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Abstract

Over the past century the electric power industry has evolved to support the

delivery of power over long distances with highly interconnected transmission systems.

Despite this evolution, some remote communities are not connected to these systems.

These communities rely on small, disconnected distribution systems, i.e., microgrids,

to deliver power. Power distribution in most of these remote communities often

depend on a type of microgrid called “off-grid microgrids”. However, as microgrids

often are not held to the same reliability standards as transmission grids, remote

communities can be at risk to experience extended blackouts.

Recent trends have also shown an increased use of renewable energy resources

in power systems for remote communities. The increased penetration of renewable

resources in power generation will require complex decision making when designing

a resilient power system. This is mainly due to the stochastic nature of renewable

resources that can lead to loss of load or line overload during their operations.

In the first part of this thesis, we develop an optimization model and

accompanying solution algorithm for capacity planning and operating microgrids

that include N-1 security and other practical modeling features (e.g., AC power flow

physics, component efficiencies and thermal limits). We demonstrate the effectiveness

of our model and solution approach on two test systems: a modified version of the

IEEE 13 node test feeder and a model of a distribution system in a remote Alaskan
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community.

Once a tractable algorithm was identified to solve the above problem, we

develop a mathematical model that includes topology design of microgrids. The

topology design includes building new lines, making redundant lines, and analyzing

N-1 contingencies on generators and lines. We develop a rolling horizon algorithm to

efficiently analyze the model and demonstrate the strength of our algorithm in the

same network.

Finally, we develop a stochastic model that considers generation uncertainties

along with N-1 security on generation assets. We develop a chance-constrained model

to analyze the efficacy of the problem under consideration and present a case study

on an adapted IEEE-13 node network. A successful implementation of this research

could help remote communities around the world to enhance their quality of life by

providing them with cost-effective, reliable electricity.
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Chapter 1

Introduction

There are many remote communities within the United States of America

(US) that are either isolated from the national power grid and/or have high costs of

electricity generation and distribution due to the high cost of portable fuel storage

and transportation [83]. According to the Electricity Monthly Update (EMU) reports

from U.S Energy Information Administration (EIA), the states of Alaska and Hawaii

have the highest retail cost of electricity [94]. Remote communities often have a

network system of distributed energy resources (DER) that consist of small power

generating and/or storing systems like diesel generators, small hydro-electric power

stations, batteries, and wind turbines that supply power to the communities. Such

networks of distributed power systems that are not connected to the national power

grid are typically known as “offgrid microgrids”.

The generation, transmission, and distribution of electrical energy are

vital for the economic development of any country. With the advent of rapid

technological advances in power electronics, power systems now involve complex

interconnected networks wherein power is generated at specific locations, transmitted

over long distances, and then distributed to customers at local neighborhoods. This
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interconnection of powers systems, also known as grids, provides electricity for houses,

businesses, and industries. One of the major drawbacks for these grids is that

whenever a part of the grid is affected by either maintenance or an outage, the

entire grid is impacted. One such example of the failure of an entire grid is the power

blackout in the northeast US in 2003. As utility companies and consumers were not

prepared for a blackout on such a large scale, they started to think about alternate

sources of energy that are reliable, secure, efficient, and economical. This is when the

idea of microgrids came into being.

Microgrids are small networks of energy sources that serve small localities that

are composed of generating devices like distributed generators, batteries, and solar

panels. These microgrids are often also connected to the main grid and can act as an

auxiliary source of energy when needed. As with any new technology option, decision-

makers must understand the economic impact of installing a system that provides an

alternative source of energy .

In addition to facilitating energy independence in rural communities,

microgrids have the potential for improving resilience and reliability in the bulk

transmission systems. Resilience is defined as the ability of power system to withstand

large-scale, low-frequency events like hurricanes, avalanches, wildfires, earthquakes

etc. [31]. Further, the reliability of a power system is defined as its ability to provide

uninterrupted power to its consumers even when the network is impacted by sudden

perturbation [15]. During large-scale, extreme events such as Superstorm Sandy [56],

large parts of the northeastern US’s bulk transmission system were de-energized,

leaving many communities without power. Microgrids with distributed generation

would have allowed these communities to supply power to their customers, where

they installed. However, the development and solution of mathematical models that

design and operate cost effective and resilient off-grid microgrids pose new challenges
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in terms of problem complexity.

1.1 Motivation

Many cities in Alaska have experienced power outages due to earthquakes,

avalanches, and other similar disasters [29]. These communities could face a lot of

danger when the power supply is disrupted. There are many remote communities in

the US that are isolated from the national power grid because of geopolitical barriers

(e.g., islands like Hawaii and Puerto Rico, and Alaska, which is not a part of the

contiguous landmass of the US), who seek to achieve energy independence. These

communities often encounter high costs of electricity generation and distribution due

to their high costs for energy generation, portable fuel storage and transportation

[83].

According to Alaska Electric Light and Power (AELP), approximately 47% of

the state’s power outages in 2015 were attributed to heavy snow, ice storms, and heavy

winds [24]. Extreme climates can also cause trees and other vegetation to fall on power

lines in inaccessible areas. Further, many cities in Alaska have had power outages

due to earthquakes, avalanches and other similar disasters [29]. These communities

clearly face dangers when their power supply is disrupted. One such example would

be the inability to operate a portable oxygen generator for patients or people with

breathing difficulties in high altitude areas. In fact, people in New Mexico often

are forced to connect their portable oxygen generators to their automobile’s power

outlets to charge the devices during power outages. The implementation of secure,

resilient, and economical power generation and transmission networks to these local

communities can help improve people’s quality of life.

Another motivation for microgrid research is that continuous supply of power
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is still a dream for many underdeveloped countries. According to Dr. Akinwumi

Adesina, the President of the African Development Bank (AfDB), a new plan to

provide access to electricity to 205 million people in Africa will enhance the economic

development of the whole continent [87]. This new plan calls for the implementation

of a large number of both on-grid and off-grid microgrids that use renewable sources

of energy. This recommendation for off-grid microgrid usage by the AfDB is a strong

endorsement for decentralized power generation techniques. Quality and reliable

energy sources will not only help the industrialization of Africa, but also help to

provide clean energy to households for cooking and other purposes. With enormous

political will and with the help of modern management techniques, the cost-effective

and efficient electrification of such underdeveloped countries can be a reality.

1.2 Terminology

Remote communities often have a network of DER that consist of small power

generating devices like diesel generators, small hydro-electric power stations, wind

turbines and/or power storing devices (e.g., batteries) that store and supply power

for their communities. Such networks of distributed power systems that are not

connected to the national grid are typically known as off-grid microgrids [83]. An

illustrative image of an off-grid microgrid is shown in Figure 1.1.

The use of microgrids will not only help customers to reduce their energy

costs, but also make them energy independent. According to Kempener et al. [49],

the implementation of off-grid microgrids can enhance the quality of life for more than

1 billion people who currently have no access to a continuous supply of electricity.

The authors also claim that off-grid microgrids are more appropriate for remote

communities because of their geographical limitations and the difficulties associated

4



Figure 1.1: An illustration of off-grid microgrid
Source: http://energy.gildemeister.com/en/utilise/off-gridsolutions

with extending the national grid to these areas.

Generation assets include various devices or technologies that are used to

generate and/or store power. Windmills, photovoltaic (PV) panels, hydro-electric

generators, and diesel generators are all examples of generation assets.

Wind generation systems convert wind energy into electrical energy using

generators that are connected to windmills. The wind rotates the wheel of a wind

turbine which in turn rotates the coils of the generator to produce electricity. The

typical parametric data that are required for modelling a wind system includes the

wind speed, power output of generators, losses across the system, and the maximum

capacity of the generators that can be installed. Hydro-power plants use the

potential energy of stored water to rotate generators to produce electricity. The

input-output characteristics of the generators used in hydro-power plants are the

typical data that are required for mathematical modeling. PV panels are devices

that convert solar energy into electrical energy. They generate direct current (DC)

electricity which is normally fed to inverter devices that convert DC to alternating

5
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current (AC). Typically, the data that are required to model a PV panel include

the power and voltage output from the panel, size of the panel, panel efficiency, and

power output degradation over time. All technologies mentioned above are renewable

sources of energy.

A diesel generator uses diesel as its main fuel to run an engine which is

connected to it. The diesel burns inside the engine and converts this energy into

mechanical energy which is used to rotate an alternator that generates electric power.

Diesel generators typically have minimum up-time, minimum down-time, a ramp-up

rate, and a ramp-down rate associated with them. Up-time is the time that the

generator should be in the on position and generating power. Down-time is the

time that a generator can be in an off position. Finally, ramp-up rate is the rate

at which the generator reaches its maximum capacity once it is turned on. These

are the typical data and input-output characteristics that are required for modeling

generators in mathematical models.

For certain devices like PV panels that generate energy as DC, auxiliary devices

are required to convert the energy to AC for power transmission. Inverters are

devices that convert DC from PV panels or batteries to AC. The losses calculated

from the input and output characteristic curves are the only data that is required for

modeling inverters. Batteries are energy storage devices that are used to generate

power when required. The maximum capacity of the battery, rate of charging, and

rate of discharging are some of the parameters that are required for modeling these

components.

N-1 Secure systems are those power systems that can satisfy all demand in

the network even when one of the network’s components fail. “N” is the total number

of components in the system, like generation units and transmission lines. The “-1”

part of N-1 pertains to the failure of one of these components.
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1.3 Problem Statement

In this dissertation, we develop a mixed-integer, quadratically constrained,

quadratic program (MIQCQP) that minimizes capacity installation cost and

operations cost of an off-grid (or disconnected) microgrid. Without connections to

local grids, reliability is crucial for such disconnected microgrids. Thus, we also

introduce N-1 security constraints to our planning problem. The MIQCQP also

models the linearized dist-flow (LinDistFlow) [36] ac physics of distribution systems

over a full day (in 15 minute intervals) and includes capacity expansion options such as

storage and energy sources. We also model the nonlinear efficiency curves associated

with these devices using a piecewise linear approximation. We develop a scenario-

based decomposition (SBD) algorithm to solve this problem and use both the IEEE

13 node test feeder [50] and a model of a remote community in Alaska to test our

proposed approach.

In short, the key contributions of this research are as follows:

• To the best of our knowledge, we develop the first model of distribution system

planning that simultaneously includes a nonlinear approximation of ac physics,

time-extended operations, capacity expansion, N-1 reliability, and power device

efficiencies.

• We include N-1 reliability considerations on generator and line contingencies.

• We develop algorithms that efficiently solve this problem.

• We validate our methods using real system data.

• We model and analyze stochastic power injections in these networks caused by

the inclusion of renewable energy sources.
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The rest of this dissertation is organized as follows: Chapter 2 introduces

the deterministic model to optimally design and operate an offgrid microgrid by

considering contingencies for generation assets. Chapter 3 expands the deterministic

model to consider contingencies for both generators and lines in the network. Chapter

4 introduces a model for uncertainty in power generation due to wind and solar

generation assets. This stochastic model helps determine a strategic plan to design

and operate an off-grid microgrid. We conclude our findings and discuss the efficiency

of our solution methodologies in Chapter 5, then offer directions for future research.
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Chapter 2

Capacity Planning, Operational

Planning and N-1 Security

2.1 Introduction

“Energy independence” has been a common topic in most presidential elections

in the United States (US) since 1973 [98]. Energy independence can be defined

as the state in which national policy decisions on energy generation, transmission,

and distribution are made without being influenced by any other external energy

producing entities [40]. There are many county governments and local communities

in rural areas that need reliable, resilient, and sustainable electrification in addition

to reduced dependence on fossil fuel to generate electricity. For these communities,

microgrids integrated with local renewable energy sources like solar, wind, and stored

water in dams can help to reduce dependence on fossil fuel. The integration of

additional generation capabilities could also help these communities to supplement

power generation by fossil-fuel based conventional generators [83].

In addition to facilitating energy independence in rural communities,
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microgrids have the potential for improving resilience and reliability in the bulk

transmission systems. During large-scale, extreme events, such as Superstorm Sandy

[56], large parts of the bulk transmission system were de-energized, leaving many

communities without power. Microgrids with distributed generation would allow

these communities to supply power to their customers. Both of these situations

present new challenges in reliability in the operation of distribution-scale systems.

In this work, we develop a mixed-integer, quadratically constrained, quadratic

programming (MIQCQP) problem that minimizes capacity installation cost and

operations cost of an off-grid (or disconnected) microgrid. Without connections to

local utility grids, reliability is crucial for such disconnected microgrids. Thus, we

introduce N-1 security constraints to our planning problem (Figure 2.1). This flow

chart describes the Stages of the problem. At the top are the technology investment

variables. The investments are applied at each operating time point (second level

of the diagram). The operating decisions are connected via coupling constraints like

ramping requirements. Each operating decision is further constrained by contingency

requirements in the third stage (the figure only shows contingency constraints for

t = 1.) The MIQCQP also models the linearized dist-flow (LinDistFlow) [36] ac

physics of distribution systems over a full day (in 15 minute intervals) and includes

capacity expansion options such as storage and energy sources. We also model the

nonlinear efficiency curves associated with these devices using a piecewise linear

approximation.

We develop a scenario-based decomposition (SBD) algorithm to solve this

problem and use both the IEEE 13 node test feeder and a model of a remote

community in Alaska to test our approach. In short, the key contributions of this

research are:
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Operating decisions

Constraints
• Power flow physics
• Thermal limits
• Voltage limits
• Generator limits
• Energy efficiency curves

Technology investment decisions Constraints
• Investment of technology to nodes
• Capacity constraints

Constraints
• Generator up time and down time
• Battery state of charge at time t-1
• Generator ramp-up/down constraints

Time coupling

Operating decisions Operating decisions Operating decisions
t=1 t=2 t= T-1 t= T

Generator 
Contingency 1 
decisions and 
constraints

Generator 
Contingency 2 
decisions and 
constraints

Generator 
Contingency 
SG decisions 
and constraints

Generator Contingency

Figure 2.1: Stages of problem development

This flow chart describes the stages of the problem. At the top are the technology
investment variables. The investments are applied at each operating time point
(second level of the diagram). The operating decisions are connected via coupling
constraints like ramping requirements. Each operating decision is further constrained
by contingency requirements in the third stage (the figure only shows contingency
constraints for t = 1)

• To the best of our knowledge, the first model of distribution system planning

that simultaneously includes a nonlinear approximation of ac physics, time-

extended operations, capacity expansion, N-1 reliability, and power device

efficiencies.

• An algorithm that efficiently solves this problem.

• Demonstration on real system data and empirical validation of the results.

2.2 Literature Review

The most similar work to this research is the decision support tool DER-

CAM that was developed by Lawrence Berkley National Lab (LBNL). DER-CAM is

11



a decision support tool for decentralized energy systems that is used to plan, install,

and operate various distributed energy resources (DER) like distribution generators

for buildings and microgrids [17]. DER-CAM is used as a guide to determine

technology installations, provide details about operational schedules at each time,

and assess the market potential of various technologies for various communities. Baily

et al. conducted the first study on modeling real-world installations of microgrids

by applying the DER-CAM [9]. In many ways, our model is a direct extension of

DER-CAM, with a number of key enhancements. In the earliest paper associated

with DER-CAM [63], the model focused on designing economical microgrids that

satisfy customer demands and power flow physics. The model did not include security

constraints, a significant source of computational complexity. In related work [81],

authors extended the DER-CAM model and included decision variables associated

with DER technology installation, DER capacity, operating status over time, and

the cost of electricity. [64] later expanded the model to include an assessment of

distribution network reliability. However, they did not include siting of resources

or contingencies. Finally, Siddiqui et al. [86] discusses various advantages and

applications of a localized network of DER.

A common thread in existing work has been a lack of contingency modeling. N-

1 contingencies analysis has been studied in the context of transmission systems [95],

[70, 21, 88, 72]. This is a rich area of study such as generalizations to unscheduled

flows [69]. However, there is only limited work on N-1 (and other types of) security

in distribution systems. Hayashi and Matsuki [43] discuss a tabu-search algorithm

to determine optimal configuration of a distribution system with N-1 security. The

model determines the status of switches, whether it is active or inactive, that connects

distribution generators (DG) to the grid.

Concurrent work [66] in DER-CAM strongly motivates the need for N-1

12
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security with a detailed case study. That paper includes much of the modeling detail

included here and uses a linear approximation of the ac physics. Here, we address

the scalability issues raised in [66], strengthen the approximation of ac physics with

a convex quadratic formulation, and evaluate the quality of solutions obtained with

the approximation.

Similar to N-1 security in distribution systems, there is limited work on

models that include efficiencies of all components in the system. Bischi et al. [16]

present a mixed integer linear program (MILP) model for planning the operation

of combined cooling heating and power (CCHP) energy systems. They initially

modeled the component efficiencies as non-linear constraints and then used a piecewise

linearized approximation of the non-linear equations. Bahramirad et al. [8] develop

a mathematical model to determine optimal sizing of an energy storage system and

include constraints on the reliability of the system. They calculated the reliability

index as the expected load curtailment in each reduced scenario and constraints are

added to limit the loss of load expectation to certain threshold value.

Apart from developing mathematical models for designing and operating

microgrids, there are several models that utilize the results of simulations. Hafez

and Bhattacharya [42] develop a simulation model for the optimal design, planning,

sizing, and operation of a hybrid renewable energy system (HRES). The authors use

Homer® to select the capacity of generation and storage resources. More generally,

Bahramara et al. [7] provide a list of problems that uses Homer software to solve

design and operation of HRES. Bie et al. [13] use a non-sequential Monte Carlo

simulation method to evaluate the reliability of distribution systems by considering

multiple contingencies in the network. Table 2.1 lists the most related papers to our

work and highlights key differences. Based on Table 2.1, we believe this research is

the first to combine N-1 security with the design and operation of off-grid microgrids.
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The rest of the chapter is organized as follows: Section II introduces the

mathematical formulation for the design and operation of off-grid microgrids with

resource siting, power-flow physics, line limits, operational constraints, resource limits

and storage efficiency. Section II also discusses the formulation of N-1 security

constraints. Section III presents our algorithm for solving the model efficiently.

Numerical results on two case studies are discussed in Section IV. Finally, Section V

presents conclusions and future directions of research.

2.3 Mathematical Formulation

In this section we introduce the model for operating and planning microgrids

for N-1 security. A power system is defined by a graph structure, where nodes

correspond to buses and edges correspond to lines and transformers. Each bus

may have energy resources that facilitate the production and transfer of power.

Energy resources are sized in continuous or discrete capacity increments. For

example, solar panels and storage resources, like batteries, are typically modeled

as continuous capacity resources, whereas diesel and wind generators are modeled as

discrete capacity resources. From an operational standpoint, resources are operated

continuously (solar panels, hydro-electric generators, and wind turbines) or can

be turned on or off at discrete time intervals (diesel generators). In short, most

storage resources are modeled continuously and are classified as continuous operation

resources. Generator resources are modeled continuously or discretely depending

on their operation requirements. Each bus has a parametrized maximum number

of continuous and discrete resources that may be installed. Each discrete resource

is assigned to a specific slot (for contingency modeling) at a bus. Slots are used

only for discrete resources to identify the number of discrete technology options
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that can be installed at a bus. We assume that generators that are at nodes with

greater than one slot are installed in descending order of their maximum capacity.

This assumption drastically increases the computational efficiency by avoiding a

combinatorial explosion of possible installations at a node.

2.3.1 Model Parameters and Variables

Sets

N set of nodes (buses), indexed by i

E set of existing edges (lines and transformers), indexed by ij

En set of new edges (lines and transformers), indexed by ij

NC ⊆ N set of nodes with continuous resources, indexed by i

NCB ⊆ N set of nodes with continuous resources with storage capabilities,

indexed by i

ND ⊆ N set of nodes with discrete resources, indexed by i

NG(i) neighborhood of bus i, indexed by j

K(i) number of slots at bus i, indexed by ki

T set of time periods, indexed by t

C set of continuous resource options, indexed by c

CD ⊆ C set of continuous resource options with discrete operation, indexed by

c

CC ⊆ C set of continuous resource options with continuous operation, indexed

by c
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CB ⊆ CC set of continuous battery resource options, indexed by c

D set of discrete resource options, indexed by d

DD ⊆ D set of discrete resource options with discrete operation, index by d

DC ⊆ D set of discrete resource options with continuous operation, indexed by

d

A = C ∪D set of all resource options, indexed by a

S set of scenarios for N-1 security analysis, indexed by s

Parameters

FCa fixed cost for resource a ∈ A, ($)

VCa variable cost for resource a ∈ A, ($/MW)

OCa,0 fixed operational cost for resource a ∈ A, ($)

OCa,1 linear operational cost for resource a ∈ A, ($/MW)

OCa,2 quadratic operational cost for resource a ∈ A, ($/(MW)2)

LCij installation cost for line ij ∈ En, ($)

UTd , DTd minimum up-time and down-time for resource d ∈ D, (time-step)

RUd , RDd ramp up and ramp down rate for resource d ∈ D, (MW/time-step)

T̃ij apparent power thermal limit on line ij ∈ E , (MVA)

Pdti,Qdti Active and reactive power demand at bus i ∈ N at time t ∈ T ,

(MW,MVAr)

Pgdd,Qgdd maximum active and reactive power generated by a discrete resource

d ∈ D at time t ∈ T , (MW,MVAr)
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Pgd
d
,Qgd

d
minimum active and reactive power generated by a discrete resource

d ∈ D at time t ∈ T , (MW)

Sscc maximum energy storage capacity of the battery, (MVA)

Vi,Vi Squared voltage lower and upper bound at bus i ∈ N , ((kV )2)

Mc maximum capacity for continuous resource, (MVA)

P Number of pieces for piecewise linearization

Lpa Stand-by loss (y intercept) of a resource a ∈ A for each piecewise

function p ∈ {1, .., P}, (MW)

ηpa Marginal efficiency at πap% of maximum rated power for each piece

p ∈ {1, .., P}, (%)

µ Penalty factor for the power not served

Rij,Xij Resistance and reactance of line ij ∈ E , (kΩ)

∆t time-step, (hr)

Cnum Maximum number of continuous resources at a bus

Binary decision variables: Discrete technology

xti,d,k active/inactive status for generator d ∈ D at node i ∈ ND for slot

k ∈ Ki at time t ∈ T

yti,d,k start-up status for generator d ∈ D at node i ∈ ND for slot k ∈ Ki at

time t ∈ T

wti,d,k shut-down status for generator d ∈ D at node i ∈ ND for slot k ∈ Ki

at time t ∈ T
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Bgdi,d,k status indicator if discrete resource of type d ∈ D is built at node

i ∈ ND for slot k ∈ Ki

Binary decision variables: Continuous resources

Bgci,c status indicator if continuous resource of type c ∈ C is built at node

i ∈ NC

Continuous decision variables: Discrete resources

Pgdti,d,k ac active power generation during time t ∈ T for slot k ∈ K at node

i ∈ N using discrete resource d ∈ D, (MW)

Qgdti,d,k ac reactive power generation during time t ∈ T for slot k ∈ K at node

i ∈ N using discrete resource d ∈ D, (MVAr)

Pgd inti,d,k ac active power generation before losses during time t ∈ T for slot

k ∈ K at node i ∈ N using discrete resource d ∈ D, (MW)

Continuous decision variables: Continuous resources

Pgcmax
i,c ,Qgcmax

i,c maximum capacity of apparent power generation for continuous

resource, c ∈ C \ CB for node i ∈ N , (MW,MVAr)

Smax
i,c maximum capacity of apparent power generation for continuous

battery resource, c ∈ CB for node i ∈ N , (MVA)

Pgcti,c,Qgcti,c ac apparent power generation during time t ∈ T at node i ∈ N using

continuous resource c ∈ C, (MW,MVAr)

Pgc inti,c ac active power generation before losses during time t ∈ T at node

i ∈ N using continuous resource c ∈ C, (MW)
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Sscti,b Energy stored (state of charge) in the continuous resource battery

c ∈ CB at time t ∈ T at node i ∈ N , (MW-hr)

Ndki,k capacity of a slot at a node, i ∈ N for slot k ∈ K, (MW)

Continuous decision variables: Others

Pt
ij,Q

t
ij Active and reactive power flow though edge ij ∈ E at time t ∈ T ,

(MW,MVAr)

V t
i Squared voltage at node i ∈ N at time t ∈ T , ((kV )2)

Pnssi,t,Qnssi,t apparent power not served at node i ∈ N at time t ∈ T due to

contingency scenario s ∈ S, (MW,MVAr)

2.3.2 Mathematical Model

The objective function (2.1a) minimizes the total installation and operation

cost of energy resources. The installation costs for continuous resources consist of a

fixed cost and a sizing (variable) cost while the installation cost for discrete resources

consist only of a fixed cost. These costs are equal to zero when a resource is already

present. The operating costs of resources are modeled with quadratic functions of the

form CF = aP 2 + bP + c [77], where a, b and c are cost coefficients.

min
∑
i∈NC

(∑
c∈C

(Bgci,c)(FCc) +
∑

c∈C\CB

(Pgcmax
i,c )(VCc)+

∑
c∈CB

(Smax
i,c )(VCc)

)
+
∑
i∈ND

∑
d∈D

∑
k∈Ki

(Bgdi,d,k)(FCd)+

∑
t∈T

∑
i∈NC

∑
c∈C\CB

(
(Pgc inti,c)

2(OCc,2) + (Pgc inti,c)(OCc,1) + (Bgci,c)(OCc,0)
)
+
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∑
t∈T

∑
i∈ND

∑
d∈D

∑
k∈Ki

(
(Pgd inti,d,k)

2(OCd,2) + (Pgd inti,d,k)(OCd,1) + (xti,d,k)(OCd,0)
)

(2.1a)

2.3.3 Power Flows

Nodal flow balance is enforced by constraints (2.2a) and (2.2b). Constraints

(2.2c) ensure that line thermal limits are enforced during operations. The linearized

version of ac power flow physics is modeled in constraints (2.2d). For computational

tractability, we use the single-phase, LinDistFlow equations of [36, 12] (the model is

convex-quadratic when LinDistFlow constraints are added). We show in our empirical

results that the approximations are reasonable to use here. Finally, voltage bounds

are enforced using constraints (2.2e).

∑
c∈C

(Pgcti,c) +
∑
d∈D

∑
k∈Ki

(Pgdti,d,k)− (Pdti) =
∑
ij∈E

j∈NG(i)

Pt
ij ∀ i ∈ N, t ∈ T (2.2a)

∑
c∈C

(Qgcti,c) +
∑
d∈D

∑
k∈Ki

(Qgdti,d,k)− (Qdti) =
∑
ij∈E

j∈NG(i)

Qt
ij ∀ i ∈ N, t ∈ T (2.2b)

(Pt
ij)

2 + (Qt
ij)

2 ≤ (T̃ij)
2 ∀ ij ∈ E , t ∈ T (2.2c)

V t
j = V t

i − 2(RijP
t
ij + XijQ

t
ij) ∀ ij ∈ E , t ∈ T (2.2d)

(Vi) ≤ V t
i ≤ (Vi) ∀ i ∈ N, t ∈ T (2.2e)

2.3.4 Resource Limits

Constraints (2.3a) through (2.3c) ensure that the output of continuous

resources is limited by the installed capacity. Constraint (2.3d) limits the number

of continuous technologies installed per bus. Similarly, constraints (2.3e) and (2.3f)
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bound the output of discrete resources with continuous operation.

Pgcti,c ≤ Pgcmax
i,c ≤ Bgci,cMc ∀ i ∈ NC , c ∈ C \ CB, t ∈ T (2.3a)

Qgcti,c ≤ Qgcmax
i,c ≤ Bgci,cMc ∀ i ∈ NC , c ∈ C, t ∈ T (2.3b)

Smax
i,c ≤ Bgci,cMc ∀ i ∈ NCB, c ∈ CB (2.3c)∑
c∈C

Bgci,c ≤ Cnum ∀ i ∈ NC (2.3d)

Pgd
d
Bgdi,d,k ≤ Pgd inti,d,k ≤ PgddBgdi,d,k ∀ i ∈ ND, d ∈ DC , k ∈ Ki, t ∈ T (2.3e)

Qgd
d
Bgdi,d,k ≤ Qgdti,d,k ≤ QgddBgdi,d,k ∀ i ∈ ND, d ∈ DC , k ∈ Ki, t ∈ T (2.3f)

2.3.5 Resource Slots

Constraints (2.4a) are assignment constraints that ensure each node’s slot

contains at most one discrete resource. Constraints (2.4b) and (2.4c) are symmetry-

breaking constraints that order slot assignments by resource capacity.

∑
d∈D

Bgdi,d,k ≤ 1 ∀ i ∈ ND, k ∈ Ki (2.4a)

Ndki,k =
∑
d∈D

PgddBgdi,d,k ∀ i ∈ ND, k ∈ Ki (2.4b)

Ndki,k ≥ Ndki,k+1 ∀ i ∈ ND, k ∈ Ki, k < |Ki| (2.4c)

2.3.6 Discrete Operation of Resources

Constraints (2.5a) and (2.5b) link resource output to the active or inactive

status of the resource. The resource status is linked to the installation choice through

constraints (2.5c). Constraints (2.5d) then ensure that activated discrete resources are

active for a minimum time period. Similarly, constraints (2.5e) ensure deactivated
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resources are inactive for a minimum time period. This is a pessimistic model of

generator operations that does not allow the boundary conditions at t = 0 or t = T

to relax the requirements on UT or DT . Without loss of generality, UT and DT

could be adjusted at the boundaries to support more optimistic models of generator

operations at the boundaries of the model. Constraints (2.5f) and (2.5g) link the

resource indicator variables x, y, and w together. Constraints (2.5h) and (2.5i) enforce

resource ramping rates between time periods. Finally, constraints (2.5a) through

(2.5i) are applied for all i ∈ ND, d ∈ DD, k ∈ Ki, t ∈ T .

Pgd
d
xti,d,k ≤ Pgd inti,d,k ≤ Pgddx

t
i,d,k (2.5a)

Qgd
d
xti,d,k ≤ Qgdti,d,k ≤ Qgddx

t
i,d,k (2.5b)

xti,d,k ≤ Bgdi,d,k (2.5c)

t+(min(UTd,T−t))∑
j=t

xji,d,k ≥ (UTd)y
t
i,d,k (2.5d)

t+(min(DTd,T−t))∑
j=t

xji,d,k ≤ (DTd)(1− wti,d,k) (2.5e)

xti,d,k = xt−1
i,d,k + yti,d,k − wti,d,k (2.5f)

yti,d,k + wti,d,k ≤ 1 (2.5g)

RDd ≥ Pgdt−1
i,d,k − Pgdti,d,k − Pgddw

t
i,d,k (2.5h)

RUd ≥ Pgdti,d,k − Pgdt−1
i,d,k − Pgddy

t
i,d,k (2.5i)

2.3.7 Storage

Apparent power limits on charging and discharging are stated in constraints

(2.6a). Constraints (2.6b) link the state of charge to energy extraction, while

constraints (2.6c) bounds storage charging and discharging with maximum charging
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and discharging capacity. The charging and discharging constraints are modelled

using the constraints presented by Iordanis et al. [54]. Constraints (2.6a) through

(2.6c) are applied to all i ∈ NCB, c ∈ CB, t ∈ T .

(Pgcti,c)
2 + (Qgcti,c)

2 ≤ (Smax
i,c )2 (2.6a)

Sscti,c = Ssct−1
i,c − Pgc inti,c∆t (2.6b)

0 ≤ Sscti,c ≤ Sscc (2.6c)

2.3.8 Efficiencies

Fig. 2.2 depicts an example of a piecewise linear convex relaxation of the

relationship between power generated in kW and output power in kW . The power

curves, efficiencies, and specifications of various resources are found in [18], [53],

[26], [1] and [75]. We parametrized these piecewise linear relaxed efficiency curve

using these specification sheets, however, these choices are provided as user input.

More specifically, the input-output relationship is a set of linear functions defined by

Pgc in

ηc2

ηc1

1
ηc3

1
ηc4

P
gc

Lc1

a

b

c
d

Lc2

Lc4

πc1Pgcmax πc2Pgcmax

Figure 2.2: An illustrative example of a piecewise linear efficiency curve
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constraints (2.7a) through (2.7c) that apply efficiency curves to continuous as well as

discrete resources at all nodes i ∈ N , time periods t ∈ T and slots k ∈ Ki for each

linearization of piecewise function p ∈ {1, .., P}. In our models we have used P = 4.

Pgcti,c ≤ ηpcPgc inti,c + Bgci,cL
p
c ∀ c ∈ C (2.7a)

Pgdti,d,k ≤ ηpdPgd inti,d,k + xti,d,kL
p
d ∀ d ∈ DC (2.7b)

Pgdti,d,k ≤ ηpdPgd inti,d,k + Bgdi,d,kL
p
d ∀ d ∈ DD (2.7c)

2.3.9 N-1 Security Constraints

In this section, we generalize our model to include security constraints.

Without loss of generality, we assume the contingencies are N-1 line and generator

contingencies1. Once again, without loss of generality, in this study we only include

continuous generators and the largest-capacity discrete generators in the security

analysis set.

2.3.10 Objective Function

In objective function (2.8a), we add variables that account for the amount of

power that is not served during each of the contingencies to the objective function

defined in (2.1a), where µ is a penalty variable that penalizes power-not-served (PNS).

Decision variables Pnssi,t, and Qnssi,t are unrestricted shedding variables that measure

the active and reactive power that are not served. Generally, Pns = 0 is the goal for

all contingencies.

min (2.1a) + µ

(∑
i∈N

∑
t∈T

∑
s∈S

(|Pnssi,t|+ |Qnssi,t|)
)

(2.8a)

1The formulation can include a subset of N-1 contingencies or include sets of N-K contingencies
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2.3.11 Power Flows During Contingencies

Contingency variables for power flow variables are indexed by s ∈ S, such as

Pgct,si,c, Pgdt,si,d,k, Pt,s
ij , Qgct,si,c, Qgdt,si,d,k, Qt,s

ij , and Vt,s
i . For N-1 security analysis, we add

new variables to the power flow constraints defined in (2.2a) and (2.2b) of the base

model. The power flow equations include PNS for active (Pnssi,t) and reactive power

(Qnssi,t) load shedding.

Pnssi,t +
∑
c∈C

(Pgct,si,c) +
∑
d∈D

∑
k∈Ki

(Pgdt,si,d,k)− (Pdti) =
∑
ij∈E

j∈NG(i)

Pt,s
ij

∀ i ∈ N, t ∈ T, s ∈ S (2.9a)

Qnssi,t +
∑
c∈C

(Qgct,si,c) +
∑
d∈D

∑
k∈Ki

(Qgdt,si,d,k)− (Qdti) =
∑
ij∈E

j∈NG(i)

Qt,s
ij

∀ i ∈ N, t ∈ T, s ∈ S (2.9b)

The thermal limit for security analysis is enforced using constraint (2.10a) and

LinDistFlow is enforced by constraints (2.10b). The voltage limits are constrained by

the constraints (2.10c). The constraints (2.10a) through (2.10c) are applied ∀ (i, j) ∈

N, ij ∈ E , t ∈ T, s ∈ S.

(Pt,s
ij )2 + (Qt,s

ij )2 ≤ (T̃ij)
2 (2.10a)

Vt,s
j = Vt,s

i − 2(RijP
t,s
ij + XijQ

t,s
ij ) (2.10b)

Vi ≤ Vt,s
i ≤ Vi (2.10c)
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2.3.12 Discrete Resources Contingency

Contingency scenario for the discrete resources is modeled using constraints

(2.11a). The indexes in constraints (2.11a) i, d, k, and t represent the contingent

scenario s ∈ S which includes generator d installed at slot k = 1 of node i that faults

during time t. The discrete resources and ramp factors (∆dd) are tied to the resources’

active/inactive variable xti,d,k, whereas discrete resources with continuous operation

are tied to the installation variable, Bgdi,d,k. Constraints (2.11b) through (2.11e) are

applied for all non-contingent discrete resources that belongs to i ∈ N, k ∈ Ki, t ∈ T .

Pgdt,si,d,k = 0, Qgdt,si,d,k = 0 ∀ d ∈ D (2.11a)

Pgdti,d,k −∆ddx
t
i,d,k ≤ Pgdt,si,d,k ≤ Pgdti,d,k + ∆ddx

t
i,d,k ∀ d ∈ DD (2.11b)

Qgdti,d,k −∆ddx
t
i,d,k ≤ Qgdt,si,d,k ≤ Qgdti,d,k + ∆ddx

t
i,d,k ∀ d ∈ DD (2.11c)

Pgdti,d,k −∆ddBgdi,d,k ≤ Pgdt,si,d,k ≤ Pgdti,d,k + ∆ddBgdi,d,k ∀ d ∈ DC (2.11d)

Qgdti,d,k −∆ddBgdi,d,k ≤ Qgdt,si,d,k ≤ Qgdti,d,k + ∆ddBgdi,d,k ∀ d ∈ DC (2.11e)

When there is a contingency for a discrete resource, all continuous resources can adjust

their power generation within certain limits defined by the ramp factor for those

resources. Constraints (2.12a) and (2.12b) ensure that the ramping for continuous

resources is within ramp limits (∆cc) and is applied for all i ∈ N, c ∈ C, t ∈ T, s ∈ S.

Pgcti,c −∆ccBgci,c ≤ Pgct,si,c ≤ Pgcti,c + ∆ccBgci,c (2.12a)

Qgcti,c −∆ccBgci,c ≤ Qgct,si,c ≤ Qgcti,c + ∆ccBgci,c (2.12b)
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2.3.13 Continuous Resources Contingency

Similar to discrete resource contingencies, continuous resource contingencies

are modeled using constraints (2.13a). The indexes in constraints (2.13a) i, c, and

t correspond to the contingent scenario s and generator c at node i that is faulted

during time period t. Constraint (2.13b) sets the upper limit for the power generation

by the continuous resource during contingency s and is applied for all i ∈ N, t ∈ T, c ∈

C, s ∈ S.

Pgct,si,c = 0, Qgct,si,c = 0 (2.13a)

Pgct,si,c ≤ Pgcmax
i,c , Qgct,si,c ≤ Qgcmax

i,c (2.13b)

2.4 Algorithms

2.4.1 Base Algorithm

The first algorithm solves the whole model using a commercially available

solver, Gurobi V6.5.0.

2.4.2 Scenario-based Decomposition Algorithm

We adopt a scenario-based decomposition (SBD) methodology whereby

“scenarios” are added to the model one by one based on certain conditions. A scenario

and contingency are used synonymously in our description of the SBD algorithm.

Unrestricted shedding variables for the N-1 model, (Pnssi,t) and (Qnssi,t), identify the

scenarios that cause infeasibility. The values of these variables are used to decide

which scenario should be added to the model. The pseudo-code for the SBD algorithm

is explained in Algorithm 1.
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In the SBD algorithm, M denotes the mathematical model that is to be solved.

Initially, M is the base model without N-1 security constraints, (Here, M consists

of constraints (2.2a) through (2.7b)). A sub-problem (SP1) is defined for each of

the contingent scenarios, as the model which includes objective function defined in

(2.8a), without (2.1a), all constraints for an N-1 security analysis, and values of

the variables from base model that are realized after solving the model M . Here,

the objective function for SP1 minimizes
∑

i∈N
∑

t∈T
∑

s∈S(|Pnssi,t| + |Qnssi,t|) and

includes constraints (2.9a) through (2.10c). The objective function for sub-problem

(SP1) for each of the contingencies s is stored in a vector Sobj(s). The value of

Sobj(s) =
∑

i∈N
∑

t∈T (|Pnssi,t|+|Qnssi,t|) ∀ s ∈ S. SBD is an exact algorithm whenever

the sub-problems are feasibility problems. Here, the exactness criteria is met when

max(Sobj) = 0 in the optimal solution, i.e. the sub-problems reduce to feasibility

problems.

Algorithm 1: Scenario-based decomposition

Define M as base model without the N-1 constraints ;
Define Sobj as the vector of size S ;
Create scenario set S, indexed by s, with all scenarios ;
while max(Sobj) > 0 or S = ∅ do

Solve the model, M ;
Get the values of base model decision variables, x ;
for s ∈ S do

Solve sub-problem SP1 for scenario s using x;
Update Sobj(s);

end
Set candidate scenario, sc = index of max(Sobj);
Add N-1 constraints for scenario sc to model M;
Update scenario set S = S \ sc;
Set Sobj(sc) = 0;

end
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2.5 Numerical results

We used Clemson University’s high performance computing resource, the

Palmetto Cluster, which has Intel® Xenon® CPU X7542, 24 core processors @ 2.67

GHz and 172 GB RAM. The optimization model and algorithms were implemented

using JuMP [28] and Gurobi 6.5.0.

646 645

D2D5

632 633 634

650

671

680

611 684 692 675

652

Figure 2.3: IEEE 13 node radial distribution test feeder

2.5.1 Case Study - IEEE 13

Our first case study uses the IEEE 13 node radial distribution test feeder [50],

modified to use a positive-sequence representation (we use the constraint limits of

[50]). This is illustrated in Fig. 2.3. In Fig. 2.3, red squares are nodes that have

the ability to install continuous resources. Similarly, the blue triangular nodes can

install discrete resources, while elliptical nodes (node 645) can accommodate both

continuous and discrete resources. Demand data is for every 15 minutes (∆t=0.25

hours).

Demand data for this system is based on a New Mexico distribution utility.
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The characteristics of the technology options available are provided in Table 2.3. We

assume an efficiency of 95% for dispatched power≤ 0.5×Prated and 90% for dispatched

power > 0.5×Prated. We assume standby losses are 0.3 KW. The ramp-up and ramp-

down rates are 200 KW per time-step.

TABLE 2.3: Characteristics of technology options

Tech
Type

Fixed
Cost

Variable
Cost

Operational Cost
aP 2 + bP + c

Rated Power
(Max, Min)

($) ($/KW) ($) (KW)

C1 100 300 10P 2 + 5P + 2 (100 , 0)

C2 200 250 20P 2 + 10P + 4 (100 , 0)

C3 250 200 30P 2 + 15P + 8 (100 , 0)

C4 300 150 40P 2 + 20P + 10 (100 , 0)

C5 350 100 50P 2 + 25P + 5 (100 , 0)

D1 200 0 50P 2 + 25P + 6 (250 , −250)

D2 100 0 40P 2 + 20P + 5 (275 , −250)

D3 250 0 30P 2 + 15P + 4 (300 , −250)

D4 300 0 20P 2 + 10P + 3 (225 , −250)

D5 350 0 10P 2 + 5P + 2 (200 , −250)

2.5.1.1 Base Algorithm

The solution times for design horizons of 5, 10, 15, 20, 50 and 96 time periods

for the base algorithm are shown in Fig. 2.4. The 96 period (24 hours) design horizon

problem took 1.5 hours to complete on the Palmetto cluster.

2.5.1.2 SBD

In comparison with the base algorithm, SBD is able to solve the 96 period

problem in roughly 18 minutes (Fig. 2.4), a factor of 5× speedup. For this case study,

the SBD approach is more efficient than solving the entire problem using commercial

solvers.
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Figure 2.4: Results for the base algorithm and SBD
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In this test case, devices D2 and D5 were installed at node 645. D5 is used

more often than D2, due to its lower operational cost. The relative cost of N-1 security

is provided in Fig. 2.5. Most of the difference in cost is due to dispatching D2 at

higher levels to ensure N-1 feasibility.
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T
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Total cost with N-1
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Total cost without N-1

Figure 2.5: Total cost for each time period

2.5.2 Case Study - Alaskan Microgrid

We next present results based on the distribution circuits of a remote

community in Alaska which was developed in [66]. There are 19 nodes in the network,
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whose schematic diagram is shown in Fig. 2.6. Node 1 has four generators and Node

3 has a wind generation unit. We ran the model with options to install generators at

nodes 6, 8, 10, 14, and 18. These are nodes with critical loads including a hospital,

airport, correctional center, gas station, and high school).

1
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171819

G3 G4G1 G2

G5
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Figure 2.6: Schematic diagram of a remote community in Alaska

The characteristics of the technology options are provided in Table 2.4. We

used the same efficiencies as in the IEEE case. The ramp-up and ramp-down rates

were set to 190 KW for D1 and 500 KW for the rest. Details of the full model are

available upon request.

We ran the model for 5, 10, 15, 20, 30, 50, and 96 period design horizons

with the base model and the SBD algorithm. The solution times for various design

horizons are shown in Fig. 2.7. Interestingly, the base algorithm slightly outperforms
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TABLE 2.4: Characteristics of technology options for Alaskan microgrid

Tech Type Fixed
Cost

Variable
Cost

Operational Cost
aP2 + bP + c

Rated Power
(Max, Min)

($) ($/KW) ($) (KW)

D1 200 0 50P 2 + 25P + 6 (200 , 0)

D2,D3,D4,D5 500 0 60P 2 + 20P + 5 (1500 , 0)

the SBD algorithm. In this case, none of the contingencies dominate the other,

so all contingencies must be added (see Table 2.5). In this worst case for SBD,

SBD becomes the base algorithm with extra computational overhead. However, this

overhead was relatively small, suggesting that the potential benefits of SBD outweigh

the risk of this behavior. An interesting area of future work considers enhancements

to SBD to avoid this situation.

TABLE 2.5: Number of scenarios added by SBD

Case Study Base Algorithm SBD

IEEE 13 18 3

Alaskan Microgrid 7 7

Once again, the dispatch was adjusted to satisfy contingency constraints. The

new dispatch reduces the power output from the generators installed at node 8 and 14

and increases the dispatch from all other generators. The overall increase in cost for

this increased dispatch due to contingencies is $195k. This confirms the importance

of including N-1 security as discussed in [66].

2.5.3 Sensitivity Analysis

It is important to understand the impact of including N-1 security constraints

and component efficiencies (as compared to the prior models of Table 2.1). Table 2.6
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Figure 2.7: Solution time for Alaskan microgrid model using SBD
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shows the impacts of introducing these modeling details to the IEEE 13 bus model. As

expected, the computation time increases dramatically when N-1 security constraints

are included in the model. Moreover, both efficiencies and N-1 can considerably alter

the solutions themselves. For example, when efficiencies are not modeled the total

cost is reduced because generation is not required to cover the losses associated with

storage. In short, there are three key observations contained in Table 2.6. First,

the sensitivity of the design choices are tied to whether or not N-1 contingencies are

included in the model. Including these constraints forces the inclusion of additional

resources. This result is common to both our model and prior work that has included

N-1 constraints. Second, the inclusion of efficiencies significantly alters the operating

cost (as much as 25%). Third, we note that the solutions are insensitive to the

network flow, indicating, at least on this problem, that voltages are not an issue

during the contingencies. We conjecture that a careful consideration of the voltage

profiles during contingencies will provide insight on the importance of including these

constraints on other problems. Finally, it is important to note that we have also

indicated models described by prior literature in the last column of the table.

We also performed a sensitivity analysis on the various combinations of

technology resources that are available for investment. Table 2.7 considers solutions

where discrete technology resources are available, continuous technology resources

are available, and both are available. Interestingly, rows 1 and 3 have the same

objective function and the same solution. Given the assumptions on the relative

costs of the different resources, the discrete technologies are more desirable. When

only continuous resources are allowed, the solution cost is considerably higher.
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2.5.4 Feasible Solution Recovery

It is also important to validate the solutions obtained using the approximate

LinDistFlow equations. Here, we used the DistFlow equations from Baran and Wu

[12] for validation. The installation choices and commitment choices are fixed by

the LinDistFlow solution. Knitro is used to find a locally optimal dispatch solution

based on DistFlow. A feasible solution was always found and a comparison of the

objective values is shown in Table 2.8. Generally speaking, the solutions found using

LinDistFlow are a good approximation of what is necessary when modeling the full

physics of the system.

2.6 Conclusions

In this research, we develop a mathematical formulation for planning and

operation of remote off-grid microgrids with N-1 security constraints and component

efficiencies. We show that a scenario-based decomposition algorithm using a

LinDistFlow approximation can effectively solve these problems based on results for

a modified IEEE 13 bus and the Alaskan distribution feeder. The effectiveness of

the approximation is validated with the full nonlinear ac physics. There remain a

number of interesting future directions for this research. First, we need to scale this

approach to model multiple days of potential demands corresponding to different

usage requirements. Second, we have assumed a purely deterministic model of

generation and future work will need to incorporate stochastic renewable resources

(wind, solar), and the unscheduled flows associated with them [69]. Here, the

probabilistic chance constraints of [89] are an attractive option. Third, resiliency

criteria is also an important criteria to consider in the future. One possibility is to

include criteria with constraints and additional planning scenarios as discussed in
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[97]. Finally, we also need to include topology design choices into the model to better

reflect planning choices faced by microgrid designers.
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Chapter 3

Optimal Design for Location,

Capacity, Topology, and Operation

of Resilient Off-grid Microgrids

3.1 Introduction

Within the United States and many other areas of the world, remote

communities are disconnected from bulk transmission systems. Given the economic

hurdles associated with connecting remote communities to these systems, many will

remain isolated for the foreseeable future. However, it is important that these

communities have the same level of reliability afforded by the bulk transmission

systems [83]. To address this need, we develop an expansion planning model for

off-grid microgrids that balances the costs of designing the system with the cost for

operating these grids under N-1 reliability criteria. This model includes all three

major decisions associated with the design and operation of off-grid microgrids:

identifying the installation locations of power sources, determining capacity and
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power dispatch of those resources, and prescribing the network topology [59]. Though

critically important, this problem is very difficult to solve given the non-convexities

in discrete installation choices and power flow physics.

To address this problem, we adopt the mixed-integer, quadratically

constrained, quadratic programming (MIQCQP) resource planning model of [19, 66]

and modify it to support expansion planning with N-1 security constraints on lines.

The resulting model is significantly more challenging to solve (the methods of [19, 66]

do not directly scale to this problem) and we develop a rolling horizon (RH) algorithm

to solve this problem. In short, the key contributions of this paper are:

• To the best of our knowledge, the first planning model of distribution systems

with topology decisions and N-1 reliability on lines that includes nonlinear

ac physics, time-extended operations, resource planning decisions, and power

device efficiencies. We refer to this problem as the ac integrated resource

planning problem for microgrids, or ACIRPM for short.

• An algorithm that efficiently solves this problem.

• A demonstration on real system data and empirical validation of the results.

3.2 Literature Review

The importance of topology designs in power systems are discussed extensively

in many research papers. An earlier study of the investment and operation of multiple

energy systems along with their topology is discussed in Bakken et al. [11]. The paper

examines the design and operation of multiple energy carriers within a locality and

considers suggestions for alternate locations that satisfy pre-defined future demands.

The authors recommend ranking the installation of various energy carriers for a
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Figure 3.1: Modified flowchart of the microgrid resource planning model of [19]

defined time line. Their solution selects the network topology that minimizes the

total cost of installation and operation. Even though Bakken et al. [11] considers

topological design decisions, no contingency analysis was performed on the system.

Furthermore, [25] studies an estimation for the vulnerability of an electric grid using

topological analysis. The authors model cascading failures of power systems based

on the dynamic load redistribution on the networks and observe that the system is

high vulnerable when heavily loaded nodes are removed from the system.

In many places in the scientific literature, the optimization of microgrid

topology design and operations is discussed as one of the main research needs in

power systems, i.e. [78, 65]. This observation has driven a number of studies on

how topology designs impact system security [4, 25, 11]. As noted by Lasseter et

al. [58], typical microgrid architectures are organized in groups of radial feeders that

are part of either a distribution network or independent, remote locations. Under

these architectures, the removal of sets of nodes (network disruptions, generator

breakdowns or line failures), can lead to cascading failures of these network. Given
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this observation, [4] considers the robustness of power systems from a topological

perspective and verifies correlations between reliability and redundancy of network

structure and emphasizes that a redundant network enhances reliability. In all of

these papers, focus is placed on analyzing existing topology choices and these papers

do not discuss the topological design of the network.

Some of the techniques for enhancing microgrid reliability using topological

designs include interconnected microgrids and establishing network redundancy [33,

48, 100]. In terms of enhancing microgrid reliability through design, both [33] and

[48] discuss interconnected microgrids. Erol-Kantarci et al. [33] discuss providing

interconnection between microgrids to provide reliable networks, which can also help

to increase the penetration of renewable energy in networked smart grids. Kahveci et

al. [48] present a better topology layout using heuristics that employ clustering and

graph theoretic methods. The authors discuss a heuristic approach to topology design

for both “greenfield” sites and the augmentation of existing military distribution

networks. The algorithm first identifies the minimum spanning tree between various

nodes and then identifies various clusters that are electro-mechanically stable during

islanding conditions. Unfortunately, these techniques may not be suitable for off-grid

microgrids that cannot be connected to other microgrids. Zinchenko et al. [100]

solve the transmission expansion planning problem with line redundancies as a two-

path problem using a variant of Dijkstra’s algorithm to find the shortest path. Their

conclusion was that in order to design a resilient power system, redundancy may be

the only option. Hence in our paper, we consider parallel, redundant lines to ensure

that the network is N-1 secure for line contingencies. None of the previous research

efforts consider N-1 security analysis on line contingencies as is the case in our study.

The most closely related work to this paper is found in [19, 66]. These papers

develop a resource planning model for optimizing the placement generation resources
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to enforce N-1 generator reliability on microgrids. These papers also consider time-

extended operations, power device efficiencies, and nonlinear ac physics. They do not

consider expansion planning or N-1 reliability on lines. These two modeling details

significantly increase the complexity of the problem and necessitate the need for new

algorithmic approaches.

More generally speaking, the power engineering community has developed a

number of techniques for solving problems with multiple time periods like ACIRPM.

These methods include Benders decomposition [5], rolling horizon (RH) methods [76],

graph partitioning [20], and branch-and-bound algorithms coupled with Lagrangian

dual relaxation [38, 39]. Based on the strength of RH methods in industrial domains

such as supply chain optimization [99] and recent strong results based on RH for

operating microgrids [76], we developed an RH approach for solving the ACIRPM.

Uniquely, we consider different approaches, such as scenario-based decomposition

(SB), for solving the sub problems constructed by RH approaches.

The rest of the paper is organized as follows: Section II introduces the modified

mathematical formulation for the resilient design and operation of off-grid microgrids

along with N-1 security constraints on generators and lines. Section III presents

a rolling horizon algorithm for solving the model efficiently and compares its results

with scenario-based decomposition method. Numerical results on two case studies are

discussed in Section IV. Finally, Section V presents conclusions and future directions

of research.

3.3 Mathematical Formulation

In this section we present the ACIRPM model. The ACIRPM model combines

expansion planning decisions with time extended operations, resource planning,
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efficiencies, and N-1 security criteria to optimize a microgrid for resilience.

3.3.1 Model Parameters and Variables

Sets

N set of nodes (buses), indexed by i

E set of existing edges (lines and transformers), indexed by eij. Each edge is

assigned an arbitrary direction from a bus i to a bus j. ij is omitted when

direction is not needed.

En set of new edges (lines and transformers), indexed by eij. Each edge is

assigned an arbitrary direction from a bus i to a bus j. ij is omitted when

direction is not needed.

CCi ⊆ C set of continuous resources at bus i, indexed by c

CCBi ⊆ C set of continuous resources with storage capabilities at bus i, indexed by c

Di ⊆ D set of discrete resources at bus i, indexed by d

Ai ⊆ A set of resources at bus i, indexed by a

E+
i set of existing and new edges connected to bus i and oriented from i,

indexed by e

E−i set of existing and new edges connected to bus i and oriented to i, indexed

by e

Ki set of slots at bus i, indexed by ki

T set of time periods, indexed by t, numbered from 1 to |T |

C set of continuous resources, indexed by c
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CD ⊆ C set of continuous resources with discrete operation, indexed by c

CC ⊆ C set of continuous resources with continuous operation, indexed by c

CB ⊆ CC set of continuous battery resources, indexed by c

D set of discrete resources, indexed by d

DD ⊆ D set of discrete resources with discrete operation, index by d

DC ⊆ D set of discrete resources with continuous operation, indexed by d

A = C ∪D set of all resources, indexed by a

Ω set of scenarios for N-1 security analysis, indexed by ω

Parameters

fa fixed cost for resource a ∈ A, ($)

ga variable cost for resource a ∈ A, ($/MW)

κa,0, κa,1, κa,2fixed, linear, and quadratic operational cost for resource a ∈ A, ($)

fe installation cost for line e ∈ En, ($)

ud , ud minimum up-time and down-time for resource d ∈ DD, (time-step)

γd , γ
d

ramp up and ramp down rate for resource d ∈ D, (MW/time-step)

se apparent power thermal limit on line e ∈ E , (MVA)

lpti, lq
t
i Active and reactive power demand at bus i ∈ N at time t ∈ T ,

(MW,MVAr)

pga, qpa maximum active and reactive power generated by a resource a ∈ A,

(MW,MVAr)

pg
a
, qp

a
minimum active and reactive power generated by a resource a ∈ A, (MW)
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Γc maximum energy storage capacity of the battery c ∈ CB, (MVA)

vi, vi Squared voltage lower and upper bound at bus i ∈ N , ((kV )2)

sa maximum apparent power generated by resource a ∈ A, (MVA)

lpa Stand-by loss (y intercept) of a resource a ∈ A for each piecewise function

p ∈ {1, .., P}, (MW)

[η1
a . . . η

p
a] Vector of piecewise marginal efficiencies of maximum rated power, (%)

re, xe Resistance and reactance of line e ∈ E , (kΩ)

∆t duration of a time-step, (hr)

hi Maximum number of continuous resources at bus i

ki Maximum number of discrete resources at bus i, indexed by ki

Binary Decision Variables: Discrete technology

xtd active/inactive status for resource d ∈ D at time t ∈ T

ytd start-up status for resource d ∈ D at time t ∈ T

wtd shut-down status for resource d ∈ D at time t ∈ T

bd status indicator if discrete resource d ∈ D is built

Binary Decision Variables: Continuous technology

bc status indicator if continuous resource c ∈ C is built

Continuous decision variables: Discrete technology

pgtd ac active power generation during time t ∈ T for discrete resource d ∈ D,

(MW)

48



qgtd ac reactive power generation during time t ∈ T for discrete resource d ∈ D,

(MVAr)

p̂gtd ac active power generation before losses during time t ∈ T for discrete

resource d ∈ D, (MW)

Continuous decision variables: Continuous technology

p̃gc, q̃pc installed maximum active and reactive power generated by a resource c ∈ C,

(MW,MVAr)

s̃c installed maximum apparent power generated by resource c ∈ C, (MVA)

pgtc, qgtc ac apparent power generation during time t ∈ T for continuous resource

c ∈ C, (MW,MVAr)

p̂gtc ac active power generation before losses during time t ∈ T for continuous

resource c ∈ C, (MW)

ȩtc Energy stored (state of charge) in the continuous resource battery c ∈ CB

at time t ∈ T , (MW-hr)

Continuous decision variables: Others

pte, q
t
e Active and reactive power flow though edge e ∈ E at time t ∈ T ,

(MW,MVAr)

vti Squared voltage at node i ∈ N at time t ∈ T , ((kV )2)

lpt,si , lq
t,ω
i apparent power slack at node i ∈ N at time t ∈ T during contingency

scenario ω ∈ Ω, (MW,MVAr)

Binary decision variables: Lines

be status indicator if line e ∈ En is built
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3.3.2 Objective Function

The objective function of the ACIRPM lexicographically minimizes load slack

during the contingencies and then minimizes the total installation and operation cost

of energy resources and the cost of installing new lines to enhance network resiliency

(3.1a).

min

〈 (∑
i∈N

∑
t∈T

∑
ω∈Ω

(|lpωi,t|+ |lqωi,t|)
)
,(∑

c∈C

fcbc +
∑

c∈C\CB
gcp̃gc +

∑
c∈CB

gcs̃c

)
+
∑
d∈D

fdbd +
∑
e∈En

febe+(∑
t∈T

∑
a∈A

(
(κa,2)(p̂gta)

2 + (κa,1)(p̂gta) + (κa,0)(ba)
)) 〉

(3.1a)

3.3.3 Resource Planning

The constraints associated with the availability of resources are defined in

equations (3.2a)-(3.2g). Here, equations (3.2a)-(3.2b) link the installed capacity of

continuous resources to the build variable. Equation (3.2c) links the installed apparent

power capacity of storage devices with the build variable. Similarly, equations (3.2f)-

(3.2g) constrain the capacity limits for discrete resources. The number of continuous

and discrete resources installed at a bus is constrained by equations (3.2d)-(3.2e).

pgtc ≤ p̃gc ≤ bcpgc ∀ c ∈ C \ CB, t ∈ T (3.2a)

qgtc ≤ q̃gc ≤ bcqgc ∀ c ∈ C, t ∈ T (3.2b)

s̃c ≤ bcsc ∀ c ∈ CB (3.2c)∑
c∈Ci

bc ≤ hi ∀ i ∈ N (3.2d)

∑
d∈Di

bd ≤ ki ∀ i ∈ N (3.2e)
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pg
d
bd ≤ p̂gtd ≤ pgdbd ∀ d ∈ DC , t ∈ T (3.2f)

qg
d
bd ≤ qgtd ≤ qgdbd ∀ d ∈ DC , t ∈ T (3.2g)

3.3.4 Power Flow Physics

The physics of the ACIRPM are shown in equations (3.3a)-(3.3c), where the

LinDistFlow equations (3.3c) of [36, 12] are used. Here, (3.3a)-(3.3b) model Kirchoff’s

Law and (3.3c) models Ohm’s Law.

∑
a∈Ai

pgta − lpti =
∑
e∈E+i

pte −
∑
e∈E−i

pte ∀ i ∈ N , t ∈ T (3.3a)

∑
a∈Ai

qgta − lqti =
∑
e∈E+i

qte −
∑
e∈E−i

qte ∀ i ∈ N , t ∈ T (3.3b)

vtj = vti − 2(rep
t
e + xeq

t
e) ∀ eij ∈ E , t ∈ T (3.3c)

3.3.5 Physical Limits

The physical limits of the ACIRPM are shown in equations (3.4a)-(3.4b).

Equation (3.4a) places thermal limits on lines and equation (3.4b) places voltage

magnitude limits on buses.

(pte)
2 + (qte)

2 ≤ (se)
2 ∀ e ∈ E , t ∈ T (3.4a)

vi ≤ vti ≤ vi ∀ i ∈ N , t ∈ T (3.4b)

3.3.6 Generator Limits

Equations (3.5a)-(3.5i) model the operating limits of resources defined as

discrete generators (i.e. diesel generators). The connection between a generator’s
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on/off status and its start-up and shutdown time are modeled with equations

(3.5a)-(3.5c) . Equations (3.5d)-(3.5e) link active and reactive power dispatch with

the generator’s status. Generator operating characteristics like minimum up-time,

minimum down-time, ramp-up time, and ramp-down time are constrained using

equations (3.5f)-(3.5g). We model the boundary conditions of uptime and downtime

using αd = ρ ∈ T : t−ud+1 ≤ ρ ≤ t and ζd = ρ ∈ T : t−ud+1 ≤ ρ ≤ t respectively.

xtd ≤ bd ∀ d ∈ DD, t ∈ T (3.5a)

xtd = xt−1
d + ytd − wtd ∀ d ∈ DD, t ∈ T (3.5b)

ytd + wtd ≤ 1 ∀ d ∈ DD, t ∈ T (3.5c)

pg
d
xtd ≤ p̂gtd ≤ pgdx

t
d ∀ d ∈ DD, t ∈ T (3.5d)

qg
d
xtd ≤ q̂gtd ≤ qgdx

t
d ∀ d ∈ DD, t ∈ T (3.5e)∑

ρ∈αd

yρd ≤ xtd ∀ d ∈ DD, t ∈ T (3.5f)

∑
ρ∈ζd

wρd ≤ 1− xtd ∀ d ∈ DD, t ∈ T (3.5g)

γd ≥ pgtd − pgt−1
d − pgdytd ∀ d ∈ DDt ∈ T (3.5h)

γ
d
≥ pgt−1

d − pgtd − pgdwtd ∀ d ∈ DDt ∈ T (3.5i)

3.3.7 Battery Limits

Equations (3.6a)-(3.6c) model the operating limits of resources defined as

batteries. Equation (3.6a) constrains the apparent power of batteries. The charging

and discharging of batteries are modeled using equations (3.6b).

(pgtc)
2 + (qgtc)

2 ≤ (s̃c)
2 ∀ c ∈ CB, t ∈ T (3.6a)
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ȩtc = ȩt−1
c − p̂gtc∆t ∀ c ∈ CB, t ∈ T (3.6b)

0 ≤ stc ≤ s̃c ∀ c ∈ CB, t ∈ T (3.6c)

3.3.8 Efficiencies

Component efficiencies are defined using a piece-wise linear functions (p)

defined in constraints (3.7a) - (3.7c). Our models have four linear functions for each

component.

pgtc ≤ ηpc p̂g
t
c + bcl

p
c ∀ c ∈ C, t ∈ T , p (3.7a)

pgtd ≤ ηpdp̂g
t
d + xtdl

p
d ∀ d ∈ DC , t ∈ T , p (3.7b)

pgtd ≤ ηpdp̂g
t
d + bdl

p
d ∀ d ∈ DD, t ∈ T , p (3.7c)

3.3.9 Expansion Planning

On/off constraints are used to model thermal limits (3.8a) and Ohm’s laws

(3.8b)-(3.8c) for new lines. Here M = vi − vi.

(pte)
2 + (qte)

2 ≤ be ∗ (se)
2 ∀e ∈ En, t ∈ T (3.8a)

vtj − vti ≥ −2(rep
t
e + xeq

t
e)−M(1− be) ∀eij ∈ En, t ∈ T (3.8b)

vtj − vti ≤ −2(rep
t
e + xeq

t
e) +M(1− be) ∀eij ∈ En, t ∈ T (3.8c)

3.3.10 Generator Contingencies

Each generator contingency replicates equations (3.2a)-(3.8c) on subsets of

C and D. The subsets remove the generators that are outaged in the contingency.
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Equations (3.3a) and (3.3b) are replaced with their load slack equivalents.

∑
a∈Ai

pgt,ωa − lpti − lp
t,ω
i =

∑
e∈E+i

pt,ωe −
∑
e∈E−i

pt,ωe ∀ i ∈ N , t ∈ T , ω ∈ Ω (3.9a)

∑
a∈Ai

qgt,ωa − lqti − lq
t,ω
i =

∑
e∈E+i

qt,ωe −
∑
e∈E−i

qt,ωe ∀ i ∈ N , t ∈ T , ω ∈ Ω (3.9b)

3.3.11 Line Contingencies

Each line contingency replicates equations (3.2a)-(3.8c) on subsets of E and

En. The subsets remove the lines that are outaged in the contingency. Equations

(3.3a) and (3.3b) are replaced the same as generator contingencies.

3.4 Algorithms

3.4.1 Base Algorithm

We define the base algorithm as an approach that formalizes the entire model

as a single input to the commercial solver Gurobi 7.0.1 [41]. We use this approach as

a comparison point.

3.4.2 Scenario-based Decomposition (SBD) Algorithm

The SBD algorithm was first applied to microgrid resiliency problems in

Chalil Madathil et al. [19] where it was shown to have considerable computational

advantages. On these problems, SBD converges to the global optimal and we use it

as another comparison point for our approach. For completeness, the SBD algorithm

is outlined in Algorithm 2. SBD first relaxes the N-1 contingency constraints (model

M∅). Each N-1 contingency (scenario) is then solved given the resource and expansion
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planning decisions of the solution to M∅. The constraints of the contingency that

requires the most load slack is then added as part of the constraint set. The algorithm

terminates when all contingencies are added or there is no load slack.

Algorithm 2: Scenario-based decomposition

Create scenario set S, indexed by ω, with all N-1 scenarios ;
Define Sobj as a vector of size S ;
while max(Sobj) > 0 or S = ∅ do

Solve the model, MΩ\S ;
Get the values of base model decision variables, x ;
for ω ∈ S do

Solve sub-problem for scenario ω using x;
Update Sobj(ω);

end
Select scenario, ω = arg maxS Sobj(ω);
Update scenario set S = S \ ω;
Set Sobj(ω) = 0;

end

3.4.3 Rolling Horizon Algorithm

In our initial computational experiments we found that the ACIRPM was

computationally very challenging for both exact methods. Here, we discuss our

rolling horizon (RH) heuristic that decomposes the ACIRMP into a sequence of

smaller problems. Each sub problem considers a limited number of time periods.

This heuristic was developed to address the scaling issues associated with these exact

methods. Each sub problem of the RH is solved using one of these exact methods.

The RH algorithm is defined by three parameters, the scheduling horizon T s =

|T |, a prediction horizon T p, and a control horizon T c. The scheduling horizon

defines the full length of the ACIRMP. The prediction horizon controls the size of

the sub problems that are solved, and the control horizon determines how much of
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the sub problem solution is executed. More formally, let στ denote the solution to an

ACIRMP T c problem starting at time τ and let στ (·) denote the variable assignment

of · in solution στ . We can then recursively define the T c problem,Mτ , asM where

T = τ + T p and the following extra constraints.

bc ≥ στ−T c(bc) ∀ i ∈ N , c ∈ C (3.10a)

bd ≥ στ−T c(bd) ∀ i ∈ N , d ∈ DD, k ∈ Ki (3.10b)

be ≥ στ−T c(be) ∀ ij ∈ E ∪ En (3.10c)

p̃gc ≥ στ−T c(p̃gc) , q̃gc ≥ στ−T c(q̃gc) ∀ i ∈ N , c ∈ C (3.10d)

These constraints are used to enforce consistency of installation decisions between T c

problems. Similarly, we also add constraints that enforce consistency in operation

between T c problems.

xτd = στ−T c(xτ−1
d ) + yτd − wτd ∀ d ∈ DD (3.11a)∑

ρ∈αd

yρd ≤ xtd ∀ d ∈ DD, t ∈ T (3.11b)

∑
ρ∈ζd

wρd ≤ 1− xtd ∀ d ∈ DD, t ∈ T (3.11c)

xtd =


1, ∀ t ∈ [τ, τ + ud − t̃] , if στ−T c(yt̃d) = 1

0, ∀ t ∈ [τ, τ + ud − t̃] , if στ−T c(wtd) = 1

(3.11d)

γd ≥ στ−T c(pgτ−1
d )− pgτd ∀ d ∈ DD (3.11e)

γ
d
≥ pgτd − στ−T c(pgτ−1

d ) ∀ d ∈ DD (3.11f)

Constraints (3.11a) uses generator on/off status in στ−T c as a boundary

condition. We update the minimum value for the up-time and downtime as ζd =
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max(t − ud + 1,min(T p)) and αd = max(t − ud + 1,min(T p)) respectively, for use

in constraints (3.11b) and (3.11c). The boundary condition should also ensure the

proper calculation of minimum generator up-time and down-time. Let t̃ denotes the

time instant a generator is turned on during its operation (σt̃(y
t
d) = 1). Then the

value of xtd = 1 must be set for all time-steps until the minimum up-time criteria.

This is enforced by (3.11d). Similarly, minimum down-time criteria is enforced by

checking the value of σt̃(w
t
d) = 1. Finally, constraints (3.11e) and (3.11f) link the

ramp-up and ramp-down rates between two adjacent time-steps.

Constraints are also added that enforce consistency in operation of batteries

in T c problems. Constraints (3.12a) ensure that the value of charge is carried forward

from the previous iterations starting from time-step τ − T c.

ȩτc = στ−T c(ȩτ−1
c )− pgτc∆t ∀ c ∈ CCBi , (3.12a)

The pseudo-code for our RH is given in Algorithm 3 and a schematic diagram

of the algorithm is presented in Fig. 3.2.

Algorithm 3: Rolling horizon algorithm

while τ ≤ T do
Warm start Mτ with στ−T c ;
στ ← Solve Mτ ;
τ ← τ + T c ;

end

Each iteration uses the solution στ−T c to warm start [41] the solver used to

solve M τ The warm start initializes the assignment of variables in M τ with the

assignments of those variables in στ−T c (where these is overlap).
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Figure 3.2: Schematic diagram for rolling horizon

3.5 Numerical Results

The numerical results were performed using a Microsoft Windows® Server

2016 with an Intel® CoreTM i7-6950X CPU @ 3.00 GHz processor with 10 cores and

128 GB RAM. The algorithms are modeled using JuMP in Julia [28] and use Gurobi

V7.0.1 to solve the QPs. We test the performance of the proposed algorithm and

validate the model on an adapted version of the IEEE 13 node test feeder [50] and a

real microgrid from Alaska.

3.5.1 Case Study 1: IEEE 13 Node Test Feeder

The original IEEE 13 node test feeder has 13 nodes and 12 lines (black solid

lines in Figure 3.3). For this paper the network is modified as follows. Continuous

resources (C1 through C5) can be installed at nodes 611 and 675. Discrete resources
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(D1 through D5) can be installed at nodes 650 and 652. Both types of resources can

be installed at node 645. The load for this system is based on data from a New Mexico

distribution utility. Demand is added at all nodes and for all time-steps except for

nodes 633, 650, 680, 684, and 692. These nodes have zero demand during the entire

design horizon. The installation and operational costs for all resources in Table 3.2.

646 645 632 633 634

650

611

684 671 692 675

652 680

Figure 3.3: IEEE 13 node radial distribution test feeder with parallel lines.

Black lines denote existing lines and red dashed lines denote possible expansions.

Expansion decisions for this network include parallel lines for all 12 existing

lines and new lines between nodes 611 and 646 (parallel and new lines are marked as

dotted red lines in Figure 3.3). The cost of installing parallel lines and new lines is

$1000 per line. Physical characteristics of the lines are provided in Chalil Madathil

et al. [19] and [50]. The design decision is provided for every 15 minutes and hence

the number of time points is 96 for a day’s problem. This network has 18 possible

generator contingencies and 25 possible line contingencies.
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TABLE 3.2: Characteristics of technology options for IEEE 13 Network

Tech
Type

Fixed
Cost

Variable
Cost

Operational
Cost
aP 2 + bP + c

Rated Power
(Max, Min)

($) ($/KW) ($) (KW)

C1 10000 300 10P 2 + 5P + 2 (100 , 0)

C2 20000 250 20P 2 + 10P + 4 (100 , 0)

C3 25000 200 30P 2 + 15P + 8 (100 , 0)

C4 30000 150 40P 2+20P+10 (100 , 0)

C5 35000 100 50P 2 + 25P + 5 (100 , 0)

D1 20000 0 50P 2 + 25P + 6 (250 , −250)

D2 10000 0 40P 2 + 20P + 5 (275 , −250)

D3 25000 0 30P 2 + 15P + 4 (300 , −250)

D4 30000 0 20P 2 + 10P + 3 (225 , −250)

D5 35000 0 10P 2 + 5P + 2 (200 , −250)

3.5.1.1 Recommended solution for 96 Design Horizon Problem

In this model, the optimal solution includes the installation of D2 generators

at nodes 650 and 652. The optimal solution also includes parallel lines between nodes

632 - 634, 671 - 675, and 611 - 646. In contrast, without expansion options, the

solution is forced to build generators at 611, 645, 652, and 675.

3.5.1.2 Solution Time

Figure 3.4 evaluates the efficiency and effectiveness of our RH approach. This

figure shows the computation time and solution quality of the two exact methods and

RH for design horizons of 5, 10, 15, 20, 50, and 96. Each algorithm had a time limit

of 24 hours. In all cases, the RH solution matches the solution found by the exact

method. However, in both the SBD and base algorithm timed out in the 96 horizon

case. The base algorithm found a feasible solution with a 98.% optimal gap after

24-hour time limit. The best RH was able to solve this same problem in 231 seconds.

For this particular problem instance, the base algorithm was able to find an
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Figure 3.4: Solution times and solution quality for the IEEE 13 case.

RH refers to the rolling horizon algorithm where the base algorithm is used to solve
sub problems. SBD+RH refers to the rolling horizon algorithm where SBD is used
to solve sub problems. The left y axis shows CPU time (log scale) in seconds. The
right y axis shows the objective value. The x axis shows the design horizon (T )

optimal solution for design horizons with less than 50 time-steps. The solutions

from the base algorithm were identical to the solutions resulting from other three

algorithms for each design horizons. Based on these results, we see that under this

model the RH algorithm is generally more computationally efficient than the exact

methods and is still able to get solutions of the same quality. However, it is important

to stress the RH is a heuristic [23].
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3.5.2 Case Study 2: Alaskan Microgrid

In this section, we test the performance of the RH algorithm on an Alaskan

micogrid that has 19 nodes and 18 lines (Figure 3.5). In this model a single discrete

resource (D1 through D5) is allowed to be installed at each node 6, 8 , 10 , 14,

and 18 (Table 3.3). Demands for this system are based on data provided by the

Alaskan distribution utility. Installation and operational costs are provided in Table

3.3. Table 3.4 describes the specifications of the lines in this system. This network

has five existing generators at nodes 1 and another one generator at node 3. All

these six existing generators are of type D1. The capacity of the existing generators

is modified so that model is forced to build new generators. Parallel lines may be

built anywhere in the system, provided a line currently exists, for a cost of $1000 per

line. There are seven generator contingencies and 36 possible line contingencies in

the network. The seven generator contingencies are due to five new generators and

one existing generator each at node 1 and 3. Altogether, there are 43 contingencies

for this network.

TABLE 3.3: Characteristics of technology options for Case Study 2

Tech
Type

Fixed
Cost

Operational
Cost aP 2+bP+c

Rated Power
(Max, Min)

($) ($) (KW)

D1 20000 50P 2 + 25P + 6 (200 , 0)

D2 - D5 50000 60P 2 + 20P + 5 (1500 , 0)

3.5.2.1 Recommended Solution for 96 Design Horizon

The solution for this mirogrid installs generators of type D2 at nodes 6, 8,

10, 14 and 18. The solution also installs parallel lines at all locations to support N-1

62



1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16
171819

G3 G4G1 G2

G5

~ ~

~

~~

Figure 3.5: Schematic diagram with topology options of a remote community in
Alaska

security. This solution changes if they relative cost of adding lines increases.

3.5.2.2 Solution Time

Figure 3.6 compares the solution time for design horizons of 5, 10, 15, 20, and

96. Here, all algorithms had a 24 hour time limit. The two exact methods found the

optimal solution only for the case when the time horizon was 5. The proposed rolling

horizon algorithm was able to solve this model in 17807 seconds. Interestingly, RH

with the base algorithm out performed RH with SBD. On this problem, most of the

contingencies must be added to M, a situation that limits the effectiveness of SBD.
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TABLE 3.4: Line configuration for Case study 2

ID Resistance Reactance Thermal Limit Lines

pu pu MVA (From node - To node)

A 0 0.05 10000 (1–2), (1–4), (5–6)

B 0.392921923 0.923131194 3422.532396 (2–3)

C 0.157168769 0.369252478 3422.532396 (4–5)

D 0.002854927 0.005210712 3782.798964 (4–7), (7–8)

E 0.019646096 0.04615656 3422.532396 (8–9)

F 0.039292192 0.092313119 3422.532396 (9–10)

G 0.314337539 0.738504956 3422.532396 (4–11), (4–12)

H 0.1021597 0.240014111 3422.532396 (12–13)

I 0.248685034 0.20405299 1585.172899 (4–14)

J 0.373027551 0.306079486 1585.172899 (14–15)

K 0.062171258 0.051013248 1585.172899 (15–16)

L 0.497370068 0.408105981 1585.172899 (16–17), (17–18

M 1.243425169 1.020264952 1585.172899 (18–19)

3.5.3 Sensitivity Analysis

We performed sensitivity analysis on our models by changing the types of

generators and the costs for generators and lines. In a hypothetical situation where

the installation cost for lines is larger than the installation and operation costs for

generators, the model recommended to install generators in each node instead of

installing parallel lines. The number of parallel lines installed in those scenarios is

less than in the original model. This analysis helps understand the sensitivity of the

solutions obtained to changes in problem parameters.

3.6 Conclusion

In this paper, we develop a mathematical formulation for designing and

operating remote off-grid microgrids with N-1 security constraints on generators

and lines. We also present a rolling horizon algorithm that efficiently solves these

problems. There remain a number of interesting future directions for this research.
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For example, this model assumes that all generation and demand is deterministic.

Future work should consider how to incorporate stochastic renewable resources such

as wind and solar. One attractive model is the probabilistic chance constraints used

in Sundar et al. [89]. Second, methods should be explored to improve the scalability

of solving ACIPRM problems in both the size of the networks and the length of the

time horizons.
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Figure 3.6: Solution times and solution quality for the Alaskan microgrid case.
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y axis shows the objective value. The x axis shows the the design horizon (T )
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Chapter 4

Design and Operation of Resilient

Off-grid Microgrids under

Uncertainty

4.1 Introduction

There are many communities in the arctic region that currently rely heavily

on diesel generators for their power demands [44]. The use of such fossil fuels in

these areas has resulted in a higher cost of power generation due to higher shipping,

transportation and storage costs, along with a higher reliance on international fuel

supply lines. Moreover, the use of such fuels also result in higher emissions of

greenhouse gases (GHG) to the atmosphere [92]. Many remote communities in Alaska

like Savoonga and Buckland are some of the first communities in US that have been

impacted by the effects of climate change [60]. There are local energy networks, also

known as microgrids, that provide power to communities, either in stand-alone mode

or in grid-connected mode using distributed energy resources like diesel generators,
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windmills, solar panels, and hydroelectric generations [71, 91].

There is a strong push to adopt renewable generation in many communities to

reduce the environmental and economic concerns due to fossil fuel generators and

to reduce the looming threat of global warming [45, 79]. According to the key

recommendations in the report of Allen et al. [6], a larger role of cost-effective

renewable energy can reduce power consumption cost and thereby enhance the

self-sufficiency of these rural communities in Alaska. Typically, renewable energy

resources include water, sun, wind, geothermal heat, tides and biomass [27]. Of

these renewable energy generation technologies, solar and wind energy often are

intermittent in nature, implying that there is an inherent uncertainty in power

generation when these technologies are used [23, 37].

According to Sciulli [83], a microgrid design support tool should include

constraints to account for power generation variability. Chalil Madathil et al. [19]

provides a deterministic model to design and operate an off-grid microgrid with

security constraints as the preliminary research upon which this work is based. One of

the main assumptions it serves in Chalil Madathil et al. [19] is that power generation

is deterministic and there exists no variability in generation or demand. However, in

reality, power systems are prone to experience uncertainty, like fluctuations in power

generation due to variability inherent in wind and solar energy, demand variability,

and unexpected failures within the power network. In this paper, we develop a

mathematical model for designing and operating a resilient off-grid microgrid by

considering uncertainties in power generation due to solar or wind energy.

The main contributions of this paper are as follows:

• We formulate a mathematical model to design and operate a resilient off-grid

microgrid that considers generation uncertainties.
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Figure 4.1: Modified flowchart of ACIRPM model with uncertainty [19]

• We develop an efficient algorithm to solve this model in a reasonable amount

of time.

• To apply this algorithm on two different network instances and validate our

results.

4.1.1 Literature Review

The importance and advantages of renewable energy sources for power

generation are discussed in many previous research works [10, 32, 34, 35]. Bajpai

et al. [10] discusses and reviews various models that use renewable energy resources

in combination with either conventional resources like diesel generators or more than

one renewable energy source for standalone systems. Such systems are called hybrid

renewable energy systems (HRES). Erdnic et al. [32] discuss various models that deal

with optimum sizing approaches for grid-parallel application modes as well as stand-

alone mode for HRES. Fadee and Radzi [34] provide an overview of multi-objective
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optimization of stand-alone HRES by comparing competing objectives like placement,

sizing, design and operation. A practical implementation of a stand-alone HRES is

described in [35] that uses hybrid optimization using genetic algorithm to design a

HRES with PV, wind and battery. Most of these papers emphasize the need for

considering optimization and unit sizing while designing HRES because over-sizing

capacity increases overall cost, whereas under-sizing can result in power supply failure.

While these studies focus on certain individual aspects of power system design like

optimal sizing, unit commitment, optimal power-flow, economic dispatch, reliability,

and component efficiencies, we consider all these factors together to make the best

decision possible for the system.

The typical causes of uncertainty in power systems include forecasting errors,

load fluctuations, generator availability, line outages, and price fluctuations [85, 52, 3].

As stated before, these uncertainties are more prominent when renewable sources like

wind and solar are installed in the network. Aien et al. [3] provide a comprehensive

list of papers that use uncertainty modeling techniques (like stochastic modeling,

fuzzy arithmetic, and robust optimization) to study different types of power systems.

While designing a system which contains uncertain environment, it is important to

consider various issues like (1) can the uncertainty on power generation resources

satisfy all the demands? (2) can the capacity of transmission lines withstand this

variability when it has to transmit higher current? and (3) can the existing assets

absorb these changing trends in generations [22]? Deterministic models can fail to

provide insights in making strategic decisions as compared to when we consider these

uncertainties. For instance, Siddiqui and Marnay [85] provide an example of loss in

investment value resulting from not considering uncertainty in fuel price fluctuations.

There are a lot of research works within the microgrid community that consider

uncertainty due to wind and solar [93, 46, 79, 84, 73]. Wang et al. [93] devises a
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two-stage algorithm to minimize electricity generation costs by optimally scheduling

demand and supply profiles. The uncertainty of renewable resources are confined to a

distribution based on a reference distribution from the past observations or empirical

knowledge for the uncertainty. But this model did not consider technology siting,

capacity, security constraints, and efficiencies. Hytowitz and Hedman [46] discuss

about a two-stage stochastic model for economic dispatch problem incorporating

solar uncertainty. The model they developed did not consider modelling of storage,

technology siting, capacity, N-1 security and component efficiencies. Shin et al. [84]

discuss a stochastic model by considering wind uncertainty for optimal sizing and

operational planning of hybrid microgrids. They developed a two-stage stochastic

model which consists of unit commitment, economic dispatch and technology sizing

of microgrids with inherent wind uncertainty. Narayan et al. [73] also proposes a

two-stage stochastic model for optimizing microgrid planning and operation under

uncertainty. They use a copula-based dependence model coupled a Kumaraswamy

distribution [55] to model the uncertainty in wind and a separate Kumaraswamy

distribution to model stochastic nature of solar energy. Their approach provides

reliable, economical and environmentally acceptable solutions. However, no previous

research considers technology siting, component efficiencies and N-1 security analysis

of the model as we propose. A comparative study from Chalil Madathil et al. [19],

shows that there can be considerable depletion of solution quality if we ignore all

these factors while designing off-grid microgrids.

The design and analysis of microgrids also employ different simulation and

meta-heuristic based techniques as discussed in [34, 57, 79]. Fadee and Radzi [34]

discusses various approaches using heuristic algorithms like genetic algorithm, and

particle swarm optimization and simulation approaches like HOMER, Hybrid2, and

HOGA. Rahman et al. [79] propose a simulation-based approach using HOMER
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software [30] for uncertainty modelling due to non-deterministic renewable generation.

Kuznetsova et al. [57] provide an Agent-Based Model to guide the stakeholder decision

options using robust optimization by modelling “extreme” uncertainties in wind power

generation and demand utilization. Even though they consider different generation

assets, different levels of renewable penetration, and generation uncertainty, these

models use simulation-based or heuristic-based methods which may not guarantee

even upper or lower bounds for the model.

The chance-constrained model for optimal power flow (OPF) is explained in

[14, 96]. One of the major issues while modelling wind uncertainty is to consider the

risk of component failures during excessive wind power generation [89]. The authors

employ a chance-constrained model and used linear outer approximations, scenario-

based decomposition, and Benders Decomposition techniques to their N-1 security and

chance-constrained unit commitment (SCCUC) problem. In this model they solve a

unit commitment problem with wind uncertainty and N-1 security on generators and

lines, but faced computational scalability issues. Sundar et al. [90] use a modified

Benders decomposition algorithm to solve their SCCUC problem. Our proposed

model considers unit commitment, optimal power flow, efficiencies, uncertainties, N-1

security on line and generators for the stand-alone microgrids, which is different than

previous efforts.

It is clear from reviewing the literature that considering uncertainty in power

generation is important while devising a strategic plan to design and operate an

off-grid microgrid. Similarly, there are many models that consider various aspects

of microgrid design like technology siting and capacity, unit commitment, OPF,

component efficiencies, storage, N-1 security on generators and lines, and generators

uncertainty. But none of them considers all these aspects which is the main focus of

our paper. We will use chance-constraints method to solve the model in reasonable
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amount of time.

The rest of the paper is organized as follows. Section 2 deals with model

description and explains our stochastic models along with the parameters in the

model. We also discuss the modeling of uncertainties in our model. Section 3 describes

the algorithm that will be used to solve this model in reasonable amount of time,

followed by a demonstration of the algorithm on two case studies in Section 4. We

conclude our research findings in Section 5 and provide a brief summary of future

research directions.

4.2 Mathematical Formulation

In this section we present the ACIRPM model. The ACIRPM model combines

expansion planning decisions with time extended operations, resource planning,

efficiencies, and N-1 security criteria to optimize a microgrid for resilience.

4.2.1 Model Parameters and Variables

Sets

N set of nodes (buses), indexed by i

E set of existing edges (lines and transformers), indexed by eij. Each edge is

assigned an arbitrary direction from a bus i to a bus j. ij is omitted when

direction is not needed.

En set of new edges (lines and transformers), indexed by eij. Each edge is

assigned an arbitrary direction from a bus i to a bus j. ij is omitted when

direction is not needed.
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E+
i set of existing and new edges connected to bus i and oriented from i,

indexed by e

E−i set of existing and new edges connected to bus i and oriented to i, indexed

by e

T set of time periods, indexed by t, numbered from 1 to |T |

C set of continuous resources, indexed by c

CD ⊆ C set of continuous resources with discrete operation, indexed by c

CC ⊆ C set of continuous resources with continuous operation, indexed by c

CB ⊆ CC set of continuous battery resources, indexed by c

CPV ⊆ CC set of continuous PV resources, indexed by c

CCi ⊆ C set of continuous resources at bus i, indexed by c

CCBi ⊆ C set of continuous resources with storage capabilities at bus i, indexed by c

D set of discrete resources, indexed by d

DD ⊆ D set of discrete resources with discrete operation, index by d

DC ⊆ D set of discrete resources with continuous operation, indexed by d

DW ⊆ D set of discrete resources that uses wind energy, index by d

Di ⊆ D set of discrete resources at bus i, indexed by d

A = C ∪D set of all resources, indexed by a

Ai ⊆ A set of resources at bus i, indexed by a

AC ⊆ A set of control capable resources, indexed by a

AR ⊆ A set of renewable resources, indexed by r
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Ω set of scenarios for N-1 security analysis, indexed by ω

Parameters

fa fixed cost for resource a ∈ A, ($)

ga variable cost for resource a ∈ A, ($/MW)

κa,0, κa,1, κa,2fixed, linear, and quadratic operational cost for resource a ∈ A, ($)

fe installation cost for line e ∈ En, ($)

ud , ud minimum up-time and down-time for resource d ∈ DD, (time-step)

γd , γ
d

ramp up and ramp down rate for resource d ∈ D, (MW/time-step)

se apparent power thermal limit on line e ∈ E , (MVA)

lpti, lq
t
i Active and reactive power demand at bus i ∈ N at time t ∈ T ,

(MW,MVAr)

pga, qpa maximum active and reactive power generated by a resource a ∈ A,

(MW,MVAr)

pg
a
, qp

a
minimum active and reactive power generated by a resource a ∈ A, (MW)

Γc maximum energy storage capacity of the battery c ∈ CB, (MVA)

vi, vi Squared voltage lower and upper bound at bus i ∈ N , ((kV )2)

sa maximum apparent power generated by resource a ∈ A, (MVA)

lpa Stand-by loss (y intercept) of a resource a ∈ A for each piecewise function

p ∈ {1, .., P}, (MW)

[η1
a . . . η

p
a] Vector of piecewise marginal efficiencies of maximum rated power, (%)

re, xe Resistance and reactance of line e ∈ E , (kΩ)
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δt duration of a time-step, (hr)

hi Maximum number of continuous resources at bus i

ki Maximum number of discrete resources at bus i, indexed by ki

πe Probability of acceptable thermal limit violations

πp Probability of acceptable active power capacity violations

πq Probability of acceptable reactive power capacity violations

ς Power ratio for the network

Binary Decision Variables: Discrete technology

xtd active/inactive status for resource d ∈ D at time t ∈ T

ytd start-up status for resource d ∈ D at time t ∈ T

wtd shut-down status for resource d ∈ D at time t ∈ T

bd status indicator if discrete resource d ∈ D is built

Binary Decision Variables: Continuous technology

bc status indicator if continuous resource c ∈ C is built

Continuous decision variables: Discrete technology

pgtd ac active power generation during time t ∈ T for discrete resource d ∈ D,

(MW)

qgtd ac reactive power generation during time t ∈ T for discrete resource d ∈ D,

(MVAr)

p̂gtd ac active power generation before losses during time t ∈ T for discrete

resource d ∈ D, (MW)
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Continuous decision variables: Continuous technology

p̃gc, q̃pc installed maximum active and reactive power generated by a resource c ∈ C,

(MW,MVAr)

s̃c installed maximum apparent power generated by resource c ∈ C, (MVA)

pgtc, qgtc ac apparent power generation during time t ∈ T for continuous resource

c ∈ C, (MW,MVAr)

p̂gtc ac active power generation before losses during time t ∈ T for continuous

resource c ∈ C, (MW)

ȩtc Energy stored (state of charge) in the continuous resource battery c ∈ CB

at time t ∈ T , (MW-hr)

Continuous decision variables: Others

pte, q
t
e Active and reactive power flow though edge e ∈ E at time t ∈ T ,

(MW,MVAr)

vti Squared voltage at node i ∈ N at time t ∈ T , ((kV )2)

lpt,si , lq
t,ω
i apparent power slack at node i ∈ N at time t ∈ T during contingency

scenario ω ∈ Ω, (MW,MVAr)

ψta participation factor for controllable generator a ∈ AC at time-step t ∈ T

There are both deterministic and random parameters in this model. With this in

mind, we denote random variables as bold characters for the rest of this chapter in

order to enhance readability and understanding. The actual deviation of the power

generated (p$t
r and q$t

r) from the forecast using renewable generation sources is

modeled using the random variable $t
r. We calculate the total active power mismatch
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as ∆t =
∑

r∈AR $t
r. The random variable $t

rcauses fluctuations in power dispatch

(p̂gta) and line flow (pte) [62, 80]. We also assume that the random variable $t
ris

independent and normally distributed with a mean value of zero and known variance

σ2
r . Furthermore, the total power mismatch (∆t) is divided among the set of control-

capable generators according to their participation factor ψa.

4.2.2 Objective Function

The objective function (4.1a) minimizes the total installation and operation

cost of energy resources and enhances network resiliency [19]. The operation costs

also contain the expected costs for renewable energy generation.

min

〈 (∑
i∈N

∑
t∈T

∑
ω∈Ω

(|lpωi,t|+ |lqωi,t|)
)
,(∑

c∈C

fcbc +
∑

c∈C\CB
gcp̃gc +

∑
c∈CB

gcs̃c

)
+
∑
d∈D

fdbd +

E
[∑
t∈T

∑
a∈A

(
(κa,2)(p̂gta)

2 + (κa,1)(p̂gta) + (κa,0)(ba)
)] 〉

(4.1a)

4.2.3 Uncertainty Modeling

The uncertainty of wind and solar power generation is modelled using

equations (4.2a) and (4.2b). We define p$t
r and q$t

r as the known forecast of

active and reactive power from renewable sources, respectively, where $t
ris a random

variable with known standard deviation [14]. Similarly the reactive power injections

are modelled as a factor of the power ratio denoted by the variable ς [80].

p̂gt
r = p$t

r + $t
r ∀ i ∈ N , r ∈ AR, t ∈ T (4.2a)

q̂gt
r = q$t

r + ς$t
r ∀ i ∈ N , r ∈ AR, t ∈ T (4.2b)
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4.2.4 Generator Control

The power generated by wind turbines depends on the velocity of the wind,

while the power generated by PV cells depend on solar irradiance [74]. Windmills

will either generate or curtail power as long as the wind speed is between certain

threshold values. Hence, we look into two scenarios: the case when power generated

is less than the forecast value and the case when the power generated is greater than

the forecast value. Appropriate constraints should be added to the model in such a

way that other controllable generators like diesel and batteries in the network should

supplement the necessary demand due to insufficient power generation by wind and/or

solar. Similarly, if wind output is increased, then other generators will proportionally

decrease. According to Bienstock et al. [14], the fluctuation in renewable generation

can be modeled as in equation (4.3a), where ψa is the participation of controllable

generators. Constraints (4.3b) guarantee that the controllable generators respond

proportionally to meet the demand.

p̂gt
a = p̂gta − ψta∆t ∀ a ∈ AC , t ∈ T (4.3a)∑

a∈AC

ψta = 1 ∀ t ∈ T (4.3b)

ψta ≤ ba ∀ a ∈ AC , t ∈ T (4.3c)

4.2.5 Power Flow Physics

The power flow physics in the model includes both Kirchoff’s Law and Ohm’s

Law. Kirchoff’s Law is shown in equations (4.4a)-(4.4b), while (4.4c) represents the
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LinDistFlow equations of Ohm’s Law as described in [36, 12].

∑
a∈AC

i

pgta +
∑
r∈AR

i

pgtr − lpti =
∑
e∈E+i

pte −
∑
e∈E−i

pte ∀ i ∈ N , t ∈ T (4.4a)

∑
a∈AC

i

qgta +
∑
r∈AR

i

qgtr − lqti =
∑
e∈E+i

qte −
∑
e∈E−i

qte ∀ i ∈ N , t ∈ T (4.4b)

vtj = vti − 2(rep
t
e + xeq

t
e) ∀ eij ∈ E , t ∈ T (4.4c)

4.2.6 Capacity Limits and Operating Status

As previously defined in [19], voltage limits (4.5a), generator ON/OFF status

(4.5e)-(4.5g), minimum up-time and down-time (4.5h)-(4.5i), and ramp-up and ramp-

down constraints (4.5k)-(4.5k) are required in the model. Similarly, equations (4.5l)-

(4.5n) denote the battery operating constraints. The boundary condition for up-time

and down-time are defined as Υd = ρ ∈ T : t − ud + 1 ≤ ρ ≤ t and ζd = ρ ∈ T :

t− ud + 1 ≤ ρ ≤ t.

vi ≤ vti ≤ vi ∀ i ∈ N , t ∈ T (4.5a)

s̃c ≤ bcsc ∀ c ∈ CB (4.5b)∑
c∈Ci

bc ≤ hi ∀ i ∈ N (4.5c)

∑
d∈Di

bd ≤ ki ∀ i ∈ N (4.5d)

xtd ≤ bd ∀ d ∈ DD, t ∈ T (4.5e)

xtd = xt−1
d + ytd − wtd ∀ d ∈ DD, t ∈ T (4.5f)

ytd + wtd ≤ 1 ∀ d ∈ DD, t ∈ T (4.5g)∑
ρ∈Υd

yρd ≤ xtd ∀ d ∈ DD, t ∈ T (4.5h)
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∑
ρ∈ζd

wρd ≤ 1− xtd ∀ d ∈ DD, t ∈ T (4.5i)

γd ≥ pgtd − pgt−1
d − pgdytd ∀ d ∈ DDt ∈ T (4.5j)

γ
d
≥ pgt−1

d − pgtd − pgdwtd ∀ d ∈ DDt ∈ T (4.5k)

(pgtc)
2 + (qgtc)

2 ≤ (̃sc)
2 ∀ c ∈ CB, t ∈ T (4.5l)

ȩtc = ȩt−1
c − p̂gtcδt ∀ c ∈ CB, t ∈ T (4.5m)

0 ≤ stc ≤ s̃c ∀ c ∈ CB, t ∈ T (4.5n)

4.3 Need for Stochasticity

All numerical experiments were performed using a Microsoft Windows® Server

2016 running an Intel® CoreTM i7-6950X CPU @ 3.00 GHz processor with 10 cores

and 128 GB RAM. The model was implemented using JuMP modeling software [28]

and Gurobi V7.0.1 solver [41].

4.3.1 Problem Setup

In order to test our model, we create a toy three-node model (Figure 4.2) using

the IEEE 13 node test case [50]. Node 632 can install a storage device, whereas node

645 has a diesel generator. Node 646 has a windmill which has example values of

predicted forecast for active and reactive power output. Variations in this forecast

introduces randomness in our model. The maximum power that can be generated by

windmill is 15kW per time-step. The demand at each node, wind forecast at node

646, and forecast errors for two samples are shown in Table 4.2. The two samples show

borderline cases of wind generation. Sample 1 provides random power generation that

is mostly less than net demand whereas sample 2 provides random power generation
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that is always greater than net demand. We adopt other network parameters such as

line limits, resistance, and reactance from Chalil Madathil et al. [19].

632

645

646

Figure 4.2: A test three node network

TABLE 4.2: Demand and wind generation profile

Time Node Demand Wind forecast Forecast Error

period name Active Reactive Active Reactive Sample 1 Sample 2

(kW ) (kV A) (kW ) (kV A)

1

632 0.240 0.149 - - - -

645 0.631 0.391 - - - -

646 0.039 0.024 2.1 2.1 -0.329068 0.407678

2

632 1.432 0.887 - - - -

645 0.614 0.381 - - - -

646 0.037 0.023 1.9 1.9 0.191877 1.34538

3

632 2.196 1.361 - - - -

645 0.556 0.345 - - - -

646 0.080 0.050 1.4 1.4 -0.30071 0.458721

4

632 0.266 0.165 - - - -

645 0.560 0.347 - - - -

646 0.139 0.086 1.3 1.3 -0.105758 0.809635

5

632 0.266 0.165 - - - -

645 0.554 0.343 - - - -

646 0.131 0.081 1.4 1.4 0.78937 2.42087

4.3.2 Example Cases

In order to study the importance of incorporating stochasticity to design and

operate off-grid microgrids, we compare scenario results between the deterministic
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and stochastic model (Table 4.3). While scenarios 1 and 2 are both deterministic

TABLE 4.3: Need for stochasticity

S No Model type Install options Model Results Objective Error forecast

DM/SM CG RG Storage CG RG Storage function ($)

1 DM X × X X × × $21052.50 N/A

2 DM X X X × X × $10000.00 N/A

3 SM X X X X X X $30670.74 Sample 1

4 SM X X X × X X $10545.07 Sample 2

DM - Deterministic Model CG - Conventional Generators

SM - Stochastic Model RG - Renewable Generators

models, the latter uses renewable generators under the assumption of deterministic

power generation. We also assume that the operating costs for such renewable sources

are zero. Scenarios 3 and 4 have similar generator options, but differ in the samples

of forecast error used (Table 4.2) to model stochasticity. When the two samples are

run independently, we see two different solutions. For sample 1, which is created

to represent a case where random power generation can be less than demand, the

model recommends to install a storage device and a diesel generator. Alternatively,

the results for sample 2, which has random power generation that is always greater

than demand, the model recommends to build a storage device. The storage device

is necessary to account for excessive power generation by the windmill rather than

for total demand in the network. The model instance is infeasible when we consider

a scenario with no option to install any storage device.

While the deterministic model suggests to install only one control capable

generator, the stochastic model suggests to install storage and/or auxiliary generator

to satisfy the demand and also to address the variability. Even though the objective

value of deterministic model is lower than the stochastic model in this test instance, a

larger time horizon problem instance will most likely have higher operating costs for
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control capable generators due to their quadratic operating costs. Clearly, considering

a stochastic model provides a better understanding of the system and suggests to

install necessary components in the network.

4.4 Algorithms

4.4.1 Chance Constraints

Equations (4.6a) through (4.6i) are modeled as chance constraints with the

values of π being defined by the designer for acceptable violation probabilities. For

example, constraint set (4.6a) denote the occurrence of a thermal limit overload.

P
(

(pte)
2 + (qte)

2 ≤ (se)
2

)
≥ 1− πe ∀ e ∈ E , t ∈ T (4.6a)

P
(

p̂gc ≤ p̃gc

)
≥ 1− πp ∀ c ∈ C \ CB, t ∈ T (4.6b)

P
(

p̂gc ≥ bcpgc

)
≥ 1− πp ∀ c ∈ C \ CB, t ∈ T (4.6c)

P
(

q̂gc ≤ q̃gc

)
≥ 1− πq ∀ c ∈ C \ CB, t ∈ T (4.6d)

P
(

q̂gc ≥ bcqgc

)
≥ 1− πq ∀ c ∈ C \ CB, t ∈ T (4.6e)

P
(

p̂gtd ≤ pgdx
t
d

)
≥ 1− πp ∀ d ∈ DD, t ∈ T (4.6f)

P
(

p̂gtd ≥ pg
d
xtd

)
≥ 1− πp ∀ d ∈ DD, t ∈ T (4.6g)

P
(

q̂gtd ≤ qgdx
t
d

)
≥ 1− πq ∀ d ∈ DD, t ∈ T (4.6h)

P
(

q̂gtd ≥ qg
d
xtd

)
≥ 1− πq ∀ d ∈ DD, t ∈ T (4.6i)

The chance constraints (4.6a) can be reformulated using two absolute value

constraints as in (4.7a) - (4.7c) [61]. Here, β ∈ (0, 1) is a trade-off parameter to
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measure the violation between equations (4.7a) and (4.7b).

P
(
|pte| ≤ pte

)
≥ 1− βπe ∀ e ∈ E , t ∈ T (4.7a)

P
(
|qte| ≤ qte

)
≥ 1− (1− β)πe ∀ e ∈ E , t ∈ T (4.7b)

(pte)
2 + (qte)

2 ≤ (se)
2 ∀ e ∈ E , t ∈ T (4.7c)

4.4.2 Component Efficiencies

Piece-wise linear functions (p) for component efficiences as defined in Chalil

Madathil et al. [19] are restated in constraints (4.8a) - (4.8c).

pgtc ≤ ηpc p̂gtc + bcl
p
c ∀ c ∈ C, t ∈ T , p (4.8a)

pgtd ≤ ηpdp̂gtd + xtdl
p
d ∀ d ∈ DC , t ∈ T , p (4.8b)

pgtd ≤ ηpdp̂gtd + bdl
p
d ∀ d ∈ DD, t ∈ T , p (4.8c)

4.4.3 Deterministic Equivalent of Chance Constraints

The quadratic cost function in (4.1a) can be rewritten as provided in [62]. The

updated objective function is stated in (4.9a).

min

〈 (∑
i∈N

∑
t∈T

∑
ω∈Ω

(|lpωi,t|+ |lqωi,t|)
)
,(∑

c∈C

fcbc +
∑

c∈C\CB
gcp̃gc +

∑
c∈CB

gcs̃c

)
+
∑
d∈D

fdbd +

∑
t∈T

∑
a∈A

(
(κa,2)

[
(p̂gta)

2 + var(∆t)(ψta)
2
]

+ (κa,1)(p̂gta) + (κa,0)(ba)

) 〉
(4.9a)

We use the method of Urli and Nadeau described by Abdelaziz [2] to define
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both violation variables (variables U1 to U9) and slack variables (variables V 1 - V 9)

for all chance constraints in the model. We present the deterministic form of the

chance constraints in (4.10a) through (4.10h) that are applicable for all scenarios

n ∈ f. They also introduce a new objective function that minimizes the sum of

violation variable of the chance constraints 1
|f|
∑

n∈f κ1U1+ ..+κ9U9, where κ is the

weighted penalty.

p̂gnc − p̃gc + U2nc − V2nc = 0 ∀ c ∈ C \ CB, t ∈ T (4.10a)

p̂gnc − bcpgc − U3nc + V3nc = 0 ∀ c ∈ C \ CB, t ∈ T (4.10b)

q̂gnc − q̃gc + U4nc − V4nc = 0 ∀ c ∈ C \ CB, t ∈ T (4.10c)

q̂gnc − bcqgc − U5nc + V5nc = 0 ∀ c ∈ C \ CB, t ∈ T (4.10d)

p̂gt,nd − pgdx
t
d + U6nd − V6nd = 0 ∀ d ∈ DD, t ∈ T (4.10e)

p̂gt,nd − pgdx
t
d − U7nd + V7nd = 0 ∀ d ∈ DD, t ∈ T (4.10f)

q̂gt,nd − qgdx
t
d + U8nd − V8nd = 0 ∀ d ∈ DD, t ∈ T (4.10g)

q̂gt,nd − qgdx
t
d − U9nd + V9nd = 0 ∀ d ∈ DD, t ∈ T (4.10h)

4.5 Conclusion

In this paper, we develop a mathematical formulation for designing and

operating remote off-grid microgrids under uncertain power generation. We also

conduct an initial study to understand the need for considering stochasticity in power

generation. Further study is required to identify more accurate behavior of our model.

Future work should consider N-1 security, large time horizon, and efficient algorithm

to solve the model in reasonable amount of time. We should also test our model on

standard networks and compare results with real microgrids in terms of solving time.
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Chapter 5

Conclusion

Off-grid microgrids provide electricity to remote locations that cannot be

connected to the regular power grids. The two major challenges for the design and

operation of such off-grid microgrids include system reliability and environmental

issues. In this dissertation, we aim to address these two issues in three stages.

5.1 Summary

In the first stage of this dissertation, we develop a mathematical model to help

decision makers optimally design and operate an off-grid microgrid by considering N-1

system security. Our model also considers characteristics like the type of generators

to be installed, location for generator installation, and their maximum capacities.

The operational characteristics contained in our model include dispatch over multiple

periods, component efficiencies, physical limits of the network, and power-flow

physics. The network design problem combined with nonlinear power flow physics

and multiple time periods is a complex problem to solve. Hence, we first consider

only generator contingencies. We developed a computationally efficient, scenario-
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based decomposition (SBD) algorithm to solve the model in a reasonable amount of

time. The solutions resulting from the model provide insights on possible solution

options such as installing backup generators and/or appropriate power dispatch by

the generating units over time.

We expand the ac integrated resource planning problem for microgrids

(ACRIPM) to include network topology and N-1 security on transmission lines as well.

Our solutions for this expanded model now also include network topology decisions to

build new lines and/or redundant lines in addition to the decisions developed in the

first stage. Unfortunately, the SBD algorithm failed to solve large problem instances

when we include topology decisions. Therefore, we develop a rolling horizon (RH)

procedure and a hybrid algorithm that uses the benefits of both SBD and RH to

solve our model in an acceptable period of time. The solutions recommend building

redundant lines when there is a possibility of islanding of nodes from generating

sources, which helps to improve network reliability.

In the first two stages, we focused our model development based on the

assumption that power generation is deterministic. In fact, some of the communities

that install off-grid microgrids are now increasing the use of renewable energy sources

for generation in their networks. With this in mind, we expand our ACRIPM model

to include generation uncertainty in stage three. We conducted some initial tests

to justify the need for considering stochasticity in designing and operating off-grid

microgrids. We propose a chance-constrained optimization technique to address

issues related to uncertainties such as exceeding generation capacity of controllable

generation and line breakage due to excessive power flow due to renewable generation.

The preliminary results recommended to install storage devices to store excess power

generated by the renewable resources.
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5.2 Future Work

There are multiple directions that we can pursue in the future to enhance this

research study. First our models need to be tested on a larger set of microgrid

networks at different locations to ensure the quality of solutions recommended

by our algorithms are maintained and scale across different locations. With the

implementation of stage 3, we considered the ACRIMP model with power generation

uncertainties. Further analyses are required to understand the impact of stochasticity

on N-1 security analysis. In reality, there also will be demand uncertainty that should

be considered in the model. Hence, the current model should be expanded to include

demand fluctuations in the network.

The problems that we considered in all three stages of this dissertation consist

of only one day’s worth of data. We should make optimal strategic decision to build

and operate off-grid microgrid by considering the actual life cycle of a microgrid,

which is typically 20 years. However, solving such larger horizon problem can be

computationally challenging. Hence there exists a need to find smarter ways to

incorporate future demands and other systems requirements to obtain accurate results

over a longer time horizon.

5.3 Concluding Remarks

During the course of this research, we substantiated the need for considering

nonlinear ac power-flows, N-1 security, component efficiencies, time-dependent

operations, and stochastic nature of renewable resources in order to design cost-

effective and resilient off-grid microgrids. We also developed efficient algorithms to

solve this complex model in reasonable amount of time. From the results, we observed
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that, in order to enhance resilience of certain networks it may not be necessary

to install backup generators but installing redundant lines and dispatching power

efficiently can also achieve the same objective at reduced cost. This concludes a large

part of our research in designing off-grid microgrids with N-1 security analysis and

their efficient time-dependent operations.

This dissertation work can also help communities worldwide who have no

access to electricity. According to the International Centre for Trade and Sustainable

Development (ICTSD), there are over 645 million people in Africa who are still living

in darkness with a substantially low quality of life [47]. The potential exists to enhance

the quality of life and economic growth for these under-developed communities by

installing off-grid microgrids using the methods discussed in this dissertation. In

turn, we can strive towards making this world a better place to live.
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horizon approach for production–distribution coordination of industrial gases
supply chains. Industrial & Engineering Chemistry Research, 55(9):2646–2660,
2016.

[100] Y Zinchenko, H Song, and W Rosehart. Optimal transmission network
topology for resilient power supply. In ILS Conference 2016, editor, Proc. 6th
International Conference on Information Systems, Logistics and Supply Chain,
page 9, Bordeaux, France, 6 2016. ILS Conference 2016. Bordeaux, France.

102

http://www.eia.gov/electricity/monthly/update/
http://www.eia.gov/electricity/monthly/update/

	Clemson University
	TigerPrints
	8-2017

	Modeling and Analysis of Remote, Off-grid Microgrids
	Sreenath Chalil Madathil
	Recommended Citation


	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Terminology
	Problem Statement

	Capacity Planning, Operational Planning and N-1 Security
	Introduction
	Literature Review
	Mathematical Formulation
	Algorithms
	Numerical results
	Conclusions

	Optimal Design for Location, Capacity, Topology, and Operation of Resilient Off-grid Microgrids
	Introduction
	Literature Review
	Mathematical Formulation
	Algorithms
	Numerical Results
	Conclusion

	Design and Operation of Resilient Off-grid Microgrids under Uncertainty
	Introduction
	Mathematical Formulation
	Need for Stochasticity
	Algorithms
	Conclusion

	Conclusion
	Summary
	Future Work
	Concluding Remarks

	Appendices
	License for images

	Bibliography

