
Clemson University
TigerPrints

All Dissertations Dissertations

5-2017

Mobile Search Strategies and Detection Analysis of
Nuclear Radiation Sources
Luyang Wang
Clemson University, luyangw@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Wang, Luyang, "Mobile Search Strategies and Detection Analysis of Nuclear Radiation Sources" (2017). All Dissertations. 1951.
https://tigerprints.clemson.edu/all_dissertations/1951

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268656804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1951?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


MOBILE SEARCH STRATEGIES AND DETECTION

ANALYSIS OF NUCLEAR RADIATION SOURCES

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Luyang Wang

May 2017

Accepted by:

Dr. Carl W. Baum, Committee Chair

Dr. Harlan B. Russell

Dr. Robert J. Schalkoff

Dr. Yue Wang



Abstract

This work focuses on detection analysis and search strategies for nuclear radiation sources

in metropolitan areas with mobile sensor networks. A mobile sensor detecting a stationary

nuclear source experiences continually changing statistics. In this work we provide an

analysis of the probability of detection of a nuclear source that incorporates these continual

changes. We apply the analysis technique to several patterns of motion including linear and

circular paths. Analysis is also presented for cases in which there is a significant vertical

offset between source and mobile sensor (the three-dimensional problem). The resulting

expressions are computationally simple to evaluate and have application to both analysis

and simulation of nuclear detection systems in a variety of scenarios. In metropolitan

areas, with vehicles equipped with detectors and Global Position System (GPS) devices, we

consider the design of a robust detection system to provide consistent surveillance. Various

strategies for providing this surveillance with a mobile sensor network are considered and the

results are compared. Both time-from-last-visit based algorithms and detection algorithms

that utilize both time and probability-of-miss estimates are considered. The algorithms are

shown to perform well in a variety of scenarios, and it is further shown that the algorithms

that utilize probability information outperform those that do not.
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Chapter 1

Introduction

Detecting and mitigating nuclear threats in metropolitan areas has drawn great attention

in the past decade. Nuclear contamination from conventional nuclear devices and “dirty

bombs” have the potential to severely disrupt our way of life. Nuclear sources can be

obtained from research materials, medical waste, and many other sources. To mitigate the

threat of terrorists causing nuclear contamination, robust nuclear detection systems must be

developed for populous metropolitan areas. By using a pervasive surveillance and proactive

monitoring system, one can provide constant detection and protection to such areas.

Localization of nuclear materials presents a wide variety of challenges. Because radiation

from a nuclear source is probabilistic in nature, sources are appropriately modeled via

Poisson processes [1]. However, if there is mobility in either the source or the detector, or (in

some cases) if there is mobility of materials between the source and detector, the parameters

of the Poisson process will vary over time, resulting in an inhomogeneous Poisson process.

A common approach to incorporating the effects of mobility in nuclear detection is to

resort to detailed simulations [2], [3]. However, a simple model for the effects of the relative

speed and distance between source and sensor is quite valuable, because it can both provide

fundamental insight into the effects of mobility on detection and permit the development

of low-complexity simulations that employ multiple simultaneous mobile sensors and/or
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sources that are more realistic than simply assuming that detection is assured if a sensor

comes within a certain distance of a source [4], [5]. In this work, we derive and present such

a model. The analysis approach presented is applied to a variety of situations in which a

single detector moves continuously in a field of operations in which a fixed source is present.

The model can be readily expanded to account for mobility of the source, multiple sources,

and multiple sensors; however, these extensions are beyond the scope of this work.

There have been a great number of studies regarding the coverage problem with sensor

networks. Four main categories are studied based on physical approaches. The first type of

network consists of static sensors only; the network is permanently deployed in an area and

each sensor stays in the fixed location where it is assigned [4]-[11]. For such a network, the

performance criterion is whether the area is “covered” by the sensors. The second type of

network consists of dynamic sensors only and the sensors are all controlled [12]-[19]. Sensors

are assigned specific paths; for these networks, computational cost is often the primary

consideration. For both types of sensor networks, sensors must share information and should

have the ability to perceive their locations. The third type of sensor network consists solely

of uncontrolled sensors such as sensors attached to taxicabs. Here, the network exploits

the random nature of the sensors’ mobility to provide consistent monitoring [20]-[24]. For

such networks, the deployment only occurs at the beginning of the detection task and the

number of sensors in this type of sensor network is usually large. With no control over

the sensors, same areas might be covered with multiple sensors while other areas remain

unsensed. The final type of sensor network combines the second type and the third type

and is called a hybrid mobile sensor network [25]-[32]. Here, controlled and uncontrolled

sensors are deployed; the uncontrolled sensors provide a degree of coverage and controlled

sensors are sent to explore the areas that have not been attended for a long period of time.

This type of sensor network requires that the sensors communicate with a central controller

that adaptively sends out sensors as conditions change. In this work, we focus on the hybrid

mobile sensor network framework.

For hybrid mobile sensor networks, algorithms are proposed based on varying criteria
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to evaluate the performance of the sensor network [25]-[32]. Most of the studies in this

area focus on path-planning strategies. The basic idea in [28], [29] is to find the gaps

in the grid map and send the mobile sensors to cover the gaps. Path-planning strategies

typically take consideration of the energy consumption by the movement of the sensors.

One common method widely applied is the virtual force method [26], which is a variation

algorithm derived from artificial potential fields and potential functions [25], [31]. In this

approach, each sensor is considered to be a virtual particle that is subject to virtual forces.

The forces serve two functions: repulsive forces repel sensors from each other so as to spread

out the sensors to maximize the coverage of the entire area, and attractive forces serve to

guide the sensors’ movement and eventually lead the network to reach equilibrium. Under

these two types of forces, a mobile sensor network can automatically reconfigure itself due

to any change in the target area. A concern of this method is that sensors move only when

it is necessary to do so. By saving some energy, the surveillance result is worse because the

inactive periods cause the mobile sensor network to be mostly static. Another probabilistic,

non-heuristic method involves the use of a particle filter estimator algorithm which uses

mutual information to plan the path of mobile sensors [30], [32]. The mutual information

between the sensors and the target area is computed using a particle filter representation

of the posterior probability distribution. There are two categories of computation; the first

is to use particle filter estimators to compute the target area, and this method applies

to the multimodal posterior distributions and nonlinear and non-Gaussian sensor models.

The second approach is to use particle filters to estimate each sensor’s position so as to

improve the sensing capabilities of the network. The main weakness of the particle filter

estimator method is its high computational cost. As for the surveillance of specifically

nuclear materials in metropolitan areas, the Rutgers University group utilizes mobile sensor

networks and vehicles’ random movement [23], [24]. Using a latent modeling approach and

likelihood inference to detect multiple spatial clusters, this method detects multiple clusters

simultaneously in the entire region and filters out the potential nuclear source locations.

Based on these previous studies, we have conducted work on using hybrid mobile net-
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works for surveillance as follows. We model detection as “on-off” in the sense that detection

occurs with probability one if the distance between a sensor and the source ever drops below

a fixed threshold. Detection occurs with probability zero otherwise. Each sensor (detector)

installed on a vehicle reports to the central surveillance center whether the certain area has

a source or not. At each time unit, the sensor only reports the area as “covered” to the

central surveillance center if the area is inside the sensing range of the detector. We also

model detection more accurately by using our probabilistic model already described. We

note that this model can be used not only to evaluate system performance but also to design

better surveillance models, and the design and analysis of such systems is an important part

of this work.

Our network has two types of mobile sensors. The first type are random sensors such as

taxicabs and public buses; let J denote the number of these sensors. Their movements are

merely based on the demand of customers and are not controlled by the central surveillance

center. The mobility of these sensors provides a degree of coverage in the entire metropolitan

area. Typically the sensors installed on these vehicles are low-cost, medium range sensors.

The second type of sensor is a controlled sensor; their movements are controlled by the

central surveillance center and the number of this type of sensor is K, which is assumed to

be relatively small compared to J . The algorithms used in this dissertation utilize a global

assignment strategy. The metropolitan areas are divided into equal-area sub-regions, and

each sub-region is further divided into smaller blocks. Once a vehicle (random or controlled)

passes through the block and discovers no radiation, the location and time index information

are sent to the central surveillance center. If radiation is discovered, action is required to

further identify the source (but this is beyond the focus of our work). Our algorithms differ

from the virtual force method in the way that we exploit the dynamic aspect of the mobile

sensor network. Instead of trying to achieve a stationary network configuration after the

effect of repulsive and attractive forces, our configuration is accomplished by the continuous

movement of all the mobile sensors.

We utilize a real-time coverage information array to perform the global assignment
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strategy and to evaluate the effect of the mobile sensor network. The array contains, for

each block, the time that has elapsed since its last surveillance visit by a mobile sensor. The

array also contains the current location of all J + K mobile sensors. Optionally, a second

array is used to provide estimate of the probability of miss as a function of where the sensors

have traveled and at what speed. To evaluate the performance of the surveillance network,

we consider two criteria: the percentage of the area covered by search vehicles in the last T

time units (time-based coverage) and an estimate of the percentage of the area covered by

search vehicles in the last T time units that has a probability of miss less than α (time and-

probability-based coverage). The main difference between our evaluation criteria and those

in previous research is that we focus on the continuous surveillance of areas and our goal

is to assure that as much of the area has been visited “recently” as possible. Using these

evaluation criteria, we have explored the effects of different global assignment strategies on

performance. We have also explored the use of sub-region assignments to controlled sensors.

In addition we have explored different movement strategies for sending the controlled sensors

to the target sub-regions, some based only on the time information, and other based on time

and probability information. Both static algorithms (with a fixed number of controlled

sensors) and dynamic algorithms (in which the number of controlled sensors varies with

conditions) have been considered. The algorithms are capable of detecting multiple locations

with nuclear radiation sources in metropolitan areas.

The remainder of the dissertation is organized as follows. In Chapter 2, we explore the

analysis of mobile detection of a stationary nuclear source. Chapter 3 considers the design

and deployment of mobile sensor networks for monitoring nuclear radiation in metropolitan

areas. Detection of specific locations in metropolitan areas with probability-based algo-

rithms is analyzed in Chapter 4. Conclusions and future work are given in Chapter 5.
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Chapter 2

Analysis of Mobile Detection of a

Stationary Nuclear Source

In this chapter we present an analysis of the probability of detection of a stationary mobile

source by a continuously moving detector. The remainder of this chapter is organized as

follows. In Section 2.1, the general model and analysis approach is presented, and in Sec-

tion 2.2, important definitions and properties of relevant functions are given. In Section 2.3,

performance analysis is determined for a nuclear detector moving along an infinite linear

path passing near a fixed nuclear source. In Section 2.4, a similar analysis is performed for

the situation in which the mobile detector moves along a circular path. In Section 2.5, a

rectangular path is analyzed, and in Section 2.6, three-dimensional generalizations of these

results are obtained. Bayesian performance is considered in Section 2.7, and conclusions on

the work are given in Section 2.8.

2.1 Modeling and General Analysis Approach

Consider a nuclear source in three-dimensional space at location (x0, y0, z0) and source

intensity λ0. Assume a detector is in location (x(t), y(t), z(t)) at time t, so that the distance

6



d(t) between source and detector at time t is given by

d(t) =
√

(x(t)− x0)2 + (y(t)− y0)2 + (z(t)− z0)2. (2.1)

Define µ to be the photo-peak efficiency of the detector, and assume that this efficiency

incorporates any branching factor that arises for the photo-peaks of whatever isotopes

are involved in detection. Furthermore, define A to be the detector cross-sectional area,

and assume that the detector obeys an efficiency proportional to the inverse square of the

distance d(t). Also define the air attenuation coefficient as ρ, the attenuation coefficient

due to shielding (or any other non-air attenuation) as σ, and the corresponding thickness of

shielding as ds. If the background radiation at the detector is modeled as spatially uniform

with rate λB, the incident count rate is given by

λ(t) = λB +
µAλ0

4πd2(t)
e−(ρd(t)+σds). (2.2)

The effects of the source at our mobile detector is then modeled as a inhomogeneous Poisson

process with rate (λ(t)).

This equation assumes that the detector cross-sectional area does not change as a func-

tion of the relative positions of source and sensor; that is, it assumes the detector is omnidi-

rectional. The equation also assumes that attenuation due to materials other than air (e.g.,

shielding) does not change significantly as a function of the relative positions of source and

sensor. It is possible to generalize the analysis for nonuniform shielding, but this topic is

beyond the scope of this work.

To simplify the analysis, we assume that the background radiation is negligible compared

to the radiation levels at the closer parts of the path traveled by the sensor. This permits

us to focus on the probability of miss PM as the key measure of performance. For the

purposes of this analysis, we assume a miss occurs if no nuclear particles are detected.

Although the effects of background radiation are important, in practice a Neyman-Pearson

detection approach is used and false alarm thresholds are set such that the false alarm rate

7



is below an acceptable threshold. Our analysis exploits the complete lack of false alarms

to obtain simple analytical results otherwise unobtainable. Importantly, these results allow

us to explore the trade-offs between the effects of source intensity, velocity, path, and other

variables. The qualitative behavior of these trade-offs are unlikely to change in a system

with background radiation.

To simplify notation, we define

C =
µAλ0

4π
e−σds (2.3)

so that λ(t) can be written as

λ(t) =
C

d2(t)
e−ρd(t). (2.4)

Our approach is to use a discretized model of the detector and then use a limiting

argument to evaluate the actual situation. Assume the detector spends time t0 at a position

at distance d(kt0) from the source. The detector then jumps immediately to a new position

at distance d((k + 1)t0) and continues to jump every t0 seconds. For notational simplicity

we assume that the distance d(0) occurs at a time slot starting at time t = 0.

Let Nk denote the number of particles detected over the kth such time slot. It fol-

lows that Nk is Poisson with parameter Ct0
d2(kt0)

e−ρd(kt0). Because a Poisson process has

independent increments, it also follows that the Nks are mutually independent.

The probability of a miss for the discretized model is therefore given by

PM =

∞∏
k=−∞

P (Nk = 0). (2.5)

The Poisson model implies that

P (Nk = 0) = exp(− Ct0
d2(kt0)

e−ρd(kt0)) (2.6)
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which gives

PM = exp(−
∑∞

k=−∞−
Ct0

d2(kt0)
e−ρd(kt0)) (2.7)

To remove the effects of discretization, consider the limit

L = lim
t0→0

∞∑
k=−∞

Ct0
d2(kt0)

e−ρd(kt0). (2.8)

In the limit the summation becomes an integral. Specifically, t0 is replaced by the differential

element dt and kt0 is replaced by t. The result is

L =

∫ ∞
−∞

C

d2(t)
e−ρd(t)dt. (2.9)

It follows that

PM = exp

(
−
∫ ∞
−∞

C

d2(t)
e−ρd(t)dt

)
. (2.10)

This equation can be evaluated for a variety of mobility models of interest.

2.2 Special Functions

As (2.10) is evaluated for special cases, it will be seen that certain integral functions arise.

In this section we present these functions along with useful properties of these functions.

The first function is a function of one variable. Denoted R(a), this function is defined

as

R(a) = 1
π

∫ π/2

−π/2
e−a sec(u)du. (2.11)

This function has the properties that R(0) = 1 and R(a) ≤ e−a for all a ≥ 0. It can be

shown that R(a) decreases from 1 to 0 as a increases from 0 to infinity.

The second function is a function of two variables. Denoted R(a, b), this function is

defined as

R(a, b) = 1
π

∫ π/2

−π/2
e−a sec(u)/

√
1+b tan2(u)du. (2.12)
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Note that this function only exists if b ≥ 0. Also note that R(a, 0) = R(a), R(0, b) = 1, and

R(a, 1) = e−a. In addition, for a ≥ 0, R(a, b) ≤ R(a) with equality only if b = 0.

We can, without loss of generality, restrict b to 0 ≤ b ≤ 1, because a change of variables

shows that R(a, b) = R( a√
b
, 1b ). It follows that, if b < 1, R(a, b) ≤ R( a√

b
) is a tighter upper

bound than R(a, b) ≤ R(a).

It can be shown that, for b held constant, R(a, b) decreases from 1 to 0 as a increases

from 0 to infinity. In addition, for a held constant, R(a, b) increases from R(a) to e−a as

b increases from 0 to 1. Note that one implication of this result is that R(a, b) ≥ e−a for

0 ≤ b ≤ 1.

The third function we consider is an “incomplete” version of the first; it has the same in-

tegrand as R(a), but integrates over a smaller region. The function is denoted as R(a; c1, c2)

and is defined

R(a; c1, c2) = 1
π

∫ arctan(c2)

arctan(c1)
e−a sec(u)du. (2.13)

Note that R(0; c1, c2) = 1
π (arctan(c2)− arctan(c1)) and R(a; c1, c2) ≤ e−aR(0; c1, c2) for all

a ≥ 0. Furthermore, for c1 and c2 fixed, R(a; c1, c2) decreases from R(0; c1, c2) to 0 as a

increases from 0 to infinity.

In addition, we note that the integrand obtains its maximum value at u = 0. A conse-

quence is that if c1 ≤ 0 and c2 ≥ 0 (so that the maximum value of the integrand is included

in the integral), R(a; c1, c2) ≥ 1
π (arctan(c2) − arctan(c1))R(a). As a particular example of

this inequality, we have R(a;−1, 1) ≥ 1
2R(a).

2.3 Detection with a Sensor Moving Linearly

Consider a detection device moving linearly at constant speed v. Define ` to be the closest

distance the detector ever comes to the source. The geometry of the situation is illustrated

in Fig. 2.1. Without loss of generality, assume that the detection device achieves this

minimum distance at time t = 0. The distance between the source and detector is at time

t is d(t) =
√
`2 + v2t2.

10
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Figure 2.1: Fixed source and mobile detector moving linearly.

Applying this expression for d(t) to (2.9), we have

L =

∫ ∞
−∞

C
`2+v2t2

e−ρ
√
`2+v2t2dt. (2.14)

Using the change of variables t = `
v tan(u) and the fact that 1 + tan2(u) = sec2(u) gives

L = C
`v

∫ π/2

−π/2
e−ρ` sec(u)du. (2.15)

Using our definition of R(a) in (2.11), we have

L = Cπ
`v R(ρ`), (2.16)

and letting PLM (`) denote the probability of miss for an infinite linear path at minimum

distance ` from the source, applying (2.10) we obtain

PLM (`) = exp(−Cπ
`v R(ρ`)). (2.17)

Note that this expression depends on C (a factor proportional to the source strength

λ0) and v (the speed of the mobile detector) solely through their ratio. For this reason,

Fig. 2.2 presents performance of the miss probability as a function of ` for four fixed values

of C/v. For this and all subsequent plots we use the constant ρ = 0.0097 m−1 as the air

attenuation coefficient. This value is based on the Cs-137 photo-peak region of 662 keV.
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Figure 2.2: Probability of miss for detection with sensor moving linearly.
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As expected the probability of miss increases as the distance between source and detector

` increases. Furthermore, the probability of miss decreases with increasing C or decreasing

detector speed v. The behavior with respect to v is explained by noting that a slower speed

permits a greater amount of time for detection when the detector is close to the source.

2.4 Detection with a Sensor Moving Circularly

Now consider a detection device moving in a circular path of radius r at constant speed v.

Assume the circle is centered at the origin of an x-y plane, and assume the source is located

(without loss of generality) at position (x, 0), where x ≥ 0. The geometry is illustrated in

Fig. 2.3.
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Figure 2.3: Fixed source and mobile detector moving circularly. Source is shown both
interior and exterior to the path of the detector.

Further assume that the detector position at time t is given by the parametric equations

x(t) = r cos(vtr ) and y(t) = r sin(vtr ), valid for −πr
v ≤ t < πr

v . Over this time duration the

detector makes one complete rotation. The distance between source and detector is given

by

d(t) =
√

(x− r cos(vtr ))2 + (r sin(vtr ))2

=
√
r2 + x2 − 2xr cos(vtr ) (2.18)
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Applying this expression for d(t) to (2.9), we have

L =

∫ πr
v

−πr
v

e−ρ
√
r2+x2−2xr cos( vt

r
) Cdt

r2 + x2 − 2xr cos(vtr )
(2.19)

Using the change of variable θ = vt
2r gives

L =

∫ π
2

−π
2

e−ρ
√
r2+x2−2xr cos(2θ) (2Cr/v)dθ

r2 + x2 − 2xr cos(2θ)
(2.20)

Applying the trigonometric identity cos(2θ) = 2 cos2(θ)− 1 gives

L =

∫ π
2

−π
2

e−ρ
√

(r+x)2−4xr cos2(θ) (2Cr/v)dθ

(r + x)2 − 4xr cos2(θ)
(2.21)

Using the change of variable u = arctan( r+xr−x tan θ) further gives

L =
2Cr/v

|r2 − x2|

∫ π/2

−π/2
e
−ρ|r−x| sec(u)/

√
1+( r−x

r+x
)2 tan2(u)

du (2.22)

Using our definition of R(a, b) in (2.12), we obtain

L = 2Crπ
v|r2−x2|R(ρ|r − x|, (r−x)

2

(r+x)2
). (2.23)

Let PCM (x, r) denote the probability of miss for a circular path of radius r centered at the

origin and a source at a distance x from the origin. Applying (2.10), we obtain

PCM (x, r) = exp(− 2Crπ
v|r2−x2|R(ρ|r − x|, (r−x)

2

(r+x)2
)). (2.24)

Consider the special case in which the nuclear source lies in the exact center of the

circular path. This case is highly unlikely to occur in practice, but it is of interest to explore

how the equations simplify in this case. Here, we have x = 0, and because R(a, 1) = e−a,

14



(2.24) simplifies to the following:

PCM (0, r) = exp(−2Cπ
vr e

−ρr). (2.25)

Because R(a, b) decreases as a increases when b is held constant, and because R(a, b) ≥ e−a,

we can write, for 0 ≤ x ≤ r (x inside the circle),

R(ρ|r − x|, (r−x)
2

(r+x)2
) ≥ R(ρr, (r−x)

2

(r+x)2
) ≥ e−ρr. (2.26)

It follows that, because 1
|r2−x2| ≥

1
r2

for all 0 ≤ x ≤ r,

PCM (x, r) ≤ exp(− 2Crπ
v|r2−x2|e

−ρr)

≤ exp(−2Cπ
vr e

−ρr)

= PCM (0, r) (2.27)

Thus, if the source is within the circle, the largest miss probability occurs if the source is

at the center.

Note that if the source is outside the circle (i.e., x > r) and we let ` = x − r, we can

apply (2.24) to write

PCM (`+ r, r) = exp(− 2Cπr
v`(2r+`)R(ρ`, `2

(2r+`)2
)). (2.28)

Because 2r
2r+` ≤ 1 and R(a, b) ≤ R(a), we can write

PCM (`+ r, r) ≥ exp(−Cπ
v` R(ρ`, `2

(2r+`)2
))

≥ exp(−Cπ
v` R(ρ`))

= PLM (`). (2.29)

Thus, if the source is outside a circle at a minimum distance ` away from the circle, perfor-
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mance is worse than that of an infinite line at the same minimum distance.

As in the case of the infinite line, (2.24) depends on C and v solely through their ratio.

Fig. 2.4 presents performance of the miss probability as a function of ` for four fixed values

of C/v. In this figure, the radius of the path is set to be 50 m.

The figure presents results for the source both inside the circular path (x < 50) and

outside the path (x > 50), where units are in meters. As expected, the probability of miss

increases as x increases beyond 50 and as x decreases below 50. For 0 ≤ y ≤ 50, performance

for the source at x = y is better than than that for the source at x = 100− y, even though

the minimum distance between path and source is 50 − y in both cases. (For example,

compare the performance with x = 10 with that at x = 90.) This result can be explained

by noting that when x = y, the distance between source and detector varies between 50− y

and 50 + y, but when x = 100 − y, the distance varies between 50 − y and 150 + y. (For

example, when x = 10, the distance varies between 40 and 60, whereas when x = 90, the

distance varies between 40 and 140.) Similarly to the linear case, the probability of miss

improves as either C is increased or v is decreased.

2.5 Detection Along a Rectangular Path

Because a rectangular path consists of four straight line segments, we first determine the

performance due to a single finite straight line segment. Consider a detector moving along

a path on the x axis of length b− a from x = a to x = b and suppose the source is at (0, `).

The situation is illustrated in Fig. 2.5.
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Figure 2.4: Probability of miss for detection with sensor moving circularly.
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This problem is similar to that of Section 2.3 except that the length of the path is finite.

Here d(t) =
√
`2 + v2t2 from t = r1

v to t = r2
v . Thus

L =

∫ r2/v

r1/v

C

`2 + v2t2
e−ρ
√
`2+v2t2dt. (2.30)

Using the change of variables t = `
v tan(u) gives

L = C
`v

∫ arctan(r2/`)

arctan(r1/`)
e−ρ` sec(u)du, (2.31)

and using (2.13) results in

L = Cπ
`v R(ρ`; r1` ,

r2
` ). (2.32)

Let PLM (`; r1, r2) denote the miss probability for this geometry. Applying (2.10) gives

PLM (`; r1, r2) = exp(−Cπ
`v R(ρ`; r1` ,

r2
` )). (2.33)

Now consider the situation of a rectangular path from (0, 0) to (a, 0) to (a, b) to (0, b) back to

(0, 0) with the source at (x, y). The source can be inside or outside the rectangle. Without

loss of generality we assume x > 0 and y > 0. The situation is illustrated in Fig. 2.6.

The overall probability of miss is equal to the product of the four individual miss prob-

ability results for the four links. Denoting the overall probability of miss for the rectangle

- - - - -

6

-

tHH
HHH

Ht`

r1 r2
vt detector

source d(t)

Figure 2.5: Fixed source and mobile detector moving over a straight line segment.
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by PRM (x, y; a, b), we have

PRM (x, y; a, b) = PLM (y;−x, a− x)

× PLM (|a− x|;−y, b− y)

× PLM (|b− y|;−x, a− x)

× PLM (x;−y, b− y). (2.34)

where the first term is due to the bottom segment, the second is due to the right side, the

third is due to the top segment, and the fourth is due to the left side.

Consider the special case that the source is in the center of a 2` by 2` square. In this

case the results become

PRM (`, `; 2`, 2`) = [PLM (`;−`, `)]4

= exp(−4Cπ
`v R(ρ`;−1, 1)) (2.35)

We compare this result with that for a source in the center of a circle with radius ` (so

that the minimum distance from the path to the source is ` in both cases). Using the fact

that R(a;−1, 1) ≤ 1
2R(a), we have

PRM (`, `; 2`, 2`) ≥ exp(−2Cπ
`v R(ρ`)) = PCM (0, `). (2.36)
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Thus, at the same speed v, the smaller circular path has a smaller probability of miss than

the square path. This result is not necessarily obvious; although the circular path remains

closer to the source, the rectangular path, being longer, provides more time to collect data.

The result shows that the benefits of the closer path outweigh the costs of a shorter collection

time.

Fig. 2.7 presents performance for a square 100 m by 100 m path with coordinates (0, 0),

(0, 100), (100, 0) and (100, 100) as a function of the parameter d. The coordinates of the

source are (d, 75) so that the locations lie on a horizontal line three-quarters of the way

up on the square. Locations inside the square (d < 100) and locations outside the square

(d > 100) are both considered. The results show behavior similar to that of the circular

path. Performance is generally better than that of Fig. 2.4 because the minimum distance

between source and detector in the rectangular case is smaller than that of the circular case

(because the source is at location (d, 75) in the rectangular case).

2.6 Paths in Three Dimensions

The analysis presented can be readily generalized for three dimensions. The results for

linear paths apply without modifications provided ` is still the minimum distance between

the path and the nuclear source. (That is, a two-dimensional coordinate system can always

be constructed containing the line and the source point; in this coordinate system, the

earlier results still apply.)

With regards to a circular path, the problem is fundamentally three-dimensional and

requires modification of earlier results. Suppose the source is assumed to be at height h

relative to the plane of the path. Then, otherwise using the same geometry as that of

Fig. 2.3, the distance is given by

d(t) =
√

(x− r cos(vtr ))2 + (r sin(vtr ))2 + h2

=
√
r2 + x2 + h2 − 2xr cos(vtr ) (2.37)
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Figure 2.7: Probability of miss for detection along a rectangular path.
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Using this expression in (2.9), performing the substitution θ = vt
2r , using cos(2θ) =

2 cos2(θ) − 1, performing the substitution u = arctan(
√

(r+x)2+h2

(r−x)2+h2 tan(θ), and finally using

the definition of R(a, b) in (2.12) gives

PCM (x, r, h) = exp(− 2πCr/v√
[(r+x)2+h2][(r−x)2+h2]

×R(ρ
√

(r − x)2 + h2, (r−x)
2+h2

(r+x)2+h2
)). (2.38)

As for the rectangular path, again assume the source is at height h relative to the plane

of the path. Using the same geometry as that of Fig. 2.6,

PRM (x, y, h; a, b) = PLM (
√
y2 + h2;−x, a− x)

× PLM (
√

(a− x)2 + h2;−y, b− y)

× PLM (
√

(b− y)2 + h2;−x, a− x)

× PLM (
√
x2 + h2;−y, b− y). (2.39)

where PLM (`; r1, r2) is as defined in (2.33).

For the special cases that the source is at height h relative to the center of an 2` by 2`

square and the center of a radius r circle, the results simplify to

PRM (`, `, h; 2`, 2`)

= [PLM (
√
`2 + h2;−`, `)]4

= exp(− 4Cπ
v
√
`2+h2

R(ρ
√
`2 + h2; −`√

`2+h2
, `√

`2+h2
) (2.40)

and

PCM (0, r, h) = exp(− 2πCr
v(r2+h2)

R(ρ
√
r2 + h2, 1))

= exp(− 2πCr
v(r2+h2)

e−ρ
√
r2+h2) (2.41)

22



In practice the source is unlikely to be in the exact center of the search path. However,

these special-case equations demonstrate some interesting behavior that also occurs in the

more general situation. Perhaps surprisingly, for fixed values of h, performance is a non-

monotonic function of ` (or r). Specifically, once h is set, there is in each case an optimum

value of ` (or r) that minimizes the probability of miss. The trade-off here is due to the

fact that although a larger value of ` (or r) results in a path further away from the source,

it also provides a longer data accumulation time. It is straightforward to show that this

optimum value does not depend on the value of C/v.

Fig. 2.8 presents this performance for the circular path at five combinations of values

of h. The nonmonotonicity of performance as a function of r is clearly shown. The optimal

path radius grows with increasing h, and in fact, the optimal value of r is slightly less than

h in each case.

2.7 Bayesian Performance

One approach to the practical use of the results presented is to evaluate at/design for worst

cases, generally as far from the closest the search path gets to the source as possible. An

alternative is to take a Bayesian approach and assign an a priori probability density to the

location of the source. This latter approach is the focus of this section.

Reconsider the infinite straight line path and model the a priori density of the distance

to the source L as fL(`). Then the average probability of miss is given by

PLM,avg =

∫ ∞
0

fL(`)PLM (`)d`

=

∫ ∞
0

fL(`) exp(−Cπ
`v R(ρ`))d`. (2.42)

Let µ denote the expected value of L and define X = L/µ so that E[X] = 1. Then

FX(x) = P (X ≤ x) = P (L ≤ µx) = FL(µx) (2.43)
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Figure 2.8: Probability of miss for detection in three dimensions.
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and

fX(x) = d
dxFX(x) = µfL(µx) (2.44)

Performing the change of variable x = `/µ gives

PLM,avg =

∫ ∞
0

fX(x) exp(− Cπ
xµvR(ρxµ))dx. (2.45)

Possible models for X (required to have expected value equal to one) include uniform so

that fX(x) = 1
2 , 0 ≤ x ≤ 2, triangular so that fX(x) = 2

3(1− x
3 ), 0 ≤ x ≤ 3, and exponential

so that fX(x) = e−x, x ≥ 0. The integral can be evaluated numerically in each case.

Fig. 2.9 presents a comparison of the three models as a function of C/v with L = 50

m. The figure shows performance improves as C/v increases, as expected. However, the

rate of improvement varies significantly depending on the Bayesian model of fX(x) used.

Improvement increases at the greatest rate with the uniform model and at the smallest rate

with the exponential model. These results can be explained by the fact that the uniform

density has the smallest variance and the exponential density has the largest variance. The

large variance of the exponential corresponds to a higher probability that the minimum

distance between source and detector will be large.

As a second example of Bayesian modeling, reconsider the circular path of radius r and

model the location of the source as uniformly distributed within a circle of radius s. Let L

be a random variable denoting the distance of the source from the center. To achieve the

uniform distribution in two-dimensional space, the probability of an area must equal the

ratio of the area divided by the area of the circle. Thus, the distribution function for L

must be

FL(`) = P (L ≤ `) = π`2

πs2
= `2

s2
(2.46)

from which it follows that the density is

fL(`) = d
d`FL(`) = 2`

s2
(2.47)
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Figure 2.9: Probability of miss for detection with a sensor moving linearly.
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valid for 0 ≤ ` ≤ s.

The average probability of miss is

PCM,avg =

∫ s

0
fL(`)PCM (`, r)d` =

∫ s

0

2`
s2
PCM (`, r)d` (2.48)

where PCM (`, r) is given by (2.24).

Fig. 2.10 presents performance as a function of path radius r when s is fixed at 50

m. Performance can be seen to be a non-monotonic function of r. It can be seen that

the optimal search radius is not around the periphery of the region in which the source

is assumed to lie (which corresponds to r = 50 m); instead, the optimal search radius is

smaller, one in which the source may lie inside or outside the path of the detector (around

r = 35 m). The exact optimal value of r depends on C/v.

However, using r = 35 m gives near-optimal performance over a wide range of C/v

values. Note that there is a large difference in performance between r = 50 and r = 35 m;

for C/v = 100, the difference is roughly a factor of 100 (two orders of magnitude).

As an example of Bayesian analysis with three-dimensional modeling, suppose the de-

tector takes a circular path of radius r on the ground, and the source lies uniformly within

a cylinder of the same radius r and height h. Such a situation might model a ground-based

search for nuclear material around a high-rise building. Here we obtain

PCM,avg =

∫ r

0

∫ h

0

2`
r2h

PCM (`, r, z)dzd` (2.49)

where PCM (`, r, z) is given by (2.38).

This equation can be used to explore what cylindrical building shape, for a fixed total

volume, has the worst probability of miss. Suppose the volume is fixed to be the same as

that of a building with radius 50 m and height 50 m. Fig. 2.11 presents performance in this

situation as a function of the height h. The figure shows that the best performance occurs

in a building of height roughly 30 m (and radius roughly 65 m). Performance degrades

significantly in tall buildings (r small) and in short ones (r large), in the former case
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Figure 2.10: Probability of miss for detection with circular path.
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Figure 2.11: Probability of miss for detection of three-dimensional modeling.
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because the source is likely to be far vertically from the ground and the search time is short,

and in the latter case because the source is likely to be far horizontally from the detector

path.

2.8 Conclusions

Expressions for the probability of detection of a nuclear source have been derived for a sensor

that moves continuously. The analysis has been applied to linear and circular motion, and

both two- and three-dimensional topologies have been analyzed. Generalizing the results

for non-uniform shielding is a useful area of future research, as is incorporating the effects

of non-negligible background radiation. However, we do not explore these topics in this

dissertation.
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Chapter 3

Design and Analysis of Mobile

Sensor Networks for Surveillance

of Metropolitan Areas

In this chapter we present results of hybrid surveillance sensor research using the “on-

off” source detection model. This chapter is organized as follows: In Section 3.1, the

hybrid surveillance sensor network model with sub-regions is proposed. Section 3.2 presents

simulation results for a sensor network in a metropolitan area. Simulation results are

compared with no global assignment and various movement strategies in Section 3.3. Also,

the algorithm with dynamic number of controlled sensors are performed in Section 3.3.

Conclusions are given in section 3.4.

3.1 Hybrid Surveillance of Mobile Sensor Network with

Sub-regions

Consider a metropolitan area divided into equal-area sub-regions. Two types of sensors

are considered in the hybrid surveillance model. A number of mobile vehicles (J) such as
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taxicabs or public buses are equipped with detectors and Global Position Systems (GPS),

and their movements are not controlled by the central surveillance center. These vehicles

are viewed as uncontrolled sensors because we can not control their movements. The paths

of uncontrolled sensors are determined by the passengers they take or by predefined routes;

they may stay static when they do not carry any passengers. Uncontrolled sensors provide

position data and a certain degree of coverage of a metropolitan area. A smaller number

of mobile vehicles (K) such as police-cars or dedicated vehicles are also equipped with

detectors and GPS and their movements are controlled by the central surveillance center.

Taxicabs without passengers may also be hired for this purpose. These vehicles are viewed

as controlled sensors. Each controlled sensor is assigned a sub-region and searches that

sub-region until told to move to a different sub-region. The combination of uncontrolled

sensors and controlled sensors defines the hybrid sensor network surveillance model.

Each sub-region is further divided into smaller blocks. For simulation purposes, assume

all blocks are square with equal dimensions. After a vehicle (controlled or uncontrolled)

passes through a block and discovers an absence of radiation, the location information and

time index information are sent to the central surveillance center. If radiation is discovered,

action is needed to further identify the location of the source, but subsequent actions and

decisions are not the focus of this research. As a result of obtaining this information, the

central surveillance center maintains a Real-Time Coverage Information Array at all times.

The central surveillance center knows, for every block, the time that has elapsed since its

last surveillance visit. The center also maintains the current locations of all J +K vehicles.

3.1.1 Global Sub-region Assignment

With the metropolitan areas divided into sub-regions, time index information is used to

determine which sub-region should be attended by a given controlled sensor. The criterion

applied to determine whether the sub-region needs to be revisited is the Worst Time Infor-

mation criterion, defined to be the longest time elapsed for a block since it has last been

visited. Two methods are utilized to compute the worst time information for each sub-
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region. The first we call the Worst Sum algorithm. Here, all blocks within the sub-region

are considered. The sum of the time indexes of all blocks within the sub-region is used as the

indicator of the sub-region. The second method we call the Worst Unit algorithm. In this

case, only the block with the worst time index information in the sub-region is considered.

The time index of the block with longest time elapsed since it has last been visited is used

as the indicator of the sub-region in this case. With both of these methods, each sub-region

is represented by a time index, and this index is used to identify the sub-region with the

worst time index information in the entire metropolitan area. The unoccupied controlled

sensor is assigned to this sub-region. This assignment procedure occurs asynchronously and

is used to immediately deploy any inactive controlled sensor.

An example of an array containing the times since the last visit is shown in Fig. 3.1.

Here A(i,j) is the time since the last visit in the ith row and jth column of sub-region

A. The worst sum algorithm chooses as the next sub-region to visit the sub-region that

corresponds to the largest value of
∑
i

∑
j
A(i, j),

∑
i

∑
j
B(i, j), ...,

∑
i

∑
j
I(i, j), and the Worst

Unit algorithm chooses as the next sub-region the one that corresponds to the largest value

of maximaxjA(i, j), maximaxjB(i, j), ..., maximaxjI(i, j).
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Figure 3.1: Array of times since last visit, incorporating sub-regions.
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3.1.2 Surveillance within a Sub-region

Once a sub-region has been selected, the controlled sensor must go to that sub-region and

provide surveillance. Four surveillance strategies have been considered in this research.

The first movement strategy is the most intuitive one, which we call the Sweeping

Movement Strategy. Controlled sensors go through every block in the target sub-region

and perform detection along an “S”-shape path. That is, the sensor traverses each row of

blocks and goes to the next row when it finishes the current row, alternating directions

with each row. The procedure can be generalized for non rectangular or otherwise irregular

blocks, but the idea is to “sweep” methodically through the sub-region. The time spent by

the controlled sensor in the sub-region is proportional to the area of the sub-region. In the

case of equal square blocks, the controlled sensor revisits all blocks in the sub-region once

and only once. Upon completion of surveillance in the sub-region, the controlled sensor

is assigned to another sub-region via the global sub-region assignment method already

described. An example of the path taken using the Sweeping Movement Strategy in a

square area is shown in Fig. 3.2. This figure assumes that the controlled sensor enters the

sub-region in the upper left corner.
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Figure 3.2: Sweeping movement strategy.
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The remaining three movement strategies exploit the time index information in the

neighborhood blocks and they are elaborated as follows. A one-step neighborhood con-

sists of blocks within one block-distance away from the current block; two and three-step

neighborhoods consist of all blocks within two or three block-distances away from the cur-

rent block. An illustration of one, two and three-step neighborhoods is given in Fig. 3.3.

One-step neighborhood, two-step neighborhood and three-step neighborhood time index

information is used for one-step, two-step and three-step movement strategies. The worst

time information is either the longest time elapsed in one block since it has last been visited

(for a one-step neighborhood), or the largest sum of time elapsed in two or three blocks

since they were last visited (for a two-step neighborhood or three-step neighborhood). The

neighborhood regions for one-step, two-step and three-step methods are strictly based on

Manhattan distance. These quantities are calculated for each block immediately neigh-

boring the current position of the controlled sensor, and the sensor travels to the “worst”

neighboring block. The controlled sensor remains in the sub-region until it covers a fixed

percentage of the area in the sub-region.
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Figure 3.3: Information for neighborhood movement strategies.
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3.1.3 Traveling Between Sub-regions for Controlled Sensors

Once the unoccupied controlled sensor is assigned a sub-region, it drives to that sub-region.

The transition path is set by choosing the nearest corner block of the new sub-region; the

transition path is from the current position of the controlled sensor to that corner block.

Between these two locations there are multiple paths of equal (shortest) length. The general

idea of selecting the path is that controlled sensors can detect some long-neglected blocks

along the way. Based on this idea, we use a worst pixel path, which is defined as the path

that visits n blocks with the worst time index information, where n is a constant. (In our

simulation, n = 100.)

3.2 Sensor Network Simulation

3.2.1 Parameters and Details of Implementation

In this simulation, the dimension of the metropolitan area is defined as N by N , so that

the area is divided into N2 grid blocks. The metropolitan area is divided into sub-regions

with dimension m by m, so that the total number of sub-regions is L2, where N = Lm.

With the Sweeping Movement strategy, the time spent in a sub-region is m2 (in units of

block search detection times) and for one-step neighborhood, two-step neighborhood and

three-step neighborhood movement strategies, the time spent in a sub-region is m2 or less,

depending on the fixed percentage of area that is covered in the sub-region before switching

to another sub-region. For all sensors, we model the sensing range as exactly one block,

meaning that a sensor can only detect a source in the block it is located.

In the simulation, one time unit equals one block search. At every time unit, when

an uncontrolled sensor or a controlled sensor reaches a block, this block is marked as de-

tected and the information stored for this block is the time elapsed since it has last been

visited. Through the continual movement of all sensors, the time information stored for

each block updates continually. In the simulation, we model the time for a sensor to move
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to a neighboring block as a part of the time unit used to surveil a block.

3.2.2 Uncontrolled Sensor Detection Model

Uncontrolled sensors are transportation vehicles that perform transportation tasks while

surveilling the metropolitan area. We model the uncontrolled sensors as also traveling one

block per time unit. Uncontrolled sensors always choose a shortest path between the pick-

up location and the destination. There is always a straight line LP connecting these two

blocks. Our movement model is that an uncontrolled sensor always chooses the direction

towards the destination along a Manhattan-distance-type path closet to LP .

Uncontrolled sensors also experience a time period of waiting for the next service. We

model the waiting period between two services as a Poisson random variable, so that the

probability for the waiting time between two services is

P (W = k) =
e−λk(λ)k

k!
, k = 0, 1...

The random sensor is modeled as stationary during the waiting period, and the detector

is modeled as providing constant surveillance of the block in which it waits.

3.2.3 Controlled Sensor Detection Model

The movement of a controlled sensor is completely determined by the central surveillance

center. The controlled sensor moves one block per time unit, never halts and performs

surveillance continuously.

3.2.4 Simulation Initialization and Sampling

Each sensor is initially positioned randomly in the entire metropolitan area. To avoid

spurious effects of initialization, we only collect data after an initialization period. For the

results presented here, the initialization period is 10,000 time units and we collect data for

the time period from time unit 10,000 to time unit 50,000. The criterion used to evaluate
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the performance of the sensor network is the percentage of area covered within the last T

time units as a function of T . Our results present the average of 400 simulations.

3.3 Simulation and Performance of the Sensor Network

In this section, simulation results of a sensor network are presented. The dimension of the

metropolitan area is set to N = 400, and the dimension of a sub-region is m = 25, 40 and

80. Thus the number of sub-regions is L2 = 256, 100 and 25. The number of uncontrolled

sensors is J = 80 and number of controlled sensors is K = 16. For the uncontrolled sensors,

the parameter of the Poisson random variable used to model the waiting period is λ = 2.

3.3.1 Performance with Global Sub-region Assignment Algorithm

In Figs. 3.4 through 3.6, the effects of different sub-region assignment algorithms are pre-

sented. Fig. 3.4 presents results for 25 by 25 block sub-regions, Fig. 3.5 gives results for 40

by 40 block sub-regions, and Fig. 3.6 gives results for 80 by 80 block sub-region. Perfor-

mance is measured via time unit 3,000 to time unit 7,500 for T , and the vertical axis shows

the percentage of area covered within the last T time units. The Worst Sum assignment

algorithm and the Worst Unit assignment algorithm are compared with K = 16 controlled

sensors. The worst pixel path method is also employed. The figures show that the Worst

Sum assignment algorithm significantly outperforms the Worst Unit assignment algorithm,

regardless of the size of sub-regions. We note that the Worst Sum assignment algorithm

incorporates more information available from the sub-region than the Worst Unit assign-

ment algorithm, as the worst unit assignment algorithm focuses on the block with the worst

time index information in the sub-region but omits the neighborhood information inside

the sub-region. Based on these results, we focus on the Worst Sum assignment algorithm

in the remaining figures.
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Figure 3.4: Percentage of area covered with the last T time units (m = 25).
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Figure 3.5: Percentage of area covered with the last T time units (m = 40).
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Figure 3.6: Percentage of area covered with the last T time units (m = 80).
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3.3.2 Performance with Movement Strategies in a Sub-region

In this section, the four movement strategies are compared. We focus on the worst sum

assignment algorithm and the worst pixel path for movement between sub-regions. For

the one-step neighborhood, two-step neighborhood and three-step neighborhood movement

strategies, we set the threshold for percentage of area covered within the last T time units as

99 percent of the sub-region. A controlled sensor therefore finishes the detection assignment

when 99 percent of the sub-region is attended within the last T time units or when the con-

trolled sensor remains in the sub-region for m2 = 625, 1600 and 6400 time units, whichever

occurs first. For comparison, we also consider the performance of a sensor network with no

controlled sensors. To make the comparison fair, we add additional uncontrolled sensors

so that the total number of sensors is the same in all cases. Results are shown in Figs.

3.7 through 3.9. The figures show that the three-step neighborhood movement strategy

performs best. Regardless of sub-region size, the results show that the three-step neighbor-

hood movement strategy outperforms the sweep approach and the two-step and one-step

strategies, although in some cases the difference between the three-step strategy and the

sweep approach is slight. The differences between the strategies is most pronounces using

80 by 80 block sub-regions. The results from all three figures also show that all hybrid

strategies dramatically outperform a network with no controlled sensors.
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Figure 3.7: Percentage of area covered with the last T time units (m = 25).
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Figure 3.8: Percentage of area covered with the last T time units (m = 40).
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Figure 3.9: Percentage of area covered with the last T time units (m = 80).
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3.3.3 Comparison of Global Assignment Algorithm and Local

Assignment Algorithm

The global assignment algorithm has already been described. For comparison, consider

the condition that one controlled sensor surveils each sub-region and confine the movement

of a sensor to the sub-region initially assigned to it. For this local assignment algorithm,

the number of sub-regions L equals the number of controlled sensors K = 16 in our case.

The worst sum assignment algorithm and worst pixel path are applied with the global

assignment algorithm, and the three-step neighborhood movement strategy is applied to

both assignment algorithms. Simulation is performed with sub-region dimension m = 40.

Fig. 3.10 compares the performance of these assignment algorithms. It can be seen that

the global assignment algorithm outperforms local assignment significantly. The advantage

of the global assignment algorithm is that it sends sensors to the sub-regions in greatest

need of surveillance. The results show that uncontrolled sensors are inadequate for pro-

viding uniform wide-area surveillance, even when assisted by controlled sensors with fixed

assignments.
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Figure 3.10: Percentage of area covered with the last T time units.
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3.3.4 Performance of Sensor Network with the Changing Number of

Controlled Sensors K

To better understand the performance of different movement strategies using the global

assignment algorithm, we fix the dimension of sub-regions for each set of simulation and

vary the number of controlled sensors K. Results are shown in Figs. 3.11 through 3.13

with T = 5000 for sub-regions with dimension 25 by 25, 40 by 40 and 80 by 80 blocks.

All the previous movement strategies are considered and the worst pixel path algorithm

is applied in each case. Results consistently show that the three-step strategy provides

the best performance. The results show that the performance gap between the approaches

increases as K increases. The results also show that although the sweep approach works

reasonably well with 25 by 25 and 40 by 40 block sub-regions, it performs especially poorly

when 80 by 80 block sub-regions are used.

51



2 4 6 8 10 12 14 16 18 20

Number of Controlled Sensors

75

80

85

90

95

P
e

rc
e

n
ta

g
e

 o
f 

A
re

a
 C

o
v
e

re
d 3-Step

2-Step

1-Step

Sweep

Figure 3.11: Percentage of area covered with the last 5000 time units (m = 25).
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Figure 3.12: Percentage of area covered with the last 5000 time units (m = 40).
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Figure 3.13: Percentage of area covered with the last 5000 time units (m = 80).
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3.3.5 Performance of Sensor Network with Different Dimensions of

Sub-regions

In this section, we compare the performance of the movement strategies under different di-

mensions of sub-regions. Three dimensions are shown in each figure. The three-step neigh-

borhood movement strategy, two-step neighborhood movement strategy, one-step neighbor-

hood movement strategy and sweep approach are all considered. Simulation results are

shown in Figs. 3.14 through 3.17. The results show that m = 40 performs the best with all

the movement strategies. The ranking of performance of m = 80 versus m = 25 depends

on which movement strategy is used. In particular, the sweep strategy performs especially

poorly when m = 80. Based on all the results presented, the three-step strategy with

m = 40 is the best overall choice.
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Figure 3.14: Percentage of area covered with the last T time units (three-step).
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Figure 3.15: Percentage of area covered with the last T time units (two-step).
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Figure 3.16: Percentage of area covered with the last T time units (one-step).
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Figure 3.17: Percentage of area covered with the last T time units (sweep).
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3.3.6 Performance of Sensor Network with Dynamic Number of

Controlled Sensors K

In the non-dynamic approach, when a controlled sensor finishes up with a sub-region, it

moves to the sub-region with the largest sum (or largest maximum value) of time since

last visited. To make this approach dynamic, we instead utilize a fixed threshold τ and

determine all the sub-regions in which the sum (or maximum value) of times since last

visited is greater than τ . If there are zero such sub-regions, we ”retire” the controlled

sensor and let it operate again as an uncontrolled sensor (i.e., as a taxicab for hire to

customers). If there is one such sub-region, we simply send the controlled sensor to that

sub-region (which is the same as the non-dynamic algorithm). If there are W such sub-

regions, where W ≥ 2, we then ”hire” (W − 1) additional uncontrolled sensors to operate

as controlled sensors so that all sub-regions with value greater than τ can be investigated

simultaneously. We then effectively hire the taxicabs to take the path we specify without

customers; that is , we hire them to go exactly where we say.

Figs. 3.18 through 3.20 present the average number of controlled sensors used as as

function of the threshold τ for the three sub-region sizes m = 25, m = 40, and m =

80, respectively. All results assume the three-step algorithm is employed with the Worst

Sum metric. The worst pixel path is used to move between sub-regions, and newly hired

controlled sensors must wait until an uncontrolled sensor finishes its current path.

As expected, the average number of controlled sensors decreases as τ increases; indeed,

there would be zero controlled sensors if τ equaled infinity, because the Worst Sum metric

could never exceed τ in that case.
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Figure 3.18: Average number of controlled sensors with threshold τ (m = 25).
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Figure 3.19: Average number of controlled sensors with threshold τ (m = 40).
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Figure 3.20: Average number of controlled sensors with threshold τ (m = 80).
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Figs. 3.21 through 3.23 present a comparison of the dynamic and non-dynamic algo-

rithms as a function of the average number of controlled sensors. (For the non-dynamic

algorithm this ”average” number is fixed for all time; only the dynamic algorithm has a

time-varying number of controlled sensors.) For the dynamic algorithm, we select the aver-

age number of controlled sensors through our choice of the threshold τ , as indicated by the

results of Figs. 3.18 through 3.20.

The result of Figs. 3.21 through 3.23 show that, regardless of the sub-region size, the

dynamic algorithm significantly outperforms the non-dynamic algorithm. Fig. 3.24 com-

pares the three sub-region sizes and again shows that the 40 by 40 sub-region size gives the

best performance.

Note that the gains of the adaptive algorithm come at the cost of hiring additional

sensors as needed. Hiring a taxicab is likely to be significantly more expensive than utilizing

vehicles to operate as dedicated controlled sensors.

3.4 Conclusions

In this chapter, we have described algorithms for hybrid mobile sensor networks designed to

provide consistent surveillance of a metropolitan area. The results show that the three-step

movement, global assignment and worst sum metrics all combine to make hybrid sensor

networks significantly outperform networks that do not use controlled sensors. Further-

more, by applying dynamic controlled sensors, the performance of the network increases

significantly, although at increased operational cost.
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Figure 3.21: Percentage of area covered with the last 5000 time units (m = 25).
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Figure 3.22: Percentage of area covered with the last 5000 time units (m = 40).
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Figure 3.23: Percentage of area covered with the last 5000 time units (m = 80).

67



2 4 6 8 10 12 14 16 18 20

Average Number of Controlled Sensors

80

85

90

95

100

P
e

rc
e

n
ta

g
e

 o
f 

A
re

a
 C

o
v
e

re
d 40 by 40 Subregion

25 by 25 Subregion

80 by 80 Subregion

Figure 3.24: Percentage of area covered with the last 5000 time units with dynamic algo-
rithm.
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Chapter 4

Sensor Search Strategies

Exploiting Probabilistic Modeling

In this chapter, we incorporate the probability-based detection models of Chapter 2 into

the simulation framework of Chapter 3. These more realistic models will also by necessity

incorporate models for the speed of vehicles performing surveillance. A sensor moving

at low speeds can have a lower probability of miss than one moving at high speeds if

there is a radiation source nearby. We therefore believe that we can significantly improve

the performance of our algorithm by exploiting velocity information. One approach is to

model a “smallest” source we wish to detect and, based on velocity and path information,

calculate the probability of missing a source of this size in each block. This information can

be incorporated into a secondary array akin to the Real-Time Coverage Information Array

to make better global assignments and better sub-region movement strategies as well.
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4.1 Detection Theory with Probability of Miss of Static

Radiation Source

To incorporate the detection performance models of Chapter 2 to the surveillance of metropoli-

tan areas, Equation (2.33) is applied to calculate the probability of miss when a detector

moves along a straight path and there is a fixed radiation source nearby. As a controlled

sensor moves in the metropolitan area, the probability of miss can be calculated with infor-

mation on the source strength, speed of vehicle, distance between the source and the vehicle

and the detection path.

In our modeling of the Real-Time Coverage Information Array, sensors are modeled as

moving from the center of one block horizontally or vertically to the center of an adjoining

block. As a worst case, we model possible source locations at the corner of a block. This is

indeed a worst case in the sense that if a bock has length L, the closest a sensor can ever

get is L/2, assuming the source is at ground level. (We assume the source is at ground level

in all that follows. To model a source at height h, one should again use Equation (2.33)

but with different parameters; in this case the closest a sensor traveling on the ground can

get to the source is
√
h2 + L2/4). As a worst case in this situation one could take h to be

the height of the tallest building in a given metropolitan area. However, we do not expect

the general performance observations we obtain to change significantly by incorporating a

height h).

Consider the situation shown in Fig. 4.1; only a portion of the overall grid is shown. A

sensor is located in the middle of the center square, indicated by the coordinate (17,42).

Each corner location (sixteen are shown) is a hypothesized location of a nuclear source. The

quantity P (i, j)[n] denotes the probability of miss at time slot n if the source is at corner

coordinate (i, j). (Our convention is that for a given block, the sensor-based coordinates of

the block match the source location of the upper left corner of the block). Note that if no

sensor ever passes close to location (i, j), the quantity P (i, j)[n] will be very large, close to

one. If instead many sensors frequently pass close to location (i, j), the quantity P (i, j)[n]
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will be very small, close to zero.

Now consider the situation shown in Fig. 4.2, in which the sensor in Fig. 4.1 moves

horizontally to the right over one time slot. This action will require that each probability

be updated by multiplying it by a term of the form of Equation (2.33). For example,

examination of the geometries of Fig. 4.2 and Fig. 2.5 shows that

P (17, 42)[155] = P (17, 42)[154]PLM (L/2;L/2, 3L/2)

and

P (16, 41)[155] = P (16, 41)[154]PLM (3L/2; 3L/2, 5L/2)

where PLM (`; r1, r2) is given by Equation (2.33). Note that PLM (`; r1, r2), in addition to

geometric parameters `, r1, and r2, also depends on C, the strength of the source, v, the

speed of the sensor, and ρ, the air attenuation coefficient. (In practice, buildings and other

solid objects may cause additional attenuation, but because we are only trying to detect a

source to the nearest city block, we do not expect this additional attenuation to change the

general nature of our results.)

As multiple controlled and uncontrolled sensors move around the grid, the matrix of

probability P (i, j)[n] will change continually. As a practical matter, only the source lo-

cations close to a given sensor will change much as the sensor moves, because for greater

distance the probability of miss is close to one. Note that this Real-Time Detection Array

enables us to more accurately model a mobile sensor than the simpler zero-one model of

Chapter 3. However, the Real-Time Coverage Information Array is still useful in conjunc-

tion with the Detection Array, because it is still important to know how long it has been

since a block has been visited. Because a nuclear source may suddenly appear (for example,

removed from a container in order to arm a ”dirty bomb”), probability data may not be

meaningful if previous visits, although numerous, happened an extremely long time ago.
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Figure 4.1: Sensor location in middle of center block.
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Figure 4.2: Sensor move from center block to immediate right block.
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4.2 Time and Probability-based Detection Algorithm

The probability information stored in the Real-Time Detection Array can be computed

by a central controller if the GPS data of each mobile sensor is related to this controller.

(Note that average velocity information over a block can be determined from GPS time and

position information.) The only quantity that is not known is the strength of the source.

In order to guarantee that miss probabilities are not worst than computed, one can choose

a worst-case source strength. (Note that worst case, in this context, means a small, weak

source, because a stronger source is easier to detect.)

How should this information be utilized? In the algorithms described in Chapter 3, there

are two critical questions: where to go within a sub-region (e.g., utilizing the three-step

neighborhood movement strategy) and, when finishing with a sub-region, what sub-region

to go to next. We can utilize the Real-Time Detection Array to assist with the first of

these tasks. Within the three-step neighborhood movement strategy, instead of basing our

decision of where to go next on the sums of times since last being visited, we base this

decision on sums of probabilities of neighborhood sources. For a given three-step path we

utilize all of the probability values on the corners of the path. As can be seen in Fig. 4.3,

there are always ten such corners located on a three-step path. The decision of where to

move next is based on the direction that has the largest such sum of ten values.

As to the question of what sub-region a sensor should visit after completing a sub-

region, we choose to base this decision on time information alone in the manner of Chapter

3. For reasons already explained, it is important that time information not be neglected at

the expense of probability information. Basing sub-region assignment on time information

ensures that all portions of the metropolitan area are visited with regularity.
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Figure 4.3: Three-step paths and corner locations.
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4.3 Simulation of Detection with Probabilistic Models

Our simulation employs the models and parameters of Chapter 3. however, we base per-

formance on the percentage of the area for which the probability of miss is less than a

threshold α. As the area is divided into N2 grid blocks, the size of the Real-Time Detection

Array is (N+1)2. As with Chapter 3, we set N = 400. One additional generalization of the

model is that we assume each vehicle (both controlled and uncontrolled sensors) randomly

moves from block to block at speeds of 40 mph, 30 mph and 20mph (64.4 kmph, 48.3 kmph,

and 32.2 kmph), each with equal probability, independent from block to block. In order

to implement variable velocity in a time-slotted system, we subdivide our basic time unit

into 12 time chips, so that moving to the next block requires 6 time chips at 20 mph, 4

time chips at 30 mph, and 3 time chips at 40 mph. Because only nearby source locations

are meaningfully affected by a given sensor, we only update the 16 locations in the 3 by 3

block around the sensor at any given time. For all the results presented, the simulation run

length is 5,000 time slots (60,000 chips).

Figs. 4.4 through 4.6 compare the performance of both the time-based three-step move-

ment algorithm of Chapter 3 with the time-and-probability-based algorithm of this chapter.

Performance is measured by the percentage of coverage with the probability of miss less

than α, where values of α = 0, 1, 0.01, and 0.001 are considered. Fig. 4.4 assumes a source

strength of C = 1000 m/s. Fig. 4.5 uses C = 2500 m/s, and Fig. 4.6 uses C = 5000 m/s.

In each case, the use of probability-based information improves the performance. The gains

are most significant with a stronger source.

In Figs. 4.7 through 4.9, the dynamic controlled sensor algorithm is added. Recall that

this algorithm determines whether to retire a current sensor, keep it, or hire additional

controlled sensors based on how many sub-regions have worst sum value greater than a

threshold. Here the horizontal axis is the average number of controlled sensors because the

number of such sensors varies over time. The results show gains similar to those in the

non-dynamic case.
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The dynamic and non-dynamic approaches are compared using the time-based three-step

movement strategy of Chapter 3 in Figs. 4.10 through 4.12, and they are compared using the

time-and-probability based methods of this chapter in Figs. 4.13 through 4.15. The results

show that the adaptive method consistently outperforms the non-adaptive method. The

gains are especially significant when the source is strong. For example, Fig. 4.15 shows that,

with six controlled sensors, the dynamic method with α = 0.01 gives identical performance

to that of the non-dynamic method of α = 0.1; that is, use of the dynamic method enables

a factor of ten reduction in the worst case miss probability.
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Figure 4.4: Comparison of time-based and time-and-probability-based three-step movement,
C = 1000 m/s.
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Figure 4.5: Comparison of time-based and time-and-probability-based three-step movement,
C = 2500 m/s.
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Figure 4.6: Comparison of time-based and time-and-probability-based three-step movement,
C = 5000 m/s.
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Figure 4.7: Comparison of time-based and time-and-probability-based three-step movement,
dynamic sensor assignment, C = 1000 m/s.
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Figure 4.8: Comparison of time-based and time-and-probability-based three-step movement,
dynamic sensor assignment, C = 2500 m/s.
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Figure 4.9: Comparison of time-based and time-and-probability-based three-step movement,
dynamic sensor assignment, C = 5000 m/s.
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Figure 4.10: Comparison of dynamic and non-dynamic three-step movement, time-based
three-step movement, C = 1000 m/s.
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Figure 4.11: Comparison of dynamic and non-dynamic three-step movement, time-based
three-step movement, C = 2500 m/s.
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Figure 4.12: Comparison of dynamic and non-dynamic three-step movement, time-based
three-step movement, C = 5000 m/s.
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Figure 4.13: Comparison of dynamic and non-dynamic three-step movement, time-and-
probability-based three-step movement, C = 1000 m/s.
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Figure 4.14: Comparison of dynamic and non-dynamic three-step movement, time-and-
probability-based three-step movement, C = 2500 m/s.
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Figure 4.15: Comparison of dynamic and non-dynamic three-step movement, time-and-
probability-based three-step movement, C = 5000 m/s.
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4.4 Conclusions

In this chapter a probabilistic method for analyzing the performance of sensor search strate-

gies has been presented and applied to the algorithms of Chapter 3. The model exploits

the probability of miss for mobile sensors developed in Chapter 2. In addition, an approach

to sensor movement within a sub-region has been presented that exploits this information

which can be readily calculated by a central controller using GPS information from all

sensors.
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Chapter 5

Conclusions and Future Work

In this work, we focus on the detection analysis and search strategies for nuclear radiation

sources. Expanding on previous research, we propose the use of a hybrid mobile sensor

network that uses time information and probability information to guide the deployment of

the sensor network.

In Chapter 2, we introduce novel analytical techniques that enable the calculation of

the probability of miss for a mobile sensor detecting a stationary nuclear source. Various

patterns of the sensor’s movement are studied, including linear, circular, and rectangular

movement. Both two- and three-dimensional geometries have been analyzed. To better

understand the detection model, we also perform Bayesian analysis. The analytical tech-

niques provide a way to simply estimate the effects of movement pattern, speed, source

strength, and the absorption profile, and as a result, the analysis is widely applicable to

many scenarios involving nuclear detection with mobility.

In Chapter 3, we introduce sub-regions and assignment strategies to perform surveil-

lance with hybrid mobile sensor network. Global assignment and local assignment strategies

are compared and results show that global assignment outperforms local assignment. Also,

it is shown that movement strategies that exploit the fact that uncontrolled sensors hap-

hazardly and sparsely cover a region (specifically, the three-step movement strategy) can
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outperform strategies that ignore this fact (the sweep strategy). In addition, it is shown

that well-designed dynamic algorithms that “hire” additional controlled sensors as needed

significantly outperform algorithms that utilize a static number of controlled sensors.

In Chapter 4, the detection model of Chapter 2 is applied to the search strategies of

Chapter 3 to show that the conclusions of Chapter 3 still hold when this more accurate

analysis is employed. Because the probability of miss calculations only require knowledge

of parameters known to the central controller, we propose a new movement strategy that

exploits probabilistic information. It is shown that this movement strategy results in sensor

network performance that significantly outperforms the time-based strategies of Chapter 3.

Multiple opportunities exist to extend this work. One area is to explore how to incor-

porate background radiation into the analysis of Chapter 2. Another is to explore how

to incorporate probability information into where a sensor should go after completing a

sub-region search. Also of value is to explore how to incorporate probability information

into the dynamic algorithm for deciding when to hire and retire additional random sensors

to serve temporarily as controlled sensors. Finally, this work is preliminary in the sense

that it presumes a square grid with unlimited access. It is important to extend the work

for arbitrary metropolitan area geometries and also incorporate other practical conditions

such as non-uniform traffic, street widths, speed limits, traffic lights, etc.
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