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ABSTRACT 

Magnetic nanoparticles (MNPs) are currently being extensively studied in 

multitude of biomedical applications because of their exceptional biocompatibility. By 

attaching different targeting ligands/molecules, MNPs have been broadly used in 

magnetic hyperthermia, cancer therapy, targeted drug delivery, MRI imaging, pathogen 

detection, and biological cell-separation. In this dissertation, MNPs coated with 

polyethylene oxide (PEO) based polymer (PEO-MNPs) and functionalized with bacterial 

adhesin-specific glycoconjugate molecule Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp (GM3-

MNPs), are investigated for their interactions with enterotoxigenic Escherichia coli (E. 

coli). It also describes the feasibility of using alternating magnetic fields (AMF) for 

targeted killing of E. coli K99 (EC K99) strain using MNPs. Lastly, the interactions of 

MNPs with normal human colon cells CCD-18Co are explored to assess their in vitro 

biocompatibility.  

First, GM3-MNPs were synthesized via 'click chemistry' platform. Specific 

aggregation of EC K99 was seen due to interactions occurring between GM3-MNPs and 

adhesin molecules of EC K99. These interactions were observed by means of 

fluorescence microscopy, transmission electron microscopy (TEM), and colony forming 

units (CFU) assays. The preliminary cytotoxicity assay performed on normal colon cells 

CCD-18Co indicated excellent biocompatibility of GM3-MNPs. Thus, such

glycoconjugate-functionalized MNPs can be effectively utilized as anti-adhesion and 

anti-bacterial agents for reducing gastro-intestinal (GI) tract infections.  
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Next, GM3-MNPs were used along with AMF for targeted killing of EC K99 

cells. CFU/ml assays indicated that killing rate of EC K99 was mainly dependent on 

concentration of GM3-MNPs and AMF exposure time. Clinically relevant reduction in 

CFU/ml of EC K99 was achieved after 120 minutes of AMF exposure in presence of 

GM3-MNPs in both pure and mixed bacterial culture environment. Extensive cell-

membrane damage was observed via fluorescence microscopy and TEM imaging of EC 

K99 cells after AMF exposure in presence of GM3-MNPs. AMF exposure in presence of 

GM3-MNPs also caused significant decrease in intracellular ATP levels of EC K99. 

These results suggest that bacterial specific glycoconjugate MNPs along with AMF can 

be efficiently employed as novel non-antibiotic platform to inactivate targeted bacterial 

pathogens. 

Finally, the overall biocompatibility of GM3-MNPs was examined in CCD-18Co 

cells and compared to that of PEO-MNPs. GM3-MNPs were found to have relatively 

stable hydrodynamic diameter in cell-culture media DMEM whereas PEO-MNPs 

drastically increased their size on account of protein-corona formation. Both cytotoxicity 

and ATP assays revealed that GM3-MNPs exhibited great biocompatibility in the cells. 

CCD-18Co cells also maintained their overall cell-membrane integrity in the presence of

GM3-MNPs. Interestingly, GM3-MNPs were able to substantially decrease the 

glutathione (GSH) levels in the cells leading to increased oxidative stress. Thus, by 

properly controlling surface properties of glycoconjugate functionalized MNPs and 

attaching different drugs, they can be potentially used as colon specific drug-delivery 

carriers for therapeutic applications. 
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Chapter 1 

Literature Review 

Antibiotic Resistance in Bacteria 

Currently, there are more than 160 different kinds on antibiotics available for 

therapeutic purposes [1]. However, unrestricted and prolonged usage of antibiotics has 

resulted in rapid emergence of new strains of microorganisms that have developed 

resistance to these drugs and over a period of time they have evolved as multi-drug 

resistant microorganisms. For example, the first penicillin-resistant strain of 

Streptococcus pneumoniae was observed in USA in 1974 in a patient suffering from 

pneumococcal meningitis [2]. Methicillin resistant Staphylococcus aureus (MRSA) and 

vancomycin resistant Enterococci (VRE) were first identified in the 1960s [3] and in the 

mid-1980s [4] respectively. Some of the mechanisms commonly found in these 

antibiotic-resistant pathogens are alteration of drug target, degradation of drugs by 

producing enzymes, changes in target accessibility and increased drug efflux [5] (Figure 

1.1). According to a recent report by CDC, approximately 2 million people in the US 

have illnesses related to antibiotic resistant infections and each year at least 23,000 deaths 

occur as a result of such infections [6]. Given the fact that developing new antibiotics is a 

slow and costly affair, there is an urgent need to treat such infections by employing 

therapies that do not require the traditional usage of antibiotics [7-9].  
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Figure 1.1 Different mechanisms employed by bacteria to render antibiotic useless. Reprinted from [5] - Reproduced 

with permission from Nature Publishing Group. 

 

Role of Adhesin in Bacterial Attachment and Pathogenesis 

Pathogen attachment is a very complex phenomenon and a vital process to initiate 

infection in the host-cell. The microorganisms have to initially colonize themselves onto 

the host-cell surfaces and grow in sufficient numbers in short span of time to produce 

clinical symptoms [10, 11]. Bacterial pathogens typically target animal or human host by 

attaching onto epithelial and mucosal surfaces of respiratory tract, gastrointestinal tract 

and genitourinary tract [12]. Bacterial adhesion is essential since pathogens have to 

overcome different nonspecific defense mechanisms like sneezing and fluid flow 

occurring in the host. Adhesion also enables the pathogen to utilize host-cell nutrients in 

order to multiply rapidly along with enabling the pathogen to deliver toxin in the host-cell 

and ultimately penetrating into the host tissue [13].  
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Bacterial pathogens utilize two primary mechanisms to adhere onto host cells, 

namely carbohydrate-protein recognition and protein-protein interaction [14]. Most of the 

studies to understand adhesion mechanisms are done by linking carbohydrate-protein 

recognition process since it is very difficult to elucidate the protein-protein interaction on 

account of protein instability and its changing conformations [15]. The carbohydrate-

protein interaction that binds bacterial pathogens onto the host-cell tissue are mediated by 

specialized structures called adhesin/fimbriae, which have lectin proteins and are located 

on the microbial surface. Fimbriae are typically expressed by almost every gram-negative 

bacterial species that has been studied [16]. It should be however noted that bacterial 

adhesion mediated by fimbriae is a highly specific phenomenon. The adhesion structures 

have a high degree of preference for a particular host-cell tissue. For example, E. coli 

usually colonizes GI tract whereas Streptococci colonize the skin and esophagus in 

humans [17]. Several comparative studies have been done to address the species 

specificity of bacterial adhesins for a particular type of host-cell receptor [14].  

 

Biological Importance of Carbohydrates in Pathogenesis 

It was only in the early 1990s that carbohydrates were recognized as important 

biomolecules, which had great diversity, and thereby carbohydrate molecules were 

explored for finding their applications in medical and pharmaceutical industries [18]. 

Apart from their roles in cell metabolism, carbohydrates play an important role in various 

biological processes like inflammation [19], cancer metastasis [20] and cell-signaling to 
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name a few. They also play modulatory role in hormone signaling and typically act as 

receptor molecules for attachment of antibodies, proteins and other biomolecules [19].   

Adherence of pathogens onto host-cell is one of earlier events that can trigger the onset of 

infection. The binding affinity of a single carbohydrate-protein interaction is generally 

weak on account of monovalency. However, multiple interactions between the 

carbohydrate molecule and its respective protein result in polyvalency, which greatly 

enhances the binding capacity and thereby aids in the adherence process [21, 22]. By 

taking advantage of these multiple adherence factors, a large number of bacteria, their 

toxins, and viruses are able to gain entry into the host-cell and exert their harmful effects 

on the host-cell.  

The adhesion process of bacteria attaching onto the host-cell is complex in nature. 

This attachment is mediated by bacterial lectins that are present on their surface. These 

lectins, generally in the form of fimbriae, recognize specific glycolipid or glycoprotein 

receptors present on the host-cell surface [23]. E. coli is one such enteropathogen that 

expresses different types of pili e.g., Type-1 pili, P-type fimbriae, S-type fimbriae, etc. 

Table 1.1 gives us more information regarding the receptor specificity of these bacterial 

fimbriae. 
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Table 1.1: Receptor specificity of bacterial fimbriae. Modified from [24]. Reproduced with permission from Elsevier 

Ltd. 

 

Apart from bacterial pathogens, their toxins and even viruses have been shown to 

bind to specific carbohydrate molecules. The viral protein hemagglutinin has been shown 

to bind to host-cell N-Acetylneuraminic acid and this interaction has been found to be 

polyvalent in nature [22]. Similarly, other viruses like rotavirus and Sendai virus have 

been found to attach to specific carbohydrate ligands [22]. Clinically important bacterial 

pathogens like enterotoxigenic E. coli, Vibrio cholera, Shigella dysenteriae all produces 

lethal toxins which are responsible for causing diseases ranging from mild diarrhea to 

lethal toxic shock induced death in humans. These toxins are able to exert their toxic 

effects by entering the host-cell after binding to their carbohydrate receptors. It has been 

found that cholera toxin and heat-labile enterotoxin attach themselves onto the luminal 

side of the intestinal epithelium by binding to GM1 gangliosides [25]. The Shiga-like 

toxins have been found to bind onto the host-cell receptors through Gb3 ceramide 

glycolipids [26, 27]. 
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Enterotoxigenic Escherichia coli 

E. coli is one of the most common types of bacteria naturally occurring in the 

digestive tract of humans and animals. While most of the E. coli strains are harmless to 

humans and animals, there are few E. coli serogroups that are mainly responsible in 

causing bacterial infection. These strains typically tend to be host-specific. The 

prevalence of the serogroups and presence of adhesins are considered to be the primary 

factors that facilitate intestinal colonization of E. coli. Based on different serological 

features, enteric E. coli have been classified into 5 different groups: 1) Enterotoxigenic E. 

coli (ETEC), 2) Enteropathogenic E. coli (EPEC), 3) Enteroinvasive E. coli (EIEC), 4) 

Enterohemorrhagic E. coli (EHEC), and 5) Enteroaggregative E. coli (EAEC) [28]. The 

production of different types of toxins by these serovar groups is considered to play very 

crucial role in producing clinical signs of infection. E. coli belonging to the ETEC group 

is responsible for causing traveler’s diarrhea in humans and bloody diarrhea in neonatal 

calves, pigs and lambs [29]. Though enough reports have cemented the importance of 

adhesins in the overall process of infection caused by E. coli in humans, few studies have 

been conducted to understand the pathogenesis of ETEC strains in farm animals. ETEC 

adhere to small intestinal microvilli membranes in vivo via adhesins and produce 

enterotoxins that act on enterocytes and thereby causing diarrhea [30]. Recently, 

numerous studies have reported an increase in multi-drug resistance of this strain 

associated with antibiotic treated animal feed [31-34]. E. coli K99 is the main causative 

agent of bloody diarrhea in young calves, lambs and pigs, a condition also known as 

colibacillosis [35]. The disease typically affects newborn animals within 2-3 weeks of 
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birth. This strain bears K99 antigen which also acts as fimbriae and adheres the bacterium 

onto the ileal villus epithelium of calf and pigs [36-39]. E. coli K99 strain specifically 

attaches to small intestinal mucus and recognizes sialic acid derivatives present on 

glycolipid receptors [40]. Experimental studies have shown that glycoprotein glycans 

isolated from bovine plasma inhibited the fimbriae specific adherence of E. coli K99 to 

mucus glycoproteins [41]. Oral administration of these glycans protected young calves 

from the infection and reduced the number of bacteria present in small intestine mucus by 

100 folds. This showed that such glycans could effectively act as anti-adhesive 

molecules, which can prevent colibacillosis in young farm animals.  

 

Role of Carbohydrates in Anti-adhesion Therapy 

It was not until 1990s that the concept of using carbohydrates as natural anti-

adhesive agents came into limelight. The need for finding new strategies in order to 

combat the growing concern of antibiotic-resistant strains of microorganisms, aided the 

research in glycol-biology field with special focus in microbiological context. Several 

studies were carried out in this aspect and showed the feasibility of carbohydrates as an 

alternative to conventional antibiotic treatment [42-44]. The concept of using 

carbohydrates as new anti-adhesion agents is mainly based upon the following 

hypotheses: 1) Microbial infection is initiated due to binding of the pathogen onto the 

host-cell and 2) Anti-adhesive agents must either interfere with the binding of pathogen 

to the host or help in detachment of microbes from the host tissues during early stages of 

infection [13, 45]. Since these anti-adhesive agents interfere with adhesin-host-cell 
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receptor (proteins) interactions, it would be much easier to develop analogues that 

interact with carbohydrate receptors as it is difficult to elucidate the exact protein 

structure [44].  

Numerous natural carbohydrates and synthetic glycoconjugates have been used to 

understand this mechanism of anti-adhesion in bacteria and viruses [43, 46, 47]. Since 

synthetic glycoconjugates typically have low binding affinity, they can be used as 

polymers, dendrimers and liposomes in order to attain multivalency and achieve effective 

high affinity and inhibitory effect against various carbohydrate receptors and this has 

been shown in both in vitro and in vivo studies [48, 49].  

 

Role of Carbohydrate Functionalized Nanomaterials in Pathogen 

Detection 

Rapid, sensitive and reliable methods for detection of microorganisms hold the 

key for accurate diagnosis of infectious diseases. Conventional techniques commonly 

used for this purpose include culture and colony counting, polymerase chain reaction and 

immunological assays [50-53]. However, these approaches are laborious, time-

consuming and having low sensitivity thresh-hold levels. Moreover, you encounter 

numerous false-negative results by using the above-mentioned conventional methods. It 

is in this context that the use of nanomaterials has provided a great impetus for rapid and 

accurate detection of microbial pathogens in food and clinical samples. These 

nanomaterials can act as unique nano-biosensor for specific detection of complex 

biologically relevant molecules like proteins, nucleic acids and enzymes [54]. It is now 
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possible to specifically detect microorganisms by functionalizing nanoparticles with 

specific antibodies and ligands. Since carbohydrate molecules are actively involved in 

host-cell recognition process leading to pathogenicity, coating the nanomaterials with 

such glycan molecules can provide a unique platform in rapid detection of pathogens 

including bacteria, virus and parasites. The underlying principle in this approach depends 

on the fact that providing multiple copies of different glycan molecules on the surface of 

nanomaterials would mimic the glycan present on the outer envelope of pathogen or the 

cell glycocalyx itself. Several studies have been carried out in this regard by exploiting 

the unique optical and magnetic properties of gold nanomaterials and magnetic 

nanomaterials respectively for rapid and specific detection of pathogens [55-65]. The 

adhesin-specific functionalized magnetic nanoparticles that we will be using in this 

research, can potentially find their application as unique nano-biosensor for rapid 

pathogen detection.  

Lin et al. were one of the first few groups who used mannose functionalized thiol-

coated gold nanoparticles as novel and sensitive agents for detecting E. coli cells in 

biological fluids proving the usefulness of carbohydrate functionalized nanoparticles in 

studying carbohydrate-protein adhesion [66]. They observed bacterial strain-specific 

aggregation of mannose functionalized gold nanoparticles via TEM imaging and UV-Vis 

spectroscopy. E. coli ORN 178 strain, which has FimH gene and type 1 pili showed 

specificity towards mannose functionalized gold nanoparticles whereas E. coli ORN 208 

strain, which lacked FimH gene and type 1 pili did not bind to nanoparticles.     
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Carbohydrate functionalized nanoparticles were also employed to rapidly detect bacterial 

toxins in biological solutions. Schofield and co-workers synthesized gold 

glyconanoparticles coated with lactose for colorimetric detection of cholera toxin (B 

subunit) [63]. They noticed a rapid change in the color of the gold nanoparticle solution 

when cholera toxin B was added to it and this was attributed to the shift in surface 

plasmon band of the nanoparticle solution, which takes place due to aggregation of these 

nanoparticles in presence of the toxin. Similarly, another study was undertaken by 

Kulkarni et al. in which they synthesized biocompatible glycan conjugated gold 

nanoparticles for selective inhibition of shiga toxin 1 and 2 in Vero monkey kidney cell-

line [64]. Their nanoparticles were functionalized with analogues of Pk trisaccharide 

molecules, which can mimic the glycolipid glycans present on the cell-surface receptors 

to which the toxin can attach. The results obtained by this work suggested a dose-

dependent inhibition of Stx toxin in Vero cells. 

 

Role of Carbohydrate Functionalized Nanomaterials in Anti-Adhesion 

Antimicrobial Therapy 

Advances in the fields of nanomaterials synthesis and synthetic glycoconjugate 

production have seen a rapid increase since early 2000. As new technologies are being 

developed, it has become relatively easy to custom synthesize different carbohydrate 

molecules/glycan conjugates and use them to bio-functionalize nanoparticles that can be 

then utilized in anti-adhesion therapies. Some of the most commonly employed 

nanomaterials in anti-adhesion therapies are gold nanoparticles, carbon nanotubes and 
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magnetic nanoparticles [67, 68]. To be effectively used as anti-adhesion agents, the 

carbohydrate molecules needs to have multivalent interactions with the host-cell surface 

receptors. For bacterial pathogens to initiate infection, they must be able to bind to host 

cell-surface receptors. These binding interactions are either carbohydrate-protein or 

carbohydrate-carbohydrate interactions in nature. Thus, in order to interrupt/inhibit these 

interactions, carbohydrate analog molecules that mimic the cell-surface receptors are 

frequently coated on the surface of nanoparticles thereby acting as novel anti-adhesion 

antimicrobial agents. Some of the early research studies carried out in these fields 

included gold and magnetic nanoparticles functionalized with mannose or galactose 

derivatives.  

For example, Huang et al. used silica-coated magnetic nanoparticles 

functionalized with mannose for rapid detection and separation of E. coli from medium 

[69]. After incubating mannose coated magnetic nanoparticles with bacterial cells, they 

applied external magnetic field to rapidly isolate the bacterial cells and their capture 

efficiency was ~88%. When these captured E. coli cells were observed under 

fluorescence microscopy and TEM imaging, they found large aggregates of 

nanoparticles-bacterial cells complex. These complex structures were attributed to lectin-

carbohydrate interactions taking place between adhesin molecules of E. coli and mannose 

molecules present on the surface of magnetic nanoparticles. Similar studies were carried 

out by Qu et al. wherein they functionalized the surface of polymeric nanoparticles with 

multiple copies of mannose/galactose and found out that E. coli 178 cells would 

agglutinate only in presence of mannose functionalized nanoparticles whereas E. coli 
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O157:H7 cells would aggregate only in the presence of galactose functionalized 

polymeric nanoparticles [60, 70]. Few other studies also showed anti-adhesion properties 

of carbohydrate-functionalized nanoparticles in mammalian cells as well as in turkey 

poults infected with Helicobacter pylori and Campylobacter jejuni respectively [68, 71]. 

 

Magnetic Nanoparticles 

Synthesis of magnetic nanoparticles: The synthetic approach to manufacture 

magnetic nanoparticles plays a very important role in determining the size, shape and its 

magnetic properties. Some of the main advantages of using superparamagnetic 

nanoparticles in the biological environment are increased surface area, improved 

diffusion rates in body fluids and tissues and high colloidal stability [72]. Commonly 

used approaches for synthesizing magnetic nanoparticles are co-precipitation, thermal 

decomposition, sol-gel synthesis, micro-emulsion, ligand-exchange reaction, 

hydrothermal and high-temperature reactions, polyol methods, spray pyrolysis, and 

aerosol/vapor methods [73]. Nonetheless, the common aim of all the above-mentioned 

synthesis methods is to achieve a highly stable and monodisperse nanoparticle suspension 

with suitable size requirements.  Moreover, it has been noticed that the size and shape of 

the nanoparticle is also dependent on the temperature, reaction time-period and 

concentration of the reagents. Keeping in view that these nanoparticles would interact 

with different biomolecules once they enter biological environment, it is imperative to 

make sure that the synthesized nanoparticles are highly nontoxic and in most of the cases, 

this depends on the method of nanoparticle synthesis [74]. Recently, nanoparticle 
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synthesis through high-temperature thermal decomposition technique has been 

efficaciously used in producing iron-oxide nanocrystals with enhanced controls in size 

distribution, shape and monodispersity with high degree of biocompatibility [75].  

Stabilization of magnetic nanoparticles with polymers: Uncoated magnetic 

nanoparticles tend to aggregate rapidly at neutral pH and in various biological 

environments. This aggregation takes place because of the strong dipole attractions in 

form of Van der Waals forces, occurring between the particles. To overcome this 

problem, stearic or electrostatic repulsion must be achieved which would then stabilize 

the nanoscale colloidal suspension. Addition of different polymers onto the core of 

magnetic nanoparticles would render high stability in biologically aqueous environments. 

The stabilizing agents can be briefly categorized into 3 classes’ namely 1) monomeric 

stabilizers which includes various functional groups like carboxylates, phosphates, and 

sulfates, 2) inorganic stabilizers which includes gold, silver, and silica, and 3) polymer 

stabilizers which are the most commonly used materials for stabilizing core magnetic 

nanoparticles [74].  

Some of the most commonly used polymer coatings for stabilizing core magnetic 

nanoparticle are dextran, starch, alginate, chitosan, polyethylene glycol (PEG) or 

polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyethylene oxide (PEO), 

polyacrylic acid (PAA), and polyethylene amine (PEI) to name a few. Most of these 

polymers are reported to have good biocompatibility properties and thereby are 

extensively used in biomedical applications [76]. It has been also noticed that the 
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molecular weight and surface charge of these polymers play crucial role in determining 

the stability of nanoparticle suspension in biological environments [72, 74, 77, 78].  

PEG can be broadly classified into 2 categories depending on the type of terminal end 

group: 1) Monofunctional PEG - which has same functional group on both its ends and 2) 

Heterobifunctional PEG - which has 2 different reactive groups on each ends. Some of 

the most commonly used end terminal groups for PEGylation are acid chlorides, 

carbonates, aldehydes, amides, amine, carboxylic acids, NHS esters, etc. [78-81]. 

Some of the early studies involving usage of PEO for biomedical applications were 

carried out in 1970s. Abuchowski et al., for the first time, showed covalent attachment of 

PEG molecule (PEGylation) to bovine live enzyme, catalase [82]. They observed that 

attachment of PEG significantly increased the blood circulation time of these enzymes 

without triggering any immune response in mice. Since PEG is a known biocompatible 

polymer having no known cross-reaction with water molecules, it has been used 

extensively for drug delivery applications. Covalently attaching drug/protein molecules to 

PEG can increase its water solubility and overall hydrodynamic size. This actually helps 

in prolonged circulatory time as the increase in size diameter reduces its renal clearance 

rate. Some of advantages of attaching PEOs onto nanoparticles are that they are highly 

stable, biocompatible and approved by FDA, amphiphilic in nature, soluble in water as 

well as in many other solvents, can act as carrier molecule in different pharmaceutical 

products and the ease of manipulating its surface chemistry for wide-spread use in 

different biomedical applications [72, 83-87].  
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Magnetic Properties 

Generally, almost all materials are magnetic in nature to a certain level. When 

exposed to external magnetic field (H), they display varying amount of small magnetism. 

Accordingly, they can be classified as either 1) paramagnetic or 2) diamagnetic materials.  

Also, there are few materials that exhibit higher ordered magnetic states even in the 

absence of externally applied magnetic field. Such materials have been distinctly 

classified into 3 categories namely ferromagnetic, ferrimagnetic and antiferromagnetic 

materials. This classification has been based on the magnetic susceptibility of the 

magnetic materials.  

In paramagnetic materials, the magnetic moments are aligned parallel to H and 

they tend to retain their magnetic properties even when the external magnetic field is 

removed. In the case of diamagnetic materials, their magnetic properties are lost as soon 

as external field is removed. It should be noted that both para- and dia-magnetic materials 

have no collective magnetic interactions and their magnetic domains are not ordered. In 

ferri- and ferro-magnetic materials, the magnetic moments are also aligned parallel to H, 

however, there is a subtle difference in the coupling interactions that take place between 

the electrons of the magnetic material. The antiferromagnetic materials have the magnetic 

moments that are aligned anti-parallel to H. One of the unique features of all of the above 

3 materials is that they exhibit highly ordered state magnetic domains and large 

spontaneous magnetization [88].  

When the size of the nanoparticle goes below a certain value (~20 nm), then each 

individual nanoparticle can behave as a single magnetic domain that exhibits 



 16 

superparamagnetic properties. When external magnetic field is applied, the magnetic 

dipoles to such nanoparticles will reorient and in the absence of magnetic field, the net 

magnetic moment will be zero. In contrast to paramagnetic materials, in 

superparamagnetic materials, the electrons spin alignment occurs in a single domain 

nanoparticle and not in a single atom. This is the reason as to why superparamagnetic 

nanoparticles respond very quickly in presence of external magnetic field [88]. When 

such nanoparticles are effectively stabilized with polymer coatings, they find myriad 

applications in the medical field.    

 

Use of Magnetic Nanoparticles in Magnetic Hyperthermia for 

Therapeutic Applications 

Hyperthermia is a type of treatment therapy wherein there is a drastic temperature 

increase in the body tissues. Hyperthermia therapy has been used for treating cancer since 

1957 [89]. Typically, heat treatment by means of hyperthermia can be classified into 3 

categories: mild temperature hyperthermia (37⁰C to 42⁰C), moderate hyperthermia (43⁰C 

to 46⁰C) and thermal ablation (>46⁰C). Moderate hyperthermia is clinically approved 

treatment option for cancer therapy. Some of the cellular processes, which are directly 

affected by hyperthermia, are protein degradation, heat stress, and induction of apoptosis 

in cancer cells [90]. In the last decade, several studies have established the potential of 

using nanomaterials in cancer therapy and disease management. Various biomolecules 

like DNA, RNA, peptides, mRNA, and antibodies have been used as targeting ligands to 

specifically deliver the nanomaterials to cancer cell/tissue. Among the different kinds of 
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nanomaterials used in cancer treatment, magnetic nanoparticles have been extensively 

studied because of their biocompatibility and multi-functionality. When magnetic 

nanoparticles are exposed to alternate magnetic fields, they generate heat and increase the 

temperature of the surrounding environment (conversion of magnetic energy into heat 

energy). This application is known as magnetic hyperthermia and it has been successfully 

employed in treating different kinds of cancers in vitro and in vivo [91]. This heat 

generation occurs because of Neel and Brown relaxation and hysteresis losses [92, 93] 

(Figure 1.2). The heat generation efficiency of MNPs in presence of AMF is measured in 

terms of specific absorption rate (SAR). The higher the SAR value, the better is the heat 

producing capacity of MNPs. It has been reported that SAR value is influenced by 

number of factors like nanoparticle size and its surface chemistry, its shape and applied 

frequency and field intensity of AMF [72]. Also, SAR value is dependent upon the 

exposure time of AMF and the solvent in which MNPs are suspended.  
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Figure 1.2 Schematic representation showing possible mechanisms of conversion of magnetic energy into heat energy. 

Reprinted from [89] - Reproduced with permission from Elsevier Ltd. and IEEE. 

 

Magnetic hyperthermia therapy using magnetic nanoparticles has been clinically 

used for treating tumors along with traditional chemotherapy and radiation therapy [94-

96]. Moreover, several studies have also attached a targeting molecule (e.g., antibody, 

protein molecule, anti-cancer drug) for cancer cells specific therapy using MNPs. In 

majority of these studies, due to presence of targeting molecule on the surface, the 

nanoparticles are able to attach and enter only in cancer specific cells. This has been 

found to be extremely advantageous as once the nanoparticles are attached to the cancer 

cells, applying alternate magnetic fields will heat up only the cancer specific cells/tissue 

leaving the non-cancer cells/tissue harmless [72, 90, 97-102] (Figure 1.3).  
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Figure 1.3 Magnetic nanomaterials based hyperthermia therapy applications. Reprinted from [89] - Reproduced with 

permission from Elsevier Ltd.  

 

Such targeted magnetic hyperthermia treatment can potentially revolutionize 

cancer therapy regimen by drastically reducing the side effects, which are usually found 

with chemotherapy. The heating rate of MNPs in magnetic hyperthermia is found to be 

dependent on numerous factors like concentration of nanoparticles, nanoparticle core size 

and shape of nanoparticles, surface chemistry of nanoparticles, applied frequency and 

field intensity of the instrument, and time [90]. Moreover, magnetic nanoparticles have 

also been successfully used as commercial contrasting agents in MRI imaging [91]. 

However, there are very few reports of treating bacterial infections by using magnetic 

hyperthermia [103-105].  

One such study performed by Thomas et al. used magnetic hyperthermia in 

presence of carboxylic-acid functionalized MNPs as alternative treatment option for 

killing Staphylococcus aureus cells [106]. They exposed the bacterial cells to AC 

magnetic field in presence of relatively high concentration of MNPs (up to 50 mg/ml). 

107-log reduction in bacterial counts was observed within 4 minutes of magnetic 

hyperthermia treatment in presence of 50 mg/ml concentration of MNPs. In another 

similar work, Park and co-workers studied the inactivation rate of Pseudomonas 

aeruginosa biofilms in presence of commercially available superparamagnetic iron oxide 

nanoparticles (SPIONs) and AC magnetic fields [104]. ~4-log reduction in biofilm was 

achieved through 8 minutes of magnetic hyperthermia treatment using concentration of 

60 mg/ml MNPs. They attributed this reduction to disintegration of bacterial cell 
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membrane at elevated temperatures, which are attained during the hyperthermia 

treatment. It should be duly noted that in both the above mentioned research studies, the 

killing of bacterial cells was mainly achieved by sheer increase in the bulk temperature 

through high concentrations of MNPs and AC magnetic fields. Also, none of the above 

studies utilized any specific targeting molecule/ligand for targeted hyperthermia therapy.  

 

Magnetically Mediated Energy Delivery (MagMED) 

 According to conventional theories, applying external alternate magnetic fields in 

presence of MNPs would result in macroscopic temperature rise and hence aptly referred 

to as magnetic hyperthermia therapy. The main drawback of this therapy is that to 

actually get a clinically relevant temperature increase in the living systems mainly in 

vitro and in vivo models, large concentrations of MNPs is needed. As majority of the on-

going clinical studies utilizing magnetic hyperthermia therapy through MNPs is for 

cancer treatment, it is not feasible to directly deliver such a large payload of nanoparticles 

to the desired location in the body via commonly administered routes, e.g., intravenous, 

intranasal, transdermal, intrathecal, etc. which could substantially increase the 

temperature of the body region/tissue.   

One possible way to reduce the concentration of MNPs to get desired results in 

terms of killing cancer cells or tumors is to actually make MNPs in such a way that they 

can be completely internalized by these cells and can target the intracellular pathways 

providing selective killing without actually rising the overall temperature of the system. 

In such cases, it would be incorrect to use the term magnetic hyperthermia. Hence, a few 
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research groups (Dr. Carlos Rinaldi, University of Florida; Dr. O. Thompson Mefford, 

Clemson University) coined the term ‘magnetically mediated energy delivery’ 

(MagMED) to explain the instances where apoptosis of cancer cells was achieved in 

presence of MNPs and alternate magnetic fields without a major change in the overall 

temperature of the system [100].  

Recent experimental studies have shed new insights on explaining how local 

temperature rise is attained during MagMED treatment without bulk temperature 

increases in tissue environment. A study by Huang et al. showed that it is possible to 

remotely activate calcium ion channels in neural cells through alternate magnetic fields 

with minimal changes in bulk temperature of the tissues [107]. They synthesized 

manganese ferrite nanoparticles functionalized with streptavidin, which can selectively 

bind to TRPV1 receptors in neural cells. Finally, they grafted thermal responsive 

fluorophores on the outer surface of nanoparticles and used alternate magnetic fields to 

thermally activate ion channels. Through this study, the authors were able to show ~20°C 

increase in local temperature on the surface of nanoparticles without bulk temperature 

rise based on the changes in the fluorescence intensity of the fluorophores that were 

present on the nanoparticles surface.  

In another study, Creixell and co-workers performed MagMED experiments in 

which they observed 99.9% reduction in viability of breast cancer cells in presence of 

iron-oxide nanoparticles [108]. They functionalized dextran-coated iron-oxide 

nanoparticles with epidermal growth factor (EGF) targeting ligands that can 

preferentially attach only to cancer cells. After MagMED therapy, they noticed that the 
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targeted nanoparticles were greatly internalized by the breast cancer cells compared to 

non-targeted ones and resulted in reduction in cell-viability of those cells. During this 

study, they did not notice any measurable increase in temperature when AMF was 

applied. An extension of the above study by the same research group tried to elucidate the 

underlying mechanism by which MNPs present in intracellular regions can prove toxic to 

cancer cells in presence of AMF without bulk temperature increase [109]. The same 

targeted group of nanoparticles were mixed with breast cancer cells and in presence of 

AMF, the internalized MNPs could selectively induce lysosomal membrane 

permeabilization of breast cancer cells. The authors suggested that increased lysosomal 

permeabilization could result in cellular death of breast cancer cells through increase in 

reactive oxygen species (ROS) and lysosomal cathepsins production in presence of AMF. 

In all of the above reported MagMED studies, the exact mechanisms of 

intracellular events that are responsible for apoptosis of cancer cells in presence of AMF 

and MNPs are still not fully understood. Some of the possible ways through which these 

events are currently explained are: 1) highly localized increase of temperature on the 

surface of nanoparticles can disrupt several signaling pathways in cells; 2) application of 

AMF in presence of MNPs can physically/mechanically damage the cell membrane via 

Neel and Brownian relaxation processes (rotational or vibrational moments of 

nanoparticles). 
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Biocompatibility of Magnetic Nanoparticles 

In last two decades, there has been tremendous increase in the usage of 

engineered nanomaterials for various industrial products and the demand is rapidly 

increasing. Analysts have forecasted that nanomaterial based industrial products will 

drive the global economic markets by more than 100 billion dollars per annum between 

the years 2011-2015 [110]. The flexibility to engineer different types of nanomaterials 

with desired physico-chemical properties has made it possible to use these nanomaterials 

in numerous biomedical applications. In fact, nanomaterials based treatment therapies for 

cancer diagnosis and therapy, drug delivery and imaging are already in clinical trial 

stages [111-117]. However, several factors regarding biocompatibility and toxicity of 

these nanomaterials still need to be addressed in detail. There is a complex relationship 

between the morphology, size and chemical properties of these nanomaterials that would 

eventually determine its toxicity in living organisms and the environment [110, 118-120]. 

The magnetic properties displayed by magnetic nanoparticles have been extensively 

utilized in wide range of biomedical applications like MRI imaging, drug delivery, 

pathogen detection, magnetic cell-separation or magnetic hyperthermia [80, 121-123]. 

Magnetic nanoparticles have also increased the overall efficacy of anticancer drugs and 

its presence has also reversed multidrug resistance commonly found in cancer cells [124]. 

To render magnetic nanoparticles biocompatible, they need to be coated with suitable 

polymers, which would keep them stable in biological environment. Depending on the 

overall size of the nanoparticle system, the stabilizing polymer and the type of chemical 

group present on the polymer end, MNPs can behave and interact differently with the 
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proteins present in the biological environment. Although magnetic nanoparticles have 

been reported to have excellent biocompatibility [125-127], they might exert toxicity to 

the host cell depending on their size, surface chemistry and its ability to interact with the 

proteins present in body fluids. Numerous in vitro and in vivo studies have demonstrated 

differential toxicity of MNPs [78, 79, 124, 128-131]. The different toxicity mechanisms 

observed in determining safe dosage levels of MNPs in these studies include impaired 

mitochondrial function, cytotoxicity, cell apoptosis, DNA damage and genotoxicity, 

immunotoxicity, oxidative stress, disordered cell morphology, cytoskeleton damage, cell-

membrane damage etc. [131-136]. Therefore, an in-depth and thorough analysis of 

toxicological profile of MNPs are warranted to make sure that they are biocompatible in 

living systems before using them clinical settings. 

 

Objectives 

MNPs bio-functionalized with different polymers and molecules have been 

researched widely for diverse biomedical applications. The kind of targeted moiety 

attached onto surface of MNPs determines the kind of interactions it would have with 

bacterial and mammalian cells. These interactions are greatly dependent on kind of 

synthesis procedures used for making MNPs, size of MNPs, type of polymer used as 

stabilizing agent and finally on the type of cell with which MNPs interacts both in in vitro 

and in vivo conditions. The main goal of this dissertation was to synthesize proof-of-

concept bacterial adhesin specific MNPs that are bio-functionalized with specific 

glycoconjugate molecule (GM3), and which can selectively interact with EC K99 strain 
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in absence/presence of AMF. The first aim deals with synthesizing mono-anchored GM3-

MNPs that are stabilized with heterobifunctional PEO polymer and evaluating its 

interactions with EC K99.  The second aim explores the feasibility of using multi-

anchored GM3-MNPs in conjunction with AMF for targeted killing of EC K99 both in 

pure and mixed culture environment and trying to explain the possible mechanisms 

through which EC K99 is destroyed. And the last aim investigates the biocompatibility 

and interaction of our novel MNPs system with normal human colon cells CCD-18Co by 

employing various toxicity assays. The results obtained in this project will greatly help in 

providing a unique non-antibiotic platform for treating bacterial infections via MNPs and 

AMF with minimum toxicity to host-tissue. 
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Chapter 2 

Synthesis and Application of Glycoconjugate-Functionalized Magnetic 

Nanoparticles as Potent Anti-adhesion Agents for Reducing 

Enterotoxigenic Escherichia coli Infections 

[This chapter is taken directly or adapted from work published in Nanoscale journal by 

Raval et al. (2015); DOI: 10.1039/c5nr00511f. Copyrights 2015 - Reproduced by 

permission of The Royal Society of Chemistry. Website link: 

http://pubs.rsc.org/en/Content/ArticleLanding/2015/NR/C5NR00511F#!divAbstract] 

 

1. Introduction: 

There has been a recent uprising in the emergence of new multi-drug resistant 

bacterial strains in the environment, which has resulted in increased morbidity and 

mortality throughout the world [1-3]. As a result, alternative therapeutic options that are 

non-antibiotic based are urgently needed to treat such bacterial infections. There have 

been considerable ongoing scientific interests in understanding multivalent carbohydrate-

lectin interactions for various purposes like receptor mimicking, inhibiting bacterial 

growth and as novel anti-adhesion agents for treating bacterial infections [4-8]. 

Functionalizing multivalent carbohydrate molecules onto the surface of different 

nanomaterials offers numerous advantages, e.g., higher affinity constants (Ka) and 

enthalpy of binding (ΔH) [9, 10], than their monovalent forms in studying ligand-receptor 
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interactions [11]. Nonetheless, there have been limited reports of using such 

carbohydrate-functionalized nanomaterials as specific anti-bacterial and anti-adhesion 

agents. Due to high surface/volume ratio of nanoparticles, it is relatively easy to attach 

various carbohydrate moieties onto their surface, which has found useful applications in 

rapid pathogen/toxin detection and its inhibition [12-14]. In several studies, gold 

nanoparticles [15], magnetic nanoparticles [16], carbon nanotubes [17, 18], polymeric 

nanoparticles [19-21], and diamond nanoparticles [22] were bio-functionalized with 

various carbohydrate sugars and used as mimicking agents of host-cell surface receptors 

that selectively interacted with the adhesin molecules of various E. coli strains and 

resulted in rapid agglutination [20] and reduction in colony forming units (CFUs) of these 

E. coli strains [21]. The unique magnetic properties and biocompatibility displayed by 

magnetic nanoparticles have been extensively utilized in wide range of biomedical 

applications like MRI imaging [23], pathogen detection [24], drug-delivery [25], and 

magnetic hyperthermia [26]. Keeping MNPs stable in biological environments is 

important in their biomedical applications. Numerous polymer anchor groups like amines 

[27], alcohols [28], phosphates [29], and carboxylic acids [30] have been utilized to 

render colloidal stability to MNPs in highly protein-rich biological environments. Of late, 

anchor groups based on catechols have been extensively researched to provide stable 

platform for synthesizing multifunctional MNPs [31-34]. 

Bacterial pathogens utilize two primary mechanisms to adhere onto the host-cell 

namely carbohydrate-protein recognition and protein-protein interaction [35]. Bacterial 

adhesin molecules, which take part in carbohydrate-protein interaction, bind bacterial 
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pathogens onto the host-cell tissue through specific glycolipid or glycoprotein receptors 

[36]. Enterotoxigenic Escherichia coli (ETEC) infection is one of the most common 

cause of traveler’s diarrhea in humans and also in neonatal farm animals like calves, pigs 

and lambs [37]. Recently, numerous studies have reported increases in multi-drug 

resistance of ETEC associated with antibiotic treated animal feed [38-41]. Majority of the 

fimbrial adhesins isolated from ETEC that infected farm animals expressed one or more 

unique adhesins. These adhesins also act as antigens/virulence factors [41]. EC K99 is the 

main causative agent of bloody diarrhea in young calves, lambs and pigs, a condition also 

known as colibacillosis. This strain bears K99 antigens, which also act as fimbriae 

facilitating the adherence of EC K99 onto the ileal villus epithelium of calf and pigs and 

help in initiation of infection [42, 43]. The adhesins of EC K99 specifically attach to 

small intestinal mucus and recognize sialic acid derivatives present on glycolipid 

receptors [4, 44]. Hence, if this attachment is disrupted, then there is high probability of 

preventing bacterial infection. 

The use of bacterial adhesin-specific glycoconjugate functionalized nanoparticles 

for prevention/treatment of infections offers several advantages in that it can be designed 

to target only a specific strain or a specific group of pathogens; it does not impose 

selection pressure on bacteria exposed to it, hence, minimizing the emergence of resistant 

bacteria; it is more stable and less expensive than antibodies-based targeting systems, etc. 

In our previous lab research, we have demonstrated that gold nanoparticles bio-

functionalized with specific sialic-acid sequences can cause rapid aggregation of EC K99 

[45]. Here, we extend our work and further study the intricate details of glycoconjugate 
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receptor binding specificity of this sequence molecule (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp) 

coated on MNPs (GM3-MNPs) towards EC K99 by employing various microscopic 

techniques and bioassays and show that these MNPs can effectively act as novel non-

toxic anti-adhesion agents in reducing ETEC infections. 

 

2. Experimental Section: 

Synthesis of Heterobifunctional Polyethylene Oxide (alkyne-PEO-nitroDOPA): 

The chemical synthesis of heterobifunctional polyethylene oxide polymer having alkyne 

at one end and nitroDOPA on the other end is schematically shown in figure 2.1. This 

complex polymer was synthesized by Roland Stone (PhD student in Dr. O. Thompson 

Mefford’s group, Clemson University). More details regarding the intricate experimental 

steps involved in synthesizing this polymer and its characterization can be found in the 

publication, Stone et al. 2014 [46]. 

Synthesis of Magnetic Nanoparticles: The 7.2nm magnetic nanoparticles, 

synthesized using thermal decomposition of iron(III) acetylacetonate (2mmol), 1,2-

hexadecanediol (10mmol), olylamine (4mmol), benzyl ether (20ml), and 6nm iron oxide 

seeds were added and stirred under a nitrogen flow and brought to 200°C for 1hr to get 

rid of any moisture. Finally the reaction was brought to reflux for 30mins under a 

nitrogen head. The particles were purified by precipitation of ethanol and characterized 

using TEM and DLS.  

Modification of Magnetic Nanoparticles: The magnetic nanoparticles were 

modified by first dissolving alkyne-PEO-nitroDOPA (200 mg, 0.04mmol) into 10ml of 
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chloroform followed by the slow addition of 1ml (2mg/ml) of magnetic nanoparticles, 

which were also dispersed in chloroform, while sonicating over 30 mins. The solution 

was allowed to stir overnight. The particles were then purified by precipitation with 

hexane, centrifuged to separate particles from solvent. They were then dispersed in 

ethanol and subsequently precipitated using hexane and separated via centrifugation to 

collect particles. Finally, the particles were dispersed in deionized water and dialyzed for 

3 days. 

Synthesis of Magnetic Nanoparticles Functionalized with GM3 

Glycoconjugate: The particles with an alkyne surface were then modified using ‘click 

chemistry’ with glycoconjugate (Neu5Ac(α2-3)-Gal(β1-4)Glcβ-sp) and azide, 1 : 4 

respectively using a copper catalyst for 24 hours in the absence of light. The particles 

were then dialyzed for 3 days to remove any unbound glycoconjugate, catalyst, and any 

byproducts of the reaction. 

Dynamic Light Scattering (DLS) and Zeta-Potential: DLS was performed on the 

PEO-coated and GM3-coated magnetic nanoparticles to determine their hydrodynamic 

radius. The nanoparticle suspensions were diluted in water and placed into a cuvette. 

Three readings were taken at 25°C using Malvern Zetasizer Nano ZS to determine the 

intensity average size distribution and z-average diameter. Zeta-potential measurements 

of these nanoparticle suspensions were also determined using the same instrument. The 

suspensions were diluted with water and added into zeta-cell and three measurements 

were taken at 25°C. 
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Inductively Coupled Plasma Mass Spectroscopy (ICP-MS): The nanoparticle 

concentration in PEO-MNPs and GM3-MNPs was determined by performing ICP-MS 

(Thermo-Scientific MS XSeries 2). The nanoparticle suspensions were treated with 2% 

nitric acid solution in a 15 ml centrifuge tube and subsequently measurements were 

taken.    

 Fourier Transform Infrared Spectroscopy (FTIR): FTIR assisted 

microscopy was done using a Thermo-Nicolet Magna 550 FTIR spectrometer equipped 

with a Thermo-NicPlan FTIR microscope. Scan number was 16 for each sample 

including background. Background was collected on a clean germanium plate. Samples 

were prepped by taking the water suspensions/solution and casting a small drop on a 

germanium plate. The samples were then set under a heat lamp for 10-15 minutes to dry, 

resulting in a thin film from which spectrum could be collected using an FTIR 

microscope.  

 Fluorescence Microscopy Aggregation Assay: Both EC K99 (ATCC 13762) 

and non-virulent strain E. coli O157:H7 6980-2 (EC 6980-2; control strain) were 

transformed with plasmids pGREEN and pGFPuv respectively by 

electroporation[47]. The green-fluorescent protein (GFP) expressing E. coli strains 

were grown in tryptic soy broth/tryptic soy agar (TSB/TSA) supplemented with 

ampicillin (100 µg/ml).  Freshly grown E. coli cultures were used for aggregation 

assays. After growth, the bacterial cells were centrifuged thrice and re-suspended 

in 1X sterile phosphate buffered saline (PBS). Approximately, 5 x 107 CFU of 

bacterial cells were prepared based on optical density (OD600) readings. PEO-
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MNPs (40 µg/ml) and GM3-MNPs (40 µg/ml) were mixed with both EC K99 and 

EC 6980-2 and this mixture was incubated at room temperature for 30 minutes 

with gentle shaking. Based on previous method [21], fluorescence microscopy 

assays were performed at the end of incubation time to visualize nanoparticles-

mediated bacterial aggregation. 

TEM Imaging of GM3-MNPs and EC K99: TEM imaging was performed to 

evaluate the specific binding interactions between GM3-MNPs and EC K99. GM3-MNPs 

were added to EC K99 (5 x 107 CFU/ml, suspended in 1X PBS) in an eppendorf tube for 

30 minutes at room temperature with gentle shaking. The mixture was centrifuged at 

7000 x g for 5 minutes to spin down the bacterial cells along with adherent GM3-MNPs. 

The supernatant containing unbound GM3-MNPs was removed and the pellet was 

washed thrice with 1X PBS in repeated centrifugation cycles. This mixture was then 

fixed in cacodylate-buffered glutaraldehyde (3.5%, pH ~7.4) for 10 -12 hours at 4°C. 

Subsequently, 3 µl of this mixture was dropped onto a carbon-coated copper grid and 

allowed to air-dry for 30 minutes. Later, the grids were stained with 2% uranyl acetate 

solution (3 µl) for 5 minutes and blotted dry with filter-paper (Whatman #4). TEM 

images were taken on Hitachi H7600 at 120 kV power and magnification ranging from 

10000X to 100000X.  

 CFU Aggregation Assay: In order to determine the extent of GM3-MNPs 

induced bacterial aggregation, a CFU reduction assay was carried out as previously 

described [21]. Briefly, both the E. coli strains were standardized to a 

concentration of 5 x 107 CFU in 1X PBS. These bacterial suspensions were then 
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mixed with different amounts of PEO-MNPs and GM3-MNPs (40 µg/ml and 100 

µg/ml) and the mixture was allowed to incubate at room temperature for 30 

minutes with gentle shaking. Serial dilutions of these mixtures were made and 50 

µl of sample from each dilution tube was transferred onto a sterile, empty petri 

plate in triplicates. Then, 20 ml of molten TSA (maintained at 45°C) supplemented 

with ampicillin (100 µg/ml) was carefully poured into the petri plates. The plates 

were gently rotated to ensure proper mixing of sample and TSA. Finally, after the 

TSA in the plates solidified, the plates were incubated at 37°C overnight. Next 

day, the colonies on the plates were counted and CFU reduction was compared to 

control plates.  

ATP Assay: To confirm that the reduction in CFU of EC K99 was achieved only 

due to GM3-MNPs induced bacterial aggregation and not because of inherent toxicity of 

these nanoparticles, an ATP determination assay [48] was performed using BacTiter-

Glo™ microbial cell viability kit (Promega, Madison, WI) following manufacturer’s 

protocol. 

Cytotoxicity Assay: To further validate the non-toxic nature of our nanoparticles 

system, we performed a preliminary cytotoxicity assay on human colon (normal) cell-line 

CCD-18Co and determined its cell-viability rate after exposing to GM3-MNPs for 24 

hours. CCD-18Co Human colon cells (normal) were procured from American Type 

Culture Collection (ATCC) and grown on 50 cm2 tissue-culture flask (Corning, NY) in 

the presence of Eagle’s Minimum Essential Medium (EMEM) at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. EMEM was supplemented with 2 mM L-Glutamine, 
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non-essential amino acids, fetal bovine serum (final concentration – 10%), 100 UI/ml 

penicillin G, and 100 µg/ml streptomycin. For determining the cytotoxicity of GM3-

MNPs, cells between passage generation of 12 and 20 were used. 1.5 x 104 cells/well 

were seeded (in triplicates) in 96-well culture-plates at 37°C in a humidified atmosphere 

of 5% CO2 and 95% air. After 24 hours, varying concentration of GM3-MNPs were 

added to the cells and incubated for further 24 hours. Next day, MTS assay (CellTiter 96® 

Aqueous One Solution Cell Proliferation Assay, Promega, USA) was performed 

according to manufacturer’s protocol and the plate was read at 490 nm optical density to 

measure the absorbance of the formazan product using a microplate reader (Thermo 

Scientific Multiskan™ FC). 

 

3. Results and Discussion: 

In this chapter, we report the synthesis of MNPs coated with heterobifunctional 

polyethylene oxide (PEO-MNPs) having nitroDOPA as a stable anchoring agent and bio-

functionalized with sialic-acid glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-

MNPs) via ‘click chemistry’(Figure 2.1). These GM3-MNPs can effectively act as 

multivalent ligands, which specifically interact with adhesins present on the EC K99.  
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Figure 2.1 Synthesis of heterobifunctional polyethylene oxide coated magnetic nanoparticles bio-functionalized with 

sialic-acid derivative (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp). 

A heterobifunctional polyethylene oxide (PEO), with a molecular weight of 6300 

g/mol, with a protected alcohol on one end and an alcohol on the other was synthesized 

by the anionic polymerization of ethylene oxide (EO) using tetrahydropyranol as an 

initiator. The alcohol end group was then modified with an alkyne via a substitution 

reaction using propargyl bromide (1:4 respectively). Once modified, the protected alcohol 

group was deprotected with an acid and subsequently purified. Finally, using N-

hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (DCC) coupling, the 

heterobifunctional PEO was modified with nitrated 3,4 dihydroxy-L-phenylanaline 

(nitroDOPA) to yield a macromolecule with functionality that can be utilized for ‘click 

chemistry’ and provide enhanced binding to an iron oxide surface, as described in 
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previous work by Stone et al.[46], where synthetic details the polymer formation and 

relevant NMR data can be found. NitroDOPA was selected as the binding group for our 

system because of its enhanced binding to metal oxides [49]. 

The aforementioned macromolecule was then used to modify MNPs, synthesized 

using a modified version of a procedure by Sun et al.,[50]  via ligand-exchange by slowly 

adding magnetic nanoparticles dispersed in hexanes to a solution of the macromolecule in 

chloroform while sonicating. After 12 hours, allowing for significant ligand exchange, 

the polymer-particle complex was then purified by extraction into DI water and then 

dialyzed against DI water in 12-14,000 g mol-1 MWCO dialysis membranes for three 

days to remove any impurities. The use of nitroDOPA containing PEO polymer has 

recently been shown to be the most effective anchoring chemistry in the ligand exchange 

of oleic acid coated particles [51]. The resulted particles with attached glycoconjugate 

(GM3-MNPs) were characterized by dynamic light scattering (DLS) (Table 2.1), zeta-

potential (Table 2.1) and FT-IR spectroscopy (Figure 2.2 and 2.3). The absence of azide 

peak at 2113 cm-1 in Figure 2.2 (D) represents the successful conjugation of 

glycoconjugate moiety onto the polymer-coated magnetic nanoparticles through 

cycloaddition. The nanoparticle concentration in PEO-MNPs and GM3-MNPs was 

determined by means of inductively coupled plasma mass spectroscopy (ICP-MS).  

Type of MNPs DLS (Z – Avg) (d. nm) Zeta-Potential 
PEO-MNPs 77.31 -12.1 
GM3-MNPs 80.46 -42.0 

 

Table 2.1 DLS and Zeta-Potential measurements of MNPs after functionalizing PEO polymer and GM3 molecule. 
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Figure 2.2 FTIR of DOPA (Top) and NitroDOPA (Bottom). Symmetric and asymmetric stretching from the NO2 peaks 

at 1330 and 1532 cm-1. Reprinted from (46) - Reproduced by permission of The Royal Society of Chemistry. 

 

Figure 2.3 FTIR spectroscopy of A.) Magnetite particles modified with the alkyne PEO stabilizer, B.) The Neu5Ac(α2-

3)Gal(β1-4)Glcβ-sp targeting moiety prior to “clicking”, C.) The resulting complex of magnetic nanoparticles with the 
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Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp moiety, and D.) The resulting spectrum of subtracting spectrum C by A indicating the 

successful conjugation of the Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp to targeting molecule. 

 

Clearly, large aggregates of EC K99 were observed in the presence of GM3-

MNPs (Figure 2.4). No visible aggregation was found when EC K99 was mixed with 

PEO-MNPs (Figure 2.4 c). Moreover, EC 6980-2 did not form aggregates when mixed 

with PEO-MNPs and GM3-MNPs (Figures 2.4 a and b). This shows that both E. coli 

strains clearly have different sugar binding specificities and that EC K99 exhibits binding 

specificity only to GM3-MNPs.  

 

Figure 2.4 Fluorescent microscopy images of EC 6980-2 and EC K99 in presence of PEO-MNPs and GM3-

MNPs. (a) and (b) EC 6980-2, in the presence of PEO-MNPs and GM3-MNPs respectively; (c) and (d) EC 

K99, in the presence of PEO-MNPs and GM3-MNPs respectively. Magnification – 400X and scale bar – 100 

µm. 
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Furthermore, transmission electron microscopy (TEM) analysis of the mixture 

containing GM3-MNPs and EC K99 was done to observe intricate details of bacterial 

aggregation. The samples for TEM analysis were prepared according to a modified multi-

step protocol [21, 52]. Large clusters of bacterial cells were observed due to strong 

interactions between GM3-MNPs and EC K99 (Figure 2.5 a and b). The GM3-MNPs 

were found covering the entire surface of EC K99. Because of significant binding of 

multiple GM3-MNPs onto individual bacterial cells and other GM3-MNPs acting as 

linking agents to interact with other bacterial cells, we observed significantly large 

agglutination of EC K99.  

 

Figure 2.5 TEM images of GM3-MNPs induced bacterial aggregation of EC K99. Magnification of (a) and (b) are 

30000X and 60000X, respectively. Scale bar is 500 nm. 

Entero-pathogenic E. coli strains have different sugar binding affinities depending 

on the type of adhesins present on their outer cell-surface [53]. It is known that EC K99 

has S type of fimbrial proteins that specifically recognizes and binds only to Neu5Ac(α2-

3)Gal(β1-4)Glcβ-sp sialic-acid sequences [4]. The pilus of EC K99 is primarily made up 

of FanC, major fimbrial sub-unit gene product, which is responsible for recognizing and 
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attaching the bacterium to the sialic-acid ganglioside receptors present on the host-cell 

[54]. On the other hand, EC 6980-2 have adhesin molecules that consist of galactose-

binding proteins on its outer surface which can attach to galactose receptors [17] present 

on the host-cell and hence EC 6980-2 was not able to form bacterial aggregates when 

mixed with GM3-MNPs. Based on these sugar-binding specificities, the above mentioned 

2 different E. coli strains were selected for this study.  

 As shown in figure 2.6 A, approximately 2-log reduction in CFU of EC K99 

was observed in the presence of GM3-MNPs (40 µg/ml). This reduction was due to 

GM3-MNPs induced bacterial aggregation. Also, 1-log reduction of EC K99 was 

observed at 100 µg/ml concentration of GM3-MNPs. Interestingly, there was no 

reduction in CFU of EC 6980-2 in the presence of either GM3-MNPs or PEO-MNPs 

(Figure 2.6 B). These results correlate with those obtained in fluorescence microscopy 

assay showing that bacterial cells of EC K99 aggregating in clusters of several 100s of 

bacterial cells in the presence of GM3-MNPs. Surprisingly, EC K99 in the presence of 

GM3-MNPs (100 µg/ml) resulted only in 1-log reduction in CFU since the nanoparticle-

bacteria ratio was different. Luo and co-workers [21] obtained similar results when they 

incubated E. coli ORN178 in the presence of different concentrations of mannose-

functionalized polymeric nanoparticles. Thus, it is imperative to attain appropriate 

nanoparticle-bacteria ratio for getting maximum reduction in CFU mediated by 

nanoparticles-induced bacterial aggregation. 
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Figure 2.6 (a) CFU/ml assay of EC K99 in the presence of different concentrations of GM3-MNPs and PEO-MNPs 

and (b) CFU/ml assay of EC 6980-2 in the presence of different concentrations of GM3-MNPs and PEO-MNPs. Data 

expressed as Mean ± SD (n = 3); Statistical Analysis – Two-Way Analysis of Variance (ANOVA) (*** - P<0.0001). 

 

 Intracellular ATP levels of both the E. coli strains were recorded by 

measuring their relative luminescence in the presence/absence of GM3-MNPs (40 µg/ml) 

and PEO-MNPs (40 µg/ml). Figures 2.7 A and B shows that there is no significant 

difference in intracellular ATP levels of both E. coli strains in the presence of 

nanoparticles. Also, another important feature to determine the toxicity of nanoparticles 

is to look for any cell-membrane damage and morphological changes in the bacterial cell-

membrane structure [52]. Results of TEM imaging of EC K99 in the presence of GM3-

MNPs showed no visible bacterial cell-membrane damage suggesting the non-toxic 

nature of our nanoparticles. These results suggest that the reduction in CFU of EC K99 

was achieved only because of GM3-MNPs induced bacterial aggregation and not due to 

nanoparticle toxicity.  
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Figure 2.7 Intracellular ATP Assay (a) Relative Luminescent Units (RLU) of EC K99 when incubated with GM3-

MNPs and PEO-MNPs (b) RLU of EC 6980-2 when incubated with GM3-MNPs and PEO-MNPs. Data expressed as 

Mean ± SD (n = 3); Statistical Analysis – One-Way Analysis of Variance (ANOVA); (P>0.05). 

 

To further validate the non-toxic nature of our nanoparticles system, we 

performed a preliminary cytotoxicity assay on human colon (normal) cell-line CCD-18Co 

and determined its cell-viability rate after exposing to GM3-MNPs for 24 hours. The 

potential cytotoxicity of GM3-MNPs was measured by performing MTS assay. As seen 

in figure 2.8, there was no significant reduction in cell-viability rate of CCD-18Co cells 

in the presence of varying concentrations of GM3-MNPs. These results suggest that our 

novel glycoconjugate-functionalized nanoparticle system is highly biocompatible. 
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Figure 2.8 Cytotoxicity assay to determine cell-viability of CCD-18Co cells in presence of different concentrations of 

GM3-MNPs. Data expressed as Mean ± SD (n = 3); Statistical Analysis – One-Way Analysis of Variance (ANOVA); 

(P>0.05). 

 

4. Conclusion: 

In conclusion, we successfully synthesized heterobifunctional polymer coated 

magnetic nanoparticles that have nitroDOPA as a stable anchoring agent and were bio-

functionalized with sialic-acid glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-

MNPs) using click chemistry. The GM3-MNPs were characterized by employing 

different techniques and their adhesin specificity was determined using aggregation 

assays. Our GM3-MNPs specifically interacted only with ETEC strain EC K99 as 

confirmed through fluorescence microscopy and transmission electron microscopy. Also, 

a 2-log reduction in CFU of EC K99 was achieved due to GM3-MNPs induced bacterial 

aggregation. Moreover, intracellular ATP assays demonstrated that the 2-log reduction in 

CFU of EC K99 was not due to inherent toxicity of the nanoparticles. Thus, our proof-of-

concept nanoparticle system can effectively serve as novel non-antibiotic multivalent 

carriers, which could find applications in detection and capturing of pathogenic multi-
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drug resistant bacterial strains from active physiological body fluids. Our systems can 

especially reduce/treat gastro-intestinal tract infections caused by ETEC pathogens in 

farm animals and humans since specific bacterial-nanoparticle aggregates can be 

effectively flushed out from the body system because of high peristaltic flows without 

disturbing the normal gut microflora that is usually destroyed when antibiotics are used. 

This system can also be employed as potent anti-adhesion agents that can block/inhibit 

specific cellular responses by competitively preventing the attachment of bacterial 

pathogens onto specific eukaryotic cell-surface receptors and thereby reducing the 

infection load. Furthermore, this nanoparticle system can also be utilized for targeted 

magnetic hyperthermia treatment of bacterial infections, especially those that are resistant 

to multiple antibiotics. In future work, nanoparticles with multi-anchored functional 

groups will be utilized to improve stability of nanoparticles in biological fluids and to 

enhance their bindings to specific pathogens. Their therapeutic values, i.e., selective 

killing of pathogens via hyperthermia mediated by glycoconjugate-functionalized 

magnetic nanoparticles, will be evaluated both in vitro in cell-line and in vivo in small 

animal systems. In addition, potential toxicities associated with the use of these 

nanoparticles will be characterized using various biological assays, e.g., cytotoxicity, 

genotoxicity, immunogenicity assays, etc. 
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Chapter 3 

Multi-Anchored Glycoconjugate-Functionalized Magnetic 

Nanoparticles: A Tool for Selective Killing of Targeted Bacteria via 

Alternating Magnetic Fields 

[This chapter is taken directly or adapted from work published in Advanced Functional 

Materials journal by Raval et al. (2017); DOI: 10.1002/adfm.201701473. Copyrights 

2017 - Reproduced by permission of John Wiley and Sons. Website link: 

http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201701473/abstract] 

 

1. Introduction: 

The emergence of anti-microbial resistance (AMR) has quickly taken hold as one 

of the greatest threats to modern medicine on a global scale, and the ramifications, if not 

dealt with in a timely manner, may be catastrophic. Currently, there are more than 160 

different kinds of antibiotics available for therapeutic purposes [1]. However, unrestricted 

and prolonged usage of antibiotics has resulted in rapid emergence of new strains of 

bacteria that have developed resistance to these drugs and, over time, evolved as multi-

drug resistant microorganisms. Infections caused by such bacterial strains have resulted 

in prolonged hospital stays and an increase in outpatient costs and patient mortality and 

morbidity throughout the world [2]. In a World Health Organization (WHO) global report 

on antimicrobial resistance, it is stated that AMR is a complex global public health 

challenge and that no single or simple strategy will contain the emergence and spread of 
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AMR infectious organisms [3]. A recent study by the US Center for Disease Control and 

Prevention estimates that every year, diseases caused by AMR strains of bacteria infect 

millions of people in the US, and thousands of them die annually due to lack of new 

antibiotics [4]. The emergence of AMR also has an enormous socio-economic impact. A 

2014 report from RAND Europe, estimates the economic cost of AMR to be 

approximately 3.1% of global output gross domestic product (~2.4 trillion US dollars) 

[5]. Although recognized as an immediate issue, antibiotic discovery has declined with 

many major pharmaceutical companies discontinuing their antibiotic development 

programs over the past decade due to low return on investment and difficulties in 

identifying new compounds. This reinforces the need for development of novel 

therapeutic approaches to address the AMR challenges [6-8]. 

Nanoparticles have been a highly investigated area as their properties differ from 

their bulk counterparts. Of these materials, iron oxide has found particular prevalence in 

the biomedical field with use in MRI contrast, drug delivery, cell separation, and cancer 

therapy [9-11]. When an iron oxide particle is subjected to an alternating magnetic field, 

a hysteresis loop is completed in which the area relates to the energy release per cycle 

[12]. By doing this at relatively high frequencies (kHz-MHz), the amount of energy 

transfer is great enough to affect surrounding cells [13]. This phenomenon was 

previously referred to as magnetic hyperthermia due to an observed temperature rise. 

However, recent studies have shown that cell death could be induced in the absence of 

bulk heating of the environment [13, 14]. In seeking a more descriptive term, we and 

others prefer to use the phrase magnetically mediated energy delivery (MagMED) [15, 
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16]. The use of nanoparticles for biological applications requires stringent attention to 

surface chemistry as it affects reactivity, bio-distribution, and stability [9, 17]. Much 

research has been put into optimizing surface chemistries for nanomaterials, with 

poly(ethylene oxide) (PEO) being one of the universally accepted coatings [18]. PEO has 

been shown to prolong circulation time, greatly improve stability in protein and ion-rich 

environments, impart secondary functionality, and render stealth from the immune 

system [18]. Further enhancement in stability may be imparted using a multi-anchored 

catechol as the iron binding moiety [17, 19]. This is highly necessary as desorption of the 

polymer coating is an issue with many biomolecules including phosphonates and 

peptides, which have high affinity for iron oxide [20].  

Though numerous groups have reported using alternate magnetic field along with 

magnetic nanoparticles as an alternative cancer therapy, limited work has been done in 

the same direction for treating bacterial infections [21-23]. More importantly, to the best 

of the authors’ knowledge, no work exploring the use of nanoparticles for selective 

killing of targeted pathogen in mixed-bacterial culture settings has been reported. 

Attachment of bacterial pathogens onto the surface of mammalian cells is one of the 

foremost events in host-pathogen interactions. Several pathogenic bacteria are able to 

adhere to specific host-cell receptors via carbohydrate binding proteins, also called 

adhesins or lectins [24]. These interactions are part of the signal cascade enabling 

bacteria to recognize the environment they are in and then turn on the cascade of 

processes leading to infections [25, 26]. If these binding interactions are 

inhibited/interrupted then the chances of getting infection is greatly reduced [27].  
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The rapid advancement in the fields of nanotechnology and glycotechnology 

offers potentially new therapeutic options for treating bacterial infections. Over the last 

few years, few research groups have studied nanomaterials functionalized with 

multivalent carbohydrate groups and synthetic glycoconjugates for probing bacterial 

lectin-carbohydrate interactions [28, 29]. Attaching these molecules onto the surface of 

nanomaterials has found numerous applications in pathogen detection/targeting,[30] 

mammalian cell-receptor mimicking [31], drug delivery [32], and in anti-adhesion 

therapies [33]. Specifically, carbon nanotubes [34, 35], gold nanoparticles [36, 37], 

diamond nanoparticles [38], polymeric nanoparticles [39], and magnetic nanoparticles 

[40-43] were reported to be bio-functionalized with different carbohydrate 

sugars/glycoconjugates and were utilized for studying lectin-carbohydrate interactions in 

different bacterial species. Given the excellent biocompatibility of using glycoconjugates 

molecules for functionalizing nanomaterials, not many studies have been carried out that 

can specifically detect and differentiate bacterial species in a mixed population both in 

vitro and in vivo. 

Escherichia coli (E. coli) is one of the most common types of bacteria naturally 

occurring in the digestive tract of humans and animals. While most of the E. coli strains 

are harmless to humans and animals, there are few E. coli serogroups that are mainly 

responsible in causing infections. E. coli belonging to the enterotoxigenic (ETEC) group 

is responsible for causing traveler’s diarrhea in humans and bloody diarrhea in neonatal 

calves, pigs and lambs [44-46]. The prevalence of the serogroups and presence of 

adhesins are considered to be the primary factors that facilitate intestinal colonization of 
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ETEC. ETEC adhere to small intestinal microvilli membranes in vivo via adhesins that 

recognizes specific carbohydrate receptors and produce enterotoxins that act on 

enterocytes eventually causing diarrhea [47]. Recently, numerous studies have reported 

an increase in multi-drug resistance of ETEC strains associated with the inclusion of 

growth-promoting antibiotics in animal feed [48, 49]. E. coli K99 (EC K99) is one of the 

commonly found ETEC strains in newborn farm animals responsible for causing 

colibacillosis [50]. EC K99 has unique adhesins that can specifically recognize and attach 

to sialic-acid based glycolipid receptors present on the ileal villus epithelium of the small 

intestine [51, 52]. If these binding interactions are inhibited/interrupted, the chances of 

getting infection are greatly reduced. Our previous studies have shown that nanoparticles 

functionalized with specific sialic-acid derivatives resulted in nanoparticles-induced 

aggregation of EC K99 along with excellent biocompatibility [36, 41].  

In this study, it is hypothesized that multi-anchored magnetic nanoparticles 

conjugated with sialic-acid moieties that mimic host-cell receptors specific for EC K99 

adhesins, would induce rapid clustering of EC K99 in the presence of these nanoparticles, 

and when such bacteria-nanoparticles aggregates are exposed to AMF, it would result in 

enhanced and selective inactivation/killing of EC K99. Our results demonstrate a 

clinically significant ~3-log reduction in CFU [53] of EC K99 in the presence of GM3-

MNPs used in conjunction with AMF. To our knowledge, it is for the first time that 

sialic-acid derived glycoconjugate functionalized magnetic nanoparticles have been 

employed for specific killing of target bacteria in the presence of AMF. This study serves 
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as proof-of-concept that a high degree of selective bacterial killing can be obtained 

without using traditional antibiotics. 

 

2. Experimental Section: 

Synthesis of Magnetite Nanoparticles: Magnetite nanoparticles were synthesized 

via thermal decomposition of an organometallic precursor in a high boiling point organic 

solvent [54]. Iron (III) acetylacetonate (Alfa Aesar, 99%) (1.074g) was combined in a 3-

neck round-bottom with oleic acid (Alfa Aesar, 90%) (15ml) serving as both the solvent 

and the stabilizing ligand. The vessel was initially purged with N2 after which flow was 

adjusted to 0.1 L/min ensuring an inert environment.  The vessel was then heated to 

350°C and left to react for 3 hours. At 3 hours, the reaction was quenched by removing it 

from heat, and left to cool under inert atmosphere. The resulting particles were dispersed 

in minimal hexanes and precipitated using a mixture of 3:1 ethanol (Fisher, Anhydrous) 

to acetone (Alfa Aesar, 99.5%) (x3). Particles were dispersed in toluene (VWR, 99.5%) 

and run through an organic based GPC column (Bio-rad S-X polystyrene beads) to 

further remove excess oleic acid ligand [55]. TEM and size analysis was then done on the 

particles to ensure size specificity. 

Synthesis of Alkyne-PEO-PAA-Dopamine [19]: Poly(ethylene oxide) (PEO) 

synthesis: Ethylene oxide (Sigma Aldrich, 99.9%) distilled into a high pressure Parr 

reactor. Na-benzylphenone still dried tetrahydrofuran (THF, EMD Millipore, 99.9%) was 

injected along with a predetermined amount of an anionic initiator potassium bistrimethyl 

silyl amide (Sigma Aldrich, 1M in THF). The reaction was allowed to run for 72 hours 
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and was subsequently terminated by opening the reactor to atmosphere. The synthesized 

PEO was precipitated with diethyl ether (VWR, 99.9%) and washed (3x) by dispersing it 

in chloroform, precipitating the polymer, centrifuging it at 15,000 RCF for 10 minutes 

and pouring off the residual supernatant. The PEO was then dried under vacuum 

overnight. HNMR was performed to calculate molecular weight as well as to confirm the 

presence of the protected amine end-group.  

Under dry N2 atmosphere, hetero-functional PEO and sodium hydride (Sigma 

Aldrich, 95%), in slight excess, were dissolved in dry THF. This was allowed to react for 

30 minutes before an excess of propargyl bromide (Sigma Aldrich, 80% in toluene) was 

added drop-wise to the solution over 15 minutes. Once all of the propargyl bromide was 

added, the solution was allowed to stir for 12 hours at room temperature. The polymer 

was then purified by dissolution in chloroform and precipitation with diethyl ether (x3) 

and dried under vacuum for 12 hours. HNMR was performed to confirm the presence of 

an alkyne. 

Deprotection of the trimethyl silyl group was done in 1M hydrochloric acid 

(VWR) in methanol (VWR, 99+%) and allowed to react for 4 hours. The polymer 

methanol solution was diluted with DI water and the deprotected PEO was extracted (3x) 

with 50ml chloroform from which it was precipitated with diethyl ether and dried under 

vacuum. HNMR was performed to confirm the loss of the trimethylsilyl group. 

Coupling of the PEO to the poly(acrylic acid) (PAA, Sigma Aldrich Mn=1,800) was done 

by dissolving both in dry N,N-dimethylformamide (DMF, Sigma Aldrich, 99.8%) in a 5:1 

ratio. To this 1.1 excess (N-(3-dimethylaminopropyl)-N’-ethylcarodiimide hydrochloride 
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(EDC, TCI, 98%) as well as catalytic amounts of 4-(dimethylamino)pyridine (DMAP, 

Alfa Aesar, 99+%) were added. The solution was allowed to stir for 12 hours. The 

solution was filtered, further purified by dissolution in chloroform following precipitation 

with diethyl ether (x3) and then dried under vacuum. HNMR was done to confirm PEO-

PAA coupling. 

Attachment of the anchor group: Dopamine hydrochloride (Alfa Aesar, 99%) was 

dissolved in DMF along with a 10% molar excess of triethylamine (Alfa Aesar, 99%) and 

allowed to stir for 30 minutes. In a separate round-bottom the PEO-PAA was dissolved in 

DMF along with EDC and catalytic amounts of DMAP. To this the dopamine 

hydrochloride solution was added and the combined solution was allowed to stir for 12 

hours. The solution was then filtered, purified by dissolution in chloroform then 

precipitated in diethyl ether. The final product was dried under vacuum and analyzed via 

HNMR and IR to confirm the presence of the catechol. 

Ligand Exchange [17]: Both magnetite nanoparticles as well as the PEO-PAA-

dopamine were suspended separately in 5ml of chloroform. The particles were at an 

approximate concentration of 3mg/ml of Fe and the polymer at approximately 40mg/ml. 

The polymer was then transferred to a scintillation vial capped with a septum and placed 

in a sonication bath. The bath was turned on and over the course of 15 minutes the 

magnetic nanoparticle solution was injected into the polymer solution. Once injection 

was finished, the combined solution was allowed to further sonicate for 15 minutes. The 

solution was then removed and put on a shaker table for 72 hours. The chloroform was 

then removed via rotary evaporator and further dried under vacuum. Deionized water (DI 
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H2O) was then added and the vial was sonicated to help mediate suspension into the 

water. The water-based particles were then filtered through a 0.2-micron nylon filter to 

ensure large aggregates were not present. The solutions were then run through a GPC 

column (Bio-Rad P polyacrylamide beads) to separate excess polymer from the water 

dispersible particles. 

Click Chemistry [56]: The Cu(I) catalyzed Huisgen 1,3-dipolar cyclo-addition 

between the terminal polymer alkyne and the azido-GM3 was done in the aqueous phase 

with the azido-GM3 being the limiting reagent. A 2 mol% solution of Cu(II) sulfate 

(Sigma Aldrich, 99%) was combined with equivalent molar amounts of the THPTA 

(synthesized according to Hong et al.)  Cu chelating ligand and let to react for 10 minutes 

[57]. This was then transferred into the aqueous alkyne-particle suspension and the azide-

GM3 was then added. After both additions a 10mol% aqueous solution of (+)-sodium L- 

ascorbate (Sigma Aldrich 98+%) was added to facilitate the reduction of Cu(II) to Cu(I). 

The click reactions were left at room temperature for 12 hours, and were then purified 

using size exclusion chromatography [55]. 

Dynamic Light Scattering (DLS) and Zeta Potential Measurements: DLS was 

performed on the PEO-coated and GM3-coated magnetic nanoparticles to determine their 

hydrodynamic radius. The nanoparticle suspensions were diluted in water and placed into 

a cuvette. Three readings were taken at 25°C using Malvern Zetasizer Nano ZS to 

determine the intensity average size distribution and z-average diameter. Zeta-potential 

measurements of these nanoparticle suspensions were also determined using the same 
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instrument. The suspensions were diluted with water and added into zeta-cell and three 

measurements were taken at 25°C. 

Fourier Transform Infrared Spectroscopy (FTIR): Fourier transform infrared 

(FTIR) spectroscopy microscopy was done using a Thermo-Nicolet Magna 550 FTIR 

spectrometer equipped with a Thermo-NicPlan FTIR microscope. 16 Scans were done for 

both the sample and the background. Samples were prepared by dropping a small amount 

of the water suspended sample on a germanium plate and left to dry under a heat lamp for 

20 minutes. FTIR was done on the resulting films. 

Iron Concentration Determination: 50 µl of magnetite suspension was dissolved 

in concentrated HCl, reduced and complexed with 1,10-phenanthroline (Sigma-Aldrich, 

99%). UV-VIS was then performed to determine the amount of iron in the known volume 

[58, 59]. 

AMF Treatment of Bacterial Strains in the Presence of MNPs: As reported in 

our previous study [41], E. coli K99 (EC K99) was transformed with plasmid pGREEN 

(Carolina Biological Supply Company, NC, USA) carrying ampicillin-resistance marker 

gene. Avirulent E. coli O157:H7 strain B6914 (EC O157) was modified to be rifampicin 

resistant (100 µg/ml; TCI America, OR, USA) through gradient-plate technique as 

previously described [60]. EC K99 strain was routinely grown in tryptic soy broth/tryptic 

soy agar (TSB/TSA; EMD Millipore, MA, USA) supplemented with ampicillin (100 

µg/ml; TCI America, OR, USA) and EC O157 strain was grown in tryptic soy 

broth/tryptic soy agar (TSB/TSA) supplemented with rifampicin (100 µg/ml). For AMF 

treatment experiments, bacterial cultures were grown overnight under shaking conditions 
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(250 rpm) at 37°C in TSB supplemented with appropriate antibiotics. Later, the bacterial 

cells were washed and centrifuged thrice in 1X sterile phosphate buffer saline (PBS). 

Approximately, 5 x 107 CFU of bacterial cells were suspended in 1X PBS based on 

optical density (OD600) readings. Both the bacterial strains were mixed with different 

types of MNPs and at different concentrations of MNPs in a sterile microcentrifuge tube 

and this mixture was incubated at room temperature for 30 minutes under gentle shaking 

conditions to facilitate the binding interactions between bacterial adhesins and MNPs 

[41]. At the end of incubation time-period, the mixtures of MNPs and bacteria were 

transferred to sterile glass vial. This vial was then placed in chamber of the alternate 

magnetic field generating instrument (EasyHeat Induction Heating System - 

Ameritherm©) that is covered with 5-turn induction coil, which was connected to 

polycarbonate recirculating water-bath for maintaining the sample temperature (37°C) 

[61]. A fiber-optic temperature probe (Neoptix™) was inserted inside this chamber to 

continuously monitor the temperature. The working conditions of the AMF instrument 

for the experiments were as follows: 480 Amps current, 207KHz frequency and magnetic 

field strength of 31 KA/m. The field was measured using an AC magnetic field probe 

(AMF Life Systems, Auburn Hills, MI). The vial containing the mixture of MNPs and 

bacteria was then exposed to AMF treatment for different durations (30, 60, and 120 

minutes). Different groups of control experiments were as follows: 1) mixture containing 

only bacterial strains suspended in 1X PBS; 2) mixture containing bacteria and MNPs but 

no AMF exposure. After AMF treatment, the above-mentioned mixture was serially 

diluted in 1X sterile PBS and 100 µl of sample from each dilution tube was spread-plated 
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onto sterile TSA petri plates supplemented with appropriate antibiotics. Later, the TSA 

plates were incubated overnight at 37°C. Finally, the grown colonies on the TSA plates 

were counted and compared with control group plates and the reduction in colony counts 

was expressed as colony forming units per ml.  

AMF Treatment of Mixed Bacterial Cultures in the Presence of MNPs: To 

determine the targeted specificity of GM3-MNPs against EC K99 in mixed-culture 

conditions, both the strains of EC K99 (concentration - 5 x 107 CFU) and EC O157 

(concentration - 5 x 107 CFU) were mixed in a single microcentrifuge tube. GM3-MNPs 

(650 µg/ml) were added to this mixture and the tube was incubated for 30 minutes at 

room temperature under gentle shaking conditions. Later, AMF treatment (time - 120 

minutes) was applied to this tube as mentioned earlier. Control groups included 1) adding 

PEO-MNPs to mixture containing both strains of bacteria in the same tube and 

exposing/not exposing them to AMF; 2) adding GM3-MNPs to tube containing both 

bacterial strains but no AMF; 3) AMF exposure to tube containing only bacterial strains 

and no MNPs. Post-treatment, this mixture was serially diluted in 1X PBS and 100 µl of 

each dilution was spread plated in triplicates onto TSA plates supplemented with 

appropriate antibiotics. The petri plates were incubated overnight at 37°C and CFU 

reduction was compared to control group plates.  

Transmission Electron Microscopy (TEM) of Bacterial Strains: TEM imaging 

of bacteria was performed in order to study the interaction of MNPs and bacterial cell-

surface. The samples were prepared according to modified protocol [41, 62]. Post AMF 

treatment of bacterial cells (MNPs concentration - 650 µg/ml), the mixture samples were 
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removed from the glass vial and centrifuged at 7000 x g for 5 minutes. Later, the 

supernatant containing unbound MNPs was removed and the pellet was washed with 1x 

PBS in repetitive centrifugation cycles (3 times). After the final wash, the pellet 

containing MNPs and bacteria was fixed in cacodylate-buffered glutaraldehyde (3%, 

pH~7.2; Electron Microscopy Sciences, PA, USA) at 4°C for 12 hours. Subsequently, the 

sample was again washed in the cacodylate buffer thrice. 5 µl of the sample was dropped 

onto carbon-coated copper grid and was allowed to air dry for 4 hours. Finally, the 

sample was stained with 2% uranyl acetate (Electron Microscopy Sciences, PA, USA) 

solution for 15 seconds and blotted dry with filter paper. TEM images were taken on 

Hitachi H-7600 at 120 KV accelerating voltage and magnification ranging from 10,000X 

to 200,000X. 

Bacterial Live/Dead Fluorescence Assay: To qualitatively determine the cell 

membrane integrity of bacterial cells, Live/Dead fluorescence assay were performed 

using BacLight™ Bacterial Viability Kit (L7007, Molecular Probes, Invitrogen, OR, 

USA). Freshly grown cells of EC K99 and EC O157 (5 x 107 CFU) in 1X PBS were 

mixed with PEO-MNPs and GM3-MNPs (Concentration - 650 µg/ml) separately in 

different microcentrifuge tubes. The mixture was allowed to incubate at room 

temperature for 30 minutes with gentle mixing after every 5 minutes. The tubes were then 

exposed to AMF therapy for 120 minutes. The samples were then prepared according to 

manufacturer’s protocol. Later, both fluorescent dyes i.e. SYTO 9 and Propidium Iodide 

were added to the samples. Finally, the samples were viewed under fluorescence 

microscope under different filters (SYTO 9 - Excitation/Emission - 485/510 nm; 
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Propidium Iodide - Excitation/Emission - 485/630 nm) at 400X magnification. The 

images obtained under different filters were merged in ImageJ software (NIH, USA). 

Control group samples were not exposed to MNPs/AMF.  

Microbial ATP Cell-Viability Assay: To measure the overall intracellular ATP 

levels of bacterial species (EC K99 and EC O157) before and after AMF treatment in the 

presence/absence of MNPs (concentration - 650 µg/ml, AMF treatment time - 120 

minutes), microbial BacTiter-Glo™ (Promega, Madison, WI) assay kit was used [23]. 

The assay was performed according to manufacturer’s protocol with a small modification 

for samples containing MNPs. After AMF treatment of bacteria in the presence of MNPs, 

the samples were centrifuged at 10,000 x g for 5 minutes. The supernatant containing 

unbound MNPs was removed and the resultant pellet was washed with 1X PBS thrice in 

subsequent centrifugation cycles. Finally, the samples were suspended back in 1X PBS 

and the entire assay was performed in 96-well white-flat bottom plates (Corning®) in 

triplicates. Also, wells containing MNPs without any bacterial cells were used as control 

blanks to check for MNPs interference with the assay reagent, if any. At the end of this 

assay, the plate was read in a micro-plate reader with luminescence capability (Synergy 

Hybrid H1, Biotek®) and the obtained results were expressed in relative luminescent units 

(RLUs).    

Statistical Analysis: All the statistical analysis was performed using Graphpad 

Prism software (V 5.0, CA, USA). All the experiments were done in triplicates and data 

are expressed as Mean±SD. Statistically significant differences between the groups were 

evaluated by performing ANOVA. Post hoc group comparisons were calculated through 
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Bonferroni post-tests. Results showing P values of ≤0.05, <0.01, and <0.001 were 

considered to be statistically significant.  

3. Results and Discussion: 

3.1. Synthesis of GM3-MNPs: 

Magnetite nanoparticles were synthesized using a one-pot thermal decomposition 

of iron (III) acetylacetonate and oleic acid [1, 2]. Particles had an average diameter of 

23.7 nm with a standard deviation of 1.55 nm (Figure 3.2 A and B). The moment vs. field 

(MvH) (Figure 3.3) measurement was done on the particles to confirm the super-

paramagnetic behavior of the MNPs. Polymer design was based on work by Stone et al. 

where a multi-anchored binding approach showed increased stability in comparison to 

polymer ligands with a single binding moiety (figure 3.1) [3].  
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Figure 3.1 Left: 1) Anionic ring opening of ethylene oxide, 2) alkyne functionalization with propargyl bromide, 3) 

deprotection of primary amine, 4) coupling of PEO to PAA, 5) coupling of dopamine hydrochloride to the PEO-PAA. 

Right: Click reaction between polymer coated particles and GM3 molecule. 

 

Figure 3.2 Magnetite nanoparticles as synthesized before functionalization with PEO-PAA-dopamine polymer. A – 

Representative TEM image of the particles. B – Histogram depicting the particle size distribution. 

 

Figure 3.3 Moment vs. Field (MvH) loop showing the superparamagnetic behavior of the magnetite nanoparticles 

(Msat ~ 53 emu/g Fe). 

In this work, however, the chosen catechol was not nitroDOPA but dopamine. HNMR of 

the polymer was used to confirm both the structure and molecular weight of the PEO-

PAA-dopamine macromolecule (Figure 3.4).  By using the multi-anchored approach, the 

stability in salt and protein buffer solutions is retained even when using dopamine as the 

A B 
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anchoring group [4, 5]. Hydrodynamic diameter and zeta potential of the PEO-MNPs 

before and after click-coupling of GM3 are reported in Table 3.1.  

 

Figure 3.4 HNMR of the final PEO-PAA-dopamine - PAA backbone protons at 1.39 ppm - 1.08 ppm. Alkyne protons 

at 4.18 ppm and 2.42 ppm. PEO repeat protons at 3.62 ppm. Dopamine aromatic proton signal partially masked by the 

CDCl3 peak, with alkane protons showing up at 2.8 ppm. Reference was tetramethylsilane at ~0 ppm.  

 

 
Hydrodynamic Diameter Z Avg. 

(nm) 
 
 
 
 

Zeta-potential 
(mV) 

PEO-MNPs 78.8 -8.73 
GM3-MNPs 88.8 -7.68 

 

Table 3.1 Dynamic light scattering and zeta-potential measurements - Hydrodynamic diameter and zeta potential as 

measured by dynamic light scattering before and after GM3 conjugation. 
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The specific absorption rate (SAR) value for the MNPs was measured to be 53.4 W/g 

(bulk temperature rise of solution from 37°C to 42°C), which is similar to the value for 

magnetite reported by Ma et al [6]. The increase in the hydrodynamic diameter indicates 

the GM3 glycoconjugate was successfully coupled to the PEO-MNPs. Attenuated total 

reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) also confirmed the 

GM3 coupling went to completion with the disappearance of the azide peak from GM3 at 

~2110 cm-1 and the appearance of a broad alcohol peak in the GM3-MNPs spectrum from 

3620-3170 cm-1 (Figure 3.5) [7]. 

 

Figure 3.5 FTIR spectra of particles before GM3 conjugation (A), GM3 molecule (B), and after conjugation (C). The 

lack of the azide peak in C at 2100 cm-1 indicates purification of unbound GM3 after conjugation was successful. 
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3.2 MagMED Inactivation of Bacteria: 

The efficacy of GM3-MNPs for specific inactivation of ETEC K99 via MagMED 

was compared to that of enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strain 

since the two strains showed different receptor-binding specificities and EHEC O157:H7 

strains are rarely harbored by pigs [8]. Another E. coli strain ORN178 expressing 

mannose-binding type-1 fimbrial FimH adhesins [9-13] was also evaluated and served as 

a negative control (data not shown). The MagMED inactivation of bacteria was assessed 

using a colony forming unit (CFU) reduction assay to determine the number of viable 

cells (CFUs) remained after treatment. 

 

3.2.1 MagMED Inactivation of EC K99: 

The efficacy of AMF mediated killing of the target bacteria, EC K99, in the 

presence of GM3-MNPs in a concentration- and time-dependent manner was evaluated. 

GM3-MNPs were mixed with EC K99 and incubated at room temperature for 30 minutes 

to facilitate the binding between GM3 molecules present on the surface of GM3-MNPs 

and adhesin molecules of EC K99 [7]. PEO-MNPs were used as an internal control group 

to evaluate the role of the targeting moiety GM3. The magnetic field and frequency used 

in the AMF therapy remained constant for all treatment groups (31 kA/m and 207kHz). 

Figure 3.6 A shows the final counts of CFU/ml of EC K99 after treatment. The reduction 

in CFU/ml was found to be both time and MNPs concentration dependent. After 30 

minutes of AMF treatment, ~1-log reduction in CFU/ml of EC K99 was observed at a 

particle concentration of 650 µg Fe/ml. After 60 minutes of AMF treatment, a significant 
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~2-log reduction of EC K99 (p<0.01) was observed for both 280 µg Fe/ml and 650 µg 

Fe/ml concentrations of GM3-MNPs. Finally, at the end of 120 minutes of AMF 

treatment, an extremely significant ~3-log reduction in CFU/ml of EC K99 (p<0.001) 

was achieved with particle concentrations of 650 µg Fe/ml. Moreover, no significant 

killing of EC K99 was observed in experimental groups not exposed to AMF (Figure 3.7 

A) indicating the non-toxicity of PEO-MNPs and GM3-MNPs to EC K99.  

 

Figure 3.6 Colony Forming Unit (CFU) of E. coli strains after AMF treatment at different concentrations of MNPs and 

different time-intervals; A - CFU/ml of EC K99 after AMF treatment; B - CFU/ml of EC O157 after AMF treatment. 

Data is expressed as Mean ± SD (n=3); Statistical analysis – Analysis of Variance (ANOVA); * p-value <0.05,  ** p-

value <0.01, and *** p-value <0.001 
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Figure 3.7 CFU/ml assay to determine viability of E. coli strains in the absence of AMF at different concentrations of 

MNPs and at different time-intervals: A - CFU/ml of EC K99 in the absence of AMF; B - CFU/ml of EC O157 in the 

absence of AMF. Data is expressed as Mean ± SD (n=3); Statistical analysis – Analysis of Variance (ANOVA). 

 

Thus, targeted approach in AMF exposure can explain such effective reduction in 

CFU/ml of EC K99. Several research studies have shown similar results in reduction of 

bacterial population through antibody-targeted photo-inactivation process via near-

infrared laser (NIR) in the presence of nanoparticles in both in vitro and in vivo settings 

[14-16]. In our previous work, we have shown that sialic-acid sequences of GM3 

molecule (Neu5Ac(α2-3)-Gal-(β1-4)Glcβ-sp) can specifically interact with S-type 
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fimbrial proteins/adhesins present on the outer surface of EC K99 and induce rapid 

clustering of EC K99 [7, 17]. The presence of FanC, a major protein sub-unit present in 

S-type fimbriae, is primarily responsible for the specific attachment of EC K99 onto the 

ganglioside receptors, which are present on the host-cell surface [18]. Therefore, it is 

likely that GM3-MNPs-induced bacterial aggregation plays a major role in the applied 

method. Since GM3-MNPs are attached to or are in extremely near vicinity of EC K99, 

one can expect to see increased delivery of energy from the particles into the bacterial 

cells. Some reports have also suggested highly localized temperature increase taking 

place in the biological systems in the presence of MNPs when using AMF [19-21]. For 

example, Huang et al. functionalized the surface of MNPs with fluorophores that act as 

molecular temperature probes while remotely activating ion channels/neurons in the 

presence of AMF [22]. Also, the observed drug release due to phase changes in the 

polymer near the surface of the particle suggests a local temperature increase [23]. In 

these studies, too, the overall temperature of bulk particle suspensions remained constant 

or increased marginally. However, the exact mechanisms of how energy from the particle 

interferes with these pathways are still unknown and are in need of better 

characterization.  

In the present study, the experimental group comprising of 140 µg Fe/ml that 

underwent AMF treatment did not show significant reduction in CFU/ml of EC K99 after 

120 minutes of exposure. One possible explanation for this might have to do with the 

number of particles present in different concentrations of the GM3-MNPs. The lowest 

concentration group would have the least amount of MNPs. Thus, they might not be able 
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to efficiently deliver the energy of the MNPs into the bacterial cells. PEO-MNPs at all 

concentrations and all time-points did not induce significant decrease in the colony 

counts of EC K99. 

3.2.2 MagMED Inactivation of EC O157: 

Figure 3.6 B shows the overall reduction in CFU/ml of EC O157 after exposure to 

AMF in the presence of PEO-MNPs or GM3-MNPs. A ~1-log reduction in CFU/ml was 

observed with both PEO-MNPs and GM3-MNPs at particle concentration of 650 µg 

Fe/ml for 60 and 120 minutes. All other MNPs concentrations and time-points showed no 

significant reduction in colony counts of EC O157. No reduction in CFU/ml of EC O157 

was observed in the absence of AMF (Figure 3.7 B) indicating the non-toxicity of PEO-

MNPs and GM3-MNPs to EC O157. Several groups have observed certain degree of 

non-specific electrostatic interactions occurring between bacteria and nanoparticles when 

mixed with relatively higher concentrations of nanoparticles [24, 25]. Hence, it is 

possible that due to such non-specific interactions along with high MNPs-to-bacteria 

ratio, few MNPs might come in contact or close proximity with EC O157 resulting in 

delivery of some magnetic energy into these cells causing a limited ~1-log reduction in 

CFU. Bacterial control groups exposed to AMF in the absence of MNPs showed no 

changes in the overall CFU/ml after 120 minutes of exposure (Figure 3.8 A and B) 

indicating the non-lethal effect of AMF. 
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Figure 3.8 Survival rate of E. coli strains at 37°C in the absence of MNPs at different time-intervals: A - CFU/ml of 

EC K99 in the absence/presence of AMF; B - CFU/ml of EC O157 in the absence/presence of AMF. Data is expressed 

as Mean ± SD (n=3); Statistical analysis – Analysis of Variance (ANOVA). 

 

Recently, Nguyen et al. conducted a similar type of study wherein they showed 

that iron-oxide nanoparticles could rapidly induce biofilm dispersal in Pseudomonas 

aeruginosa (P. aeruginosa) through application of an alternating magnetic field [26]. 

Their study showed rapid increase in the temperature of buffer solution when 

nanoparticles were mixed with them and exposed to magnetic field. Similarly, another 

study reported 4-log reduction in biofilm of P. aeruginosa when exposed AC magnetic 

field in the presence of iron-oxide nanoparticles [27]. The authors have attributed this 

reduction in biofilm due to quick increase in bulk temperature of the system through 

magnetic hyperthermia. Thomas et al. used magnetic fluid hyperthermia in the presence 

of carboxylic-acid stabilized iron-oxide nanoparticles and achieved ~7-log reduction in 

population of Staphylococcus aureus [28]. In all of the aforementioned studies, the 

killing/inactivation of bacterial species/biofilms was attained solely due to drastic 
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increase in the bulk temperature of the working system through nanoparticles and 

hyperthermia. It would be worthwhile to note that the aforementioned studies were 

conducted in the presence of relatively high concentrations of MNPs (ranging from 1 

mg/ml to 50 mg/ml) and higher instrument frequencies (e.g., up to 1.05 MHz). Using 

such high concentrations of MNPs in humans might cause serious concerns with regard 

to toxicity of MNPs. Also, none of the above listed studies utilized any kind of targeting 

moiety on nanoparticles for attaining specificity. On the other end, this work 

demonstrates significant killing of EC K99 at much lower concentrations (maximum 

concentration - 650 µg Fe/ml) and at relatively benign frequencies (i.e., 207 kHz). These 

results further support our hypothesis that the combination of magnetic fields and 

presence of GM3-MNPs are responsible for reduction in CFU/ml of EC K99 via targeted 

AMF therapy. The reported CFU reduction within 120 minutes (i.e., 3-log in 2 hours) 

treatment compares favorably to conventional antibiotic treatments. For examples, Silva 

et al. reported that ciprofloxacin at concentrations corresponding to 1x MIC (Minimal 

Inhibitory Concentration) reduced E. coli population by 1-log over a 24-h study while at 

2x and 4x times the MIC value, they observed a ~2.5-log reduction in the first 2 hours 

and a 4-log reduction after 24 hours of treatment [29]. In a similar study, Drago et al. 

observed no reduction of E. coli population at 1x MIC with levofloxacin or ciprofloxacin 

over a 24-h period while a 2-log and 3-log reduction at 4x MIC was observed 3 hours and 

24 hours after treatment, respectively [30]. It is conceivable that with fine-tuned 

MagMED treatment regimen, it is possible to improve the treatment outcomes of 

infections caused by multiple-drug resistant bacteria. 
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As mentioned earlier, a moderate temperature increase (37°C to 42°C) was 

observed in the bulk particle suspension while measuring SAR values in the presence of 

magnetic field. To prove that the significant log-reduction of EC K99 is not due to 

temperature increase alone, a CFU/ml assay on both the E. coli strains at elevated 

temperature of 43°C was performed. The bacterial strains were incubated with PEO-

MNPs and GM3-MNPs for 120 minutes and this mixture was kept inside the holding 

chamber of the AMF instrument by maintaining a constant temperature of 43°C for 120 

minutes in the absence of magnetic field. As seen in Figure 3.9 A and B, no significant 

changes in CFU/ml of EC K99 and EC O157 were observed after exposing the bacteria to 

MNPs and at elevated temperatures for 120 minutes. This strongly suggests that 

inactivation of the bacteria cannot be attributed to temperature alone. 

 

Figure 3.9 Evaluating the effect of temperature increase on killing-rate of E. coli strains in the absence of AMF (time - 

120 minutes): A - Killing-rate of EC K99 at 37°C/43°C in the presence of MNPs (concentration - 650 µg Fe/ml); B - 

Killing-rate of EC O157 at 37°C/43°C in the presence of MNPs (concentration - 650 µg Fe/ml). Data is expressed as 

Mean ± SD (n=3); Statistical analysis - 2-Way Analysis of Variance (ANOVA). 
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3.2.3 MagMED Inactivation of EC K99 and EC O157 in Mixed-Culture: 

Pathogens interact with host in a heterogeneous environment; the efficacy of 

utilizing MagMED for killing of the target bacteria EC K99 was evaluated in a mixed-

culture condition. Both strains of the E. coli cultures were mixed in the same container at 

equal concentrations and added either the GM3-MNPs or the PEO-MNPs at a maximum 

concentration of 650 µg Fe/ml. These mixtures underwent the same AMF exposure as 

described earlier for 120 minutes and the CFU/ml reduction assay was done to determine 

the inactivation rates of both strains of E. coli. As seen in Figure 3.10 A, a significant 

~2.5-log reduction (p<0.001) in CFU/ml of EC K99 in the presence of GM3-MNPs and 

AMF exposure was observed. The other mixed culture containing PEO-MNPs did not 

show significant difference in CFU/ml numbers compared to controls in the 

absence/presence of AMF. In addition, ~1-log reduction (p<0.05) in CFU/ml of EC O157 

was seen when the mixed-cultures were added with PEO-MNPs or GM3-MNPs and 

underwent AMF treatment for 120 minutes (Figure 3.10 B). This reduction in CFU/ml of 

EC O157 is comparable in both mixed-culture and pure-culture experiments. Compared 

to CFU/ml assay results of EC K99 in pure bacterial culture experiments where a ~3-log 

reduction was observed, the results obtained from mixed-culture experiments showed a 

~2.5-log reduction. This minor difference could be the result of a change in nanoparticle-

to-bacterium ratio in mixed-culture experiments. Since the nanoparticle-to-bacterium 

ratio was reduced by half under mixed-culture settings, the probability of GM3-MNPs 

interacting with EC K99 as well as EC O157 is also slightly reduced than in pure culture 
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settings. To the best of our knowledge, this is the first report wherein killing of targeted 

bacterial strains via MagMED has been demonstrated in mixed-culture settings. 

 

Figure 3.10 Colony Forming Unit (CFU) of E. coli strains in mixed-culture conditions exposed to AMF for 120 

minutes in the presence of MNPs (650 µg Fe/ml); A - CFU/ml of EC K99 after AMF treatment; B - CFU/ml of EC 

O157 after AMF treatment. Data is expressed as Mean ± SD (n=3); Statistical analysis - 2-Way Analysis of Variance 

(ANOVA); * p-value <0.05, ** p-value <0.01, and *** p-value <0.001. 

3.3 Investigating Interactions between GM3-MNPs and EC K99 via Transmission 

Electron Microscopy (TEM): 

One of the many causes for inactivation/killing of bacterial cells could be due to 

physical damages of bacterial cell membrane that results from the presence of different 

types of nanoparticles [31, 32]. In order to investigate the bacterial-nanoparticle 

interactions between GM3-MNPs and EC K99, TEM analysis on the samples was 

performed before and after AMF exposure. Since the maximum reduction in CFU/ml of 

EC K99 was achieved in the presence of 650 µg Fe/ml MNPs after 120 minutes, the same 
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experimental conditions to investigate if AMF exposure can exert any specific 

morphological changes on the bacterial cell membrane of EC K99 was followed.  

Visualizing TEM images, highly specific interactions taking place between GM3-MNPs 

and outer membrane of EC K99 was observed. Figure 3.11 B shows the extent of GM3-

MNPs specifically attached to EC K99. The entire cell-surface of the bacteria was 

covered with GM3-MNPs before applying AMF. There was no visible morphological 

change seen on the bacterial cell surface of EC K99, which could also indicate that the 

nanoparticle system does not have an apparent inherent toxicity by itself towards 

bacteria.  

 

Figure 3.11 TEM images of GM3-MNPs induced bacterial membrane damage of E. coli strains: A, B, E, F - Before 

AMF, and C, D, G, H - after AMF treatment for 120 minutes. Concentration of MNPs - 650 µg Fe/ml. Scale bar is 500 

nm. 

 



 87 

Also, GM3-MNPs induced bacterial aggregation of EC K99 was clearly visible in TEM 

images (Figure 3.12 B). In contrast, after applying AMF, the cell structure of EC K99 

was seen to be extremely damaged as seen in Figure 3.10 D. Please also note that the 

diameters of EC K99 were reduced to less than 0.5x0.25 µm from the typical 1x0.5 µm. 

The nanoparticles were found internalized in cells of EC K99 after rupturing the cell 

membrane. Concurrent findings were also reported in a few studies with regard to 

destruction of bacterial cell membrane via targeted photo-thermal lysis in the presence of 

nanoparticles [33, 34]. Even after AMF exposure, GM3-MNPs were found to remain 

attached onto bacterial cell debris, which suggests strong binding interactions between 

GM3-MNPs and adhesin molecules of EC K99 present on the bacterial cell surface. 

Interestingly, it was observed that both the polar ends of EC K99 were found to be much 

more deformed and broken (Figure 3.12 A and B). However, not much damage was seen 

towards the horizontal length of EC K99. A large quantity of cell membrane debris was 

observed in the TEM analysis suggesting that EC K99 would have undergone thermal 

lysis after AMF exposure possibly due to highly localized temperature increase. 

Moreover, both PEO-MNPs and GM3-MNPs did not show any substantial attachment to 

EC O157 cells (Figure 3.11 E to H). Even the cell membrane morphologies looked 

similar to control group cells that were exposed to AMF without any MNPs. Thus, the 

TEM analysis and CFU/ml assays support our initial findings regarding the specific 

interactions occurring between GM3-MNPs and EC K99 and that GM3-MNPs found on 

bacterial surface of EC K99 play an important role in lysing the bacterial cells 

(bactericidal) when exposed to AMF. 
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Figure 3.12 TEM imaging of EC K99 cells after AMF treatment in the presence of GM3-MNPs: A - EC K99 cells 

showing lysis/breakage of their polar ends (Scale bar - 100 nm); B - EC K99 cells showing aggregation and breakage 

induced by presence of GM3-MNPs and AMF (Scale bar - 500 nm). Magnification ranges between 50,000X to 

150,000X. 

3.4 Bacterial Live/Dead Fluorescence Assay:  

One of the common assays employed to check the membrane integrity of bacterial 

cells is to use propidium iodide dye [35]. Since the TEM analysis showed extensive 

membrane damage of EC K99 cells after AMF treatment, to further support these results, 

bacterial live/dead assays were performed. E. coli strains, after AMF exposure in the 

presence of MNPs, were stained using mixture of SYTO 9 and propidium iodide dyes. 

SYTO 9 is a green-fluorescent dye that stains both live and dead bacterial cells by 

entering inside them. Conversely, propidium iodide can only permeate those bacterial 

cells whose cell membrane structures have been compromised and stains them red. For 

this assay, the bacterial strains were mixed with different types of MNPs. Figure 3.13 

shows the results obtained after performing live/dead-staining assays.  
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Figure 3.13 Live/Dead Staining Assay using SYTO 9 and Propidium iodide dyes. Both strains EC K99 and EC O157 

are stained with mixture containing the above-mentioned dyes. The bacterial strains were initially mixed with PEO-

MNPs and GM3-MNPs (concentration - 650 µg Fe/ml) and then exposed to AMF treatment for 120 minutes. Live 

bacterial cells appear green in color and dead cells appear red in color. All the images are merged together for both 

green and red channel filters of the microscope. A, B, E, and F represent E. coli cells incubated with MNPs but without 

AMF treatment. C, D, G, and H represent E. coli cells incubated with MNPs in the presence of AMF. Magnification - 

400X, Scale bar - 100 µm.  

 

As clearly seen in Figure 3.13 D, more than 95% of EC K99 cells were stained 

red in color after exposure to AMF in the presence of GM3-MNPs. This proves that 

indeed EC K99 cells experienced extensive cell membrane damage due to AMF. Also, 

~50% of EC O157 cells were stained red which suggests partial membrane damage 

(Figure 3.13 G-H). In contrast, both E. coli strains stained green in color in the presence 

of MNPs but without exposure to AMF (Figure 3.13 A, B, E, F). The control group of 

bacterial cells in the absence of both MNPs and AMF also stained green in color (Figure 

3.14 A and B). These results further support the non-toxic nature of the nanoparticles. 

Several research groups obtained similar results for live/dead staining assay when 
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magnetic nanoparticles were used as antibacterial agents [25, 26, 36]. These results 

correlate with those obtained in CFU reduction assay wherein EC K99 and EC O157 

showed ~3-log reduction and ~1-log reduction in CFU/ml, respectively, after 120 minutes 

of AMF treatment in the presence of GM3-MNPs. 

 

Figure 3.14 Live/Dead Staining Assay using SYTO 9 and Propidium iodide dyes: A - EC K99 in the absence of MNPs 

and no AMF; B - EC O157 in the absence of MNPs and no AMF. Magnification - 400X, Scale bar - 100 µm. 

 

3.5 ATP Assay: 

The amount of ATP level present in any cell determines its metabolic state. In the 

presence of toxic materials/chemicals, the metabolic state of the cell can change and the 

intracellular ATP levels could drop because of toxicity. Higher levels of intracellular 

ATP levels indicate that the cell is metabolically active and their levels directly correlate 

to the actual number of bacterial cells present in the solution. Currently, several 

antibiotics available in the market exert their effects on targeting bacterial membrane 
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components to eradicate infections [37, 38]. To further demonstrate and explain the effect 

of AMF exposure on the biochemical metabolism of the inner cell membrane, an ATP 

assay based on luminescence was conducted to evaluate final ATP levels of EC K99 and 

EC O157 after exposing them to AMF for 120 minutes in the presence of different types 

of MNPs at their highest concentrations (650 µg Fe/ml). As seen in Figure 3.15 A, a 

substantial decrease in intracellular ATP levels of EC K99 (p<0.001) after 120 minutes of 

AMF treatment can be observed in the presence of GM3-MNPs only while EC K99 in the 

presence of PEO-MNPs with/without AMF did not show significant changes in ATP 

levels. In contrast, the intracellular levels of EC O157 were found to be slightly reduced 

both in the presence of PEO-MNPs or GM3-MNPs with AMF exposure (Figure 3.15 B). 

A similar decrease in ATP levels was reported in P. aeruginosa when they were 

subjected to magnetic induction in the presence of iron-oxide nanoparticles [26]. One 

possible explanation for reduced ATP levels in the presence of AMF exposure can be the 

decline in membrane potential of bacteria, which could lead to interruption in ATP 

synthesis mechanisms (e.g., reduced proton motive force), membrane depolarization and 

eventually cell-death [32, 39, 40]. 



 92 

 

Figure 3.15 Intracellular ATP levels of bacterial strains in the presence of MNPs using BacTiter Glo. A - ATP levels of 

EC K99 after 120 minutes of AMF treatment in the presence of MNPs; B - ATP levels of EC O157 after 120 minutes 

of AMF treatment in the presence of MNPs. Data expressed as Mean ± SD (n = 3); Statistical Analysis - 2-Way 

Analysis of Variance (ANOVA). * p-value <0.05,  **  p-value <0.01, and *** p-value <0.001. 

It is worth noting that EC O157 when treated with AMF in the presence of PEO-

MNPs or GM3-MNPs resulting in similar limited level of cell damage, reductions in 

viable cells and intracellular ATPs. These results indicated that the changes are 

independent of the GM3 functional groups present on the surface of MNPs. The 

susceptibility of EC O157 to localized temperature changes due to proximity could be 

due to a lower thermal decimal reduction time (D-value) of EC O157 than that of EC K99 

[41].   
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4. Conclusion: 

Proof-of-concept multi-anchored glycoconjugate GM3-MNPs that have high 

affinity to adhesin of EC K99 were synthesized. The prepared nanoparticle system can 

specifically interact with adhesin molecules of EC K99 and cause agglutination through 

nanoparticle-bacteria complex. Applying AMF treatment to such complex caused 

significant reduction in viability of targeted bacteria EC K99 in both pure-culture and 

mixed-cultures settings due to possible highly localized temperature increase. Exposure 

to such conditions resulting in compromised membrane integrity of EC K99 as 

determined through TEM imaging and Live/Dead staining. Moreover, GM3-MNPs 

coupled with AMF resulted in significant decrease in the overall intra-cellular ATP levels 

of the bacterium. Hence, the unique multi-anchored nanoparticle system in the presence 

of AMF can be effectively used as novel non-antibiotic platform for local and selective 

inactivation of the target bacteria in biological systems without affecting the viability of 

nearby cells/tissues. In the event of gastro-intestinal (GI) tract infections caused by ETEC 

pathogens, administered antibiotics can disrupt/destroy beneficial gut micro-flora in 

addition to pathogens. It could cause various side effects in the human body along with 

giving rise to antibiotic-resistant bacterial strains. The presented system can find useful 

applications in treating such infections in animals and humans and in conditions when 

administered antibiotics, especially those of the last-line-of-defense drugs, fail to 

eradicate the infections due to drug-resistance. Future studies will involve optimization of 

particle parameters including nanoparticle core-size and polymer coatings, as well as a 

detailed investigation on the effects of field strength and frequency to maximize killing 
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rate of clinically relevant multi-drug resistant bacterial pathogens. Additionally, 

biocompatibility of our nanoparticle system will be evaluated in human cell-lines and 

small animal models. 
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Chapter 4 

Assessing the Biocompatibility of Multi-anchored Glycoconjugate 

Functionalized Magnetic Nanoparticles in Normal Human Colon Cell-

line CCD-18Co 

[Parts of this chapter are taken directly or adapted from work published in Advanced 

Functional Materials journal by Raval et al. (2017); DOI: 10.1002/adfm.201701473. 

Copyrights 2017 - Reproduced by permission of John Wiley and Sons. Website link: 

http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201701473/abstract] 

 

1. Introduction: 

In the last two decades, nanotechnology has evolved to be one of the most 

promising scientific areas, which have a huge potential to drastically change the facet of 

biomedical world in terms of its applicability. As a result, there has been a continuous 

rise in the amount of literature reported that deals with the application of nanomaterials to 

treat various human diseases [1, 2]. Application of nanomaterials in biomedical field, 

commonly referred to 'Nanomedicine', has attracted huge investments (in billions) in 

research & development funding both in the US and European counterparts. For example, 

the annual budget of National Nanotechnology Initiative (NNI) of US government grew 

exponentially from $0.5 billion in 2001 to $24 billion in 2017 [3, 4]. Some of the widely 

used nanoparticles for biomedical applications include gold nanoparticles, silver 

nanoparticles, magnetic nanoparticles, quantum dots, etc. These nanoparticles have been 
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used for targeted drug and gene delivery (e.g., delivery of anticancer drugs), as 

antibacterial agents, as vaccines, in various bio-imaging techniques like magnetic 

resonance imaging (MRI), positron emission tomography (PET) & computerized 

tomography (CT), and in diagnostics among several other applications [5-9].  Despite the 

rapid splurge in funding of nanoparticle research aimed for treating several diseases, not 

much success has been achieved in terms of their effective use in clinical settings [4, 10]. 

Currently, there exists a huge fundamental gap in translating the laboratory-based 

results of different nanoparticles that can certainly be used in bench-to-bedside scenarios. 

Some of the major factors that prevent their clinical use are difficulties in successful 

synthesis of nanoparticles that have consistent physical and chemical properties, reduced 

stability of nanoparticles in biological environment, poor understanding of the 

interactions which occurs between nanoparticles, biomolecules, and body fluids, and 

lastly the safety and biocompatibility of nanoparticles inside human body [11, 12]. 

Amongst all of the above stated issues, in this chapter, we will be mainly focusing on 

how surface functionalization of magnetic nanoparticles can affect its interaction with 

biological environment. Among various metallic nanoparticles, magnetic nanoparticles 

(MNPs), on account of their small size, unique magnetic properties and high degree of 

biocompatibility, have garnered major attention in nanomaterials research due to their 

multitude biomedical applications, which include but are not limited to targeted drug 

delivery, magnetic hyperthermia, magnetic resonance imaging, cell separation, cancer 

therapy, diagnostics and pathogen detection [13-15]. In fact, MNPs are already used 

clinically as MRI contrast agents for therapeutic purposes [6, 16]. Recent research efforts 
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have largely concentrated on manipulating the surface chemical properties of MNPs so as 

to render them high stability in biological rich environment. During the typical synthesis 

procedure, the resultant MNPs are generally found to be hydrophobic in nature and hence 

it is colloidically unstable in biological environment, thereby, not suitable in clinical 

applications [17, 18]. Making such MNPs hydrophilic is of prime importance in order to 

achieve chemically stable colloidal suspension of MNPs. For this purpose, surface 

coating of MNPs is essential and functionalizing the core of MNPs by robust 

monomeric/polymeric stabilizers typically does it. Also, these polymers should be 

biologically inert in nature so as to provide electrostatic and or stearic repulsion and 

'stealth' properties to MNPs in presence of protein-rich environment and at the same time 

they should be able to circulate in the body for prolonged time duration until they reach 

their targeted location without triggering body's immune response [19, 20].  

Some of the commonly employed monomeric agents that can easily bind to the 

core of MNPs include carboxylic acids, alcohols, sulfates, phosphates, and amines [18, 

21-23]. Polymeric stabilizers utilized for surface stabilization of MNPs usually include 

binding groups such as polyethylene glycol (PEG)/polyethylene oxide (PEO), alginate, 

dextran, poly vinyl alcohol (PVA), chitosan, etc. [24-27]. Extensive studies have been 

done on synthesized MNPs that has PEO polymer as the main stabilizing agent. PEO is 

one of the universally accepted polymers that have been approved by the FDA. Some of 

major advantages of attaching PEO onto nanoparticles, which make them extremely 

suitable for clinical applications, are improved stability of the entire nanoparticle system 

in biological environment, imparting 'stealth' properties to MNPs and extended blood 
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circulation time, amphiphilic in nature, soluble in water as well as in many other solvents, 

can act as carrier molecule in different pharmaceutical products and the ease of 

manipulating its surface chemistry for wide-spread use in biomedical applications [17, 

26, 28, 29]. However, in the presence of high salt & protein concentration, few of the 

above-mentioned binding groups tend to undergo desorption process and can be easily 

displaced from the surface of MNPs core (generally made up of iron-oxide). More 

specifically, anionic phosphates and silicates present in bodily fluids and also on the 

surface of several peptide molecules have high affinity towards iron-oxide core of MNPs 

and hence can lead to colloidal instability and rapid aggregation of MNPs [17]. In order 

to overcome this issue, recent studies have suggest that catechol-based anchor groups can 

inhibit non-specific interactions of other reactive groups towards the iron-oxide core and 

this has greatly improved the stability of MNPs in physiological fluids [30-34]. These 

catechol groups frequently use dopamine-based molecules that can tightly bind to metal 

oxide cores (especially Fe3O4), and can also be effortlessly attached to polymeric agents 

via different chemistry routes.   

Several studies have presented MNPs coated with appropriate polymer stabilizing 

agents to be highly biocompatible and biodegradable in in vitro and in vivo [9, 15, 35, 

36]. The main advantage of using MNPs for clinical applications is that, compared to 

other nanoparticles, MNPs can be metabolized and completely removed/excreted from 

the body through various systemic and cellular iron homeostasis pathways [37, 38]. 

However, it should be carefully noted that the biocompatibility of MNPs is highly 

dependent on multitude of factors like core size, final size of MNPs, surface chemistry of 
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the MNPs, adsorbed proteins on the surface of MNPs, given dosage, biodistribution, and 

final localization of MNPs in the body among several others [37, 39-41]. In spite of 

having excellent biocompatibility, numerous in vitro and in vivo studies have 

demonstrated differential toxicity of MNPs [24, 38, 41-43]. The different toxicity 

mechanisms observed in determining safe dosage levels of MNPs in cell-line studies 

include impaired mitochondrial function, cytotoxicity, cell apoptosis, DNA damage and 

genotoxicity, immunotoxicity, oxidative stress, disordered cell morphology, cytoskeleton 

damage, cell-membrane damage, etc. [11, 24, 25, 37, 44, 45]. Other factors that influence 

the toxicity levels of MNPs in in vitro conditions include type of cell-line, concentration 

of MNPs, incubation time, and cellular uptake [4, 46]. To date, the majority of the cell-

line toxicity studies of MNPs have been largely conducted in cancer cell-line models. 

Some of the commonly used ones are breast, colon, intestinal, lung, and brain cancer cell-

lines [5, 6, 47-49]. However, using such cancer cell-lines does not always provide 

reliable nanotoxicity evaluation of tested nanomaterials since these cell-lines may have 

been intentionally manipulated with to make them immortal [46, 50]. Also, cancer cells 

have higher proliferation rate, higher resilience to foreign objects, disorganized and leaky 

blood vessels, and altered cellular signaling pathways and therefore they do not correctly 

represent the physiological/biological state of normal cells [46, 51]. Hence, in-depth 

toxicological studies carried out in normal cell-lines or primary cells are warranted to 

fully comprehend and determine the possible toxicity mechanisms of MNPs before 

further testing is done in animal models. 
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Carbohydrates are important group of molecules that play vital role in numerous 

biological processes in mammalian systems. Some of the key processes modulated by 

carbohydrate molecules, include cell-cell communication, molecular signal transduction, 

cell growth and differentiation, apoptosis, inflammation and immune responses, tumor 

metastasis etc. [52-54]. Several of these carbohydrate molecules also serve as cell-surface 

receptors that can recognize viral/bacterial pathogens entering into the cells. Over the last 

two decades, numerous reports have utilized functionalized nanoparticles (e.g., gold 

nanoparticles, silver nanoparticles, diamond nanoparticles, magnetic nanoparticles, 

carbon nanotubes etc.) based on carbohydrate chemistry, which includes monosaccharide, 

disaccharides, oligosaccharides, and glycan/glycoconjugate molecules [55-58]. These 

studies have investigated the role of different carbohydrate molecules present on the 

surface of nanoparticles in studying multivalent carbohydrate-carbohydrate interactions, 

carbohydrate-lectin interactions for therapeutic purposes. Nanoparticles functionalized 

with carbohydrate molecules offer many advantages compared to their monovalent forms 

especially with regard to achieving high affinity constant (Ka) and increased binding 

enthalpy (ΔH) due to presence of multivalent interactions [59]. On account of their high 

surface/volume ratio, functionalizing numerous carbohydrate groups onto the surface of 

nanoparticles is fairly easy and it also drastically increases the biocompatibility of the 

entire nanoparticle system. Especially, MNPs having different physico-chemical 

properties and functionalized with carbohydrates have been frequently used in various 

biomedical applications such as targeted drug delivery, MRI imaging, pathogen 
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detection, as vaccines, anti-adhesion therapies, bio-sensing applications, cancer 

treatment, and cell-surface receptor mimicking [55-57, 59].  

Few studies have described using nanoparticles functionalized with specific 

lectins and carbohydrates for targeted drug delivery to colon cells [60-62]. Of late, 

nanoparticles loaded with different drugs have been used as therapeutic agents for 

treating inflammatory bowel syndrome (IBS) [63, 64]. Most of these treatment regimens 

often involve localized and targeted drug release via orally ingested nanoparticles to the 

colon region of the gastrointestinal tract (GI tract). Such approach increased the overall 

efficacy of the drugs used in treating IBS by utilizing various nano-drug formulation 

strategies that enhanced the uptake of drug-loaded nanoparticles into the 

inflamed/diseased region of the colon. Frequently, in the case for disease diagnosis and 

evaluation of IBS, GI tract imaging is done via MRI and CT scan [65]. These imaging 

techniques often include MNPs as theragnostic agents, which can act both as MRI 

contrast and drug delivery agents. By utilizing nano-platform based imaging techniques, 

it is possible to monitor the drug-release kinetics of nanoparticles in the GI tract. Most of 

the in vitro studies that have been carried out till date to understand the cellular and 

molecular interactions of nanoparticles with intestinal cells regularly use Caco-2 cells 

(human colorectal adenocarcinoma) monolayers [66-69]. However, using Caco-2 cells 

for such studies do not accurately reflect the physiological conditions of normal colon 

cells. Even though PEG/PEO polymer used for stabilizing MNPs has been reported to 

have excellent biocompatibility in numerous cell-lines and animal studies, several 

research studies have deemed it to be toxic to cells [70-74]. Most of the in vitro cell-line 
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studies evaluating toxicity of PEO-coated nanoparticles typically do not expose the cells 

above 100-200µg/ml [37, 75]. However, it is important to understand the biological 

response of cells in presence of sub-lethal and lethal concentrations of nanoparticles. 

Depending on overall size, surface charge, polymer length and degree of grafting density 

on nanoparticle surface, PEO can show differential toxicity.  

Previous research work has shown that MNPs synthesized with dopamine-

anchored heterobifunctional PEO polymer (PEO-MNPs) and bio-functionalized with 

sialic-acid specific glycoconjugate moiety (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp) (GM3-

MNPs) can be effectively used as targeted antibacterial agents against enterotoxigenic 

Escherichia coli, which is usually associated with gastroenteritis and can also trigger 

post-infectious IBS [59, 76]. In this chapter, we will be focusing on evaluating the 

biocompatibility of both PEO-MNPs and GM3-MNPs in normal human colon cell-line 

CCD18-Co. According to author's knowledge, this is a first study which encompasses 

different toxicity assays to better understand the biocompatibility of glycoconjugate 

functionalized MNPs in normal human colon cells. Understanding the interactions 

occurring between different MNPs and CCD18-Co cells will eventually help in 

determining the safe dosage levels of these MNPs to be effectively used as novel drug 

delivery agents for treating IBS and infections associated with it.   
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2. Experimental Section: 

Synthesis of Magnetite Nanoparticles: Magnetite nanoparticles were synthesized 

via thermal decomposition of an organometallic precursor in a high boiling point organic 

solvent [77]. Iron (III) acetylacetonate (Alfa Aesar, 99%) (1.074g) was combined in a 3-

neck round-bottom with oleic acid (Alfa Aesar, 90%) (15ml) serving as both the solvent 

and the stabilizing ligand. The vessel was initially purged with N2 after which flow was 

adjusted to 0.1 L/min ensuring an inert environment.  The vessel was then heated to 

350°C and left to react for 3 hours. At 3 hours, the reaction was quenched by removing it 

from heat, and left to cool under inert atmosphere. The resulting particles were dispersed 

in minimal hexanes and precipitated using a mixture of 3:1 ethanol (Fisher, Anhydrous) 

to acetone (Alfa Aesar, 99.5%) (x3). Particles were dispersed in toluene (VWR, 99.5%) 

and run through an organic based GPC column (Bio-rad S-X polystyrene beads) to 

further remove excess oleic acid ligand [78]. TEM and size analysis was then done on the 

particles to ensure size specificity. 

Synthesis of Alkyne-PEO-PAA-Dopamine [79]: Poly(ethylene oxide) (PEO) 

synthesis: Ethylene oxide (Sigma Aldrich, 99.9%) distilled into a high pressure Parr 

reactor. Na-benzylphenone still dried tetrahydrofuran (THF, EMD Millipore, 99.9%) was 

injected along with a predetermined amount of an anionic initiator potassium bistrimethyl 

silyl amide (Sigma Aldrich, 1M in THF). The reaction was allowed to run for 72 hours 

and was subsequently terminated by opening the reactor to atmosphere. The synthesized 

PEO was precipitated with diethyl ether (VWR, 99.9%) and washed (3x) by dispersing it 

in chloroform, precipitating the polymer, centrifuging it at 15,000 RCF for 10 minutes 
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and pouring off the residual supernatant. The PEO was then dried under vacuum 

overnight. HNMR was performed to calculate molecular weight as well as to confirm the 

presence of the protected amine end-group.  

Under dry N2 atmosphere, hetero-functional PEO and sodium hydride (Sigma 

Aldrich, 95%), in slight excess, were dissolved in dry THF. This was allowed to react for 

30 minutes before an excess of propargyl bromide (Sigma Aldrich, 80% in toluene) was 

added drop-wise to the solution over 15 minutes. Once all of the propargyl bromide was 

added, the solution was allowed to stir for 12 hours at room temperature. The polymer 

was then purified by dissolution in chloroform and precipitation with diethyl ether (x3) 

and dried under vacuum for 12 hours. HNMR was performed to confirm the presence of 

an alkyne. 

Deprotection of the trimethyl silyl group was done in 1M hydrochloric acid 

(VWR) in methanol (VWR, 99+%) and allowed to react for 4 hours. The polymer 

methanol solution was diluted with DI water and the deprotected PEO was extracted (3x) 

with 50ml chloroform from which it was precipitated with diethyl ether and dried under 

vacuum. HNMR was performed to confirm the loss of the trimethylsilyl group. 

Coupling of the PEO to the poly(acrylic acid) (PAA, Sigma Aldrich Mn=1,800) was done 

by dissolving both in dry N,N-dimethylformamide (DMF, Sigma Aldrich, 99.8%) in a 5:1 

ratio. To this 1.1 excess (N-(3-dimethylaminopropyl)-N’-ethylcarodiimide hydrochloride 

(EDC, TCI, 98%) as well as catalytic amounts of 4-(dimethylamino)pyridine (DMAP, 

Alfa Aesar, 99+%) were added. The solution was allowed to stir for 12 hours. The 

solution was filtered, further purified by dissolution in chloroform following precipitation 
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with diethyl ether (x3) and then dried under vacuum. HNMR was done to confirm PEO-

PAA coupling. 

Attachment of the anchor group: Dopamine hydrochloride (Alfa Aesar, 99%) was 

dissolved in DMF along with a 10% molar excess of triethylamine (Alfa Aesar, 99%) and 

allowed to stir for 30 minutes. In a separate round-bottom the PEO-PAA was dissolved in 

DMF along with EDC and catalytic amounts of DMAP. To this the dopamine 

hydrochloride solution was added and the combined solution was allowed to stir for 12 

hours. The solution was then filtered, purified by dissolution in chloroform then 

precipitated in diethyl ether. The final product was dried under vacuum and analyzed via 

HNMR and IR to confirm the presence of the catechol. 

Ligand Exchange [32]: Both magnetite nanoparticles as well as the PEO-PAA-

dopamine were suspended separately in 5ml of chloroform. The particles were at an 

approximate concentration of 3mg/ml of Fe and the polymer at approximately 40mg/ml. 

The polymer was then transferred to a scintillation vial capped with a septum and placed 

in a sonication bath. The bath was turned on and over the course of 15 minutes the 

magnetic nanoparticle solution was injected into the polymer solution. Once injection 

was finished, the combined solution was allowed to further sonicate for 15 minutes. The 

solution was then removed and put on a shaker table for 72 hours. The chloroform was 

then removed via rotary evaporator and further dried under vacuum. Deionized water (DI 

H2O) was then added and the vial was sonicated to help mediate suspension into the 

water. The water-based particles were then filtered through a 0.2-micron nylon filter to 

ensure large aggregates were not present. The solutions were then run through a GPC 
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column (Bio-Rad P polyacrylamide beads) to separate excess polymer from the water 

dispersible particles. 

Click Chemistry [80]: The Cu(I) catalyzed Huisgen 1,3-dipolar cyclo-addition 

between the terminal polymer alkyne and the azido-GM3 was done in the aqueous phase 

with the azido-GM3 being the limiting reagent. A 2 mol% solution of Cu(II) sulfate 

(Sigma Aldrich, 99%) was combined with equivalent molar amounts of the THPTA 

(synthesized according to Hong et al.)  Cu chelating ligand and let to react for 10 minutes 

[81]. This was then transferred into the aqueous alkyne-particle suspension and the azide-

GM3 was then added. After both additions a 10mol% aqueous solution of (+)-sodium L- 

ascorbate (Sigma Aldrich 98+%) was added to facilitate the reduction of Cu(II) to Cu(I). 

The click reactions were left at room temperature for 12 hours, and were then purified 

using size exclusion chromatography [78]. 

Dynamic Light Scattering (DLS) and Zeta Potential Measurements: DLS was 

performed on the PEO-coated and GM3-coated magnetic nanoparticles to determine their 

hydrodynamic radius. The nanoparticle suspensions were diluted in water and placed into 

a cuvette. Three readings were taken at 25°C using Malvern Zetasizer Nano ZS to 

determine the intensity average size distribution and z-average diameter. Zeta-potential 

measurements of these nanoparticle suspensions were also determined using the same 

instrument. The suspensions were diluted with water and added into zeta-cell and three 

measurements were taken at 25°C.  

Furthermore, 50µg/ml concentration of PEO-MNPs and GM3-MNPs were added 

in a cuvette and incubated at 37°C for different time intervals with Dulbecco's modified 
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eagle's medium (DMEM) supplemented without/with 10% fetal bovine serum (FBS) to 

investigate the stability of MNPs in protein and salt rich biological environment. After 

the incubation time, DLS (at 37°C) was performed on the above mentioned 

nanoparticles-cell culture suspension to check for any changes in their overall 

hydrodynamic diameters.  

Fourier Transform Infrared Spectroscopy (FTIR): FTIR microscopy was done 

using a Thermo-Nicolet Magna 550 FTIR spectrometer equipped with a Thermo-NicPlan 

FTIR microscope. 16 Scans were done for both the sample and the background. Samples 

were prepared by dropping a small amount of the water suspended sample on a 

germanium plate and left to dry under a heat lamp for 20 minutes. FTIR was done on the 

resulting films. 

Iron Concentration Determination: 50 µl of magnetite suspension was dissolved 

in concentrated HCl, reduced and complexed with 1,10-phenanthroline (Sigma-Aldrich, 

99%). UV-VIS was then performed to determine the amount of iron in the known volume 

[82, 83]. 

Culturing of CCD-18Co Cells: CCD-18Co human colon cells (normal) were 

procured from American Type Culture Collection (ATCC) and routinely grown on 50 

cm2 tissue-culture flask in the presence of Eagle’s Minimum Essential Medium (EMEM) 

at 37°C in a humidified atmosphere of 5% CO2 and 95% air. EMEM was supplemented 

with 2 mM L-Glutamine, non-essential amino acids, fetal bovine serum (final 

concentration - 10%), 100 UI/ml penicillin G, and 100µg/ml streptomycin. Fresh EMEM 

complete medium was added to growing cells every 2 days. For determining the 
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biocompatibility of MNPs, cells between passage generation of 12 and 25 were used. All 

the media chemicals, 96-well plates and culture flasks required for growing the cells were 

obtained from Corning, USA. 

Cytotoxicity of MNPs to CCD-18Co Cells [59]: The potential cytotoxicity of both 

PEO-MNPs and GM3-MNPs towards CCD-18Co cells was determined by performing 

MTS assay (CellTiter 96® Aqueous One Solution Cell Proliferation Assay, Promega, 

USA). For this assay, approximately 1.5 x 104 cells/well (100µl) were seeded (in 

triplicates) in transparent flat-bottom 96-well culture-plates at 37°C in a humidified 

atmosphere of 5% CO2 and 95% air. After 24 hours, fresh growth medium containing 

varying concentrations (10µg/ml, 50µg/ml, 100µg/ml, 250µg/ml, and 500µg/ml of Fe) of 

PEO-MNPs and GM3-MNPs was added to the cells and the cells were incubated for 

further 24 and 48 hours. After the required incubation time period, cells were washed 

twice with sterile tissue-culture grade PBS. 100µl of fresh EMEM culture medium 

(without serum) was added to the wells and MTS assay was performed according to 

manufacturer’s protocol. Later, the plate was read at 490 nm optical density to measure 

the absorbance of the formazan product using a microplate reader (Thermo Scientific 

Multiskan™ FC) and percentage cell-viability rate of CCD-18Co cells in presence of 

MNPs was determined. 

Intracellular Adenosine Triphosphate (ATP) Levels of CCD-18Co Cells in 

Presence of MNPs [84, 85]: Intracellular ATP levels of CCD-18Co cells were measured 

in presence of both PEO-MNPs and GM3-MNPs to determine if their presence 

interrupted/inhibited ATP synthesis in the cells.  Approximately 1.5 x 104 cells/well 



 116 

(100µl) were seeded (in triplicates) in white flat-bottom 96-well culture-plates at 37°C in 

a humidified atmosphere of 5% CO2 and 95% air. After 24 hours, fresh growth medium 

containing varying concentrations (10µg/ml, 50µg/ml, 100µg/ml, 250µg/ml, and 

500µg/ml of Fe) of PEO-MNPs and GM3-MNPs was added to the cells and the cells 

were incubated for further 24 and 48 hours. After the required incubation time period, 

cells were washed twice with sterile tissue-culture grade PBS. 100µl of fresh EMEM 

culture medium (without serum) was added to the wells and CellTiter-Glo® 2.0 assay 

(Promega, USA) was performed according to manufacturer's protocol with minor 

modification in incubation time period. After adding the CellTiter-Glo 2.0 reagent to the 

cells, the plate was gently mixed and later incubated at room temperature for 20 minutes. 

At the end of this assay, the plate was read in a micro-plate reader with luminescence 

capability (Synergy Hybrid H1, Biotek®) and the obtained results were expressed in 

relative luminescent units (RLUs).     

Cell Membrane Integrity of CCD-18Co cells in Presence of MNPs [24, 86]: 

Approximately 1.5 x 104 cells (600µl) were seeded (in duplicates) in 4-well chamber 

slide (Corning, USA) at 37°C in a humidified atmosphere of 5% CO2 and 95% air. After 

24 hours, fresh growth medium containing maximum concentration of PEO-MNPs and 

GM3-MNPs (i.e. 500µg/ml of Fe) were added to the cells and they were further incubated 

for 24 and 48 hours. Later, the cells were washed thrice with sterile tissue-culture grade 

PBS and finally the cells were re-suspended back in sterile tissue-culture grade PBS. 

Now, live/dead® viability assay (Invitrogen, USA) was performed to determine the extent 

of cell-membrane damage of CCD-18Co cells in presence of MNPs. Both the staining 
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dyes (Ethidium homodimer-1 and Calcein) were mixed together in a sterile 

microcentrifuge tube along with sterile tissue-culture grade PBS. The final concentrations 

of the dyes were 20µM and 10µM respectively when added to the chamber slides 

containing CCD-18Co cells. The chamber slide was then incubated at room temperature 

for 40 minutes. The stained cells were then observed under fluorescent microscope with 

appropriate fluorescent filter cubes (calcein - excitation/emission: 485/530 nm; ethidium 

homodimer-1 - excitation/emission: 530/645 nm) at 100X and 200X magnification. Later, 

the images obtained under different fluorescent filters were merged in ImageJ software 

(NIH, USA).  

Intracellular Glutathione (GSH) Levels of CCD-18Co Cells in Presence of 

MNPs [69, 87]: Approximately 1.5 x 104 cells/well (100µl) were seeded (in triplicates) in 

white flat-bottom 96-well culture-plates at 37°C in a humidified atmosphere of 5% CO2 

and 95% air. After 24 hours, fresh growth medium containing varying concentrations 

(10µg/ml, 50µg/ml, 100µg/ml, 250µg/ml, and 500µg/ml of Fe) of PEO-MNPs and GM3-

MNPs was added to the cells and cells were incubated for further 24 and 48 hours. After 

the required incubation time period, cells were washed twice with sterile tissue-culture 

grade PBS. Intracellular GSH levels were measured by utilizing GSH-Glo™ Glutathione 

assay kit (Promega, USA). All the subsequent steps in this experiment were done 

according to manufacturer's protocol with a minor modification in incubation times. After 

adding the GHS-Glo reagent to the cells, the plate was gently mixed and incubated at 

room temperature for 40 minutes. Subsequently, after adding luciferin detection reagent 

to the cells, the plate was further incubated for 20 minutes. At the end of this assay, the 
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plate was read in a micro-plate reader (Synergy Hybrid H1, Biotek®) and luminescence 

intensity of the each well obtained was expressed in relative luminescent units (RLUs).     

Intracellular Caspase 3/7 levels of CCD-18Co cells in Presence of MNPs [88, 

89]: Approximately 1.5 x 104 cells/well (100µl) were seeded (in triplicates) in white flat-

bottom 96-well culture-plates at 37°C in a humidified atmosphere of 5% CO2 and 95% 

air. After 24 hours, fresh growth medium containing varying concentrations (10µg/ml, 

50µg/ml, 100µg/ml, 250µg/ml, and 500µg/ml of Fe) of PEO-MNPs and GM3-MNPs was 

added to the cells and cells were incubated for further 24 and 48 hours. After the required 

incubation time period, intracellular caspase 3/7 protein levels were determined through 

Caspase-Glo® 3/7 assay kit (Promega, USA). The experiment was performed according 

to manufacturer's protocol and the plate was incubated for 2.5 hr at room temperature 

after adding the Caspase-Glo 3/7 reagent. Later, the plate was read in a micro-plate reader 

(Synergy Hybrid H1, Biotek®) and luminescence intensity of the each well obtained was 

expressed in relative luminescent units (RLUs).     

Statistical Analysis: All the statistical analysis was performed using GraphPad 

Prism software (V 7.0, CA, USA). All the experiments were done in triplicates and data 

are expressed as Mean±SD. Statistically significant differences between the groups were 

evaluated by performing ANOVA. Post hoc group comparisons were calculated through 

Tukey's multiple comparisons test. Results showing p-values of ≤0.05, <0.01, and 

<0.001 were considered to be statistically significant. 
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3. Results and Discussion: 

3.1. Synthesis of GM3-MNPs 

Magnetite nanoparticles were synthesized using a one-pot thermal decomposition 

of iron (III) acetylacetonate and oleic acid [82, 90]. Particles had an average diameter of 

23.7 nm with a standard deviation of 1.55 nm (Figure 4.2 A and B). The moment vs. field 

(MvH) (Figure 4.3) measurement was done on the particles to confirm the super-

paramagnetic behavior of the MNPs. Polymer design was based on work by Stone et al. 

where a multi-anchored binding approach showed increased stability in comparison to 

polymer ligands with a single binding moiety (Figure 4.1) [79].  

 

Figure 4.1 Left: 1) Anionic ring opening of ethylene oxide, 2) alkyne functionalization with propargyl bromide, 3) 

deprotection of primary amine, 4) coupling of PEO to PAA, 5) coupling of dopamine hydrochloride to the PEO-PAA. 

Right: Click reaction between polymer coated particles and GM3 molecule. 
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Figure 4.2 Magnetite nanoparticles as synthesized before functionalization with PEO-PAA-dopamine polymer. A – 

Representative TEM image of the particles. B – Histogram depicting the particle size distribution. 

 

Figure 4.3 Moment vs. Field (MvH) loop showing the superparamagnetic behavior of the magnetite nanoparticles (Msat 

~ 53 emu/g Fe). 

 

In this work, however, the chosen catechol was not nitroDOPA but dopamine. 

HNMR of the polymer was used to confirm both the structure and molecular weight of 

the PEO-PAA-dopamine macromolecule (Figure 4.4).  By using the multi-anchored 

approach, the stability in salt and protein buffer solutions is retained even when using 

dopamine as the anchoring group [32, 33]. Hydrodynamic diameter and zeta potential of 

A B 
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the PEO-MNPs before and after click-coupling of GM3 are reported in Table 4.1.  

 

Figure 4.4 HNMR of the final PEO-PAA-dopamine - PAA backbone protons at 1.39 ppm - 1.08 ppm. Alkyne protons 

at 4.18 ppm and 2.42 ppm. PEO repeat protons at 3.62 ppm. Dopamine aromatic proton signal partially masked by the 

CDCl3 peak, with alkane protons showing up at 2.8 ppm. Reference was tetramethylsilane at ~0 ppm.  

 Hydrodynamic Diameter 
Z Avg. (nm) 

def 

 
 
 

Zeta-potential 
(mV) 

PEO-MNPs 78.8 -8.73 
GM3-MNPs 88.8 -7.68 

 
Table 4.1 Dynamic light scattering and zeta-potential measurements - Hydrodynamic diameter and zeta potential as 

measured by dynamic light scattering before and after GM3 conjugation. 

The increase in the hydrodynamic diameter indicates the GM3 glycoconjugate was 

successfully coupled to the PEO-MNPs. Attenuated total reflectance Fourier transformed 

infrared spectroscopy (ATR-FTIR) also confirmed the GM3 coupling went to completion 
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with the disappearance of the azide peak from GM3 at ~2110 cm-1 and the appearance of 

a broad alcohol peak in the GM3-MNPs spectrum from 3620-3170 cm-1 (Figure 4.5) [59]. 

 

 

Figure 4.5 FTIR spectra of particles before GM3 conjugation (A), GM3 molecule (B), and after conjugation (C). The 

lack of the azide peak in C at 2100 cm-1 indicates purification of unbound GM3 after conjugation was successful. 

 

The presence of biological medium has an important effect on the overall size 

diameter and surface charge of the synthesized MNPs. The presence of functional groups 

on the surface of MNPs also determines the extent to which it interacts with salts and 

proteins. DLS studies were conducted both on PEO-MNPs and GM3-MNPs over a period 

of 3 days to evaluate their overall stability in cell-culture medium DMEM in 

absence/presence of 10% FBS. As seen from table 4.2, the particle size of PEO-MNPs (in 
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water) instantly increased from 78.8 nm to 173.03 nm (more than doubled) within 5 

minutes of incubation in presence of DMEM. After 72 hr, the particle size still remained 

~170 nm. The presence of FBS in DMEM did not significantly change the overall 

diameter of PEO-MNPs during the entire experimental period. However, we did notice a 

slight reduction in size of PEO-MNPs in presence of DMEM+FBS. In contrast, GM3-

MNPs (in water) increased their size from 88.8 nm to 104 nm (an increase of ~18 nm) 

when mixed and incubated for 5 minutes in presence of DMEM. Here also the overall 

size of GM3-MNPs did not change drastically over 3 days incubation time-period in 

presence of DMEM. Interestingly, after mixing GM3-MNPs with media containing 

DMEM+FBS for 5 minutes, there was no major change in the diameter (88.8 nm to 91.14 

nm). However, after 24 hr and beyond, the size increased to ~110 nm in presence of 

DMEM+FBS. Several studies have reported the formation of 'protein-corona' (protein 

adsorption) layer on the surface of MNPs when incubated in presence of cell-culture 

medium containing high salt and protein concentrations [37, 91, 92]. It is due to this 

protein-corona formation that the overall size of the nanoparticles is increased. Moreover, 

extended period of protein-corona formation can also affect the colloidal stability of 

nanoparticle system in the biological media and eventually the nanoparticles tend to lose 

their colloidal stability and form aggregates due to corona formation.  

The presence of different types of chemical functional groups found on polymers 

and the length of the polymer itself plays an important role as to how and what kind of 

proteins interact with the nanoparticle surface and become adsorbed on it [4, 45]. In our 

results, we observed a rapid increase in size diameter of PEO-MNPs within 5 minutes of 
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incubation with DMEM and once the size was increased, it remained pretty consistent for 

the next 72 hr. Such kind of phenomenon can be credited to formation of thick layer of 

'hard protein-corona', which essentially represents an irreversible change in the amounts 

of proteins, which are getting adsorbed/released over a period of time on the surface of 

nanoparticles [93, 94]. Albumin and globulins are most dominant serum proteins found in 

any cell-culture medium [4]. Major ionic salts that are present in any cell-culture medium 

include sodium (Na+), potassium (K+), chloride (Cl-), and bicarbonate (HCO3
-). The PEO-

PAA polymer that we used as multi-anchored stabilizing agent for PEO-MNPs have a lot 

of reactive alkyne groups on its surface that are free and can potentially interact with the 

above mentioned serum proteins and ionic salts present in DMEM. A study done by 

Ekkebus et al. showed that terminal alkyne groups could selectively react with cysteine 

amino acid via thiol-alkyne side chain reaction [95]. The size increase of PEO-MNPs 

when mixed with DMEM could be due to the chemical interactions taking place between 

the free alkyne groups present on our polymer chains with thiol end-group containing 

amino acids like cysteine and cystine. Moreover, several coenzymes and cofactors 

present in DMEM contain thiol groups, which can also interact with alkyne. The above-

mentioned chemical reactions taking place between alkyne and thiol-rich compounds 

might be one of the reasons for formation of protein-corona around PEO-MNPs in 

DMEM and thereby increasing its overall diameter size by more than 2-fold. In the case 

of GM3-MNPs, the PEO-PAA polymer with alkyne group underwent 'click reaction' to 

covalently attach GM3 molecule through alkyne-azide linkage. So, GM3-MNPs would 

have relatively less amount of free alkyne groups, which can interact with serum proteins 
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and ionic salts of DMEM and hence less amount of proteins would get adsorbed on its 

surface and forms a thin layer of protein-corona which would eventually increase the 

overall size of GM3-MNPs but only to a certain extent (increase of  ~18 nm). 

Furthermore, it is worthwhile to note that presence of multi-anchored DOPA group is 

also responsible for maintaining colloidal stability of MNPs in biological environment 

via intact stearic interactions. Recent work of Stone et al. (2015) suggested that multi-

anchored dopamine groups present on MNPs made them colloidically stable in FBS 

medium compared to mono-anchored groups that lost their stability by forming large 

aggregates having size diameter of >500 nm [34].  

Hydrodynamic Diameter Z. average (nm) of MNPs in Presence of Cell-Culture 
Medium for Different Time-Intervals 

 
PEO-MNPs 

(in H2O) 
PEO-MNPs 
+ DMEM 

PEO-MNPs 
+ DMEM + 
10% FBS 

GM3-MNPs 
(in H2O) 

GM3-MNPs 
+ DMEM 

GM3-MNPs 
+ DMEM + 
10% FBS 

t = 5 min 78.8 nm 173.03 nm 167.03 nm 88.8 nm 104.00 nm 91.14 nm 

t = 24 hr 78.4 nm 171.97 nm 164.70 nm 88.6 nm 106.00 nm 106.00 nm 

t = 48 hr 78.1 nm 171.17 nm 165.83 nm 88.1 nm 106.80 nm 109.90 nm 

t = 72 hr 78.1 nm 172.50 nm 164.77 nm 88.3 nm 108.00 nm 110.30 nm 

 
Table 4.2 Dynamic light scattering measurements - Hydrodynamic diameter of MNPs as measured by dynamic light 

scattering in presence of cell-culture medium DMEM. 

 

The presence of nanomaterials in cell-lines is one of the many factors responsible 

for inducing toxicity in them. Different nanoparticles, when presented with direct contact 

to cells, can elicit cytotoxic responses inside mitochondria. One of the many in vitro 
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assays, which determine the damage done to mitochondria in presence of nanoparticles, is 

to quantify and measure the reductase/dehydrogenase enzymes activity inside the living 

mitochondria [39, 96]. MTS assay in one of the frequently employed cytotoxicity assay, 

which measures the amount of tetrazolium salt that is bio-reduced to formazan product by 

viable cells. This amount can then be detected colorimeterically and formazan produced 

is directly proportional to the number of living cells. The cytotoxicity of PEO-MNPs and 

GM3-MNPs to CCD-18Co cells was measured by CellTiter 96® Aqueous One Solution 

Cell Proliferation Assay [59]. Increasing concentrations of both MNPs were added and 

the cells were incubated for 24 and 48 hr. As seen from figure 4.6 A, PEO-MNPs were 

found to be highly cytotoxic to CCD-18Co cells above 100µg/ml concentration after 24 

hr of exposure in a dose-dependent manner. <5% cell-viability was observed in the cells 

exposed to 500µg/ml concentration of PEO-MNPs at the end of 24 hr. Interestingly; 

GM3-MNPs did not show any significant cytotoxicity at all concentrations. In 

comparison to 24 hr time-period, PEO-MNPs showed significant cytotoxicity to the cells 

after 48 hr exposure even at 100µg/ml concentration (Figure 4.6 B). Above this 

concentration, <5% cell-viability of CCD-18Co cells was seen. To our surprise, cells 

exposed to GM3-MNPs for 48 hr did not show any significant cytotoxicity. Even the 

maximum concentration of 500µg/ml of GM3-MNPs showed >90% viability rate. PEO 

polymer attached to nanoparticle surface is generally found to be biocompatible both in 

in vitro and in vivo settings [25, 26, 28]. However, there have been few reports of toxicity 

of PEO coated nanoparticles. In a recent study conducted by Escamilla-Rivera et al., 

MNPs coated with PEG were found to have 50% cell-viability at 100µg/ml concentration 
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after 48 hr exposure to THP-1 macrophages [97]. Also, the presence of PAA group on the 

polymer has been described to have significant toxicity in animal models [71, 98, 99]. It 

should be also noted that cell-viability rate also depends on the length of PEO tails 

present on the surface of MNPs as reported by Hafeli et al. [100]. Their study showed 

that by increasing tail length of PEO polymer (from 0.75 kDa to 15 kDa), cell-viability 

rate of various human cell-lines also increased. Also, the presence of 

carbohydrate/glycoconjugate molecules on MNPs have been reported to have no 

significant cytotoxicity to different cell-lines the results of which were similar to what we 

observed [101-103].  

 

   

Figure 4.6 Cell-viability cytotoxicity MTS assay: a) CCD-18Co cells exposed to varying concentrations of PEO-MNPs 

for 24 hr; b) CCD-18Co cells exposed to varying concentrations of GM3-MNPs for 48 hr. Data is expressed as Mean ± 

SD (n=3); Statistical analysis – Analysis of Variance (ANOVA); * p-value <0.05,  ** p-value <0.01, and *** p-value 

<0.001 
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The amount of ATP level present in any cell determines its metabolic state. In the 

presence of any toxic materials/chemicals, the metabolic state of the cell will change and 

the intracellular ATP levels can drop if there is any significant cytotoxicity to the cells. 

Higher levels of intracellular ATP commonly indicates that the cell is metabolically 

active and their level directly correlate to the actual number of living cells. Numerous 

research studies have reported a significant decrease in intracellular ATP levels of cells in 

presence of different types of nanoparticles [104-106]. To further understand the inherent 

cytotoxic mechanisms of MNPs on the inner cell membrane biochemical cycles taking 

place inside mitochondria, we measured the intracellular ATP levels of CCD-18Co cells 

based on luminescent assay. The cells were incubated with different concentrations of 

PEO-MNPs and GM3-MNPs for 24 and 48 hr. As seen from figure 4.7 A and B, the ATP 

levels of the cells started to decrease substantially when exposed to PEO-MNPs above 

100µg/ml concentration. More than 90% reduction in the ATP levels was observed for 

250µg/ml and 500µg/ml concentrations of PEO-MNPs. In comparison, cells exposed to 

GM3-MNPs for 24 hr did not show any significant decrease in ATP levels at all 

concentrations. When the exposure time was increased to 48 hr, cells in presence of PEO-

MNPs showed a rapid decline in intracellular ATP levels beginning from 100µg/ml 

concentration (Figure 4.7 B). At concentrations above 100µg/ml, a significant reduction 

(>95%) in ATP levels was seen in presence of PEO-MNPs. Several reports have 

suggested that the kind of polymer coating and size of MNPs could play an important 

role in maintaining ATP levels inside the cells. In one such study, MNPs coated with 

different polymers like DEAE, chitosan and PEI exhibited variation in its cytotoxic 
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response to human brain microvascular endothelial cell-line with PEI-MNPs showing 

maximum cytotoxicity [107]. In another study, MNPs functionalized with starch were 

incubated with murine macrophage cell-line for 48 hr and the authors observed a drastic 

decrease in ATP levels of the cells [108]. However, presence of GM3-MNPs to the CCD-

18Co cells did show a slight decrease (not significant) in ATP levels at concentrations 

above 250µg/ml, thereby, proving that GM3-MNPs do not cause any detrimental toxic 

effects on the overall functioning of ATP synthesis mechanisms inside mitochondria in 

CCD-1Co cells. These results prove that PEO-MNPs can possibly interfere with the ATP 

synthesis pathways inside the mitochondrial membrane, which can cause reduction in 

proton motive force and membrane depolarization.  

   

Figure 4.7 Intracellular ATP levels of CCD-18Co cells in the presence of MNPs using CellTiter Glo 2.0 assay. A) ATP 

levels of cells exposed to PEO-MNPs at increasing concentrations for 24 hr; B) ATP levels of cells exposed to GM3-

MNPs at increasing concentrations for 48 hr. Data is expressed as Mean ± SD (n=3); Statistical analysis – Analysis of 

Variance (ANOVA); * p-value <0.05,  ** p-value <0.01, and *** p-value <0.001 
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Next, we evaluated the potential toxicity of MNPs to CCD-18Co cells by 

performing membrane integrity assay. It is one of the commonly employed in vitro assays 

that determine the extent of membrane damage of mammalian cells when exposed to 

various nanomaterials [75, 96]. Most of these assays utilize a mixture of fluorescent dyes 

that can interact with specific enzymes present inside the cells depending on their ability 

to enter the cell. In our study, we exposed the cells only to highest concentration of 

MNPs (500µg/ml) based on the preliminary cytotoxicity results that we observed. After 

the predetermined incubation time-period, live/dead viability assay was done in presence 

of 2 different fluorescent dyes, calcein AM and ethidium homodimer-1. Calcein AM is a 

cell-permeable dye, which is non-fluorescent to begin with. Once inside the living cell, 

various intracellular esterases break down this dye and it is retained inside the cells that 

have intact membrane and can now emit intensely green fluorescence. Contrary, ethidium 

homodimer-1 dye cannot enter the live cell that has intact membrane. Those cells whose 

cell-membrane integrity has been compromised only take it up and once inside these 

damaged cells, it can brightly emit red fluorescence. As seen from figure 4.8 C, CCD-

18Co cells exposed to PEO-MNPs after 24 hr showed a distinct change in their 

morphology and structure compared to control cells, which showed perfect slender and 

elongated fibrils (Figure 4.8 A). The cells were found to be clumped together in small 

irregular round/oval shapes. There was partial membrane damage to the cells as evident 

from limited red fluorescence. After 48 hr exposure, majority of the cells exposed to 

PEO-MNPs suffered extensive membrane damage (as seen by intense red fluorescence) 

and the cells also shrunk in size (Figure 4.8 D). We also observed extensive cell-
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detachment in CCD-18Co cells in presence of PEO-MNPs. Such cell features are 

indicative of necrosis/ apoptosis. In comparison, cells incubated with 500 µg/ml of GM3-

MNPs for 24 and 48 hr did not show any visible cell-membrane damage (Figure 4.8 E 

and F). More than 90% viability has seen in these cells. However, we did notice a small 

change in the overall size and arrangement of the cells. Compared to control group, cells 

exposed to GM3-MNPs had smaller fibrils. Also, their overall size dimensions (in terms 

of length and width) slightly reduced. They were also found to be growing at further 

distance from each other and there was hardly any overlapping of cell fibrils with each 

other referred to cell retraction. One possible explanation for such morphological change 

in cells in presence of MNPs might have to do with maintaining of cytoskeleton 

structures that includes actin and tubulin filaments. Both these structures are essential for 

proper growth and maintenance of cells as they directly take part in cell-cell 

communication, transport of nutrients and other vital organelles. Nonetheless, the change 

in cell morphology in presence of MNPs is something that has been already investigated 

previously. Few research studies have reported that MNPs functionalized with dextran, 

citric acid and PEG can effectively disrupt the overall cytoskeleton arrangement in 

different cell-lines through destruction of actin and microtubules through cell uptake [86, 

109, 110]. Also, at high concentrations of MNPs (500 µg/ml and 1000 µg/ml), the overall 

length and diameter of murine neural progenitor cells and primary human blood 

outgrowth endothelial cells were found to be condensed and these cells also showed 

retraction properties (growing but tend to repeal from each other) during their growth 

cycle which is similar to what we observed in CCD-18Co cells exposed to GM3-MNPs 
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[111]. It also reduced the expression of focal adhesion kinase (FAK) protein, which is 

suggested to have damaging repercussions on kinase signaling pathways that maintains 

the cytoskeleton structures. Such disruptions in cytoskeleton pathways can activate pro-

apoptosis signaling pathways in the cells, which can lead to cell-death. Thus, the results 

of our live/dead staining assay suggests that PEO-MNPs can possibly interfere and 

destroy cell cytoskeleton structures that can stall the regular cell cycle and cause cell-

death. Whereas, the presence of GM3 molecule on MNPs can potentially prevent such 

drastic cytoskeleton toxicity of CCD-18Co cells.  

 

 24 hr 48 hr 

Control 

  

PEO-
MNPs 
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Figure 4.8 Live/Dead staining assay using calcein AM and ethidium homodimer-1 dyes. CCD-18Co cells were 

incubated in presence of PEO-MNPs and GM3-MNPs for 24 and 48 hr (Concentration - 500µg/ml). Live cells appear 

green in color and dead cells appear red in color. All the images were merged together for both green and red channel 

filters of the microscope. A, B - control cells (no MNPs); C, D - cells exposed to PEO-MNPs; E, F - cells exposed to 

GM3-MNPs. Magnification: 100X; Scale bar - 100µm. 

 

It is known that the amount of reactive oxygen species in the cellular environment 

gives an indication of the oxidative stress levels. Glutathione (GSH) is an important and 

powerful antioxidant present in the mammalian cell. It normally exists in oxidized dimer 

form (GSSH). However, when the cell is experiencing oxidative stress due to presence of 

reactive oxygen species, free radicals, and toxic metal ions, GSSH is converted into its 

reduced monomeric form, GSH, which is an indicator of cellular oxidative stress that can 

lead to cell death or apoptosis [112, 113]. There have been numerous reports of increased 

oxidative stress in cells exposed/treated with different kinds of nanomaterials especially 

MNPs [114-116]. So, in order to evaluate whether CCD-18Co cells are undergoing 

cellular oxidative stress in presence of MNPs, we carried out GSH-glo assay to check for 

any changes in the overall GSH levels. At the end of 24 hr exposure to PEO-MNPs, the 
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GSH levels in the cells decreased drastically at concentrations of 250µg/ml and 500µg/ml 

(Figure 4.9 A). In the case of GM3-MNPs, cells lowered their overall GSH counts only at 

highest concentration of 500µg/ml. Compared to 24 hr, cells exposed to 48 hr of PEO-

MNPs and GM3-MNPs exhibited concentration-dependent decrease in GSH levels 

starting from 50µg/ml concentration (Figure 4.9 B). Interestingly, even the lowest 

concentration of 10µg/ml was sufficient enough to cause a substantial decline in cellular 

GSH levels. The overall reduction in GSH levels obtained in this experiment was not 

something unexpected. Numerous works have examined the effect of MNPs in disturbing 

the overall mechanisms of antioxidant pathways in cells [117-119]. The most common in 

vitro and in vivo toxicity of MNPs develop due to production of reactive oxygen species 

(ROS), which include singlet oxygen, hydrogen peroxide, hydroxyl radicals and 

superoxide anions [114, 120]. MNPs are likely to be taken up by the cells via different 

endocytic pathways depending on their size and surface chemistry [121]. Once inside the 

cells, MNPs are typically degraded in the lysosomes into ferrous (Fe2+) ions due to their 

low pH environment. These Fe2+ ions could potentially enter the mitochondrial 

membrane system through membrane depolarization and interact with different enzymes 

of the electron transport system especially with NADPH oxidase, oxygen and hydrogen 

peroxide producing ferric ions (Fe3+) and highly reactive hydroxyl radicals through 

Fenton chemistry [38, 122]. High levels of ROS species can deteriorate the cellular levels 

of GSH thereby causing oxidative stress. A study conducted by Watanabe et al. reported 

that exposing MNPs to human alveolar epithelial cells caused DNA damage, increased 

ROS production and reduced GSH levels even at low concentration of 10µg/ml, which is 
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similar to what we observed [123]. Similarly, significant increase in ROS levels and 

simultaneous reduction in GSH levels was observed in human breast cancer cells when 

exposed to MNPs. Here too, the authors described these effects to be time and 

concentration-dependent [124]. Based on these results, we can aptly deduce that both 

type of MNPs systems used in our experiments are responsible for generating increased 

ROS levels along with reducing intracellular GSH levels in CCD-18Co cells. Further 

studies needs to be conducted to decide the exact levels of several intracellular ROS (e.g., 

hydroxyl ions, hydrogen peroxide, singlet oxygen etc.) that are getting boosted due to 

presence of MNPs to fully elucidate the role of ROS in causing cellular toxicity in 

presence of MNPs. 

   

Figure 4.9 Intracellular Glutathione (GSH) levels of CCD-18Co cells in the presence of MNPs using GSH-Glo assay. 

A) GSH levels of cells exposed to PEO-MNPs at increasing concentrations for 24 hr; B) GSH levels of cells exposed to 

GM3-MNPs at increasing concentrations for 48 hr. Data is expressed as Mean ± SD (n=3); Statistical analysis – 

Analysis of Variance (ANOVA); * p-value <0.05,  ** p-value <0.01, and *** p-value <0.001 



 136 

The presence of nanomaterials in biological system has been shown to induce 

apoptosis in cells by activating various cell-death signaling pathways [43, 125]. In order 

to determine whether CCD18-Co cells are showing any apoptotic activity in presence of 

MNPs, we quantitatively measured the levels of caspase3 and caspase7 proteins. These 

caspase proteins belong to cysteine-aspartic acid protease (caspase) family. This family 

also includes other caspase proteins like caspase6, caspase8, caspase9, and caspase10 that 

play a central role in activation of cell apoptosis [126, 127]. Upon detecting a major 

change in the normal biochemical processes occurring inside the mitochondria, different 

signaling pathways are activated, which can trigger the activation of caspase family 

proteins. One of the last proteins of caspase family to get activated before the cell 

inadvertently goes into cell-death stage is caspase3 [128]. So, we performed caspase-glo 

3/7 assay on CCD18-Co cells exposed to MNPs to check if their presence has activated 

the caspase signaling pathways leading to apoptosis. On incubating the cells with PEO-

MNPs, we did not see any significant change in the levels of caspase3/7 proteins up to 

250µg/ml concentrations (Figure 4.10 A). However, cells exposed to 500µg/ml PEO-

MNPs showed a substantial increase in activity of caspase3/7 proteins, which suggests 

that the cells might be undergoing apoptosis. In comparison, cells incubated with GM3-

MNPs for 24 hr maintained similar caspase3/7 levels at all concentrations. When the 

exposure time of MNPs to cells was increased to 48 hr, cells incubated with both 

250µg/ml and 500µg/ml concentrations of PEO-MNPs showed a notable rise in 

caspase3/7 levels (Figure 4.10 B). This proves that even at concentration of 250µg/ml of 

PEO-MNPs, the cells may be experiencing apoptosis. Surprisingly, when were incubated 
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with GM3-MNPs for 48 hr, we did not observe a significant change in the caspase levels 

until the concentration was 500µg/ml. These results suggests that both PEO-MNPs and 

GM3-MNPs are able to activate caspase signaling events in CCD-18CO cells only when 

presented with highest concentrations of MNPs. However, it seems that the exposure time 

does play a critical role in induction of apoptosis as the overall caspase levels were 

elevated at 48 hr compared to 24 hr. Similar kind of results were obtained in several 

research findings that showed time-dependent increase in caspase protein levels in 

presence of MNPs [89]. The results obtained in this experiment are a little different (in 

terms of concentration-dependent rise in caspase levels) than what has been reported 

earlier. In one of the study done by Yin et al, the caspase3 levels in rat cerebellum cells 

showed a dose-dependent increasing trend when exposed to silver nanoparticles [129]. In 

another study, the size and surface functionalization of polystyrene latex nanoparticles 

played a significant part in initiating caspase dependent apoptotic pathways in human 

alveolar epithelial cells [130]. They noticed that cells exposed to 100 nm amine-coated 

nanoparticles had significantly higher levels of caspase proteins compared to those 

exposed to 50 nm size nanoparticles and also to carboxyl-coated nanoparticles. Hence, 

based on our results of caspase3/7 assay, it seems that the surface chemistry and exposure 

time are important parameters to consider when using MNPs for therapeutic applications. 

The levels of other apoptotic proteins needs to be determined in order to completely 

understand the if cellular toxicity mechanism in presence of MNPs is indeed due to 

activation of apoptosis signaling pathways. 
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Figure 4.10 Intracellular caspase3/7 activity levels in CCD-18Co cells exposed to MNPs using Caspase-Glo 3/7 assay. 

A) Caspase3/7 levels of cells exposed to PEO-MNPs at increasing concentrations for 24 hr; B) Caspase3/7 levels of 

cells exposed to GM3-MNPs at increasing concentrations for 48 hr. Data is expressed as Mean ± SD (n=3); Statistical 

analysis – Analysis of Variance (ANOVA); * p-value <0.05,  ** p-value <0.01, and *** p-value <0.001 

 

Special Discussion: In this study, we have investigated and compared 

biocompatibility of PEO-MNPs with GM3-MNPs in normal human colon cell-line CCD-

18Co. The main difference in terms of chemical functionality between PEO-MNPs and 

GM3-MNPs was the presence of glycoconjugate molecule GM3 on the surface of GM3-

MNPs. As mentioned earlier, the type of surface functional groups present on MNPs 

plays an important role in regulating overall biocompatibility of the nanoparticle system 

both in in vitro and in vivo settings. Other factors that also play their part in imparting 

nanoparticle biocompatibility include surface charge, size, kind of polymer used, the 

extent to which it can form protein-corona in cell-culture medium, concentration of 
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nanoparticles, type of cells interacting with nanoparticles etc. [92, 94]. In order to check 

if MNPs were able to form protein-corona in protein and salt-rich biological medium, 

DLS studies were performed and it showed that PEO-MNPs significantly increased their 

overall size diameter. This increase can be attributed to formation of thick layer of 

protein-corona on the surface of nanoparticles. More specifically, the free alkyne group 

present on our heterobifunctional PEO polymer can potentially interact with various 

thiolated amino acids present in the cell-culture medium DMEM and due to this different 

protein molecules can bind to the surface of PEO-MNPs forming the corona and thereby 

increasing the size and possibly even altering the charge of nanoparticles [94, 95]. In 

contrast, there was only marginal diameter increase (~18 nm) for GM3-MNPs when 

mixed with DMEM. These results suggest that carbohydrate glycoconjugate coated 

MNPs can possibly act as drug-delivery agents as they do not significantly interact with 

the serum proteins, which would help in retaining its original physico-chemical 

properties. However, further detailed studies involving spectroscopic techniques needs to 

be done in order to fully identify the proteins interacting with MNPs and understand these 

mechanisms as the formation of protein-corona can potentially determine the nanoparticle 

uptake into the cells that would ultimately regulate cellular processes (Figure 4.11).   
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Figure 4.11 Formation of protein-corona on the surface of nanoparticles a) Formation of protein-corona on the 

nanoparticle surface depending on the physico-chemical properties of the initial material and b) Impact of protein-



 141 

corona on structural and functional properties of protein molecules interacting with biological medium. Reprinted from 

[11] - Reproduced with permission from Nature Publishing Group. 

 

Over the last decade, numerous studies have expressed grave concern regarding 

the biocompatibility of engineered nanoparticles that are being extensively used for 

biomedical applications (e.g., gold nanoparticles, silver nanoparticles, magnetic 

nanoparticles etc.). These nanoparticles have been found to significantly affect the 

molecular machinery of the cells at different levels. Since nanoparticles have large 

surface area, even a minute change in their physico-chemical properties can have drastic 

effect on the way it interacts with cells. Among different factors responsible for these 

changes, the chemical properties and presence of surface chemical groups tend to 

outweigh all the other factors. The kind of chemical groups can potentially dictate if the 

nanoparticles have the ability to alter the electron accepting/donating mechanisms 

occurring inside the cells. Currently, the best possible explanatory model in determining 

the toxicological effects of engineered nanoparticles relies heavily on the generation of 

ROS [114, 120]. Among different type of nanoparticles, MNPs have been known to 

produce ROS when exposed to mammalian cells [114-116]. It is this very property that 

has made MNPs to be used for targeted drug delivery for cancer therapy in clinical use. 

MNPs are able to enter the cells via endocytosis and once inside, they can freely interact 

with lysosomes or endosomes and in this process they can increase ROS levels via 

Fenton reaction in the cells putting them under increased oxidative stress environment 

[114, 122]. In normal metabolic state, the ROS levels are usually found to be low in the 

cells. To counteract them, different antioxidant enzymes (catalase, superoxide dismutase, 
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etc.) and glutathione are produced by the cells. However, when ROS levels are increased 

significantly, the GSH levels and antioxidant enzyme levels are reduced and the cell 

experiences increased oxidative stress. In our experiments too, both PEO-MNPs and 

GM3-MNPs decreased intracellular GSH levels of CCD-18Co cell indicative of increased 

oxidative stress. Depending on the amount of oxidative stress, different response 

elements in the cells are activated. For example, at low level of oxidative stress, 

transcription factor Nrf-2 gets activated which in turn increases the production of various 

antioxidant enzymes which would typically restore the redox balance in the cells [120]. 

However, when the cells are experiencing high level of oxidative stress, numerous cell-

signaling pathways related to inflammation and cytotoxicity are activated (e.g., mitogen-

activated protein kinase (MAPK), nuclear factor κB (NF-κB), AP-1). Higher ROS levels 

also interfere with the electron transport system (ETS) of mitochondria that could 

potentially reduce the activity of ATP synthase pump leading to membrane 

depolarization and lipid peroxidation, which can induce irreversible damage of plasma 

membrane. These pathways can also activate pro-apoptosis factors in the cells, which 

would eventually result in activation of caspase molecules leading to apoptosis (Figure 

4.12). Thus, in order to get an overall view of the ROS induced toxicity of our MNPs, 

elaborate studies on cellular uptake of MNPs, gene expression changes taking place in 

mitochondria (those involved in ETS chain), and extensive analysis of inflammatory 

factors involved in these mechanisms are warranted in in vitro conditions before these 

MNPs can be used for toxicity testing in animal models. Moreover, as MNPs are clinical 

used in magnetically triggered drug delivery through alternate magnetic fields, complete 
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toxicity profile of these MNPs should be evaluated by exposing the cells to magnetic 

fields. 

 

 

Figure 4.12 Possible mechanisms of nanoparticle toxicity induced by increased ROS levels. Reprinted from [131] - 

Reproduced with permission from Elsevier Ltd. 

 

4. Conclusion: 

We successfully synthesized multi-anchored glycoconjugate functionalized GM3-

MNPs based on 'click-chemistry' platform that are stabilized with heterobifunctional 

PEO-PAA polymer having dopamine molecules as robust anchoring agents to the iron-

oxide core. The above-mentioned GM3-MNPs were fully characterized through 

numerous techniques and their stability in cell-culture medium DMEM was investigated. 

In the presence of high salt and high protein environment of DMEM, MNPs were able to 
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form protein-corona layer on their surface within rapid time duration. Size diameter of 

PEO-MNPs increased significantly compared to GM3-MNPs suggesting formation of 

thick protein-corona layer. PEO-MNPs are able to cause strong decrease in cell-viability 

of CCD-18Co cells at concentrations above 100 µg/ml whereas GM3-MNPs did not show 

any cytotoxic effects on the cells. Also, intracellular ATP levels of CCD-18Co were 

significantly diminished in presence of PEO-MNPs but not GM3-MNPs indicative of 

interference in the activity of ATP synthase pump. PEO-MNPs also compromised the 

membrane integrity of the cells possibly due to apoptosis/necrosis; however, cells 

exposed to GM3-MNPs showed significantly different cell morphology but no membrane 

damage which indicates subtle changes in cytoskeleton arrangement of the cells. Also, 

presence of PEO-MNPs and GM3-MNPs to the cells resulted in substantial decrease in 

the intracellular GSH levels in a time and concentration-dependent manner that clearly 

denotes existence of increased oxidative stress via formation of reactive oxygen species. 

Finally, we also determined if MNPs were able to induce apoptosis in normal colon cells 

by means of measuring the activity of caspase proteins. The levels of caspase3 and 

caspase7 proteins were found to be remarkably elevated in the cells in presence of PEO-

MNPs at higher concentrations, which was dependent on exposure time. Thus, based on 

the results that we obtained, it can be appropriate to assume that reduction of GSH due to 

increase in ROS levels and increased production of caspase3/7 proteins leading to 

apoptosis are few of the prominent factors responsible for triggering cellular toxicity in 

CCD-18Co cells in presence of PEO-MNPs. Some of the important nanoparticle 

synthesis parameters that directly affect toxic potential of MNPs and which warrants 
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further in-depth studies include controlling the amount of PEO-PAA polymer groups that 

are being grafted onto the surface of MNPs as excessive free groups can interact with 

protein molecules altering the physico-chemical properties of MNPs, effect of post-

synthesis purification steps once the polymer is attached to the core of nanoparticle as 

chemical residues can also contribute to overall toxicity of MNPs. It is also important to 

mention here that since presence of glycoconjugate molecules on MNPs renders them 

relatively biocompatible, efforts should be made to increase the general efficiency of 

'click chemistry' reactions so that more glycoconjugate molecules are being attached to 

PEO-PAA polymer. Furthermore, investigation of immunotoxicity of MNPs is necessary 

as colon cells can trigger inflammatory response signaling pathways (e.g., nuclear factor 

κB (NF-κB), mitogen-activated protein kinase (MAPK)) in presence of MNPs, which can 

also lead to apoptosis. As we observed reduction in GSH levels of colon cells in presence 

of MNPs implying increased ROS generation, gene expression studies of ROS gene 

cluster would be valuable to explain the exact underlying mechanisms of increased 

oxidative stress that could also lead to apoptosis. Also, by attaching proper antioxidant 

chemicals/drugs to GM3-MNPs, they can be effectively used for targeted drug-delivery 

to colon cells remotely via magnetothermal drug release mechanisms in presence of 

alternate magnetic fields for therapeutic applications in treating infections caused during 

post-IBS.  
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Chapter 5 

Concluding Remarks 

Functionalized MNPs are currently one of the most commonly used nanomaterials in 

biomedical settings. Among different functional groups, MNPs having carbohydrate 

molecules attached to them have shown excellent biocompatibility in both in vitro and in 

vivo conditions. This dissertation work mainly focuses on developing proof-of-concept 

MNPs functionalized with specific sialic-acid based carbohydrate glycoconjugate 

molecule (Neu5Ac(α2-3)Gal(β1-4)-Glcβ-sp) (GM3-MNPs) and evaluating their 

interaction with enterotoxigenic E. coli strain EC K99.  These functionalized MNPs were 

synthesized by using special heterobifunctional PEO polymer comprising of dopamine 

molecules on one end and free alkyne groups on other end on which the GM3 molecule is 

attached via 'click chemistry' linkage. Specific interactions occurred between EC K99 and 

GM3-MNPs, which resulted in formation of aggregates of bacteria-nanoparticle complex 

as described in chapter 2. These results show that it is possible to create bacteria-specific 

multifunctional MNPs based on carbohydrate molecules that can find useful applications 

in rapid detection (ID system) of pathogens in biological samples.  

Later, in chapter 3, we evaluated the practicability of using GM3-MNPs developed on 

multi-anchored PEO-PAA dopamine platform for targeted killing of EC K99 in presence 



 158 

of AMF. High degree of clinically significant specific in vitro bacterial killing (in both 

pure culture and mixed culture environment) was seen in EC K99 in presence of AMF 

possibly due to MagMED phenomenon and destruction of bacterial cell membrane. These 

results are pivotal since bacterial infections occurring in GI tract has heterogeneous 

environment i.e. presence of beneficial gut bacteria and using antibiotics for treating such 

infections would give rise to potential drug-resistant bacteria along with destroying the 

beneficial micro-flora. Future studies are warranted to test the effectiveness of AMF 

treatment in multi-drug resistant bacteria e.g., MRSA, carbapenem-resistant 

enterobacteriaceae group. Several important parameters like core-size of MNPs, polymer 

length, concentration of MNPs, magnetic field strength and applied frequency of AMF 

should be fine-tuned to improve the efficacy of treatment regimen in both in vitro and in 

vivo conditions. Once these factors are established, MNPs and AMF together would act 

as novel non-antibiotic agents for treating clinically relevant bacterial infections, thereby,  

eliminating the need of using antibiotics and diminishing the rise of drug-resistant 

bacteria. 

Different strategies have been employed to impart colloidal stability to MNPs in 

biological environment. The type of polymer used in stabilizing MNPs plays an 

important role in this regard. The presence of chemical functional group on surface of 

MNPs would define how it interacts with serum proteins and mammalian cell in in vitro 

setting, which would then determine its biocompatibility. Thus, finally in chapter 4, 

biocompatibility studies were undertaken to figure out the toxicity profile of MNPs 

developed on multi-anchored PEO-PAA dopamine platform. GM3-MNPs were able to 
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maintain their overall colloidal stability in protein-rich environment as they formed 

limited 'protein-corona'. They were also found to be fairly biocompatible (other than 

reducing GSH levels) compared to PEO-MNPs when exposed to normal colon cells 

CCD-18Co. This shows that presence of carbohydrate groups on MNPs surface can 

potentially impart biocompatibility. Nonetheless, extensive toxicity studies in animal 

models are necessitated for these carbohydrates functionalized MNPs. By carefully 

controlling different parameters of MNPs synthesis like size of MNPs, post-synthesis 

purification techniques, and efficient ligand-exchange reactions, it is possible to create 

MNPs functionalized with carbohydrate groups that are fully biocompatible and can be 

used in therapeutic applications. 

The results obtained in this work suggest that carbohydrate glycoconjugate functionalized 

MNPs have great potential to be effectively used in clinical settings as multifunctional 

theragnostics agents for e.g., simultaneous detection, isolation & destruction of targeted 

pathogens, targeted drug-delivery & imaging and as effective vaccine candidates. 
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