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Abstract  28 

Forested wetlands dominated by baldcypress (Taxodium distichum) and water tupelo (Nyssa aquatica) are 29 

commonly found in coastal regions of the southeastern United States. Global climate change and in 30 

particular sea level rise will alter the frequency and magnitude of wet/dry periods and salinity levels in 31 

these ecosystems. Soil microcosm experiments were set up to identify the effects of water level variations 32 

(0.4-3.0 g-water g-soil-1) and salinity changes (0, 1 and 5 ppt of NaCl) on greenhouse gas emissions (CH4, 33 

CO2 and N2O) and dissolved organic carbon (DOC) characteristics from forested wetland soils. Our results 34 

indicate that, the effect of water level was much greater than salt intrusion on C and N cycling. 35 

Wet-dry treatments significantly decreased DOC production and total CH4-C loss, aromatic and 36 

humic-like substance compounds in DOC were increased in both flooding and wet–dry treatments 37 

after 60-d incubation. The molecular weight (MW) of DOC after flooding treatments was higher 38 

than that in wet-dry treatments. A first order kinetic model showed there was a positive linear 39 

correlation (r2=0.73) between CO2 emission rate and DOC concentration which indicated that CO2 40 

was mainly generated from DOC. An exponential kinetic model was applied to describe the 41 

correlation between CH4 emission rate and DOC concentration (r2=0.41). This study demonstrates 42 

that an increase in salinity, and in particular variations in wet-dry cycles, will lead to changes in the 43 

formation of climate-relevant greenhouse gases, such as CH4, CO2, and N2O. 44 

  45 

Keywords: Dissolved Organic Carbon; Greenhouse Gases; SUVA; Tidal Wetlands  46 
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Introduction  55 

Climate change, and in particular sea level rise, is impacting coastal forest and wetland ecosystems. 56 

The mean rate of sea level rise in the past 10 years has been exceeding the mean rate of global sea level 57 

rise of 0.19 m, reported from 1901 to 2010 (IPCC, 2014). Sea level rise leads to an increase in salt water 58 

intrusions (Donato et al., 2011; Breithaupt et al., 2012; Chow et al., 2013) and soil inundation and moisture, 59 

which implies greater risks and frequency of flooding (Zhu and Cheng, 2013; Woodruff et al., 2013) and 60 

increased soil drying–rewetting cycles (Morillas et al., 2015). Coastal forested wetlands will be among the 61 

environments most likely impacted by a combination of alterations in soil biogeochemistry experiencing 62 

saltwater intrusions in the next 50-100 years (Schofield, 2003; Allen et al., 1996; Renaud et al., 2015; 63 

Donato et al., 2011; Breithaupt et al., 2012; Chow et al., 2013) and hydrology due to changed wet-dry 64 

dynamics. Of particular interest are alterations in SOM (soil organic matter) levels and DOC (dissolved 65 

organic carbon) structure, which will affect carbon sequestration, soil microbial activity, and consequently 66 

biogeochemical element cycling and soil to air gas exchange (Moyano et al., 2013; Chow at el. 2003, 2005; 67 

Lal, 2004; Moseman-Valtierra et al., 2011).  68 

Previous studies have demonstrated that decomposition rate of DOC (Fierer and Schimel, 2002) and 69 

the quantity, as well as, the chemical characteristics of DOC are affected by water level fluctuations and 70 

wet–dry cycles (Lundquist et al., 1999; Kalbitz et al., 2000; Chow et al., 2003). Positive correlations 71 

between C mineralization rate and DOC concentration were found in coastal wetlands (Cook and Allan, 72 

1992; Chow et al., 2006). The impact on greenhouse gas formation however, remains poorly understood. 73 

While Shi and Marschner (2014) reported an increase in GHG formation as a consequence of varying water 74 

levels, Morillas et al. (2015) reported a decline in GHG formation based on a lower microbial biomass and 75 

microbial activity. 76 

In addition to fluctuations in water levels, the intrusions of sea water into coastal freshwater 77 

environments is of particular interest as higher salt concentrations will contribute to changes in 78 

biogeochemical turnover of C and N (Chow et al., 2013; Lewis et al., 2014). Recently the consequences of 79 

freshwater wetland salinization have been summarized in a review by Herbert and colleagues (Herbert et 80 

al., 2015). Therefore, we will only mention the most important impacts on N and C dynamics and refer the 81 

reader to the work by Herbert et al. (2015) for an in-depth discussion on the impacts of wetland salinization. 82 

The combination of an enhanced N mineralization and dissimilatory nitrate-reduction coupled to 83 
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ammonium, a reduced nitrification-denitrification, and an increase in NH4
+ are the direct consequences of 84 

saltwater intrusions on N dynamics in wetlands (Ardón et al., 2013). Interestingly it has been demonstrated 85 

that an increase in salinity can also have a stimulating effect on nitrification in saline soils and that an 86 

inhibition only occurred when electric conductivity (EC) exceeded 16,000 µS cm-1 (Ardón et al., 2013).The 87 

main consequence of increasing salinities on carbon dynamics is a decrease in plant productivity, and hence 88 

carbon inputs to the soil. Additionally, it will cause a decrease in microbial activity and consequently slower 89 

DOC decomposition rates (Setia et al., 2013). In particular, salinization affects solubility and mobility of 90 

DOC and potentially the formation of CH4 (Ardón et al., 2016; Mulholland, 1981; Sholkovitz, 1976). 91 

Therefore, an increase in salinity as it occurs in coastal saline wetlands may lead to lower CH4 emission 92 

rates compared to freshwater wetlands (Baldwin et al., 2006; Marton et al., 2012).  93 

As the changes in C turnover occur, it can be expected that the turnover of N, and in particular the 94 

formation of the greenhouse gas nitrous oxide (N2O) will be affected, too. Previously, it has been 95 

demonstrated that emission of N2O is the primary pathway of N loss from wetland soils into the atmosphere, 96 

and that variations in water levels and conductivity affect N2O emissions from an alkaline soil (Silva et al., 97 

2008; Kraus and Whitbeck, 2012). The impacts of different salinities in combination with varying water 98 

levels on N2O formation has, to the best of our knowledge, not yet been investigated. The above mentioned 99 

aspects illustrate the necessity of a thorough quantification of greenhouse gas emissions under varying 100 

water levels and salinities to gain a better understanding of potential alterations in atmospheric levels of 101 

these climate-relevant gases. In particular, the contribution of different C and N fractions (DOC, soil 102 

organic carbon (SOC), total nitrogen (TN), and soil nitrogen (SN) as precursors for greenhouse gas 103 

formation is also of interest. Additionally, the identification of DOM optical properties is essential as it 104 

serves as a C source for microorganisms in the soils and is crucial for biogeochemical turnover of C and 105 

N.  106 

The flow of C and N through soil is inherently complex. Many thousands of different chemical 107 

transformations and physical processes occur simultaneously within the soil matrix. Instead of tracking 108 

individual reactions and processes, kinetic models based on empirical and experimental data can predict 109 

the flows of C and N even if the reaction mechanisms are not known (Glanville et al., 2016). These 110 

approaches have been used to described different nutrient cycling in wetland soils (Chen and Rudolf, 2016; 111 

Chow et al. 2006; Chow et al., 2004). Results of the kinetic model could also provide insights about the 112 



Xijun Page 5  

biogeochemical processes within soil matrix. For example, Chow et al. (2006) used a 1st order kinetic model 113 

to demonstrate that CO2 was mainly produced from DOC in soil pore water under oxidized condition, 114 

whereas CO2 was produced from SOC under reduced conditions. However, the relationships of CH4 and 115 

N2O emissions on DOC and DTN, as well as impacts of salinity have not examined before.  116 

Therefore, the overall goals of this study were (I) to quantify greenhouse gas emissions (CO2, N2O, 117 

and CH4) under varying salinities, and water levels, (II) to demonstrate the effects of varying salinities and 118 

water levels on DOM optical properties and (III) to develop a kinetic model to elucidate the contribution 119 

of different C fractions to CO2 and CH4 formations in our microcosm experiments.  120 

 121 

2. Materials and experimental methods  122 

2.1. Field site and sampling procedure  123 

The study was conducted with soil samples from a healthy forested wetland on Hobcaw Barony (33º21′N, 124 

79º12′W), near Georgetown, South Carolina, which is currently not affected by saltwater intrusions. The 125 

highly productive (average annual litterfall input of 620 g m-2 yr-1; Conner, unpublished), seasonally 126 

flooded 24-ha (2.4×105 m2) wetland is dominated by baldcypress (Taxodium distichum (L.) Rich.), water 127 

tupelo (Nyssa aquatica L.), and swamp tupelo (Nyssa biflora Walt.) trees. The surrounding forest 128 

community included longleaf pine (Pinus palustris Mill.) and turkey oak (Quercus laevis Walt.) (Busbee 129 

et al., 2003). The predominant soil type in this wetland has been characterized as a fine-loamy, siliceous, 130 

thermic, and Yypic Ultisol (USDA Soil Taxanomy) (Stuckey, 1982). Detailed characterizations of this site, 131 

including tree composition, stem density, aboveground productivity, litterfall, nutrient dynamics, and 132 

hydrology have been published previously (Busbee et al., 2003; Chow et al., 2013). Surface soil samples 133 

were collected from 0–10 cm after removal of litter from the surface during the wetland’s dry period in the 134 

summer. The soils were transported to the laboratory, air-dried at room temperature (22 ± 1°C) until 135 

constant weight, sieved to a particle size < 2 mm for homogenization, and stored at room temperature until 136 

further analysis and start of the soil incubation experiments. This homogenization might have impacted the 137 

microbial activity or microbial community. Therefore, results from the laboratory microcosm incubations 138 

presented here are not directly transferable to results that can be expected from the field. Relevant soil 139 

characteristics are summarized in Table 1. 140 

 141 
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2.2. Setup of microcosm experiments and sampling procedure 142 

Microcosm experiments for the quantification of greenhouse gas formation in varying approaches were set 143 

up using one-liter mason jars. Each jar contained 50 g of dried ground surface soil and 150 g of deionized 144 

water or solutions of 1 ppt and 5 ppt NaCl, to simulate freshwater and two levels of oligohaline-degraded 145 

wetlands with the dieback of some trees in the canopy layer (Cormier et al., 2013). Hereafter the 3 setups 146 

are labelled as 0, 1, and 5 ppt. Soils were incubated either under constant flooding conditions or wet-dry 147 

cycles of 12-d for a total of 60 days at room temperature. Besides the 3 different salinities, we applied two 148 

different water levels (permanent flooding, and wet-dry cycles). A total of 120 jars were used (18 jars x 6 149 

treatments + 12 blank controls). All jars were incubated at room temperature in the dark. In the flooding 150 

experiment, each jar was covered by a lid with a 2-mm opening to allow for gas exchange. The θg in each 151 

jar was monitored regularly by gravimetric measurement. Water content was readjusted with deionized 152 

water when a 5% or more change in θg occurred. In the wet–dry cycle incubation experiment, surface soils 153 

were initially flooded with a θg of 3.0 g-water g-soil-1. All jars were incubated at room temperature without 154 

lids so that soil samples were allowed to dry naturally through evaporation. When the soils reached the 155 

desired θg values, soils were re-flooded to their initial θg with deionized water for continued incubation.  156 

For pH, electrical conductivity (EC), DOC, dissolved nitrogen (DN), UV-VIS, and 157 

spectrofluorometry, three replicates of each incubation condition were terminated at 12, 24, 36, 48, and 60-158 

d. To obtain water extracts, deionized water was added to the original water level (150 g of water to 50 g 159 

soil) and shaken rigorously for 5 minutes and then filtered through a 0.45μm membrane filter (Millipore 160 

Express) prior to analysis. All samples were kept at 4 °C and analyses were completed within a week. In 161 

addition to the DOC extraction, three replicates of each treatment were used to quantify CO2, CH4, and 162 

N2O emissions during the 60-d incubation. Eighteen jars for gas measurement were sealed with a gastight 163 

lid equipped with a removable rubber septum. The jars were capped every 3 days and gas samples were 164 

collected after 24 hours. A septum was used to seal the opening for 24 h before sampling and analysis. 165 

Twenty-four ml of gas was withdrawn from the sealed jar for quantification of CO2, CH4, and N2O, 166 

expressed as emissions in µg g-soil-1 d-1. In addition, three empty jars were used to determine CO2, CH4, 167 

and N2O background levels. CO2, CH4, and N2O production from the soils was determined by subtracting 168 

the CO2, CH4, and N2O concentrations of the empty jars.  169 

  170 
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2.3. Analysis  171 

Concentrations of C and N in the original soils (0 day) and after 60-d incubation (oven dried at 70 °C for 172 

48 h) were quantified using a Thermo Flash EA 2000 element analyzer. CO2, CH4, and N2O were analyzed 173 

by a Shimadu Greenhouse Gas analyzer (GC 2014). All filtered solution samples were analyzed for pH, 174 

EC, DOC, and DN. The pH and EC of filtered solution samples were determined using an Accumet XL60 175 

dual channel pH/ion/conductivity meter. EC was corrected to EC at 25 °C (EC25) using the temperature 176 

correction equation: EC25 = ECt / [1 + 0.021 (t-25)] (Hayashi, 2004). The DOC and DN were measured 177 

using a Shimadzu TOC/TN analyzer (SM 5310B).  178 

DOM optical properties were further characterized by UV-VIS spectrophotometry (Shimadzu UV-179 

1800) and spectrofluorometry (Shimadzu Spectrofluorometer RF5301). All DOC samples also were 180 

analyzed for Specific ultraviolet absorbance (SUVA), and one of the 3 replicates was used for 181 

spectrofluorometry. Specific ultraviolet absorbance, spectral slope ratio (SR), and E2/E3 ratio were 182 

determined as described previously (Chow et al., 2008; Helms et al., 2008; Wang et al., 2015). Based on 183 

SUVA and E2/E3 ratio, selected samples were analyzed using fluorescence emission-excitation matrix 184 

(EEM) (Zhou et al., 2013). Several spectrofluoroscopic indices including the fluorescence index (FI), the 185 

freshness index (β/α), and humification index (HIX) were calculated as shown previously (Fellman et al., 186 

2010; Wang et al., 2015; Cory and McKnight, 2005). 187 

 188 

2.4. Calculation of gas fluxes and statistical analysis  189 

Fluxes of CO2, CH4, and N2O were calculated on the basis of daily data using the ideal gas law. As CO2, 190 

CH4, and N2O concentrations were determined every four days, their mineralization rates during sampling 191 

intervals were assumed equal to the average of the two mineralization rates from the two sampling events 192 

when calculating the cumulative production (Chow et al., 2006). Greenhouse gas fluxes and concentrations 193 

of DOC and DN were used to examine the relationship among CO2–C, CH4-C and DOC, N2O-N, and DN. 194 

The least squares method was used to construct the best fit between formation of CH4, and CO2 and DOC 195 

concentration, as well as between N2O formation, and DN concentration. The slope of each linear 196 

regression line was equal to the reaction rate constant for the specific incubation condition. One-way 197 

ANOVA (SPSS, 20.0) was used to detect statistically significant differences in the effects of salinity and 198 

wet-dry treatments on C and N cycles, respectively. 199 
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 200 

2.5 Development of kinetic model 201 

The above mentioned reaction rates were used to develop a first-order or an exponential kinetic model 202 

demonstrating the importance of different carbon fractions (SOM and DOM) in the formation of the 203 

greenhouse gases (CO2, and CH4) under flooding conditions. Interestingly, our first order or exponential 204 

kinetic model was suitable to detect differences in the precursors of CO2 or CH4 in the present study. This 205 

demonstrates the importance of a thorough DOM characterization and how changes in the salinity can affect 206 

C turnover. Unfortunately, we were not able to expand our model to the wet-dry treatment. There are 207 

possible two reasons accounting for the limitation using the model in wet-dry treatment. First, the variations 208 

in water content most likely affects DOC availability and GHG transport processes in soil. The kinetic 209 

model here focuses on the chemical reactions and it does not consider other transportation processes. During 210 

the wet-dry processes, water evaporation and other gas transport, which were not accounted in the proposed 211 

reaction kinetic model, could be factors affecting DOC concentration and GHG emission. Besides, 212 

microbes might be stressed and microbial communities might be altered during the wet-dry processes. The 213 

model could not predict the lag phases of GHG or DOC productions. 214 

 215 

One of the reasons for that is, that variations in water content most likely affect DOC availability and its 216 

transport processes in soil which cannot be described by the proposed reaction kinetic model. In the kinetic 217 

model, daily CO2-C emission rates (i.e., d[CO2-C]/dt) were equal to the sum of kSOC [SOC] and kDOC [DOC], 218 

where the constants kSOC and kDOC are the reaction rates of SOC and DOC in forming CO2. The first-order 219 

kinetics we used to describe the reaction among d[CO2-C]/dt, and SOC, DOC was: 220 

d [𝐶𝑂2 − 𝐶] 𝑑𝑡 = 𝑘𝑆𝑂𝐶[𝑆𝑂𝐶] +⁄ 𝑘𝐷𝑂𝐶[𝐷𝑂𝐶] 221 

In the exponential model, daily CH4-C emission rate (i.e., d[CH4-C]/dt) was equal to KSOCexp 222 

(KDOC[DOC]), where KSOC is the reaction rate constant or C mineralization rate from SOC to CH4, and KDOC 223 

is solubility or production of DOC from SOC. The correlation equation we used to describe the reaction 224 

among d[CH4-C]/dt and DOC was: 225 

d [𝐶𝐻4 − 𝐶] 𝑑𝑡 =⁄ 𝐾𝑆𝑂𝐶  𝑒𝐾𝐷𝑂𝐶[𝐷𝑂𝐶] 226 

3. Results  227 

3.1 Kinetic models for C and N cycles  228 

We observed that total CO2-C (12.1-12.4 mg-C g-soil-1) and CH4-C losses (2.6 - 2.9 mg-C g-soil-1) 229 

after 60-d incubation exceeded initial DOC concentrations (1.0 – 1.2 mg-C g-soil-1) for all treatments 230 

suggesting both SOC and DOC could be substrates for CO2 and CH4 production (Boyer and Groffman, 231 
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1996). However, SOC was considered a relatively large C pool and the change in SOC content within the 232 

60-d incubation should be minimal in comparison to the C changes in gas and water phases. In order to 233 

delineate the relationships of the dynamic variables, CO2-C or CH4-C was plotted against DOC 234 

concentration, as shown in Figure 1a and 1b, respectively. A linear correlation with (R2 = 0.73) between 235 

CO2-C and DOC was observed (Fig. 1a), whereas an exponential correlation (R2 = 0.41) between CH4-C 236 

and DOC was obtained (Fig. 1-b). DOC concentration is the same between CO2 and CH4 during the 237 

incubation, but there is no CH4 emitted at the beginning of incubation, so we deleted the high DOC with 238 

no CH4 emission in figure 1-b. We applied a kinetic model to demonstrate the contribution of different 239 

carbon fractions and concentrations on formation rates of CO2 (Chow et al., 2006). Wet-dry treatments are 240 

not modeled by this approach because the variation in water content could change DOC availability as well 241 

as its transport processes, which cannot be simply described by the reaction kinetic model. In the kinetic 242 

model, total available organic carbon (TAOC) is the sum of degradable SOC and DOC, which are available 243 

and accessible to microbes during the 60-d incubation. TAOC was not necessarily equal to total organic C 244 

in soils because not all of the C would be involved in the reactions occurring during the 60-d period. In 245 

addition, DOC could be produced at an independent reaction rate constant kSD by microbes utilizing SOC 246 

as C source. The reaction rate constant kSD is not equal to kSOC because the mechanism producing CO2 is 247 

probably different from that producing DOC (Moore and Dalva, 2001; Chow et al., 2006).  248 

 The CO2-C emission rate was linearly proportional to DOC concentration; therefore, we applied the 249 

first order kinetic model to describe the relationship. CO2 emission rate (d[CO2-C]/dt) is equal to CO2 250 

production from SOC and DOC, written as kSOC [SOC] and kDOC1 [DOC] in equation [1] in Figure s2. After 251 

substituting and manipulating the variables as shown in Box in Figure s2, a linear relationship (y = ax + b) 252 

was obtained as shown in equation [4], where y is the CO2 mineralization rate (d[CO2-C]/dt), a is the 253 

difference between reaction rate constants (kDOC1-kSOC) alternatively called an apparent reaction rate 254 

constant (kapp), x is the DOC concentration, and b is the y-intercept and is equal to TAOC concentration 255 

with a factor of kSOC. The linear equation [4] in Figure s2 can be used to predict the sources of CO2 emission. 256 

Based on this model, the correlation between CO2 emission rate and DOC concentrations depends on kapp, 257 

which is a function of kDOC1, and kSOC. The slope of the linear relationship between CO2-C emission rate 258 

and DOC is positive, indicating that the rate constant of kDOC1 representing microbes mineralizing DOC is 259 
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greater than the rate constant of kSOC representing mineralizing SOC (Chow et al., 2006). This suggests 260 

that microorganisms preferentially utilized DOC to produce CO2 over SOC.  261 

    In contrast to CO2 emission, the linear equation did not fit well when CH4 emission rate (d[CH4-C]/dt) 262 

was plotted against DOC concentration. Instead, the CH4-C emission rate had a relatively close fit (r2 = 263 

0.41) with an exponential function, as expressed by d[CH4-C]/dt = KSOC×exp(KDOC[DOC]) (Fig. 1b). Here, 264 

y is the CH4-C emission rate and x is DOC concentration. If DOC concentration of the system is zero (i.e. 265 

[DOC] = 0), d[CH4-C]/dt is equal to KSOC with unit of concentration over time. Therefore, KSOC is the 266 

reaction rate constant or C mineralization rate directly from SOC to CH4 in our system. In addition, KDOC 267 

has a unit of an invert of DOC concentration because a value of exponential function should be 268 

dimensionless. Therefore, KDOC, with a unit of g-soil / ug-C in our case, is the solubility or equilibrium 269 

constant of DOC from SOC. Overall CH4-C emission rate is a factor of KSOC with an exponential function 270 

that depends on the SOC to DOC production. If KDOC is small, the function flattens out, suggesting a slower 271 

rate of CH4-C emission. If KDOC is large, the curve increase rapidly, suggesting a rapid production of CH4-272 

C. In this study, although we only found a rather weak correlation between DOC and CH4 (r2= 0.41), it is 273 

conceivable that the activity, and potentially also population size, of Archaea responsible for CH4 formation 274 

increased with increasing DOC concentration, explaining at least to some extent the observed relation 275 

between CH4 and DOC. Nevertheless, it has to be considered that many other factors such as redox 276 

conditions play a crucial role for CH4 formation that are not considered in the equation above and that a 277 

good correlation between variables does not imply causality. 278 

The same correlation analyses were done for N2O formation and DN. The experimental data suggest a 279 

negative linear correlation between N2O and DN (R2=0.45; data not shown). However, the data set showed 280 

two distinct data clouds and thus we can only speculate about the actual contribution of DN to N2O 281 

formation and the factors that are relevant for N2O emissions from our setups. 282 

 283 

3.2 GHG dynamics under salinity and wet-dry treatments  284 

Figure 2 shows formation of CO2, CH4, and N2O from our soil microcosm incubations over 60-d under 285 

different salinities and water levels. Results demonstrated that water level significantly altered the patterns 286 

of CO2 emissions but salinity did not (Figs. 2a-c). In the three salinity treatments under permanent flooding 287 

(blue line), CO2 emissions were highest on day 9, with an average of 417.5 (± 15.8), 440.6 (± 8.7), and 288 
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464.7 (± 14.6) μg-C g-soil-1 d-1 at 0 ppt, 1 ppt and 5 ppt of NaCl, respectively, and gradually decreased over 289 

time. Considering the highest CO2 emission rate, an increase in salinity apparently increased the CO2 290 

emission rate but the differences were not statistically significant (p > 0.05). Differences in total CO2-C 291 

losses over 60-d of incubation were 12.2 (± 0.5), 12.4 (± 0.4), and 12.1 (± 0.5) mg-C g-soil-1 at 0 ppt, 1 ppt 292 

and 5 ppt of NaCl, respectively, and found to be statistically not significant (Table 2). Under the wet–dry 293 

cycle treatment, CO2 flux followed closely with soil water content. The highest CO2 flux in each cycle 294 

occurred 8 days after each re-flooding, and then the CO2 mineralization rate declined and was lowest when 295 

the soils had the lowest θg. Moreover, the highest CO2 flux decreased with wet–dry cycles during the first 296 

8 days of incubation. Total CO2-C loss during the 60d incubation in wet–dry cycle was 11.7 (± 0.5), 12.8 297 

(± 0.7), and 11.6 (± 0.5) mg-C g-soil-1 at 0 ppt, 1 ppt and 5 ppt NaCl treatments, respectively. Generally, 298 

total CO2-C loss under the wet-dry treatment was statistically equal to flooding condition in the 60-d 299 

incubations (p > 0.05).  300 

CH4 was not detected until the 12th day of incubation in both wet-dry and flooding treatments. Our 301 

results demonstrated that CH4 formation was mainly influenced by fluctuations in water level, whereas 302 

effects of different salinities on CH4 formation were negligible (Figs. 2d-f). In all salinity and wet-dry 303 

treatments, the highest CH4 fluxes occurred after 21 days of incubation, then decreased to 19%-28% at 304 

flooding and 1%-6% at wet-dry contrast to highest fluxes and remained stable until the end of the 305 

experiment. Highest CH4 fluxes from 0, 1, and 5 ppt NaCl were 148.3, 159.7 to 123.0 μg-C g-soil-1 d-1, 306 

respectively. Wet-dry treatments significantly reduced CH4 emission rates and total CH4-C losses from all 307 

treatments (Fig. 2).  308 

In contrast, both water level and salinity significantly influenced the emission dynamics of N2O (Figs. 309 

2g-i). Under flooding conditions, high salinity reduced the peak of N2O emission rate from 9.0 ng-N gsoil-310 

1 d-1 (0 ppt NaCl), 5.3 ng-N g-soil-1 d-1 (1 ppt NaCl) to 0.4 ng-N g-soil-1 d-1 (5 ppt NaCl), with a total N2O-311 

N loss of 0.10, 0.08, and 0.02 μg-N g-soil-1, respectively. Under wet–dry cycles, N2O emissions followed 312 

closely with soil water content, especially in the later incubation. Highest N2O emissions were quantified 313 

immediately after re-flooding for each wet-dry treatment and decreased with decreasing soil water content. 314 

Interestingly, N2O emission rate apparently increased at the later cycles of wet–dry incubation. Total N2O-315 

N losses after 60-d of incubation during wet–dry treatments were 0.22 (± 0.03), 0.17 (± 0.01), and 0.15 (± 316 

0.02) μg-N g-soil-1 at 0 ppt, 1 ppt, and 5 ppt NaCl, respectively, which was significantly higher than during 317 
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flooding (p<0.05). Compared to the initial concentrations, TC, TN, and DN in the soil actually decreased 318 

for all treatments after 60-d incubation, but changes were not statistically significant. Total C loss (CO2-C 319 

+ CH4-C) after 60-d incubation was 6.2% of original TC, and total N2O-N loss after 60 days was 0.1% of 320 

original TN.  321 

 322 

 3.3 Water quality  323 

The original forested wetland soil pH was slightly acidic with an average of 5.0 ± 0.1 (n = 3), but 324 

increased to (6.0 - 7.5) during the 60-d incubation. No significant difference was found among the salinity 325 

treatments (p > 0.05) although the average pH decreased with salinity. The pH under flooding conditions 326 

(6.2 - 7.5) was significantly higher than under wet-dry treatment conditions (5.9 - 6.1) (p < 0.05). An 327 

increase of pH in soils with increasing salinity is possibly due to the carbonate and a relatively 328 

high pH of sea water (pH ~ 8). In our study, we focus on the effect of NaCl. Without the carbonate 329 

as buffer reagents, the soil pH could be easily altered. Moreover, a decrease of pH is commonly 330 

observed in submerged wetland soils. Organic soil is often acidic during submergence through the 331 

slow oxidation of sulfur compounds, producing sulfuric acid, and the production of humic acids 332 

(Mitsch and Gosselink, 1993). In fact, we did not observe a decrease in pH in the wet-dry 333 

treatment. This suggests that the presence of NaCl is not the main driving force in the observed 334 

pH changes. 335 

 Figure 3 shows the temporal variations of DOC and DN concentrations as well as DOC/DN ratios 336 

over 60-d incubation. Original DOC concentrations in all cases were the lowest with 1.2 ± 0.0 mg-C g-337 

soil-1 (Figs. 3a-c). After 60-d of incubation DOC concentrations increased significantly under flooding 338 

treatments (1.7 ± 0.1 - 2.2 ± 0.3 mg-C g-soil-1) and 5 ppt in the wet-dry treatments (1.6 ± 0.1 mg-C g-soil-339 

1). DOC concentrations were highest after 12 days of incubation and increased 3.4 - 4.5 times under 340 

flooding (θg = 3.0) and 1.8 - 2.4 times under wet–dry cycles (θg = 0.4 - 3.0). The same trend was observed 341 

with varying salinities. However, DOC concentrations were significantly higher in the permanent 342 

flooding incubation compared to incubation under wet-dry conditions (p < 0.05). Although DOC 343 

concentrations at 0 ppt and 1ppt NaCl during flooding exceeded DOC concentrations in the 5ppt NaCl 344 
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treatment, no statistically significant difference in mean DOC concentrations were observed between the 345 

salinity treatments (p > 0.05). 346 

DN concentration had a similar trend over time with varying salinity under both flooding and wet-347 

dry treatments (Figs. 3d-f). DN concentrations increased rapidly from the lowest concentration in original 348 

soil (0 day), then fluctuated during the remainder of incubation. DN concentrations under flooding 349 

increased 2.9 - 3.6 times after 60-d incubation and more than 2.0 - 3.3 times under wet-dry treatments.  350 

The dynamics of DOC/DN ratios were similar to DOC concentration starting at 4.4 - 6.2 and reaching 351 

its highest level of 5.7 - 8.7 after 12 days of incubation, then decreasing gradually to 2.5 - 3.0 (Figs. 3g-i). 352 

The range of DOC/DN ratios was greater with flooding than that in wet-dry treatments, and with increasing 353 

salinity, the peak of DOC/DN ratios was reduced, but ratios after the 60th day were similar.  354 

 355 

3.4. Optical characterization of DOM  356 

Samples for characterization of DOM optical properties were collected every 12 days and included 357 

analyses of SUVA, SR, E2/E3 ratio, and Fluorescence EEM. Similar to the other parameters described above, 358 

there were no obvious differences between salinity treatments (p > 0.05), but differences were observed 359 

between flooding and water level treatments (p > 0.05) (Fig. 4). Higher salinity treatments lowered SUVA, 360 

but the difference was not statistically significant (p > 0.05) during the 60-d incubation (Figs. 4a-c).  361 

E2/E3 ratios and SR showed similar temporal trends at different salinities under both permanent 362 

flooding and wet-dry treatments, however no statistically significant difference among salinity was found 363 

(p > 0.05) (Figs. 4d-i). E2/E3 ratios under wet-dry treatments were significantly higher than under flooding 364 

(p < 0.05). In the same incubation period, DOC concentration increased gradually, while E2/E3 dropped to 365 

its minimum on day 12 in flooding and wet-dry treatments. SUVA and SR increased and E2/E3 ratios 366 

decreased over time when comparing values at the beginning of the experiment and after 60 days of 367 

permanent flooding. Furthermore, lower SUVA but higher E2/E3 ratios of DOC were found at 60-d during 368 

wet-dry cycling.  369 

Results from 3D fluorescence regional integration and emission-excitation matrix are shown in Fig. 370 

5. From fluorescence index (FI), freshness index (β/α), and Fluorescence regional integration, we can 371 

conclude that DOM has higher MW in both flooding and wet-dry treatments after 60-d incubation 372 

compared to its original properties. Humic-like DOM was the largest component, comprising about 34-373 
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65% of DOM, and protein-like DOM was the second most abundant fraction, comprising 20 to 41% of 374 

DOM in all treatments. Although the proportion of various components of DOM fluctuated during the 375 

incubation under various salinity and water level conditions, the observed structural changes were 376 

statistically not significant (p > 0.05) (Fig. 6). Compared to original DOM, fulvic-acid like and humic-acid 377 

like DOM are the most dominant fractions after 60 days.  378 

  379 

4. Discussion  380 

4.1 Contribution of different C fractions to GHG formation 381 

The linear relation between DOC and CO2 emissions suggests that CO2 is mainly formed from DOC and 382 

that SOC only contributes to a minor extent to CO2 emissions from our microcosm experiments. In contrast 383 

to that, an exponential function was applied to fit CH4 formation in our setups. Initially we also applied a 384 

linear model to our CH4 data, however we did not find a correlation between DOC and CH4 (data not 385 

shown). In a next step we used a second order quadratic model which showed a relatively good correlation 386 

between DOC and CH4 (R2=0.70) but this model does not make sense from a biogeochemical point of view 387 

as it is based on an initial decrease in DOC with a simultaneous increase in the emissions of CH4. Therefore, 388 

we developed an exponential model to describe the contribution of DOC to CH4 formation in our 389 

microcosms under permanent flooding conditions. Although the correlation was considerably weaker 390 

(R2=0.41) than observed for the quadratic model, we believe that it better describes the actual relationship 391 

between DOC and CH4.  392 

However, it also demonstrates that the formation of CH4 in our setups is more complex than the formation 393 

of CO2 and that many other factors besides the availability of DOC play an important role for CH4 394 

formation. Some factors that might be of importance are redox conditions but also the competition between 395 

methanogens and other strictly anaerobic microorganisms, such as sulfate reducers and Fe(III)-reducers 396 

might play a role. Nevertheless, we can only speculate about the underlying formation mechanism and the 397 

contribution of DOC to CH4 formation as correlations are only a statistical tool and do not imply causality. 398 

The observed differences in the precursor substances of CO2 and CH4 are still of great relevance in regard 399 

to global climate change. Rising mean temperatures will affect soil C decomposition rates and thus carbon 400 

structure which might lead to alterations in the formation rates of the greenhouse gases CO2 and CH4 401 
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(Davidson and Janssens, 2006). However, these conclusions are based on laboratory soil incubations and 402 

in how far these results are transferable to conditions in the environment is currently unknown. 403 

 404 

4.2 Carbon –salinity, water level (flooding and wet-dry)  405 

4.2a Carbon – salinity vs water level  406 

Rising sea level has increased the hydroperiod and salinity in low-lying coastal freshwater forested 407 

wetlands (Krauss and Whitbeck, 2012). These environmental changes alter the C and N biogeochemical 408 

processes in wetland soils in different ways. Our experiments suggest that an increase in salinity under 409 

oligohaline conditions (≤ 5 ppt) did not significantly alter C cycling in terms of CO2/CH4 emission and 410 

DOC production (Figs. 5 a and c). For gas emissions, our results are in line with a previous study showing 411 

no effect on CO2 or CH4 emission with mean pore water salinity ranging from 0.2 to 4.7 ppt in the same 412 

type of forested wetland (Krauss and Whitbeck, 2012). Results suggest the impacts of low levels of 413 

saltwater intrusion on CO2 and CH4 productions from coastal wetland soils were negligible. However, it 414 

has been demonstrated that fluctuations in salinity affect DOC production in coastal wetlands (Olsen et 415 

al.,1996; Ardón et al., 2016; Chambers et al., 2014). Olsen et al. (1996) and Ardón et al. (2016) 416 

demonstrated that saltwater intrusions could reduce DOC in leachate while Chambers et al. (2014) showed 417 

an increase in DOC concentration in soil pore water. Our study did not observe any differences among 418 

salinity treatments after 60-d incubation. While CO2 and CH4 emissions are mainly controlled by microbial 419 

processes, DOC concentrations and exports are the result of a combination of environmental biotic and 420 

abiotic factors (Chow et al., 2003). The inconsistencies among studies are probably due to the involvement 421 

of several physical (e.g., coagulation and adsorption), chemical (e.g., photochemical and redox processes), 422 

and biological (e.g., microbial production and decomposition) processes during DOC production in soil 423 

water (Zsolnay, 2003). In this study, we specifically investigated the effects of NaCl and hydroperiod on 424 

freshwater wetland soils under low salinity levels (≤ 5 ppt) for a period of 60 days. An increase in DOC 425 

during the incubation was mainly due to the effects of water level (see section 4.2b). Results demonstrated 426 

that the effect of salinity on C cycling in oligohaline environments in a short period of time is negligible. 427 

Water level or the hydroperiod is the driving force on C cycling under oligohaline conditions. However, it 428 

has to be considered that results from a simplified laboratory incubation cannot directly be transferred to 429 

conditions in the field which are much more complex. In particular, the choice of salt can be of relevance. 430 
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Although NaCl is the predominant salt in sea water it also contains divalent ions such as Ca2+ or Mg2+ 431 

which could lead to aggregate formation and flocculation of the sediment and thereby impacting C cycling 432 

(Grace et al., 1997). 433 

  434 

4.2b Carbon – wet-dry vs flooding  435 

In contrast to the salinity treatments, water level treatments had profound effects on C cycles under 436 

oligohaline conditions. Our experiments demonstrated no significant increase in CO2 emission but 437 

significant decreases in CH4 and DOC productions when comparing flooding to wet-dry treatments (p < 438 

0.05) (Figs 3 a and b; c and d). Although re-flooding led to the highest CO2 emission rate from soils at each 439 

wet-dry cycle, there was no significant difference in total CO2–C emission between wet-dry and flooding 440 

treatments after 60-d incubations. Highest emissions of CO2 were quantified immediately after rewetting. 441 

This results from an increase in C which most likely was caused by microbial biomass from cells death 442 

during the drying cycle as the decrease of soluble microbial byproduct-like from EEMs shown in Figs 6 a 443 

and b. Also, wet-dry treatments raised the exposure of organic residues (Denef et al., 2001a, 2001b) due to 444 

the grinding of soil structure for exchange of wetting and drying process (Fierer and Schimel, 2002; 445 

Lundquist et al., 1999). These findings have been reported in laboratory and field experiment in peatland 446 

soil (Chow et al., 2006) and forest soils (Jarvis et al., 2007). However, the wet-dry treatment did not affect 447 

total CO2-C loss in our study because of the offset of highest CO2 emission rate at re-flooding and lowest 448 

CO2 emission rate during the dry period. In sum, the wet-dry treatment resulted in 4.6-5.1% (CO2-C /TC) 449 

C loss and flooding resulted in 4.4-4.9% C loss.  450 

The drying cycle in the wet-dry treatments probably led to oxic conditions, and consequently might 451 

have inhibited the formation of CH4 (Olsson et al., 2015). Only 0.1-0.2% of soil C was converted to CH4–452 

C in wet-dry treatments, and 1.0-1.2% in flooding treatments. Total C release from wet-dry treatments was 453 

9.1-15.9% lower compared to flooding treatments. Our results are in line with previous results showing a 454 

decrease in CH4 emissions in peatland soils and freshwater marsh when water table fluctuates (Moore and 455 

Knowles, 1989; Yang et al., 2013). Although wet-dry treatments did not affect total CO2-C loss, there was 456 

a decrease in CH4-C loss. Therefore, our data suggest that wet-dry treatments significantly decreased total 457 

C emissions (CO2 + CH4). These results are consistent with previous studies where fluctuating water tables 458 

reduced C emissions (Bass et al., 2014; Olsson et al., 2015).  459 
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Our study demonstrated that wet-dry treatments increased DOC production 1.1-1.6 fold after 60-d 460 

incubation. This was significantly lower compared to flooded treatments (1.7-1.9 fold) (p < 0.05). 461 

Researchers have shown that short heterotrophic microbial processes such as respiration and 462 

denitrification could lower DOC concentrations in wet-dry conditions more than that in flooding 463 

environments (Blodau and Moore, 2003; Burford and Bremner, 1975). Enhanced penetration of oxygen 464 

in wet-dry treatments resulted in an increase of both aerobic and anaerobic microbes (Fierer and Schimel, 465 

2003; Lundquist et al., 1999). Also, the decrease in DOC concentration in wet-dry treatments could be 466 

attributed to altered microbial community structures during wet-drying process enhancing labile DOC 467 

consumption.  468 

 469 

4.3 Nitrogen – salinity, water level (flooding and wet-dry)  470 

In contrast to C biogeochemistry, significant changes were observed in N cycling in both saline and 471 

flooding treatments. An increase in salinity increased DN release but decreased N2O emission from soils 472 

(Figs. 5 a, c). The increase in DN in water can be explained by ion exchange with NH4
+ cations in soil with 473 

sodium cations (Na+) in water (Wang and Sun, 2013). However, the increased availability of DN did not 474 

necessarily increase N2O emission because high levels of salt can suppress both nitrification and 475 

denitrification (Osborne et al., 2015; Li et al., 2013). In addition to salinity, water level, which affects the 476 

availability of O2 and redox status, could affect denitrification and N2O production processes (Weitz et al., 477 

2001; Lu et al., 2014). Continuous flooding limits the availability of oxygen in soils, reducing nitrification 478 

(Pezeshki and DeLaune, 2012). In contrast, wet–dry cycles allow O2 penetration into the soil during dry 479 

periods, influencing microbial processes (i.e., substrate availability and microbial cell physiology) and soil 480 

physical properties, thus enhancing N2O emissions (Stark and Firestone 1995; Burger et al., 2005; Kim et 481 

al., 2012) and increasing soil N losses (Borken and Matzner, 2009). Similar observations showing the 482 

effects of salt on N2O and DN in wetlands have been reported previously (Azam and Ifzal, 2006; Chambers 483 

et al., 2013; Ardon et al., 2013).  484 

  485 

4.4 Quality of DOM  486 

SUVA is widely used as an indicator of aromatic C in soil and aquatic humic substances (Novak et 487 

al., 1992; Wang et al., 2015a; Yu et al., 2010). The E2/E3 ratio is inversely correlated with MW of DOM 488 
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(Hunt and Ohno, 2007; Wang et al., 2015b). In our study, not only did both, flooding and wet–dry cycle 489 

treatments increase DOC concentrations, they also increased the relative proportion of aromatic and humic-490 

like compounds in soils (Fig.6), as indicated by a higher SUVA, FI and humic substance peak in region V 491 

in EEM and lower Freshness index (β/α) after 60-d incubation. In addition, a lower E2/E3 ratio in flooding 492 

treatments compared to wet-dry treatments after 60-d incubation suggests that DOM produced under 493 

flooding might mainly consist of compounds of higher molecular weight than that originating from wet-494 

dry cycles. Such differences were attributed to the breakdown of large molecules by microorganisms under 495 

oxic conditions during the drying period (Chow et al., 2006; Krupa et al., 2012). Thus, increased MW, or 496 

recalcitrant DOM, limited microbial activities, resulting in the decrease of CO2 and CH4.  497 

 498 

Conclusions and Outlook  499 

Coastal wetland soils represent a large reservoir for global C, but the stability of this important C pool 500 

is endangered by rising sea level, which will cause seawater intrusion and alter the wetland hydroperiod. 501 

Our study demonstrated that low salt concentrations (<5 ppt) and changes in water contents can 502 

significantly affect GHG formation and DOM optical properties in coastal wetland soils, confirming that 503 

saltwater intrusion and water level fluctuation in coastal wetlands, due to sea level rise, can impact C and 504 

N cycles in this ecosystem. Noticeably, the impacts from fluctuating water level on C cycles are greater 505 

than from salt intrusion in oligohaline areas. In the low-lying coastal areas of the southeastern US, large 506 

inland freshwater forested wetlands have been experiencing changing water levels or hydroperiods due to 507 

rising water tables caused by sea level rise. The changes in C and N cycles in these wetlands could be 508 

significant and might lead to changes in the global budgets of climate-relevant greenhouse gases such as 509 

CH4, CO2, and N2O. In combination with the presented kinetic model it might be possible to predict how 510 

formation of greenhouse gases (CO2, CH4) might be impacted by alterations in the carbon fractions in soil 511 

as a consequence of global climate change. However, in how far these results are also representative for 512 

other coastal wetlands or for processes in the environment is currently unknown. In addition, future studies 513 

and management efforts should also consider inland freshwater tidal wetlands, not just the salt-impacted 514 

areas, to evaluate how these environments might change as a consequence of sea level rise.  515 

  516 
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Figure Captions  792 

Fig. 1 The relationship between (a) DOC-CO2 and (b) DOC-CH4 in surface forested wetland soil under 793 

permanent flooding.  794 

Fig. 2 Formation rates of CO2 (a-c), CH4 (d-f), and N2O (g-i) in surface forested wetland soil incubated at 795 

0 ppt, 1 ppt, and 5 ppt sodium chloride under flooding with θg of 3.0 g-water g-soil-1 and wet-dry cycles 796 

with θg of 0.4~3.0 g-water g-soil-1. The small diagram in the upper right hand corner of each figure is the 797 

cumulative emission over 60 days. Error bars represent the standard deviations of triplicate measurements. 798 

The vertical lines in each diagram indicate the 12-day wet-dry treatments. a-c variations are rate and total 799 

of CO2-C emission among salinity, d-f variations are rate and total of CH4-C emission among salinity; g-i 800 

are rate and total of N2O-N emission among salinity during 60-d incubation 801 

Fig.3 Variations in DOC (a-c), DN (d-f) and DOC/DN g-i) at 0, 1, and 5 ppt NaCl in surface forested 802 

wetland soil under flooding and wet-dry treatments during 60-d incubation. Error bar represents the 803 

standard deviation from triplicate measurements 804 

Fig. 4 Variations in SUVA254 (a-c). E2/E3 ratio (d-f) and SR (g-i) in surface soils incubated at various 805 

salinities (0, 1, and 5 ppt NaCl) under flooding and wet-dry conditions over 60 days. Error bar represents 806 

the standard deviation from triplicate measurements 807 

Fig. 5 A conceptual model for describing effect of water level and salinity on freshwater forested wetland 808 

soils. a and b are soil incubation with freshwater (0 ppt) experiencing flooding and wet-dry treatments, 809 

respectively; c and d are soil incubation with salt water (5 ppt) experiencing flooding and wet-dry 810 

treatments, respectively 811 

Fig. 6 The quantity, quality and 3D fluorescence excitation emission matrices of DOC in forested wetland 812 

soil with salinity under flooding (A) and wet-dry (B) during 60-d incubation. The size of the pie chart 813 

represents the quantity of DOC, and the quality of DOC shows in each pie chart. A and B represent flooding 814 

and wet-dry treatment, respectively. Typical EEM figures are shown in Fig.6 C. Fluorescence regional 815 

integration can be used to quantify the fluorescent DOM by dividing EEM into five operationally defined 816 

regions: I) tyrosine-like; II) tryptophan-like; III) fulvic acid-like; IV) soluble microbial byproduct-like; and 817 

V), humic acid-like 818 

  819 
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Fig. 1 The relationship between (a) DOC-CO2 and (b) DOC-CH4 in surface forested wetland soil under 822 

permanent flooding.  823 
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 828 

Fig. 2 Formation rates of CO2 (a-c), CH4 (d-f), and N2O (g-i) in surface forested wetland soil incubated at 829 

0 ppt, 1 ppt, and 5 ppt sodium chloride under flooding with θg of 3.0 g-water g-soil-1 and wet-dry cycles 830 

with θg of 0.4~3.0 g-water g-soil-1. The small diagram in the upper right hand corner of each figure is the 831 

cumulative emission over 60 days. Error bars represent the standard deviations of triplicate measurements. 832 

The vertical lines in each diagram indicate the 12-day wet-dry treatments. a-c variations are rate and total 833 

of CO2-C emission among salinity, d-f variations are rate and total of CH4-C emission among salinity; g-i 834 

are rate and total of N2O-N emission among salinity during 60-d incubation 835 
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 839 

Fig.3 Variations in DOC (a-c), DN (d-f) and DOC/DN g-i) at 0, 1, and 5 ppt NaCl in surface forested 840 

wetland soil under flooding and wet-dry treatments during 60-d incubation. Error bar represents the 841 

standard deviation from triplicate measurements 842 
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 854 

Fig. 4 Variations in SUVA254 (a-c). E2/E3 ratio (d-f) and SR (g-i) in surface soils incubated at various 855 

salinities (0, 1, and 5 ppt NaCl) under flooding and wet-dry conditions over 60 days. Error bar represents 856 

the standard deviation from triplicate measurements 857 
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 867 

 868 

 869 

Fig. 5 A conceptual model for describing effect of water level and salinity on freshwater forested wetlands. 870 

a and b are soil incubation with freshwater (0 ppt) experiencing flooding and wet-dry treatments, 871 

respectively; c and d are soil incubation with degraded oligohaline (5 ppt) experiencing flooding and wet-872 

dry treatments, respectively. 873 
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 882 

 883 

 884 

Fig. 6 The quantity, quality and 3D fluorescence excitation emission matrices of DOM in forested wetland 885 

soil with salinity under flooding (A) and wet-dry (B) during 60-d incubation. The size of the pie chart 886 

represents the quantity of DOM, and the quality of DOM shows in each pie chart. A and B represent 887 

flooding and wet-dry treatment, respectively. Typical EEM figures are shown in Fig.6 C. Fluorescence 888 

regional integration can be used to quantify the fluorescent DOM by dividing EEM into five operationally 889 

defined regions: I) tyrosine-like; II) tryptophan-like; III) fulvic acid-like; IV) soluble microbial byproduct-890 

like; and V), humic acid-like. 891 

 892 

 893 

 894 

 895 

 896 
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Tables 899 

Table 1. Soil properties of surface forested wetland soils (mean ± standard deviation, n=3)  900 

Parameters  Original soil  

pH  5.0±0.1  

Electrical conductivity (EC25) (mS cm-1)  7.6±3.1  

Dissolved organic carbon (mg g-soil-1)  1.2±0.0  

Total dissolved nitrogen (mg g-soil-1)  0.2±0.0  

Total carbon (TC) (mg g-soil-1)  240.9±4.0  

Total nitrogen (TN) (mg g-soil-1)  17.3±1.0  

C:N ratio  13.9±0.3  

 901 

 902 

Table 2. Total emissions of carbon dioxide, methane and nitrous oxide with salinity and soil water 903 

content during 60-d incubation. (mean ± standard deviation, n=3) 904 

Water level Salinity 
CO2-C loss 

(mg-C g-soil-1) 

CH4 -C loss 

(mg-C g-soil-1) 

Total loss (CO2-C + CH4-C) 

(mg-C g-soil-1) 

N2O-N loss 

(μg-N g-soil-1) 

flooding 

0ppt 12.2 ± 0.5 a 2.9±0.2 a 15.1±0.4 a 0.10±0.04ad 

1ppt 12.4±0.4 a 2.7±0.1 a 15.2±0.3 a 0.08±0.03ab 

5ppt 12.2±0.5 a 2.6±0.2 a 14.8±0.7 a 0.02±0.01b 

wet-dry 

0ppt 11.7±0.5 a 0.5±0.1 b 12.1±0.6 b 0.22±0.03c 

1ppt 12.8±0.7 a 0.6±0.1 b 13.4±0.5 b 0.17±0.01cd 

5ppt 11.6±0.5 a 0.2±0.1 b 11.8±0.5b 0.15±0.02ac 

Different letters represent significantly different means (p<0.05) based on one-way ANOVA. 905 

 906 

 907 

 908 

 909 

 910 
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Supplementary Information 917 

 918 

 919 

SOC: Soil organic carbon                    ( g-C g-soil
-1

)

DOC: Dissolved organic carbon            ( g-C g-soil
-1

)

TAOC: Total available organic carbon    ( g-C g-soil
-1

)

           TAOC = SOC + DOC

kSOC: reaction rate constant for C mineralization (d
-1

)

           utilizing SOC to produce CO2-C

kDOC: reaction rate constant for C mineralization (d
-1

)

           utilizing DOC to produce CO2-C

kSD:    reaction rate constant for C mineralization (d
-1

)

           utilizing SOC to produce DOC 

kapp:   apparent rate constant for overall C           (d
-1

)

          transfer to CO2-C

SOC DOC

CO
2
-C

kSD

k
DOCk SO

C

Box 

[1] d[CO2-C]/dt=kSOC[SOC]+kDOC[DOC]

[2] d[CO2-C]/dt=kSOC([TAOC]-[DOC])+kDOC[DOC]

[3] d[CO2-C]/dt=(kDOC-kSOC)[DOC])+kSOC[TAOC]

[4] d[CO2-C]/dt=kapp[DOC]+kSOC[TAOC]

 CO2-C:

 920 

 921 

Fig.s1 A conceptual model describing CO2 and CH4 production in freshwater forested wetland soils 922 

 923 
 924 
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 926 
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 928 
 929 
  930 



Xijun Page 38  

Table s1 Salinity and soil water content used in the incubation experiments  931 

Soil used  Treatment  

Incubation conditions   

Variables  Constant parameters  

Surface soil  
Salinity effect  

Wet-dry cycles 

S=0, 1, 5  

θg=0.4-3.0 

θg=3.0 

S=0,1, 5  

θg is soil water content in g-water g-soil-1 and S is salinity in ppt (1 part in one trillion parts of water  932 

solution).  933 

 934 

 935 

 936 
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Table s2. The pH and EC (mean ± standard deviation; n=3) of forested wetland soil during 60-d 938 
incubation 939 

Parameter

s 

water 

level 

salinit

y 
(NaCl

) 

incubation(day) 

0 12 24 36 48 60 

pH 

flooding 

0ppt 5.0±0.1a 6.4±0.4ad 7.9±0.2a 7.4±0.1a 7.3±0.1a 7.5±0.0a 

1ppt 4.8±0.1a 5.9±0.1ac 7.6±0.0a 7.2±0.0a 7.3±0.0a 7.2±0.6a 

5ppt 4.8±0.1a 
6.2±0.3ad

c 
6.6±0.2b 6.2±0.2b 5.7±0.1b 6.2±0.4b 

wet-dry 

0ppt 5.0±0.1a 
6.3±0.2ad

c 
6.5±0.3b 6.2±0.1b 5.9±0.0b 6.1±0.1b 

1ppt 4.8±0.1a 6.3±0.2ad 6.7±0.1b 6.2±0.3b 5.2±0.7b 5.9±0.1b 

5ppt 4.8±0.1a 5.7±0.1c 6.4±0.2b 6.1±0.1b 5.5±0.2b 5.9±0.1b 

EC25℃ 
(mS/cm) 

flooding 

0ppt 4.6±3.1a 4.1±0.1ac 4.0±0.4a 3.5±1.0a 3.6±0.3a 3.9±0.0a 

1ppt 6.4±3.1a 5.6±0.2a 5.1±0.0a 4.8±0.1ac 5.7±0.0ac 6.0±0.1a 

5ppt 
13.5±0.1

b 

11.5±0.2
b 

11.4±0.4
b 

12.7±0.1
b 

14.0±0.0
b 

14.1±0.1
b 

wet-dry 

0ppt 4.6±0.3a 2.9±0.6c 3.1±0.4a 3.4±0.2a 3.8±0.1ac 4.0±0.1a 

1ppt 6.4±0.3a 4.2±0.7ac 4.3±0.7a 5.2±2.4ac 6.0±0.0c 6.1±0.1a 

5ppt 
13.5±0.1

b 

10.7±0.7
b 

10.5±0.7
b 

9.1±2.4d 
13.4±0.4

b 

13.8±0.1
b 

Different letters represent significantly different means (p<0.05) based on a one-way ANOVA. 940 

  941 
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Table s3 Fluorescence Index and Freshness Index of DOC during 60-d incubation 942 

Parameters Water level Salinity 
Incubation(day) 

0 12  24  36  48  60  

Fluorescence 

Index 

Flooding 

0ppt 1.51 1.44 1.46 1.45 1.44 1.46 

1pp 1.50 1.47 1.45 1.46 1.47 1.45 

5ppt 1.55 1.45 1.49 1.47 1.51 1.51 

Wet-dry 

0ppt 1.51 1.47 1.47 1.51 1.47 1.47 

1ppt 1.50 1.47 1.49 1.5 1.49 1.48 

5ppt 1.55 1.52 1.52 1.5 1.53 1.48 

Freshness 
Index 

Flooding 

0ppt 0.56 0.55 0.52 0.51 0.52 0.50 

1pp 0.57 0.56 0.53 0.53 0.52 0.53 

5ppt 0.58 0.58 0.57 0.56 0.57 0.57 

Wet-dry 

0ppt 0.56 0.56 0.6 0.61 0.63 0.63 

1ppt 0.57 0.56 0.61 0.61 0.63 0.65 

5ppt 0.58 0.60 0.66 0.64 0.64 0.66 

 943 
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