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Abstract 

The use of iron oxide nanoparticles for a variety of applications has grown over the past 

few decades.  Manipulation of surface chemistry of these materials is critical to 

customizing the properties of the particles for desired applications.  Ligand exchange is a 

common and versatile tool for surface modification.  There are many factors which affect 

ligand exchange including ligand chain length, number of binding groups, binding group 

chemistry, and particle aging and oxidation.  Furthermore, ligand exchange may not 

always occur to completion.  Therefore, it is important to characterize the surface of the 

particles to determine the extent of exchange.  Current techniques to confirm and monitor 

ligand exchange can be limited in sensitivity and versatility, and often these techniques 

must be used in combination to thoroughly characterize the exchange.  To address this 

issue, radioanalytical techniques were developed to quantify ligand exchange on iron 

oxide nanoparticles and investigate the factors which affect ligand exchange.  Oleic acid 

coated iron oxide nanoparticles were synthesized via thermal decomposition with trace 

amounts of 14C-oleic acid on the surface.  The particles were modified via ligand 

exchange with a variety of hydrophilic ligands.  The modified particles were measured 

using liquid scintillation counting (LSC) to determine the activity and ultimately, the total 

number of 14C-oleic acid chains remaining after exchange.  These techniques were used 

to determine effects of head group chemistry with polymeric ligands and effects of head 

group chemistry, number of binding groups, and ligand exchange reaction parameters 

with small molecule ligands.  Results revealed catechols displace the most oleic acid 

during exchange.  Furthermore, multidenticity, or multiple binding groups, increases the 



iii 

displacement of the oleic acid.  Particle aging and oxidation was investigated using these 

techniques.  Unlabeled, oleic acid coated particles which were aged in solution for 2, 7, 

and 30 days were mixed with 14C-oleic acid in exchange reactions.  Results revealed that 

aging of the particles at 30 days effected an increase in the amount of 14C-oleic acid 

adsorbed on the particles after exchange.  Kinetic analysis of these results indicated an 

increase in the desorption rate constant and a decrease in the adsorption rate constant with 

age but with no profound change in the overall reaction rates.  A follow-up study with 

oxidized particles suggested that this behavior may be due to oxidation during aging.  

Overall, the results signify an increase in the number of available binding sites, possibly 

due to formation of a defective oxide shell during aging and/or oxidation.  
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CHAPTER 1:  INTRODUCTION: SYNTHESIS, SURFACE 

MODIFICATION, AND SURFACE CHARACTERIZATION OF IRON 

OXIDE NANOPARTICLES 

1.1 Introduction 

Iron oxide nanoparticles have gained significant interest over the past few decades for use 

in environmental and biomedical applications.  The magnetic properties and 

biocompatibility of these materials may be exploited for use in magnetic resonance 

imaging (MRI) contrast agents,1, 2 magnetically modulated energy delivery (MagMED),3, 

4 drug delivery,5, 6 and environmental remediation.7, 8  Manipulation of surface chemistry 

of these nanoparticles is critical to achieve desirable properties for these applications.  

There are various methods of synthesis and surface modification that allow for control 

over size, shape, hydrophilicity or hydrophobicity, chemical functionality, and colloidal 

stability of iron oxide nanoparticles.4, 9  One synthesis method of particular interest is 

thermal decomposition of an iron precursor, which allows for optimal control over size 

and size distribution.10-12  This method results in monodisperse particles with a 

hydrophobic surface.  The hydrophobic ligands are often replaced with hydrophilic 

ligands through a process called ligand exchange to modify the nanoparticle surface.13, 14  

There are multiple methods of nanoparticle surface modification.  Some particle synthesis 

techniques allow for in-situ control of surface chemistry, while others may require a post-

synthesis technique like ligand exchange (Figure 1.1) or multi-step techniques using a 
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grafting-to or grafting-from approach.  Ligand exchange is a commonly used technique in 

which an initial or sacrificial ligand is displaced by another ligand which competitively 

binds to the surface of the particle.15, 16  This technique allows for change of the surface 

chemistry without compromising the integrity of the core particle.  Ligands used for these 

reactions may be hydrophobic, hydrophilic, or ionic.  The ligands may also bear multiple 

functional groups which allow for reactive chemistries or for binding to biomolecules.  

Furthermore, ligands may be used to control or manipulate particle size for certain 

applications.  Ligand chemistry is key to influencing particle stability and interactions 

with the environment.  

 

Figure 1.1.  Illustration of general ligand exchange reaction on a nanoparticle. 

Ligand exchange is dependent upon many factors.  Ligand properties such as chain 

length,17 head group chemistry,15 charge,18 and tail group chemistry19 can greatly affect 

exchange and the rate of the reaction.  Properties of the particle such as size, morphology, 

surface defects, and oxidation state may also affect binding and exchange of the 

ligands.20, 21  Several techniques exist which allow for analysis of ligand exchange and 

the factors which influence it.   These techniques include thermogravimetric analysis 
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(TGA),22, 23 Fourier transform infrared spectroscopy (FTIR),22, 24 and x-ray photoelectron 

spectroscopy (XPS).25, 26  However, some of these techniques are limited to qualitative or 

semi-quantitative analysis only.  Other techniques may have limited detection sensitivity.  

Therefore, it is prudent to develop a technique which allows for quantitative analysis of 

exchange with identifiable ligands at low detection limits.  This dissertation focuses on 

the use of radioanalytical methods for investigation and quantification of ligand exchange 

of iron oxide nanoparticles and the factors that contribute to the reactions.    

1.2 Synthetic Methods for Synthesis of Iron Oxide Nanoparticles 

There are multiple approaches to synthesizing iron oxide nanoparticles.  Some methods 

are beneficial due to ease of synthesis and greater control of surface chemistry during the 

reaction.  Other methods allow for greater control of size and size distribution.  However, 

each of these methods have drawbacks which can affect the properties of the particles and 

subsequent surface modifications.  Coprecipitation is a common and easy route for 

synthesizing iron oxide nanoparticles (Fe3O4 and -Fe2O3).27, 28  This technique involves 

coprecipitation of ferrous and ferric salts in aqueous solutions at an adjusted pH.29  

Magnetite (Fe3O4) particles can be made using a stoichiometric ratio of 2:1 (Fe3+/Fe2+) in 

a pH range from 8 to 14.30  The first synthesis of superparamagnetic iron oxide 

nanoparticles using co-precipitation was performed by Massart.31  Massart’s work 

illustrated the importance of pH and the ratio of iron salts on size and size distribution of 

the particles.  Furthermore, his work and the work of others has demonstrated the ability 

to synthesize coated particles with ligands such as dimercaptosuccinic acid (DMSA),32, 33  
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citric acid,34, 35 and polymers like poly(ethylene glycol) (PEG)36 and PEG-b-poly(vinyl 

phosphonic acid) (PVPA).37  Despite ease of synthesis and in-situ control of surface 

chemistry, coprecipitation techniques do not typically yield particles with highly uniform 

size, shape, and size distribution.38-40  Figure 1.2 demonstrates the relatively high the 

polydispersity of co-precipitation particles.36  Control of these particle properties is key 

for biomedical applications of iron oxides.  High temperature methods like thermal 

decomposition offer size and size dispersity control.   

 

Figure 1.2. TEM image of iron oxide nanoparticles synthesized by a) coprecipitation36 and b) 
thermal decomposition. 

Thermal decomposition of an iron precursor is another common method which allows for 

greater control and tuning of particle size and size dispersity (Figure 1.2).  Hyeon and 

coworkers synthesized monodisperse -Fe2O3 nanoparticles via subsequent oxidation of 

iron nanoparticles.41  They heated iron pentacarbonyl and oleic acid in octyl ether at 

100C for 1 hour, then oxidized the particles using trimethylamine oxide.  This procedure 
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yielded monodisperse, spherical particles which could be tuned to sizes between 4 and 16 

nm.  Sun et al. utilized thermal decomposition to synthesize magnetite (Fe3O4) 

nanoparticles.42  Iron acetylacetonate was combined with oleic acid, oleylamine, and 1,2-

hexadecanediol in phenyl ether and heated to reflux under nitrogen.  The reaction resulted 

in particles which were 4 nm in diameter and were used in a seed-mediated growth 

method to create larger particles.  The nanoparticles were characterized via transmission 

electron microscopy (TEM) and x-ray diffraction (XRD) and were shown to be highly 

monodisperse.   

Park et al. demonstrated a larger scale synthesis of iron oxide nanoparticles using a two-

step approach.43  In their method, iron oleate was synthesized by mixing iron chloride 

(FeCl3) and sodium oleate in ethanol, water, and hexane and heating the mixture to 70C.  

The resulting precursor was purified, dried, and combined with oleic acid in octadecene.  

The dissolved precursor was then thermally decomposed at 320C.  This method was 

used to generate monodisperse particles of varying sizes between 5 and 22 nm in 

diameter.  A group at Sandia National Laboratories has recently improved upon these 

methods and developed a more highly controlled and reproducible synthesis of magnetite 

nanoparticles.44  Vreeland et al. first synthesized an iron oleate precursor by heating iron 

acetylacetonate and oleic acid in a molten metal bath to 320C.  The resulting precursor 

was adjusted to a concentration of 0.22 M using 1-octadecene.  The precursor solution 

was then injected at a constant rate into a flask containing oleic acid and docosane which 

had been heated to 350C under a nitrogen atmosphere.  The particle size was tuned by 
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the duration of the reaction.  The reproducible method allowed for synthesis of particles 

up to 34.5 nm in diameter with low standards of deviation as determined by TEM image 

analysis.  Despite these remarkable advances in particle size tuning, thermal 

decomposition results in particles which are hydrophobic.  The high temperatures 

necessitate the use of high-boiling, hydrocarbon solvents and ligands.  Therefore, control 

of surface chemistry is only achieved after synthesis of the nanoparticles. 

Hydrothermal techniques require high temperatures for synthesis but allow for direct 

formation of hydrophilic nanoparticles.  Iron salts or hydroxides are heated to 

temperatures which can exceed 200C and, therefore, are reacted at high pressures due to 

the necessity of a closed reactor.29  Particle size and shape may be tuned by controlling 

solvent conditions, temperature and time of reaction,45 and using additives like poly(vinyl 

alcohol)46 or n-decylamine.47  

Sol-gel is a wet-synthesis technique for synthesizing nanoparticles in a network or gel.  

Typically, metal alkoxides are reacted with water to form metal hydroxides.29  Then the 

metal hydroxides are condensed and polymerized with other metal hydroxides or 

alkoxides to form a 3-dimensional network or gel.  The gels are then dehydrated by heat-

treatment to obtain the nanoparticles.48  Manipulation of temperature, precursor 

concentrations, and pH can result in formation of particles which are size-controlled and 

fairly monodisperse.49 
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1.3 Strategies for Surface Modification of Iron Oxide Nanoparticles 

Control of surface chemistry is key to tailoring the properties of nanoparticles for various 

applications.  This can be achieved via several techniques including introduction of 

ligands in-situ,32, 34, 36 click chemistry,50-52 layer-by-layer deposition,53, 54 ligand 

exchange,11, 12 and grafting-from approaches like, atom transfer radical polymerization 

(ATRP)55-58 and reversible addition-fragmentation chain-transfer polymerization 

(RAFT).51, 59, 60  As previously mentioned, co-precipitation of iron oxide nanoparticles 

allows for introduction of desired ligands in-situ.  However, if greater control of particle 

size and shape uniformity is critical to the application, then other particle synthesis 

methods may be required necessitating the use of post-synthesis, surface modification 

techniques. 

 

Figure 1.3. Schematic of 1,3-dipolar cycloaddition of an alkyne and an azide resulting in the 
formation of a triazole. 

Click chemistry is a robust method which allows for fast and simple addition of 

functional ligands onto nanoparticles.  Shao et al. utilized azide-alkyne click chemistry to 

modify polymer-coated iron oxide nanoparticles with carbohydrates.61  Dextran coated 

nanoparticles were synthesized via coprecipitation and were subsequently modified via 

perfluorophenylazide photochemically induced C-H insertion.  Azide functional 

carbohydrates were clicked on to the nanoparticles and they were investigated for their 
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binding affinity to proteins and cells.  Layer-by-layer (LbL) deposition is a slower, albeit 

effective method which allows for modification of particles with multiple layers through 

sequential adsorption of polymers with opposite charges (Figure 1.6).53, 62, 63  Choi and 

coworkers modified amine-functional iron oxide nanoparticles using a centrifugation 

layer-by-layer method for application as protein carriers.53  The particles were either 

modified with poly(allylamine) hydrochloride and poly(acryclic acid), positive and 

negatively charged graphene oxides, or poly-L-lysine and hyaluronic acid.  

Characterization of the particles revealed successful depositions.   

 

Figure 1.4. Representation of a general layer-by-layer deposition of polymers onto a 
nanoparticle. 

Grafting-from approaches offer precise control of structure and chain length of ligands on 

the surface of nanoparticles.  Polymers with specific architectures can be grown directly 

from the surfaces of particles via highly controlled syntheses.  For example, 
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superparamagnetic iron oxide nanoparticles were modified by Eyiler et al. using surface-

initiated ATRP.55  Briefly, amine functional nanoparticles were reacted with 

bromopropionyl bromide.  Itaconic acid and N-isopropylacrylamide were then 

copolymerized from the bromine-initiated nanoparticles.  Results revealed successful 

modification of the particles with thermally and pH responsive copolymers.   

Ligand exchange is a widely used and versatile technique for alteration of surface 

chemistry without affecting the particle size or shape.64  Incidentally, this method is often 

used in combination with the aforementioned techniques.57  Particles which were 

synthesized with oleic acid may need to be modified via exchange with a ligand which 

will serve as an initiator for polymerization or as a linker for other chemistries.57  Prai-in 

and coworkers exchanged oleic acid with 3-aminopropyltriethoxysilane on the surface of 

iron oxide nanoparticles which allowed for further conjugation of block co-polymers 

containing azlactone rings which react with amines.60  Ligand exchange can be 

performed in a variety of solvent systems and in the presence of catalysts or in high 

temperature conditions to enhance the rate of the reaction.65-68  Furthermore,  exchange is 

heavily dependent upon the functionality of the ligands.  The group which will bind to the 

particle must have a higher affinity than that of the initial ligand. 

1.3.1 Impact of Surface Chemistry on Applications of Nanoparticles 

Manipulation of surface chemistry of nanomaterials is important, and in many cases, 

required for generating materials which have all the necessary properties for desired 

applications.  Ligands may be used to confer solubility, colloidal stability, and 
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functionality to the surfaces of nanoparticles (Figure 1.3).  Ligands can be used to control 

hydrophilicity or hydrophobicity, charge, functional groups for reactive chemistries or 

adsorption, size, shape, and polydispersity.  Control over the particle interface directly 

impacts its behavior in any environment. 

 

Figure 1.5.  Illustration of ligands imparting a) colloidal stability and b) functionality to 
nanoparticles. 

Oleic acid-coated iron oxide nanoparticles cannot be dispersed in aqueous environments 

for biomedical or environmental applications as synthesized.  They must be modified 

with natural or synthetic hydrophilic ligands.  Synthetic ligands such as poly(ethylene 

glycol) (PEG),69, 70 poly(vinyl alcohol) (PVA),71 poly(acrylic acid) (PAA),72 

dimercaptosuccinic acid (DMSA),73, 74 and 3-aminopropyltriethoxysilane (APTES)75 are 

commonly employed for biological applications and for environmental remediation.  
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PEG is particularly useful for these applications because it’s biocompatible and helps to 

increase circulation time of therapeutic materials.76, 77  Natural ligands like citric acid,13 

alginates,78 natural organic matter (NOM),79 and chitosan80 have also been useful for 

modification of nanoparticles for biomedical and environmental applications.  Surface 

ligands can also impart functionality and chemical reactivity to nanoparticles.  As 

mentioned in a previous section, iron oxide nanoparticles can be functionalized for 

further polymerization from the surface.  Polymers with functional tail groups like 

carboxylic acids and amines can be used to conjugate biomolecules which can then be 

used to target other moieties like cell receptor proteins.81  Nanoparticles may also contain 

ligands which adsorb environmental contaminants.7  Whatever the application may be, 

surface chemistry is critical to designing nanoparticles with the required properties.   

Colloidal Stability 

Surface ligands are not just important for solubility and functionality of nanoparticles; 

they also provide colloidal stability.  Aggregation of particles can be detrimental to their 

purpose.  Surface coatings can mediate this effect.  The Derjaguin, Landau, Verway and 

Overbeek (DLVO) theory is useful for modelling the interactions of particles in solution 

(i.e. colloidal stability).82  Traditional theory states interparticle interactions are governed 

by attractive forces or van der Waals forces (Va) and repulsive forces or electrostatic 

forces (Ve).  The interaction potential is determined by adding these forces together as 

shown in Equation 1.1. 
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Eq. 1.1) 𝑽𝒕𝒐𝒕𝒂𝒍 = 𝑽𝒂 + 𝑽𝒆                          

Particles with a surface charge attract counterions in the solution and layers of charges 

form.  This is referred to as the electrical double layer.  According to DLVO theory, 

stability can be achieved by balancing the double layer with attractive forces.  However, 

this theory has since been modified to include steric repulsive forces (Vs) and magnetic 

interactions (Vm).83-86 

Eq. 1.2) 𝑽𝒕𝒐𝒕𝒂𝒍 = 𝑽𝒂 + 𝑽𝒆 + 𝑽𝒔 + 𝑽𝒎 

Ligands of sufficient size or length can provide enough steric hindrance to repel the 

particles and overcome the attractive forces.  Steric and electrostatic repulsion can be 

achieved through surface modification (Figure.  Ligands such as poly(acrylic acid), citric 

acid, and zwitterionic dopamine sulfonate can provide both steric and electrostatic 

stability.  Polymers like PEG, which unless modified only provide steric stability, are 

useful because the molecular weight of the chains can be tailored to optimize the stability 

of particles of varying core sizes. 

 

Figure 1.6. Illustration of colloidal stability through a) electrostatic forces and b) steric forces. 
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1.3.2 Methods of Ligand Exchange 

There is no single method of ligand exchange that is used amongst all researchers.  The 

ligand and the particle properties may even dictate the conditions of the ligand exchange.  

However, there are some general methods that apply to most ligand exchange reactions.  

Often, ligand exchange is performed in a homogeneous solution of either a single solvent 

or two miscible liquids.87, 88  The coated particles and the incoming ligand are combined 

in a medium which suits both.  Ligand exchange reactions with oleic acid-coated particles 

may be done in organic solvents like chloroform, toluene, or dimethylsulfoxide (DMSO) 

depending on the solubility of the incoming ligand.15, 89, 90  The solutions of ligands and 

particles are mixed through some mechanical action for a given period of time.  The 

particles may then be transferred to water after purification.  These are common 

conditions for many ligand exchange reactions. 

In some cases, the new or incoming ligand may not be soluble in the same solvent or one 

that is miscible with a solvent in which the particles are soluble.  Therefore, a method 

referred to as biphasic ligand exchange may be necessary as shown in Figure 1.7.  This 

method allows for a more direct transfer of the particles to the desired phase without the 

use of harsh solvents for purification.91-93  Briefly, the particles are dispersed in either an 

aqueous or organic phase depending on the initial surface chemistry.  The incoming 

ligand is dispersed in the opposite phase, and the two phases must be vigorously mixed 

for the duration of the exchange reaction.  The particles will slowly migrate to the desired 

phase as they are coated with the new ligand.  Phase transfer agents are sometimes used 
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to achieve this exchange.  Solvents like acetone may be added to decrease surface tension 

at the interface of the phases.94, 95  Addition of acids or bases can alter the charge of the 

ligands or nanoparticle surfaces and thus the solubility of the ligands and nanoparticles.94, 

96, 97  However, extra steps may need to be taken in order to remove these agents from the 

final particle solution.          

 

Figure 1.7. Schematic of biphasic ligand exchange to modify nanoparticles. 

1.3.3 Factors Which Affect Ligand Exchange 

The ability to design and tune properties of ligands for optimal control of nanoparticle 

surface chemistry is advantageous.  Ligand properties greatly impact ligand exchange 

reactions and their rates.  Furthermore, solution conditions such as ionic strength and pH 

may impact the behavior of the ligands and whether or not they bind to the particles.  

Likewise, properties of the particle core can affect the nature of ligand binding.  It is 

imperative that all of these factors be considered when modifying nanoparticles through 

ligand exchange (Figure 1.8).  
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Figure 1.8. Illustration of factors which affect ligand exchange reactions of nanoparticles. 

Head Group and Tail Group Chemistry 

Selection of head group or binding group is key to controlling ligand exchange.  

Functional groups such as carboxylic acids,98 phosphonic acids,99 catechols,100, 101 

sulfonic acids,102 and silanes17 are widely investigated for their ability to bind to iron 

oxides.  The affinity of these anchoring groups for the surface of iron oxide particles is 

critical to displacement of sacrificial ligands.  Higher affinity anchoring groups will more 
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readily anchor to the surface of the particle and drive the exchange reaction in a favorable 

direction.  Furthermore, these anchoring groups will not be as easily displaced by other 

incoming ligands.  Works by Amstad et al. have shown the high binding affinity of 

catechol-derived anchoring groups for iron oxide surfaces versus other groups like 

carboxlic acids.100  Furthermore, their work revealed that substitution of the catechols 

affects binding with nitrocatechols having higher affinity than dopamine and mimosine 

having such an affinity for iron oxide that it can cause dissolution of the particles.103  

These investigations demonstrate the importance of choosing the appropriate binding 

chemistry. 

 

Figure 1.9. Illustration of common head groups for ligand exchange with iron oxides. 

Although the impacts of end group chemistry on ligand exchange with iron oxides have 

not been widely studied, effects on ligand exchange with gold particles have been 
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investigated.  End groups have been shown to impact rate of exchange depending on the 

electronic nature of the substituents.  Guo and coworkers used nuclear magnetic 

resonance (NMR) spectroscopy to observe effects of NO2, CH3, and Br tail groups on 

ligand exchange with phenylethanethiolates.19  Results revealed that ligand binding was 

not affected by the tail group, but an activation barrier for initiation of exchange was 

dependent on this chemistry with NO2-functionalized ligands exhibiting the highest rate 

of exchange.  These findings could suggest that there are impacts of tail groups on other 

types of metal and metal oxide nanoparticles and should be further explored. 

Multidentate Ligands, Chain Length, and Nanoparticle Environment 

Not all ligands contain a single binding group.  Some ligands have two or more head 

groups which can bind to nanoparticle surfaces and are referred to as multidentate.  These 

types of ligands have been shown to bind more robustly than their monodentate 

counterparts.  In a study by Zhang and Han, FTIR and TGA were used to confirm 

modification of iron oxide nanoparticles with two carboxyl-functional ligands.  One of 

the ligands had two groups and the other had only one functional group.104  Results 

revealed greater surface coverage and the distinct presence of the multidentate ligand 

compared to the monodentate version.  A similar trend was seen by Miles et al.  Their 

work studied the effects of multidenticity on the modification of iron oxide nanoparticles 

with PEO ligands which were anchored using a carboxylate group, an ammonium group, 

a zwitterionic ammonium phosphonate group, and their trifunctional counterparts.18  

Results showed greater stability of the multidentate-stabilized nanoparticles in DI water.  
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Further studies in phosphate buffer saline (PBS) explored the nature of this enhanced 

stability and the effects of nanoparticle environment on exchange.  The particles which 

were modified with the zwitterionic-anchored ligands showed the greatest stability in 

PBS.  This was due to the ability of the phosphonate anchoring groups to compete with 

the phosphate salts in the medium for the surface of the particles.  Furthermore, 

desorption of the multi-anchored ligands due to this competition was much slower owing 

to the increased number of binding groups per ligand.  Introduction of sodium chloride 

into the solutions of zwitterionic-anchored nanoparticles in DI water prevented 

aggregation of the particles.  This was attributed to a reduction in the “attractive 

electrostatic interactions” of the zwitterionic groups on the negatively charged particle 

surface.  This work indicates not only the importance of multidenticity but also the 

influence of environmental conditions on the surface exchange and stability of 

nanoparticles. 

The effect of chain length on ligand exchange of iron oxide nanoparticles can be largely 

attributed to enhanced colloidal stability with increasing chain length.  This was 

evidenced by Barrera et al. in a study which looked at effects of increasing molecular 

weight of PEG-silane ligands.17  Stability studies using dynamic light scattering (DLS) 

showed aggregation of particles coated with 750 g/mol PEG versus those coated with 

1000 g/mol, 2000 g/mol, and 5000 g/mol PEG ligands.  They reasoned that the PEG 750 

did contribute sufficient steric stabilization to overcome the attractive forces.  Therefore, 

since ligand exchange occurs in solution it should follow that insufficient steric 
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stabilization could contribute to agglomeration of particles and thus, a less successful 

ligand exchange reaction. 

Nanoparticle Age and Oxidation State 

Again, the effects of particle aging and oxidation of iron oxide nanoparticles on ligand 

exchange are not widely understood.  However, some studies of iron oxides and gold 

nanoparticles could suggest the impacts of these processes.  Chechik et al. observed a 

decrease in ligand exchange reactivity of thiol-coated gold nanoparticles.105  Analysis via 

TGA, UV-Vis, and electron paramagnetic resonance (EPR) confirmed that the thiols 

were bound more strongly to the aged particles resulting in a stabilization of defect sites 

where ligand exchange would normally occur.  A study on aging of cobalt ferrite 

nanoparticles resulted in changing the Fe/Co cation distribution and the formation of an 

iron rich layer.106  This caused in an increase in crystallinity of the particles.  A change in 

metal ion distribution could result in an alteration of ligand binding due to selectivity of 

metals for certain anchoring groups.  Amstad et al. observed selectivity based on 

oxidation state of iron.107  In their study, EPR measurements revealed a preferential 

binding scheme of catechols to the Fe2+ oxidation state first then to the Fe3+ state.  This 

suggests that oxidation could increase or decrease ligand exchange reactivity depending 

on the anchoring group.       

1.4 Mechanisms of Ligand Exchange 
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Currently, understanding and agreement of a single ligand exchange mechanism of 

nanoparticles is debated amongst the scientific community. Some groups have reported 

associative (SN2) mechanisms of exchange wherein an incoming ligand adsorbs or binds 

to the surface of the particle while, at the same time, an outgoing ligand is desorbed and 

leaves the surface (Figure 1.8a).108, 109  Others have reported dissociative (SN1) 

mechanisms describing the desorption of the outgoing ligand before the adsorption of the 

incoming ligand can occur (Figure 1.8b)110  Furthermore, truly mechanistic studies of 

ligand exchange have been mostly limited to metal nanoparticles.64   

 

Figure 1.10.  Illustration of a) an associative ligand exchange mechanism and b) a dissociative 
ligand exchange mechanism. 

Despite a lack of research in mechanisms of ligand exchange of iron oxide nanoparticles, 

some groups have sought to understand mechanisms of exchange on metal (hydr)oxides, 

including hydrated iron complexes.111  In these studies, ligand exchange occurs in two 
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steps.  First, a weak and easily broken outer-sphere complex forms between the incoming 

ligand and the metal (hydr)oxide.  Second, displacement of a water molecule in an inner 

coordination sphere allows for the incoming ligand to adsorb.  In many cases this is 

considered to be a dissociative mechanism whereby the second step is the rate-

determining step.  Some researcher groups have shown that trivalent metal (hydr)oxides 

like Fe(H2O)6
3+ exhibit selectivity towards certain incoming ligands resulting in an 

associative mechanism of exchange.112, 113  Selective binding of certain functional groups 

to iron and iron oxides has been well established and is a driving force of ligand 

exchange.  Likewise, the binding affinity of the outgoing ligand may also affect the rate 

of exchange.  For example, Tofan-Lazar and Al-Abadleh studied the effects of phosphate 

adsorption of iron (oxyhydr)oxide films with arsenic already adsorbed to the surfaces.114  

They used an attenuated total reflectance-Fourier transform infrared spectrometer (ATR-

FTIR) specially equipped with a flow through system to compare adsorption of 

phosphates on oxide surfaces which were coated with arsenate and surfaces which were 

coated with dimethylarsinic acid (DMA).  A first-order, Langmuir adsorption kinetic 

model was used to fit their data.  Results showed concentration dependent, phosphate 

adsorption rates on DMA coated films were up to 5 times higher than that of the arsenate 

coated films.  They attributed this to the structure of the arsenate molecules and the 

ability for the ligands to leave.  The methyl substitution of the DMA increased the 

proportion of weakly bonded complexes in the outer-sphere.         

1.5 Analytical Methods for Surface Characterization of Iron Oxide Nanoparticles 
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Characterization of nanoparticle surface chemistry is important for confirmation of the 

presence of surface bound ligands and for better understanding the processes used to 

modify the particle surfaces.  Analytical methods such as Fourier transform infrared 

spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray photoelectron 

spectroscopy (XPS), energy dispersive x-ray spectroscopy (EDX or EDS), ultraviolet-

visible spectroscopy (UV-Vis), and fluorescence spectroscopy may be used to 

qualitatively or quantitatively characterize the surface of iron oxide nanoparticles.  These 

methods are used to confirm ligand exchange took place, confirm extent of ligand 

exchange, determine kinetics of exchange, and observe binding of ligands.  Each of these 

methods offer advantages over others, but also maintain some limitations.  Often, these 

methods are used in combination to ensure a more complete analysis of the exchange. 

FTIR 

FTIR is a common method of characterizing surface modification of iron oxide 

nanoparticles.115, 116  This technique is often used to qualitatively confirm ligand 

exchange took place by identification of peaks due to key functional groups and 

identification of peak shifts due to ligand binding.117, 118  This technique may be used to 

monitor and quantify exchange reactions.  As previously mentioned, Tofan-Lazar and Al-

Abadleh used ATR-FTIR to observe kinetics of exchange.  Guenin et al. utilized FTIR to 

determine surface coverage of a bisphosphonate ligand which was exchanged onto the 

surface of iron oxide nanoparticles.119  They normalized their spectra to the iron oxide 

vibration band at 500-600 cm-1 and utilized area measurements of the phosphonic 
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function vibration bands to ascertain the bisphosphonate ratio per particle.  The difficulty 

with this method is that the iron oxide vibration band is not always easy to distinguish, 

and this method cannot be used for accurate quantification of ligand exchange with 

ligands of similar functionality due to peak overlap.   

TGA 

TGA is another common technique which is used to quantify modification of iron oxide 

nanoparticles.120, 121  TGA is used to measure the total mass loss of the organic material 

on the nanoparticles as the sample is heated.  The mass loss can be used to further 

determine average surface coverage of the ligands on the nanoparticles.   In one study, 

Durdureanu-Angheluta and coworkers utilized TGA to characterize organic mass loss on 

oleic acid-coated iron oxide nanoparticles which were modified in an exchange process 

with 3-aminopropyltriethoxysilane (APTES).122  They further characterized the particles 

using FTIR and XPS to identify the presence of the ligands on the particles.  Combining 

characterization methods for analysis is common practice and often necessary due to a 

disadvantage of TGA.  TGA is not a qualitative technique.  This method does not allow 

for accurate distinction between different types of organic ligands present on the 

particles. 

UV-Vis and Fluorescence Spectroscopy 

UV-Vis is a less typical method of ligand exchange characterization.  Iron oxide 

nanoparticles absorb in the UV-visible range making this method difficult for 
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characterization of ligands bound to the particles.  However, this method can be used in 

cases where the ligands have been removed from the surface of the particles.  For 

example, oleic acid-coated iron oxide nanoparticles were modified with tetraethylene 

glycol-based phosphonate ligands which were previously synthesized using click 

chemistry.123  The ligand exchange was monitored using UV-Vis.  The supernatant 

solutions generated from purification of the modified particles were analyzed to 

determine the quantity of the hydrophilic ligands which remained and were not 

exchanged onto the particles.  The issue with this method is that it relies on ligands which 

exhibit signatures in the UV-Vis spectral range.  The ligands in this study were 

synthesized using click chemistry which incorporated benzyl and triazole rings into the 

ligands. 

Fluorescence spectroscopy is yet another technique which can only be used with ligands 

which exhibit unique spectral properties.  This technique is used to monitor surface 

modification and ensure binding of ligands to the particles.  Qu et al. utilized 

fluorescence spectroscopy to confirm modification with amine and carboxylic acid-

capped iron oxide nanoparticles.124  They conjugated fluorescein or rhodamine B to the 

functional ligands.  Observed decreases in the quantum efficiency and lifetime of 

fluorescein after conjugation to citric acid-capped particles confirmed successful 

modification due to quenching from the covalent attachment of the fluorescein molecules.  

However, in order to determine the absorbance of the fluorescent molecule-conjugated 

nanoparticles, the particles had to be dissolved in hydrochloric acid.  The poor optical 

properties of iron oxide nanoparticles make this technique more difficult for analysis of 
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ligand exchange.  Another drawback of this method is the requirement of fluorescent 

molecules which may limit the available surface chemistries. 

XPS and EDX 

 XPS and EDX are techniques which can be used to obtain elemental composition on the 

surface of iron oxide nanoparticles.125, 126  XPS measures kinetic energy and the number 

of electrons which are emitted after irradiation of the particle surface with an x-ray 

beam.127  EDX or EDS measures x-rays emitted due to excitation of inner shell 

electrons.128  De Palma and coworkers used XPS to characterize amino, carboxylic acid, 

and PEG-terminate silanes.116  They were able to determine elemental composition on the 

surface, thicknesses of the silane layers, and measure the binding energies of the ligands.  

The binding energies revealed the binding mechanisms or schemes of the functional 

groups to the iron oxide surfaces.  These techniques can be combined with the other 

previously discussed methods to develop a more complete quantitative analysis of the 

particle surface.  In one study EDS and TGA were used in combination to determine 

surface coverage of APTES-coated magnetite nanoparticles for further modification with 

polyamidoamine dendrimers.129  Elemental analysis and mass loss from TGA 

measurements allowed for calculation of approximately 610 APTES ligands per 

nanoparticle.  Despite the quantitative advantage of these techniques, they maintain some 

disadvantages.  Techniques which rely on elemental analysis to identify surface ligands 

are highly sensitive to contaminants.  EDX is limited due to spectral overlap of different 
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elements.  Furthermore, elemental analysis alone may not be sufficient if multiple types 

of ligands are present on the surface.     

1.6 Conclusions and Future Outlook 

Ligand exchange is a widely applicable method of surface modification with iron oxide 

nanoparticles.  This technique is critical for transforming hydrophobic particles to well-

designed, hydrophilic particles for a variety of applications.  Furthermore, 

characterization of the nanoparticles is imperative to qualitatively and quantitatively 

confirm the ligand exchange reaction occurred and to what extent.  However, current 

characterization techniques are limited by detection sensitivity, limited to being only 

qualitative or quantitative, or limited by the available chemistries.  Herein, radioanalytical 

methods for quantitative analysis of ligand exchange on iron oxide nanoparticles are 

described.  The following chapters discuss the use of a radiotracer (14C) to label 

nanoparticle ligands and radiometric detection of those ligands via liquid scintillation 

counting.  Various factors which affect ligand exchange were investigated using these 

techniques.  Chapter 2 includes studies of ligand exchange of radiolabeled, iron oxide 

nanoparticles with PEG ligands containing different head groups.  Chapter 3 expands 

these techniques to investigations of ligand exchange with various small molecule 

ligands.  Techniques commonly used with these ligands are compared to a standardized 

ligand exchange technique to isolate the contribution of head group chemistry on 

exchange.  Chapter 4 contains a kinetic study of ligand exchange and discusses the 

effects of particle aging and oxidation on the exchange of oleic acid.  Chapter 5 extends 
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the application of these radioanalytical techniques to the modification of drugs with 

radiolabeled polymers.  LSC is a highly sensitive technique which can be used to detect 

even low levels of polymer-drug conjugate in a biodistribution study.  Finally, this 

document will conclude with a discussion of future directions of this research. 
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CHAPTER 2:  DIRECT MEASUREMENT OF LIGAND EXCHANGE ON 

IRON OXIDES WITH POLYMERIC LIGANDS VIA 

RADIOANALYTICAL TECHNIQUES 

Reproduced with permission from [Davis, K.; Witmer, M.; Qi, B.; Powell, B. A.; 

Kitchens, C. L.; Mefford, O. T., Quantitative measurement of ligand exchange on iron 

oxides via radiolabeled oleic acid. Langmuir 2014, 30, 10918-10925.] Copyright [2014] 

American Chemical Society 

2.1 Introduction 

Control of surface chemistry and colloidal properties is critical for applications of iron 

oxide nanoparticles.  Ligand exchange is a particularly useful tool for surface 

modification of these materials.  Hydrophobic, iron oxide nanoparticles synthesized via 

thermal decomposition are not suitable for direct application in aqueous or biological 

media.  The particles must be modified for transfer to water, and this is often done 

through ligand exchange with hydrophilic polymers.  PEG is a commonly used ligand for 

coating iron oxide nanoparticles, especially for biomedical applications.17, 69, 130, 131  PEG 

has relatively high stability, water solubility, and low immunogenicity.76, 132, 133  

Furthermore, it has been shown to enhance circulation time of biomolecules.77, 134, 135  

Despite these advantages of PEG, if a full ligand exchange does not occur, the result is a 

heterogeneous mix of hydrophilic and hydrophobic patches on the surface of the 

nanoparticle, which can affect the colloidal stability of the particles in solution.  

Relatively little research has been done to quantify the amount of hydrophobic ligand that 
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is exchanged and determine the binding hierarchy of different ligands.  Furthermore, 

typical methods for measuring ligand exchange such as FTIR, EDS, and TGA may not be 

sufficient for accurate quantification of exchange due to detection or sensitivity limits or 

inherent assumptions of complete exchange.   

This chapter introduces radioanalytical methods, which we have previously published, to 

synthesize iron oxide nanoparticles with radiolabeled capping ligands and use liquid 

scintillation counting (LSC) to measure how much radiolabeled oleic acid has been 

displaced on the surface of the nanoparticles through exchange with a hydrophilic PEG 

ligand.15  Radiolabeled and unlabeled magnetite iron oxide core nanoparticles (Fe3O4) 

were synthesized with oleic acid as the capping ligand.  During the synthesis of the 

radiolabeled nanoparticles unlabeled oleic acid and oleic acid [1-14C] were added as to 

the reaction mixture.  As illustrated in Figure 1, the labeled and unlabeled particles were 

then modified in chloroform with PEG ligands terminated with either a carboxylic acid 

group (-COOH), a nitroDOPA group, a DOPA group, a phosphonate group (-PO(OH)2), 

or an amine group (-NH2) as the group that binds to the surface of the nanoparticle.  The 

particles were purified to remove excess unbound ligands.  The amounts of radioactive 

oleic acid in samples of each particle solution before and after ligand exchange were 

determined using LSC.  The radiolabeled particles were further characterized by dynamic 

light scattering (DLS) and transmission electron microscopy (TEM).  The unlabeled 

particles were synthesized and modified to compare LSC to other methods commonly 

used to characterize modified particles.  The unlabeled particles were characterized by 
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dynamic light scattering (DLS), transmission electron microscopy (TEM), vibrating 

sample magnetometry (VSM), and thermogravimetric analysis (TGA). 

 

Figure 2.1. Illustration of radioanalytical techniques to quantify ligand exchange. 

2.1.1 LSC Theory 

LSC is a technique used to detect the presence of emitted low and high energetic beta 

particles and some alpha and gamma-ray emitters.  This technique is used to determine 

activity of a radioactive sample and in some cases, can be used to identify an unknown 

radionuclide.136  LSC works based on detection of photons generated from interactions of 

emitted particles with the surrounding liquid scintillation cocktail.  Beta or alpha beta 

particles resulting from decay produce excited molecules in solution.  The excited 

molecules either produce photons or transfer energy to an acceptor which will then emit 

photons.137  The number of photons generated is dependent upon the number of excited 

molecules produced by the alpha or beta particles.  The photons are detected by 

photomultiplier tubes which convert them to an electrical signal.  Liquid scintillation 

counters can determine the number of photons generated over a specific amount of time 
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or counts per minute (cpm).  These counts per minute can be converted to decays per 

minute (dpm) using a determined counting efficiency of the observed radionuclide.  

Decays per minute can be directly related to activity. 

Liquid scintillation cocktails are typically composed of aromatic organic solvents, 

surfactants or emulsifying agents, and fluorescent molecules or scintillators.  While 

aromatic solvents may aid in the transfer of energy, fluorescent molecules such as 2-(4-

tert-Butylphenyl)-5-(4-phenylphenyl)-1,3,4-oxadiazole (butyl-PBD) or p-terphenyl, act 

as efficient scintillators or acceptors in the solution.137  Interaction of beta of alpha 

particles with the  cloud of an aromatic ring results in capture of the energy which can 

then be transferred to another solvent molecule or to a fluorescent molecule.  This results 

in excitation of electron levels in the fluorescent.  Photon emission from the scintillator 

molecule results from decay from the excited singlet state to the ground state.137  This 

technique allows for sensitive detection of ionized particles due to the proximity and 

close interactions of the particles, solvents, and fluorescent molecules. 

 

2.2 Experimental 

2.2.1 Materials 

Iron (III) chloride hexahydrate (ACS, 97, 0-102.0%), 3,4-dihydroxy-DL-phenylalanine 

(DL-DOPA; crystalline, 98%), and sodium nitrite (≥97%) were purchased from Alfa 

Aesar.  Poly(ethylene glycol) methyl ether (avg. Mn 5000), ethylene oxide monomer 
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(≥99.5%), 4-(dimethyl amino) pyridine (≥99%), N-hydroxysuccinimide (98%), N,N’-

dicyclohexyl carbodiimide (99%), potassium bis(trimethylsilyl)amide (95%; 1 M in 

THF), and succinic anhydride (≥99% (GC)) were purchased from Aldrich.  (2-

aminoethyl) phosphonic acid (99%), dimethylformamide (99.8%, extra dry over 

molecular sieves, AcroSeal®), and 1-octadecene (90%, technical grade) were purchased 

from Acros Organics.  Ethyl ether (>95%) and chloroform (CHCl3, 99.8%) were 

purchased from AvantorTM Performance Chemicals.  Ethanol (anhydrous, histological 

grade) and hexanes (99.3%) were purchased from Fisher Chemical.  Oleic acid was 

purchased from EMD.  Tetrahydrofuran (99%) was purchased from BDH chemicals.  

Sodium oleate (≥97%) was purchased from TCI America.  Optiphase ‘HISAFE’ 3 liquid 

scintillation cocktail and oleic acid [1-14C] (>97%) were purchased from PerkinElmer.  

Bio-Beads SX-1 support (styrene-divinylbenzene copolymer beads) were purchased 

from Bio-Rad Laboratories, Inc. 

2.2.2 Nanoparticle Synthesis 

In order to synthesize oleic acid coated Fe3O4 nanoparticles for ligand exchange that were 

approximately 10 nm in diameter, we modified a procedure reported by Park et al.43  The 

procedure was performed twice in order to synthesize radiolabeled and unlabeled 

particles separately.  To synthesize the iron oleate precursor 0.811 g (5 mmol) of FeCl3, 

4.56 g (15 mmol) of sodium oleate, 10 mL of ethanol, 7.5 mL of DI water, and 17.5 mL 

of hexane were added into a three-neck, round bottom flask.  The reaction mixture was 

stirred via a magnetic stir bar as the solution was heated to 60 °C at 5 °C/min and 
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refluxed for four hours. The top, organic layer containing the iron oleate was washed with 

DI water.  

To synthesize the Fe3O4 nanoparticles the iron oleate precursor (5 mmol, assuming 100% 

conversion), 2.5 mL of oleic acid, and 50 mL of octadecene were added to a three-neck, 

round bottom flask.  To synthesize the 14C-oleic acid coated Fe3O4 nanoparticles, 50 μCi 

of 14C-Oleic acid was added during this step.  Given the high concentration of stable oleic 

acid, the 14C-oleic acid serves as a tracer and does not significantly add to the total mass 

of oleic acid in the system. The reaction mixture was stirred via a magnetic stir bar and 

heated to 110°C at 5 °C/min and held at that temperature for one hour.  The reaction was 

then heated at 3 °C/min to 320 °C and held to reflux for two hours.  The resulting 

nanoparticles were washed 5 times with ethanol and hexane then dispersed in chloroform. 

Some of these nanoparticles were injected into 12,000-14,000 MWCO Spectra/Por® 

dialysis tubing, placed in chloroform, and put on a shake plate to stir for 72 hours.  The 

amount of 14C-oleic acid was monitored in each purification step using LSC. 

2.2.3 Polymer Synthesis  

In this study a series of five, modified poly(ethylene glycol) (PEG) polymers were 

synthesized for use in the ligand exchange with oleic acid on the surface of the 

nanoparticles.  The structures of these polymers are shown in Figures 2.2, 2.3, 2.5, 2.6, 

and 2.8.  Two catechol-derived anchor groups, DOPA and nitroDOPA, were of particular 

interest to this study as they have been shown by Amstad et. al. to bind with great affinity 

to iron oxide nanoparticles.100, 107  Results from these studies on various catechol groups 
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indicated strong, irreversible binding of nitroDOPA to iron oxide thus providing good 

colloidal stability of the nanoparticles.  The nitroDOPA was bound strongly to the surface 

but not with an affinity so high to cause dissolution of the nanoparticles as with the 

mimosine.  These polymers and a carboxylic acid terminated PEG polymer were 

synthesized according to previously published procedures.101  A phosphonate terminated 

PEG was synthesized by a modified version of those published procedures.  An amine 

terminated PEG was synthesized according to a procedure reported by Stone et al.138  

Following synthesis each polymer was purified by vacuum filtration.  The polymers were 

further purified 3 times each by precipitation in ethyl ether, re-dispersion in chloroform, 

and isolation by centrifugation at 10,000 rpm.  The polymers were dried at room 

temperature in a vacuum oven at 30 in.Hg (14.7 psi) overnight to remove solvent. 

A carboxylic acid (-COOH) terminated PEG polymer was synthesized by first drying 5 g 

of poly(ethylene glycol) methyl ether (avg. Mn 5000) in an Erlenmeyer flask in a vacuum 

oven at 80°C overnight.  The polymer was then dissolved in 20 mL of tetrahydrofuran 

(THF) and reacted with succinic anhydride in a 1:1.5 molar ratio of PEG to succinic 

anhydride (Figure 2.2).  4-(dimethyl amino) pyridine was used as a catalyst in a 1:0.01 

molar ratio of PEG to 4-(dimethyl amino) pyridine.  The solution was stirred via a 

magnetic stir bar for eight hours and was purified by the aforementioned procedure.  

Polymer modification was verified by nuclear magnetic resonance (NMR) spectroscopy 

by peaks at 2.65 ppm (O=C=CH2-CH2=C=O, addition of succinic anhydride), 3.4 ppm 

(O-CH3, methoxy end group), 3.67 ppm (O-CH2-CH2-O, PEG). 
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Figure  2.2. Modification of PEG with succinic anhydride. 

 
A nitroDOPA terminated PEG polymer (5000 MW) was synthesized from the previously 

synthesized PEG-COOH (Figure 2.3).  The dried PEG-COOH polymer was dissolved in 

20 mL of anhydrous THF and reacted with N-hydroxysuccinimide (NHS) in a 1:1molar 

ratio.  N,N’-dicyclohexyl carbodiimide (DCC) was used as a catalyst in a 1:1.25 molar 

ratio of PEG-COOH to DCC.  The solution was stirred via a magnetic stir bar for four 

hours.  The resulting PEG-NHS product was filtered by vacuum filtration.  The collected 

filtrate was rotary evaporated, precipitated with ethyl ether, centrifuged, and left to dry in 

a vacuum oven overnight.  The dried polymer was dissolved in 20 mL of dry 

dimethylformamide (DMF).  The DMF was dried over molecular sieves prior to 

dissolving the polymer.  NitroDOPA was added to the polymer solution in a 1:1.5 molar 

ratio of PEG-NHS to nitroDOPA.  The solution was stirred via a magnetic stir bar 

overnight and purged with nitrogen for the first ten minutes of the reaction.  The final 

product was purified before use.  NMR was used to verify the polymer modification by 

peaks at 2.65 ppm (O=C-CH2-CH2-C=O, addition of succinic anhydride), 2.88 and 2.95 

ppm (CH2-CH2, DOPA), 3.4 ppm (O-CH3, methoxy end group), 3.7 ppm (O-CH2-CH2-O, 

PEG), 8.0 ppm (CH, ring, DOPA). 



 36 

 
Figure  2.3. Modification of PEG with NHS and nitroDOPA. 
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Figure 2.4. NMR spectra of a) PEG-COOH and b) PEG-nitroDOPA. 

The nitroDOPA utilized in the PEG-nitroDOPA synthesis was synthesized prior to 

polymer synthesis.  First, a 250 mL round bottom flask containing 100 mL of DI water 

and a magnetic stir bar was placed in an ice bath at 0 °C.  1.97 g (9.99 mmol) of DL-

DOPA was added to the flask as the solution stirred.  Following that, 1.52 g (17.88 

mmol) of sodium nitrite was added to the flask while stirring.  0.92 mL of sulfuric acid 

(96 wt%) in 10 mL of DI water was added dropwise to the mixture via an additional 

funnel until it became a yellow, golden color.  The resulting product was vacuum filtered 
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and washed with water and methanol to remove impurities.  The product was dried in a 

vacuum oven. 

The first two steps of the synthesis of a phosphonate terminated PEG were the same as 

those for the synthesis of the nitroDOPA terminated PEG.  The previously synthesized 

PEG-NHS polymer was reacted with (2-aminoethyl) phosphonic acid in a 1:1 molar ratio 

of PEG-NHS to acid (Figure 2.5).  The reaction occurred in DI water with a pH adjusted 

to seven by addition of NaOH.  The solution was stirred via a magnetic stir bar for four 

hours.  The resulting solution was poured into a separatory funnel.  DI water was added 

to the separatory funnel in a 1:1 volume ratio of polymer solution to water.  The mixture 

was allowed to sit overnight and the bottom layer containing the polymer was collected, 

precipitated with ethyl ether, centrifuged, and dried in a vacuum oven overnight.   The 

polymer modification was verified with NMR by peaks at 1.9 ppm (CH2-P(=O)(OH)2), 

2.7 ppm (O=C=CH2-CH2=C=O, addition of succinic anhydride), 4.15 ppm (HO-), 3.4 

ppm (O-CH3, methoxy end group), 3.7 ppm (O-CH2-CH2-O, PEG). 

 
Figure  2.5. Modification of PEG-NHS with phosphonic acid. 
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Again, the first two steps of the synthesis of a L-DOPA modified PEG were the same as 

those for the synthesis of PEG-nitroDOPA and PEG-phosphonate.  The previously 

synthesized PEG-NHS polymer was reacted with 3,4-dihydroxy-phenylalanine in a 1:1 

molar ratio of PEG-NHS to L-DOPA (Figure 2.6).  The reaction was performed in 20 mL 

of dry DMF which was purged with nitrogen for the first ten minutes of the reaction.  The 

solution was stirred via a magnetic stir bar for 8 hours and purified after reaction.  The 

polymer modification was verified using NMR by peaks at 2.65 ppm (O=C=CH2-

CH2=C=O, addition of succinic anhydride), 2.9 and 2.95 ppm (CH2-CH2, DOPA), 3.4 

ppm (O-CH3, methoxy end group), 3.65 ppm (O-CH2-CH2-O, PEG), 8.0 ppm(CH, ring, 

DOPA). 

 

Figure  2.6. Modification of PEG-NHS with L-DOPA. 
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Figure  2.7. NMR spectra of a) PEG-phosphonate and b) PEG-DOPA. 

A protected, NH2 terminated poly(ethylene oxide) (PEO) polymer with a molecular 

weight of 5,000 g/mol was synthesized via anionic polymerization using a high pressure, 

stirred, model 4566 mini bench top Parr reactor to create a closed, oxygen and water free 

environment (Figure 2.8). First, the reactor was purged and vacuum was pulled three 

times.  The temperature of the reactor was lowered to -35°C using acetone and liquid 

nitrogen.  At this low temperature 8.61 g (195.46 mmol) ethylene oxide (EO) was 

distilled into the reactor.  Tetrahydrofuran (THF, 110 mL) was added via syringes to the 
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reactor and the solution began stirring.  At approximately 40 °C 0.31 g (1.55 mmol) of 

potassium bis(trimethyl silyl amide) NH2 was added via a syringe followed by 10 mL of 

THF.  The reactor was then brought to room temperature and stirred for 72 hours. The 

resulting product was purified, dried, and deprotected with HCl.  To deprotect the 

polymer 1 g of polymer was added to an Erlenmeyer flask and dissolved in 10 mL of 

THF.  As the solution stirred via a magnetic stirrer approximately 10 to 20 drops of HCl 

was added and the reaction mixture was stirred overnight and purified after reaction.  The 

modification of the polymer was confirmed by NMR with peaks at 2.4 ppm (CH2-NH2, 

protons next to amine end group), 3.3 ppm (CH2-OH, protons next to hydroxyl end 

group), and 3.7 ppm (O-CH2-CH2-O, PEG). 

 

Figure 2.8. Synthesis and deprotection of PEG-amine. 
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Figure 2.9. NMR spectra of PEG-amine. 

 

2.2.4 Ligand Exchange 

Equal amounts of the synthesized particles were modified with either PEG-COOH, PEG-

nitroDOPA, PEG-phosphonate or PEG-NH2 to monitor the displacement of 14C-oleic 

acid via ligand exchange (Figure 2.10).  To modify the particles, 0.02 mmol of each 

modified PEG polymer was dissolved in chloroform in a 20 mL scintillation vial.  The 

vial was capped with a rubber septum and sonicated while 10 mg of nanoparticles in 

chloroform was added dropwise to the polymer solution.  After addition of the particles, 

the polymer-particle solution was put on a shake plate to mix overnight.  The resulting 

particles were precipitated using ethyl ether, centrifuged, and re-dispersed into water.  

The polymer-particle solutions were further purified using dialysis to remove excess 

ligand.  The solutions were injected into 12,000-14,000 MWCO Spectra/Por® dialysis 

tubing, placed in water, and put on a shake plate to stir for 72 hours.  The waste from 
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purification was monitored using LSC.  The ligand exchange procedures using each of 

the five different ligands were performed simultaneously. 

 

Figure 2.10. Illustration of a ligand exchange reaction. 14C-oleic acid coated nanoparticles 
undergo a ligand exchange reaction with one of the five monofunctional PEG ligands resulting in 

hydrophilic particles. 

2.2.5 Gel Permeation Chromatography (GPC) Column 

LSC and TGA of the purified and dialyzed oleic acid coated particles indicated a large 

amount of oleic acid remained on the surfaces despite efforts to remove much of it.  

Although these dialyzed particles containing excess oleic acid were used in the ligand 

exchange reactions, the need for a better method of removal in future studies remains.  In 

order to remove the excess oleic acid, the radiolabeled and unlabeled as synthesized, 

oleic acid coated particles were each passed through burettes containing styrene-

divinylbenzene copolymer beads swollen in toluene (Figure 2.11).139  The beads were 

swollen in toluene overnight and poured into the burette in order to pack the column with 

the gel.  The burette or column through which the unlabeled particles were passed was 

larger and contained more beads than the column that the radiolabeled particles were 
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passed through.  A concentrated sample of nanoparticles in toluene was added to the top 

of the column, allowed to pass completely through the column as a dark band, and 

collected at the bottom for further analysis.  The radiolabeled particles were characterized 

by liquid scintillation counting and the unlabeled particles were characterized by 

thermogravimetric analysis. 

 
Figure 2.11. Nanoparticles passing through a GPC column. 

 
2.2.6 Characterization 

Transmission electron microscopy (TEM) was used to determine the core size of the 

labeled and unlabeled nanoparticles.  The samples were prepared by dilution of the 

nanoparticle solution and application to a copper grid with carbon mesh.  TEM images 

were obtained on a Hitachi H7600 with an accelerating voltage of 120 kV.  Image 
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analysis to determine particle size and distribution was performed using Adobe 

Photoshop® and Kaleidograph®.  Lognormal fits of the particle distributions were 

performed using MATLAB to determine average particle surface area and average core 

diameter. 

Dynamic light scattering (DLS) was used to determine the hydrodynamic diameter of the 

modified and unmodified particles.  The nanoparticle solutions were diluted with water or 

hexane and put into a cuvette.  Each unlabeled sample was measured three times at 25 °C 

using a Malvern Zetasizer Nano ZS to determine the intensity average size distribution 

and z-average diameter.  Each radiolabeled sample was measured three times at 25 °C 

using a Brookhaven 90Plus with ZetaPALS to determine the size distribution and 

effective diameter.  Although the Malvern instrument reports a z-average diameter and 

the Brookhaven reports an effective diameter, studies by Jaeger et. al. show that both 

instruments report the same average diameter of the particles.140   

The surface potential of the nanoparticles was determined using zeta potential 

measurements.  The modified and unmodified particles were measured before and after 

dialysis.  The nanoparticle solutions were diluted with water or hexane and put into a zeta 

cell or a cuvette with a dip cell.  Each sample was measured three times at 25 °C. Again, 

the particles without radiolabeled ligands were measured using a Malvern Zetasizer Nano 

ZS and the radiolabeled particles were measured using a Brookhaven 90Plus with 

ZetaPALS.   

Thermogravimetric analysis (TGA) was used to determine surface coverage of the 

ligands on the surface of the nanoparticles before and after modification.  Approximately 
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5 to 10 mg of sample was placed in a TGA pan, which was analyzed using a TA 

Instruments Hi-Res 2950 Thermal Gravimetric Analyzer.  The samples were heated to 

110 °C at 20 °C/minute, held at that temperature for 30 minutes, then heated to 800 °C at 

15 °C/minute.  The surface coverage of the ligands on the nanoparticles in chains/nm2 

was determined by a series of calculations.  First, the total surface area of the 

nanoparticles in 1 gram of nanoparticle/polymer complex was determined using the 

average particle diameter and average surface area yielded by TEM image analysis.  The 

TGA percent weight loss value and the density of magnetite were used to determine the 

total volume of nanoparticles in 1 gram of complex.  This value divided by the volume of 

one nanoparticle multiplied by the surface area of one nanoparticle yielded the total 

surface area.  Second, the number of chains in 1 gram of complex was determined using 

the molecular weight of the polymer and Avogadro’s number.  Finally, the number of 

chains was divided by the total surface area to yield the total surface coverage in 

chains/nm2.    

Vibrating sample magnetometry was used to verify the magnetic properties of the 

particles.  The VSM sample was prepared by adding a few drops of the unlabeled, oleic 

acid coated nanoparticles onto a piece of scotch tape and drying it overnight.  The sample 

was analyzed at 300K in a 3T field with a Quantum Design VSM which runs on the 

physical property measurement system 6000 (PPMS 6000). 

Inductively coupled plasma-mass spectroscopy (ICP-MS, ThermoScientific MS XSeries 

2) was used to determine the concentration of the nanoparticles in solution.  Aliquots of 

the samples were digested with a 2% nitric acid solution in a 15 mL centrifuge tube.   
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Liquid scintillation counting (LSC) was employed as the method of tracking the 

exchange of the radiolabeled ligand with the unlabeled, hydrophilic ligands.  Samples of 

the nanoparticle particle solutions were digested with concentrated nitric acid (HNO3) to 

minimize color quenching and added to a 20 mL vial.  Samples of the waste solutions 

from purification were not digested due to their minimal color quenching.  These aliquots 

from the waste solutions were also added to 20 mL vials.  A scintillation cocktail was 

then added to the vials and mixed with the sample.  The samples were analyzed using a 

Hidex 300 SL automatic liquid scintillation counter.  MikroWin Hidex 2000 v.4.43 

software was used to view and analyze the sample data.  Furthermore, the amount of 

color quenching in each sample was determined using a Perkin Elmer TriCarb 2910 TR 

LSC instrument.  The quench data was used to verify or correct the counting efficiency 

determined using triple-to-double coincidence counting measured in situ on the Hidex. 

2.2.7 Calculation of Oleic Acid Surface Coverage on Nanoparticles 

The LSC data and ICP-MS data were used to calculate the amount of oleic acid present 

on the surface of the nanoparticles before and after ligand exchange.  The calculated 

amounts were compared to determine a hierarchy of binding of the different hydrophilic 

ligands utilized in the procedures.  The LSC results are initially reported in counts per 

minute.  This data can be converted to decays per minute (dpm) and used to determine 

the moles of 14C-oleic acid per milliliter of solution using the equation below: 

Eq. 2.1) 
𝒎𝒐𝒍𝒆𝒔 𝟏𝟒𝐂 

𝒎𝒍
=

(𝒔𝒂𝒎𝒑𝒍𝒆 𝒄𝒑𝒎−𝒃𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅 𝒄𝒑𝒎) 𝑻𝑫𝑪𝑹/𝒎𝒍⁄
𝐥𝐧 (𝟐)

𝒕𝟏/𝟐 ×(𝟔.𝟎𝟐𝟐×𝟏𝟎𝟐𝟑)
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where the numerator represents dpm, TDCR is the triple-to-double coincidence ratio used 

to account for detection efficiency, cpm is counts per minute, the denominator is the 

decay constant ((λ) is 2.3*10-10 min.-1 for 14C) multiplied by Avogadro’s number, and the 

half-life (t1/2) is 5,730 years for 14C.  This value was used to determine the total amount of 

oleic acid per milliliter of sample, assuming a constant ratio of radiolabeled to unlabeled 

oleic acid and accounting for oleate ligands from the precursor.  The ICP-MS data was 

used to determine the concentration of particles in solution.  Knowing the average surface 

area of the particles determined from the lognormal fit of the size distribution, a 

normalized surface area per unit volume of sample was calculated.  Finally, using the 

oleic acid concentration and the surface area concentration, the total amount of oleic acid 

per nm2 of Fe was calculated. 

2.3 Results and Discussion 

Nanoparticles were synthesized via thermal decomposition and modified via ligand 

exchange.  The particles were characterized to determine size, hydrodynamic diameter, 

surface potential, magnetic properties, and surface coverage of the ligands.  The particles 

were also analyzed by LSC to quantify the amount of radioactive oleic acid present on 

the surface of the particles before and after ligand exchange. 

2.3.1 TEM 

Analysis of the TEM images yielded size distributions (Figure 2.6) for the unlabeled and 

labeled particles.  Lognormal fits of the distributions produced the average surface area 

from which the average diameters of the particles could be determined.  The average core 

diameter of the unlabeled particles was 10.6 nm with a standard deviation of 2.24 nm and 
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10.0 nm with a standard deviation of 2.26 nm for the labeled particles. (Figure 2.12)  The 

wide size distributions of the particles can be explained by the inability to perform 

syntheses of these particles under nitrogen while purging which would have allowed for 

greater control of size and size distribution.  Purging the radiolabeled reaction might have 

released radionuclides into the atmosphere.  Furthermore, the synthesis of the unlabeled 

particles was performed the same for procedural consistency.   The size distributions 

were accounted for in the average surface area calculations by the lognormal fits of the 

histograms.  The sizes, determined from the average surface areas, were used in the 

calculations to determine the amount of ligand present on the surface of the nanoparticles.  

These calculations for surface coverage by TGA are discussed in an earlier section and 

calculations for surface coverage by LSC are discussed in a later section. 
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Figure  2.12. TEM image (left) and size analysis (right) of the unlabeled nanoparticles (top) and 

the radiolabeled nanoparticles (bottom).  The histogram shows the size distribution of the 
nanoparticles. 

 
2.3.2 DLS 

The hydrodynamic diameters of the particles were determined using DLS.  This yielded 

information about the size of the particles with oleic acid on the surface and with the new 

hydrophilic ligands on the surface.  The data in Table 2.1 summarizes the results for the 

particles and shows good agreement in trends and values between the labeled and 

unlabeled particles. The addition of the PEG brushes yields an increased hydrodynamic 

diameter between 80 nm and 100 nm for the PEG-DOPA and PEG-nitroDOPA particles, 

which agrees with previous studies by our group.101, 141  The zeta potentials of the PEG-
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DOPA and PEG-nitroDOPA particles are not very negative and are relatively close to 

zero indicating that electrostatic repulsion does not play a large role in particle 

stabilization.  This is expected for particles coated in PEG as the methoxy end groups 

exposed to the water do not carry a charge.  However, the more negative zeta potentials 

of the PEG-Phosphonate, PEG-COOH, and PEG-NH2 particles may indicate the presence 

of excess ligands in solution or at the surface of the particles yielding a surface charge.  

The increased hydrodynamic diameters for PEG-Phosphonate, PEG-COOH, and PEG-

NH2 particles also indicates that the particles may have excess ligands on the surface or 

are agglomerating in solution.  The larger uncertainty ranges of these particles indicate 

that they are not very stable in water and are likely precipitating and agglomerating 

during the measurements.  Instability and unwanted surface charge of the nanoparticles 

can have a negative impact depending on the desired application such as drug delivery. 

Table 2.1. Hydrodynamic diameters and zeta potentials of the unlabeled and labeled modified 
and unmodified nanoparticles. 

Unlabeled 

particles 

Fe3O4-

oleic 

acid np 

PEG-

nDOPA 

np 

PEG-

DOPA 

np 

PEG-

Phosphonate 

np 

PEG-

COOH 

np 

PEG-

NH2 np 

Z-avg. 
diameter 

(nm) 
35.4±4.3 90.3±5.2 84.7±3.2 203±12.7 220±14.3 176±10.1 

Zeta 
potential 

(mV) 
n/a -6 -5 -15 -22 -23 



 52 

Labeled 

particles 

Fe3O4-

oleic 

acid np 

PEG-

nDOPA 

np 

PEG-

DOPA 

np 

PEG-

Phosphonate 

np 

PEG-

COOH 

np 

PEG-

NH2 np 

Effective 
diameter 

(nm) 
41.2±5.4 100±7.1 89.1±5.1 214±11.5 232±15.2 184±11.6 

Zeta 
potential 

(mV) 
n/a -7 -6 -18 -25 -24 

 

2.3.3 TGA 

TGA data yielded percent weight loss of material on the surface of the unlabeled, oleic 

acid coated nanoparticles before and after dialysis and on the surface of unlabeled, PEG 

coated nanoparticles after dialysis (Figures 2.13-2.16).  These values were used to 

calculate the grafting density of the ligands on the nanoparticles under the assumption 

that only one type of ligand, PEG or oleic acid, was present on the surface of the 

particles.   Table 2.2 contains a summary of the data.  The TGA data illustrates a trend 

similar to the DLS data with the more stable particles (i.e. PEG-nDOPA and PEG-

DOPA) having a higher surface coverage than the PEG-COOH and PEG-NH2 particles.  

Again, the calculations of surface coverage are made assuming that only 5000 g/mol PEG 

is present on the modified particles.  If the PEG-COOH and PEG-NH2 particles still have 

a large amount of oleic acid on the surface relative to the amount of PEG chains, then this 

assumption could explain why the calculated surface coverage values for these particles 

are so low.  The values were calculated using the larger molecular weight of the PEG and 
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not the molecular weight of the oleic acid which would have yielded more reasonable 

surface coverage values.  The PEG-Phosphonate particles have a higher surface coverage 

like the PEG-DOPA and PEG-nitroDOPA particles.  However, the DLS and zeta values 

for these particles may attribute this higher surface coverage to the presence of excess 

ligand and a mix of oleic acid and PEG chains. 

Table  2.2. Weight percent loss and corresponding grafting densities of nanoparticles obtained 
from TGA analysis. 

 
Np 

before 

dialysis 

Np 

after 

dialysis 

PEG-

nDOPA 

np 

PEG-

DOPA 

np 

PEG-

Phosphonate 

np 

PEG-

COOH 

np 

PEG-

NH2 

np 

Weight loss 
(%) 59.9 51.2 74.2 79.2 76.8 37.9 40.2 

Surface 
coverage 

(chains/nm2) 
29.1 20.4 3.16 4.18 3.65 0.67 0.74 

LSC 
corrected 
surface 

coverage 
(chains/nm2) 

n/a n/a 3.13 4.16 3.60 0.61 0.70 
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Figure 2.13. TGA curves of unlabeled, oleic acid coated nanoparticles a) before dialysis and b) 

after dialysis in chloroform.   
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Figure 2.14. TGA curves of unlabeled a) PEG-nitroDOPA modified nanoparticles and b) PEG-

DOPA modified nanoparticles. 
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Figure 2.15. TGA curves of unlabeled a) PEG-phosphonate modified nanoparticles and b) PEG-

COOH modified nanoparticles. 
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Figure 2.16. TGA curve of unlabeled, PEG-amine modified nanoparticles. 

 

2.3.4 VSM   

VSM hysteresis loops of the unlabeled, oleic acid coated nanoparticles (Figure 2.17) 

indicate the particles are magnetic with a saturation magnetization of approximately 

66.85 emu/g of nanoparticles.  This is within the range of 60-90 emu/g expected of 

magnetite (Fe3O4) nanoparticles.142  The coercivity was found to be less than the accuracy 

of the instrument indicating that there is little to no hysteresis in this sample at room 

temperature. 
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Figure 2.17. Hysteresis loop of the unlabeled nanoparticles.  Magnetic moment is measured in SI 
units of A*m2/kg of magnetite as determined by ICP-MS. 

2.3.5 LSC 

The amount of radiolabeled oleic acid in each sample was determined using LSC.  The 

data for each sample was normalized to the number of nanoparticles present in the sample 

(based on determination of total Fe via ICP-MS), and the measured radioactivity was 

used to ultimately calculate the amount of oleic acid present on the surface of the 

particles before and after modification.  The amount of oleic acid on the surface of the 

oleic acid coated nanoparticles before and after dialysis and on the modified particles 

after dialysis is shown in Figure 2.18.  The results indicate a large amount or excess of 
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oleic acid on the surface of the particles after dialysis and before modification.  Dialysis 

was not useful for removing much of this excess oleic acid as shown in the figure and 

demonstrated by GPC (seen in a later section).  Differences in surface coverage values 

between TGA and LSC can be explained by differences between the batches of 

nanoparticles synthesized.  However, as expected the amount of oleic acid is dramatically 

decreased on the particles that were modified indicating that ligand exchange took place.  

The results show a trend that agrees with the TGA and DLS data.  The PEG-nitroDOPA, 

PEG-DOPA, and PEG-Phosphonate particles have lower amounts of oleic acid than the 

PEG-COOH and PEG-NH2 particles signifying a more successful modification or ligand 

exchange.  This data reveals a hierarchy of binding of the functional groups to the surface 

of magnetite.  The catechol groups (i.e. nitroDOPA and DOPA) and the phosphonate 

group bind and modify better than the carboxylic acid and the amine groups with no 

statistical difference (two sample t-test, t(4)=1.44, α=0.05) between the amounts of oleic 

acid remaining on the PEG-nitroDOPA and PEG-DOPA modified particles.  This 

relationship agrees with previous studies that show the ability to modify particles well 

with catechol derived anchor groups.100, 103  The LSC data in combination with the TGA 

results for the catechol-derived PEG ligands indicates greater displacement of the oleic 

acid and increased surface coverage of the PEG on the nanoparticles. 

The LSC results were used to adjust the TGA results of the unlabeled nanoparticles to 

account for the oleic acid remaining on the surface after modification.  Although TGA is 

useful for determining the amount of ligand present on the surface, it does not 

differentiate the types of ligands present.  LSC is a sensitive technique and was used to 
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counter the assumption that all of the ligand on the surface of the unlabeled particles was 

PEG.  The TGA values were corrected by subtracting the mass of oleic acid (as 

determined from chains/nm2 by LSC) from the mass of organic material lost on the 

nanoparticles by TGA.  Specifically, the surface coverage values determined by LSC 

were used to calculate the total number of oleic acid chains present on the total mass of 

the unlabeled nanoparticles in each respective TGA sample.  Dividing the number of 

chains by Avogadro’s number yielded the moles of oleic acid, which when multiplied by 

the molecular weight of oleic acid gave the amount of oleic acid in milligrams.  That 

mass of oleic acid was subtracted from the total mass of organic material on the 

nanoparticles, and a new weight loss (%) was determined.  From these new weight loss 

values the corrected surface coverages were calculated using the previously described 

TGA surface coverage calculations.    
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Figure 2.18. Chains of oleic acid remaining on the surface of the nanoparticles before and after 
ligand exchange determined by LSC.  The data for the PEG coated nanoparticles represent the 

amount of oleic acid remaining after dialysis. 
 

Although the results in Table 2.3 reveal a very small scale change in surface coverage for 

the nanoparticles, by comparison, the corrected values for the PEG-nitroDOPA and PEG-

DOPA particles reveal that the majority of the organic material present on the particles 

was PEG.  The corrected number of chains on the surface of the PEG-Phosphonate and 

PEG-NH2 particles indicate a difference of 0.05-0.06 chains/nm2 from the original TGA 
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surface coverage values.  These values may seem small, but when applied to the bulk 

nanoparticle solution these differences could have a significant effect on the particles due 

to the inhomogeneity on the surfaces.  Furthermore, the results indicate that all of the 

organic material on the PEG-COOH coated particles is in fact oleic acid and not PEG.  

Therefore, these particles would not be useful for any applications which require 

dispersion into water.  The use of the LSC results to adjust the TGA data emphasizes the 

importance of this method for quantification and qualification of the ligand exchange. 

Table 2.3. Weight percent loss and corresponding grafting densities of unlabeled, oleic acid 
coated nanoparticles obtained from TGA analysis and LSC results for radiolabeled, oleic acid 
coated nanoparticles to compare removal of excess oleic acid by dialysis and GPC. 

 Np before dialysis Np after dialysis 
Np through GPC 

column 

TGA Weight  
loss (%) 59.9 51.2 35.8 

TGA Surface 
coverage 

(chains/nm2) 
29.1 20.4 10.8 

LSC Surface 
coverage 

(chains/nm2) 
20.6 16.0 12.1 

 

2.3.6 GPC Column 

The oleic acid coated, non-dialyzed nanoparticles were passed through a GPC column of 

swollen beads in order to determine if the use of this method might successfully remove 
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more excess oleic acid than purification or dialysis.  The excess oleic acid on the particles 

can contribute to agglomeration of the particles and may contribute to a slower rate of 

ligand exchange. The particles were purified and dialyzed in chloroform to remove any 

excess that may be present before modifying them by ligand exchange.  However, as 

shown in Figure 2.19a and 2.19b the dialysis did not remove much if any of the excess 

ligand on the particles.  The GPC column was used to compare methods and determine if 

one might be more successful than the other.   
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Figure  2.19. TGA curves of unlabeled, oleic acid coated iron oxide nanoparticles a) passed 

through a GPC column and b) iron oleate precursor.  
 

The TGA results reveal the presence of a large amount of oleic acid on the surface of the 

particles before modification and little removal by dialysis.  Furthermore, the TGA data 
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reveals the presence and removal of iron oleate precursor in the nanoparticle solutions 

before dialysis, after dialysis, and after the particles were passed through a GPC column 

(Figures 2.13 and 2.19a). The weight loss or step transition that occurs between 200 and 

300C for the nanoparticles before dialysis (Figure 2.13a) is similar to the transition seen 

in TGA results of iron oleate (Figure 2.19b).  The dialyzed nanoparticles show a 

decreased transition in this region indicating that the removal of the undesired iron oleate 

was successful during dialysis.  The TGA curves and the data in Table 3 reveal the GPC 

column was successful in removing iron oleate and a large amount of excess oleic acid on 

the surface of the nanoparticles.   

The TGA and LSC results of the particles passed through the GPC columns illustrate the 

removal of a large amount of oleic acid on the surface of the as-synthesized 

nanoparticles.  The TGA results in Table 2.3 and Figure 2.19a reveal a large decrease 

from 29.1 chains/nm2 to 10.8 chains/nm2 after the particles were passed through the GPC 

column.  The LSC results in Table 2.3 reveal a decrease of almost 50% in the oleic acid 

chains covering the surface of the radiolabeled nanoparticles.  The differences between 

the amounts of oleic acid removed from the unlabeled and radiolabeled nanoparticles 

passed through GPC columns can be attributed to the differences in the size and volumes 

of the columns that the particles were passed through.  The larger column that the 

unlabeled nanoparticles were passed through allowed for more contact of the sample with 

the beads and more removal of excess ligand.  Overall, these results indicate that the GPC 

column is a more effective method for removing excess, unwanted ligands on the surface 

of the particles.  This information implies the passing of the particles through the GPC 
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column before ligand exchange may enhance the ligand exchange further by removing 

excess material which may slow down the reaction time. 

2.4 Conclusions 

This study provides insight into the binding hierarchy of functional groups on the surface 

of magnetite.  LSC was used to track radiolabeled ligand on the surface of particles 

thereby yielding information about the efficiency or success of modification of these 

nanoparticles to make them suitable for certain applications.  The trend shown in the data 

agrees well with previous studies done with catechol derived anchor groups and other 

functional groups attached to PEG chains.  Unlike other commonly used methods, this 

radiotracer method using 14C-oleic acid clearly indicates the presence of a specific ligand 

on the surface of the nanoparticles and can be used to quantify the amount of that 

material.  The results showed that even the strongly binding catechol anchor groups 

(DOPA and nitroDOPA) did not remove 100% of the oleic acid.  Therefore, it is not 

always safe to assume complete ligand exchange.  Further investigation is necessary to 

ensure a full modification of the nanoparticles so that they exhibit the desired properties 

in appropriate environments. This method yielded information about the ligand 

composition on the surfaces of the nanoparticles which affects their stability.  This 

method can be used to verify and even explain the results of other methods used to 

characterize the ligand exchange on nanoparticles.  Understanding more about the surface 

chemistry of these nanoparticles can lead to better control in the applications of them. 

 



 67 

CHAPTER 3:  DIRECT MEASUREMENT OF LIGAND EXCHANGE ON 

IRON OXIDES WITH SMALL MOLECULE LIGANDS VIA 

RADIOANALYTICAL TECHNIQUES 

Reproduced with permission from [Davis, K.; Cole, B.; Ghelardini, M.; Powell, B. A.; 

Mefford, O. T., Quantitative Measurement of Ligand Exchange with Small-Molecule 

Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. Langmuir 2016, 32 

(51), 13716-13727.] Copyright [2016] American Chemical Society 

3.1  Introduction 

Ligand exchange using small molecules has been accomplished via different routes and 

moieties. For instance, small molecule ligands may be used as linkers or starting 

molecules for further modification.13, 143  In one such example, magnetite nanoparticles 

were modified with (3-aminopropyl)triethoxysilane (APTES) to link to poly(ethylene 

glycol) (PEG) chains to provide a suitable surface for MRI contrast agents.144  Small 

molecule ligands may also be used to minimize size for different applications.145, 146  

Portet et al. compared phosphate, phosphonate, sulfonate, and carboxylate functional 

molecules in MRI contrast agents due to their reduced size for enhanced tissular diffusion 

of nanoparticles.102 Results revealed that coating with bisphosphonate functional 

molecules allowed for small, stable particles across a wide pH range (2.5-13). 

Furthermore, competition-adsorption experiments indicated little desorption of the 

bisphosphonate molecules and thus promise for future physiological studies.  

Complete ligand exchange of these small molecules is necessary for peak performance of 

the nanomaterials. However, accurate determination of ligand exchange completion can 
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present a challenge.  Previous attempts have been made to quantify ligand exchange of 

these materials using techniques like FTIR,24, 147 TGA,15, 148 XPS,25, 122 UV-Vis,149, 150 and 

photoluminescence spectroscopy.150, 151   Methods like these are common but may have 

limitations and/or may not accurately represent the extent of exchange.  In the previous 

chapter, quantification of ligand exchange using sensitive, radioanalytical techniques 

exposed incomplete reactions with hydrophilic polymer ligands.  This chapter introduces 

the utility of these radioanalytical techniques for quantification of ligand exchange with 

small molecule ligands.152  The ligands were chosen based on head groups which are 

commonly used to modify these materials, such as catechols,107 thiols,153 and silanes,154 

carboxylic acids,89 sulfonates,102 and phosphonates (Figure 3.1).102 

 
Figure  3.1. Schematic of ligand exchange with small molecule ligands bearing different head 

groups. 
 

Furthermore, these ligands were employed in exchange reactions using procedures which 

have been previously reported and used by many other researchers. Table 3.1 contains 92 

references for the previously reported ligand exchange procedures used for each of these 

ligands as well as references of other works which cited the original procedure.  The 
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original procedures were shown to be useful for achieving what is claimed as complete 

modification of the nanoparticles, and thus, have been continually employed in other 

studies.  However, the methods used to verify the exchange reactions may not have been 

sensitive enough to detect residual oleic acid after exchange which resulted in inaccurate 

representations of the success of the procedures and of the binding affinities of the anchor 

groups.  Furthermore, comparison of these techniques does not allow for determination of 

a true binding hierarchy due to multiple uncontrolled exchange parameters.  To overcome 

this issue, a standardized ligand exchange protocol was used to establish a hierarchy of 

the functional groups and to verify the success of the well established protocols.  

Table  3.1. Ligand exchange procedures and references for the small molecule ligands. 
Small molecule ligand Pr ocedure Summary References 

zwitterionic dopamine sulfonate 

 

2-step ligand exchange: 1) 2-
[2-(2-

methoxyethoxy)ethoxy]acetic 
acid in methanol reacted at 

70°C for 5 hours 2) 
zwitterionic dopamine 

sulfonate in DMF/water 
solution reacted at 70°C for 

12 hours 

145, 146, 155-164 

(3-aminopropyl)triethoxy silane 
(APTES) 

Procedure 1 

 

nanoparticles and APTES in 
toluene (6 ml) with 10 μl of 
acetic acid; shaken for 72 
hours at room temperature 

3, 14, 17, 65, 66, 88, 91, 

116, 165-186 

(3-aminopropyl)triethoxy silane 
(APTES) 

Procedure 2 

nanoparticles in toluene 
exchanged with APTES in 

water and triethylamine 

12, 122, 131, 187 

HO

HO

N SO3

Si
O

O
O

NH2
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(TEA) for 15 minutes at 
room temperature 

citric acid 

 

nanoparticles in a 50:50 
chlorobenzene and N,N’-

dimethylformamide solution 
with citric acid, agitated at 

100°C for 18 hours 

13, 65, 67-69, 87, 181, 

188-199 

1) meso-2,3-dimercaptosuccinic 
acid 

 

2) 2-mercaptoethanol 

 

nanoparticles in toluene with 
ligand in dimethylsulfoxide 
stirred for 48 hours at room 

temperature 

74, 89, 90, 98, 200-206 

caffeic acid 

 

caffeic acid/water solution 
adjusted to pH 10 using 

NaOH; solution added to 
nanoparticles in hexane; 

sonicated for 30 minutes and 
stirred for 2 hours 

88, 91, 92, 119, 207-214 

1) 2-aminoethyl phosphonic acid 

 

2) (N,N-bis(phosphono methyl) 
glycine) 

nanoparticles and ligand 
dispersed in THF, stirred for 
24 hours under nitrogen at 

reflux 

215-218 

Si
O

O
O

NH2

O O

HO OH
OH

O OH

HO

O

SH

SH

O

OH

HO

SH

HO

OH

OH

O

P

O

HO

OH

NH2



 71 

 

3) taurine 

 

4) 3-(2-pyridyl0-5,6-di(2-furyl)-
1,2,4-triazine-5’,5’’-disulfonic 

acid disodium salt 

 

  

To quantify the extent of the exchange reactions radiolabeled iron oxide nanoparticles 

were synthesized via thermal decomposition with 14C-oleic acid as a radiotracer.  These 

particles were modified with citric acid, caffeic acid, zwitterionic dopamine sulfonate, 

dimercaptosuccinic acid (DMSA), (3-aminopropyl)triethoxysilane (APTES), 2-

mercaptoethanol, (N,N-bis(phosphono methyl) glycine), 2-aminoethyl phosphonic acid, 

3-(2-pyridyl0-5,6-di(2-furyl)-1,2,4-triazine-5’,5’’-disulfonic acid disodium salt, and 

taurine.  The particles were modified via ligand exchange using the varied methods 

referenced in table 3.1 and using a standardized exchange procedure.  The particles were 

purified and measured using liquid scintillation counting (LSC) to quantify the ligand 

exchange. The particles were further characterized via TEM, DLS, ATR-FTIR, and VSM 

N
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to determine size, hydrodynamic diameter and colloidal stability, qualify the 

modifications, and verify the magnetic properties of the particles respectively.  

3.2 Experimental 

3.2.1 Materials   

Iron (III) acetylacetonate (99%) was purchased from Strem Chemical. Ethanol 

(anhydrous, histological grade), acetone (99.9%), ammonium hydroxide (29 wt%), and 

methanol (laboratory grade) were purchased from Fisher Chemical.  Oleic acid (90%), 

iodomethane (99+%) and 1,3-propanesultone (99%) were purchased from Alfa Aesar. 3-

aminopropyltriethoxysilane (APTES; 99%), taurine (99%), 2-aminoethyl phosphonic 

acid (99%) and N,N-dimethylformamide (anhydrous, 99.8%)  were purchased from 

Acros Organics. N, N-bis(phosphonomethyl)glycine (>98%) was purchased from Aldrich 

Chemistry. Citric acid (>99.5%), 2-mercaptoethanol (≥99%), dopamine hydrochloride, 

sodium carbonate (≥99.99%) and 3-(2-pyridyl0-5,6-di(2-furyl)-1,2,4-triazine-5’,5’’-

disulfonic acid disodium salt were purchased from Sigma Aldrich. Caffeic acid (3,4-

dihydroxy cinnamic acid) and meso-2,3-dimercaptosuccinic acid (>98%) were purchased 

from Tokyo Chemical Industry (TCI).  Toluene (>99.5%) and tetrahydrofuran (99%) 

were purchased from BDH Chemicals. Bio-Beads™ S-X1 Support (200-400 mesh) were 

purchased from Bio-Rad. [2-(2-methoxy)ethoxy] acetic acid was purchased from EMD 

Millipore. Hexanes were purchased from BD Chemical. Optiphase Ultima Gold AB 

liquid scintillation cocktail and oleic acid [1-14C] (>97%) were purchased from 

PerkinElmer. 

3.2.2 Radiolabeled Nanoparticle Synthesis  
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Magnetite (Fe3O4) nanoparticles were synthesized via a method previously reported by 

Vreeland et al.44  In order to synthesize radiolabeled nanoparticles with a target diameter 

of 20 nm 1.074 g (3.04 mmol) of iron (III) acetylacetonate, 13.305 g (47.1 mmol) of oleic 

acid, and 1 μCi of 14C-oleic acid were added to a 3-necked round-bottom flask.  The flask 

was placed in a metal bath containing a low melting point metal alloy which allows for 

good thermal control.  The reaction was heated to 200°C and purged with nitrogen. The 

nitrogen was passed through bubblers to prevent the release of radiolabeled materials. 

The solution in the flask was stirred using an overhead stirrer at 400 rpm. After the 

solution stirred for 10 minutes it was heated to 350°C for 3.5 hours.   

The nanoparticles were purified by dispersion in 5 ml of hexane and addition of 15 ml of 

ethanol and 25 ml of acetone.  The solution was shaken, the particles were separated 

using a magnet, and the remaining solvents were poured off.  This process was repeated 

two more times to ensure removal of excess oleic acid.  The particles were further 

purified by passage through a gel permeation chromatography (GPC) column containing 

styrene-divinylbenzene copolymer beads.15, 139  The beads were swollen in toluene 

overnight and poured into a burette to pack the column with the gel.  A concentrated 

sample of nanoparticles in toluene was added to the top of the column and collected at the 

bottom as a dark band. 

3.2.3 Synthesis of Zwitterionic Dopamine Sulfonate   

Zwitterionic dopamine sulfonate was prepared using a previously reported method 

(Figure 3.2).145  Dopamine hydrochloride (6 mmol) was dissolved in 150 ml of ethanol in 

a 500 ml round-bottom flask.  The flask was purged with nitrogen while 28% ammonium 
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hydroxide (3 mmol) and 1,3-propanesultone (6.5 mmol) were slowly added to the flask.  

The solution was heated to 50°C and stirred for 18 hours.  The resulting precipitate was 

filtered and washed with ethanol three times.  The product, dopamine sulfonate, was 

dried in a vacuum oven and stored for further analysis and use.  NMR was used to verify 

synthesis of the dopamine sulfonate by peaks at 6.6-6.8 ppm (aromatic -CH), and 3.25 

ppm (-CH2-S-) (Figure 3.3). 

 
Figure  3.2. Reaction scheme for synthesis of zwitterionic dopamine sulfonate. 

 
Dopamine sulfonate (1 mmol) was dissolved in 150 ml of dimethylformamide (DMF) in 

a 500 ml round-bottom flask.  Anhydrous sodium carbonate (2.4 mmol) was added to the 

solution as it stirred via magnetic stir bar.  The flask was purged with nitrogen, followed 

by the addition of iodomethane (35 mmol).  The solution was stirred for 10 hours at 

50°C.  To precipitate the product, ethyl acetate was added to the solution in a 1:10 v/v 

ratio.  The product was filtered and 50 ml DMF/acetone (1:10 v/v) was added to the 

product and refluxed at 55°C for 2 hours.  The solution was filtered and precipitate 

collected.  This process was repeated two more times.  The final product was dried in a 
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vacuum oven for future analysis and use. NMR was used to verify synthesis of the 

zwitterionic dopamine sulfonate by peaks at 6.6-6.8 ppm (aromatic -CH), 3.25 ppm (-

CH2-S-), and ~3.12 ppm (CH3-N+-). 

 
Figure  3.3. NMR spectra of a) dopamine sulfonate and b) zwitterionic dopamine sulfonate. 

 
 

3.2.4 Ligand Exchange with Zwitterionic Dopamine Sulfonate   
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According to a previously reported procedure the nanoparticles were modified via a two-

step ligand exchange.145  The oleic acid was first exchanged with 2-[2-(2-methoxyethoxy) 

ethoxy] acetic acid in methanol at 70C for 5 hours. Second, this ligand was replaced 

with the zwitterionic dopamine sulfonate in a DMF/water solution at 70C for 12 hours.  

The particles from the first reaction were purified by addition of acetone and hexane to 

precipitate the product and centrifugation at 10,000 rpm for 5 minutes to isolate the 

particles.  The resulting product from the second reaction was purified by addition of 

acetone to precipitate the particles and centrifugation at 10,000 rpm for 5 minutes to 

isolate the particles.  These particles were then dispersed into DI water. 

3.2.5 Ligand Exchange with APTES (Procedure 1)  

The surfaces of the nanoparticles were modified via ligand exchange using a combination 

of two procedures with some variation.116, 165  The nanoparticles (50 mg) were dispersed 

in toluene (6 ml) and combined with APTES (1.5 ml).  The particles were shaken on a 

shake plate for 72 hours at ambient conditions.  The particles were separated using a 

magnet and washed three times using hexanes to remove excess ligands.  The particles 

were dispersed in DI water for further characterization. 

3.2.6 Ligand Exchange with APTES (Procedure 2)   

Nanoparticles were modified via ligand exchange with APTES according to a previous 

procedure.122  The nanoparticles were dispersed in toluene (50 ml).  The nanoparticle 

solution, 5 ml of TEA, and 1 ml of distilled water were added to a 100 ml, three-neck, 

round flask under nitrogen flow and mechanical stirring.  5 ml of APTES was added as 
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the solution stirred for 15 minutes.  The resulting particles were purified by several 

washes in toluene and dispersed into DI water. 

3.2.7 Ligand Exchange with Citric Acid   

Nanoparticles were modified with citric acid using a previously reported procedure for 

ligand exchange.65  120 mg of dried nanoparticles were dispersed in 15 ml of a 50:50 

mixture of chlorobenzene and N,N’-dimethylformamide and mixed with 0.1 g of citric 

acid.  The mixture was agitated at 100°C for 18 hours.  The particles were precipitated in 

diethyl ether and collected by magnetic separation.  The particles were redispersed in 

acetone and recovered again by magnetic separation three times.  The particles were dried 

with nitrogen to remove acetone then dispersed in water. 

3.2.8 Ligand Exchange with DMSA and 2-mercaptoethanol   

According to a previously reported procedure nanoparticles were modified with DMSA 

via ligand exchange.89  The same procedure was used to modify the particles with 2-

mercaptoethanol.  The synthesized nanoparticles were dispersed in 80 ml of toluene and 

added to a solution of DMSA in dimethyl sulfoxide (DMSO; 20 ml).  The mixture was 

stirred for 48 hours, and the DMSA coated nanoparticles precipitated during the reaction.  

The supernatant was removed and the particles were washed with ethanol and redispersed 

in water. Sodium hydroxide was then added to increase the pH to ~10.  The resulting 

black, homogeneous dispersion was dialyzed for 3 days, filtered (0.22 µm) and pH 

adjusted to 7.  

3.2.9 Ligand Exchange with Caffeic Acid   
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Ligand exchange with caffeic acid was performed according to a previously reported 

procedure by de Montferrand et al.92  One ml of an aqueous caffeic acid solution was 

adjusted at pH 10 using NaOH solution (10-1 mol/L).  This solution was added to 1 ml of 

the hydrophobic nanoparticles dispersed in cyclohexane.  The mixture was sonicated for 

30 minutes then stirred for 2 hours.  The organic, non-polar surfactant was diluted by 

adding 2 ml of cyclohexane, followed with centrifugation.  The supernatant was 

discarded and the resulting particles were water dispersible. 

3.2.10 Ligand Exchange with Phosphonate and Sulfonate Head Groups   

According to a previously reported procedure by Lartigue et al., nanoparticles were 

modified with (N,N-bis(phosphono methyl) glycine) and 2-aminoethyl phosphonic 

acid.215  Modifications with 3-(2-pyridyl0-5,6-di(2-furyl)-1,2,4-triazine-5’,5’’-disulfonic 

acid disodium salt and taurine were performed using the same procedure.  The 

nanoparticles were dispersed in tetrahydrofuran and mixed with the hydrophilic ligands. 

The mixture was stirred under nitrogen for 24 hours at reflux.  Pentane was added to the 

solution to precipitate and the sample was centrifuged.  The product was redispersed, 

precipitated with ethanol, and centrifuged again to isolate the particles.  The final product 

was dispersed into DI water. 

3.2.11 Standardized Ligand Exchange   

Ligand exchange reactions with all of the small molecule ligands were performed again 

using a more standardized method.  The particles and ligands were mixed together in 

homogeneous solutions and allowed to react on a shake plate at ambient conditions for 

three days.  To prepare ligand exchange reactions 5 mg of the nanoparticles were 
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dispersed in 8 ml of either THF or toluene and combined with the 100 mg of the ligands 

dispersed in either water, toluene, or DMSO.  The phosphonate and sulfonate-containing 

ligands, citric acid, and ZDS were dispersed in 2 ml of DI water.  The caffeic acid was 

dispersed in 2 ml of water and the pH was adjusted to 10 using NaOH (10-1 mol/L) in 

order to solubilize the ligand.  DMSA and 2-mercaptoethanol were prepared by 

dispersion in 2 ml of DMSO, and APTES was prepared by dispersion into 2 ml of 

toluene.  The reaction solutions were agitated on a shake plate for 3 days, collected via 

magnetic separation and centrifugation, dried and redispersed in water.  The particles that 

were successfully dispersed into water were used for further analysis. 

3.2.12 Characterization   

TEM was used to determine the core diameter of the nanoparticles and to compare aged 

particles.  The samples were prepared by dilution of the nanoparticle solutions and 

application of the solutions to copper grids with carbon mesh.  TEM images were 

obtained using a Hitachi H7600 TEM with an accelerating voltage of 120 kV.  Image 

analysis to determine particle size and distribution was performed using Image J.   

TGA was used to determine surface coverage of the oleic acid on the nanoparticles.  5 to 

10 mg of each sample was placed in the TGA pan, which was analyzed using a TA 

Instruments 2950 TGA.  The samples were heated at 20°C/minute under nitrogen purge 

to 110°C, held at 110°C for 30 minutes, then heated at 15°C/minute to 800°C.  According 

to a previously reported procedure the weight percent loss of organic material was used in 

a series of calculations to determine the oleic acid surface coverage of the particles.15 
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To determine the iron concentrations of each individual aliquot removed during the aging 

study ICP-MS was performed using a ThermoScientific XSeries 2 ICP-MS.  The 

concentrated HNO3 used to digest the samples was evaporated and the samples were 

dispersed in 10 ml of a 2% solution of nitric acid in DI water.  The samples were 

measured using 45Sc as an internal standard.   

DLS and zeta potential measurements were performed to determine hydrodynamic 

diameter and surface potential of the unmodified and modified nanoparticles.  The 

nanoparticle solutions were diluted with water or hexane and put into a cuvette or a zeta 

cell.  Each unlabeled sample was measured three times at 25 °C using a Malvern 

Zetasizer Nano ZS to determine the intensity average size distribution, z-average 

diameter, and the zeta potential.  The labeled particles were measured three times at 25°C 

using a Brookhaven 90Plus with ZetaPALS to determine size distribution, effective 

diameter, and zeta potential.  A study by de Jaeger et al. showed that both of these 

instruments report the same average diameter of the particles.140  

ATR-FTIR was performed to qualitatively analyze the nanoparticles after modification.  

This technique was used to confirm the presence of the hydrophilic ligands after 

exchange.  The nanoparticle samples were dried to remove water and/or solvent before 

measurement.  The samples were measured using a Thermo Fisher Scientific Nicolet 

FTIR with ATR attachment and a diamond ATR crystal.  

VSM was used to analyze the magnetic properties of the samples.  The samples were 

prepared by adding a few drops of nanoparticle solution onto the end of a cotton swab.  
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The samples were analyzed at 300K in a 3T field with a Quantum Design VSM which 

runs on the physical property measurement system 6000 (PPMS 6000). 

LSC was utilized to determine the amount of 14C-oleic acid contained in the nanoparticle 

samples separated from each aliquot solution.  A 150 μl aliquot of each nanoparticle 

sample in 2% HNO3 was added to scintillation cocktail in 20 ml scintillation vials.  The 

samples and background samples were counted for 30 minutes using a PerkinElmer 

TriCarb 2910 TR LSC instrument.  The results, reported in counts per minute (cpm), 

were used to calculate the moles of oleic acid per milliliter of solution using Equation 

2.1. 

3.3 Results and Discussion 

Nanoparticles were synthesized via thermal decomposition, modified via widely reported 

ligand exchange procedures and via a standardized procedure.  The particles were 

purified and dispersed into water.  The particles were characterized to determine size, 

hydrodynamic diameter, zeta potential, and magnetic properties, then subsequently 

analyzed by LSC to quantify the amount of radioactive oleic acid present on the surface 

of the particles after ligand exchange. 

Some samples dispersed into water more easily than others, and all exchanges resulted in 

a large quantity of particles which would not disperse into water at all.  The amount of 

particles that did not transfer to water from all of the reactions ranged from 75-98% of the 

initial particle samples.  This indicates that regardless of the reaction parameters, ligand 

exchange does not result in high yields.  Furthermore, a large number of particles and 

polymer must be used to insure collection of sufficient quantities of modified particles for 
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desired applications.  Quantitative investigation of ligand exchange could lead to 

improvement of these reactions and increased yields. 

3.3.1 TEM   

The unlabeled and radiolabeled nanoparticles were imaged using TEM. (Figure 3.4) 

Analysis of the TEM images using ImageJ revealed a size distribution of 17.1 nm ± 1.8 

for the unlabeled particles and 17.8 ± 1.9 for the radiolabeled nanoparticles.  These 

values are statistically different per a two-tailed t-test (p<0.0001).  The particles were 

synthesized via two different reactions so the sizes were not expected to be the same.  

The sizes, determined from the average surface areas, were used in the calculations to 

determine the amount of ligand present on the surface of the nanoparticles. 

 
Figure  3.4. TEM images (left) and histograms (right) of the unlabeled nanoparticles (a) and the 

radiolabeled nanoparticles (c). 
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3.3.2 DLS   

The hydrodynamic diameters and zeta potentials of the nanoparticles were measured 

using DLS.  This yielded information about the stability of the particles before and after 

modification with the small molecule ligands.  Table 3.2 shows the results of the 

nanoparticles modified using varied exchange protocols.  Comparison of results between 

the oleic acid-coated particles and the modified particles reveals a decrease in 

hydrodynamic diameter for some of the samples modified with smaller ligands.  The zeta 

potential values of the DMSA, APTES, bisphosphonate, and disulfonate-coated particles 

are around ±30 mV which indicates moderate to good colloidal stability relative to the 

less stable (between -30 and 30 mV) taurine, 2-aminoethyl phosphonic acid, and 2-

mercaptoethanol coated particles.219  This trend corresponds with the increase in standard 

deviations of the hydrodynamic diameters of the less stable particles.  The ZDS modified 

particles appear to be colloidally stable with a zeta potential close to zero due to the 

electrically neutral quality of the ligand.  Table 3.3 contains the results of the 

nanoparticles modified using a standardized exchange procedure.  The results are in good 

agreement with those previously discussed (Table 3.2).  The zeta potential values of the 

APTES, caffeic acid, and citric acid modified nanoparticles in Table 3.3 indicate an 

increase in stability (i.e. more positive or more negative) as compared to those in Table 

3.2.  This is likely due to the different reaction parameters.  The longer exchange time 

used for the standardized procedure may have allowed for increased modification (i.e., 

increased ligand exchange), and thus, improved colloidal stability. 
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Table  3.2. DLS size and zeta results of nanoparticles modified using varied procedures. 
Unlabeled 
par ticles 

Z-avg. 
diameter  

(nm)  

Zeta 
potential 

(mV) 

Labeled 
par ticles 

Effective 
diameter  

(nm)  

Zeta 
potential 

(mV) 

oleic acid 36±3 n/a oleic acid 38±2 n/a 

ZDS 35±2 -1 ZDS 37±3 -2 

APTES 39±4 31 APTES 35±5 34 

citric acid 27±5 -27 citric acid 29±4 -25 

DMSA 28±2 -35 DMSA 30±3 -37 

2-
mercaptoethanol 

33±7 10 2-
mercaptoethanol 

35±8 13 

caffeic acid 25±2 -33 caffeic acid 23±3 -36 

2-aminoethyl 
phosphonic acid 

31±5 -12 2-aminoethyl 
phosphonic acid 

34±4 -15 

bisphosphonic 
acid 

30±2 -31 bisphosphonate 34±2 -32 

taurine 29±7 -16 taurine 32±6 -19 

disulfonate 50±4 35 disulfonate 55±5 32 

 

Table  3.3. DLS size and zeta results of nanoparticles modified using a standardized procedure. 
Unlabeled 
par ticles 

Z-avg. 
diameter  

(nm)  

Zeta 
potential 

(mV) 

Labeled 
par ticles 

Effective 
diameter  

(nm)  

Zeta 
potential 

(mV) 

oleic acid 36±3 n/a oleic acid 38±2 n/a 

ZDS 32±2 -1 ZDS 34±2 -1 

APTES 33±3 34 APTES 31±2 35 

citric acid 24±3 -33 citric acid 25±4 -30 

DMSA 30±3 -32 DMSA 33±4 -35 
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2-
mercaptoethanol 

34±6 14 2-
mercaptoethanol 

37±7 17 

caffeic acid 26±2 -36 caffeic acid 24±2 -37 

2-aminoethyl 
phosphonic acid 

28±4 -11 2-aminoethyl 
phosphonic acid 

30±5 -13 

bisphosphonic 
acid 

33±2 -30 bisphosphonate 37±3 -34 

taurine 35±6 -13 taurine 37±5 -14 

disulfonate 54±4 33 disulfonate 57±4 34 

 

3.3.3 ATR-FTIR   

ATR-FTIR was used to qualify the modifications of the nanoparticles.  The results are 

shown in Table 3.4.  These results correspond to the spectra illustrated in Figures 3.5-

3.10.  The tables contain significant peaks that indicate the presence of the specific 

ligands on the surface of the particles.  However, the spectral results also indicate the 

presence of oleic acid remaining on some of the particles.  The results of the particles 

modified with APTES using a varied protocol indicate the presence of oleic acid with a 

peak at 1693 cm-1.   Results of the particles modified with taurine and 2-mercaptoethanol 

using both the individual procedures and the standardized procedure also indicate the 

presence of oleic acid remaining bound to the surface of the particles with peaks 

occurring around 1520-1540 cm-1.  This correlates with the DLS data and could explain 

the colloidal instability of these particles.  The results of the particles modified using 

varied procedures compare well with the results of those modified using a standardized 
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procedure.  The ATR-FTIR results are only qualitative and must be used in combination 

with a quantitative method to confirm exchange.  

Table 3.4.  ATR-FTIR results of nanoparticles modified using previously reported procedures 
and a standardized procedure. 

Small molecule ligand Charac ter istic peaks  (cm-1) for  referenced 
procedures 

Characteristic peaks (cm-1) for standardized 

procedure 

ZDS 1693-1407 (ar omatic C=C bend ing), 887-640 
(ar omati c C-H bending), 1033 and 943 (S-O-R), 

1149 (S=O) 

1600-1398 (aromatic C=C bending), 900-595 

(aromatic C-H bending), 1037 and 942 (S-O-R), 1151 

(S=O) 

APTES 1076 (Si-O-R), 929 (C-N) 

1092 (Si-O-R), 917 (C-N) 

citric acid 1740 and 1697 (C=O str etch), 1139 (alkoxy C-O) 

1732 and 1691 (C=O stretch), 1152 (alkoxy C-O) 

DMSA 2445 and 2528 (-SH), 1704 (C=O str etch) 

2547 (-SH), 1700 (C=O stretch) 

2-mercaptoethanol 1045 (C-S str etch) 

1036 (C-S stretch) 

caffeic acid 1336 (phenol C-O), 1552 (ar omati c C=C bending), 
883-640 (ar omatic C-H bending) 

1328 (phenol C-O), 1569 (aromatic C=C bending), 

890-656 (aromatic C-H bending) 

2-aminoethyl phosphonic acid 1641 (N-H bend), 1068 (C-N), 1133 (P=O), 2850 
((O=)PO-H) 
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1628 (N-H bend), 1073 (C-N), 1123 (P=O), 2845 

((O=)PO-H) 

bisphosphonate 1712 (C=O str etch), 1126 (P=O), 2805 ((O=)PO-H 

1703 (C=O stretch), 1137 (P=O), 2810 ((O=)PO-H 

taurine 1168 and 1200 (S=O), 1033 and 962 (S-O-R), 1612 
(N-H bend) 

1156 and 1205 (S=O), 1028 and 956 (S-O-R), 1620 

(N-H bend) 

disulfonate 1480 and 1570 (N=N), 1700-1600 (C=N stretch), 
1600-1410 (C=C bending), 1040 and 937 (S-O-R), 

1200 (S=O) 

1490 and 1576 (N=N), 1701-1610 (C=N stretch), 

1598-1423 (C=C bending), 1041 and 946 (S-O-R), 

1207 (S=O) 

 

 
Figure  3.5. ATR-FTIR  spectra of nanoparticles modified using previously reported procedures 

for 2-aminoethylphosphonic acid, 2-mercaptoethanol, and APTES. 
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Figure  3.6. ATR-FTIR spectra of nanoparticles modified using previously reported procedures 

for caffeic acid, the bisphosphonate ligand, and citric acid. 
 

 
Figure  3.7. ATR-FTIR spectra of nanoparticles modified using previously reported procedures 

for the disulfonate ligand, ZDS, taurine, and DMSA. 
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Figure  3.8. ATR-FTIR spectra of nanoparticles modified using a standardized procedure for 

DMSA, 2-aminoethylphosphonic acid, and citric acid. 
 

 
Figure  3.9. ATR-FTIR spectra of nanoparticles modified using a standardized procedure for the 

disulfonate ligand, the bisphosphonate ligand, and caffeic acid. 
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Figure  3.10. ATR-FTIR spectra of nanoparticles modified using a standardized procedure for 

APTES, taurine, 2-mercaptoethanol, and ZDS. 
 

3.3.4 VSM 

VSM was used to verify that the unlabeled particles were magnetic.  The results in Figure 

3.11 show a saturation magnetization of 40 emu/g.  This value is lower than that of bulk 

magnetite, but comparable to values previously reported for these materials.165, 220  The 

particles were measured well after they were synthesized and stored in solvent which 

may have evaporated resulting in some oxidation of the particles over time and a decrease 

in the saturation magnetization. 
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Figure  3.11. VSM hysteresis loop of oleic acid coated, unlabeled nanoparticles. 

 
3.3.5 LSC   

The amount of radiolabeled oleic acid remaining after ligand exchange for each sample 

was determined using LSC.  The results for each sample were normalized to the total 

nanoparticle concentrations of each (based on determination of total Fe via ICP-MS).  

The measured activity of each sample was used to calculate the total amount of oleic acid 

remaining on the particles after exchange using the aforementioned equation.  The results 

of the exchange reactions using previously reported procedures are shown in Figure 3.12.  

Although these results are not definitive of a hierarchy of binding moieties, they do 

indicate effects of binding group and reaction conditions on exchange.  Results indicate 

that the catechol groups (i.e. caffeic acid and ZDS) displaced the greatest amount of oleic 

acid.  This agrees with other reports of catechols binding well and with great affinity to 

iron oxides.15, 107  Furthermore, the bifunctional sulfonate and phosphonate binding 
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moieties displaced more oleic acid than their monofunctional counterparts.  The 

procedures used for the sulfonate and phosphonate ligands were the same, so these results 

suggest that multidentate ligands bind more robustly than monodentate ligands.  This 

finding agrees well with previous studies investigating multidenticity of ligands.99, 138  

Comparison of results of the APTES ligand exchange reactions illustrates that increased 

reaction time (72 hours) and use of a catalyst (acetic acid) enhanced the displacement of 

oleic acid greatly.  A longer reaction time allows the exchange to approach equilibrium, 

and a catalyst serves to speed up the reaction; therefore, it is understandable that this 

procedure was more successful than the 15 minute procedure.  Ultimately, these results 

do not indicate a true binding hierarchy as there are multiple factors which are 

uncontrolled including the length of the exchange, multidenticity of the anchoring group, 

solvent conditions, temperature, and presence of catalyst.  This is evidenced by the 

different procedures used for the APTES ligand.  Therefore, it was important to further 

investigate using a standardized procedure to isolate binding affinity as a contributing 

factor.  The standardized procedure allowed for uniform time of exchange, uniform 

temperature, and use of homogeneous solvent conditions so that the uncontrolled factor 

was binding moiety.  Therefore, a binding hierarchy could be determined and the 

previously published procedures could be verified. 
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Figure  3.12. Results of ligand exchange reactions using previously reported methods and a 

standardized procedure. 
 

The results of the modifications using a standardized procedure are shown in Figure 3.12.  

The standardized procedure allowed for exclusion of other factors, which may contribute 

to the binding trend.  These results reveal a binding hierarchy with catechols displacing 

the most oleic acid and 2-mercaptoethanol and taurine displacing significantly less than 

the other ligands.  This agrees with the results of the aforementioned ligand exchange 

reactions thus confirming the robust anchoring of catechols to iron oxide surfaces.  The 

amount of oleic acid remaining after exchange with taurine using the standardized 

procedure is higher (~0.9 chains/nm2) than the amount left after exchange using the 
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previously reported procedure (~0.6 chains/nm2).  The differences between these results 

may be explained by the use of heat and nitrogen by the previously prescribed procedure 

to catalyze the reaction and prevent oxidation, respectively.  Again, it can be seen that the 

bifunctional sulfonate and phosphonate moieties displaced more oleic acid than the 

monofunctional phosphonate and sulfonate indicating more effective binding with 

multidentate ligands.  APTES, citric acid, and DMSA displaced a significant amount of 

oleic acid resulting in particles which were colloidally stable as indicated by DLS.  The 

results of the APTES and DMSA exchanges using a standard procedure compare well to 

the use of previously reported methods indicating that variations in reaction parameters 

did not strongly affect the binding of the ligands.  These ligands appear to bind rather 

robustly to iron oxides regardless of conditions.  This is evidenced by the extensive use of 

these materials to modify iron oxide nanoparticles as indicated in Table 3.1.  Finally, 

increased exchange of citric acid using a standardized procedure compared to the 

prescribed procedure could possibly be explained by the extended reaction time of the 

standardized procedure.   

Overall, these results show that choice of binding moiety can greatly affect the success of 

a ligand exchange reaction.  Furthermore, even when using a binding moiety with high 

affinity for iron oxide, there can still be oleic acid remaining after ligand exchange.  

Therefore, it is prudent to thoroughly characterize the particles before and after to ensure 

optimal surface coverage for the desired application.  These findings also suggest the 

importance of reaction reagents, conditions, and parameters.  Extending ligand exchange 
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reaction time and controlling reaction conditions (i.e. catalysts, pH, temperature, 

stirring/agitation, etc.) may be necessary to optimize the exchange. 

3.4 Conclusions 

This investigation resulted in sensitive measurement of ligand exchange with small 

molecule ligands bearing different binding groups under varied reaction conditions.  LSC 

was used to determine the activity of 14C in each of the samples after exchange, and 

ultimately, calculate the amount of oleic acid remaining after ligand exchange. 

Characterization of the unlabeled nanoparticles via DLS and ATR-FTIR confirmed trends 

observed with LSC.  Despite the reaction conditions, catechols displaced more oleic acid 

compared to the other binding groups.  However, even the catechols did not displace 

100% of the oleic acid.  Bifunctional ligands coated the particles more completely than 

monofunctional ligands illustrating the robust quality of multidentate ligands.  

Furthermore, comparison of the procedures used for the APTES ligand and comparison 

of the varied procedures and standardized procedure revealed the importance of 

extending reaction time and use of catalysts to enhance the reaction.  Overall, this study 

allows insight into the manipulation of surface chemistry of these materials and the 

importance of thorough examination after modification to achieve optimal quantity and 

quality of the product. 
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CHAPTER 4:  THE EFFECT OF POST-SYNTHESIS AGING ON THE 

LIGAND EXCHANGE ACTIVITY OF IRON OXIDE NANOPARTICLES 

4.1 Introduction 

Magnetic nanoparticles hold great promise as a material for applications ranging from 

biomedical applications such as therapeutics and imaging to environmental remediation.1-

3, 5-8 These applications would not be possible without robust methods to modify the 

surface of these materials. One widely used method to alter the surface properties and 

tailor the surface of metal and metal oxide nanoparticles is ligand exchange. The rate of 

the ligand exchange can be altered by the structure of the nanoparticle surface including 

such features as edges, grain boundaries, and defect sites. This structure creates different 

electron densities and steric accessibilities that affect ligand exchange rates.221-223  As 

nanoparticles age these edge effects and defect sites may be subject to change.  

Furthermore, as iron oxides age they may oxidize from magnetite to maghemite.  

Oxidation state of iron can affect the binding of certain ligands as evidenced in a study by 

Amstad et al.103  In this study they found that nitrocatechols bind preferentially to Fe2+ 

before binding to Fe3+.  To the best of the authors knowledge, relatively little research has 

quantified the effects of iron oxide aging on ligand exchange.  

Nonetheless, other metal and metal oxide based nanoparticles have shown appreciable 

decreases in properties due to aging of their surfaces.  Gradual decreases in the ligand 

exchange reactivity224 and electrocatalytic activity225 of gold nanoparticles have been 
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connected to this surface aging phenomena. Disulfides have been shown to displace short 

chained thiols at a slower rate when the gold nanoparticles were aged in chlorobenzene 

solution due to thiol stabilization of defect sites.224  Aging has also been revealed to have 

effects on various properties of metal oxides.  It has been shown that aging of copper 

manganese oxides affects the catalytic activity of these materials.  For example, copper 

manganese oxides were prepared by a hydrolysis-coprecipitation method and aged for 

20-72 hours post-synthesis.226  The aged oxides were compared to unaged oxides in a 

catalytic CO oxidation study.  Results showed an increase in catalytic activity with aging 

due to formation of less-crystallized phases and an increase in surface area during the 

aging process.  Aging of cobalt ferrite nanoparticles was shown to improve crystallinity 

of the core material,227 where the properties of surface-passivated and nonpassivated 

particles were aged at low pH.  This caused the formation of an amorphous, iron-rich 

outer layer and increased the crystallinity of the core.  The changes resulted from 

increased dissolution of the cobalt cations during the passivation process and replacement 

of those ions with iron cations, thus modifying the Fe/Co cation distribution which 

altered the magnetic properties of the particles.    Dissolution is a time-evolved concern 

with other iron oxide materials as well.228, 229  One study found that dissolution of these 

materials is “controlled by the coordinative arrangements around the metal centers in the 

surface lattice.”228  Therefore, the ligands bound to the surface affect the dissolution of 

these materials.  It was found that binuclear surface complexes formed by phosphate, 

arsenate, borate, and sulfate are good at inhibiting dissolution of iron oxides.  In short, 
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there is a strong correlation in aging effects on the structural and crystalline properties of 

these materials, which in turn could affect binding of ligands to their surfaces. 

To better understand these relationships, we developed a methodology to quantify the 

effects of aging on ligand exchange of iron oxide nanoparticles.  Nanoparticles were 

synthesized via thermal decomposition with oleic acid as a stabilizing ligand.  The 

nanoparticles were then mixed with varying concentrations of 14C-labeled oleic acid at 

either 2, 7, or 30 days following synthesis.  To measure the kinetics of exchange at the 

three different aging times, aliquots of the nanoparticle solutions were collected and the 

particles were isolated at various time points after exposure to the radiolabeled oleic acid.  

Liquid scintillation counting (LSC) was used to measure the activity of the samples and 

calculate the amount of 14C-oleic acid chains present on the nanoparticles in each aliquot.  

Results of the aging study were further analyzed to elucidate kinetics of the reaction.  A 

follow-up study was done to isolate the effects of oxidation, which can occur over time.  

In this study, nanoparticles were synthesized via thermal decomposition, and half of the 

reaction volume was oxidized in air for 15 minutes at 175°C.  Mössbauer spectroscopy 

was utilized to quantify the oxidation of the particles using this procedure.  Aliquots of 

the nanoparticle solutions (oxidized and unoxidized) were collected at various time points 

during ligand exchange with 14C-oleic acid and measured using LSC.   
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4.2 Experimental 

4.2.1 Materials 

Iron (III) acetylacetonate (99%) was purchased from Strem Chemical.  Ethanol 

(anhydrous, histological grade) and acetone (99.9%) were purchased from Fisher 

Chemical.  Oleic acid (90%) was purchased from Alfa Aesar.  Hexanes (≥98.5%) were 

purchased from EMD Millipore.  Bio-Beads™ SX-1 support (styrene-divinylbenzene 

copolymer beads) were purchased from Bio-Rad Laboratories, Inc. Optiphase Ultima 

Gold AB liquid scintillation cocktail and oleic acid [1-14C] (>97%) were purchased from 

PerkinElmer.  Toluene (99.5%) was purchased from BDH Chemicals. 

4.2.2 Nanoparticle Synthesis 

Iron oxide nanoparticles were synthesized via a method previously reported by Vreeland 

et al.44  To synthesize nanoparticles with a target diameter of 20 nm 1.074 g (3.04 mmol) 

of iron (III) acetylacetonate and 13.305 g (47.1 mmol) of oleic acid were added to a 3-

necked round-bottom flask.  The flask was placed in a metal bath heated to 200°C and 

purged with nitrogen.  The solution in the flask was stirred using an overhead stirrer at 

400 rpm.  After the solution stirred for 10 minutes it was heated to 350°C for 3.5 hours.   

The nanoparticles were purified by dispersion in 5 ml of hexane and addition of 15 ml of 

ethanol and 25 ml of acetone.  The solution was shaken, the particles were separated 

using a handheld magnet, and the remaining solvents were decanted.  This process was 

repeated two more times to ensure removal of excess oleic acid.  The particles were 
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further purified by passage through a gel permeation chromatography (GPC) column 

containing styrene-divinyl benzene copolymer beads.139  The beads were swollen in 

toluene overnight and poured into a burette to pack the column with the gel.  A 

concentrated sample of nanoparticles in toluene was added to the top of the column and 

collected at the bottom as a dark band. 

4.2.3 Aging Study 

The nanoparticle solutions (20 nm target diameter; ~2 mg/ml of Fe3O4) aged for 2, 7, and 

30 days were exposed to solutions of 14C-oleic acid in toluene.  The aging was conducted 

by storing the particles in toluene in a sealed scintillation vial at room temperature. 

Aliquots of these solutions were collected and analyzed at different time points to 

observe effects of aging on ligand exchange.  As stated above, the concentration of the 

stock solution of 14C-oleic acid as determined by liquid scintillation counting was 

414,908 dpm/ml.  To create solutions of varying molar concentrations of 14C-oleic acid, 

216.9 μl, 433.8 μl, and 650.7 μl of the stock solution were combined with unlabeled oleic 

acid and added to the nanoparticle suspensions to obtain 5000 dpm/ml (3.6×10-11 

mol/ml), 10000 dpm/ml (7.2×10-11 mol/ml), and 15000 dpm/ml (1×10-10 mol/ml) 

solutions, respectively. The particle suspensions were placed on a shake plate for 

approximately 0.5 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 8 hours, 10 

hours, 12 hours, 16 hours, 24 hours, and 32 hours before 1 ml aliquots were removed 

from the solutions and put into 15 ml centrifuge tubes.  The aliquots were mixed with 2 

ml of ethanol and 2 ml of acetone to separate the excess oleic acid from the particles then 
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centrifuged at 9,500 rpm for 10 minutes to insure separation.  The supernatant from each 

tube was removed and placed into separate centrifuge tubes for further analysis.  After 

measurement and analysis of the samples it was determined that the particles should be 

further purified via passage through a GPC column as previously described.  The 

particles were passed through the column once, and then smaller aliquots were passed 

through a syringe column (20 ml syringe) containing the same copolymer beads in 

toluene.  The syringe column was plugged with glass wool to prevent the beads from 

escaping.  

4.2.4 Kinetic Modelling 

Modelling of the reaction kinetics was used to determine changes in rate constants with 

respect to aging time.  Initial attempts at fitting the adsorption data to first order rate 

equations did not work as that approach did not account for the reversible adsorption.  

Modelling was based on a simplified reversible, first order reaction where one labeled 

oleic acid displaces one unlabeled oleic acid on the surface of the particles described by 

the equation below: 

Eq. 4.1) [14OA] + [OA-np] ↔ [14OA-np] + [OA] 

where [14OA] is the concentration of the free 14C-oleic acid in the liquid, [OA-np] is the 

concentration of the oleic acid bound to the nanoparticles, [14OA-np] is the 14C-oleic acid 

bound to the nanoparticles, [OA] is the unlabeled oleic acid coming off the particles, and 
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the reaction order is 1 with respect to the concentrations. The rate of change of 14C-oleic 

acid in the liquid phase can be written as:  

Eq. 4.2) 
d[14OA]

dt
= -kf[14OA]+kr[14OA-np] 

 Where kf is the forward rate constant removing 14C-oleic acid from the liquid phase by 

exchange with stable oleic acid on the nanoparticle surfaces and kr is the desorption rate 

of 14C-oleic acid from the nanoparticle surface. Note for convenience [14OA-np] is 

written as a liquid phase concentration above to keep the rate constants with the same 

units but conversion to solid phase concentrations can easily be done by multiplying by 

the nanoparticle suspension concentration. At time zero, the concentration of 14C-oleic 

acid on the nanoparticle surface is zero (i.e., [14OA-np] = 0 at time zero). Therefore, the 

concentration of [14OA-np] can be written as:  

Eq. 4.3) [14OA-np] = [14OA]0 – [14OA]t 

Where [14OA]0 is the concentration of 14C-oleic acid in the liquid phase at time zero and 

[14OA]t is the concentration of 14C-oleic acid in the liquid phase at time t. Equations 4.2 

and 4.3 can be combined to express the reaction rate in terms of the liquid concentration 

of 14C-oleic acid. 

Eq. 4.4) 
d[14OA]

dt
= (kf+kr)[14OA]t+kr[14OA]0 
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At equilibrium where the left hand side of equation 4.4 is equal to zero, the equilibrium 

concentration of aqueous 14C-oleic acid can be written as:  

Eq. 4.5) [14OA]eq=
kr

kf+kr
[14OA]0 

Combining equations 4.4 and 4.5 and integrating yields:  

Eq. 4.6) [14OA]t=[14OA]eq+ c1e-(kf+kr)t 

Finally applying the initial condition that [14OA]t = [14OA]0 at t = 0 to determine c1, the 

final analytical solution in equation 4.7 can be determined.  

Eq. 4.7) [14OA] = [14OA]eq + ([14OA]0 − [14OA]eq)𝑒−(𝑘𝑓+𝑘𝑟)𝑡 

Rearranging the terms and taking the natural log of each side yields the linear expression 

shown below: 

Eq. 4.8) ln
[14OA]−[14OA]eq

[14OA]0−[14OA]eq
= -(kf-kr)t 

where the overall reaction rate constant (kf-kr) is the slope and the y-intercept is zero.  

The data was plotted in this linear form and analyzed using regression analysis to 

determine the overall slope. The linear expression (Eq. 4.8) was used to model the loss of 

14C-oleic acid from the liquid phase as it sorbed onto the particles as a function of time.  

The average slope (i.e. overall rate constant) of the plots for each data set was used to 

plot a model for each. Noting that the data shown below plateaus after > 30 hours, the 
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final measured aqueous concentration of 14C-oleic acid was used as the input value for 

[14OA]eq. Modelling the ligand concentration on the nanoparticle surface (which was also 

measured to monitor conservation of mass) required the assumption that for one ligand to 

adsorb another ligand must desorb. This may not be an accurate description of the 

exchange observed.  Modelling the decrease in ligand concentration from the solution as 

the ligands adsorb to the particles does not utilize this assumption, and therefore, may be 

more accurate.  

4.2.5 Oxidation Study 

Iron oxide nanoparticles with a target diameter of 20 nm were again synthesized 

according to the previously stated procedure.  To oxidize the particles following particle 

synthesis in a controlled manner, approximately half of the resulting product was 

oxidized by mechanically stirring at 155°C for 15 minutes in open air. The unoxidized 

half was allowed to cool to room temperature under nitrogen.  Both of the resulting 

suspensions of nanoparticles (i.e., unoxidized and oxidized) were purified by dispersion 

in 5 ml of hexane and addition of 15 ml of ethanol and 25 ml of acetone.  The suspension 

was shaken, the particles were separated using a handheld magnet, and the remaining 

solvents were decanted.  This process was repeated five more times to insure removal of 

the majority of excess oleic acid.  Washes 4-6 for the oxidized particles were performed 

using centrifugation (8000 rpm for 10 minutes) to isolate the particles to prevent loss of 

material due to the diminished magnetic response.  The particles were dispersed in 

toluene and a solution of oleic acid combined with 14C-oleic acid as a radiotracer in 
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toluene (1 mol:1 mol of oleic acid to oleic acid initially present in the nanoparticle 

suspensions).  Aliquots were collected, purified, and measured as previously described. 

4.2.6 Characterization 

Transmission electron microscopy (TEM) was used to determine the core diameter of the 

nanoparticles and to compare aged particles.  The samples were prepared by dilution of 

the nanoparticle suspensions and application to copper grids with a carbon mesh.  TEM 

images were obtained using a Hitachi H7600 TEM with an accelerating voltage of 120 

kV.  Image analysis to determine particle size and distribution was performed using 

ImageJ (National Institutes of Health). 

Ultraviolet-visible (UV-VIS) spectroscopic measurements were performed to determine 

concentration of iron in the nanoparticle suspensions before addition of radiolabeled 

material.44  Approximately 5-10 μl of each magnetite sample were digested in 0.2 ml of 

concentrated hydrochloric acid (37%, HCl) at room temperature for 5 minutes.  The 

dissolved iron was then diluted to 10 ml with deionized (DI) water and 0.5, 1.0, 1.5, 2, 

and 2.5 ml of the HCl/water solutions were pipetted into two separate 15 ml centrifuge 

tubes.  DI water was added to each tube to dilute the solutions to 7 ml followed by 

addition of 0.2 ml of hydroxylamine hydrochloride aqueous solution (100 g/l), 0.5 ml of 

1,10-phenanthroline aqueous solution (3 g/l), and 1.0 ml of an aqueous solution of 

sodium acetate and acetic acid (200 g/l and 100 g/l, respectively) were added to the 

centrifuge tubes.  Upon addition of these reagents a pink color developed in the solution 

due to the coordination complex formed by the phenanthroline with iron.  The absorbance 
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of these solutions was then obtained by a PerkinElmer UV/Vis/NIR Spectrometer 

Lambda 950.  The absorbance values were compared to known standards and used to 

calculate the corresponding gram amounts of iron in the two magnetite samples.  The 

molar relationship between iron and magnetite was then used to find the gram amount of 

magnetite in the two samples. 

Thermogravimetric analysis (TGA) was used to determine surface coverage of the oleic 

acid on the nanoparticles.  5 to 10 mg of each sample was placed in TGA pan, which was 

analyzed using a TA Instruments 2950 TGA.  The samples were heated at 20 °C/minute 

under nitrogen purge to 110 °C, held at 110 °C for 30 minutes, then heated at 15 

°C/minute to 800 °C.  According to a previously reported procedure the weight percent 

loss of organic material was used in a series of calculation to determine the oleic acid 

surface coverage of the particles.15 

Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the iron 

concentrations of each individual aliquot removed during the aging study.  The 

concentrated HNO3 used to digest the samples was evaporated and the samples were 

dispersed in 10 ml of a 2% HNO3/DI water solution.  The samples were measured using 

a ThermoScientific MS XSeries 2 ICP-MS.   

Liquid scintillation counting (LSC) was utilized to determine the amount of 14C-oleic 

acid contained in the nanoparticle samples separated from each aliquot solution.  150 μl 

of each nanoparticle sample in 2% HNO3 was added to scintillation cocktail in 20 ml 
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scintillation vials.  The samples and background samples were counted for 30 minutes 

using a PerkinElmer TriCarb 2910 TR LSC instrument.  LSC and ICP-MS results were 

used to calculate the amount of oleic acid remaining on the particles after modification 

according to a previously reported procedure.15  The resulting counts per minute (cpm) 

were used to calculate moles of oleic acid per milliliter of solution using the equation 

below: 

Eq. 4.9) 
moles 14C

ml
=

sample cpm-background cpm

counting efficiency
ln(2)

t1/2 ×(6.022×1023)×ml
 

where the numerator represents decays per minute (dpm), the counting efficiency is 

0.931, and the denominator is the decay constant ((λ) 2.3x10-10 min.-1) multiplied by 

Avogadro’s number and the number of milliliters of the LSC sample.  The half-life (t1/2) 

of 14C is 5,730 years.  The molar ratio of unlabeled oleic acid to 14C-oleic acid was used 

to determine the overall amount of oleic acid ligands exchanged onto the nanoparticles.  

Mössbauer spectroscopic measurements were first conducted of two samples labelled 

oxidized and non-oxidized at UNCA’s Materials Research Group Laboratory.  Each 

sample received of colloidal suspension containing oleic acid coated iron-oxide 

nanoparticles was condensed by volatilization of hexanes.  The condensed material was 

loaded into cylindrical polylactide (PLA) containers to a 3 mm depth.  Prepared samples 

in containers were placed in a linear alignment with the oscillating 57Cobalt gamma 

source and the detector.  Mossbauer spectra were recorded in the temperature range 11 K 

< T < 293 K using a Wissel spectrometer in constant acceleration mode with 57Co source 
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in Rh matrix.  Low temperature measurements were taken by placing the sample in a 

helium 4 K Cryostat (Advanced Research Systems, Inc.) Temperature probes were placed 

in the heat column and at the perimeter of the plastic sample container.  Fitment was 

recorded in terms of isomer shift (𝛿), quadrupole splitting, magnetic hyperfine field 

(Heff), line width, component area and a statistical criterion (χ2).  Instrumental error for 

the velocity scale or spectral point +/- 0.5 channel.  Reference signal was folded against a 

standard α-Fe foil absorber at 295K to determine zero shift and optimal peak width.   

Vibrating sample magnetometry (VSM) was used to analyze the magnetic properties of 

the samples.  The samples were prepared by adding a few drops of nanoparticle solution 

onto the end of a cotton swab.  The samples were analyzed at 300K in a 3T field with a 

Quantum Design VSM which runs on the physical property measurement system 6000 

(PPMS 6000). 

4.3 Results and Discussion 

Aging Study 

Iron oxide nanoparticles were synthesized via thermal decomposition, aged in toluene for 

2, 7, and 30 days.  The particles were characterized to determine size, size distribution, 

ligand surface coverage, and magnetic properties.  The particles were employed in ligand 

exchange reactions with oleic acid and 14C-oleic acid.  Aliquots were collected 

throughout the reactions to monitor the exchange with time of reaction.  The particles 

were characterized to determine size and size distribution, ligand surface coverage, and 
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magnetic properties.  The aliquots were analyzed by LSC to determine the amount of 

radiolabeled oleic acid present on the surface and in solution (i.e. the supernatant) after 

exchange.  Modelling of the reactions was used to determine kinetic parameters of the 

ligand adsorption. The results are provided in greater detail below. 

4.3.1 TEM (Aging Study) 

The synthesized particles were characterized via TEM to determine the particle size 

distribution.  Analysis of the TEM images using ImageJ yielded size distributions (Figure 

4.1) of the nanoparticles used in the initial aging study and in the oxidation study.  The 

average diameter of the particles used in the aging study was 17.4 nm with a standard 

deviation of 1.56.  The particles were analyzed via TEM after aging for 7 days and 30 

days in toluene to verify that there were no changes in size or morphology due to aging.  

The particles which were aged for 7 days were on average 17.3 nm with a standard 

deviation of 1.53 and no significant size difference from the synthesized particles (aged 2 

days) (unpaired t-test, p=0.4283).  The particles which were aged for 30 days were 17.2 

nm with a standard deviation of 1.57 and no significant size difference from the 

synthesized particles (aged 2 days) (unpaired t-test, p=0.1181).     
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Figure 4.1. TEM image (above) and histogram of size distribution (below) of different aged 
nanoparticles. a) nanoparticles aged 2 days. b) nanoparticles aged 7 days. c) nanoparticles aged 

30 days. 

4.3.2 TGA (Aging Study) 

The size results were further used to determine ligand surface coverage before 

modification via TGA. TGA results yielded percent weight loss of organic material on 

the surface of the nanoparticles before modification (Figure 4.2).  Analysis of the data 

revealed an 85% weight loss between 200-500°C of the organic material on the 

nanoparticles synthesized and purified for use in the aging study (Table 4.1).  This 

corresponds to a high surface coverage of approximately 180 chains/nm2. The particles 

were further purified through a GPC column to remove the excess ligand.  Further 

purification reduced the amount of organic material to approximately 48 chains/nm2.  
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Although the surface coverage was still high, further purification may have resulted in 

destabilization of the particles.14   

 

Figure 4.2. TGA of aging study nanoparticles after initial purification. 
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Figure 4.3. TGA of aging study nanoparticles after GPC purification. 

Table 4.1. TGA results and surface coverages of nanoparticles used for aging study. 

 Before GPC After GPC 

Weight loss (%) 85 63 

Surface coverage 

(chains/nm2) 

180 62 

 

4.3.3 VSM (Aging Study) 

VSM was used to observe the magnetic properties of the particles used for the aging 

study.  The data was normalized to the iron content in grams which was determined using 

UV-Vis.  The results are shown in Figure 4.4.  The graph reveals a saturation 
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magnetization of 40 emu/g.  This value is lower than that of bulk magnetite, but it 

compares well to other values reported in literature.165, 220  The particles were measured 

well after they were synthesized and employed in the aging study.  Loss of solvent during 

storage and oxidation may have contributed to a decrease in the saturation magnetization. 

 

Figure 4.4. VSM results of nanoparticles used for aging study. 

4.3.4 LSC (Aging Study) 

The amount of radiolabeled oleic acid in each sample was determined using LSC.  The 

data for each sample was normalized to the amount of nanoparticles present in the sample 

(based on determination of total iron via ICP-MS).  The results were used to calculate the 

amount of radiolabeled oleic acid exchanged onto the surface of the nanoparticles and the 

amount of radiolabeled ligand remaining free in solution.  The results from measurements 

of the initially cleaned particles (i.e. not purified via a GPC column) were used to 
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determine the overall amount of oleic acid on the particles and are shown in Figure 4.5.  

The graph illustrates a large amount of oleic acid on the particles at a 1:1 molar ratio of 

oleic acid.  Additionally, there is some amount of newly introduced oleic acid present on 

the particles at the onset of the experiment.  This seemed unlikely, therefore, the particles 

were further purified via passage through a GPC column and a syringe column to better 

remove the excess, unbound oleic acid.  The results of the measurements after further 

purification are shown in Figure 4.6.   The figure depicts a more accurate representation 

of the radiolabeled oleic acid present on the particles during the exchange reactions with 

2 day, 7 day, and 30 day aged particles.  Further cleaning of the particles decreased the 

amount of oleic acid on the particles and resulted in fewer outlying data points.   

 

Figure 4.5. Amount of oleic acid (unlabeled and labeled) on the particles during exchange at 
different aging times and at a 1:1 molar ratio of oleic acid. 
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Figure 4.6. Amount of oleic acid exchanged on the 2 days (a), 7 days (b), and 30 days (c) aged 
nanoparticles at all molar ratios and first-order fits to data. Green lines represent the 1:1 molar 

ratio, blue is 2:1 molar ratio, and red is the 3:1 molar ratio. 

The final results of the ligand exchange reactions of different aged particles are shown in 

Figure 4.7 and Figure 4.8.  The graphs show a decrease in the concentration of 

radiolabeled oleic acid in the solution which corresponds to an increase in radiolabeled 

ligands adsorbing onto the surface.  The decreases in concentration eventually plateau to 

a relatively constant concentration indicating an approach to equilibrium.  The results 

revealed the changes in concentration of the ligands free in solution for each molar ratio 

are closely proportional to the increase in the initial concentration of oleic acid for all 

samples regardless of age.  This indicates that no matter the core particle properties, 

addition of more ligand is a driving force in the exchange reaction (e.g., considering Le 

Chatelier's principle applied to equation 1). It is noteworthy that in Eq. 1 14C-oleic acid 

was used to track the behavior of all oleic acid (14C labeled and stable) initially in the 

liquid phase.  Results also revealed a large decrease in free ligand concentration after the 

particles were aged in toluene for 30 days.  The aging process, between 7 and 30 days, 

allowed for increased extent of adsorption.  As discussed below, we hypothesize this is 
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due to the presence of more available binding sites as the surface of the particles have 

become more oxidized. 

 

Figure 4.7. Amount of 14C-oleic acid in solution during exchange with the 2 days, 7 days, and 30 
days aged nanoparticles at a 1:1 molar ratio and model fits to the data. 
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Figure 4.8. Amount of 14C-oleic acid in solution during exchange with the 2 days, 7 days, and 30 
days aged nanoparticles at a 2:1 and 3:1 molar ratio and model fits to the data. 

4.3.5 Kinetic Modelling 

The results as determined from LSC measurements were initially fit to models using 

differential equations to describe the forward and reverse reactions, or adsorption and 

desorption, and assuming first order kinetics.  Non-linear regression analysis in Excel and 

the use of Excel solver allowed for modelling of the adsorption kinetics on the particle 

surface.  The results are shown in Figure 4.6.  This approach required the assumption that 

a single ligand was displaced by a single incoming ligand.  Modelling the kinetics of loss 

of the oleic acid from the solution was used to avoid this assumption.  In this approach, 

the data was fit to models using a linearized analytical solution and regression analysis.  

The kinetic analysis produced overall rate constants for the reversible reactions at 2 days, 

7 days, and 30 days and yielded further insight into the true impact of aging on ligand 

exchange reactivity of oleic acid.  Results in Figure 4.7 and Figure 4.8 illustrate the good 
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fit of the analytical solution to the experimental data.  The similar trends and fits of the 

curves for each molar ratio indicate the reaction is first order and is independent of 

concentration.  The linearized models (based on regression analysis) in Figure 4.9 and 

Figure 4.10 show a reasonably good fit to the linearized data.  The changes in the slopes 

of the models directly correlates to the changes in overall rate constants shown in Table 

4.2.  This is illustrated in Equation 8, where the slope (i.e. overall rate constant) is the 

difference between the forward and reverse rate constants.  The plots indicate a slow 

reaction which begins to level off after 10 hours.  This time scale is large (on the order of 

hours) relative to the reaction rates observed with aged gold nanoparticles (on the order 

of minutes).224  This could be due to the fact that the reactions are not competitive 

exchange reactions.  This could also indicate slower adsorption due to some physical 

barrier close to the particle surface.   
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Figure 4.9. Linearized analytical solutions for 2 days, 7 days, and 30 days aged particles at a 1:1 
molar ratio and the model fits based on linear regression analysis. 

 

Figure 4.10. Linearized analytical solutions for 2 days, 7 days, and 30 days aged particles at a 2:1 
and 3:1 molar ratio and the model fits based on linear regression analysis. 

 

 



 120 

Table 4.2. Rate constants from exchange reactions as determined from modelling. 

 2 days 7 days 30 days 

Rate constant  

(sec.-1 x 10-5) 

4.4±0.3 4.2±0.2 3.6±0.4 

 

The rate constants decrease with particle age, and the difference in the 2 day and 30 day 

constants is statistically significant as determined using an unpaired t-test (p=0.0470, 

α=0.05) (Figure 4.11).  However, the differences between the 2 day and 7 day constants 

and the 7 day and 30 day constants are not significant according to unpaired t-tests 

(α=0.05, p=0.64 and p=0.08 respectively).  This indicates that the difference between the 

forward and reverse rate constants is decreasing with particle age, and thus, the forward 

and reverse constants are becoming more similar.  This could indicate an increase in the 

desorption rate with aging, assuming the forward rate (adsorption) does not change.  This 

finding and the increase in the number of ligands leaving the liquid phase suggest a 

change at the surface of the particles has allowed for a larger mass of ligands to adsorb. 

The model does not yield unique solutions for the forward and reverse constants. 

Therefore, other possible explanations could be a decrease in the forward rate constant 

with an unchanging reverse constant or changes in both the forward and reverse rate 

constants resulting in increased similarity of the values.  Overall, a change in ligand 

exchange reactivity with aging was observed, and further investigation was necessary to 

elucidate a reason or cause for these behaviors.     
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Figure 4.11. Average, overall rate constants for particles aged for 2 days, 7 days, and 30 days. 

Oxidation Study 

In a follow-up study of oxidation effects on exchange, nanoparticles were synthesized via 

thermal decomposition, and half of the resulting product was controllably oxidized.  The 

unoxidized and oxidized particles were employed in ligand exchange reactions with oleic 

acid and 14C-oleic acid and aliquots were collected throughout the reaction.  Again, the 

particles were characterized as described in detail below to determine size and size 

distribution, surface coverage of the ligands, and the magnetic properties.  LSC was used 

to determine the amount of radiolabeled oleic acid present on the particles after exchange 

to address the effects of oxidation on extent of the reaction. 

 



 122 

4.3.6 TEM (Oxidation Study) 

The nanoparticles used in the oxidation study were measured with TEM before and after 

oxidation to ensure no changes in morphology and/or size occurred due to the oxidation 

process (Figure 4.12).  Image analysis revealed no significant change with the unoxidized 

particles having an average diameter of 19.4 nm with a standard deviation of 1.56 and the 

oxidized particles having an average diameter of 19.3 nm with a standard deviation of 

1.48 (unpaired t-test, p=0.4209).  These findings agree with image analysis results from 

the aging study.  Oxidation during aging does not yield changes in morphology or size 

which can be detected using standard TEM. 

 

Figure 4.12. TEM images (above) and histograms of size distributions (below) of a) unoxidized 
and b) oxidized nanoparticles. 
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4.3.7 TGA (Oxidation Study) 

TGA was used to determine surface coverage of the oleic acid on the unoxidized and 

oxidized particles before ligand exchange.  The results yielded percent weight loss of 

organic material on the surface of the particles before modification (Figures 4.13 and 

4.14).  Analysis of the results of the unoxidized and oxidized nanoparticles revealed 

similar surface coverages of 62 chains/nm2 and 57 chains/nm2 (Table 4.3).  Again, 

although the surface coverages were high, care was taken to not destabilize the particles 

through further purification. 

 

Figure 4.13. TGA results of unoxidized nanoparticles. 



 124 

 

Figure 4.14.  TGA results of oxidized nanoparticles. 

Table 4.3. TGA results and surface coverages of unoxidized and oxidized nanoparticles. 

 Unoxidized Oxidized 

Weight (%) 63 62 

Surface coverage 

(chains/nm2) 
60 58 

 

4.3.8 LSC (Oxidation Study) 

As previously mentioned, oxidation can affect ligand binding due to preferential binding 

of certain functional groups to different oxidation states of iron.103  Furthermore, it is well 

known that oxidation of magnetite results in the formation of maghemite, and thus a 
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change in the ratio of Fe2+ and Fe3+.230-233 Therefore, in order to investigate this 

phenomena, nanoparticles were synthesized, oxidized post-synthesis, and employed in a 

ligand exchange reaction with 14C-oleic acid.  Results of the adsorption of 14C-oleic acid 

onto the particle surface are shown in Figure 4.15.  The results reveal an increase in the 

amount of oleic acid present on the particles with oxidation   This is in agreement with 

the results in Figure 4.16.  This graph indicates that less 14C-oleic acid is in solution after 

exchange with oxidized nanoparticles compared to the unoxidized nanoparticles, and 

thus, more ligands adsorbed onto the oxidized particles.  This finding suggests that 

oxidation during the aging process may be a reason for the observed increase in ligand 

adsorption.  Wang and coworkers concluded that oxide shells, formed from oxidation of 

iron nanoparticles, are defective which creates reactive sites and alters the chemical 

reactivity of the surface.234  This could explain the increased availability of binding sites 

with aging/oxidation.  Moreover, formation of defects at the surface could impact ligand 

binding, which in turn could influence spin canting and the magnetic properties of the 

particles.235, 236  Further characterization of the particle surface structure and oxide shell 

formation with aging would be necessary to confirm this reasoning.  Overall, oxidation of 

the core could occur during the shelf-life of nanoparticles intended for various 

applications which could result in decreased stability of the particles depending on the 

ligand bound or it could promote ligand exchange once the particles are introduced into a 

competitive environment.  Ligand exchange and/or instability of the particles could result 

in a drastic change of behavior of the particles and thus, an ineffectiveness for many 

applications.   
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Figure 4.15. Adsorption of 14C-oleic acid onto the oxidized and unoxidized nanoparticles. 

 

Figure 4.16. Loss of 14C-oleic acid from the solution during exchange with the unoxidized and 
oxidized nanoparticles. 
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4.3.9 Mössbauer Spectroscopy 

While fitting the spectra the following components were identified (Table 4.4): two Fe3+ 

in tetrahedral sites (A1, A2), three Fe3+ in octahedral sites of non-disturbed nature (B30, 

B31, B32), two Fe3+ in octahedral sites affected by neighboring vacancies (B33, B34), 

Fe2+ in a non-disturbed octahedral site (B22), two Fe2+ octahedral sites with vacancy 

defects in the next nearest environment (B23, B24) and paramagnetic Fe2+ low spin state 

(LOS). Tetrahedrally coordinated sites show smaller values of isomer shifts (IS) 

compared to octahedral sites. Hyperfine field on Fe3+ nuclei in non-disturbed octahedral 

sites are highest in hematite and lowest in magnetite. Fe2+ shows hyperfine field lower by 

100 kOe compared to Fe3+ because of the corresponding spin values 4/2 and 5/2.  

Therefore Fe2+ can be differentiated from Fe3+ if the Mössbauer spectra obtained as 

components are resolved in the fitting result. 
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Table 4.4. Results of fitted Mössbauer spectra.  The table contains values for the isomeric shift 
(IS), hyperfine interactions (HI), and the quadrupole splitting (QS). 

 IS 

(mm/s) 

HI 

(kOe) 

QS 

(mm/s) 

Fe3+(A1) 0.32 523 0.03 

Fe3+(A2) 0.31 504 0.03 

Fe3+(B30) 0.51 545 -0.09 

Fe3+(B31) 0.52 528 -0.02 

Fe3+(B32) 0.51 506 -0.12 

Fe3+(B33) 0.55 480 0.08 

Fe3+(B34) 0.57 455 0.11 

Fe2+(B22) 1.1 440 -0.10 

Fe2+(B23) 1.1 420 -0.08 

Fe2+(B24) 1.1 390 -0.11 

Fe2+(LOS) 0.10 0 0.65 

 

The coated nanoparticles (oxidized and unoxidized) provided for analysis were found to 

have iron oxide cores that are comprised principally of magnetite, maghemite and 

hematite phases (Table 4.5).  The samples that were not oxidized demonstrated a 

moderate amount of ideal magnetite phase included. Evidence of the Verwey transition in 

nano-crystalline magnetite in nonstoichiometric nanometric powders were demonstrated 
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and are evidenced as likely in literature.237   The presence of magnetite in the unoxidized 

sample was confirmed by the Verwey transition being evident below 150K.  When these 

particles were heated in oxidative conditions they were found to be comprised of mostly 

maghemite and little or no magnetite, or other oxides are observed.  However, no iron 

was identified as magnetically ordered Fe2+ at 11 K which strongly suggests no ideal 

magnetite exists in the oxidized material.  In general, core particles are composed of 

nano-sized crystallites (grains) of different phases of maghemite or magnetite solid 

solution with a possibility of less complex structured mineral (hematite or other inverse 

spinel) with a possible variable volume ratio from particle to particle.  Signals appearing 

as Fe2+ doublets (i.e. paramagnetic material) could be unreacted reagent, surface 

interacting iron, or an iron complexed with carbon chain byproduct, as it may also 

interact with the pi bond of an olefinic acid’s carbon chain or alkane fragment during the 

synthesis. 

Table 4.5. Compositions of representative oxidized and unoxidized nanoparticle samples as 
determine by Mössbauer spectroscopy. 

Sample α-Hematite 

Fe3O4 (%) 

γ-Maghemite 

Fe3-xO4 (%) 

Magnetite 

Fe2O3 (%) 

Other (%) 

oxidized 10 87 0 3 

unoxidized 18 63 16 3 
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Figure 4.17. Mössbauer spectral results of the unoxidized (b, c, and e) and the oxidized (a, d, f, g, 
and h) particles at 12 K.  
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Figure 4.18. Mössbauer spectral results of unoxidized (a and c) and oxidized (b, d, e, and f) 
samples at 300 K. 

4.3.10 VSM (Oxidation Study) 

VSM was used to observe changes in the magnetic behavior of the particles with 

oxidation.  Results are shown in Figures 4.19 and 4.20.  Results show a high saturation 

magnetization of 70 emu/g for the unoxidzed nanoparticles.  However, the saturation 

magnetization of the oxidized particles is low at 27 emu/g.  This is to be expected for the 

oxidized sample as bulk maghemite has a lower saturation magnetization than bulk 

magnetite.  This further confirms that oxidation is the reason for the lower saturation 

magnetization of the particles used for the aging study.  The difference in values between 
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the aging study particles and the oxidized particles could indicate a greater extent of 

oxidation during the oxidation procedure. 

 

Figure 4.19. VSM results of the unoxidized nanoparticles. 
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Figure 4.20. VSM results of the oxidized nanoparticles. 

4.4 Conclusions 

Radioanalytical techniques were successfully used to monitor the effects of aging on 

ligand exchange of iron oxide nanoparticles.  The investigation revealed that aging of the 

particles results in oxidation which yields an increase of 14C-oleic acid ligands adsorbed 

onto the particles.  Mössbauer spectroscopy, used to confirm the composition of the 

oxidized and unoxidized nanoparticles, illustrated the oxidized particles are almost 

entirely maghemite.  VSM results agree with this finding as evidenced by the decrease in 

saturation magnetization of the samples.  Kinetic analysis of the results was used to 

determine how aging affected the overall rate of the reaction.  The overall rate constants 

decreased with particle age, and the change in the constants from 2 to 30 days was 

significant.  The results suggest the formation of a defective surface and an increase in 
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reactive sites occurs with oxidation which allows for more ligands to bind to the surface.  

The decrease in rate constants could be related to the larger mass of ligands adsorbing 

onto the particles or the reasoning may be more complex.  This change occurs after a 

week of storage indicating that shelf-life of these materials could greatly impact the 

surface chemistry and thus, the stability of these particles.  Furthermore, introduction of 

aged particles into a more competitive environment could result in a change of surface 

chemistry depending on the affinity of the anchor group for the aged surface.  This would 

largely affect the performance of the particles for a desired application.  Further 

investigation of aging impacts on particle surface structure, stability, and binding affinity 

and binding constants of various head groups could yield a more definitive understanding 

of the observed phenomena. 
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CHAPTER 5:  CONCLUSIONS 

The surface modification of iron oxide nanoparticles via ligand exchange and the factors 

which affect exchange were investigated and quantified in this work.  Radioanalytical 

techniques demonstrated to be a useful tool for measuring ligand exchange with 

polymeric ligands and small molecule ligands.  Liquid scintillation counting was used in 

combination with other common characterization methods to thoroughly quantify and 

qualify exchange on the surface of these materials.  Furthermore, these techniques 

provided insight into the effects of binding group chemistry, reaction conditions, 

multidenticity, and nanoparticle aging and oxidation on extent and kinetics of ligand 

exchange. 

In Chapter 2 radiolabeled, iron oxide nanoparticles were synthesized using 14C-oleic acid 

as a radiotracer.  The particles were modified post-synthesis with PEG ligands bearing 

different functional groups which are often used to bind and modify the surface of these 

materials.  LSC measurements before and after modification of the particles revealed the 

extent of the exchanges and a binding hierarchy with catechols displacing the greatest 

amount of oleic acid during exchange.  Furthermore, use of LSC exposed the pitfalls of 

other techniques like TGA to accurately quantify ligand exchange.  Thorough 

characterization is necessary to understand the exchange process and optimize the 

polymer-particle systems for desired applications. 
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Chapter 3 revealed an expansion of these studies through inclusion of additional binding 

groups, comparison of reaction parameters like time, and comparison of monodentate and 

multidentate ligands.  This work explored ligand exchange with some commonly used 

small molecule ligands bearing different functional groups and compared the 

corresponding exchange procedures for those ligands with a standardized procedure.  

LSC and FTIR measurements were used to observe increases in displacement of oleic 

acid with multidentate ligands bearing sulfonate and phosphonate groups and an increase 

in APTES ligands exchanged with increased reaction time.  Furthermore, use of a 

standardized exchange procedure allowed for establishment of a binding hierarchy in 

which, again, catechols displaced the most oleic acid.  These findings illustrate the 

complexity of ligand exchange and the importance of optimizing the many factors which 

influence it.   

In Chapter 4, the effects of the core nanoparticle properties on surface chemistry were 

investigated.  Oleic acid coated, iron oxide nanoparticles were aged in solution for up to 

30 days and exposed to a solution of additional oleic acid containing 14C-oleic acid as a 

radiotracer.  LSC measurements of aliquots taken throughout the duration of the 

exchange reactions revealed an increase in the amount of 14C-oleic acid exchanged onto 

the surface of the particles with particle age.  Kinetic analysis of the data revealed a 

decrease in the adsorption rate and an increase in the desorption rate with aging.  

However, the change in the overall rate was not greatly affected by aging.  Further 

investigation revealed oxidation of the particles, which occurs over aging time, led to an 

increase in the amount of radiolabeled ligands on the particles.  These combined results 
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suggest an increased availability of reactive sites or binding sites with oxidation, possibly 

because of increasing defective nature of the core shell structure.  Further studies of core 

shell structure, colloidal stability, and binding affinity of various head groups could 

elucidate a more definitive mechanism.    

Overall, this work encompasses a review of our current understanding of ligand exchange 

of nanomaterials and establishes the utility of radioanalytical techniques to sensitively 

quantify the effects of various factors which influence ligand exchange.  There are many 

variables to consider when modifying the surfaces of these materials.  Good control of 

these parameters is critical to designing the ideal particle for the application.  A thorough 

understanding of these parameters is necessary to achieve this goal. 
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CHAPTER 6:  FUTURE WORK 

This research yielded a better understanding of ligand exchange of iron oxide 

nanoparticles as it relates to binding group chemistry, aging of the particle core, and some 

reaction conditions.  However, there are many other factors which affect ligand 

exchange.  These factors could be thoroughly investigated and quantified via 

radioanalytical methods in combination with other specialized methods for determination 

of binding affinities and colloidal stability.  Furthermore, synthesis and use of 

radiolabeled polymers would allow for further investigation of ligand structure effects on 

exchange.  These methods could be applied to the study of other particle and biological 

systems.   

6.1 Factors Affecting Ligand Exchange 

This work has proven that radioanalytical methods are useful for sensitive quantification 

and monitoring of ligand exchange.  There are many factors which remain to be 

investigated using these techniques.  Temperature, ionic strength, pH, chain length, and 

tail group chemistry have all been shown to impact ligand exchange of nanomaterials.18, 

238-240  Nanoparticle environment effects like pH and ionic strength are particularly 

interesting as these factors are very relevant to biological applications of iron oxides.  

Iron oxide nanoparticles are often dispersed in biological media or buffers for biological 

applications or research.  The ability of the ligands to bind and stabilize the particles in 

these conditions is very important.  Optimizing the pH of the solution has been shown to 
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be critical to ionizing and deprotonating the head group for better binding strength to the 

particle.241  Furthermore, the presence of salts can impact binding strength especially in 

the context of charged synthetic and biological ligands where charge screening can take 

effect.242  Therefore, it would be prudent to investigate effects of solution pH on binding 

efficacy of various and commonly utilized head groups.  It would be particularly 

interesting to study the changes in extent of ligand exchange with solutions of caffeic 

acid or other catechols at varying pH values.  Caffeic acid is prone to oxidation and is 

sensitive to pH changes.243  Additionally, introduction of salts in particle solutions could 

be explored to determine the effects on binding and dissociation of the ligands.  This 

would be useful to investigate changes in ligand exchange with charged ligands like 

zwitterionic dopamine sulfonate.  Isothermal titration calorimetry (ITC) could be used to 

determine binding affinities under these variable conditions.  Control of these variables 

can directly impact the practical applications of these materials. 

Ligand exchange and ligand binding are governed by thermodynamics.  Therefore, it 

follows that temperature has an impact on these processes.238  Increased temperatures can 

have a positive impact on exchange especially in the case of diffusion limited 

reactions.244  Study of this factor is intriguing as it pertains to the use of iron oxide 

nanoparticles for magnetic hyperthermia.  The particles are exposed to an alternating 

magnetic field which results in elevation of the temperature (Figure 6.1).  Quantitative 

measurement of ligand coverage before and after exposure to an alternating magnetic 

field could allow for the understanding of bulk and local heating effects on ligand 

desorption and stability of the particles.  Additionally, this study could be performed with 
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the particles suspended in biological media or buffers to observe any competitive 

binding.   ITC measurements could also be used to probe thermodynamics of ligand 

exchange at different temperatures.   

 

Figure 6.1. Exposure of sample to alternating magnetic field through copper coil. Setup 
for measuring specific absorption rate. 

 

Ligands of increased chain length have been shown to bind more robustly and improve 

stability of particles via steric stabilization.245, 246  Furthermore, increased length has been 
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shown to increase acidity of the binding group and thus, the binding strength.247  

Correlation of this factor with particle size would be a worthwhile investigation for 

optimization of polymer-particle systems for a variety of applications.  Tail group 

chemistry has also been shown to affect ligand exchange rates depending on the 

electronic properties of the substituents.239, 248  Therefore, kinetic and thermodynamic 

studies of exchange with polymeric ligands with the same binding group but different tail 

groups could allow for greater understanding of this phenomena. 

6.2 Radiolabeled Polymers 

Polymers are attractive for surface modification of nanomaterials due to the ability to 

tailor molecular weight and end group chemistries.  Synthesis of radiolabeled polymers 

could improve feasibility of studying the aforementioned factors.  This would allow for 

direct measurement of adsorption of the desired ligand to the surface of the particles.  

Furthermore, the polymers could be synthesized with specialty chemistries to investigate 

binding group chemistry, tail group chemistry, and multidenticity.  These properties are 

also desirable for modification of other materials such as drugs and other biological 

moieties.  Conjugation of poly(ethylene glycol) (PEGylation) to drugs is common 

practice and requires polymers with reactive end groups.77, 135  Radiolabeling of the 

polymers allows for detection of the drug vehicle and, depending of the mechanism of 

delivery, the drug itself for biodistribution studies.249, 250   
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Synthesis of 14C-labeled PEG can be achieved either through end group modification of 

the polymer with a radiolabeled molecule or via synthesis of the polymer with a 

radiolabeled initiator so that the polymer backbone is inherently labeled.  The first 

synthetic technique has been done using 14C-succinic anhydride to modify PEG and allow 

for conjugation to doxorubicin.  This is described in greater detail in Appendix A.  

Synthesis of inherently labeled polymer may be achieved via anionic, ring-opening 

polymerization of ethylene oxide using a radiolabeled initiator.  An example of this is 

shown in Figure 6.2. 

 

Figure 6.2. Synthesis of radiolabeled PEG via anionic ROP of ethylene oxide with 14C-
labeled potassium methoxide. 

This method could be used to synthesize polymers which are monofunctional or 

difunctional for further reaction with drugs and other biological molecules.  Furthermore, 

LSC is a sensitive technique which allows for the use of low activities.  Synthesis and use 

of these materials grants many possibilities for expansion of this research. 

6.3 Colloidal Stability Studies 

Ligands do not only provide functionalization and impart solubility to nanomaterials but 

must also provide good colloidal stability for successful application.  Colloidal stability is 

often observed through DLS measurements.  Inclusion of colloidal stability 
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measurements is necessary to fully understand the ability of the ligands to perform as 

designed.  Furthermore, colloidal stability measurements can be used to interpret particle 

behaviors due to charge interactions and steric and/or charge stabilization in application 

relevant environments.  Observation of stability of the aged particles throughout the 

ligand exchange reaction or afterwards could illuminate mechanisms of action which 

resulted in the observed extents and rates of ligand exchange.  Aging of the particles 

resulted in diminished magnetic response which contributes to the overall stability of the 

particles in solution.  Changes in magnetic attractions of the particles could result in 

flocculation of the particles and thus, changes in the ability of ligands to reach the surface 

of the particles.    

6.4 Other Metal and Metal Oxide Nanoparticles 

This work has focused on surface modification of iron oxide nanoparticles, but the 

techniques developed in this work can be applied to other types of metal and metal oxide 

nanoparticles.  Changes in the composition of the particles mean changes in the head 

groups which will bind to the particles.  Substituted metal ferrites like cobalt and 

manganese ferrites have attracted interest due to the ability to tune the magnetic, electric, 

and catalytic properties by controlled introduction of metal ions into the lattice of the 

particles.251  Determining a binding hierarchy of head groups for these types of particles 

and observing changes due to metal substitution would be of interest for progressing this 

research forward.  Furthermore, use of other metal and metal oxide materials could 

present opportunities to include other radioisotopes for single or even dual-labeled 
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measurements.  For example, phosphonates have been shown to bind well to titanium 

oxides.252  32P could be used to label ligands for quantification of exchange with other 

ligands, possibly 14C-labeled ligands.  Dual-labelling could improve the accuracy of 

detection advance our knowledge of these complexes. 
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APPENDIX A 

The material in Appendix A was taken from a Clemson University Honors Thesis written 

by Melanie Ghelardini on work performed by both of us. 

RADIOLABELING OF POLYMER-DRUG CONJUGATES FOR EASIER 

QUANTITATIVE CHARACTERIZATION IN VIVO 

Introduction 

Polyethylene glycol (PEG) is commonly utilized in drug delivery systems as result of its 

tunable properties and its safety profile for biological use.253 This is done through a process 

known as PEGylation wherein polyethylene glycol is covalently attached to proteins or 

drugs, as a means to reduce immunogenicity and extend their circulation time in the 

body.254  For example, there is the PEGylated protein Adagen®, which serves as an 

alternative to bone marrow transplants for patients suffering from severe combined 

immunodeficiency disease (SCID).  It acts as an enzyme replacement therapy for the 

missing adenosine deaminase (ADA) for those suffering from SCID.255  There are also 

PEGylated small molecules drugs such as Prothecan®, which is PEGylated in order to 

improve water solubility and in vivo drug  circulation time, as campothecin has poor water 

solubility and is physiologically unstable.255   

Attachment of PEG is beneficial as it increases the size of the drug molecule, reducing 

kidney filtration.  This size increase is based upon the fact that every ethylene glycol unit 



 146 

is associated with at least two water molecules, making them five to ten times larger than 

a protein of similar mass.256, 257  PEGylation increases biocompatibility, solubility, and 

hydrophilicity characteristics of the molecule or drug, and protects against recognition and 

digestion from antibodies.254  PEGylation can be further utilized by bonding branched 

chains at specific points along the molecule to release PEG when exposed to specific 

outside stimuli, allowing for de-PEGylation and the release of the drug molecule.254  

PEGylation also reduces the cytotoxicity of the drug, results in less leakage, and reduces 

immunogenicity.258, 259  Additionally the longer PEG chains used in PEGylation are not 

subjected to metabolism. Depending on the molecular weight they are eliminated from the 

body in two ways.  PEG with a molecular weight smaller than 20kDa is removed through 

the kidneys, while those greater than 50kDa are removed through the liver.  Generally renal 

elimination decreases with increasing PEG size, so larger PEGs will be more likely 

eliminated through the liver.260 

The PEGylation process has undergone several advancements since its inception as a drug 

delivery and targeting mechanism.  The original, first generation of PEGylated molecules 

resulted in a target molecule which was nonspecifically and permanently linked to linear 

PEG chains.254  This resulted in the formation of multiple isoforms with varying 

physiochemical and pharmaceutical features.257  The following, second generation resulted 

in a molecule which was PEGylated through the addition of branched chains at specific 

points along the molecule’s backbone.  This would enable the PEG to be released as a 

response to outside stimuli.254  It further decreases the amount of impurities and the side 

products that occur during the PEGylation process.  Additionally, the introduction of 
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branched PEG decreases the molecule’s immunogenicity and increases half-life in 

comparison with the first generation PEGylated molecule.  This second generation, 

branched PEG addition unfortunately reduces the activity of the biomolecules attached to 

the PEG.257  A third generation of PEGylated biomolecules are currently being researched 

which do not limit the activity of the biomolecules.  This would aim to minimize the trade-

off between the strength of the drug and the circulation time, as is the case in second 

generation PEGylated drugs. Several techniques exist to do this, such as using releasable 

PEG conjugates as a prodrug approach.  Another technique creates customized PEGylation 

sites  on the protein or drug, reducing steric hindrance.257  As of 2011, eleven PEGylated 

drugs were FDA approved for use.254  In 2015 an additional three PEGylated drugs were 

approved and available on the market, with over twenty more PEGylated drugs in the 

process of conducting clinical trials.257  As a result of recent innovations, PEGylated drugs 

are potentially a multi-billion dollar market.257  This financial outlook, and the beneficial 

characteristics imparted to a drug through PEG addition, exemplifies the viability of 

PEGylation and the use of polyethylene glycol in the medical industry.  

The polymer-drug conjugate synthesized must be analyzed to ensure its efficacy prior to 

use.  It must be verified that the PEGylated drug is biocompatible and nontoxic to the 

subject.  It is further necessary to know the fate of the PEGylated compound in the subject’s 

body, and also in what quantities and what organs it concentrates.  This is done through 

biodistribution studies, which are designed to inform the need of additional preclinical 

studies.261  It is additionally necessary to meet standards of homogeneity, pyrogenicity, and 

to verify that the activation and coupling techniques are reproducible.256  Current methods 
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of biodistribution analysis and quantification have limitations in their effectiveness and in 

their accuracy. One such method involves the addition of a fluorescent dye such as the NIR 

fluorophores Cy5,5 and Cy7 as a method of tracking the PEGylated biomolecules in the 

subject.262, 263  Similar attachment and optical tracking can be completed through the use 

of quantum dots.264, 265  Modification with the dye molecule or quantum dots enables the 

non-invasive, qualitative visualization of the location of the biomolecule through the use 

of a non-invasive near infrared fluorescence imaging system (NIRF).  This further 

facilitates the creation of an approximate time dependent excretion profile by showing the 

total NIRF intensity per region in the body, calculated as a function of time.263 However, 

modification with a dye molecule or quantum can alter the chemistry and limit the 

functionalization of the polymer, so other methods of analysis should be considered. 

Another method of analyzing the PEGylation and the biodistribution of PEGylated drugs 

is through a radiolabeling process.249, 250, 266-268  Labeling with radioisotopes is 

advantageous because they are high in sensitivity and easily detectable, allowing for easy 

visualization, traceability, and quantification.269 In this method, a radiolabeled component 

is attached to the polymer-drug conjugate, acting as a tracker.  These radiolabeled 

components enable the use of liquid scintillation counting (LSC) and positron emission 

tomography (PET) imaging to qualitatively and quantitatively analyze the activity, and thus 

the amount of polymer-drug conjugate in the body.  It also provides information regarding 

which organs contain the polymer-drug conjugate in the greatest quantities.  Commonly 

utilized radiolabeled components are Indium-111, Copper-64, Hydrogen-3, Iodine-125, 

etc.249, 250, 266-268  Similar to the usage of dyes and quantum dots to quantify and track PEG, 
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the usage of radiolabeled trackers also has shortcomings. The attachment of the radiolabel 

tracker requires the alteration of the of the polymer-drug conjugate, and has the capability 

to alter the chemistry and limit functionalization of the system, as the radiolabeled 

component must bind to a functional group present on the conjugate system.  

One method which does not alter the chemistry of the polymer-drug complex is labelling 

with carbon-14.  Recent studies document use of this as a tracking mechanism.270-274 

Carbon-14 maintains the integrity of the polymer drug conjugate, as radiolabeled carbon-

14 can simply be inserted along the backbone of the polymer chain, replacing ordinary 

carbon-12 groups.  As a result, none of the functionalization groups are altered or made 

unavailable, as is the case in the other methodologies.269  This labeling with carbon-14 is 

clearly beneficial in comparison with other methods, as it preserves molecular structure 

through the lack of radiolabeled pendant groups, and produces few changes in chemical or 

biological properties.269  This direct insertion along the backbone reduces the risk of label 

cleavage and oxidation.  Furthermore, there is a distinct isotopic signature peak present in 

the mass spectra of the diluted carbon-14 compound, which is beneficial during analysis.269 

Utilizing a drug or molecule that is inherently fluorescent is another option used in 

studies.  This is particularly true of the drug doxorubicin.272, 275, 276  Doxorubicin belongs 

to a class of anthracycline drugs, which are often used to monitor the drug’s location 

within the delivery system and as a means of assessing the drug’s interactions with DNA 

and other macromolecules present in the system.277  This assessment is enabled by the 

chemical structure of the amphiphilic drug, which contains a fluorescent hydroxy-
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substituted anthraquinone chromophore and a hydrophilic aminoglycosidic chain.277  As a 

result of this structure, the doxorubicin is UV-Vis active and presents red fluorescence.278  

By utilizing doxorubicin as the drug conjugate, a secondary dye component is not 

required, because the fluorescence of doxorubicin is inherent.  This lack of a dye pendant 

group means that the chemical structure and thus the integrity of the polymer drug 

conjugate is maintained and the chemical properties of the system are unaltered. 

This study utilizes the beneficial characteristics of carbon-14 labeling and the fluorescent 

characteristics of doxorubicin as a means of creating a novel tracking and analysis 

method.  It sensitively quantifies the fate and biodistribution of both the polymer and the 

drug utilized when the conjugate is inserted into a biological system.  PEG-methyl ether 

polymer was modified with labeled succinic anhydride to create a PEG with an overall 

activity of approximately 200 nCi.  This methyl ether component was necessary as 

previous research has shown that stable linkage between PEG requires either an active 

carbonate, active ester, aldehyde or tresylate group for successful modification.  This 

reaction created a further carboxylic acid group, which was used in a secondary reaction 

to attach the doxorubicin.  Fourier transform infrared spectroscopy (FTIR) was utilized to 

confirm the presence of the carboxylic acid group, while liquid scintillation counting 

(LSC) was used to verify that the desired activity was produced.  EDC chemistry was 

then used to react the primary amine present on doxorubicin with the previously attached 

carboxylic acid group on the PEG.  The chemical components utilized to create this 

polymer drug conjugate are shown as Figure A1.  This compound was dialyzed and later 

analyzed through FTIR, UV-Vis, and LSC to ensure attachment of the doxorubicin and 
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that the activity of the sample remained in the desired range. This design is beneficial as 

it potentially provides two different methods of tracking the polymer drug conjugate in a 

biological system, through the radiolabeled carbon-14 and the fluorescent doxorubicin, 

without altering the typical structure or properties of either component. 

Figure A1. Reagents used for synthesis of 14C-labeled PEG-doxorubicin. 

Experimental 

Materials 

Poly(ethylene glycol) (PEG) methyl ether (Mn 10,000 g/mol), N-hydroxysulfosuccinimide 

sodium salt (sulfo-NHS) (98%), 4-dimethylaminopyridine (DMAP) (>99%), 4-(2- 

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer solution (1 M, pH 7.3), 

and succinic anhydride (>99%) were purchased from Sigma Aldrich. Doxorubicin 

hydrochloride (>99%) was purchased from LC Laboratories.  1-Ethyl-3-(3-
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dimethylaminopropyl) carbodiimide (EDC) was purchased from TCI America.  Succinic 

anhydride (2,3-14C) was purchased from American Radiolabeled Chemicals.  Optiphase 

‘HISAFE’ 3 liquid scintillation cocktail was purchased from Perkin Elmer.  Spectra/Por® 

dialysis membranes (MWCO 1000 Da) were purchased from Spectrum Labs. 

Tetrahydrofuran (THF; 99%) was purchased from BDH Chemicals. 

Synthesis of radiolabeled carboxylic acid functionalized PEG 

The first step in creating the polymer-drug conjugate was to form radiolabeled carbon-14 

linkages along the backbone of the polymer.  This involves the modification of 

polyethylene glycol (PEG) methyl ether of 10,000 g/mol molecular weight through the 

addition of carbon-14 radiolabeled succinic anhydride, with a specific activity of 

5mCi/mmol.  THF was used as a solvent and DMAP was used as a catalyst to promote the 

reaction.  Relative to the PEG methyl ether, the DMAP and succinic anhydride were added 

in a molar ratio 1.0:0.01:1.1.  This resulted in the addition of 1.2 mg PEG (0.12 μmol), 0.16 

µg DMAP (1.2 nanomoles), and 700 nCi of 14C-succinic anhydride (14 µg; 0.14 μmol) to 

an Erlenmeyer flask.  This reaction proceeds according to Figure A2, and results in the 

formation of two radiolabeled carbon-14 groups along the chain and the creation of a 

carboxylic acid group, which is necessary for the later attachment of doxorubicin.  This 

radiolabeled polymer was dried, transferred to water and purified through dialysis for use 

in the next reaction.  Dialysis tubing of a molecular weight cut-off of 1000g/mol was 

utilized in this step, and the polymer was dialyzed for 48 hours.  Only a small amount of 
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polymer was synthesized, so FTIR and LSC characterization were not completed at this 

point. 

Figure A2. Modification of PEG with labeled succinic anhydride. 

PEGylation of doxorubicin 

Doxorubicin was attached through EDC chemistry in an aqueous solution. Sulfo-NHS was 

utilized in conjunction with EDC, in comparison with pure NHS, which is utilized when 

THF is the solvent.  The sulfo-NHS was added in a 1.0:1.2 molar ratio relative to the PEG 

functionalized with the carboxylic acid, as was the EDC.  After allowing this to react for 

four hours, doxorubicin was added to the solution in a molar ratio of 1.0:1.5 relative to 

PEG and doxorubicin. Roughly 1.2 mg (0.12 μmol) of the carboxylic acid functionalized 

PEG was added to a flask, in conjunction with 31 µg (0.14 μmol) sulfo-NHS, 27 µg (0.14 

μmol) EDC.  This solution was allowed to react for four hours and then 98 µg (0.18 μmol) 

doxorubicin was added. This two-step reaction proceeds according to Figure A3 and results 

in the formation of the desired radiolabeled polymer drug conjugate.  This component was 

dialyzed in tubing with a molecular weight cutoff of 8000 g/mol in order to purify the 
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compound.   LSC and UV-Vis were used to determine the activity and amount of 

doxorubicin conjugated in the recovered sample. 

Figure A3. PEGylation of doxorubicin with 14C-labeled PEG-succinic acid. 

Synthesis of unlabeled PEG-doxorubicin 

Unlabeled PEG-doxorubicin was synthesized separately and combined with the 

radiolabeled material to control the final specific activity of the sample.  The same 

chemistry was used in this synthesis.  For the first step, the attachment of the carboxylic 

end group, 1.815 g (0.1815 mmol) of PEG methyl ether was added to THF. After this, 

19.98 mg (0.200 mmol) of succinic anhydride was added to the same flask representing a 

1.0:1.1 ratio between the PEG and the succinic anhydride.  0.2217 mg (1.815 μmol) of 

DMAP was then added, indicating a 1.0:0.01 molar ratio once again.  This compound 
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was then purified through dialysis as described earlier and dehydrated through a freeze 

dryer to revert it to a solid polymer rather than a liquid solution.  

Attachment of the doxorubicin proceeded through the use of EDC chemistry as 

previously described. 11.3 mg (1.12 μmol) of the carboxylic acid modified PEG was 

added to an Erlenmeyer flask.  After this sulfo-NHS was added in a ratio of 1.0:1.2 

relative to the PEG, such that 0.261 mg (1.343 μmol) was added to the flask.  

Subsequently, EDC was added in this same ratio relative to PEG, resulting in the addition 

of 0.208 mg EDC (1.343 μmol).  This reaction was allowed to run for four hours prior to 

adding doxorubicin in a 1.0:1.5 ratio relative to the PEG functionalized with carboxylic 

acid.  This ratio resulted in the addition of 0.912 mg (1.678 μmol) doxorubicin to the 

Erlenmeyer flask.  After allowing the system to react, the compound was purified through 

dialysis, after which it was combined in an aqueous mixture with the previously 

radiolabeled components. This was done by adding the radiolabeled polymer with the 

unlabeled polymer in an aqueous solution and agitating it.  The final polymer-drug 

conjugate was characterized for future use in a biodistribution study. 

Characterization 

Several methods of characterization were completed to confirm that the polymer-drug 

conjugate was properly prepared and had the appropriate chemistry for its end use.  The 

first test completed was FTIR, verifying that the desired chemistry was present.  A 

droplet of the polymer-drug conjugate was placed onto the sample plate and analyzed 
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through use of the Thermo Scientific Nicolet 6700. By utilizing FTIR it was possible to 

determine that the structure contained the appropriate peaks, and thus that the desired 

ether group, aromatic alkene group, and the carbonyl group were present in the final 

conjugate. This was the first step in verifying the product created through the synthesis 

steps was representative of the desired conjugate.   

After completing FTIR to determine the chemistry of the synthesized product, the 

presence and concentration of doxorubicin was doubly verified through the use of UV-

Vis spectroscopy.  UV-Vis determines the compound’s valence electrons, in both its 

excited and ground states.  A small sample was examined through the use of a Varian 

Cary 50 Bio UV-Visible Spectrophotometer.   The sample has a distinctive absorbance 

value, which can be used to calculate the concentration of doxorubicin present in the 

sample.  This is done by comparing the sample’s absorbance with a calibration curve 

created from samples of known doxorubicin concentration.  The is a beneficial form of 

analysis, as it not only verifies the presence of doxorubicin, but also the concentration of 

the doxorubicin present in the polymer-drug conjugate.  This is useful for the dosage 

determination in the biodistribution study. 

The final method of analysis involved the calculation of the sample’s activity through 

LSC calculations.  A few microliters of sample were added to a vial containing 7 mL of 

LSC cocktail and input into the Perkin Elmer TriCarb 2910TR machinery for analysis.  

This machinery provides information regarding the number decays per minute, which can 

be converted into a representation of activity per milliliter.  This was beneficial as it 
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verified that the activity of the sample was within the desired 100 nCi range for detection 

within the biological system.  After completing these characterization methods, the 

sample was then deemed ready for use in the biological subject in the biodistribution 

study.    

Results and Discussion 

Several characterization techniques were completed during the synthesis of the polymer-

drug conjugate, namely UV-Vis, LSC, and FTIR.  FTIR was completed on the unlabeled 

carboxylic acid functionalized PEG, and on the final product of the combined 

radiolabeled/unlabeled PEG-Dox conjugate.  LSC was completed on the radiolabeled 

polymer-drug conjugate to verify the radionuclide identity and for calculation of its 

activity.  Finally, UV-Vis was used to determine the success of the dialysis procedure, 

and in the calculations which determined the combining procedure of the labeled and 

unlabeled polymer-drug conjugates. 

As stated previously, the first method of characterization completed was FTIR.  After 

completing the first modification with the unlabeled succinic anhydride, the success of the 

modification was determined through FTIR.   This was not completed for the radiolabeled 

carboxylic acid functionalized PEG as a result of the small volume of sample created.  The 

spectra gathered for the unlabeled component served as a comparative, representative 

spectra for the radiolabeled component.  The results of this analysis are shown in Figure 

A4.  The peak around 1114 cm-1 represents the ether linkage of CH2-O-CH2 in the polymer 
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chain backbone, while the peak around 1722 cm-1 represents the carbonyl C=O pendant 

group.  The peak present around 2900 cm-1 is indicative of background substances or 

unreacted components of the reaction, and is not vital for further analysis.  This FTIR 

visualized the success of the reaction, and allowed for the next step, the attachment of 

doxorubicin to be completed.  

Figure A4. FTIR of PEG-succinic acid. 

After completing the attachment of doxorubicin for both the radiolabeled and unlabeled 

carboxylic acid functionalized PEG, and the subsequent combination of the two 

components, additional FTIR was completed.  It had a very similar spectrum as the one 

previously conducted for the carboxylic acid modified PEG, with an additional peak 

indicating the presence of aromatic alkene groups.  This is shown in Figure A5 below.  

The relevant peaks for verification of the presence of doxorubicin and the polymer 

backbone are depicted at 1114 cm-1, 1774 cm-1, and in the range of 1490-1526 cm-1.  
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Once again the peak near 1114 cm-1 is representative of the ether linkage of the polymer 

backbone, while the 1722 cm-1 peak represents the carbonyl pendant group along the 

backbone. Finally, the new peak in the range of 1490-1526 cm-1 shows the presence of 

the aromatic rings in doxorubicin as it indicates an aromatic alkene group.  These FTIR 

results provided verification that the drug-conjugate was synthesized, without providing 

any information regarding the activity or concentration of doxorubicin present in the 

system.  Further analysis through LSC and UV-VIS were required to gain this 

information. 

Figure A5. FTIR of the final polymer-drug conjugate (unlabeled and labeled combined). 

LSC was utilized to provide information regarding the activity of the final radiolabeled 

polymer-drug conjugate, prior to combination with the unlabeled radiolabeled polymer 

drug conjugate.  This was viewed through a graphical representation of energy in 

kiloelectronvolts vs. counts, as shown in Figure A6.  This provides qualitative 
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information capable of identifying the radionuclide used.  However, quantitative 

information, in the form of counts per minute, was used to determine the activity of the 

sample. This was done by utilizing the fact that the decays per minute can be calculated 

through a relation between the counts per minute of the sample, the counts per minute of 

the background, and the counting efficiency, as shown by the following equation: 

Eq. A1)  𝑑𝑝𝑚 =
𝑐𝑝𝑚 𝑠𝑎𝑚𝑝𝑙𝑒−𝑐𝑝𝑚 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
. 

where dpm is decays per minute, cpm is counts per minute and counting efficiency of 14C 

is determined by counting a 14C standard. 

Figure A6. LSC spectrum of final polymer-drug conjugate. 

In this instance, the counts per minute of the sample was 1065, while the background 

sample was 17 counts per minute, and the count efficiency was 0.931.  The decays per 

minute of the sample is about 1125, which can be divided by the volume of the LSC 

sample (0.03 ml) to obtain 37,522 dpm/ml.  This number can be multiplied by the total 

volume of polymer solution (19.4 ml) to obtain a total dpm of 727,934.  Finally, this can 
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then be converted into nanoCuries (nCi) of sample activity based around the fact that 1 

nanoCurie is equivalent to 2200 decays per minute.  Utilizing this conversion shows that 

the sample of the polymer was roughly 330 nCi in activity.  Some of the initial activity 

was lost during the transfer of the product from the dialysis tubing after the first and 

second modification steps for the radiolabeled synthesis.  Regardless of this loss, the 330 

nCi activity still provided flexibility when combining the labeled and unlabeled 

components of the polymer-drug conjugate, as the goal was a specific activity of 200 

nCi/mg of dox-equivalent.  By combining the labeled and unlabeled polymer-drug 

conjugate according to the concentration of doxorubicin, it was possible to roughly create 

this desired specific activity of the polymer-drug conjugate.  

UV-Vis was used to determine the concentration of doxorubicin in the final product. A 

series of standards for doxorubicin was created over varying concentrations to create a 

calibration curve.  The concentration values utilized to calculate this were as follows: 

0.04998 mg/ml, 0.009966 mg/ml, 0.004994 mg/ml, and 0.000994 mg/ml.  The 

absorbance value for the corresponding wavelength of doxorubicin, 483 nm, was 

recorded for each of these concentrations and then plotted to create said calibration curve.  

The PEGylated samples were measured and the absorbance values at 483 nm were 



 162 

compared to the calibration curve to determine the concentrations of the samples.  This is 

shown in Figures A7 and A8. 

Figure A7. UV-Vis spectra of standards and PEGylated doxorubicin samples. 

Figure A8. UV-Vis calibration curve. 
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To achieve a specific activity of 200nCi/mg of dox equivalent, roughly 100 nCi of the 

radiolabeled polymer was used.  The specific activity of the succinic anhydride is 5000 

µCi/mmol.  Using this specific activity, the activity of the polymer, and the molecular 

weight of doxorubicin it was determined that 100 nCi of the radiolabeled polymer-drug 

conjugate should contain approximately 0.0108 mg of doxorubicin.  This value agrees 

closely with the total concentration determined by UV-Vis.  To reach the desired specific 

activity, approximately 0.48 mg of unlabeled polymer-drug conjugate was added.  The 

final specific activity of the sample was 204 nCi/mg of dox-equivalent. 

Conclusions 

This study was designed to create a novel tracking system for biodistribution studies.  

This consisted of a polymer-drug conjugate which provided qualitative and quantitative 

data regarding its location in the body and where it concentrates. Furthermore, the 

accuracy was ensured using a two-part tracking system, as doxorubicin’s fluorescent 

characteristics enable UV-Vis analysis, while the radiolabeled polymer can be tracked 

through LSC analysis. 

In order to create such a polymer-drug conjugate, a multiple step synthesis procedure was 

followed, for both radiolabeled and unlabeled components.  First PEG-methyl ether was 

modified with labeled or unlabeled succinic anhydride to create a carboxylic acid 

functionalized group.  This carboxylic acid group was capable of reacting with 

doxorubicin through EDC chemistry to create the desired polymer-drug conjugate.  The 

labeled and unlabeled components were the combined in specific ratios relative to one 
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another to create a final product with an activity of roughly 200 nCi.  During this 

procedure, several methods of analysis were completed to ensure that the synthesis was 

proceeding appropriately. 

 

FTIR was utilized to ensure that the desired reactions had occurred by analyzing the 

observed peaks for the presence of specific functional groups.  After verifying that the 

reactions proceeded appropriately for both the labeled and unlabeled reactions, LSC was 

completed to determine the activity of the individual labeled polymer-doxorubicin 

component.  This was necessary for the later combination with the unlabeled polymer-

doxorubicin component.  UV-Vis served as another method of ensuring that doxorubicin 

was present, as its fluorescence was observed at 483 nm.  Furthermore, by creating a 

calibration curve, the concentration of both the labeled and unlabeled components could 

be determined.  This information enabled the combination of the two systems in specific 

ratios to create a final polymer-drug conjugate of roughly the desired activity. 

Ultimately, this study verified that the synthesis of a potential two-part tracking system 

was possible through the combination of a radiolabeled polymer-backbone and a 

fluorescent-active drug conjugate.  It further showed the viability of FTIR as a means of 

ensuring occurrence of reaction, LSC to determine the activity of such a system, and UV-

Vis to determine the concentration of doxorubicin in the polymer drug conjugate.  This 
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system is nearly ready for use in a biodistribution study to confirm efficacy of drug 

delivery and utility of this method for detection of distribution.  
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