viscosity of the fluid under study and that for a

randomly oriented cylinder the flow is mostly driven by two factors: (1) The weight

per unit length of a column of fluid (ρgA), where g denotes the gravity vector, and

(2) the pressure gradient (∇p). Thus, Darcy’s law takes the general form

U = −κ
µ

(∇p− ρg) ,

which is (2.17) with f = ρg.

Now we briefly discuss some aspects related to the Darcy equations.
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2.2.2 Porosity

Materials are considered porous when they have a percentage of voids or in-

terconnected channels through which a fluid may flow. The porosity η, is a nondi-

mensional quantity that results from the ratio of the volume of voids to the total

volume [29]. For example, for sand and sandstone η ≈ 0.3, for rocks like limestone

and dolomite η ∈ (0.01, 0.05), and for clays like unconsolidated marine red, η ≈ 0.9

[71]. These examples fall inside the category of granulated rocks and the porosity

is classified as interstitial porosity. In the case where the medium has a network of

interconnected fractures not sealed by some deposit, one talks of fracture porosity as

opposed to interstitial porosity.

2.2.3 Permeability

The units of permeability are length squared. The permeability is commonly

expressed in darcys, where 1 darcy equals 0.987·10−12 m2. As a working definition, we

have that for a flow of Q = 1 cm3/s, through a cross section area A = 1 cm2, for a fluid

with viscosity µ = 1 cP, and a pressure gradient of 760 mmHg/cm, the corresponding

permeability of the medium, κ, is 1 darcy [29]. In the case of a nonisothermal flow,

the viscosity is a function of temperature. For example, water at 20 ◦C has a viscosity

µ ≈ 1.002 cP and a density ρ ≈ 1000 Kg/m3, which results in a speed of 0.966 · 10−8

m/s for a medium with κ = 1 milidarcy. As temperature increases, the viscosity of

water decreases and therefore the volumetric flow rate increases. Up to this point,

we have assumed that the permeability κ is isotropic throughout the material, i.e.,

κ is independent of the orientation of space, which is in general not true. As an

example, permeability anisotropy can be observed in sandstone, where overgrowth

of thin layers of shale and quartz block most of the vertical flow, making horizontal
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permeability much higher than the vertical permeability [7]. In order to take into

account the dependency of permeability on orientation, κ is taken to be a symmetric

tensor of rank 2, i.e.,

κ =


κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

 , where κij = κji.

There are a number of postulated models for the relationship between κ and η. The

most commonly cited under isotropic conditions is the Blake-Kozeny model [15]

κ(η) =
D2
p η

3

150 (1− η)2
, (2.20)

where Dp represents a material constant – the diameter of the particles comprising

the porous medium.

2.2.4 Microscopic vs. Macroscopic scale

Above, the Darcy law (2.17) was derived from experimental observations and

therein we obtained the filtration velocity U. This is a macroscopic quantity which

is a statistical average of the microscopic velocity u, which is the real fluid velocity in

the pores of the medium. To indicate this relationship, we use the notation U = 〈u〉,

where 〈 · 〉 denotes an averaging procedure. The fact that the microscopic velocity

u satisfies (2.18) follows from the conservation of mass and Remark 2.1. Thus, it

remains to show that the macroscopic variable U satisfies the same condition. We

follow the ideas described in [29]. In order to define a macroscopic variable, we need

to integrate its microscopic equivalent in space multiplied by a suitable nonnegative

weighting function. For that purpose, we give two definitions.

15



Definition 2.12. We say that w ∈ L2(Ω) is a weighting function if w ≥ 0 a.e. and

‖w‖L1(Ω) = 1.

We now formally define the 〈 · 〉 operator.

Definition 2.13. For f ∈ L2(Ω), f̃ its zero extension to L2(Rd) and w a given

weighting function, 〈f〉 is given by

〈f〉 (x) =

∫
Ω

f̃(x + y)w(y) dy.

For the case where the function to average is a vector function, 〈 · 〉 is defined

componentwise. We proceed to prove (2.18).

Lemma 2.1. Let Ω ⊂ Rd be a bounded domain and let w be a weighting function.

Let u ∈ L2(Ω)d with
∂ui
∂xi
∈ L1(Ω) for i = 1, . . . , d. Furthermore, assume ∇ · u = 0

almost everywhere. Then, the incompressibility condition ∇· 〈u〉 = 0 is also satisfied.

Proof. From ∇ · u = 0, it follows that for x ∈ Ω

∫
Ω

∇x · ũ(x + y)w(y) dy = 0.

Using the fact that Ω is fixed, we interchange the order of integration and differenti-

ation (see [13]) to obtain

∇ · 〈u〉 (x) = ∇x ·
∫

Ω

ũ(x + y)w(y) dy = 0,

proving the claim.

For the rest of this document, whenever we refer to the Darcy velocity 〈u〉, we

use the notation u.

16



In the next chapter we consider an extension of system (2.17)-(2.18) by including

an equation which describes the temporal evolution of the porosity throughout the

domain.
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Chapter 3

Darcy flow with deposition

3.1 Introduction

In this chapter we consider a filtration process which can be modeled as a

fluid flowing through a porous medium. We make the simplifying assumption that

the rate of particulate deposition in the filter is only dependent on the porosity and the

magnitude of the fluid velocity at that point. Of interest are the modeling equations

µκ−1(η) u +∇p = f in Ω, (3.1)

∇ · u = 0 in Ω, (3.2)

∂η

∂t
+ dep(u, η) = 0 in Ω, (3.3)

subject to suitable boundary and initial conditions. In (3.1)-(3.2) u and p denote the

velocity and pressure of the fluid, respectively, µ the dynamic viscosity and η and

κ(η) represent the porosity and permeability throughout the filter (Ω), respectively.

The function dep( · , · ), which we assume depends upon u and η, characterizes the

rate of change of porosity through time. (A discussion of the model follows in Section
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3.2).

The lack of regularity of the fluid velocity, u ∈ Hdiv(Ω), leads to an open

question of the existence of a solution to (3.1)-(3.2). In order to obtain a modeling

system of equations for which a solution can be shown to exist, we replace η in (3.1)

by a smoothed porosity, ηs. The approach of regularizing the model with the intro-

duction of ηs is, in part, motivated by the Darcy fluid flow equations, which can be

derived by averaging, e.g., volume averaging [74], homogenization [3], mixture theory

[65]. In [38], the case of (steady-state) generalized Newtonian fluid flow through a

porous medium is considered using equations (3.1) and (3.2) with µκ−1(η) replaced by

β(|u|) = µ(|u|)κ−1. Under the general assumptions that β( · ) is a positive, bounded,

Lipschitz continuous function, bounded away from zero, and with β(|u|) replaced

with β(|us|), existence of a solution was established. Two smoothing operators for

u were presented. One was a local averaging operator, whereby us(x) is obtained

by averaging u in a neighborhood of x. The second smoothing operator, which is

nonlocal, computes us(x) using a differential filter applied to u. That is, us is given

by the solution to an elliptic differential equation whose right hand side is u. For

establishing the existence of a solution the key property that the smoothing operator

needs to satisfy is that it transforms a weakly convergent sequence in L2(Ω) into a

sequence which converges strongly in L∞(Ω).

A similar model to (3.1)-(3.3) arises in the study of single-phase, miscible

displacement of one fluid by another in a porous medium. For this problem η would

denote a fluid concentration, and the hyperbolic deposition equation (3.3) is replaced

by a parabolic transport equation. Existence and uniqueness for this problem has

been investigated and established by Feng [41] and Chen and Ewing [27]. Because of

the connection of this model to oil extraction, numerical approximation schemes for

this problem have been well established. A summary of these methods is discussed
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in the recent papers by Bartels, Jensen and Müller [12], and Riviére and Walkington

[67].

A steady-state nonlinear Darcy fluid flow problem, with a permeability depen-

dent on the pressure was investigated by Azäıez, Ben Belgacem, Bernardi, and Chorfi

[8], and Girault, Murat, and Salgado [46]. For the permeability function Lipschitz con-

tinuous, and bounded above and below, existence of a solution (u, p) ∈ L2(Ω)×H1(Ω)

was established. Important in handling the nonlinear permeability function, in estab-

lishing existence of a solution, was the property that p ∈ H1(Ω). In [8] the authors

also investigated a spectral numerical approximation scheme for the nonlinear Darcy

problem, assuming an axisymmetric domain Ω. A convergence analysis for the finite

element discretization of this problem was given in [46].

Following a discussion of the model in Section 3.2, existence of a solution to the

modeling equations is established in Section 3.3. An approximation scheme for the

filtration model is presented in Section 4.1, and an a priori error estimate is derived.

A numerical simulation of the filtration process is presented in Section 4.2.

3.2 Discussion of Filtration Model

In this section we discuss the modeling equations we investigate for the filtra-

tion process. We assume that the process can be modeled as fluid flowing through a

porous medium with a varying permeability. Additionally we assume that the process

has a fixed time horizon, T . (For example, for industrial filters the most practical time

to change filters is during scheduled maintenance periods. Drivers are encouraged to

change the oil filters in their cars every 3000 miles or every three months, whichever

comes first.) We use the following parameters/variables to model the process.

Ω ⊂ Rd (d = 2, 3) – the region occupied by the filter,
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u – the fluid velocity,

p – the fluid pressure,

η – the porosity of the medium, 0 < η < 1,

κ – the permeability of the medium, 0 < κ <∞,

µ – the fluid viscosity,

n – the unit outer normal to Ω.

We model the fluid flow using the Darcy fluid flow equations:

µκ−1(η) u +∇p = 0 in Ω× (0, T ), (3.4)

∇ · u = 0 in Ω× (0, T ). (3.5)

Assumption 3.1. The particulate is sufficiently sparsely distributed in the fluid that

the conservation of mass equation (3.5) is still a valid approximation for the model.

Relationship between the permeability κ and the porosity η

As η → 0 the “porous” medium transitions to a “solid” medium, in which case the

permeability, κ→ 0. As η → 1 the medium’s resistance to the flow goes to zero, i.e.,

its permeability goes to infinity, and the modeling equations are no longer appropriate

to describe the fluid flow.

Remark 3.1. The permeability of granite is approximately 10−3 − 10−4 millidarcy.

In a filtering process the permeability throughout Ω will always be greater than that of

granite. So, it is reasonable to assume that κ(η) is bounded from below. At the begin-

ning of the filtering process there is a prescribed permeability (porosity) throughout Ω.

As the filtering process decreases the permeability (porosity) throughout Ω, it is also

reasonable to assume that κ(η) is bounded from above.
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3.2.1 Modeling the deposition

The deposition on the particulate in the filter is modeled by an equation de-

scribing the change of porosity. We assume that ∂η(x, t)/∂t is a function of the

magnitude of the velocity and the porosity, i.e.,

∂η

∂t
+ dep(|u| , η) = 0 in Ω× (0, T ). (3.6)

As a first approximation, we assume that the deposition function dep(·, ·) is a sepa-

rable function of |u| and η,

dep(|u| , η) = g(|u|)h(η) in Ω× (0, T ). (3.7)

The function g( · )

We assume that if the fluid is flowing too quickly there is little opportunity for the

particles within the fluid to be captured by the filter. Therefore, beyond a critical

value for |u|, say sc, g(|u|) is a monotonically decreasing function of |u|. If |u| is

very small then, given that we are modeling a sparsely distributed particulate in the

fluid, the rate of deposition will also be very small due to the amount of particulate

passing through the filter. In consideration of the about two situations, we postulate

that g(|u|) is a Lipschitz continuous, non-negative, unimodal function, with maxi-

mum value occurring at |u| = sc.

The function h( · )

We assume that as the porosity decreases the rate at which deposition occurs also

decreases. This corresponds to the situation that as the deposition occurs (i.e., the

porosity decreases) there is less of the filter available for the particulate to adhere to.
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Based on this, we assume that h(η) is a continuous, non-negative, increasing function.

Two simple models for h(η) are:

h(η) = η =⇒ η(x, t) = η0(x) exp(−
∫ t

0

g(|u(x, s)|) ds), (3.8)

h(η) = ηr (r > 1) =⇒ η(x, t) =
η0(x)(

1 + (r − 1) η0(x)r−1
∫ t

0
g(|u(x, s)|) ds

)1/(r−1)
,

(3.9)

where η0(x) denotes the initial porosity distribution throughout the filter.

3.2.2 Boundary conditions

We assume that the boundary of the filter, ∂Ω, is made up of three parts:

an inflow region, Γin, an outflow region, Γout and the “walls of the filter,” Γ, i.e.,

∂Ω = Γin ∪Γout ∪Γ. For well-posedness, equations (3.4)-(3.5) require a scalar bound-

ary condition (typically u · n or p) be specified on ∂Ω.

Inflow boundary condition

Two physically reasonable boundary conditions to consider on Γin are

−u · n = gin and (3.10)

p = pin. (3.11)

Condition (3.10) specifies the flow profile at the inflow boundary, whereas (3.11) cor-

responds to a specified pressure along the inflow.

Outflow boundary condition
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The fluid outflow profile will be affected by the deposition occurring in the filter.

Therefore specifying an outflow profile is not reasonable for this problem. Rather, at

the outflow boundary we assume a specified pressure

p = pout on Γout. (3.12)

Wall boundary condition

Along the walls of the filter we assume a no penetration condition, specifically

u · n = 0 on Γ. (3.13)

For the mathematical analysis of this problem it is convenient to have homogeneous

boundary conditions. This is achieved by introducing a suitable change of variables.

For example, in case the specified boundary conditions are

−u · n = gin on Γin, u · n = 0 on Γ, p = pout on Γout,

we introduce functions ub(x, t) (see [44]) and pb(x, t) defined on Ω satisfying

∇ · ub = 0 , in Ω× (0, T ] , (3.14)

ub · n = −gin , on Γin × (0, T ] , (3.15)

ub · n =
1

|Γout|

∫
Γin

gin(s) ds , on Γout × (0, T ] , (3.16)

ub · ti = 0 , on Γin × (0, T ] , (3.17)

ub = 0 , on ∂Ω\(Γin ∪ Γout)× (0, T ] , (3.18)
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where ti, i = 1, . . . , (d− 1) denotes an orthogonal set of tangent vectors on Γin, and

|Γout| the measure of Γout with respect to ds, and

−∆pb = 0 , in Ω× (0, T ] , (3.19)

pb = pout , on Γout × (0, T ] , (3.20)

∂pb
∂n

= 0 , on ∂Ω\Γout × (0, T ] . (3.21)

(In case the pressure is specified on the inflow boundary Γin then ub = 0 and the

definition of pb is appropriately modified.)

With the change of variables: u = ua + ub and p = pa + pb we obtain the following

system of modeling equations for the filtration process:

µκ−1(η) ua + µκ−1(η) ub +∇pa = −∇pb , in Ω× (0, T ] , (3.22)

∇ · ua = 0 , in Ω× (0, T ] , (3.23)

∂η

∂t
+ g(|ua + ub|)h(η) = 0 , in Ω× (0, T ] , (3.24)

ua · n = 0 , on Γin ∪ Γ× (0, T ] , (3.25)

pa = 0 , on Γout × (0, T ] , (3.26)

η(x, 0) = η0(x) in Ω . (3.27)
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To simplify the notation, we let b = ub, f = −∇pb, β(η) = µκ−1(η), and drop the a

subscript on ua and pa to obtain

β(η)u + β(η)b +∇p = f , in Ω× (0, T ] , (3.28)

∇ · u = 0 , in Ω× (0, T ] , (3.29)

∂η

∂t
+ g(|u + b|)h(η) = 0 , in Ω× (0, T ] , (3.30)

u · n = 0 , on Γin ∪ Γ× (0, T ] , (3.31)

p = 0 , on Γout × (0, T ] , (3.32)

η(x, 0) = η0(x) in Ω . (3.33)

Remark 3.2. β(η) is implicitly a function of x through the dependence of η on x.

In the next section we show that, under suitable assumptions on β( · ), there

exists a solution to (3.28)-(3.33).

3.3 Existence and Uniqueness

In this section we investigate the existence and uniqueness of solutions to the

nonlinear system equations (3.28)-(3.33). We assume that Ω ⊂ Rd, d = 2 or 3, is a

convex polyhedral domain and for vectors in Rd, | · | denotes the Euclidean norm.

Weak formulation of (3.28)-(3.33)
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Define the Hilbert spaces

Hdiv(Ω) =
{
v ∈ L2(Ω) | ∇ · v ∈ L2(Ω)

}
,

X = {v ∈ Hdiv(Ω) |v · n = 0 on Γin ∪ Γ} .

Define the bilinear form b(·, ·) : X × L2(Ω) → R and the div-free subspace, Z, of X

as

b(v , q) =

∫
Ω

q∇ · v dΩ ,

Z =
{
v ∈ X | b(v , q) = 0 ,∀q ∈ L2(Ω)

}
.

We use

(f , g) =

∫
Ω

f · g dΩ , and ‖f‖ = (f , f)1/2

to denote the L2 inner product and the L2 norm over Ω, respectively, for both scalar

and vector valued functions.

Additionally, we introduce the norm

‖v‖X =

(∫
Ω

(∇ · v∇ · v + v · v) dΩ

)1/2

. (3.34)

Remark 3.3. For v ∈ Hdiv(Ω) it follows that v · n ∈ H−1/2(∂Ω). For the interpre-

tation of the condition v · n = 0 on Γin ∪ Γ see [45, 72].

We make the following assumptions on β( · ), g( · ) and h( · ).

Assumptions on β( · )

Aβ1: β( · ) : R+ −→ R+ ,

Aβ2: 0 < βmin ≤ β(s) ≤ βmax, ∀s ∈ R+,
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Aβ3: β is Lipschitz continuous, |β(s1) − β(s2)| ≤ βLip |s1 − s2|.

Assumptions on g( · )

Ag1: g( · ) : R+ ∪ {0} −→ R+ ∪ {0} ,

Ag2: g(s) ≤ gmax, ∀s ∈ R+ ∪ {0},

Ag3: g is Lipschitz continuous, |g(s1) − g(s2)| ≤ gLip |s1 − s2|.

Assumptions on h( · )

Ah1: h( · ) : R+ −→ R+ ∪ {0} ,

Ah2: h(s) ≤ hmax, ∀s ∈ R+,

Ah3: h is Lipschitz continuous, |h(s1) − h(s2)| ≤ hLip |s1 − s2|.

Remark 3.4. The assumptions on β, g, and h are consistent with the discussion

in Section 3.2.1. Note that gmax, hmax should be given to guarantee positivity of the

porosity (0 < η).

Assumptions on ηs

Aηs1: For η( · , t) ∈ L2(Ω), there exists a constant Cs, independent of t, such that

‖ηs(t)‖L∞(Ω) ≤ Cs‖η(t)‖L2(Ω) ,

Aηs2: The mapping η( · , t) 7→ ηs( · , t) is linear.

Two smoothers which satisfy Aηs1 and Aηs2 are discussed in [38]. One is a lo-

cal averaging operator and the other a differential smoothing operator.

We assume that b and f are continuous with respect to t on the interval

(0, T ) and have a continuous extension to the interval (0− δ, T ) for some δ > 0, i.e.,

b, f ∈ C0(0−, T ; L2(Ω)).

We restate (3.28)-(3.33) as: Given η0(x) ∈ L2(Ω), b, f ∈ C0(0−, T ; L2(Ω)) ∩
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L∞(0, T ; L2(Ω)), find (u, p) ∈ L2(0, T ; X) × L2(0, T ; L2(Ω)), η ∈ H1 (0, T ; L2(Ω))

such that for a.e. t, 0 < t < T ,

(β(ηs)u , v) + (β(ηs)b , v) − b(v , p) = (f , v) , ∀v ∈ X , (3.35)

b(u , q) = 0 , ∀q ∈ L2(Ω), (3.36)

(
∂η

∂t
, ξ) + (g(|u + b|)h(η) , ξ) = 0 ,∀ξ ∈ L2(Ω) . (3.37)

For the spaces X and L2(Ω) we have the following inf-sup condition

inf
q∈L2(Ω)

sup
v∈X

b(v , q)

‖q‖ ‖v‖X
≥ c0 > 0 . (3.38)

In view of the inf-sup condition we can restate (3.35)-(3.37) as: Given η0(x) ∈

L2(Ω), b, f ∈ C0(0−, T ; L2(Ω))∩L∞(0, T ; L2(Ω)), find u ∈ L2(0, T ; Z), η ∈ H1(0, T ;

L2(Ω)) such that for a.e. t, 0 < t < T ,

(β(ηs)u , v) + (β(ηs)b , v) = (f , v) , ∀v ∈ Z , (3.39)

(
∂η

∂t
, ξ) + (g(|u + b|)h(η) , ξ) = 0 ,∀ξ ∈ L2(Ω) . (3.40)

Introduce the bounded Darcy projection operator: Pη : L2(Ω) → Z defined

by z = Pη(r) where,

(β(ηs)z , v) − b(v , λ) = (r , v) , ∀v ∈ X ,

b(z , q) , = 0 , ∀q ∈ L2(Ω) .

That Pη is well defined follows from Aβ1-Aβ3. Note that u in (3.39) may be
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written as

u = Pη(f − β(ηs)b). (3.41)

Additionally, from (3.39) with the choice v = u, it is straight forward to see that

‖u(t)‖ = ‖u(t)‖X ≤ 1

βmin

(‖f(t)‖+ βmax‖b(t)‖) (3.42)

≤ 1

βmin

(‖f‖L∞(0,T ;L2(Ω)) + βmax‖b‖L∞(0,T ;L2(Ω))) .

Using Pη we can restate (3.39), (3.40) as:

Given η0(x) ∈ L2(Ω), b, f ∈ C0(0−, T ; L2(Ω)) ∩ L∞(0, T ; L2(Ω)), find η ∈ H1(0, T ;

L2(Ω)) such that for a.e. t, 0 < t < T ,

(
∂η

∂t
, ξ) + (g(|Pη(f − β(ηs)b) + b|)h(η) , ξ) = 0 , ∀ξ ∈ L2(Ω) . (3.43)

We recall the Picard-Lindelöf theorem. (Also know as the Cauchy-Lipschitz

theorem).

Theorem 3.1 ([49], Theorem I.3.1). Let I denote a domain in R containing the point

t0, Y a Banach space and f : R× Y −→ Y . Suppose that f is continuous in its first

variable and locally Lipschitz continuous in its second variable. Then, there exists

ε > 0 such that the initial value problem

u′ = f(t, u) , (3.44)

u(t0) = u0 , (3.45)

has a unique solution in C0(t0 − ε, t0 + ε;Y ).

Let F(t, η) = g(|Pη(f − β(ηs)b) + b|)h(η). The continuity of F with respect
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to t follows from the continuity of f and b with respect to t, the boundedness of

Pη, and the continuity of g. To investigate the local Lipschitz continuity of F with

respect to η consider the following.

‖F(t, η1) − F(t, η2)‖ = ‖g(|Pη1(f − β(ηs1)b) + b|)h(η1) (3.46)

−g(|Pη2(f − β(ηs2)b) + b|)h(η2)‖

≤ ‖g(|Pη1(f − β(ηs1)b) + b|) (h(η1) − h(η2))‖

+‖(g(|Pη1(f − β(ηs1)b) + b|) − g(|Pη2(f − β(ηs2)b) + b|)h(η2)‖

≤ gmax ‖h(η1) − h(η2)‖

+ gLip‖(|Pη1(f − β(ηs1)b) + b| − |Pη2(f − β(ηs2)b) + b|)h(η2)‖

≤ gmax hLip ‖η1 − η2‖

+ gLip‖ (Pη1(f − β(ηs1)b) − Pη2(f − β(ηs2)b)) h(η2)‖

≤ gmax hLip ‖η1 − η2‖

+ gLip hmax‖Pη1(f − β(ηs1)b) − Pη2(f − β(ηs2)b)‖ . (3.47)

Now, with u1 = Pη1(f − β(ηs1)b) ∈ Z and u2 = Pη2(f − β(ηs2)b) ∈ Z we

have that

(β(ηs1)u1 , v) = (f ,v) − (β(ηs1)b , v) , ∀v ∈ Z, (3.48)

and (β(ηs2)u2 , v) = (f ,v) − (β(ηs2)b , v) , ∀v ∈ Z. (3.49)

Subtracting (3.49) from (3.48), and with the choice v = u1 − u2, yields

(β(ηs1)(u1 − u2) , (u1 − u2)) = ((β(ηs2)− β(ηs1))u2 , (u1 − u2))

+ ((β(ηs2)− β(ηs1))b , (u1 − u2)) .
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Hence, with (3.42),

βmin‖u1 − u2‖ ≤ βLip‖ |ηs2 − ηs1|u2‖+ βLip‖ |ηs2 − ηs1|b‖

≤ βLip (‖u2‖+ ‖b‖) ‖ηs2 − ηs1‖∞

≤ βLip

(
1

βmin

‖f‖+
βmax

βmin

‖b‖+ ‖b‖
)
Cs ‖η2 − η1‖ .

Thus we obtain

‖Pη1(f − β(ηs1)b)− Pη2(f − β(ηs2)b)‖ = ‖u1 − u2‖

≤ Cs
βLip

β2
min

(‖f‖+ (βmax + βmin)‖b‖) ‖η2 − η1‖. (3.50)

Combining (3.47) and (3.50), we have

‖F(t, η1) − F(t, η2)‖ ≤ FLip ‖η2 − η1‖,

where FLip = F1 + F2 with F1 = gmax hLip and

F2 = Cs
βLip

β2
min

gLip hmax

(
‖f‖L∞(0,T ;L2(Ω)) + (βmax + βmin)‖b‖L∞(0,T ;L2(Ω))

)
.

Then, from Theorem 3.1, we have that there exists ε > 0 such that there exists a

unique solution η ∈ C0(0, ε; L2(Ω)) to (3.43).

Regarding the additional regularity of η, formally taking ξ equal to ∂η/∂t in

(3.43) we have

‖∂η
∂t
‖2 ≤ ‖g(|Pη(f − β(ηs)b) + b|)h(η)‖ ‖∂η

∂t
‖

⇒ ‖∂η
∂t
‖ ≤ gmax hmax |Ω| . (3.51)
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Using the established fact that η ∈ C0(0, ε; L2(Ω)), it then follows that η ∈ H1(0, ε;

L2(Ω)). In order to establish this result rigorously, we consider a Galerkin approxima-

tion of (3.43) in which the approximation of ∂η/∂t does indeed lie in L2(0, ε; L2(Ω))

and then taking the limit.

Next, note that ‖F(t, η)‖ ≤ gmax hmax |Ω|1/2. Hence both F(t, η) and its

Lipschitz constant with respect to η are bounded independent of t and η. Then, from

the proof of Theorem 3.1 (see [49]), ε may be chosen such that 0 < ε < 1/FLip.

As ε > 0 can be chosen independent of t and η, the solution can be extended to

0 < t < T .

We summarize the above discussion in the following theorem.

Theorem 3.2. Let η0(x) ∈ L2(Ω) and b, f ∈ C0(0−, T ; L2(Ω)) ∩ L∞(0, T ; L2(Ω))

be given. Then, for β( · ) satisfying Aβ1–Aβ3, g( · ) satisfying Ag1–Ag3, h( · )

satisfying Ah1–Ah3, η( · ) satisfying Aηs1–Aηs2, there exists a unique solution

(u, p) ∈ L2(0, T ; X)×L2(0, T ; L2(Ω)), η ∈ H1(0, T ; L2(Ω)) satisfying (3.35)-(3.37),

for a.e. t, 0 < t < T .

Remark 3.5. Important in establishing the existence and uniqueness of the solution

is the assumption that β(x, t) ≥ βmin. After a finite amount of time, assuming that

the mathematical equations correctly model the physical problem, the filter starts to

clog and this assumption is violated.

In the next chapter we explore the numerical approximation of the solution to

(3.35)-(3.37).
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Chapter 4

Approximation of Darcy flow with

deposition

4.1 Finite element approximation

In this section we investigate the finite element approximation to:

Given η0(x) ∈ L2(Ω), b, f ∈ C0(0−, T ; L2(Ω)) ∩ L∞(0, T ; L2(Ω)), find (u, p) ∈

L2(0, T ; X)× L2(0, T ; L2(Ω)), η ∈ H1(0, T ; L2(Ω)) such that for a.e. t, 0 < t < T ,

(β(ηs)u , v) + (β(ηs)b , v) − b(v , p) = (f , v) , ∀v ∈ X , (4.1)

b(u , q) = 0 , ∀q ∈ L2(Ω), (4.2)

(
∂η

∂t
, ξ) + (g(|u + b|) η , ξ) = 0 ,∀ξ ∈ L2(Ω) . (4.3)

Note that with regard to the general modeling equations (3.28)-(3.33), here

we have chosen h(η) = η.

As before, let Ω ⊂ Rd denote a convex polygonal or polyhedral domain and let Th be
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a triangulation of Ω made either of triangles or quadrilaterals in R2 or tetrahedra or

hexahedra in R3. Thus, the computational domain is defined by Ω =
⋃
K∈Th K. We

assume that there exist constants c1, c2 such that c1h ≤ hK ≤ c2ρK , where hK is the

diameter of the cell K, ρK is the diameter of the biggest neighborhood included in

K, and h = maxK∈Th hk. For k ∈ N, let

PTk = span{xα1
1 x

α2
2 . . . xαd

d : 0 ≤ α1 + α2 + · · ·+ αd ≤ k}, and (4.4)

PQk = span{xα1
1 x

α2
2 . . . xαd

d : 0 ≤ α1, α2, . . . , αd ≤ k}. (4.5)

For K a triangle/tetrahedron in Rd we let Pk(K) = {f : f |K ∈ PTk }. For K a

quadrilateral/hexahedron in Rd we let Pk(K) = {f : f |K ∈ PQk }. RTk(Th) is used

the denote the Raviart-Thomas space of order k [18]. We use the following finite

element spaces:

Xh = RTk(Th) ∩X, Qh =
{
q ∈ L2(Ω) : q|K ∈ Pk(K), ∀K ∈ Th

}
,

Zh = {v ∈ Xh : (q,v) = 0, ∀q ∈ Qh} ,

Rh =
{
r ∈ L2(Ω) : r|K ∈ Pm(K), ∀K ∈ Th

}
,

Rs
h =

{
r ∈ C0(Ω) : r|K ∈ Pmax{1,m}(K), ∀K ∈ Th

}
.

Note that as ∇·Xh = Qh, for v ∈ Zh we have that ‖∇·v‖ = 0, thus ‖v‖X = ‖v‖ (see

(3.34)). For N given, let ∆t = T/N , and tn = n∆t, n = 0, 1, . . . , N . Additionally,

define

dtf
n =

fn − fn−1

∆t
, f

n
=
fn + fn−1

2
, f̃n = fn−1 +

1

2
fn−2 − 1

2
fn−3.
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The following norms are used in the analysis

‖v‖∞ = ‖v(t)‖L∞(Ω), |||v|||k =

(
N∑
n=0

‖v(tn)‖2
k∆t

)1/2

, |||v|||∞= sup
0≤n≤N

‖v(tn)‖∞.

For the a priori error estimates presented below the solution (u, p, η) to (4.1)-(4.3) is

required to be sufficiently regular. The regularity assumptions are, for some δ > 0,

u ∈ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;Hk+1(Ω)), ut ∈ L∞(0, δ;L2(Ω)),

utt ∈ L2(0, T ;L2(Ω)), p ∈ L∞(0, T ;Hk+1(Ω)),

η ∈ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;Hm+1(Ω)), ηt ∈ L∞(0, T ;Hm+1(Ω)),

ηtt ∈ L2(0, T ;L2(Ω)) ∩ L∞(0, δ;L2(Ω)), ηttt ∈ L2(0, T ;L2(Ω)). (4.6)

Throughout, we use C to denote a generic nonnegative constant, independent of the

mesh parameter h and time step ∆t, whose actual value may change from line to line

in the analysis.

Initialization of the Approximation Scheme

The approximation scheme described and analyzed below is a three-level scheme. To

initialize the procedure suitable approximations are required for u1
h, u2

h and η2
h. Here

we state our assumptions on these initial approximates. (An initialization procedure

is presented in Appendix A.2)

‖un−unh‖2
X + ‖ηn−ηnh‖2 ≤ C(∆t)4 + C

(
h2k+2 + h2m+2

)
, for n = 0, 1, 2. (4.7)

Approximation Scheme

The approximation scheme we investigate is: Given η0 ∈ Rh, for n = 3, . . . , N ,
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determine (unh, p
n
h, η

n
h) ∈ Xh ×Qh ×Rh satisfying

(β(ηn,sh )unh + β(ηn,sh )bn,v)− (pnh,∇ · v) = (fn,v) ∀v ∈ Xh, (4.8)

(q,∇ · unh) = 0 ∀q ∈ Qh, (4.9)

(dtη
n
h , r) + (g(|ũnh + bn−1/2|)ηnh, r) = 0 ∀r ∈ Rh, (4.10)

where bn−1/2 = b( t
n+tn−1

2
).

Regarding ηn,sh , note that applying a smoother, S, to a function ηnh ∈ Rh

(typically) does not result in ηn,sh ∈ Rs
h. Therefore, we let S(ηnh) ∈ Hm+1(Ω) ∩ C0(Ω)

denote the result of the smoother applied to ηnh , and define

ηn,sh (x) = IhS(ηnh)(x) , (4.11)

where Ih : C0(Ω) −→ Rs
h denotes an interpolation operator.

We assume that the smoothed porosity S(ηnh) is sufficiently regular such that

there exists a constant dependent on S( · ), CS , such that

‖S(ηnh) − IhS(ηnh)‖L∞(Ω) = ‖S(ηnh) − ηn,sh ‖L∞(Ω) ≤ CSh
m+1 . (4.12)

The precise dependence of CS on S( · ) will depend on the particular smoother used.

The computability of the approximation scheme (4.8)-(4.10) is established in

the following lemma.

Lemma 4.1. There exists a unique solution (unh, p
n
h, η

n
h) ∈ (Xh, Qh, Rh) satisfying

(4.8)-(4.10).

Proof. For {φj}NR
j=1 a basis for Rh, and ηnh =

∑NR

j=1 cjφj, equation (4.10) is equivalent
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to Ac = d, where c = [c1, c2, . . . , cNR
]T , and for i, j = 1, 2, . . . , NR,

Aij =

((
1

∆t
+

1

2
g(|ũnh + bn−1/2|)

)
φj, φi

)
, and

di =

∫
Ω

(
1

∆t
− 1

2
g(|ũnh + bn−1/2|)

)
ηn−1
h φi dΩ.

Note that as Ac = 0 ⇒ cTAc = 0

⇔
∫

Ω

(
1

∆t
+

1

2
g(|ũnh + bn−1/2|)

)
ηnh η

n
hdΩ = 0⇒ ηnh = 0

⇒ c = 0 ,

it follows that the (square) linear system (4.10) has a unique solution for ηnh .

Given ηnh and assumption Aβ2, the existence and uniqueness of (unh, p
n
h) ∈

Xh ×Qh is well known from the approximation theory of the Darcy equations.

Theorem 4.1. For (u, p, η) satisfying (4.1)-(4.3) and (4.6) and (unh, p
n
h, η

n
h) satisfying

(4.8)-(4.10), and assuming that CS(ηnh ) given in (4.12) is bounded by CS‖ηn‖m+1, we

have that for ∆t sufficiently small there exists C > 0 independent of h and ∆t, such

that for n = 1, 2, . . . , N ,

‖un − unh‖X + ‖pn − pnh‖ + ‖ηn − ηnh‖ ≤ C
(
(∆t)2 + hk+1 + hm+1

)
. (4.13)

Outline of the proof. The complete details of the proof are given in Appendix A.1.

Here we briefly summarize the key steps in the proof.

Step 0. Notation.
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For Un, τn in Zh and Rh, respectively, let

Λn = un − Un, En = Un − unh,

ψn = ηn − τn, F n = τn − ηnh ,

εu = un − unh, εη = ηn − ηnh . (4.14)

Step 1. Derive an estimate for ‖En‖.

Beginning with (4.8) and (3.35) we obtain

βmin‖En‖ ≤ βLip‖un + bn‖∞‖ηn,sh − ηn,s‖+ βmax‖Λn‖. (4.15)

Step 2. Estimate ‖ηn,sh − ηn,s‖.

With the triangle inequality,

‖ηn,sh − ηn,s‖ ≤ ‖ηn,sh − S(ηnh)‖+ ‖S(ηnh)− ηn,s‖

≤ ‖ηn,sh − S(ηnh)‖+ |Ω|1/2Cs‖ηnh − ηn‖

≤ ‖ηn,sh − S(ηnh)‖+ |Ω|1/2Cs(‖ψn‖+ ‖F n‖). (4.16)

Step 3. Derive an estimate for ‖F n‖2 − ‖F n−1‖2.

Beginning with (4.10) and (3.37) we obtain

‖F n‖2 − ‖F n−1‖2 ≤ ∆t‖dtψn‖2 + 2∆tg2
Lip‖ηn‖2

∞(‖Ẽn‖2 + ‖Λ̃n‖2)

+ 2∆tg2
max‖ψ

n‖2 + ∆t(6 + 2g2
max)‖F n‖2 + ∆tRn(u, η), (4.17)
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where

Rn(u, η) = ‖dtηn −
∂ηn−1/2

∂t
‖2 + g2

Lip‖ηn‖2
∞‖ũn − un−1/2‖2

+ g2
max‖ηn − ηn−1/2‖2. (4.18)

Step 4. Derive a bound for ‖F `‖2.

Summing (4.17) from n = 3 to n = l, and using the discrete Gronwall’s lemma

[50, 60], we obtain, with constants C, CS , w1, w2, K(w3), w4, w5,

‖F `‖2 ≤ K(w3)
(
w1Ch

2k+2|||u|||2k+1 + (w2C + w4C
2
S)h2m+2|||η|||2m+1

+ Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt+ (∆t)4w5

∫ t`−2

0

‖utt‖2 dt+ ‖F 2‖2

+ (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
)
.

(4.19)

Step 5. Derive a bound for ‖E`‖2.

Combining (4.19) with (4.16) and (4.15), we obtain a bound for ‖E`‖2.

Step 6. Error bounds for ‖u` − u`h‖2 and ‖η` − η`h‖2.

The error bounds for ‖u` − u`h‖2 and ‖η` − η`h‖2 then follow from the bounds

for ‖E`‖2, ‖F `‖2, assumption (4.7), and using

‖u` − u`h‖2 ≤ 2(‖E`‖2 + ‖Λ`‖2), ‖η` − η`h‖2 ≤ 2(‖F `‖2 + ‖ψ`‖2).

Step 7. Error bound for ‖pn − pnh‖.

The error bound for ‖pn−pnh‖ is obtained by using the discrete inf-sup condition

0 < γ < inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖ ‖vh‖X
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to show that for an arbitrary element Qn ∈ Qh,

γ ‖pnh −Qn‖ ≤ sup
vh∈Xh

(pnh −Qn,∇ · vh)
‖vh‖X

≤ βmax‖unh − un‖+ βLip‖un + bn‖∞‖ηn,sh − ηn,s‖+ ‖pn −Qn‖.

The estimate in (4.13) then follows from interpolation properties of Qh and the

triangle inequality,

‖pn − pnh‖ ≤ ‖pn −Qn‖+ ‖pnh −Qn‖.

4.2 Numerical examples

In this section we present four numerical examples to illustrate the numerical

approximation scheme (4.8)-(4.10). Example 1 and Example 2, for which we have an

exact solution, investigate the derived a priori error estimate for the approximation

(4.13), and the dependence of the approximation on the smoother. Example 3 and

Example 4 use the numerical approximation scheme to investigate the performance

of several filters.

For the numerical implementation of the scheme (4.8)-(4.10), the C++ finite

element library deal.II [10] was used. In the 2D setting (Example 1 and Example

2) the domain is partitioned into quadrilaterals. In the 3D setting (Example 3 and

Example 4) the domain is partitioned into hexahedra. We let discPk = {f : f |K ∈

PQk , ∀K ∈ Th}, and contPk = {f ∈ C0(Ω) : f |K ∈ PQk , ∀K ∈ Th} (see (4.5)).

41



Example 1 and Example 2

We consider Ω = (−1, 1) × (0, 1) and approximate (3.35)-(3.37) for t ∈ (0, T ]

with T = 0.5. The true solution for the velocity and pressure is given by

u =

 txy − t2y2

tx+ t2x2 − ty2/2

 , p(x, y) = 2t2x− ty2.

The function g in the definition of the deposition function is set to g(|u|) = |u|2 + 1.

Assuming that the error in the numerical approximations is of order O(∆t2 + hk+1)

(see (4.13)), we chose (∆t)2 ∝ hk+1.

For a function f and its approximations, fnh1 , f
n
h2

, computed on partitions of

Ω with mesh parameters h1 and h2, we define the numerical convergence rate r‖·‖ as:

r‖·‖ :=
log(‖f(N∆t)− fNh1‖/‖f(N∆t)− fNh2‖)

log(h1/h2)
.

The quantity r|||·||| is defined similarly.

Two different smoothers are investigated. For the first one, we compute the

smoothed porosity ηs using a local averaging procedure. Specifically,

ηs(x) =
1

|V (x)|

∫
V (x)

η(x) dΩ,

where |V (x)| = δ denotes the area (volume) of the averaging domain V (x).

The second smoother is the differential smoother

−δ∆ηs + ηs = η in Ω

ηs = η on ∂Ω.
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For both smoothers we set δ = 0.05.

Example 1.

In this example we define η(x, y) = 0.8 − 0.5t2xy and β(η) = η2 + 0.1. Com-

putations using the local averaging smoother, with (uh, ph, ηh, η
s
h) ∈ (RT0, discP0,

discP0, contP1), and (uh, ph, ηh, η
s
h) ∈ (RT1, discP1, discP1, contP1), in the ‖ · ‖

norm are presented in Table 4.1, and Table 4.2, respectively. Similar results are also

obtained using the ||| · ||| norm, and when using the differential smoother.

The results indicate that the numerical convergence rates are consistent with

those predicted by Theorem 4.1.

h ∆t ‖u− uh‖X r‖·‖ ‖p− ph‖ r‖·‖ ‖η − ηh‖ r‖·‖
1/2 2−3 1.241E-01 1.22 1.176E-01 1.31 1.387E-03 0.86

1/4 2−7/2 5.346E-02 0.78 4.759E-02 0.69 7.664E-04 0.49
1/8 2−4 3.124E-02 1.05 2.946E-02 1.07 5.474E-04 1.08

1/16 2−9/2 1.507E-02 0.95 1.403E-02 0.93 2.583E-04 0.81
1/32 2−5 7.814E-03 1.05 7.366E-03 1.07 1.473E-04 1.19

1/64 2−11/2 3.770E-03 - 3.507E-03 - 6.453E-05 -
Predicted convergence rate (see (4.13)): 1

Table 4.1: Example 1: Convergence rates for (uh, ph, ηh, η
s
h) ∈ (RT0, discP0, discP0,

contP1). The norm is computed at the final time t = T .

h ∆t ‖u− uh‖X r‖·‖ ‖p− ph‖ r‖·‖ ‖η − ηh‖ r‖·‖
1 2−3 1.529E-02 1.55 9.882E-03 1.78 8.720E-04 0.99

1/2 2−4 5.209E-03 1.80 2.882E-03 1.90 4.379E-04 1.78
1/4 2−5 1.495E-03 1.91 7.721E-04 1.95 1.279E-04 1.91
1/8 2−6 3.990E-04 1.95 1.995E-04 1.98 3.402E-05 1.96
1/16 2−7 1.030E-04 - 5.067E-05 - 8.743E-06 -

Predicted convergence rate (see (4.13)): 2

Table 4.2: Example 1: Convergence rates for (uh, ph, ηh, η
s
h) ∈ (RT1, discP1, discP1,

contP1). The norm is computed at the final time t = T .
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Example 2.

In this example we demonstrate the importance of smoothing the porosity

input to the β( · ) function. Using a perturbed porosity field η = 0.8 −0.5t2xy

+0.03125 sin(169x) cos(169y) (see Figure 4.1), and letting β( · ) given by (see Fig-

ure 4.2)

β(s) =



9.1, 0 ≤ s < 0.1

−8.5s+ 9.95, 0.1 ≤ s < 0.3

7.4, 0.3 ≤ s < 0.4

−8.5s+ 10.8, 0.4 ≤ s < 0.6

5.7, 0.6 ≤ s < 0.7

−18.5s+ 18.65, 0.7 ≤ s < 0.9

2.0, 0.9 ≤ s ≤ 1.0,

we study the convergence rates under two different conditions. First, without smooth-

ing the porosity input to the β( · ) function (see Table 4.3), and then with a smoothed

porosity input to β( · ) (see Table 4.4).

In this example the differential smoother is applied with δ = 0.05.

(uh, ph, ηh) ∈ (RT0, discP0, discP0)
h ∆t ‖u− uh‖X r‖·‖ ‖p− ph‖ r‖·‖ ‖η − ηh‖ r‖·‖

1/2 2−3 1.674E-01 1.31 1.756E-01 1.43 1.976E-03 1.08

1/4 2−7/2 6.742E-02 0.70 6.534E-02 0.84 9.324E-04 -0.79
1/8 2−4 4.153E-02 1.06 3.640E-02 1.15 1.612E-03 0.66

1/16 2−9/2 1.994E-02 0.31 1.636E-02 0.99 1.017E-03 -0.10
1/32 2−5 1.611E-02 - 8.210E-03 - 1.091E-03 -

Convergence is not guaranteed by the theory.

Table 4.3: Example 2: Convergence rates without smoothing the porosity. The norm
is computed at the final time t = T .

The results in Table 4.3 indicate that without smoothing, the convergence rate
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Figure 4.1: Porosity field for Ex. 2 at time
t = 0.5.
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Figure 4.2: Plot of β(s), Ex.2.

(uh, ph, ηh, η
s
h) ∈ (RT0, discP0, discP0, contP1)

h ∆t ‖u− uh‖X r‖·‖ ‖p− ph‖ r‖·‖ ‖η − ηh‖ r‖·‖
1/2 2−3 1.671E-01 1.30 1.759E-01 1.42 2.202E-03 1.46

1/4 2−7/2 6.786E-02 0.88 6.562E-02 0.85 8.013E-04 0.32
1/8 2−4 3.691E-02 1.08 3.638E-02 1.15 6.410E-04 0.24

1/16 2−9/2 1.746E-02 0.96 1.640E-02 0.99 5.432E-04 0.74
1/32 2−5 8.980E-03 - 8.235E-03 - 3.259E-04 -

Predicted convergence rate: 1

Table 4.4: Example 2: Convergence rates when the porosity is smoothed. The norm
is computed at the final time t = T .

of the velocity drops drastically and the porosity does not converge. In contrast, using

the smoothed porosity as input to β( · ), the obtained approximations are convergent

(see Table 4.4).

Example 3 and Example 4.

We consider Ω = (−1, 1) × (0, 1) × (0, 1) and approximate (4.1)-(4.3) using

(4.8)-(4.10), for t ∈ (0, 1]. No flux boundary conditions, u · n = 0, are imposed on

the walls x = −1, x = 1, y = −1, y = 1, and a zero pressure condition, p = 0, on the
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outflow boundary z = −1. Four filters, labelled I-IV, with different initial porosity

profiles are investigated. All filters share the same initial non void space, ν(0), where

ν(t) =

∫
Ω

(1− η(x, t)) dΩ.

The chosen computational parameters are ∆t = 2−5 and h = 0.1. The initial

porosity profiles in Filters I-IV (see Figures 4.3 - 4.6) are:

I: The porosity is uniformly distributed throughout the domain Ω.

II: The porosity increases radially in a continuous fashion.

III: The porosity decreases radially in a continuous fashion.

IV: The porosity decreases continuously in the positive z-direction.

Figure 4.3: Filter I: Initial porosity field. Figure 4.4: Filter II: Initial porosity field.

Example 3.

In this example we specify the inflow velocity for the fluid. Namely, u ·n = −f

on z = 1, where

f(x, t) = (1− x2)(1− y2) min {1, 4t} .
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Figure 4.5: Filter III: Initial porosity
field.

Figure 4.6: Filter IV: Initial porosity
field.

The non void space and maximum pressure within each filter is measured at the time

T = 1. The results are presented in Table 4.5. Plots of the final porosity fields for

each filter are presented in Figure 4.7 - Figure 4.10.

Filter Nonvoid space ν(1) Max. pressure
I 5.34 7.40
II 5.41 11.00
III 5.50 7.03
IV 5.33 14.07

Table 4.5: Example 3: Non void space ν(t), and maximum pressure within each filter
at T = 1.

In terms of the particulate deposited, all the filters’ performances are similar

with a difference between filters of less than 2.5%. However, there is a significant dif-

ference in terms of the maximum pressure pmax attained within each filter at T = 1.

The maximum value pmax = 14.07 is obtained by Filter IV and the minimum value

pmax = 7.03 is obtained by Filter III.

Example 4.

In this example the inflow pressure, pin, is specified. The non void space within

the filter and total amount of fluid that went through the filter is measured at the

47



Figure 4.7: Filter I: Porosity field at T =
1.

Figure 4.8: Filter II: Porosity field at T =
1.

Figure 4.9: Filter III: Porosity field at
T = 1.

Figure 4.10: Filter IV: Porosity field at
T = 1.

time T = 1. The inflow pressure is given by

p(x, t) = 10 min {1, 4t} .

The results are summarized in Table 4.6.

Filter Non void space ν(1) Total flow
I 6.61 5.74
II 6.64 5.65
III 6.66 5.56
IV 6.34 5.02

Table 4.6: Example 4: Non void space at T = 1, and total flow from t = 0 to t = T .

Similar to Example 3, the deposition within each of the filters is comparable,
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differing by less than 6%. The total flow, however, differs by more than 10% with the

highest total flow of 5.74 corresponding to Filter I and the lowest total flow of 5.02

corresponding to Filter IV.

In the next chapter we couple the Stokes equations (2.15) to the Darcy with deposition

equations (3.1)-(3.3) and prove the existence and uniqueness of a weak solution to

the resulting system of equations.
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Chapter 5

Coupled Stokes-Darcy flow with

deposition

5.1 Introduction

In this chapter we are interested in an application related to purification that

builds upon the theory developed in the previous chapter. A concrete description of

the problem we wish to study follows. Some fluid (sewage or industrial wastewaters)

coming from an originally stagnant body of water, such as an activated sludge tank,

advects some pollutant in the form of particulate at a low Reynolds regime inside a

processing plant. Therein, the first unitary operation that is carried out to purify

the liquid is filtration. The liquid is forced to pass through sand beds by means

of a pressure gradient and is later recollected for further processing. As the time

progresses, the filter, i.e., the sand bed, clogs and consequently less fluid is allowed

to pass until eventually a certain efficiency threshold is attained, which requires the

filter to be replaced or washed, interrupting the whole operation.

In this description it is evident that we need a model to describe the nature of the
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filtration process in the porous region Ω1 ⊂ Rd. A natural choice is to use the Darcy

equations, whose mixed formulation reads:

β(η) u1 +∇p1 = f1 in Ω1,

∇ · u1 = 0 in Ω1,

where u1 and p1 represent the Darcy velocity and pressure, respectively, η is the

porosity, f1 is an external force, and β denotes the (scaled) inverse permeability

tensor which depends on η and the dynamic viscosity in Ω1, µ1, which we assume

constant. However, similar to what happens in slow sand filters where a thin layer

grows in the surface of the filter as time progresses, our equations should also take

into account the temporal evolution of the properties of the filter such as porosity.

For that matter, one needs an equation describing the deposition of the particulate

in the filter, which couples the Darcy flow with the deposition:

∂η

∂t
+ dep(u1, η) = 0 in Ω1.

Assuming the deposition term separates into two functions, one depending on the

magnitude of the velocity and the other on the porosity, we obtain

∂η

∂t
+ g(|u1|)h(η) = 0 in Ω1.
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An analysis for the system of equations

β(ηs)u1 +∇p1 = f1 in Ω1,

∇ · u1 = 0 in Ω1,

∂η

∂t
+ g(|u1|)h(η) = 0 in Ω1, (5.1)

with β, g and h satisfying suitable regularity and boundedness conditions, and ηs

a smoothed porosity, is thoroughly discussed in Chapter 3. The reason for using a

smoothed or averaged porosity is twofold: It confers additional regularity critical to

the analysis and is consistent with the derivation of the Darcy velocity, which results

from an averaging or homogenization procedure [4]. In this work we continue this

practice and replace β(η) with β(ηs).

The previously introduced system of equations can be used to model the flow for

the filtration part of the problem. Nonetheless, there remains to consider the flow

from the storage unit (denoted here by Ω2 ⊂ Rd) to the filtration unit Ω1. Based

on the theory derived in Section 2.1, for small Reynolds numbers, i.e., viscous terms

dominating inertial terms, the Stokes equations (2.16) are applicable and thus, we

use them to describe the incoming flow to the filter. The modeling equations inside

the transition domain that connects the storage unit to the filtration unit are:

∇ · T(u2, p2) = f2 in Ω2,

∇ · u2 = 0 in Ω2, (5.2)

where u2 is the Stokes velocity, p2 is the Stokes pressure, T is the stress tensor given

in (2.8) and f2 is a forcing term.

Once it has been established that we have to deal with two different flow regimes, in an
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attempt to greatly simplify the model, one could assume that these two flow conditions

can be treated independently. First solve Stokes, and then, use the resulting outflow

conditions as the inflow for the Darcy model. Though simple, this idea is incorrect

as it suggests that the Stokes domain influences the Darcy domain without being

itself affected by changes in the latter. For example, as the particulate deposits

in a specific region in Ω1, the porosity of the medium diminishes and consequently

the upstream Stokes fluid velocity changes. Moreover, without the careful choice of

adequate interface constraints relating the velocity and the pressure of each domain,

the physical significance of the model would be lost. Thus, the crucial and also most

challenging part to study is the interface Γ connecting Ω2 with Ω1, i.e., Γ = Ω1 ∩ Ω2.

Let n denote an outward unit normal vector and define n|Γ to point from the Stokes

boundary into the Darcy boundary. Systems (5.1) and (5.2) are coupled through the

equations on the interface

(u1 − u2) · n = 0 on Γ, (5.3)

n · T · n = p1 on Γ, (5.4)

which describe the continuity of the normal components of the velocity and the bal-

ance of the normal forces, respectively. It is also necessary to specify the tangential

component of the traction vector to correctly describe the physics of the problem.

One alternative is to use the Beavers-Joseph condition which relates the tangential

stress on the Stokes domain to the difference between the Stokes and Darcy velocity

[64]. Mathematically,

Pt(T · n) = Ψ(η)Pt(u2 − u1) on Γ, (5.5)
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where Pt(v(p)) is the projection of v onto the tangent plane at the point p on Γ. The

projection operator Pt : Rd → Rd is defined in the usual way

Pt(v) =
d−1∑
m=1

(v · tm)tm,

where {ti}d−1
i=1 is a local orthonormal basis for the tangent space at p. The propor-

tionality function Ψ( · ) is given by

Ψ(η) =
αµ2

√
d

ρ2

√
trace(β−1(η))

, (5.6)

where α ∈ R+ is a constant determined experimentally, and ρ2, µ2 are the density

and the dynamic viscosity of the fluid in Ω2, respectively. In this work, however, we

use the Beavers-Joseph-Saffmann condition

Pt(T · n) = Ψ(η)Pt(u2) on Γ, (5.7)

which relates the tangential stress to only the tangential component of the Stokes

velocity. The use of (5.7) for our problem is justified based on experimentation and

its derivation through statistical methods [69]. The mathematical correctness of (5.7)

was established under the conditions described in [16] and the limiting case when the

pore size tends to zero [54].

Remark 5.1. An additional coupling between the Stokes and Darcy regions arises

from the fact that the porosity η appears in both (5.1) and (5.7). This will play an

important role when we prove the existence of a weak solution to system (5.1)-(5.4),

(5.7). Furthermore, since Ψ( · ) is a function of β( · ) we replace Ψ(η) with Ψ(ηs).
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5.2 Literature review

The idea of coupling two different flow regimes has received considerable at-

tention in the last 50 years. We can trace back the seed that later flourished into the

richness of articles on the subject to the seminal paper [16], which introduced and

experimentally confirmed the Beavers-Joseph condition. Evidence of the impact of

this work are the more than 2000 references that cite it. A couple of years later, the

paper [69] by Saffman verified through statistical means the validity of a simplified

version of the Beavers-Joseph condition that results from neglecting the Darcy ve-

locity from the term describing the velocity difference between the Stokes and Darcy

domain. However, it was not until the year 2000 that the Beavers-Joseph-Saffman

condition (5.7) was proven mathematically correct using boundary layer theory and

homogenization theory [54]. Subsequently, in 2002, the work by Discacciati, Miglio

and Quarteroni [31] considered the steady-state Darcy-Stokes model with a no-slip

condition (α = 0) on the interface using the pressure formulation for the Darcy do-

main. In the same year, the paper by Layton, Schieweck and Yotov [63] approached

the same problem using the mixed formulation of Darcy equations and this time

incorporating the Beavers-Joseph-Saffman condition. Therein, a thorough analysis

of the well-posedness of the continuous and discrete problems is given. Five years

later, motivated by a problem in a porous domain with several small cavities, Arbo-

gast and Brunson in [6] introduced a finite element space whose elements adjacent

to the interface Γ are modified in order to take into account the discontinuous tan-

gential velocity. Also in 2007, the techniques of Galvis and Sarkis [45] allowed for

the extension of the inf-sup condition discussed in [63] to the larger and physically

correct space H1/2(Γ), replacing the smaller H
1/2
00 (Γ). A year later, Kaper, Mardal

and Winther [57] employed a non-conforming discretization where the same finite
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element space is employed in the porous and fluid domain. The elements have a

continuous normal component over each edge, a weakly continuous tangential com-

ponent over edges interior to each domain and a discontinuous tangential component

over the interface. In the same period of time, Urquiza, N’Dri, Garon and Delfour

[73] studied the coupled Stokes-Darcy system using the primal mixed formulation of

the Darcy equations, i.e., integrating by parts the incompressibility condition instead

of the gradient of the pressure. Furthermore, the authors include an stabilization

term in the Darcy formulation which results in an elliptic bilinear form, making the

consideration of an inf-sup condition unnecessary. An important generalization in

the direction of nonlinear PDE’s is the paper [36] by Ervin, Jenkins and Sun that

considered a non-Newtonian fluid in both domains with the viscosity a function of the

deformation tensor. Their work exhibits existence and uniqueness using the strong

monotonicity of a nonlinear form and provides an a priori error estimate for the given

finite element approximation. This paper was later followed by [37], where the same

authors now use a mortar space to recast the coupled nonlinear Darcy-Stokes system

as two reduced problems on the interface whose sole unknown is the interfacial pres-

sure on the Darcy domain. In 2009, Rui and Zhang [68] and a year later, Feng, Qi,

Zhu and Ju [40] added an stabilization term to the Stokes-Darcy weak formulation

that allowed them to use the Crouzeix-Raviart element for both the porous and fluid

domain. This resulted in the conservation of mass in each element, a highly desirable

property. Then, in the same year, Badea et al. [9] replaced the Stokes momentum

equation with the nonlinear Navier-Stokes and introduced a Poincaré-Steklov oper-

ator to reformulate the coupled problem as an interface equation with the normal

flux as the unknown. Another work that aimed for pointwise conservation of mass is

[56] where Kanschat and Rivière used a divergence-conforming velocity space with a

discontinuous Galerkin method for the Stokes domain. Also relevant, is the work by
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Ervin, Jenkins and Lee [35] that formulates the Stokes-Darcy system as a constrained

optimal control problem, where the inflow, outflow and continuity of flux across the

interface are enforced through the minimization of a functional. Particularly interest-

ing is their least squares computational algorithm which gives optimal convergence

rates.

Moving now to time dependent problems, in [24], Çeşmelioğlu and Rivière consid-

ered the evolutionary Navier-Stokes equations coupled with the Darcy equations in

its pressure formulation and assume a Beavers-Joseph-Saffman law. Therein, the au-

thors exhibit existence of a weak solution using the Galerkin method in an increasing

sequence of finite dimensional Hilbert spaces. The solution is later shown to be strong

by means of Sobolev embedding theorems. Moreover, a Crank-Nicolson scheme is pro-

posed and second order convergence in time is established. Then, almost a decade

after [63], the first work that considered the Darcy-Stokes problem using the more

general Beavers-Joseph condition in both the steady-state and time-dependent setting

was [23], where Cao, Gunzburger, Hua and Wang proved existence and uniqueness

under the assumptions of a scaled Darcy law and a small parameter α. A follow-up

to [23] is [22], where Cao et al. investigated a scaled Darcy law and the corresponding

numerical solutions using a backward Euler scheme.

Once relevant analytical questions such as well-posedness were successfully answered,

the scientific community started turning its attention towards the question of gener-

ating accurate and stable approximation schemes. In this line, the work [25] by W.

Chen, P. Chen, Gunzburger and Yan proves that for the Taylor-Hood finite element

pair in a particular refinement of a uniform isosceles right-triangle mesh, one can ob-

tain a superconvergence order of 2.5 in the H1 norm after applying a postprocessing

interpolation operator. The next year, Cui and Yan [28] proved a posteriori upper

and lower bounds for the error estimates of the Stokes-Darcy equations. These type
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of estimates are particularly useful in providing reliable indicators for adaptive mesh

refinement. Later, in 2012, Layton, Tran and Xiong [62] introduced four methods

that decouple the Darcy-Stokes system and provided stability conditions that are

functions of the physical parameters and the mesh size. In the same year, Layton and

Trenchea exploited the skew symmetric coupling that arises by choosing the pressure

formulation for the Darcy equations and analyzed two second order schemes: Crank-

Nicolson Leap-Frog and BDF2-AB2, both members of the family of implicit-explicit

(IMEX) methods. Also members of the IMEX family are the two schemes proposed

by Chen, Gunzburger, Sun and Wang in [26]. Using a combination of a second order

backward differentiation formula and a second order Gear’s extrapolation for the first

method and second order Adams-Bashforth and Adams-Moulton formulas for the sec-

ond method, they achieved the much-desired unconditional stability. An alternative

to introducing a stabilization term as it was done in [26], can be found in [61], where

Layton, Tran and Trenchea show long time stability under a mild step restriction that

depends upon the physical parameters. Finally, we would like to mention the work

by Cao, Gunzburger, He and Wang [21] that considered Robin boundary conditions

and proved, for a backward-Euler type scheme, unconditional stability and optimal

convergence.

In the next section we restate the modeling equations and introduce the nomenclature

and appropriate spaces in order to carry out the analysis.

5.3 Notation and assumptions

Throughout this manuscript, the symbol C indicates a generic constant inde-

pendent of the discretization parameters, whose value may change from line to line.
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The symbol µ denotes the dynamic viscosity in the fluid domain Ω2. We let u, p

and η denote the velocity, pressure and porosity throughout Ω, respectively and use a

subscript i = 1, 2 to indicate if a variable corresponds to the Darcy (i = 1) or Stokes

(i = 2) domain. For example, u1 refers to the velocity on the Darcy domain. More-

over, for a generic function fi supported on Ωi, we extend fi to the whole Ω by setting

fi ≡ 0 on Ω \ Ωi. We omit the subscript whenever it is clear over which region the

function is evaluated. We partition the boundary of Ω = Ω1 ∪ Ω2 into three disjoint

pieces: The interface or connecting boundary Γ = ∂Ω1 ∩ ∂Ω2, the Darcy boundary

Γ1 = ∂Ω1 \ Γ and the Stokes boundary Γ2 = ∂Ω2 \ Γ.

Assumption 5.1. For the mathematical analysis we assume u = 0 on Γ2 and u ·n =

0 on Γ1.

We use the notation

(f, g)U =

∫
U

f(x) · g(x) dx, ‖f‖2
U = (f, f)U ,

to denote the L2 inner product and norm on U ⊂ Ω, where the dot product is replaced

with the Frobenius product in the case of tensors, and

〈f, g〉Γ =

∫
Γ

f · g dS

to indicate either a surface integral along the interface Γ, or the duality pairing

between f and g. We omit the subscript whenever it is clear from the context over

which region we compute the integral. The function | · | represents the Euclidean

norm for vectors, the Frobenius norm for tensors and the Lebesgue measure for sets.

The relevant function spaces in the following derivations are: The Darcy and Stokes
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velocity spaces

X1 = {v1 ∈ Hdiv(Ω1) |v1 · n = 0 on Γ1} , X2 =
{
v2 ∈ H1(Ω2)d |v2 = 0 on Γ2

}
,

the Darcy and Stokes pressure spaces, Q1 = L2(Ω1) and Q2 = L2(Ω2), the porosity

space L2(Ω1), the space of Lagrange multipliers Λ = H1/2(Γ), and the space of con-

tinuous functions on Ω1, C0(Ω1). The corresponding norms in the velocity spaces are,

for u1 ∈ X1 and u2 ∈ X2:

‖u1‖X1 =
(
‖u1‖2 + ‖∇ · u1‖2

)1/2
, ‖u2‖X2 =

√
2µ ‖D(u2)‖.

Furthermore, we introduce the spaces Q =
{
q ∈ L2(Ω)

∣∣ (q, 1)Ω = 0
}

,

X =
{
v ∈ L2(Ω)d

∣∣v1 ∈ X1 and v2 ∈ X2

}
,

its continuous dual X′, and the norm

‖u‖X =
(
‖u‖2

X1
+ ‖u‖2

X2

)1/2
.

Some standard results that we use in the analysis are:

Lemma 5.1 (Korn’s first inequality (see [20])). Let U be a polyhedral domain in Rd

(d = 2 or 3), and let Γ ⊂ ∂U ⊂ Rd−1 be such that |Γ| > 0. Then, there exists a

positive constant C = C(U,Γ) such that

‖∇u‖L2(U) ≤ C ‖D(u)‖L2(U) ∀u ∈ H1(U)d, u|Γ = 0.

Lemma 5.2 (Poincaré-Friedrichs inequality (see [19])). Let U be a bounded domain

60



in Rd and let Γ ⊂ ∂U ⊂ Rd−1 be such that |Γ| > 0. Then, there exists a positive

constant C = C(U,Γ) such that

‖u‖L2(U) ≤ C ‖∇u‖2
L2(U) ∀u ∈ H1(U), u|Γ = 0.

Lemma 5.3. There exists a positive constant CK such that

‖u‖H1(Ω2) ≤ CK ‖u‖X2 ∀u ∈ X2.

Proof. This is a direct consequence of Lemma 5.1 and Lemma 5.2.

Theorem 5.1 (Trace theorem (see [30])). Let U be a bounded simply connected Lip-

schitz domain and let s ∈ (1/2, 3/2). The map T : Hs(U) → Hs−1/2(∂U) that sends

a function to its trace is a surjective bounded linear operator. In particular, in view

of Lemma 5.3, there exists a positive constant CT such that

‖T u‖L2(Γ) ≤ CT ‖u‖X2 ∀u ∈ X2.

The following definition introduces the concept of a smoothing operator in Ω1.

Definition 5.1. We say that the linear operator S : L2(Ω1) → C0(Ω1) is smoothing

if:

S1: There exists a constant Cs = Cs(Ω1) such that ‖S(u)‖L∞(Ω1) ≤ Cs‖u‖L2(Ω1) for

all u ∈ L2(Ω1), and

S2: if {un}∞n=1 ⊂ L2(Ω1) such that un ⇀ u in L2(Ω1), then S(un) → S(u) in

L∞(Ω1), i.e., S transforms a weakly convergent sequence in L2(Ω1) into a

strongly convergent sequence in L∞(Ω1).
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Examples of smoothing operators can be found in [38]. For the rest of the

article we adopt the convention of indicating the action of S on η as ηs.

The full system is now restated for ease of reference. For T ∈ R+ denoting the

time horizon of the filtration process, we consider

β(ηs)u +∇p = f in Ω1 × (0, T ),

∇ · u = 0 in Ω1 × (0, T ), (5.8)

∂η

∂t
+ g(|u|)h(η) = 0 in Ω1 × (0, T ), (5.9)

η = η0 in Ω1 × {0} ,

∇ · T(u, p) = f in Ω2 × (0, T ),

∇ · u = 0 in Ω2 × (0, T ), (5.10)

with interface conditions

(u2 − u1) · n = 0 on Γ× (0, T ), (5.11a)

n · T(u2, p2) · n = p1 on Γ× (0, T ), (5.11b)

Pt(T(u2, p2) · n) = Ψ(η)Pt(u2) on Γ× (0, T ), (5.11c)

and boundary data

u · n = 0 on Γ1 × (0, T ), (5.12a)

u = 0 on Γ2 × (0, T ). (5.12b)

We make the following assumptions:
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A1: The functions

β( · ) : R+ → R+, g( · ) : R+ ∪ {0} → R+ ∪ {0} ,

Ψ( · ) : R+ → R+, h( · ) : R+ ∪ {0} → R+ ∪ {0} ,

satisfy the following bounds:

0 < βmin ≤ β( · ) ≤ βmax, g( · ) ≤ gmax,

0 < Ψmin ≤ Ψ( · ) ≤ Ψmax, h( · ) ≤ hmax.

A2: β( · ), g( · ), h( · ), Ψ( · ) are Lipschitz continuous with Lipschitz constants βLip,

gLip, hLip and ΨLip, respectively.

A3: η0 ∈ L∞(Ω1) and η0(x) ≥ 0 for a.e. x in Ω1.

A4: f ∈ C0(0−, T ; L2(Ω)) defined as C0(0− δ, T ; L2(Ω)) ∩ L∞(0, T ;L2(Ω)) for some

δ > 0.

Remark 5.2. Note that since ηs is the result of S(η), the Beavers-Joseph-Saffman

condition (5.11c) is well-defined in view that ηs ∈ C0(Ω1).

Additional notation that we need in the subsequent analysis is: For u,v ∈ X, q ∈ Q,

η ∈ L2(Ω1) and ν ∈ Λ, define

a1(η; u,v) = (β(ηs) u,v)Ω1
, a2(u,v) =

(
2µD(u),D(v)

)
Ω2

,

b(v, q) = −(∇ · v, q)Ω, c(v, ν) = 〈(v2 − v1) · n, ν〉Γ , `(v) = (f ,v)Ω,

d(η; u,v) = 〈Ψ(ηs)Pt(u2), Pt(v2)〉Γ . (5.13)
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Remark 5.3. The definition of the bilinear form a2( · , · ) is natural in view of the

definition of the stress tensor

T = −2µD(u) + pI.

Remark 5.4. Owing to assumption A4, the operator ` : X→ R introduced in (5.13)

is a continuous linear functional. Thus, ` ∈ X′.

5.4 Existence and uniqueness

Multiplying (5.8)-(5.10) by the corresponding test functions and incorporating

conditions (5.11)-(5.12), the resulting weak form is: Given η0 ∈ L2(Ω1) and f ∈

C0(0−, T ; L2(Ω)), find u ∈ L2(0, T ; X), p ∈ L2(0, T ;Q), λ ∈ L2(0, T ; Λ) and η ∈

H1(0, T ; L2(Ω1)), satisfying η(·, 0) = η0 a.e. in Ω1, and for a.e. t ∈ (0, T )

a1(η; u,v) + a2(u,v) + b(v, p) + c(v, λ) + d(η; u,v) = `(v) ∀v ∈ X, (5.14)

b(u, q) = 0 ∀q ∈ Q, (5.15)

c(u, ν) = 0 ∀ν ∈ Λ, (5.16)

(
∂η

∂t
, ξ)Ω1 +

(
g(|u|)h(η), ξ

)
Ω1

= 0 ∀ξ ∈ L2(Ω1). (5.17)

To simplify the analysis, we introduce the space

V =

{
v ∈ X

∣∣∣∣ c(v, ν) = 0 ∀ν ∈ Λ, and b(v, q) = 0 ∀q ∈ Q
}
.

In order to restrict the analysis to V, we require the following inf-sup condition.
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Lemma 5.4. There exists a positive constant γ such that

γ < inf
0 6=(q,ν)∈Q×Λ

sup
06=v∈X

b(v, q) + c(v, ν)

‖v‖X ‖(q, ν)‖Q×Λ

,

where ‖(q, ν)‖2
Q×Λ = ‖q‖2

L2(Ω) + ‖ν‖2
Λ.

Proof. The result follows from Proposition 4.7 and Remark 4.8 in [45].

In view of the definition of V and Lemma 5.4, assuming η ∈ L2(Ω1) and

f ∈ C0(0−, T ; L2(Ω)) are given, system (5.14)-(5.16) is equivalent to: Find u ∈

L2(0, T ; V) satisfying

a1(η; u,v) + a2(u,v) + d(η; u,v) = `(v) ∀v ∈ V. (5.18)

First we show that for η ∈ L2(Ω1) given, (5.18) is well-posed.

Lemma 5.5. Let η ∈ L2(Ω1) be given. Let u,v ∈ V and define a : L2(Ω1)×V×V→

R by

a(η; u,v) = a1(η; u,v) + a2(u,v) + d(η; u,v). (5.19)

Then, the problem: Find u ∈ V satisfying for all v ∈ V

a(η; u,v) = `(v), (5.20)

has a unique solution. We call (η,u) a solution pair to (5.20).
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Proof. In view of assumption A1 and the continuity of the trace map, it follows that

a(η; u,v) ≤ βmax ‖u‖X1 ‖v‖X1 + 2µ ‖u‖X2 ‖v‖X2 + ΨmaxC
2
T ‖u‖X2 ‖v‖X2

≤ max
{
βmax, 2µ, ΨmaxC

2
T
}
‖u‖X ‖v‖X. (5.21)

Now observe that owing to A1 and the nonnegativity of d(η,u,u),

a(η; u,u) ≥ βmin ‖u‖2
X1

+ ‖u‖2
X2
≥ min {βmin, 1} ‖u‖2

X. (5.22)

Finally, note that in view of Lemma 5.3

`(v) = (f ,v)Ω1 + (f ,v)Ω2 ≤ ‖f‖L2(Ω1) ‖v‖L2(Ω1) + ‖f‖H−1(Ω2) ‖v‖H1(Ω2)

≤ ‖f‖L2(Ω1) ‖v‖L2(Ω1) + ‖f‖L2(Ω2) CK ‖v‖X2 ≤ max {1, CK} ‖f‖ ‖v‖X. (5.23)

Consequently, from (5.21), (5.22) and (5.23), the existence of a unique solution to

(5.20) follows by the Lax-Milgram lemma.

The next corollary provides an estimate for the norm of the solution to problem

(5.20).

Corollary 5.1. Define

Cβ =
1

min {βmin, 1} , Cb = max {1, CK} Cβ, Cf = Cb ‖f‖L∞(0,T ;L2(Ω)),

and let u ∈ V be the solution to the problem stated in Lemma 5.5. Then,

‖u‖X(t) ≤ Cf . (5.24)

Proof. This is a direct consequence of (5.22) and (5.23).
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The following result is related to the continuity of the solution u as a function

of the porosity η.

Lemma 5.6. Let (η1,u1), (η2,u2) ∈ L2(Ω1)×V be solution pairs to problem (5.20).

Then,

‖u2 − u1‖2
X(t) ≤ Cβ C

2
f

(
Ψ2

LipC
4
T +

β2
Lip

βmin

)
‖S(η2 − η1)‖2

L∞(Ω1)(t). (5.25)

Proof. For clarity of exposition, we suppress the dependence of the functions on t.

First note that

a1(η1; u1,v)− a1(η2; u2,v) =
(
β(η1,s) (u1 − u2),v

)
Ω1

+
((
β(η1,s)− β(η2,s)

)
u2,v

)
Ω1
. (5.26)

Similarly for d( · , · , · ) and a2( · , · ),

d(η1; u1,v)− d(η2; u2,v) =
〈
Ψ(η1,s)Pt(u

1
2 − u2

2), Pt(v2)
〉

Γ

+
〈(

Ψ(η1,s)−Ψ(η2,s)
)
Pt(u

2
2), Pt(v2)

〉
Γ
, (5.27)

a2(u1,v)− a2(u2,v) =
(
2µD(u1 − u2),D(v)

)
Ω2
. (5.28)

Now observe that

a(η1; u1,v)− a(η2; u2,v) = a1(η1; u1,v)− a1(η2; u2,v)

+ a2(u1,v)− a2(u2,v) + d(η1; u1,v)− d(η2; u2,v) = 0. (5.29)
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Adding (5.26) , (5.27) and (5.28), and using (5.29), yields

(
β(η1,s) (u2 − u1),v

)
Ω1

+
〈
Ψ(η1,s)Pt(u

2
2 − u1

2), Pt(v2)
〉

Γ

+
(
2µD(u2 − u1),D(v)

)
Ω2

=
〈(

Ψ(η1,s)−Ψ(η2,s)
)
Pt(u

2
2), Pt(v2)

〉
Γ

+
((
β(η1,s)− β(η2,s)

)
u2,v

)
Ω1
. (5.30)

Setting v = u2−u1 in (5.30) and using assumptions A1, A2, and the trace theorem,

we obtain

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2

≤ ΨLip ‖η1,s − η2,s‖L∞(Ω1)C
2
T ‖u2‖X2 ‖u2 − u1‖X2

+ βLip ‖η1,s − η2,s‖L∞(Ω1) ‖u2‖X1 ‖u2 − u1‖X1 . (5.31)

Applying Corollary 5.1 to bound ‖u‖Xi
for i = 1, 2 and Young’s inequality in (5.31),

yields

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ 1

4ε2

Ψ2
Lip ‖η1,s − η2,s‖2

L∞(Ω1) C
4
T C

2
f

+ ε2 ‖u2 − u1‖2
X2

+
1

4ε1

β2
Lip ‖η1,s − η2,s‖2

L∞(Ω1) C
2
f + ε1‖u2 − u1‖2

X1
. (5.32)

Finally, setting ε1 = βmin

2
and ε2 = 1/2 in (5.32), we obtain

βmin‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ ‖η1,s − η2,s‖2

L∞(Ω1)C
2
f

(
Ψ2

LipC
4
T +

β2
Lip

βmin

)
. (5.33)

Estimate (5.25) follows from (5.33).

Corollary 5.2. Let (η1,u1), (η2,u2) ∈ L2(Ω1)×V be solution pairs to problem (5.20).
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Then, there exists a positive constant CLip, independent of t, such that

‖u2 − u1‖X(t) ≤ CLip ‖η1 − η2‖L2(Ω1)(t). (5.34)

Proof. In view of Lemma 5.6, and property S1 of the smoother, estimate (5.34)

follows, where CLip is the square root of the product of the constants arising in (5.25)

and C2
s .

The next lemma shows that for a given porosity η, the solution u to (5.20)

depends continuously on the forcing term f .

Lemma 5.7. Let η ∈ L2(Ω1) be given and let u1,u2 be the solutions to (5.20) corre-

sponding to the linear functionals `1 and `2, respectively. Then,

‖u1 − u2‖X(t) ≤ Cβ ‖`1 − `2‖X′(t).

Proof. Consider the problems

a(η,u1,v) = `1(v) ∀v ∈ V, (5.35)

a(η,u2,v) = `2(v) ∀v ∈ V. (5.36)

Subtracting (5.35) from (5.36) and proceeding in a similar manner as in Lemma 5.6

(see (5.31)), we obtain the bound

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ ‖`2 − `1‖X′ ‖u2 − u1‖X. (5.37)

From (5.37), the result follows.

The next corollary is a generalization of Corollary 5.2 and Lemma 5.7.
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Corollary 5.3. Let (η1,u1), (η2,u2) ∈ L2(Ω1)×V be solution pairs to

a(η1,u1,v) = `1(v) ∀v ∈ V,

a(η2,u2,v) = `2(v) ∀v ∈ V.

Then,

‖u2 − u1‖2
X(t) ≤ 2CLip ‖η2 − η1‖2

L2(Ω1)(t) + 4Cβ ‖`2 − `1‖2
X′(t). (5.38)

Proof. Following the same steps that lead to (5.32) and (5.37), and applying Young’s

inequality, yields

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ 1

4ε2

Ψ2
Lip ‖S(η1 − η2)‖2

L∞(Ω1)C
4
T C

2
f

+ ε2 ‖u2 − u1‖2
X2

+
1

4ε1

β2
Lip ‖S(η1 − η2)‖2

L∞(Ω1) C
2
f + ε1‖u2 − u1‖2

X1

+ ε3‖`2 − `1‖2
X′ +

1

4ε3

‖u2 − u1‖X. (5.39)

Setting ε1 = βmin

2
, ε2 = 1/2, ε3 = Cβ in (5.39) and replacing the L∞(Ω) norm of the

smoothed variables with the L2(Ω1) norm of the original variables as described in the

proof of Corollary 5.2, we obtain

βmin ‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
≤ CLip ‖η2 − η1‖2

L2(Ω1)(t) + 2Cβ ‖`2 − `1‖2
X′

+
C−1
β

2
‖u2 − u1‖X. (5.40)

Finally, making use of the bound

C−1
β ‖u2 − u1‖2

X ≤ βmin‖u2 − u1‖2
X1

+ ‖u2 − u1‖2
X2
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in (5.40), estimate (5.38) follows.

We proceed to define two operators. One outputs the Darcy velocity as a

function of the porosity η and the other describes the deposition function in terms of

η.

Definition 5.2. Let P : L2(Ω1)× (0, T )→ V be given by

P(η, t) = u(t),

where u(t) is defined through the solution pair (η,u) of the problem introduced in

(5.20), and define F : L2(Ω1)× (0, T )→ L2(Ω1) by

F(η, t) = g (|P(η, t)|) h(η).

Remark 5.5. The time dependency of P is due the forcing term f(t).

The following properties of P and F are used in the main result of this section.

Lemma 5.8. The operator P( · , t) is Lipschitz continuous for every t ∈ (0, T ).

Proof. This is a direct consequence of Corollary 5.2.

Lemma 5.9. The operator P(η, · ) is continuous for every η ∈ L2(Ω1).

Proof. Let t ∈ (0, T ), ε > 0 and η ∈ L2(Ω1) be given. With reference to Lemma

5.7, define the linear functionals `1(v) = (f(t),v)Ω and `2(v) = (f(t + h),v)Ω for

some h ∈ R, and let u1 = P(η, t), u2 = P(η, t + h) be the corresponding solutions,

respectively. Then, by Lemma 5.7,

‖u1 − u2‖X ≤ Cβ ‖f(t)− f(t+ h)‖. (5.41)
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Owing to assumption A4, we can find an open ball B ⊂ R centered at zero of radius

δ > 0 such that for all h ∈ B,

‖f(t)− f(t+ h)‖ ≤ ε. (5.42)

Hence, combining (5.41) and (5.42) the result follows.

Lemma 5.10. The operator F( · , t) is Lipschitz continuous for every t ∈ R+.

Proof. In view that the composition of Lipschitz continuous functions is Lipschitz

and the product of bounded Lipschitz continuous functions is Lipschitz, assumptions

A1 and A2 together with Lemma 5.8 imply the assertion.

Lemma 5.11. The operator F(η, · ) is continuous for every η ∈ L2(Ω1).

Proof. From assumption A2 and Lemma 5.9, the function g (|P(η, ·)|) is continuous.

Hence, F(η, · ) is continuous.

Remark 5.6. In view of A1, the operator F(·, ·) is uniformly bounded in L2(Ω1) ×

(0, T ) by the constant CF = gmax hmax. Thus,

‖F(·, ·)‖L2(Ω1) ≤ CF |Ω1|1/2 .

Remark 5.7. With an additional assumption on f , we can strengthen Lemma 5.9 to

obtain Lipschitz continuity on the variable t and, additionally, Lipschitz continuity

on the whole domain L2(Ω1)× (0, T ). This idea is explored in Section 5.5.

Before introducing the main theorem of this section, we restate the Picard-

Lindelöf theorem.
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Theorem 5.2 ([49], Theorem I.3.1). Let I denote a domain in R containing the

point t0, Y a Banach space and f : Y × R → Y . Suppose that f is locally Lipschitz

continuous in its first variable and continuous in its second variable. Then, there

exists ε > 0 such that the initial value problem

u′ = f(u, t),

u(t0) = u0,

has a unique solution in C0(t0 − ε, t0 + ε;Y ).

Theorem 5.3. Under assumptions A1-A4 and S1-S2, there exists a unique solution

u ∈ L2(0, T ; V), p ∈ L2(0, T ;Q), λ ∈ L2(0, T ; Λ) and η ∈ H1(0, T ; L2(Ω1)) satisfying

(5.14)-(5.17) for a.e. t ∈ (0, T ).

Proof. First, we focus on computing the porosity. In view of (5.17) and using Defi-

nition 5.2, we consider the problem: Find η ∈ C0(0, T ) such that

∂η

∂t
= −g(|P(η, t)|)h(η) = −F(η, t) ∀t ∈ (0, T ). (5.43)

Let t ∈ (0, T ) be given. Owing to Theorem 5.2, Lemma 5.10 and Lemma 5.11,

there exists ε > 0 and an interval (t − ε, t + ε) where the existence of a unique η

is guaranteed. From Corollary 5.2 and Remark 5.6, the Lipschitz constant CLip and

the bound for ‖F( · , · )‖L2(Ω1) are independent of η0 and t. Hence, one can extend

the solution to the whole interval (0, T ). Next, we use η in Lemma 5.5 to obtain the

velocity u. Finally, owing to the inf-sup condition in Lemma 5.4, the existence and

uniqueness of p and λ follow.

A simple consequence of Theorem 5.3 is the next corollary, which upgrades

the regularity of η.
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Corollary 5.4. The porosity function η given by Theorem 5.3 is Lipschitz continuous

on (0, T ).

Proof. In view of Lemma 5.10 and Lemma 5.11, F( · , · ) is continuous. Furthermore,

owing to Theorem 5.3, the obtained solution η is continuous on (0, T ). Thus, from

(5.43), it follows that
∂η

∂t
is continuous. Consequently η is C1(0, T ) and therefore

Lipschitz continuous on the same interval.

Notation 5.1. We denote the Lipschitz constant of η in Corollary 5.4 by ηLip.

In the next section we aim to extend the regularity of η and u in Theorem 5.3

by upgrading the regularity of f .

5.5 Additional regularity

The key ingredient in the subsequent derivations is to assume that the function

f in (5.8), (5.10) is Lipschitz continuous. At the end of this section we conclude that

u is Lipschitz continuous and η ∈ H2(0, T ;L2(Ω1)).

Notation 5.2. We denote the Lipschitz constant of f by fLip.

Lemma 5.12. Assume f : (0, T )→ L2(Ω) is Lipschitz continuous. Then, the opera-

tor P( · , · ) is Lipschitz continuous on L2(Ω1)× (0, T ).

Proof. Let η1, η2 ∈ L2(Ω1) be given. Using similar notation to the one introduced in

the proof of Lemma 5.9, and owing to Corollary 5.3, we obtain the bound

‖u2 − u1‖2
X ≤ 2CLip ‖η2 − η1‖2

L2(Ω1) + 4Cβ ‖f(t)− f(t+ h)‖2, (5.44)
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where u1 = P(η1, t), u2 = P(η2, t + h). Define t1 = t and t2 = t + h. Making use of

the Lipschitz continuity of f in (5.44), yields

‖u2 − u1‖2
X ≤ 2CLip ‖η2 − η1‖2

L2(Ω1) + 4Cβ f2
Lip |t2 − t1|2 |Ω| . (5.45)

Hence, the Lipschitz continuity of P( · , · ) follows from (5.45).

Similar to Lemma 5.12, we can upgrade the regularity of F by means of the

additional regularity of f .

Corollary 5.5. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the

operator F( · , · ) is Lipschitz continuous on L2(Ω1)× (0, T ).

Proof. This is a direct consequence of Lemma 5.12 and the arguments given in the

proof of Lemma 5.10.

To close this section, we prove two results that improve the regularity of u

and
∂η

∂t
.

Corollary 5.6. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the

velocity u given by Theorem 5.3 is Lipschitz continuous on (0, T ).

Proof. Using the same notation introduced in Lemma 5.12, let u1 = u(t1), u2 = u(t2)

and η1 = η(t1), η2 = η(t2). Then, owing to the Lipschitz continuity of f and (5.45),

we obtain

‖u(t2)− u(t1)‖2
X ≤ 2CLip ‖η(t2)− η(t2)‖2

L2(Ω1) + 4Cβ f2
Lip |t2 − t1|2 |Ω| . (5.46)

Finally, a direct application of Corollary 5.4 in (5.46) yields

‖u(t2)− u(t1)‖2
X ≤ 2CLip η

2
Lip |t2 − t1|2 |Ω1|+ 4Cβ f2

Lip |t2 − t1|2 |Ω| ,
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proving the claim.

Corollary 5.7. Assume f : (0, T ) → L2(Ω) is Lipschitz continuous. Then, the

function
∂η

∂t
given in (5.43) is Lipschitz continuous on (0, T ). In particular

∂2η

∂t2
∈

L∞(0, T ;L2(Ω1)).

Proof. Combining Corollary 5.5 and Corollary 5.4, it follows that the right hand

side of (5.43) is Lipschitz continuous. Hence,
∂η

∂t
is Lipschitz and consequently, by

Rademacher’s theorem, differentiable almost everywhere. Moreover, the Lipschitz

continuity of
∂η

∂t
: (0, T ) → L2(Ω1) implies that ‖∂

2η

∂t2
‖L2(Ω1)(t) is bounded in (0, T ).

Hence
∂2η

∂t2
∈ L∞(0, T ;L2(Ω1)), concluding the proof.

We summarize the last two propositions in the following remark.

Remark 5.8. Under the additional regularity assumption

A5: The forcing term f : (0, T )→ L2(Ω) is Lipschitz continuous,

it follows that u : (0, T ) → X is Lipschitz continuous and
∂2η

∂t2
∈ L∞(0, T ; L2(Ω1)).

In particular η ∈ H2(0, T ;L2(Ω1)).

The next section further extends the properties of η and shows that η is a

nonnegative bounded function. This is relevant in view that, physically, the porosity

is always between zero and one.

5.6 Nonnegativity of the porosity

In this section we show that the porosity function η remains bounded during

the filtration process, and, more importantly, that it is nonnegative a.e. in Ω1. A

brief outline of how this is achieved follows. First, we introduce some notation and
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discretize in time the deposition equation (5.43). Subsequently, we show that the

discretized problem is well-posed and exhibit the boundedness and nonnegativity of

the discrete porosity function. Then, we proceed to construct sequences of functions

that approximate the continuous porosity and show that they converge to a common

limit. Finally, we close this section by proving that under assumption A5, the dis-

crete porosity converges to the continuous porosity as the time step goes to zero.

First, we discretize the interval [0, T ] into M + 1 uniformly spaced times tk = k∆t,

k = 0, 1, . . . ,M , where ∆t = T/M and consider the following problem.

Lemma 5.13. Define uk = u(tk) ∈ X, where u is the solution obtained in Theorem

5.3. Then, the problem: Given η0 ∈ L2(Ω1), find ηk ∈ L2(Ω1), for k = 1, . . . ,M such

that for all ξ ∈ L2(Ω1)

(
ηk − ηk−1

∆t
, ξ

)
Ω1

+
(
g(|uk|)h(ηk), ξ

)
Ω1

= 0 (5.47)

has a unique solution, provided ∆t < gmax hLip.

Proof. Assume η0, . . . , ηk−1 have already been computed. Define the operator A :

L2(Ω1)→ L2(Ω1) by y = Ax, where y satisfies

(
y − ηk−1

∆t
, ξ

)
Ω1

+
(
g(|uk|)h(x), ξ

)
Ω1

= 0 ∀ξ ∈ L2(Ω1). (5.48)

Let x1, x2 ∈ L2(Ω1) and define y1 = Ax1, y2 = Ax2. Then, from (5.48), it follows that

(y1 − y2, ξ)Ω1 = −∆t
(
g(|uk|) (h(x1)− h(x2)) , ξ

)
Ω1

∀ξ ∈ L2(Ω1). (5.49)

Thus, setting ξ = y1 − y2 in (5.49), using Cauchy-Schwarz and assumptions A1 and
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A2, yields

‖y1 − y2‖L2(Ω1) ≤ ∆t gmax hLip ‖x1 − x2‖L2(Ω1),

implying that A is a contraction in L2(Ω1). Consequently, owing to Banach’s fixed

point theorem, it follows that A has a unique fixed point, proving the existence of a

unique solution to (5.47). The result follows by induction.

Definition 5.3. We use the notation ηM to denote the tuple (η0, η1, . . . , ηM), where

the ηk, k = 1, . . . ,M are defined through Lemma 5.13.

Lemma 5.14. Let m ∈ Z+ be given with m ≤ M . The solution ηk given in Lemma

5.13 satisfies the estimate

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ exp (4T gmax hmax |Ω1|) ‖η0‖2

L2(Ω1), (5.50)

provided

∆t <
1

4 gmax hmax |Ω1|
.

Proof. Let ξ = ηk in (5.47) and use assumption A1, to obtain

‖ηk‖2
L2(Ω1) − ‖ηk−1‖2

L2(Ω1) + ‖ηk − ηk−1‖2
L2(Ω1) ≤ 2∆t gmax hmax |Ω1| ‖ηk‖L2(Ω1).

(5.51)

Summing (5.51) from k = 1 to k = m, yields

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ ‖η0‖2

L2(Ω1) + C ∆t
m∑
k=1

‖ηk‖L2(Ω1), (5.52)

78



where C = 2 gmax hmax |Ω1|. Finally, from a discrete version of Gronwall’s lemma (see

[60] pg. 167), we obtain

‖ηm‖2
L2(Ω1) +

m∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ exp

(
mC ∆t

1− C ∆t

)
‖η0‖2

L2(Ω1).

Bounding m∆t with M ∆t = T , and observing that 1−C ∆t < 1/2, estimate (5.50)

now follows.

Lemma 5.15. Let ηk−1 ∈ L2(Ω1) be given with ηk−1 ≥ 0 a.e. in Ω1. Then, the

solution ηk given in Lemma 5.13 is nonnegative a.e. in Ω1.

Proof. Define η−k = max {0,−ηk}, i.e., the negative part of ηk. Let ξ = −η−k in (5.47)

and define h( · ) to be zero for negative arguments. Thus, we obtain

‖η−k ‖2
L2(Ω1) = −

(
ηk−1, η

−
k

)
Ω1

+ ∆t
(
g(|uk|)h(ηk), η

−
k

)
Ω1

= −
(
ηk−1, η

−
k

)
Ω1
≤ 0.

Consequently, η−k is zero a.e. in Ω1, implying the nonnegativity of ηk.

Lemma 5.16. Let ηk−1 ∈ L2(Ω1) be given. Then, the solution ηk given in Lemma

5.13 satisfies ηk ≤ ηk−1 a.e. in Ω1. Equivalently, ηk is monotonically decreasing on

k.

Proof. Define (ηk − ηk−1)+ = max {0, ηk − ηk−1}. Setting ξ = (ηk − ηk−1)+ in (5.47),

yields

‖(ηk − ηk−1)+‖2
L2(Ω1) =

(
ηk − ηk−1, (ηk − ηk−1)+

)
Ω1

= −∆t
(
g(|uk|)h(ηk), (ηk − ηk−1)+

)
Ω1

≤ 0.

Therefore, (ηk − ηk−1)+ is zero a.e. in Ω1, implying that ηk ≤ ηk−1 a.e. in Ω1.
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Corollary 5.8. Let ηk−1 ∈ L2(Ω1) be given with 0 ≤ ηk−1 ≤ η0 a.e. in Ω1. Then, the

solution ηk given in Lemma 5.13 is also bounded above by η0 a.e. in Ω1.

Proof. This is a direct consequence of Lemma 5.16.

Remark 5.9. In view of assumption A3, Lemma 5.15 and Corollary 5.8, it follows

that ηk ∈ L∞(Ω1) for k = 0, . . . ,M .

Now that we have established some relevant properties of the functions in the

vector ηM , it remains to exhibit that the continuous solution η possesses the same

properties. We achieve this by constructing a sequence of interpolants using ηM and

showing that they converge to η.

Definition 5.4. Let ∆t > 0 and η0 ∈ L2(Ω1) be given. Then, the piecewise constant

and piecewise linear interpolants η∗∆t, η
∗∗
∆t : [0, T ]→ L2(Ω1) are given by

η∗∆t(t) =

 η0, t = 0,

ηk, (k − 1) ∆t < t ≤ k∆t

η∗∗∆t(t) =

(
ηk − ηk−1

∆t

)
(t− (k − 1)∆t) + ηk−1, (k − 1) ∆t ≤ t ≤ k∆t,

for k = 1, . . . ,M . Similarly, we define u∗∆t : [0, T ]→ X by

u∗∆t(t) =

 u(0), t = 0,

u(tk), (k − 1) ∆t < t ≤ k∆t

for k = 1, . . . ,M , where u is the solution found in Theorem 5.3.

Remark 5.10. In view of Definition 5.4 and Lemma 5.13, η∗∗∆t, η
∗
∆t and u∗∆t satisfy
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for all ξ ∈ L2(Ω1) and for all t ∈ (0, T )

(
∂η∗∗∆t
∂t

, ξ

)
Ω1

+
(
g(|u∗∆t|)h(η∗∆t), ξ

)
Ω1

= 0. (5.53)

The following lemma establishes norm estimates that we use to extract weakly

convergent subsequences.

Lemma 5.17. There exists a positive constant C, independent of ∆t, such that:

‖∂η
∗∗
∆t

∂t
‖L2(0,T ;L2(Ω1)) ≤ C, (5.54)

‖η∗∆t‖L∞((0,T )×Ω1), ‖η∗∗∆t‖L∞((0,T )×Ω1) ≤ C, (5.55)

‖η∗∆t − η∗∗∆t‖L2(0,T ;L2(Ω1)) ≤ C
√

∆t, (5.56)

‖η∗∗∆t‖H1(0,T ;L2(Ω1)) ≤ C. (5.57)

Proof. First note that

‖∂η
∗∗
∆t

∂t
‖2
L2(0,T ;L2(Ω1)) =

M∑
k=1

∫ tk

tk−1

‖∂η
∗∗
∆t

∂t
(s)‖2

L2(Ω1) ds

=
M∑
k=1

∫ tk

tk−1

‖ηk − ηk−1

∆t
‖2
L2(Ω1) ds =

1

∆t

M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1). (5.58)

Setting ξ = ηk − ηk−1 in (5.47), we obtain

1

∆t
‖ηk − ηk−1‖L2(Ω1) ≤ ‖g(|uk|)h(ηk)‖L2(Ω1) ≤ |Ω1|1/2 gmax hmax. (5.59)

Thus, squaring (5.59), multiplying by ∆t and summing from k = 1 to k = M , yields

1

∆t

M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1) ≤ |Ω1| g2

max h
2
max T. (5.60)
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Combining (5.58) and (5.60), (5.54) follows. Estimate (5.55) is a direct consequence

of Definition 5.4 and Remark 5.9. Also owing to Definition 5.4 and Lemma 5.14,

‖η∗∆t − η∗∗∆t‖2
L2(0,T ;L2(Ω1)) =

M∑
k=1

∫ k∆t

(k−1) ∆t

‖η∗∆t(t)− η∗∗∆t(t)‖2
L2(Ω1) dt

=
M∑
k=1

‖ηk − ηk−1‖2
L2(Ω1)

∫ k∆t

(k−1) ∆t

(
t− k∆t

∆t

)2

dt ≤ ∆t

3
C,

where C is given by (5.50). Hence (5.56) holds. Finally, (5.57) is a direct consequence

of (5.54) and (5.55).

With the aim of letting ∆t→ 0, we consider the sequence of functions {η∗∗n }∞n=1

and {η∗n}∞n=1, where η∗∗n = η∗∗∆t, η
∗
n = η∗∆t and ∆t = 1/n. The subsequent analysis uses

the concept of weak-∗ convergence.

Definition 5.5. Let U ⊂ Rn be a bounded domain. A sequence {fn}∞n=1 ⊂ L∞(U)

converges weak-∗ to f in L∞(U) if

〈fn, φ〉 → 〈f, φ〉 ∀φ ∈ L1(U).

The next result is a corollary of Lemma 5.17.

Corollary 5.9. Assume η∗n → η1 weak-∗ in L∞((0, T ) × Ω1) and η∗∗n → η2 weak-∗

in L∞((0, T )× Ω1). Then, η1 = η2 almost everywhere.

Proof. Let φ ∈ L2(0, T ;L2(Ω1)) ⊂ L1((0, T )× Ω1). Then,

〈
η1 − η2, φ

〉
=
〈
η1 − η∗n, φ

〉
+ 〈η∗n − η∗∗n , φ〉+

〈
η∗∗n − η2, φ

〉
(5.61)

Taking the limit n → ∞ in (5.61), using the weak-∗ convergence of η∗n, η∗∗n , and
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Cauchy-Schwarz, we obtain

∣∣〈η1 − η2, φ
〉∣∣ ≤ lim

n→∞
‖η∗n − η∗∗n ‖L2(0,T ;L2(Ω1)) ‖φ‖L2(0,T ;L2(Ω1)). (5.62)

Owing to (5.56) and (5.62), it follows that 〈η1 − η2, φ〉 = 0 for all φ ∈ L2(0, T ;L2(Ω1)).

Hence ‖η1 − η2‖L2(0,T ;L2(Ω1)) = 0, implying that η1 = η2 almost everywhere.

We state two lemmas. One relates continuity and weak convergence and the

other describes a continuous embedding.

Lemma 5.18. Let X and Y be normed vector spaces with X ′ and Y ′ its corresponding

duals. Let T : X → Y be a bounded linear operator and let {xn}∞n=1 be a sequence in

X such that xn ⇀ x. Then, T (xn) ⇀ T (x).

Proof. Let y∗ ∈ Y ′. Define the bounded linear functional f ∈ X ′ by f = y∗◦T . Owing

to the fact that xn ⇀ x, it follows that f(xn) → f(x), i.e., y∗(T (xn)) → y∗(T (x)).

Observing that y∗ is arbitrary, the proposition follows.

Lemma 5.19. Let U ⊂ Rn be a domain and assume n < 2m for m ∈ Z+. Then, the

Hilbert space Hm(U) is continuously embedded into C0(U). In particular, H1(0, T ) is

continuously embedded into L∞(0, T ).

Proof. This is a direct consequence of the Sobolev embedding theorem. For a proof,

see Case C of Theorem 5.4 in [1].

We are now in position to show that η∗n and η∗∗n weak-∗ converge to a common

limit.

Lemma 5.20. There exists a subsequence of
{
ηM
}
M≥1

and a function η∗ ∈ L∞((0, T )
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×Ω1), such that

η∗n → η∗ weak-∗ in L∞((0, T )× Ω1), (5.63)

η∗∗n → η∗ weak-∗ in L∞((0, T )× Ω1), (5.64)

η∗∗n → η∗ weakly in H1(0, T ;L2(Ω1)), (5.65)

∂η∗∗n
∂t
→ ∂η∗

∂t
weakly in L2(0, T ;L2(Ω1)). (5.66)

Proof. For the sake of simplicity, all the subsequences that we derive in the analysis are

labeled as the original sequences. In view of (5.55), it follows from the Banach-Alaoglu

theorem the existence of a subsequence of
{
ηM
}

and a function η∗ ∈ L∞((0, T )×Ω1)

such that (5.63) is satisfied. By the same token, there exists a subsequence of η∗∗n

and a function η̃ ∈ L∞((0, T ) × Ω1) such that η∗∗n → η̃ weak-∗ in L∞((0, T ) × Ω1).

From Corollary 5.9 it follows that η̃ = η∗, establishing (5.64). Now observe that

(5.57) and the Banach-Alaoglu theorem yield a further subsequence and a function

η̂ ∈ H1(0, T ;L2(Ω1)), such that

η∗∗n → η̂ weakly in H1(0, T ;L2(Ω1)). (5.67)

From the continuous embedding H1(0, T ) ↪→ L∞(0, T ) (see Lemma 5.19), it follows

that

η∗∗n → η̂ weak-∗ in L∞(0, T ;L2(Ω1)). (5.68)

Moreover, owing to (5.64) and the fact that L∞((0, T )× Ω1) ⊂ L∞(0, T ;L2(Ω1)), we

84



obtain

η∗∗n → η∗ weak-∗ in L∞(0, T ;L2(Ω1)). (5.69)

Thus, in view of (5.68), (5.69) and the uniqueness of weak-∗ limits, it follows that

η̂ = η∗. This establishes (5.65). Finally, in view of Lemma 5.18 and the fact that the

time derivative is a bounded linear operator from H1(0, T ) to L2(0, T ), expression

(5.66) follows from (5.65).

The following lemma gives an error estimate in the L2 norm for a first order

approximation of the time derivative. We use this result in the next proposition,

where we establish that the L2 difference between the continuous function η and its

discrete analog ηk is proportional to ∆t.

Lemma 5.21. Let f ∈ H2(0, T ;L2(Ω)) and let ∆t > 0 be given. Then,

‖∂f
∂t

(tk)−
f(tk)− f(tk−1)

∆t
‖2
L2(Ω) ≤

∆t

3

∫ tk

tk−1

‖∂
2f

∂t2
(s)‖2

L2(Ω) ds,

for (tk−1, tk) ⊂ (0, T ).

Proof. By Taylor’s theorem with the integral form of the remainder, we obtain

f(tk−1) = f(tk)−∆t
∂f

∂t
(tk) +

∫ tk

tk−1

(s− tk−1)
∂2f

∂t2
(s) ds.

Thus,

‖f(tk)− f(tk−1)

∆t
− ∂f

∂t
(tk)‖2 =

1

∆t2

∫
Ω

(∫ tk

tk−1

(s− tk−1)
∂2f

∂t2
(s) ds

)2

dΩ

≤ 1

∆t2

∫
Ω

(∫ tk

tk−1

(s− tk−1)2 ds

∫ tk

tk−1

(
∂2f

∂t2
(s)

)2

ds

)
dΩ. (5.70)
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The result now follows from (5.70) by interchanging the order of integration.

Now we show that the discrete solution ηk introduced in Lemma 5.13 converges

to the continuous one given by Theorem 5.3.

Lemma 5.22. Assume
∂2η

∂t2
∈ L2(0, T ;L2(Ω1)). Let M,n ∈ Z+ and ∆t ∈ R+ be

such that ∆t = T/M = 1/n and ∆t < 1
2
(1 + 2 gmax hLip). Define ek = η(tk) − ηk for

k = 0, . . . ,M , where η(t) is the solution found in Theorem 5.3 and ηk is an element

of ηM (see Definition 5.3). Then,

‖ek‖L2(Ω1) ≤ C1 ∆t, where (5.71)

C2
1 = exp

(
2T (1 + 2 gmax hLip)

)(1

3
‖∂

2η

∂t2
‖2
L2(0,T ;L2(Ω1))

)
,

and

‖η − η∗n‖L2(0,T ;Ω1) ≤ C2 ∆t for C2
2 = 2‖η′‖2

L2(0,T ;Ω1) + 2T C2
1. (5.72)

Proof. From (5.17), we obtain

(
η(tk)− η(tk−1)

∆t
, ξ

)
Ω1

+
(
g(|u(tk)|)h(η(tk)), ξ

)
Ω1

=

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ξ

)
Ω1

(5.73)

Subtracting (5.47) from (5.73), yields

(
ek − ek−1

∆t
, ξ

)
Ω1

+
(
g(|u(tk)|)

(
h(η(tk))− h(ηk)

)
, ξ
)

Ω1

=

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ξ

)
Ω1

. (5.74)
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Setting ξ = ek in (5.74), and using assumptions A1 and A2, we obtain

1

2∆t

(
‖ek‖2

L2(Ω1) − ‖ek−1‖2
L2(Ω1) + ‖ek − ek−1‖2

L2(Ω1)

)
≤ gmax hLip ‖ek‖2

L2(Ω1) +

(
η(tk)− η(tk−1)

∆t
− ∂η

∂t
(tk), ek

)
Ω1

. (5.75)

Applying Young’s inequality and Lemma 5.21 to (5.75), yields

‖ek‖2
L2(Ω1) − ‖ek−1‖2

L2(Ω1) + ‖ek − ek−1‖2
L2(Ω1)

≤ ∆t (1 + 2 gmax hLip) ‖ek‖2
L2(Ω1) +

(∆t)2

3

∫ tk

tk−1

‖∂
2η

∂t2
(s)‖2

L2(Ω1) dt. (5.76)

Let m ∈ Z+, with m ≤ M . Summing (5.76) from k = 1 to k = m, and using a

discrete version of Gronwall’s lemma (see [60] pg. 167), we obtain

‖em‖2
L2(Ω1) +

m∑
k=1

‖ek − ek−1‖2
L2(Ω1)

≤ exp
(

2T (1 + 2 gmax hLip)
)((∆t)2

3
‖∂

2η

∂t2
‖2
L2(0,T ;L2(Ω1))

)
. (5.77)

Statement (5.71) follows from (5.77).

To prove (5.72), recall that η∗n is a piecewise constant interpolant such that η∗n(s) = ηk

for s ∈ ((k − 1)∆t, k∆t]. Hence, owing to (5.71),

∫ T

0

‖η − η∗n‖2
L2(Ω1)(t) dt =

M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− ηk‖2
L2(Ω1) dt

≤ 2
M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− η(tk)‖2
L2(Ω1) + ‖η(tk)− ηk‖2

L2(Ω1) dt

≤ 2
M∑
k=1

∫ k∆t

(k−1)∆t

‖η(t)− η(tk)‖2
L2(Ω1) + C2

1 (∆t)2 dt. (5.78)
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Now note that for t ∈ ((k − 1)∆t, k∆t] and Cauchy-Schwarz

‖η(tk)− η(t)‖2
L2(Ω1) =

∫
Ω1

(∫ tk

t

η′(s) ds

)2

dΩ1

≤
∫

Ω1

(∫ tk

t

(η′(s))
2
ds

∫ tk

t

1 ds

)
dΩ1 ≤ ∆t

∫ tk

tk−1

‖η′‖2
L2(Ω1) ds. (5.79)

Thus, substituting (5.79) in (5.78), we obtain

∫ T

0

‖η − η∗n‖2
L2(Ω1)(t) dt ≤ 2

M∑
k=1

∫ k∆t

(k−1)∆t

(
∆t

∫ tk

tk−1

‖η′(s)‖2
L2(Ω1) ds+ C2

1 (∆t)2

)
dt

= 2(∆t)2

∫ T

0

‖η′(s)‖2
L2(Ω1) ds+ 2T C2

1 (∆t)2

= (∆t)2
(

2‖η′‖2
L2(0,T ;Ω1) + 2T C2

1

)
. (5.80)

Statement (5.72) follows from (5.80).

We now state the main result of this section.

Lemma 5.23. Let assumption A5 hold. Then, η = η∗, where η is the solution found

in Theorem 5.3 and η∗ is the weak limit introduced in Lemma 5.20.

Proof. Remark 5.8 readily yields
∂2η

∂t2
∈ L2(0, T ;L2(Ω1)). Let φ ∈ L2(0, T ; Ω1) ⊂

L1(0, T ; Ω1). Then, owing to Cauchy-Schwarz,

〈η − η∗, φ〉 = 〈η − η∗n, φ〉+ 〈η∗n − η∗, φ〉

≤ ‖η − η∗n‖L2(0,T ;Ω1)‖φ‖L2(0,T ;Ω1) + 〈η∗n − η∗, φ〉 . (5.81)

Hence, in view of the second statement of Lemma 5.22, the weak-∗ convergence of η∗n
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to η∗ (see (5.63)), and the fact that 1/n = ∆t, it follows from (5.81) that

〈η − η∗, φ〉 ≤ lim
n→∞

‖η − η∗n‖L2(0,T ;Ω1)‖φ‖L2(0,T ;Ω1) + lim
n→∞

〈η∗n − η∗, φ〉 = 0. (5.82)

We conclude that η = η∗ almost everywhere in (0, T )× Ω1.

We summarize the results of the last two sections in the next theorem.

Theorem 5.4. Let the assumptions A1-A5 and S1-S2 hold. Let η0 ∈ L2(Ω1) be

given with η0 nonnegative and bounded a.e. in Ω1. Then, there exist unique solutions

u ∈ H1(0, T ; X), p ∈ H1(0, T ;Q), λ ∈ H1(0, T ; Λ) and η ∈ H2(0, T ;L2(Ω1)), that

satisfy the system (5.14)-(5.17) for a.e. t ∈ (0, T ) with η(0) = η0. Moreover, 0 ≤

η(x, t) ≤ η0(x) for a.e. (t,x) ∈ (0, T )× Ω1.

Proof. The proposition is an immediate consequence of Remark 5.8, Theorem 5.3 and

Lemma 5.23. The additional regularity in the time variable for p and λ follows from

the regularity of u and the inf-sup condition given in Lemma 5.4.

The following chapter introduces the finite element approximation of the cou-

pled Stokes-Darcy problem with deposition and explores the convergence properties

of the given numerical scheme though some numerical examples.
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Chapter 6

Approximation of coupled

Stokes-Darcy flow with deposition

6.1 Finite element approximation

In this section we investigate the finite element approximation to:

Given η0 ∈ L2(Ω1) and f ∈ C0(0−, T ;L2(Ω)), find u ∈ L2(0, T ; X), p ∈ L2(0, T ;Q),

λ ∈ L2(0, T ; Λ) and η ∈ H1(0, T ;L2(Ω1)), satisfying η(·, 0) = η0 a.e. in Ω1, and for

a.e. t ∈ (0, T )

a1(η; u,v) + a2(u,v) + b(v, p) + c(v, λ) + d(η; u,v) = `(v) ∀v ∈ X, (6.1)

b(u, q) = 0 ∀q ∈ Q, (6.2)

c(u, ν) = 0 ∀ν ∈ Λ, (6.3)

(
∂η

∂t
, ξ)Ω1 +

(
g(|u|) η, ξ

)
Ω1

= 0 ∀ξ ∈ L2(Ω1). (6.4)

Remark 6.1. Note that with regard to the general modeling equation (5.9), we have

chosen in (6.4) h(η) = η.
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Remark 6.2. With minor modifications, the following discussion can be extended to

include partitions composed of triangles in 2D or tetrahedra in 3D.

Let Ω1,Ω2 ⊂ Rd, d ∈ {2, 3}, denote convex domains where Ω1 denotes the

Darcy or porous domain, and Ω2 denotes the Stokes or fluid domain. Moreover, let

Γ = Ω1 ∩Ω2 ⊂ Rd−1 be the interface that connects them. We decompose Ωi, i = 1, 2,

into either quadrilaterals in 2D or hexahedra in 3D to obtain a partition T ih , where

h is defined below. Hence, the computational domain is Ω = Ω1 ∪ Ω2 ∪ Γ, with

Ωi =
⋃
K∈T i

h
K. We assume that for each partition there exist constants c1, c2 such

that c1h ≤ hK ≤ c2ρK , where hK is the diameter of the cell K, ρK is the diameter of

the largest sphere included in K, and h = maxK∈T i
h
hk. Moreover, we assume that the

partitions match along Γ, i.e., if F is a face on Γ of a cell in the Stokes domain, then

it is also a face of a cell in the Darcy domain. For k ∈ N, K a cell of a triangulation,

and FK : K̂ → K a C1(K̂) mapping from the reference cell (unit square in 2D, unit

cube in 3D) K̂ to the cell K, define the (k + 1)d-dimensional polynomial space

PQk = span{xα1
1 x

α2
2 . . . xαd

d : 0 ≤ α1, α2, . . . , αd ≤ k},

and let Pk(K) = {f : f |K = f̂ ◦ F−1
K , where f̂ ∈ PQk }. Moreover, for F a face of

K, the space Pk(F ) is defined similarly. The notation RTk(T 1
h ) is used the denote

the Raviart-Thomas space of order k on Ω1 [18]. We use the following finite element
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spaces:

X1,h = X1 ∩RTk(T 1
h ), Qi,h =

{
q ∈ L2(Ωi) : q|K ∈ Pk(K), ∀K ∈ T ih

}
,

X2,h = X2 ∩ Pk+1(K)d, Zh = {v ∈ X1,h : (q,∇ · v)Ω1 = 0, ∀q ∈ Q1,h} ,

Xh = X1,h ×X2,h, Q0
i,h = {q ∈ Qi,h : (q, 1)Ωi

= 0} ,

Qh = {(q1, q2) ∈ Q1,h ×Q2,h : (q1, 1)Ω1 + (q2, 1)Ω2 = 0} ,

Λh = {f ∈ Λ : f |F ∈ Pk+1(F ), ∀F ∈ Γ} ,

Rh =
{
r ∈ L2(Ω1) : r|K ∈ Pm(K), ∀K ∈ T 1

h

}
,

Rh,0 =
{
r ∈ L2(Ω1) : r|K ∈ P0(K), ∀K ∈ T 1

h

}
,

Rs
h =

{
r ∈ C0(Ω1) : r|K ∈ Pmax{1,m}(K), ∀K ∈ T 1

h

}
. (6.5)

Notation 6.1. For Fi a face on Γ, let Wh,i be a local partition of Fi, i.e., Fi =

∪S∈Wh,i
S. Note that in 2D, each of the Fi is divided into line segments while in 3D it

is divided into quadrilaterals. The collection of all these partitions is denoted by Wh.

Furthermore, define the space

Λh,0 =
{
f ∈ L2(Γ) : f ∈ P0(S), ∀S ∈ Wh

}
.

Notation 6.2. For U denoting either T 1
h , T 2

h , Γ, or Wh, we define the space of

continuous nodal Lagrange elements

Qk(U) =
{
f ∈ C0(U) : f ∈ Pk(K), ∀K ∈ U

}
,

and the space of discontinuous nodal Lagrange elements

discQk(U) =
{
f ∈ L2(U) : f ∈ Pk(K), ∀K ∈ U

}
.
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We omit the dependency on U whenever it is clear from the context.

Remark 6.3. Note that as ∇·X1,h = Q1,h, for v ∈ Zh we have that ‖∇·v‖L2(Ω1) = 0.

Thus, ‖v‖X1 = ‖v‖L2(Ω1).

For N given, let ∆t = T/N , and tn = n∆t, n = 0, 1, . . . , N . Additionally,

define

dtf
n =

fn − fn−1

∆t
, f

n
=
fn + fn−1

2
, f̃n = fn−1 +

1

2
fn−2 − 1

2
fn−3.

For the a priori error estimates presented in the next section, the solution (u, p, η) to

(6.1)-(6.4) is required to be sufficiently regular. The regularity assumptions are, for

some δ > 0,

u ∈ L∞(0, T ;L∞(Ω)) ∩ L∞(0, T ;Hk+1(Ω)), ut ∈ L∞(0, δ;L2(Ω)),

utt ∈ L2(0, T ;L2(Ω)), p ∈ L∞(0, T ;Hk+1(Ω)),

η ∈ L∞(0, T ;L∞(Ω1)) ∩ L∞(0, T ;Hm+1(Ω1)), ηt ∈ L∞(0, T ;Hm+1(Ω1)),

ηtt ∈ L2(0, T ;L2(Ω1)) ∩ L∞(0, δ;L2(Ω1)), ηttt ∈ L2(0, T ;L2(Ω1)). (6.6)

Throughout, we use C to denote a generic nonnegative constant, independent of the

mesh parameter h and time step ∆t, whose actual value may change from line to line

in the analysis.

Initialization of the approximation scheme

The approximation scheme described and analyzed below is a three-level scheme.

To initialize the procedure suitable approximations are required for u1
h, u2

h and η2
h.

Here we state our assumptions on these initial approximates. (An initialization pro-
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cedure is presented in Appendix A.2)

‖un − unh‖2
X + ‖ηn − ηnh‖2

L2(Ω1) ≤ C(∆t)4 + C
(
h2k+2 + h2m+2

)
for n = 0, 1, 2. (6.7)

Approximation scheme

The approximation scheme we investigate is: Given η0 ∈ Rh, for n = 3, . . . , N ,

determine (unh, p
n
h, λ

n
h, η

n
h) ∈ Xh ×Qh × Λh ×Rh satisfying :

Scheme 6.1.

a1(unh,v) + b(pnh,v) + 〈λnh,v · n1〉 = (fn,v) ∀v ∈ X1,h, (6.8)

b(q,unh) = 0 ∀q ∈ Q1,h, (6.9)

a2(unh,v) + b(pnh,v) + d(unh,v) + 〈λnh,v · n2〉 = (fn,v) ∀v ∈ X2,h, (6.10)

b(q,unh) = 0 ∀q ∈ Q2,h, (6.11)

〈u1 · n1 + u2 · n2, ν〉 = 0 ∀ν ∈ Λh, (6.12)

(dtη
n
h , r) + (g(|ũnh|)ηnh, r) = 0 ∀r ∈ Rh. (6.13)

Now we focus on the computability of Scheme 6.1. First, we prove that the

porosity ηnh can be computed from previous approximations and derive some of its

properties.

Lemma 6.1. Given ηn−1
h , un−3

h , un−2
h and un−1

h , there exists a unique solution ηnh ∈ Rh

satisfying (6.13).

Proof. See Lemma 4.1.
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Nonnegativity of the discrete porosity

In this section we give conditions under which the discrete porosity ηh is non-

negative and bounded above by the initial porosity η0. These results are consistent

with the properties derived for the continuous porosity and mirror the propositions

derived in Section 5.6. The key assumption in this section is that the finite element

space for the discrete porosity is composed of piecewise constant functions, i.e., we

replace Rh in (6.13) with Rh,0.

Lemma 6.2. Let ηn−1
h ∈ Rh,0 be given with ηn−1

h ≥ 0 in Ω1. Furthermore, assume

∆t < 2/gmax. Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 is nonnegative in Ω1.

Proof. Assume there exists K ∈ T 1
h such that ηnh |K < 0. Substituting r = ηnh χK ∈

Rh,0 into (6.13), where χK is the indicator function of the cell K yields

(ηnh , η
n
h)K +

∆t

2
(g(|ũnh|) ηnh , ηnh)K =

(
ηn−1
h

(
1− ∆t

2
g(|ũnh|)

)
, ηnh

)
K

. (6.14)

Owing to the nonnegativity of g( · ), and the nonnegativity of ηn−1
h , it follows that the

left hand side of (6.14) is positive while the right hand side is nonpositive. This is a

contradiction. Hence, no such cell K can exist. We conclude that ηnh is nonnegative

in Ω1.

Lemma 6.3. Let ηn−1
h ∈ Rh,0 be given, with ηn−1

h ≥ 0 in Ω1. Furthermore, assume

∆t < 2/gmax. Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 satisfies ηnh ≤ ηn−1
h

in Ω1. Equivalently, ηnh is monotonically decreasing on n.

Proof. Assume there exists K ∈ T 1
h such that

(
ηnh − ηn−1

h

)∣∣
K
> 0. Substituting

r =
(
ηnh − ηn−1

h

)
χK ∈ Rh,0 into (6.13), we obtain

(
ηnh − ηn−1

h , ηnh − ηn−1
h

)
K

= −∆t

2

(
g(|ũnh|)

(
ηnh + ηn−1

h

)
, ηnh − ηn−1

h

)
K
. (6.15)
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Observe that the left hand side of (6.15) is positive. Moreover, owing to Lemma 6.2,

the nonnegativity of g( · ) and the nonnegativity of ηn−1
h , the right hand side of (6.15)

is nonpositive. This is a contradiction. Thus, no such cell K exists, and ηnh ≤ ηn−1
h

in Ω1.

Corollary 6.1. Let ηn−1
h ∈ Rh,0 be given with 0 ≤ ηn−1

h ≤ η0 in Ω1. Furthermore,

assume ∆t < 2/gmax. Then, the solution ηnh ∈ Rh,0 given in Lemma 6.1 is also

bounded above by η0 in Ω1.

Proof. This is a direct consequence of Lemma 6.3.

Although the porosity ηnh can be computed, the Stokes and Darcy problems

are still coupled through the interfacial pressure λnh. Our objective is to decouple

them in order to take advantage of the robust and efficient solvers that are available

for each individual problem. We achieve the decoupling by treating λ as a given

quantity, and proceed to demonstrate that we can systematically compute a sequence

of approximations {λk}∞k=1 ⊂ Λh, such that (6.12) is satisfied. In the discussion that

follows we assume that ηh is known.

6.2 Decoupling the problems

Let λ ∈ Λh and f ∈ X′ be given. We introduce the following problems.

Problem 6.1. Find (u1,h, p1,h) ∈ X1,h ×Q0
1,h satisfying

a1(ηh; u1,h,v1) + b(p1,h,v1) = (f ,v1)− 〈λ,v1 · n1〉 ∀v1 ∈ X1,h,

b(q1,u1,h) = 0 ∀q1 ∈ Q1,h,
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Problem 6.2. Find (u2,h, p2,h) ∈ X2,h ×Q0
2,h satisfying

a2(u2,h,v2) + b(p2,h,v2) + d(ηh; u2,h,v2) = (f ,v2)− 〈λ,v2 · n2〉 ∀v2 ∈ X2,h,

b(q2,u2,h) = 0 ∀q2 ∈ Q2,h.

Remark 6.4. Let v1 ∈ Hdiv(Ω1). Then, v1 · n1 ∈ H−1/2(∂Ω1) and

‖v1 · n1‖H−1/2(∂Ω1) ≤ C ‖v1‖Hdiv(Ω1),

for some positive constant C = C(Ω1). However, for λ ∈ Λ = H1/2(Γ), the duality

pairing 〈λ,v1 · n1〉Γ is in general not well-defined. Let E
1/2
Γ : H1/2(Γ) → H1/2(∂Ω1)

be the operator defined in Lemma 2.1 of [45]. Then,

〈λ,v1 · n1〉Γ =
〈
E

1/2
Γ λ,v1 · n1

〉
∂Ω1

≤ ‖E1/2
Γ λ‖H1/2(∂Ω1) ‖v1 · n1‖H−1/2(∂Ω1)

≤ C ‖λ‖H1/2(Γ) ‖v1‖Hdiv(Ω1) = C ‖λ‖Λ ‖v1‖Hdiv(Ω1).

The next lemma provides a norm estimate for ui,h, i = 1, 2.

Lemma 6.4. There exists a positive constant C such that

‖ui,h‖Xi
≤ C (‖f‖+ ‖λ‖Λ) , and 〈λ,ui,h · ni〉 ≤ C ‖λ‖Λ ‖ui,h‖Xi

i = 1, 2.

Proof. Owing to the coercivity of a1(ηh, · , · ) and a2( · , · ), we set (vi, qi) in Problem

6.1 and Problem 6.2 to (ui,h, pi,h) and obtain

Ci ‖ui,h‖2
Xi
≤ ‖f‖ ‖ui,h‖Xi

+ |〈λ,ui,h · ni〉| i = 1, 2, (6.16)
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where C1 = βmin and C2 = 1. From Remark 6.4, we obtain

〈λ,u1,h · n1〉Γ ≤ C ‖λ‖Λ ‖u1,h‖X1 , (6.17)

and owing to the trace theorem (see Theorem 5.1)

〈λ,u2,h · n2〉Γ ≤ ‖λ‖L2(Γ) ‖u2,h · n2‖L2(Γ) ≤ CT ‖λ‖Λ ‖u2,h‖X2 . (6.18)

Hence, from (6.16), (6.17) and (6.18), the result follows.

Corollary 6.2. Let λ ∈ Λ be given. The operators `i : Xi → R, given by

`i(v) = (f ,v)− 〈λ,v · ni〉 i = 1, 2,

are bounded linear functionals.

Proof. The result is a direct consequence of Cauchy-Schwarz, (6.17) and (6.18).

Remark 6.5. The well-posedness of Problem 6.1 and Problem 6.2 follows from the

theory of saddle-point problems, Corollary 6.2 and the inf-sup condition for the spaces

Xi,h ×Qi,h, i = 1, 2 (see [18]).

In view of Remark 6.5, let (u1,h, p1,h) ∈ X1,h ×Q0
1,h be the unique solution to

Problem 6.1 and (u2,h, p2,h) ∈ X2,h ×Q0
2,h be the unique solution to Problem 6.2.

Notation 6.3. We denote by ui,h(λ, f) and pi,h(λ, f), i = 1, 2, the dependency of the

velocity and pressure on the interfacial pressure λ and the forcing term f .

Remark 6.6. Note that, in general, ph = (p1,h, p2,h) ∈ Q1,h × Q2,h is not in Qh.

However, one can enforce this by adding the appropriate constant.
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Now we define a few operators that allow us to translate condition (6.12) into

a minimization problem.

Definition 6.1. The operator G : Λh → Λh,0 × Λh is given by

G(λ) =

 ρ (u1,h(λ, f); u2,h(λ, f))

δλ

 ,

where ρ : X1 ×X2 × Γ→ R, is a piecewise constant function given by

ρ (u1,h(λ, f); u2,h(λ, f)) (x) =
∑
S∈Wh

χS(x)

|S|

∫
S

u1,h(λ, f) · n1 + u2,h(λ, f) · n2 dΓ, (6.19)

χS is the indicator function of the set S, and δ ∈ (0, 1) is a penalization parameter.

The concept of differentiation for operators is also required in the subsequent

analysis.

Definition 6.2. Let X, Y be convex topological vector spaces. Let A : X → Y and

U ⊂ X be open. Then, the Gâteaux differential dA(x; ν) of A at x ∈ U in the direction

of ν ∈ X is defined as:

dA(x; ν) = lim
ε→0

1

ε
(A(x+ εν)− A(x)) .

Note that dA(x; · ) : X → Y .

Equipped with Definition 6.2, we compute the Gâteaux differential of G.

Lemma 6.5. Let λ, ν ∈ Λh. Then, the Gâteaux differential of G at λ, dG(λ; · ) :
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Λh → Λh,0 × Λh, in the direction of ν is given by

dG(λ; ν) =

 ρ (u1,h(ν,0); u2,h(ν,0))

δν

 .

Proof. Owing to the bilinearity of a1(ηh, · , · ), a2( · , · ), b( · , · ) and d(ηh, · , · ), and

the definition of Problem 6.1 and Problem 6.2, it follows that

(ui,h(λ+ εν, f)− ui,h(λ, f)) /ε = ui,h(ν,0) for i = 1, 2. (6.20)

Hence, in view of (6.19) and (6.20), we obtain

(
ρ (u1,h(λ+ εν, f); u2,h(λ+ εν, f))− ρ (u1,h(λ, f); u2,h(λ, f))

)
/ε

= ρ (u1,h(ν,0); u2,h(ν,0)) . (6.21)

Finally, owing to (6.21) and Definition 6.2, the proposition follows.

We proceed to introduce the adjoint of G.

Lemma 6.6. Let γ ∈ Λh,0. Define u1,h(γ) ∈ X1,h, p1,h(γ) ∈ Q0
1,h to be the velocity

and pressure obtained by solving the problem

a1(ηh; u1,h,v1) + b(p1,h,v1) = 〈γ, ρ (v1,0)〉 ∀v1 ∈ X1,h, (6.22)

b(q1, u1,h) = 0 ∀q1 ∈ Q1,h.

Similarly, define u2,h(γ) ∈ X2,h, p2,h(γ) ∈ Q0
2,h to be the velocity and pressure obtained
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by solving the problem

a2(u2,h,v2) + b(p2,h,v2) + d(ηh; u2,h,v2) = 〈γ, ρ (0,v2)〉 ∀v2 ∈ X2,h, (6.23)

b(q2, u2,h) = 0 ∀q2 ∈ Q2,h.

Then, the adjoint of dG(λ; · ), dG∗(λ; · , · ) : Λh,0 × Λh → Λh, is given by

dG∗(λ; γ, ν) = − (u1,h(γ) · n1 + u2,h(γ) · n2)|Γ + δ ν.

Proof. Let i = 1, 2. First recall that the pair (ui,h(ν,0), pi,h(ν,0)) solves Problem 6.1

and Problem 6.2 with f = 0 and λ replaced by ν. Set the corresponding test func-

tions (vi, qi) in Problem 6.1 and Problem 6.2 to (ui,h(γ), pi,h(γ)). Add the resulting

equations from Problem 6.1 and Problem 6.2. Similarly, set the test functions (vi, qi)

in systems (6.22) and (6.23) to (ui,h(ν,0), pi,h(ν,0)), and add the resulting equations.

Hence, the left hand sides from both expressions are equal and we obtain

−〈ν, u1,h(γ) · n1 + u2,h(γ) · n2〉 =
〈
γ, ρ
(
u1,h(ν,0); u2,h(ν,0)

)〉
. (6.24)

Let ξ ∈ Λh. Now observe that owing to (6.24)

dG(λ; ν),

 γ

ξ


 =

〈
γ, ρ
(
u1,h(ν,0); u2,h(ν,0)

)〉
+ δ 〈ν, ξ〉

= −〈ν, u1,h(γ) · n1 + u2,h(γ) · n2〉+ δ 〈ν, ξ〉

= (ν, dG∗(λ; γ, ξ)) .

This concludes the proof.
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Next we show that dG(λ; · ) has closed range. The importance of this property

lies in that fact that it allows us to define a least squares solution.

Theorem 6.1. dG(λ; · ) has closed range.

Proof. Let
{
fk
}∞
k=1
⊂ Range (dG(λ; · )) with fk → f in Λh,0 × Λh. Thus, for every

fk, there exists νk ∈ Λh such that

fk =

 ρ
(
u1,h(ν

k,0); u2,h(ν
k,0)

)
δνk

 .

Owing to the fact that fk → f , it follows that there exists ν ∈ Λh such that νk → ν

in Λh. Now note that due to the linearity of ui,h( · ,0),

(
ui,h(ν,0)− ui,h(ν

k,0)
)

= ui,h(ν − νk,0) for i = 1, 2. (6.25)

Hence, in view of (6.19) and (6.25),

ρ (u1,h(ν,0); u2,h(ν,0))− ρ
(
u1,h(ν

k,0); u2,h(ν
k,0)

)
= ρ

(
u1,h(ν − νk,0); u2,h(ν − νk,0)

)
. (6.26)

Now observe that for i = 1, 2, Lemma 6.4 yields

(∫
Γ

ui,h(ν − νk,0) · ni dΓ

)2

=
〈
1,ui,h(ν − νk,0) · ni

〉2

≤ C |Γ| ‖ui,h(ν − νk,0)‖2
Xi
≤ C |Γ| ‖ν − νk‖2

Λ
k→∞−−−→ 0. (6.27)
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Thus, owing to (6.19), (6.26), and (6.27)

ρ
(
u1,h(ν

k,0); u2,h(ν
k,0)

)
→ ρ (u1,h(ν,0); u2,h(ν,0)) in Λh,0.

Consequently,

f =

 ρ (u1,h(ν,0); u2,h(ν,0))

δν

 ,

and f ∈ Range (dG(λ; · )). We conclude that dG(λ; · ) has closed range.

Now we introduce the concept of a least squares solution.

Definition 6.3. Let A : X → Y be a linear bounded operator between Hilbert spaces

with closed range. Let A∗ denote the adjoint of A and let P be the orthogonal projec-

tion operator onto the range of A. We say that x is a least squares solution to the

equation Ax = f if Ax = Pf .

The next lemma justifies the name least squares and makes the connection to

the normal equation.

Lemma 6.7 (See [48] pg. 39). The following statements are equivalent.

1. x is a least squares solution to Ax = f

2. ‖Ax− f‖Y ≤ ‖Aw − f‖Y ∀w ∈ X

3. A∗Ax = A∗f

Proof.
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(1→ 2) Note that since Ax = Pf , it follows that (Ax− f) ⊥ Range(A). Hence, writing

Aw−f = (Aw−Ax)+(Ax−f), and using the Pythagorean theorem, we obtain

‖Aw − f‖2
Y = ‖Aw − Ax‖2

Y + ‖Ax− f‖2
Y

= ‖Aw − Ax‖2
Y + ‖Pf − f‖2

Y .

Thus, setting w = x minimizes ‖Aw − f‖2
Y .

(2→ 3) Let w ∈ X be such that Aw = Pf . Then, writing Ax−f = (Ax−Pf)+(Pf−f),

and using the Pythagorean theorem, yields

‖Ax− f‖2
Y = ‖Ax− Pf‖2

Y + ‖Pf − f‖2
Y

= ‖Ax− Pf‖2
Y + ‖Aw − f‖2

Y

≥ ‖Ax− Pf‖2
Y + ‖Ax− f‖2

Y ,

which implies that Ax = Pf . In particular Ax − f ∈ Range(A)⊥ = ker(A∗).

Hence, A∗(Ax− f) = 0, which leads to A∗Ax = A∗f .

(3→ 1) From A∗Ax = A∗f , it follows that Ax − f ∈ ker(A∗) = Range(A)⊥. Thus,

P (Ax− f) = 0, implying Ax = Pf .

Now we consider the following minimization problem

min
λ∈Λh

‖G(λ)‖2
L2(Γ)×Λ, (6.28)

which intends to enforce the flux condition (6.12). In order to solve (6.28), we let λ0

be an initial guess for the optimal interfacial pressure and find a correction function
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ν∗, such that

‖G(λ0) + dG(λ0; ν∗)‖2
L2(Γ)×Λ = min

ν∈Λh

‖G(λ0) + dG(λ0; ν)‖2
L2(Γ)×Λ

= min
ν∈Λh

‖dG(λ0; ν)−
(
−G(λ0)

)
‖2
L2(Γ)×Λ. (6.29)

We solve (6.29) by means of the normal equation: Find ν ∈ Λh satisfying

dG∗
(
λ0; dG(λ0; ν)

)
= −dG∗

(
λ0;G(λ0)

)
. (6.30)

Remark 6.7. In view of Theorem 6.1, Definition 6.3, and Lemma 6.7, it follows that

(6.30) is well-posed.

The standard algorithm to approximate (6.30) is the conjugate gradient for

the least squares problem.
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Algorithm 6.1 Conjugate gradient for the least squares problem

1: r ← b− Ax0

2: s← A∗r

3: p← s

4: c← ‖s‖2

5: while ‖b− Ax‖ > ε and
√
c > ε do

6: q ← Ap

7: σ ← c/ |q|2

8: x← x+ σp

9: r ← r − σq

10: s← A∗r

11: c′ ← ‖s‖2

12: τ ← c′/c

13: c← c′

14: p← s+ τp

15: end while

Now we state the algorithm we use to solve (6.30).

Algorithm 6.2 Solve the normal equation (6.30)

1: Choose λ0, ν0 ∈ Λh

2: A := dG(λ0; · )

3: b← −G (λ0)

4: x0 ← ν0

5: Use Algorithm 6.1 to solve A∗Ax = A∗b

6: λ← λ0 + x (interfacial pressure)

We summarize the results of this section describing a typical iteration of
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Scheme 6.1.

Algorithm 6.3 One iteration of Scheme 6.1

Stokes

Darcy

λ

un

ηn CG-LSQ

ũ

1. Use the previously computed approximations un−3
h , un−2

h , and un−1
h to obtain

ũnh.

2. Use ũnh and ηn−1
h to compute the porosity ηnh .

3. Smooth ηnh to obtain ηn,sh .

4. Use ηn,sh and Algorithm 6.2 to obtain λnh.

5. Compute uni,h(λ
n
h) and pni,h(λ

n
h).

We conclude this section stating an a priori error estimate for Scheme 6.1.

Conjecture 6.1. Let (u, p, η) satisfy (6.1)-(6.6), and (unh, p
n
h, η

n
h) satisfy Scheme 6.1.

Furthermore, assume CS(ηnh ) given in (4.12) is bounded by CS‖ηn‖m+1. Then, for

∆t sufficiently small there exists C > 0 independent of h and ∆t, such that for

n = 1, 2, . . . , N ,

‖un − unh‖X + ‖pn − pnh‖+ ‖ηn − ηnh‖ ≤ C
(
(∆t)2 + hk+1 + hm+1

)
. (6.31)

In particular, for k = m = 1, we obtain second order convergence in space and time.

Remark 6.8. The proposition given in Conjecture 6.1 is not stated as a theorem in

view that we can not guarantee the convergence of Algorithm 6.3 for every time-step.
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Furthermore, the error analysis for the Darcy problem with deposition included in

Appendix A.1 applies only to the bilinear form a1(η, · , · ) and not the general form

a(η, · , · ) defined in (5.19).

In the next section we explore the convergence properties of Scheme 6.1.

6.3 Numerical experiments

In this section we verify that the convergence properties of Scheme 6.1 are

consistent with Conjecture 6.1.

Experiment 6.1 Consider the physical parameters

β(η) = η2 + 0.1, Ψ(η) = 1, µ = 1/2, g(|u|) = |u|2 + 1, (6.32)

and let Ω1 = (0, 1) × (0, 1), Ω2 = (0, 1) × (1, 2) and Γ = (0, 1) × {1}. We partition

Ωi into square cells. On Ω2 we use the Taylor-Hood element pair, i.e., Q2 elements

for the velocity and Q1 elements for the pressure. On Ω1 we use the Raviart-Thomas

element of degree 1, RT1 for the velocity and discQ1 elements for the pressure. The

interfacial pressure λ is approximated on Γ using Q2 elements and the porosity η is

approximated using discQ1 elements.

Remark 6.9. To compute ρ( · , · ) (see Definition 6.1 and Notation 6.1), every face

Fi on the interface Γ is uniformly refined twice so that |Wh,i| = 16.

The boundary conditions for the Darcy problem are imposed weakly, i.e.,

through the weak form, while the boundary conditions for the Stokes problem are

imposed strongly, i.e., by setting the degrees of freedom corresponding to the equa-
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tion

u = g on ∂Ω2 \ Γ,

where g is a given function. We consider successively finer meshes Th and smaller

time-steps ∆t, ∆t ∝ h, and compute the error between the exact solution

η = 0.8− δ π2 t2 sin (πx) sin (πy)− 1

2
t2 sin (πx) sin (πy) ,

u1 =
(
−x(sin(y) exp(1) + 2(y − 1)),− cos(y) exp(1) + (y − 1)2

)T
cos(t),

p1 =
(
− sin(y) exp(1) + cos(x) exp(y) + y2 − 2y + 1

)
cos(t),

u2 =
(
(y − 1)2x3,− exp(1) cos(y)

)T
cos(t),

p2 =
(
cos(x) exp(y) + y22y + 1

)
cos(t),

and the numerical approximations under different discrete norms for a time horizon

T = 0.5. The smoothed porosity is approximated using Q1 elements by solving the

boundary value problem: Find ηsh ∈ Rs
h satisfying

(δ∇ηsh,∇ϕ) + (ηsh, ϕ) = (ηh, ϕ) ∀ϕ ∈ Rs
h,

ηsh = ηh on ∂Ω1, (6.33)

where δ = 0.05. The corresponding exact smoothed porosity is

ηs(x, t) = 0.8− 1

2
t2 sin (πx) sin (πy) .

For ‖ · ‖U a norm on some generic space U and fnh a generic numerical approximation
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to f(tn), n = 0, . . . , N , the discrete norm under consideration is defined as follows,

|||f − fh|||L2(0,T ;U) =

(
N∑
k=0

‖f(tk)− fkh‖2
U ∆t

)1/2

.

Moreover, for h1 and h2 two different mesh parameters, the numerical convergence

rates are computed using the formula

log

(
|||f − fh1|||L2(0,T ;U)

|||f − fh2|||L2(0,T ;U)

)
/ log

(
h1

h2

)
.

The results are summarized in Table 6.1. A graphical depiction of Table 6.1 can be

found in Figure 6.1. Note that the numerical convergence rates are in agreement with

Conjecture 6.1.

Experiment 6.2 For this experiment we validate our numerical implementation

in 3D. In view that Experiment 6.1 supports the correctness of the time-stepping

scheme and the spatial discretization in 2D, it remains to verify the implementation

of the spatial discretization in 3D. Let Ω1 = (0, 1) × (0, 1) × (0, 1) , Ω2 = (0, 1) ×

(0, 1)× (1, 2) and Γ = (0, 1)× (0, 1)×{1}. We consider the same finite element spaces

of Experiment 6.1 and the spatial parameters given in (6.32). The domains Ωi are
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Table 6.1: Numerical results for Experiment 6.1.

Stokes domain
h ∆t |||u− uh|||L2(0,T ;H1(Ω2)) Rate |||p− ph|||L2(0,T ;L2(Ω2)) Rate

0.354 5.00 · 10−2 6.38 · 10−3 − 1.23 · 10−2 −
0.177 2.50 · 10−2 1.54 · 10−3 2.05 3.00 · 10−3 2.03
0.088 1.25 · 10−2 3.78 · 10−4 2.02 7.42 · 10−4 2.01
0.044 6.25 · 10−3 9.37 · 10−5 2.01 1.85 · 10−4 2.00
0.022 3.13 · 10−3 2.33 · 10−5 2.01 4.62 · 10−5 2.00

Expected rate 2 2

Darcy domain
h ∆t |||u− uh|||L2(0,T ;Hdiv(Ω1)) Rate |||p− ph|||L2(0,T ;L2(Ω1)) Rate

0.354 5.00 · 10−2 8.67 · 10−2 − 8.55 · 10−3 −
0.177 2.50 · 10−2 2.60 · 10−2 1.74 2.11 · 10−3 2.02
0.088 1.25 · 10−2 7.27 · 10−3 1.84 5.28 · 10−4 2.00
0.044 6.25 · 10−3 1.97 · 10−3 1.88 1.33 · 10−4 1.99
0.022 3.13 · 10−3 5.19 · 10−4 1.93 3.34 · 10−5 1.99

Expected rate 2 2

Porosity Divergence in Ω1

h ∆t |||η − ηh|||L2(0,T ;L2(Ω1)) Rate |||∇ · uh|||L2(0,T ;L2(Ω1))

0.354 5.00 · 10−2 1.68 · 10−2 − 2.01 · 10−11

0.177 2.50 · 10−2 5.64 · 10−3 1.58 4.57 · 10−11

0.088 1.25 · 10−2 1.66 · 10−3 1.77 1.40 · 10−10

0.044 6.25 · 10−3 4.56 · 10−4 1.86 3.83 · 10−10

0.022 3.13 · 10−3 1.20 · 10−4 1.92 1.09 · 10−9

Expected rate 2
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Figure 6.1: Convergence rates for Experiment 6.1. For vector arguments, the norm
||| · |||D corresponds to the discrete L2(0, T ; Hdiv(Ω1)) norm. For scalar inputs the
norm ||| · |||D is the discrete L2(0, T ;L2(Ω1)) norm. Similarly, the norm ||| · |||S is the
L2(0, T ;H1(Ω2)) for vector arguments and the L2(0, T ;L2(Ω2)) for scalar inputs.
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partitioned into hexahedra. To compute the convergence rates we use

ηs = 0.8− cos(y) exp(x) sin(z),

u1 =


−x(sin(y) exp(z) + 2(y − 1))

y2 − 2yz − cos(y) exp(z) + exp(x)

− exp(y)x+ (z − 1)2

 ,

p1 = (y − 1)2 + exp(y) cos(x)− exp(z) sin(y),

u2 =


exp(2z) cos(y) sin(x)− 0.5 exp(y)z − 0.25 exp(y)

−0.5 exp(y)xz − 0.25 exp(y)x+ cos(x) exp(y + 2z)

exp(y)xz

 ,

p2 = exp(y)z cos(x)− exp(y)x+ (y − 1)2 − exp(1) sin(y).

Analogous to Experiment 6.1, for ‖·‖U a norm on the generic space U , and h1, h2 two

different mesh parameters, the numerical convergence rate is given by the formula

log

(‖f − fh1‖U
‖f − fh2‖U

)
/ log

(
h1

h2

)
.

The results are summarized in Table 6.2. Observe that the numerical convergence

rates are in agreement with the theory.

In the next chapter, we explore an optimization application related to the Stokes-

Darcy problem. For the remainder of this document we refer to the numerical ap-

proximations obtained from Scheme 6.1 as solutions to the Stokes-Darcy problem

with deposition.
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Table 6.2: Numerical results for Experiment 6.2.

Stokes domain
h ‖u− uh‖H1(Ω2) Rate ‖u− uh‖L2(Ω2) Rate ‖p− ph‖L2(Ω2) Rate

0.433 8.00 · 10−1 − 3.09 · 10−2 − 3.94 · 10−2 −
0.217 2.02 · 10−1 1.99 3.89 · 10−3 2.99 4.07 · 10−3 3.27
0.108 5.06 · 10−2 2.00 4.88 · 10−4 3.00 7.97 · 10−4 2.35

Expected rate 2 2

Darcy domain
h ‖u− uh‖Hdiv(Ω1) Rate ‖p− ph‖L2(Ω1) Rate ‖∇ · u‖L2(Ω1)

0.433 1.65 · 10−2 − 1.51 · 10−2 − 1.63 · 10−10

0.217 3.94 · 10−3 2.07 2.82 · 10−3 2.42 3.67 · 10−10

0.108 9.68 · 10−4 2.03 6.85 · 10−4 2.04 1.39 · 10−9

Expected rate 2 2
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Chapter 7

An optimization application for the

Stokes-Darcy problem

7.1 Introduction

When designing a filter one typically is interested in maximizing the lifetime

of the filtration unit, maximizing the amount of material that is captured throughout

its operation, and minimizing the cost incurred in its construction. To approach this

problem, one option is to develop a mathematical model for the filtration process and

optimize over design parameters such as the geometry of the filter and the physical

properties of the filtration material. One example in this direction is [42], where fil-

tration in a polymer fiber melt-spinning process is considered. Therein, the authors

relate the filter lifetime to the maximum allowable pressure drop across the filter and

optimize two competing criteria: (i) the filter lifetime, and (ii) the amount of debris

that escapes the filter. The optimization involves sorting the outputs of an extrusion

filter simulator by means of a genetic algorithm. Another example that considers the

same filtration setting is [43], where the authors replace the multicriteria objective
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with a single functional which incorporates the additional constraint that the amount

of escaped debris can not exceed a threshold value. In this chapter we follow some of

the ideas discussed in [42].

Building upon the model and the numerical approximation for the filtration problem,

we investigate an optimization application of the Stokes-Darcy problem with deposi-

tion (SDD). We consider five numerical experiments. Experiment 7.3 motivates the

optimization problem that is defined in Section 7.2. Experiment 7.4 optimizes over

a family of linear porosity profiles, while Experiment 7.5 optimizes over a family of

parabolic porosity profiles. The remaining two experiments are the 3D analogs of

Experiment 7.4, and Experiment 7.5.

Experiment 7.3 Let Ω1 = (0, 1) × (0, 1) denote the Darcy domain, Ω2 =

(0, 1)× (1, 2) denote the Stokes domain, and Γ = (0, 1)×{1} their common interface.

Furthermore, define the inflow boundary Γin = (0, 1) × {2}, the outflow boundary

Γout = (0, 1)×{0}, the Darcy boundary Γ1 = ∂Ω1 \ (Γ∪Γout), and the Stokes bound-

ary Γ2 = ∂Ω2 \ (Γ∪Γin). A graphical depiction of the computational domain is given

in Figure 7.1. We partition Ωi into 256 square cells and use the RT1× discQ1 pair in

Ω1, and the Taylor-Hood element pair (Q2)2×Q1 in Ω2. The porosity is approximated

using discQ0 elements, and the smooth porosity is computed with the differential fil-

ter (6.33) using Q1 elements and δ = 10−8. The interfacial pressure is approximated

with Q2 elements and the function ρ( · , · ) (see (6.19)) is computed using piecewise

constant elements. The physical parameters are given by:

β(η) = Cβ
(1− η)2

η3
, Ψ(η) = 1, µ = 1/2, g(|u|) = |u| . (7.1)

In (7.1), the expression for β( · ) arises from the well-known Kozeny-Carman equation
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Figure 7.1: Computational domain for Experiment 7.3.

[75], applicable for laminar flow through a bed packed with spherical particles. The

constant Cβ typically depends upon the viscosity of the fluid and the mean diameter

of the particles in the porous media. In Section 3.2 we discussed that a typical profile

for g( · ) is a unimodal function. However, since we are interested in slow to moderate

flows where the values of g(|u|) lie to the left of the maximum of g( · ), the function

g( · ) is suitably approximated by g(|u|) = |u|. In this experiment we assume that

Cβ = 1 and the viscosity in the fluid (Stokes) domain is µ = 0.5. For the initial

porosity profile, we consider a vertical channel in the porous medium given by

channel(y) = 0.5 + 0.35 sin (2π y) ,

and assume the porosity attains a maximum ηmax = 0.9 along the channel and de-

creases at an exponential rate τ = 7.5, proportional to the horizontal distance to

the channel. We further assume the minimum porosity is given by ηmin = 0.5. The
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expression for η0 satisfying the aforementioned characteristics is

η0(x, y) = ηmin + (ηmax − ηmin) exp (−τ |channel(y)− x|) .

We set zero flux boundary conditions on Γ1 and homogeneous Dirichlet boundary

conditions on Γ2. On the inflow boundary Γin we impose the parabolic profile uin =

(0, 4x(x − 1))T , and enforce weakly the condition p = 0 on the outflow boundary

Γout. With T = 20 and ∆t = 0.045, we study the evolution of the porosity η(x, t), the

maximum pressure at the inflow, pin(t) = ‖p(t)‖L∞(Γin), and the amount of particulate

that was retained by the filter for an operation time of t units, ω(t). The function

ω( · ) : R+ ∪ {0} → R is given by

ω(t) =

∫
Ω1

(η0(x, t)− η(x))ρparticulate dΩ1,

where we have chosen the density of the particulate in the porous (Darcy) domain to

be ρparticulate = 1. Physically, we expect to observe two different phenomena. First,

as time progresses, the regions of high porosity, e.g., the channel, should fill with the

particulate that is dispersed in the fluid, thereby decreasing the overall porosity of the

medium. Second, in view that the volumetric flow rate and density are constant, the

pressure required to push the fluid through the filter should increase as the porosity

decreases. The first phenomenon is simply the process of filtration. In particular, it is

often important to quantify the mass of captured particulate in order to compute the

filtration efficiency. The second phenomenon is relevant in industry for the following

reasons. High pressure demands on the pump typically imply high requirements of

energy and consequently an increase in the cost of operation. Furthermore, under

high pressures, the filtration medium, e.g., a porous membrane, can be subjected to
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Figure 7.2: Initial profile of the smoothed porosity in Experiment 7.3. The arrows
indicate the direction of the flow in the porous domain Ω1.

pin(0) pin(20) ω(20) max
(x,t)∈Ω1×[0,20]

|u1(x, t)|
4.98 8.8× 104 0.564 3.924

Table 7.1: Results for Experiment 7.3.

considerable levels of stress. These mechanical forces can lead to deformation, tearing,

or irreversible damage of the equipment.

The results are summarized in Table 7.1, Figure 7.2, Figure 7.3, and Figure 7.4.

Note that the pressure at the inflow Γin increased by four orders of magnitude with

respect to the original value in a time period of T = 20 units. Furthermore, Figure

7.4 depicts how the porosity in Ω1 diminished due to the deposition of material.

In particular, 0.564 units of mass were captured during the filtration process. In

summary, Experiment 7.3 shows that for a given porosity profile η0 and time horizon

T , we can compute the maximum pressure at the inflow of the filtration unit Ω and
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Figure 7.3: Temporal evolution of the pressure along the inflow boundary in Experi-
ment 7.3.

the total amount of material captured by the filter. In the next section we investigate

the effect of varying the initial porosity profile η0 on the values of pin and ω(T ).

7.2 Optimization problem

Having in mind the setting discussed in Section 7.1, we introduce the functions

we aim to optimize. One relates the lifetime of the filter to the pressure at the inflow,

and the other describes the amount of material captured during the lifetime of the

filter.

Definition 7.1. Let η0 be a given initial porosity profile for the SDD problem. Then,

T (η0) is the first time when the pressure at the inflow attains the maximum allowed

value pmax = 2000, i.e., T (η0) = min {t ∈ (0,∞) | pin(t) ≥ pmax}. Furthermore, let

ω(η0) represent the mass of captured material during the lifetime of the filter, i.e.,

ω(η0) = ω(T (η0)).
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Figure 7.4: Comparison of the temporal evolution of the minimum of the porosity
in Experiment 7.3 using discQ1 and discQ0 elements. The function θ is given by
θ(t) = max {z(t),−0.25 sign(z(t))}, where z(t) = minx∈Ω1 {ηh(x, t)}. Note that, in
agreement with Lemma 6.2, the porosity remains nonnegative for ηh ∈ Rh,0. In the
case where ηh ∈ discQ1, the porosity becomes negative at t = 8.505. The negative
values are in the order of 10−5.
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Now we state the optimization problem and define the concept of optimality.

Problem 7.1. Define X = {η0 ∈ L∞(Ω1) | 0 < η0(x) < 1 for a.e. x ∈ Ω1}. Let X ⊆

X , denote the space of all feasible porosity profiles. The optimization problem we

consider is: max
η0∈X

f(η0), where f = (f1, f2) : X → R2, and f1(η) := T (η), f2(η) :=

ω(η).

Definition 7.2 (Pareto optimality). We say that η∗ ∈ X is efficient or Pareto optimal

for Problem 7.1 if there is no η′ ∈ X such that fi(η
′) ≥ fi(η

∗) for i = 1, 2, and

fi(η
′) > fi(η

∗) for some i. In the case where such an η′ exists, we say that η∗ is

dominated by η′.

Note that Definition 7.2 allows the possibility of multiple optima. Also observe

that the dimension of the space X is infinite. Thus, in order to simplify the problem,

we make X finite dimensional by restricting the possible initial porosity profiles to a

one parameter family. This idea is explored in the following numerical experiments.

We consider linear and parabolic profiles. We start exploring the 2D setting and

subsequently follow with the 3D case.

2D setting

For the numerical experiments in this section we use the same spatial dis-

cretization as for Experiment 7.3 and set ∆t = 0.001.

Experiment 7.4 Let ηmax = 0.9 and ηmin = 0.1. Consider the set of porosity

profiles given by

X 2D
1 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y) = (b(τ)− a(τ)) y + a(τ)} ,

a(τ) = (ηmax − ηmin) τ + ηmin, b(τ) = (ηmin − ηmax) τ + ηmax. (7.2)
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Figure 7.5: Porosity profiles in Experiment 7.4 (2D).

τ T ω(T ) Type
0.00 2.062 0.37567 Affine
0.24 2.840 0.42564 Affine
0.50 3.026 0.43389 Constant
0.74 2.863 0.42599 Affine
1.00 2.063 0.37363 Affine

Table 7.2: Results for Experiment 7.4.

Observe that an arbitrary element of X 2D
1 is a linear porosity profile in the y-direction.

For example, for τ = 0, we have a uniform gradient where the maximum porosity

ηmax occurs at the top {y = 1} and the minimum porosity ηmin occurs at the bottom

{y = 0}. The opposite situation arises for τ = 1. Finally, τ = 1/2 results in a constant

porosity profile η ≡ (ηmax + ηmin)/2. These observations are depicted in Figure 7.5.

Remark 7.1. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 2D
1 , 0 ≤ τ ≤ 1.
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Figure 7.6: Results for Experiment 7.4 in 2D. The color bar indicates the magnitude
of τ .

To solve Problem 7.1 we consider a uniform partition of the interval [0, 1]

consisting of 63 points τk and solve the SDD using ητk ∈ X 2D
1 as an initial porosity

profile. We record the time at which the pressure attains pmax and the amount of

captured material during that time period. The results are summarized in Figure 7.6

and Table 7.2. The results indicate that for a filter with a constant gradient along the

y-direction, the configuration which yields the longest lifetime and largest retention

of material is one close to τ = 0.5, i.e., the porosity is essentially uniform (constant)

throughout Ω1. The filter lifetime and mass of captured material for τ = 0.50 is

roughly 47% and 16%, respectively, larger than that corresponding to either τ = 0

or τ = 1. Another important observation is that for both extreme values τ = 0 and

τ = 1, the performance of the filter is practically the same. We conclude that the

optimal η∗ to Problem 7.1 over X 2D
1 is contained in a neighborhood of the constant
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function η = 0.5.

Experiment 7.5 When designing a filter, one has to take into account the dis-

tribution of the filtration medium. The material that fills the filter, often called the

packing material, is composed of small particles that when compacted together give

rise to channels (void space) of variable length and size. The more densely packed

the material is, the less void space and, consequently, the smaller the porosity. As the

packing material is pushed against the boundary of the container, the walls prevent

the constituent particles from attaining the compact configuration that they would

normally exhibit in an obstructed region. Hence, under uniform packing conditions,

the porosity is expected to be higher close to the boundary and lower at the center.

Evidence of this phenomenon can be found in [77]. To facilitate the design process,

we investigate the performance of a family of filters that transitions from a parabolic

profile with maximum occurring at the boundary to a constant porosity value. This

family is given by

X 2D
2 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y) = U(τ) (b(τ) + q(x) (a(τ)− b(τ)))} ,

a(τ) = (1/2− ηmin)τ + ηmin, b(τ) = (1/2− ηmax)τ + ηmax,

U(τ) = 6/(τ + 5), q(x) = 4x (1− x),

where ηmax = 0.75 and ηmin = 0.25.

Remark 7.2. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 2D
2 , 0 ≤ τ ≤ 1.

The elements in X 2D
2 transition from a parabolic profile (τ = 0) with the max-

imum porosity at x = 0, 1 and minimum porosity at x = 1/2, to a constant profile

(τ = 1) with η = (ηmax + ηmin)/2 = 1/2. A graphical representation of this transition
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Figure 7.7: Parabolic profiles described by X 2D
2 in Experiment 7.5.

τ T ω(T ) Type
0.00 2.903 0.43338 Parabolic
0.26 2.958 0.43352 Parabolic
0.50 2.994 0.43371 Parabolic
0.71 3.013 0.43380 Parabolic
1.00 3.026 0.43389 Constant

Table 7.3: Results for Experiment 7.5.

is given in Figure 7.7. Analogous to Experiment 7.4, we partition the interval [0, 1]

into 63 points τk and solve the SDD for each ητk ∈ X 2D
2 . The results are depicted in

Figure 7.8 and Table 7.3. The results indicate that as we deviate from the constant

porosity profile (τ = 1), the filter lifetime diminishes gradually. However, the amount

of deposited material remains fairly constant. When compared with the absolute

maximum (τ = 1), at the absolute minimum τ = 0 the values for T and ω(T ) are

4.065% and 0.117% lower, respectively. We conclude that the optimal η∗ to Problem

7.1 over X 2D
2 belongs to a neighborhood of the constant porosity profile η = 1/2.
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Figure 7.8: Results for Experiment 7.5. The color bar indicates the magnitude of τ .

The next experiment explores initial porosity profiles that are, in a certain sense,

opposite to what was considered in Experiment 7.5.

Experiment 7.6 In contrast to Experiment 7.5, we design a family of parabolic

profiles that attain minimum porosity at the wall and maximum porosity at the center.

The collection of parabolic profiles is given by

X 2D
3 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y) = U(τ) (a(τ) + q(x) (b(τ)− a(τ)))} ,

a(τ) = (1/2− ηmin)τ + ηmin, b(τ) = (1/2− ηmax)τ + ηmax,

U(τ) = 150/(187− 37τ), q(x) = 4x (1− x),

where ηmax = 0.87 and ηmin = 0.13, discretize uniformly the interval [0, 1] into 63

points τk, and solve the SDD for each ητk ∈ X 2D
3 .

127



  0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
o
ro
si
ty
(x
)

τ=0. 0
τ=0. 2
τ=0. 3
τ=0. 5
τ=0. 7
τ=0. 8
τ=1. 0

Figure 7.9: Parabolic profiles described by X 2D
3 in Experiment 7.6.

τ T ω(T ) Type
0.00 2.905 0.43384 Parabolic
0.26 2.960 0.43373 Parabolic
0.50 2.999 0.43385 Parabolic
0.76 3.018 0.43371 Parabolic
1.00 3.026 0.43389 Constant

Table 7.4: Results for Experiment 7.6.

Remark 7.3. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 2D
3 , 0 ≤ τ ≤ 1.

Examples of elements of X 2D
3 are shown in Figure 7.9. The results are summa-

rized in Figure 7.10 and Table 7.4. Similar to Experiment 7.5, the constant initial

porosity profile τ = 1 outperforms the considered filters for τ < 1. In this case the

filter corresponding to τ = 1 exhibited a lifetime 4.165% longer than the filter corre-

sponding to τ = 0. Hence, for the physical parameters under consideration, using an

initial parabolic profile that qualitatively matches the inflow velocity profile appears
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Figure 7.10: Results for Experiment 7.6. The color bar indicates the magnitude of τ .

to confer no advantage over a constant initial porosity profile.

Though a constant initial porosity profile resulted in the best performance

for Experiment 7.4, Experiment 7.5, and Experiment 7.6, the question of optimizing

Problem 7.1 in 2D over X remains open.

Now we present 3D analogs to Experiment 7.4, Experiment 7.5 and Experiment

7.6.

3D setting

Let Ω1 = (0, 1) × (0, 1) × (0, 1) denote the Darcy domain, Ω2 = (0, 1) ×

(0, 1)× (1, 2) denote the Stokes domain, and Γ = (0, 1)× (0, 1)× {1} their common

interface. Moreover, let Γin = (0, 1)× (0, 1)× {2} represent the inflow boundary and

Γout = (0, 1) × (0, 1) × {0} the outflow boundary. Define Γ1 = ∂Ω1 \ (Γ ∪ Γout) and
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Figure 7.11: Computational domain in the 3D setting. The colored plane denotes the
interface Γ.

Γ2 = ∂Ω2 \ (Γ ∪ Γin). We partition Ωi into 64 cubic cells, set ∆t = 0.005, and use

the same physical parameters as in Experiment 7.3. Furthermore, no flux boundary

conditions are imposed on Γ1 and homogeneous Dirichlet boundary conditions are

imposed on Γ2. Finally, we set the inflow velocity uin = u|Γin
to the parabolic

profile uin = (0, 0, −16xy(x− 1)(y − 1))T and enforce weakly p = 0 along Γout. The

computational domain is depicted in Figure 7.11. In Experiment 7.7 the interval [0, 1]

is uniformly partitioned into 64 points τk and for Experiment 7.8 and Experiment 7.9

into 20 points. The SDD is solved for each ητk in a given family of porosity profiles.

Experiment 7.7 Consider the family of linear porosity profiles on z

X 3D
1 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y, z) = (b(τ)− a(τ)) z + a(τ)} , (7.3)
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τ T ω(T ) Type
0.00 3.975 0.41685 Affine
0.24 4.615 0.43693 Affine
0.50 4.825 0.44207 Constant
0.76 4.610 0.43586 Affine
1.00 3.945 0.41352 Affine

Table 7.5: Results for Experiment 7.7.
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Figure 7.12: Results for Experiment 7.7. The color bar indicates the magnitude of τ .

with a( · ), b( · ), ηmax, and ηmin as given by (7.2).

Remark 7.4. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 3D
1 , 0 ≤ τ ≤ 1.

Recall from Figure 7.5 that τ = 0 corresponds to a linearly decreasing porosity

profile, τ = 1 corresponds to a linearly increasing porosity profile, and τ = 0.5 to a

constant profile. The results are summarized in Table 7.5 and Figure 7.12. We observe

that, qualitatively, the filters in 2D from Experiment 7.4, and the filters in 3D from

Experiment 7.7 behave similarly. In particular, a near constant porosity profile is
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τ T ω(T ) Type
0.00 4.570 0.44138 Parabolic
0.25 4.660 0.44132 Parabolic
0.50 4.735 0.44153 Parabolic
0.75 4.775 0.44137 Parabolic
1.00 4.810 0.44168 Constant

Table 7.6: Results for Experiment 7.8.

optimal in both settings. Also note that the initial porosity profile corresponding to

τ = 0 yields better results than those generated by τ = 1. That is, under the given

conditions, a filter where the initial porosity is maximal at the top and decreases to

its minimum at the bottom performs better than one where the initial porosity is

minimal at the top and increases towards the bottom.

Experiment 7.8 Consider the family of parabolic profiles given by

X 3D
2 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y, z) = U(τ) (b(τ) + q(x, y) (a(τ)− b(τ)))} ,

a(τ) = (1/2− ηmin)τ + ηmin, b(τ) = (1/2− ηmax)τ + ηmax,

U(τ) = 45/(49− 4τ), q(x, y) = 16 x y (x− 1) (y − 1),

ηmax = 0.9, ηmin = 0.1. (7.4)

Remark 7.5. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 3D
2 , 0 ≤ τ ≤ 1.

Note that for τ = 0 we have an initial porosity profile where the porosity is

maximal on the walls of the filter and minimal at the center. As τ increases, the

initial porosity becomes more uniform until it reaches the constant value η = 1/2

when τ = 1. A graphical representation for the case τ = 0 is shown in Figure 7.13.

The results are summarized in Figure 7.14 and Table 7.6. The results suggest that
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Figure 7.13: Porosity profile in Experiment 7.8 when τ = 0. The colorbar indicates
the magnitude of the porosity.
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Figure 7.14: Results for Experiment 7.8. The color bar indicates the magnitude of τ .
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τ T ω(T ) Type
0.00 4.555 0.44062 Parabolic
0.25 4.685 0.44115 Parabolic
0.55 4.780 0.44160 Parabolic
0.75 4.815 0.44190 Parabolic
1.00 4.820 0.44193 Constant

Table 7.7: Results for Experiment 7.9.

a constant initial porosity profile is optimal for this family of filters.

Experiment 7.9 Opposite to what was done in Experiment 7.8, we consider

parabolic profiles whose porosity is maximal at the center and minimal at the walls

of the filter. Define

X 3D
3 = {ητ ∈ X | τ ∈ [0, 1], ητ (x, y, z) = U(τ) (a(τ) + q(x, y) (b(τ)− a(τ)))} ,

a(τ) = (1/2− ηmin)τ + ηmin, b(τ) = (1/2− ηmax)τ + ηmax,

U(τ) = 450/(37τ + 413), q(x, y) = 16 x y (x− 1) (y − 1),

ηmax = 0.87, ηmin = 0.13.

Remark 7.6. The initial volume of void space in Ω1 is (ηmax + ηmin)/2 = 1/2 for all

ητ ∈ X 3D
3 , 0 ≤ τ ≤ 1.

The case τ = 0 is depicted in Figure 7.15. The case τ = 1 is the constant

porosity profile η = 1/2. The results are summarized in Figure 7.16 and Table

7.7. We note that these results are consistent with the 2D setting explored in

Experiment 7.6. In summary, in 2D and 3D a constant porosity profile appears to

yield a higher mass retention and filter lifetime than using a parabolic profile with

either maximal porosity at the center and minimimal at the walls, or with minimal

porosity at the center and maximal at the boundary. Just like in the 2D case, the

question of optimizing over the entire space X remains open.
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Figure 7.15: Parabolic profile for the porosity corresponding to τ = 0 in Experiment
7.9. The colorbar denotes the magnitude of the porosity.
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Figure 7.16: Results for Experiment 7.9. The color bar indicates the magnitude of τ .
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Chapter 8

Conclusion

Summary

In the first part of this thesis a filtration model was presented. The functions

under consideration were the velocity, pressure, and porosity. The model combined

a nonlinear Darcy problem to describe the fluid flow and a time-dependent deposi-

tion equation to characterize the evolution of the porosity. Existence and uniqueness

of a solution to the governing equations was established. Subsequently, a numerical

scheme capable of approximating the solution of the continuous problem was investi-

gated. It was proven that the scheme is uniquely solvable and converges to the exact

solution as the discretization parameters ∆t and h tend to zero. Numerical exper-

iments confirmed the analytical results. Furthermore, the performance of different

filters was compared by varying the initial porosity profile.

In the second part of this thesis, we considered a generalization of the initial filtra-

tion model. The new system of equations coupled the previously analyzed augmented

nonlinear Darcy problem to the Stokes equations. Well-posedness of the coupled sys-
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tem with appropriate boundary and interfacial conditions was established. Moreover,

consistent with the physics, the porosity was shown to be nonnegative and bounded

above by the initial porosity. Thereafter, we introduced a numerical scheme for the

coupled problem capable of preserving the nonnegativity and boundedness of the

porosity. Numerical experiments followed, showing that the numerical approxima-

tions for the porosity are indeed bounded between zero and one. Furthermore, the

computations showed that the numerical convergence rates in space and time for

the coupled problem are in agreement with the conjectured estimates. Lastly, we

performed computational experiments in 2D and 3D with a focus on filter optimiza-

tion. Specifically, we defined a multicriteria objective function and optimized over

uniparametric families of linear and parabolic initial porosity profiles.

Future research

An interesting extension of this work is to remove the assumption of an affine

dependence of the velocity on the pressure gradient in the porous domain and allow

for nonlinear effects. Concretely, we aim to replace the Darcy law with a Darcy-

Forchheimer model of the form

β(η) u + γ u |u|+∇p = f ,

where γ is a nonnegative constant. In this setting, after deriving the weak form,

the Darcy velocity is to be found in the space (L3(Ω1))d, while the pressure is to be

found in the intersection of the fractional Sobolev space W 1,3/2(Ω1) and the Hilbert

space L2
0(Ω1). Incorporating the nonlinearity allows for more realistic simulations by

taking into account the inertial effects. Analysis of the well-posedness of the Darcy-
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Forchheimer model using techniques of monotonicity, coercivity and hemi-continuity

of a nonlinear operator can be found in [47]. After completing the analytical part

of this problem, a thorough numerical comparison between the linear and nonlinear

regimes would follow in order to better understand the inertial effects.

We observe that the model introduced and analyzed in Chapter 5 assumes a quasi-

static flow in the Stokes domain. A more realistic model would be to consider the

time-dependent Stokes equations in this subdomain.

A further extension is to also include inertial effect in the fluid domain and replace

the Stokes equations with the more general time-dependent Navier-Stokes. Also de-

sirable, would be to incorporate heat exchange effects and consider a nonisothermal

flow. An axisymmetric model in 2D that couples the Darcy-Forchheimer and the

compressible Navier-Stokes equations to a vertical wellbore model is discussed in [5].

Therein, the authors not only consider a nonlinear dependency of the flow on the

velocity, but also allow for variations in density and temperature, which are modeled

through the use of the Peng-Robinson equation of state. The analytical techniques

discussed in this work could be modified to incorporate variations in porosity.
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Appendix A Error analysis for Darcy with depo-

sition

A.1 Approximation Scheme

In this section we use the discrete operators

dtf
n =

fn − fn−1

∆t
, f

n
=
fn + fn−1

2
, f̃n = fn−1 +

1

2
fn−2 − 1

2
fn−3,

d2tf
n =

fn − fn−2

2∆t
, f̆n =

fn + fn−2

2
, (1)

and the next two lemmas

Lemma A.1. For fk ∈ L2((0, T );L2(Ω))

‖fn‖2 ≤ 1

2
(‖fn‖2 + ‖fn−1‖2),

‖f̃n‖2 ≤ 2‖fn−1‖2 + ‖fn−2‖2 + ‖fn−3‖2,

f̃n = 2f
n−1 − fn−2

,

‖f̃n‖2 ≤ 8‖fn−1‖2 + 2‖fn−2‖2.

Proof. Follows directly from the definition of the discrete operators and the triangle

inequality.

Lemma A.2. Let f( · , t) ∈ L2(Ω)) with f(x, ·) sufficiently regular so that the follow-
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ing estimates are well-defined. Then, the following inequalities hold.

‖fn − fn−1/2‖2 ≤ 1

48
(∆t)3

∫ tn

tn−1

‖ftt‖2 dt,

‖f̆ 2 − f 1‖2 ≤ 1

3
(∆t)4 sup

t0≤t≤t2
‖ftt(·, t)‖2,

‖dtfn − fn−1/2
t ‖2 ≤ 1

1280
(∆t)3

∫ tn

tn−1

‖fttt‖2 dt,

‖d2tf
2 − f 1

t ‖2 ≤ 1

80
(∆t)4 sup

t0≤t≤t2
‖fttt(·, t)‖2,

‖f̃n − fn−1/2‖2 ≤ 39

8
(∆t)3

∫ tn−1/2

tn−3

‖ftt‖2 dt,

‖dtfn‖2 ≤ 1

∆t

∫ tn

tn−1

‖ft‖2 dt.

Proof. See [34].

Recall that the approximation scheme we investigate in Section 4.1 is: Given

η0 ∈ Rh, for n = 3, . . . , N , determine (unh, p
n
h, η

n
h) ∈ Xh × Qh × Rh satisfying

(β(ηn,sh )unh + β(ηn,sh )bn,v)− (pnh,∇ · v) = (fn,v) ∀v ∈ Xh,

(q,∇ · unh) = 0 ∀q ∈ Qh,

(dtη
n
h , r) + (g(|ũnh + bn−1/2|)ηnh, r) = 0 ∀r ∈ Rh.

Also recall that we defined the discrete quantities

Λn = un − Un, En = Un − unh,

ψn = ηn − τn, F n = τn − ηnh ,

εu = un − unh, εη = ηn − ηnh .

in (4.14).
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First note that (4.1)-(4.3) satisfies

(β(ηn,s)(un + bn),v) = (fn,v)∀v ∈ Zh, (2)

(dtη
n, r) + (g(|ũn + bn−1/2|)ηn, r) = (dtη

n − ∂ηn−1/2

∂t
, r)

+ (g(|ũn + bn−1/2|)ηn − g(|un−1/2 + bn−1/2|)ηn−1/2, r)∀r ∈ Rh. (3)

Subtracting (4.8) and (4.10) from (2) and (3), respectively, we obtain

(β(ηn,s)(un + bn)− β(ηn,sh )(unh + bn),v) = 0 ∀v ∈ Zh, (4)

(dtε
n
η , r) + (g(|ũn + bn−1/2|)ηn − g(|ũnh + bn−1/2|)ηnh, r) = In(r) ∀r ∈ Rh (5)

where

In(r) = (dtη
n − ∂ηn−1/2

∂t
, r) + (g(|ũn + bn−1/2|)ηn

− g(|un−1/2 + bn−1/2|)ηn−1/2, r)

= (dtη
n − ∂ηn−1/2

∂t
, r) + ((g(|ũn + bn−1/2|)− g(|un−1/2 + bn−1/2|))ηn

+ g(|un−1/2 + bn−1/2|)(ηn − ηn−1/2), r).

Rewriting (4) yields

((β(ηn,s)− β(ηn,sh ))(un + bn) + β(ηn,sh )(un − unh),v) = 0,∀v ∈ Zh,

or, equivalently,

(β(ηn,sh )εu,v) = ((β(ηn,sh )− β(ηn,s))(un + bn),v),∀v ∈ Zh. (6)
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Setting εu = En + Λn and v = En in (6), we obtain

(β(ηn,sh )En,En) = ((β(ηn,sh )− β(ηn,s))(un + bn),En)− (β(ηn,sh )Λn,En). (7)

Using assumptions Aβ2 and Aβ3, (7) yields

βmin‖En‖2 ≤ ‖un + bn‖∞ βLip‖ηn,sh − ηn,s‖‖En‖+ βmax‖Λn‖‖En‖.

Thus,

βmin‖En‖ ≤ βLip‖un + bn‖∞‖ηn,sh − ηn,s‖+ βmax‖Λn‖. (8)

Now note that from Aηs1

‖S(ηnh)− ηn,s‖ ≤ |Ω|1/2‖S(ηnh)− ηn,s‖L∞(Ω) ≤ |Ω|1/2Cs‖ηnh − ηn‖

≤ |Ω|1/2Cs(‖ψn‖+ ‖F n‖).

Thus,

‖ηn,sh − ηn,s‖ ≤ ‖ηn,sh − S(ηnh)‖+ ‖S(ηnh)− ηn,s‖

≤ ‖ηn,sh − S(ηnh)‖+ |Ω|1/2Cs(‖ψn‖+ ‖F n‖).
(9)

Using (9) in (8) yields

βmin‖En‖ ≤ βLip‖un + bn‖∞‖ηn,sh − S(ηnh)‖+ βmax‖Λn‖

+ βLip|Ω|1/2Cs‖un + bn‖∞(‖ψn‖+ ‖F n‖). (10)
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From the fact that for {ai}qi=1 ⊂ R, (
∑q

i=1 ai)
2 ≤ q

∑q
i=1 a

2
i , we obtain

‖En‖2 ≤ 3
β2

Lip

β2
min

‖un + bn‖2
∞‖ηn,sh − S(ηnh)‖2 + 3

β2
max

β2
min

‖Λn‖2

+ 6
β2

Lip

β2
min

|Ω|C2
s‖un + bn‖2

∞(‖ψn‖2 + ‖F n‖2). (11)

We now focus on (5) and rewrite it as

(dtεη, r) = ((g(|ũnh + bn−1/2|)− g(|ũn + bn−1/2|))ηn, r)

+ (g(|ũnh + bn−1/2|)(ηnh − ηn), r) + In(r),∀r ∈ Rh. (12)

Substituting εη = F n + ψn and r = F
n

in (12) yields

(dtF
n, F

n
) = −(dtψ

n, F
n
) + ((g(|ũnh + bn−1/2|)− g(|ũn + bn−1/2|))ηn, F n

)

+ (g(|ũnh + bn−1/2|)(ηnh − ηn), F
n
) + In(F

n
).

(13)

Rewriting and bounding the terms in (13), we obtain

(dtF
n, F

n
) =
‖F n‖2 − ‖F n−1‖2

2∆t
, (14)

(dtψ
n, F

n
) ≤ 1

2
(‖dtψn‖2 + ‖F n‖), (15)
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(g(|ũnh + bn−1/2|)− g(|ũn + bn−1/2|))ηn, F n
)

≤ ‖ηn‖∞ ‖g(|ũnh + bn−1/2|)− g(|ũn + bn−1/2|)‖ ‖F n‖

≤ ‖ηn‖∞ gLip ‖ |ũnh + bn−1/2| − |ũn + bn−1/2| ‖ ‖F n‖

≤ gLip‖ηn‖∞‖ũnh − ũn‖ ‖F n‖

≤ 1

2
g2

Lip‖ηn‖2
∞‖ũnh − ũn‖2 +

1

2
‖F n‖2

≤ g2
Lip‖ηn‖2

∞(‖Ẽn‖2 + ‖Λ̃n‖2) +
1

2
‖F n‖2, (16)

and

(g(|ũnh + bn−1/2|)(ηnh − ηn), F
n
) ≤ gmax‖ηnh − ηn‖‖F

n‖

≤ 1

2
g2

max‖ηnh − ηn‖2 +
1

2
‖F n‖

≤ g2
max(‖F n‖2 + ‖ψn‖2) +

1

2
‖F n‖, (17)

which follow from Cauchy-Schwarz and assumptions Ag2-Ag3. For each term in

In(F
n
), we compute the bounds

(dtη
n − ∂ηn−1/2

∂t
, F

n
) ≤ 1

2
‖dtηn −

∂ηn−1/2

∂t
‖2 +

1

2
‖F n‖2, (18)

((g(|ũn + bn−1/2|)− g(|un−1/2 + bn−1/2|))ηn, F n
)

≤ ‖ηn‖∞gLip‖ũn − un−1/2‖‖F n‖

≤ 1

2
g2

Lip‖ηn‖2
∞‖ũn − un−1/2‖2 +

1

2
‖F n‖2, (19)
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and

(g(|un−1/2 + bn−1/2|)(ηn − ηn−1/2), F
n
)

≤ g2
max

2
‖ηn − ηn−1/2‖2 +

1

2
‖F n‖2. (20)

Consequently, combining (18)-(20) yields

|In(F
n
)| ≤ 1

2
‖dtηn −

∂ηn−1/2

∂t
‖2 +

1

2
g2

Lip‖ηn‖2
∞‖ũn − un−1/2‖2

+
g2

max

2
‖ηn − ηn−1/2‖2 +

3

2
‖F n‖2. (21)

Thus, using (14)-(18) and (21) in (13) and multiplying by 2∆t, we obtain the bound

‖F n‖2 − ‖F n−1‖2 ≤ ∆t‖dtψn‖2 + 2∆tg2
Lip‖ηn‖2

∞(‖Ẽn‖2 + ‖Λ̃n‖2)

+ 2∆tg2
max‖ψ

n‖2 + ∆t(6 + 2g2
max)‖F n‖2 + ∆tRn(u, η). (22)

where

Rn(u, η) = ‖dtηn −
∂ηn−1/2

∂t
‖2 + g2

Lip‖ηn‖2
∞‖ũn − un−1/2‖2

+ g2
max‖ηn − ηn−1/2‖2. (23)

Note that owing to Lemma A.2, we can further bound (23) to obtain

Rn(u, η) ≤ 1

1280
(∆t)3

∫ tn

tn−1

‖ηttt‖2 dt+ g2
Lip‖ηn‖2

∞
39

8
(∆t)3

∫ tn−1/2

tn−3

‖utt‖2 dt

+ g2
max

1

48
(∆t)3

∫ tn

tn−1

‖ηtt‖2 dt. (24)

Using Lemma A.1 to bound the terms ‖Ẽn‖2, ‖Λ̃n‖2, ‖ψn‖2, ‖F n‖2, and Lemma A.2
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to bound

∆t‖dtψn‖2 ≤
∫ tn

tn−1

‖ψt‖2 dt,

in (22), yields

‖F n‖2 − ‖F n−1‖2 ≤
∫ tn

tn−1

‖ψt‖2 dt+ 2∆tg2
Lip‖ηn‖2

∞(2‖En−1‖2 + ‖En−2‖2

+ ‖En−3‖2 + 2‖Λn−1‖2 + ‖Λn−2‖2 + ‖Λn−3‖2) + 2∆t g2
max

1

2
(‖ψn‖2

+ ‖ψn−1‖2) + ∆t(6 + 2g2
max)

1

2
(‖F n‖2 + ‖F n−1‖2) + ∆tRn(u, η). (25)

Summing (25) from n = 3 to n = `, and bounding

‖ηn‖2
∞ =

1

4
‖ηn + ηn−1‖2

∞ ≤
2

4
(‖ηn‖2

∞ + ‖ηn−1‖2
∞),

we obtain

‖F `‖2 − ‖F 2‖2 ≤ 8g2
Lip∆t

`−1∑
n=0

|||η|||2∞(‖En‖2 + ‖Λn‖2) + 2g2
max∆t

∑̀
n=2

‖ψn‖2

+ ∆t(6 + 2g2
max)

∑̀
n=2

‖F n‖2 + ∆t
∑̀
n=3

Rn(u, η) +

∫ t`

t2

‖ψt‖2 dt. (26)
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In view of the bound for ‖En‖2 given in (11), (26) becomes

‖F `‖2 − ‖F 2‖2 ≤ 8(1 + 3
β2

max

β2
min

)g2
Lip∆t

`−1∑
n=0

|||η|||2∞‖Λn‖2

+ ∆t
∑̀
n=1

(2g2
max + 48g2

Lip|||η|||2∞
β2

Lip

β2
min

|Ω|C2
s‖un + bn‖2

∞)‖ψn‖2

+ ∆t
∑̀
n=1

(6 + 2g2
max + 48g2

Lip|||η|||2∞
β2

Lip

β2
min

|Ω|C2
s‖un + bn‖2

∞)‖F n‖2

+ ∆t
`−1∑
n=1

24g2
Lip|||η|||2∞

β2
Lip

β2
min

‖un + bn‖2
∞‖ηn,sh − S(ηnh)‖2

+ ∆t
`−1∑
n=1

Rn(u, η) +

∫ t`

t2

‖ψt‖2 dt. (27)

Define

w̃n1 = 8(1 + 3
β2

max

β2
min

)g2
Lip|||η|||2∞,

w̃n2 = 2g2
max + 48g2

Lip

β2
Lip

β2
min

|||η|||2∞ |Ω|C2
s‖un + bn‖2

∞,

w̃n3 = 6 + wn2 ,

w̃n4 = 24g2
Lip|||η|||2∞

β2
Lip

β2
min

‖un + bn‖2
∞,

w̃n5 =
39

8
g2

Lip|||η|||2∞,

and let wi = |||w̃i|||∞. Thus, using (24) and the definition of the wi in (27), yields

‖F `‖2 − ‖F 2‖2 ≤ ∆t
∑̀
n=0

(
w1‖Λn‖2 + w2‖ψn‖2 + w3‖F n‖2

+ w4‖ηn,sh − S(ηnh)‖2
2

)
+

∫ t`

t2

‖ψt‖2 dt+ (∆t)4w5

∫ t`−1/2

0

‖utt‖2 dt

+ (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt. (28)
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Choosing ∆t so that ∆t w3 < 1/2, using the discrete Gronwall’s lemma [60] in (28)

and the fact that ∆t ` ≤ ∆tN = T , results in the bound

‖F `‖2 ≤ K∆t
∑̀
n=0

(
w1‖Λn‖2 + w2‖ψn‖2 + w4‖ηn,sh − S(ηnh)‖2

2

)
+K

(∫ t`

t2

‖ψt‖2 dt+ (∆t)4w5

∫ t`−1/2

0

‖utt‖2 dt+ ‖F 2‖2

+ (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
)
, (29)

where

K = exp

(
T w3

1−∆t w3

)
≤ exp (2T w3) .

Using elements of order k for the velocity and elements of order l for the porosity in

the corresponding approximating spaces, we obtain the bounds

∆t
∑̀
n=0

(
w1‖Λn‖2 + w2‖ψn‖2 + w4‖ηn,sh − S(ηnh)‖2

2

)
≤ ∆t

∑̀
n=0

(
w1Ch

2k+2‖un‖2
k+1 + w2Ch

2m+2‖ηn‖2
m+1 + w4‖ηn,sh − S(ηnh)‖2

2

)
≤ w1Ch

2k+2|||u|||2k+1 + w2Ch
2m+2|||η|||2m+1 + w4|||ηsh − S(ηh)|||22, and (30)

∫ t`

t2

‖ψt‖2 dt ≤ Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt. (31)
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Substituting (30) and (31) in (29), yields

‖F `‖2 ≤ K
(
w1Ch

2k+2|||u|||2k+1 + w2Ch
2m+2|||η|||2m+1 + w4|||ηsh − S(ηh)|||22

+ Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt+ (∆t)4w5

∫ t`−2

0

‖utt‖2 dt+ ‖F 2‖2

+ (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
)
. (32)

We are now in position to bound the term ‖E`‖2. Replacing (32) in (11), we obtain

‖E`‖2 ≤ 3
β2

Lip

β2
min

‖u` + b`‖2
∞‖η`,sh − S(η`h)‖2 + 3C

β2
max

β2
min

h2k+2‖u`‖2
k+1

+ 6
β2

Lip

β2
min

|Ω|C2
s‖u` + b`‖2

∞

(
Ch2m+2‖η`‖2

m+1 +K
(
w1Ch

2k+2|||u|||2k+1

+ w2Ch
2m+2|||η|||2m+1 + w4|||ηsh − S(ηh)|||22 + Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt

+ (∆t)4w5

∫ t`−2

0

‖utt‖2 dt+ ‖F 2‖2 + (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt

+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
))
.

Using the fact that

‖u` − u`h‖2 ≤ 2(‖E`‖2 + ‖Λ`‖2) and ‖η` − η`h‖2 ≤ 2(‖F `‖2 + ‖ψ`‖2),
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we obtain the estimates

‖u` − u`h‖2 ≤ 6
β2

Lip

β2
min

‖u` + b`‖2
∞‖η`,sh − S(η`h)‖2 + (2 + 6

β2
max

β2
min

)Ch2k+2‖u`‖2
k+1

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u` + b`‖2

∞

(
Ch2m+2‖η`‖2

m+1 +K
(
w1Ch

2k+2|||u|||2k+1

+ w2Ch
2m+2|||η|||2m+1 + w4|||ηsh − S(ηh)|||22 + Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt

+ (∆t)4w5

∫ t`−2

0

‖utt‖2 dt+ ‖F 2‖2 + (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt

+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
))
, (33)

and

‖η` − η`h‖2 ≤ 2K
(
w1Ch

2k+2|||u|||2k+1 + w2Ch
2m+2|||η|||2m+1 + w4|||ηsh − S(ηh)|||22

+ Ch2m+2

∫ t`

t2

‖ηt‖2
m+1 dt+ (∆t)4w5

∫ t`−2

0

‖utt‖2 dt+ ‖F 2‖2

+ (∆t)4 g
2
max

48

∫ t`

t2

‖ηtt‖2 dt+
(∆t)4

1280

∫ t`

t2

‖ηttt‖2 dt
)

+ 2Ch2m+2‖η`‖2
m+1. (34)

Remark .1. Owing to (4.12), the error estimates (33) and (34) are optimal in view

that there exists a constant C = C(Ω,u,η,S,β,g) such that

‖u` − u`h‖ ≤ C
(
hk+1 + hm+1 + (∆t)2

)
,

‖η` − η`h‖ ≤ C
(
hk+1 + hm+1 + (∆t)2

)
.

We now derive an error estimate corresponding to the pressure. For that

purpose, recall that the the finite element pair RTk×Pk is estable [18], i.e., it satisfies
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the the discrete inf-sup condition

0 < γ ≤ inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)
‖qh‖ ‖vh‖X

. (35)

Thus, owing to (3.35), (4.1) and (35), we obtain for Qn ∈ Qh

γ ‖pnh −Qn‖ ≤ sup
vh∈Xh

(pnh −Qn,∇ · vh)
‖vh‖X

= sup
vh∈Xh

(pnh,∇ · vh)− (Qn,∇ · vh)
‖vh‖X

= sup
vh∈Xh

(β(ηn,sh )(unh + bn),vh)− (fn,vh)− (Qn,∇ · vh)
‖vh‖X

≤ sup
vh∈Xh

(β(ηn,sh )(unh + bn),vh)− (β(ηn,s)(un + bn),vh)

‖vh‖X

+ sup
vh∈Xh

(pn,∇ · vh)− (Qn,∇ · vh)
‖vh‖X

= sup
vh∈Xh

(β(ηn,sh )(unh − un),vh) + ((un + bn)(β(ηn,sh )− β(ηn,s)),vh)

‖vh‖X

+ sup
vh∈Xh

(pn −Qn,∇ · vh)
‖vh‖X

≤ βmax‖unh − un‖+ βLip‖un + bn‖∞‖ηn,sh − ηn,s‖+ ‖pn −Qn‖. (36)

Finally, combining the bound

‖pn − pnh‖ ≤ ‖pn −Qn‖+ ‖pnh −Qn‖,

with (36), yields

‖pn − pnh‖ ≤ γ−1 (βmax‖unh − un‖+ βLip‖un + bn‖∞‖ηn,sh − ηn,s‖)

+ (1 + γ−1) ‖pnh −Qn‖. (37)
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Hence, in view of (37) and Remark .1 , we obtain the estimate

‖p` − p`h‖ ≤ C
(
hk+1 + hm+1 + (∆t)2

)
.

A.2 Initialization of the Approximation Scheme

In this section we provide the initialization steps that guarantee optimal con-

vergence (see (4.7)) for the numerical scheme introduced in Section 4.1. We split the

process into three steps. In Step 1 we construct a suboptimal approximation (z2
h, π

2
h)

to (u2, η2) using (u0
h, η

0
h). Then, in Step 2, we introduce the approximation (z1

h, π
1
h)

= 1
2

(
(z2
h, π

2
h) + (u0

h, η
0
h)
)

and use it to obtain an optimal approximation (u2
h, η

2
h) to

(u2, η2). Finally, in Step 3, the average between (u2
h, η

2
h) and (u0

h, η
0
h) yields an opti-

mal approximation (u1
h, η

1
h) to (u1, η1).

We use a notation similar to that discussed in Section A.1. For Un, znh ∈ Zh and

τn, πnh ∈ Rh, define

Λn
z = un − Un, En

z = Un − znh,

ψnπ = ηn − τn, F n
π = τn − πnh ,

εz = un − znh, επ = ηn − πnh .

Step 1

Given η0
h ∈ Rh, and z0

h = u0
h ∈ Xh, determine (z2

h, π
2
h) ∈ Zh ×Rh satisfying

(β(π2,s
h )z2

h + β(π2,s
h )b2,v) = (f2,v) ∀v ∈ Zh, (38)

(d2tπ
2
h, r) + (g(|z0

h + b0|)π 2
h , r) = 0 ∀r ∈ Rh. (39)
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First note that from (4.1)-(4.3), u and η satisfy

(β(η2,s)(u2 + b2),v) = (f2,v) ∀v ∈ Zh, (40)

(d2tη
2, r) + (g(|u0 + b0|)η2, r) = (d2tη

2 − ∂η2

∂t
, r) + (g(|u0 + b0|)η2, r)

− (g(|u2 + b2|)η2, r) ∀r ∈ Rh. (41)

Subtracting (38) and (39) from (40) and (41), respectively, we obtain

(β(η2,s)(u2 + b2)− β(π2,s
h )(z2

h + b2),v) = 0 ∀v ∈ Zh, (42)

(d2tε
2
π, r) + (g(|u0 + b0|)η2 − g(|z0

h + b0|)π2
h, r) = I2

π(r) ∀r ∈ Rh, (43)

where

I2
π(r) = (d2tη

2 − ∂η2

∂t
, r) + (g(|u0 + b0|)η2 − g(|u2 + b2|)η2, r). (44)

Rewriting (42) yields

((β(η2,s)− β(π2,s
h ))(u2 + b2) + β(π2,s

h )(u2 − z2
h),v) = 0 ∀v ∈ Zh,

or, equivalently

(β(π2,s
h )εz,v) = ((β(π2,s

h )− β(η2,s))(u2 + b2),v),∀v ∈ Zh. (45)

Setting εz = E2
z + Λ2

z and v = E2
z in (45), we obtain

(β(π2,s
h )E2

z,E
2
z) = ((β(π2,s

h )− β(η2,s))(u2 + b2),E2
z)− (β(π2,s

h )Λ2
z,E

2
z). (46)
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Using assumptions Aβ2 and Aβ3 in (46) yields

βmin‖E2
z‖2 ≤ ‖u2 + b2‖∞ βLip‖π2,s

h − η2,s‖‖E2
z‖+ βmax‖Λ2

z‖‖E2
z‖.

Proceeding as in the general case (see (11)) we obtain the bound

‖E2
z‖2 ≤ 3

β2
Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + 3

β2
max

β2
min

‖Λ2
z‖2

+ 6
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞(‖ψ2
π‖2 + ‖F 2

π‖2). (47)

Now rewrite (43) as

(d2tε
2
π, r) = ((g(|z0

h + b0|)− g(|u0 + b0|))η2, r)

+ (g(|z0
h + b0|)(π2

h − η2), r) + I2
π(r) ∀r ∈ Rh. (48)

and substitute επ = F 2
π + ψ2

π, and r = F̆ 2
π in (48) to obtain

(d2tF
2
π , F̆

2
π ) = −(dtψ

2
π, F̆

2
π ) + ((g(|z0

h + b0|)− g(|u0 + b0|))η2, F̆ 2
π )

+ (g(|z0
h + b0|)(π2

h − η2), F̆ 2
π ) + I2

π(F̆ 2
π ). (49)

Bounding the terms in (49) and observing that ‖E0
z‖ = ‖F 0

π‖ = 0, yields

(d2tF
2
π , F̆

2
π ) =

‖F 2
π‖2

4∆t
, (50)

(d2tψ
2
π, F̆

2
π ) ≤ 1

2
(‖d2tψ

2
π‖2 + ‖F̆ 2

π‖2), (51)
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(g(|z0
h + b0|)− g(|u0 + b0|))η2, F̆ 2

π )

≤ ‖η2‖∞ ‖g(|z0
h + b0|)− g(|u0 + b0|)‖ ‖F̆ 2

π‖

≤ ‖η2‖∞ gLip ‖ |z0
h + b0| − |u0 + b0| ‖ ‖F̆ 2

π‖

≤ gLip‖η2‖∞‖z0
h − u0‖ ‖F̆ 2

π‖

≤ 1

2
g2

Lip‖η2‖2
∞‖z0

h − u0‖2 +
1

2
‖F̆ 2

π‖2

≤ g2
Lip‖η2‖2

∞(‖E0
z‖2 + ‖Λ0

z‖2) +
1

2
‖F̆ 2

π‖2, (52)

and

(g(|z0
h + b0|)(π2

h − η2), F̆ 2
π ) ≤ gmax‖π2

h − η2‖‖F̆ 2
π‖

≤ 1

2
g2

max‖π2
h − η2‖2 +

1

2
‖F̆ 2

π‖2

≤ g2
max(‖F̆ 2

π‖2 + ‖ψ̆2
π‖2) +

1

2
‖F̆ 2

π‖2. (53)

Bounding each term in I2
π(F̆ 2

π ) (see (44)), we obtain

(d2tη
2 − ∂η2

∂t
, F̆ 2

π ) ≤ 1

2
‖d2tη

2 − ∂η2

∂t
‖2 +

1

2
‖F̆ 2

π‖2, (54)

and

((g(|u0 + b0|)− g(|u2 + b2|))η2, F̆ 2
π )

≤ ‖η2‖∞gLip‖(u2 + b2)− (u0 + b0)‖‖F̆ 2
π‖

≤ 1

2
g2

Lip‖η2‖2
∞‖(u2 + b2)− (u0 + b0)‖2 +

1

2
‖F̆ 2

π‖2, (55)
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Consequently, in view of (44), (54) and (55),

|I2
π(F̆ 2

π )| ≤ 1

2
‖d2tη

2 − ∂η2

∂t
‖2 +

1

2
g2

Lip‖η2‖2
∞‖(u2 + b2)− (u0 + b0)‖2

+ ‖F̆ 2
π‖2. (56)

Thus, combining (49)-(53), (56) and multiplying by 4∆t, yields

‖F 2
π‖2 ≤ 2∆t‖d2tψ

2
π‖2 + 4∆tg2

Lip‖η2‖2
∞‖Λ0

z‖2 + 4∆tg2
max‖ψ̆2

π‖2

+ 2∆t(5 + 2g2
max)‖F̆ 2‖2 + 2∆tR2

π(u,b, η), (57)

where

R2
π(u,b, η) = ‖d2tη

2 − ∂η2

∂t
‖2 + g2

Lip‖η2‖2
∞‖(u2 + b2)− (u0 + b0)‖2. (58)

Now note that

∫
Ω

((u2 + b2)− (u0 + b0))2 dΩ =

∫
Ω

(∫ t2

t0

(u + b)t(·, t) dt
)2

dΩ

≤ 2

∫
Ω

∆t

∫ t2

t0

((u + b)t(·, t))2 dt dΩ = 2∆t

∫ t2

t0

‖(u + b)t(·, t)‖2 dt

≤ 4(∆t)2 sup
t0≤t≤t2

‖(u + b)t(·, t)‖2. (59)

Similarly, using the fact that

η2 = η0 +

∫ t2

t0

ηt dt = η0 + 2∆t η2
t +

∫ t2

t0

ηtt(t2 − t) dt,
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yields

∫
Ω

(d2tη
2 − ∂η2

∂t
)2 dΩ =

∫
Ω

(
1

2∆t

∫ t2

t0

ηtt(t2 − t) dt
)2

dΩ

≤ 1

4(∆t)2

∫
Ω

(∫ t2

t0

η2
tt dt

∫ t2

t0

(t2 − t)2 dt

)
dΩ

=
∆t

12

∫
Ω

∫ t2

t0

η2
tt dt dΩ =

∆t

12

∫ t2

t0

‖ηtt(·, t)‖2 dt

≤ (∆t)2

12
sup

t0≤t≤t2
‖ηtt(·, t)‖2. (60)

Owing to (59) and (60), we can further bound (58) to obtain

R2
π(u,b, η) ≤ (∆t)2

12
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 4(∆t)2g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2. (61)

Making use of the triangle inequality to bound the term ‖ψ̆2
π‖2 and Lemma A.2 to

bound

‖d2tψ
2
π‖2 ≤ 1

2∆t

∫ t2

t0

‖(ψπ)t‖2 dt

in (57), implies

‖F 2
π‖2 ≤

∫ t2

t0

‖(ψπ)t‖2 dt+ 4∆tg2
Lip‖η2‖2

∞‖Λ0
z‖2 + 4∆t g2

max

1

2
(‖ψ2

π‖2 + ‖ψ0
π‖2)

+ 2∆t(5 + 2g2
max)

1

4
‖F 2

π‖2 + 2∆tR2
π(u,b, η). (62)

Choosing ∆t in (62) so that ∆t (5/2 + g2
max) < 1, and defining

K1 = (1−∆t (5/2 + g2
max))−1,
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we obtain

‖F 2
π‖2 ≤ K1

(∫ t2

t0

‖(ψπ)t‖2 dt+ 4∆t g2
Lip‖η2‖2

∞‖Λ0
z‖2

+ 2∆t g2
max(‖ψ2

π‖2 + ‖ψ0
π‖2) + 2∆t R2

π(u,b, η)
)

≤ K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 + 4C∆t g2

Lip‖η2‖2
∞h

2k+2‖u0‖2
k+1

+ 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1) +
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 8(∆t)3g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
)
. (63)

Replacing (63) in (47), yields

‖E2
z‖2 ≤ 3

β2
Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + 3

β2
max

β2
min

‖Λ2
z‖2

+ 6
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞

(
Ch2m+2‖η2‖2

m+1 +K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1

+ 4C∆t g2
Lip‖η2‖2

∞h
2k+2‖u0‖2

k+1 + 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1)

+
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2 + 8(∆t)3g2

Lip‖η2‖2
∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))
. (64)

Finally, combining the bounds

‖u2 − z2
h‖2 ≤ 2(‖E2

z‖2 + ‖Λ2
z‖2), ‖η2 − π2

h‖2 ≤ 2(‖F 2
π‖2 + ‖ψ2

π‖2),
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with (64), yields

‖u2 − z2
h‖2 ≤ 6

β2
Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + (2 + 6

β2
max

β2
min

)Ch2k+2‖u2‖2
k+1

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞

(
Ch2m+2‖η2‖2

m+1 +K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1

+ 4C∆tg2
Lip‖η2‖2

∞h
2k+2‖u0‖2

k+1 + 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1)

+
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2 + 8(∆t)3g2

Lip‖η2‖2
∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))
, (65)

and

‖η2 − π2
h‖2 ≤ 2K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 + 4C∆tg2

Lip‖η2‖2
∞ h

2k+2‖u0‖2
k+1

+ 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1) +
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 8(∆t)3g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
)

+ 2Ch2m+2‖η2‖m+1. (66)

Step 2

In this section we consider the following problem: For π1
h = (π2

h +π0
h)/2 ∈ Rh,

and z1
h = (z2

h + z0
h)/2 ∈ Xh, determine (u2

h, η
2
h) ∈ Zh ×Rh satisfying

(β(η2,s
h )u2

h + β(η2,s
h )b2,v) = (f2,v) ∀v ∈ Zh, (67)

(d2tη
2
h, r) + (g(|z1

h + b1|)η̆2
h, r) = 0 ∀r ∈ Rh. (68)

First note that, from (4.1)-(4.3), (u, η) satisfies

(β(η2,s)(u2 + b2),v) = (f2,v) ∀v ∈ Zh, (69)

(d2tη
2, r) + (g(|u1 + b1|)η1, r) = (d2tη

2 − ∂η1

∂t
, r) ∀r ∈ Rh. (70)
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Subtracting (67) and (68) from (69) and (70), respectively, we obtain

(β(η2,s)(u2 + b2)− β(η2,s
h )(u2

h + b2),v) = 0 ∀v ∈ Zh, (71)

(d2tε
2
η, r) + (g(|u1 + b1|)η1 − g(|z1

h + b1|)η̆2
h, r) = I2(r) ∀r ∈ Rh, (72)

where

I2(r) = (d2tη
2 − ∂η1

∂t
, r). (73)

Rewriting (71), yields

((β(η2,s)− β(η2,s
h ))(u2 + b2) + β(η2,s

h )(u2 − u2
h),v) = 0 ∀v ∈ Zh,

or, equivalently

(β(η2,s
h )εu,v) = ((β(η2,s

h )− β(η2,s))(u2 + b2),v) ∀v ∈ Zh, (74)

where εu = E2 + Λ2 with E2, Λ2 as defined in (4.14). Setting v = E2 in (74) to

obtain

(β(η2,s
h )E2,E2) = ((β(η2,s

h )− β(η2,s))(u2 + b2),E2)− (β(η2,s
h )Λ2,E2), (75)

and using assumptions Aβ2 and Aβ3 in (75), yields

βmin‖E2‖2 ≤ ‖u2 + b2‖∞ βLip‖η2,s
h − η2,s‖‖E2‖+ βmax‖Λ2‖‖E2‖. (76)
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Proceeding as in the general case (see (11)) to bound (76), we obtain

‖E2‖2 ≤ 3
β2

Lip

β2
min

‖u2 + b2‖2
∞‖η2,s

h − S(η2
h)‖2 + 3

β2
max

β2
min

‖Λ2‖2

+ 6
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞(‖ψ2‖2 + ‖F 2‖2). (77)

We now rewrite (72) as

(d2tε
2
η, r) = ((g(|z1

h + b1|)− g(|u1 + b1|))η1, r)

+ (g(|z1
h + b1|)(η̆2

h − η1), r) + I2(r),∀r ∈ Rh, (78)

and substitute εη = F 2 + ψ2 and r = F̆ 2 in (78), which yields

(d2tF
2, F̆ 2) = −(dtψ

2, F̆ 2) + ((g(|z1
h + b1|)− g(|u1 + b1|))η1, F̆ 2)

+ (g(|z1
h + b1|)(η̆2

h − η1), F̆ 2) + I2(F̆ 2). (79)

Bounding all the terms in (79) and using ‖F 0‖ = 0, we obtain

(d2tF
2, F̆ 2) =

‖F 2‖2

4∆t
, (80)

(d2tψ
2, F̆ 2) ≤ 1

2
(‖d2tψ

2‖2 + ‖F̆ 2‖), (81)
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(g(|z1
h + b1|)− g(|u1 + b1|))η1, F̆ 2)

≤ ‖η1‖∞ ‖g(|z1
h + b1|)− g(|u1 + b1|)‖ ‖F̆ 2‖

≤ ‖η1‖∞ gLip ‖ |z1
h + b1| − |u1 + b1| ‖ ‖F̆ 2‖

≤ gLip‖η1‖∞‖z1
h − u1‖ ‖F̆ 2‖

≤ 1

2
g2

Lip‖η1‖2
∞‖z1

h − u1‖2 +
1

2
‖F̆ 2‖2 (82)

and

(g(|z1
h + b1|)(η̆2

h − η1), F̆ 2) ≤ gmax‖η̆2
h − η1‖‖F̆ 2‖

≤ 1

2
g2

max‖η̆2
h − η1‖2 +

1

2
‖F̆ 2‖2

≤ g2
max(‖η̆2

h − η̆2‖2 + ‖η̆2 − η1‖2) +
1

2
‖F̆ 2‖2

≤ g2
max(2‖F̆ 2

h‖+ 2‖ψ̆2‖2 + ‖η̆2 − η1‖2) +
1

2
‖F̆ 2‖2. (83)

Observe that the terms ‖z1
h − u1‖2 in (82) and I2(F̆ n) in (73) can be bounded as

follows:

‖z1
h − u1‖2 = ‖1

2
(z0
h + z2

h)− u1‖2

≤ 2‖1

2
(z0
h + z2

h)−
1

2
(u0 + u2)‖2 + 2‖1

2
(u0 + u2)− u1‖2

≤ ‖z0
h − u0‖2 + ‖z2

h − u2‖2 + 2‖1

2
(u0 + u2)− u1‖2

= ‖Λ0‖2 + ‖z2
h − u2‖2 + 2‖ŭ2 − u1‖2,

I2(F̆ n) = (d2tη
2 − ∂η1

∂t
, F̆ 2) ≤ 1

2
‖d2tη

2 − ∂η1

∂t
‖2 +

1

2
‖F̆ n‖2. (84)
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Thus, combining (79)-(84) and multiplying by 4∆t, yields

‖F 2‖2 ≤ 2∆t‖d2tψ
2‖2 + 2∆tg2

Lip‖η1‖2
∞
(
‖Λ0‖2 + ‖z2

h − u2‖2 + 2‖ŭ2 − u1‖2
)

+ 8∆tg2
max‖ψ̆2‖2 + 4∆tg2

max‖η̆2 − η1‖2 + 2∆t(4 + 4g2
max)‖F̆ 2‖2

+ 2∆t‖d2tη
2 − ∂η1

∂t
‖2. (85)

Recalling the definition of ‖F̆ 2‖ (see (1)) and choosing ∆t in (85) so that 2∆t (1 +

g2
max) < 1, yields

‖F 2‖2 ≤ K2

(
2∆t‖d2tψ

2‖2 + 2∆tg2
Lip‖η1‖2

∞(‖Λ0‖2 + ‖z2
h − u2‖2

+ 2‖ŭ2 − u1‖2) + 8∆tg2
max‖ψ̆2‖2 + 4∆tg2

max‖η̆2 − η1‖2

+ 2∆t‖d2tη
2 − ∂η1

∂t
‖2
)
, (86)

where

K2 = (1− 2∆t(1 + g2
max))−1.

Using the bounds given Lemma A.2 and (65) in (86), we obtain

‖F 2‖2 ≤ K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt+ 2∆tg2

Lip‖η1‖2
∞

(
Ch2k+2‖u0‖2

k+1

+ 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + (2 + 6

β2
max

β2
min

)Ch2k+2‖u2‖2
k+1

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1 +K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1

+ 4C∆tg2
Lip‖η2‖2

∞h
2k+2‖u0‖2

k+1 + 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1)

+
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2 + 8(∆t)3g2

Lip‖η2‖2
∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))
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+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1)

+
4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2 +
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

)
. (87)

Inserting (87) in (77), yields

‖E2‖2 ≤ 3
β2

Lip

β2
min

‖u2 + b2‖2
∞‖η2,s

h − S(η2
h)‖2 + 3C

β2
max

β2
min

h2k+2‖u2‖2
k+1

+ 6
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞

(
Ch2m+2‖η2‖2

m+1 +K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt

+ 2∆tg2
Lip‖η1‖2

∞

(
Ch2k+2‖u0‖2

k+1 + 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2

+ (2 + 6
β2

max

β2
min

)Ch2k+2‖u2‖2
k+1 + 12

β2
Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1

+K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 + 4C∆tg2

Lip‖η2‖2
∞h

2k+2‖u0‖2
k+1

+ 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1) +
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 8(∆t)3g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))

+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1) +

4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2

+
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

))
. (88)

Combining the bounds

‖u2 − u2
h‖2 ≤ 2(‖E2‖2 + ‖Λ2‖2), ‖η2 − η2

h‖2 ≤ 2(‖F 2‖2 + ‖ψ2‖2),

with (88), results in the estimates

‖u2 − u2
h‖2 ≤ (6

β2
max

β2
min

+ 2)Ch2k+2‖u2‖2
k+1 + 6

β2
Lip

β2
min

‖u2 + b2‖2
∞‖η2,s

h − S(η2
h)‖2
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+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞

(
Ch2m+2‖η2‖2

m+1 +K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt

+ 2∆tg2
Lip‖η1‖2

∞

(
Ch2k+2‖u0‖2

k+1 + 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2

+ (2 + 6
β2

max

β2
min

)Ch2k+2‖u2‖2
k+1 + 12

β2
Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1

+K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 + 4C∆tg2

Lip‖η2‖2
∞h

2k+2‖u0‖2
k+1

+ 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1) +
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 8(∆t)3g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))

+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1) +

4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2

+
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

))
. (89)

and

‖η2 − η2
h‖2 ≤ 2K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt+ 2∆tg2

Lip‖η1‖2
∞

(
Ch2k+2‖u0‖2

k+1

+ 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + (2 + 6

β2
max

β2
min

)Ch2k+2‖u2‖2
k+1

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1 +K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1

+ 4C∆tg2
Lip‖η2‖2

∞h
2k+2‖u0‖2

k+1 + 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1)

+
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2 + 8(∆t)3g2

Lip‖η2‖2
∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))

+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1)

+
4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2 +
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

)
+ 2Ch2m+2‖η2‖2

m+1. (90)
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Step 3

Define u1
h = ŭ2

h, η
1
h = η̆2

h and note that

‖u1 − u1
h‖2 ≤ 2‖u1 − ŭ2‖2 + 2‖ŭ2 − ŭ2

h‖2

≤ 2‖u1 − ŭ2‖2 + ‖u2 − u2
h‖2 + ‖u0 − u0

h‖2,

‖η1 − η1
h‖2 ≤ 2‖η1 − η̆2‖2 + ‖η2 − η2

h‖2 + ‖η0 − η0
h‖2. (91)

In view of Lemma A.2 and the previously computed bounds (89), (90) and (91), we

obtain

‖u1 − u1
h‖2 ≤ (6

β2
max

β2
min

+ 2)Ch2k+2‖u2‖2
k+1 + 6

β2
Lip

β2
min

‖u2 + b2‖2
∞‖η2,s

h − S(η2
h)‖2

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞

(
Ch2m+2‖η2‖2

m+1 +K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt

+ 2∆tg2
Lip‖η1‖2

∞

(
Ch2k+2‖u0‖2

k+1 + 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2

+ (2 + 6
β2

max

β2
min

)Ch2k+2‖u2‖2
k+1 + 12

β2
Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1

+K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 + 4C∆tg2

Lip‖η2‖2
∞h

2k+2‖u0‖2
k+1

+ 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1) +
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2

+ 8(∆t)3g2
Lip‖η2‖2

∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))

+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1) +

4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2

+
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

))
+

2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2 + Ch2k+2‖u0‖2

k+1.

(92)
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and

‖η1 − η1
h‖2 ≤ 2K2

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1 dt+ 2∆tg2

Lip‖η1‖2
∞

(
Ch2k+2‖u0‖2

k+1

+ 6
β2

Lip

β2
min

‖u2 + b2‖2
∞‖π2,s

h − S(π2
h)‖2 + (2 + 6

β2
max

β2
min

)Ch2k+2‖u2‖2
k+1

+ 12
β2

Lip

β2
min

|Ω|C2
s‖u2 + b2‖2

∞
(
Ch2m+2‖η2‖2

m+1 +K1

(
Ch2m+2

∫ t2

t0

‖ηt‖2
m+1

+ 4C∆tg2
Lip‖η2‖2

∞h
2k+2‖u0‖2

k+1 + 2C∆t g2
maxh

2m+2(‖η2‖2
m+1 + ‖η0‖2

m+1)

+
(∆t)3

6
sup

t0≤t≤t2
‖ηtt(·, t)‖2 + 8(∆t)3g2

Lip‖η2‖2
∞ sup
t0≤t≤t2

‖(u + b)t(·, t)‖2
))

+
2

3
(∆t)4 sup

t0≤t≤t2
‖utt(·, t)‖2

)
+ 4C∆tg2

maxh
2m+2(‖η2‖2

m+1 + ‖η0‖2
m+1)

+
4

3
g2

max(∆t)5 sup
t0≤t≤t2

‖ηtt(·, t)‖2 +
1

40
(∆t)5 sup

t0≤t≤t2
‖ηttt(·, t)‖2

)
+ 2Ch2m+2‖η2‖2

m+1 +
2

3
(∆t)4 sup

t0≤t≤t2
‖ηtt(·, t)‖2 + Ch2m+2‖η0‖2

m+1. (93)

Consequently, estimates (89), (90), (92) and (93), yield the optimal bound

‖un − unh‖2
X + ‖ηn − ηnh‖2 ≤ C (∆t)4 + C

(
h2k+2 + h2m+2

)
for n = 0, 1, 2.
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