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Abstract

The proper operation of smart grid largely depends on the proper monitoring

of the system. State estimation is a core computation process of the monitoring unit.

To keep the privacy of the data and to avoid the unexpected events of the system,

it needs to be made fast, distributed, and dynamic. The traditional Weighted Least

Squares (WLS) estimator is neither scalable, nor distributed. Increase in the size of

the system increases the computation time signi�cantly.

The estimator can be made faster in di�erent ways. One of the major solutions

can be its parallel implementation. As the WLS estimator is not completely paral-

lelizable, the dishonest Gauss Newton method is analyzed in this dissertation. It is

shown that the method is fully parallelizable that yields a very fast result. However,

the convergence of the dishonest method is not analyzed in the literature. Therefore,

the nature of convergence is analyzed geometrically for a single variable problem and

it is found that the method can converge on a higher range with higher slopes. The

e�ects of the slopes on multi-variable cases are demonstrated through simulation.

On the other hand, a Cellular Computational Network (CCN) based frame-

work is analyzed for making the system distributed and scalable. Through analysis,

it is shown that the framework creates an independent method for state estimation.

To increase the accuracy, some heuristic methods are tested and a Genetic Algo-

rithm (GA) based solution is incorporated with the CCN based solution to build a
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hybrid estimator. However, the heuristic methods are time-consuming and they do

not exploit the advantage of the dynamic nature of the states.

With the high data-rate of phasor measurement units, it is possible to extract

the dynamic natures of the states. As a result, it is also possible to make e�cient

predictions about them. Under this situation, a predictor can be incorporated with

the estimation process to detect any unwanted changes in the system. Though it

is not a part of the power system to date, it can be a tool that can enhance the

reliability of the grid. To implement the predictors, a special type of neural network

named Elman Recurrent Neural Network (ERNN) is used.

In this dissertation, a distributed dynamic estimator is developed by integrat-

ing an ERNN based predictor with a dishonest method based estimator. The ERNN

based predictor and the dishonest method based estimator are each implemented at

the cell level of a CCN framework. The estimation is a weighted combination of

the dishonest module and the predictor module. With this three-stage distributed

computation system, it creates an e�cient dynamic state estimator.

The proposed distributed method keeps the privacy and speed of the estima-

tion process and enhances the reliability of the system. It ful�lls the requirements of

the deregulated energy market. It is also expected to meet the future needs of the

smart grid.
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Chapter 1

Introduction

1.1 Overview

Some of the most important infrastructures of the twenty-�rst century are the

electric power grids. The North American grid is considered to be the single largest

machine ever built by man. In order to run the grid in proper physical condition,

constant monitoring of the whole grid is needed. To serve the purpose, measurements

are taken at strategic points which contain errors of signi�cant amount. State esti-

mator is used to remove these errors from the collected measurements. The output

of the state estimator is a basic need for optimal operations of the grid [1].

With the passage of time, existing power system grows larger increasing the

number of buses at new areas. Addition of a new bus increases new measurements

which increase the computation time for the existing methods like the Weighted Least

Squares (WLS) estimator. It has a part of matrix inversion that largely depends on

the size of the system. To avoid the inversion, Cholesky decomposition along with

back substitution is used. It also depends on the size of the system and it is not

parallelizable. With the increase of size, the increased computational complexity can
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a�ect the optimal operation of the system. As a result a good number of research

work is done on distributed state estimation [2�4].

1.1.1 Dynamic Estimation

Situational awareness in control center operations is undergoing a dramatic

change with the advent of phasor measurement units (PMUs). Where the traditional

estimator runs at the SCADA scan rate of one sample per 2-4 seconds, PMUs are

collecting data at the rate of 30, 60, 120 and 240 samples per second [5]. The future

state estimator has to run faster than the PMU rate. On top of that, to increase the

reliability, a state predictor should also be included with the estimator and the whole

operation needs to be completed within the time-frame of the PMU. With the PMU

rate of data, it is possible to extract the dynamic nature of the states. As a result,

the importance of dynamic estimator is increasing with the implementation of the

PMUs.

1.1.2 Distributed Estimation

In order to solve the problem of distributability of any networked system, a

new framework referred as Cellular Computational Network (CCN) is proposed in [6].

In this framework, every cell includes a moderate powerful computational unit. These

units communicate with each other to exchange information related to their tasks.

The output comes directly from these cells.

In Chapter 5 and 6 of the dissertation, a new state estimation approach based

on CCN is investigated. Every bus contains a cell that collects the local measurements

and runs its own estimation separately. The estimated states are passed to those

neighboring cells which are in need of them. Thus the estimation of the full system
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will conclude.

To improve the accuracy of the CCN based framework, a hybrid estimator

consists of CCN and Genetic Algorithm (GA) is developed. It is found to be the most

accurate estimator among the hybrids with Particle Swarm Optimization (PSO), and

its two variants, Comprehensive Learning PSO (CLPSO), and Orthogonal Learning

PSO (OLPSO).

Two main features of the distributed estimation, parallelism and privacy are

discussed below.

1.1.2.1 Parallelism

To make the estimation process fast, it needs to be made parallel. Due to a

large portion of non-parallelizable part, the WLS estimator cannot be made very fast.

To solve the problem, a version of the WLS estimator known as the dishonest Gauss

Newton method is shown to be completely parallelizable in this study. The method

is well known in stability analysis, and it is also used for state estimation with fast

decoupled method [7]. One of the main concerns is the convergence of the estimator

which is not analyzed so far. In this dissertation, the e�ect of the slope on the range

of convergence is analyzed for a single variable case and it is shown for three functions

that the range increases with increased slope.

The parallel implementation of the dishonest method requires parallel pro-

cessing units like the Graphics Processing Units (GPUs). GPUs are very suitable for

short operations [8]. They separate the processors in multidimensional threads and

blocks [9]. The structure of the dishonest method is very suitable for GPU opera-

tions that make it the fastest estimator. In this study, it is found that an equivalent

accuracy requires around one tenth time for this method on GPU. This equivalence

ensures a relative accuracy of more than 99%. It will become necessary tool for smart
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grid operations.

1.1.2.2 Privacy

Smart grid enables a two way communication to optimize the operations of the

power system. It involves strong and fast computation and communication units. In

addition to the speed, the emerging smart grid technology will support deregulated

energy market. This requires the privacy of the data. The advantage of the distributed

estimation is that it keeps the privacy with the speed.

CCN based hybrid estimator serves the purpose of distributability. But, it has

some basic di�erences with the dishonest method. The di�erences are summarized in

Table 1.1.

Table 1.1: Comparison of Dishonest and Cellular Hybrid Method

Qualities Dishonest Estimator CCN-GA Estimator

Accuracy High Low
Distributable No Yes
Parallelizable Yes Yes

Speed Very fast Moderate
Ill-conditioned case Fails Works normally
Local Observability Not needed Needed

The two methods are developed separately and they will be presented in Chap-

ter 4, 5, and 6. The smart grid requires a single estimator combining the qualities

stated above.
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1.2 Objectives of the Dissertation

The objective of the dissertation is to develop a state estimator that will run

faster than the PMU rate, save the privacy of the energy market participants, and

detect any large changes in the system. To serve the purposes, a predictive dynamic

state estimation is developed with the help of the CCN framework and the dishonest

method. It is fast, distributed, and dynamic. Using a low cost prediction model with

CCN, it is able to run faster than the maximum PMU rate.

1.3 Contributions of the Dissertation

The contributions of this dissertation can be divided in two parts, major con-

tributions, and minor contributions. Both of them are described below.

1.3.1 Major Contributions

(i) The cellular computational network framework is applied for developing a dis-

tributed estimator. It is shown that the framework can work independently and

does not depend on any underlying computation method [10,11].

(ii) The inherent parallelism of the dishonest Gauss Newton method is revealed and

its e�ectiveness is shown on a GPU. It requires the least time among the most

promising implementations of state estimation in recent times [12].

(iii) The nature of convergence of the dishonest method is analyzed and a reliable

operation strategy is proposed. Under the strategy, the method is shown to

converge over a high range. The analysis of convergence shows that a better

point can be found than the traditional �at start for calculating the constant
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Jacobian [13].

(iv) A new dynamic estimator is built incorporating the qualities of the dishonest

method and a state predictor. Both of them are framed under the cellular

network. The dynamism is inherited from the integration of the prediction.

The �nal estimator is fast, and distributed.

1.3.2 Minor Contributions

(i) The general solutions for high dimension like the CLPSO, and the OLPSO are

applied for state estimation for the �rst time. Though OLPSO improves the

performance, they do not completely solve the problems of the basic PSO [11].

(ii) The CCN based method is applied in two di�erent ways. A static estimator is

developed using a layer-based architecture and its performance is shown through

simulation [10].

(iii) The second CCN based approach implements a semi-dynamic hybrid estimator

and it is shown to overcome most of the issues related to the PSO and its

variants. It integrates GA to improve the output of the CCN [11].

(iv) A distributed state predictor is developed using CCN. It predicts the states in

near future to detect any unwanted changes in the system.

1.4 Contribution to Real Power Systems

With the advancement of the power system, the nature of the operation is

changing and it is creating new requirements for state estimation. There was a time

when implementing power meters at di�erent buses over large geographical area and
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collecting the data from them were big challenges. Getting the most accurate estima-

tion with the minimum number of measurements was the sole objective. Nowadays, it

became easier to implement the devices and communicate with them. The increased

number of measurements increased the computational load. Moreover, deregulation

of the market created the necessity of the privacy of data. Additionally, with the

advancement of the PMU technology, large disturbances can be detected with pre-

dictors.

Accommodating all requirements may not be possible for a single estimation

method, but some requirements can be integrated based on their priority. In the

proposed distributed dynamic method, the requirements of the privacy of data, fast

processing and the detection of large changes are integrated. It will be able to serve

any real-time application that uses the PMU rate of data.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. The history of power system

state estimation and the background of computational intelligence and platforms

are given in Chapter 2 and 3. The convergence and the speedup of the dishonest

method is shown in Chapter 4. A distributed static estimator is developed using

only CCN in Chapter 5. To make the cells of the static estimator simultaneous,

a semi-dynamic hybrid estimator is investigated in Chapter 6. The prototype of a

state predictor based on Elman Recurrent Neural Network (ERNN) is proposed in

Chapter 7. Integrating the qualities of the CCN framework, the dishonest method,

and the state predictor, a new estimator is proposed in Chapter 8. The dissertation

is concluded with suggestions for future work in Chapter 9.
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1.6 Summary

State estimation is a mandatory part of power system operation. It needs to

be perfected for the operation of smart grid. Out of many qualities, two important

of them, distributability and reliability, are focused in this dissertation. The �nal

objective of this dissertation is to build a distributed dynamic estimator. It is expected

to meet the requirements of the future grid.
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Chapter 2

Background of State Estimation

2.1 Introduction

State estimation is the process of removing errors from the collected measure-

ments. Measurements can be taken in the form of power �ows in the transmission

lines, power injections and voltage magnitudes of the buses, phase di�erences of con-

nected buses, current �ows etc. In power systems, the states are directly derived from

the measurements of di�erent types.

The state vector forms the set of variables with minimum cardinality which

can describe the whole system. The voltage magnitudes and phase angles are taken

as the state vector in nonlinear estimation. In DC estimation, only the angles are

estimated. All other variables can be derived from these state variables directly.
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2.2 History of State Estimation

2.2.1 Weighted Least Square Estimator

Least Square estimator was �rst developed by the famous scientist Carl Friedrich

Gauss in 1795 [14]. Fred Schweppe proposed it for power systems in 1970 [15�17].

Most of the important properties are revealed in these three papers. The concept of

dynamic state estimator is introduced in the same year in [18].

2.2.2 Dishonest Gauss Newton Method

Though the concept of an overdetermined system for power system measure-

ments is introduced in 1970, the techniques of power �ow solution existed in the

literature before that. In 1967 [19], the authors mentioned that the Jacobian matrix

can be kept constant which can reduce the computational complexity. This leads

to the idea of dishonest method. But, this method is not well investigated in the

literature [7]. This method saves a big part of the computation of WLS estimator,

but takes more number of iterations to converge at current rate of estimation. As the

plan is to run the estimator at a very high rate, the system should not change much

in the meantime; the estimator can start with the values obtained from the previous

estimation. Thus the problem of large number of iterations can be removed. In case

of big changes, the fast convergence of WLS estimator with update of Jacobian matrix

is comparable with the slow convergence of the dishonest method.

2.2.3 Distributed State Estimation

The parallelization of state estimation is �rst mentioned in 1971 [20]. A decen-

tralized Kalman �lter based dynamic estimation method is proposed in 1978 [21]. A
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topology based parallelization technique is shown in [22] which is equally applicable

in vectors of computers. However, the primary works on parallelized or distributed

estimation considered a full scale computer for each local unit. Over time, the dis-

tributed and parallel estimator got separated based on their requirements [23]. While

the distributed estimators assume a strong processor for a number of buses with

limited communication between the areas, the parallel estimators focus on fast cen-

tralized estimation. The distributed one keeps the privacy of individual parts, while

the parallel one remains vulnerable to large cyber-attacks.

One of the most used parallel computation device of recent times is the Graph-

ics Processing Unit (GPU). It works in groups of threads and blocks. Though it was

not anticipated in the 80s, the parallel computing devices like the GPUs are much

suitable for short operations, instead of big chunks of code. So, the parallelization of

state estimation has got new challenges and a few works are already done on the use

of High Performance Computing (HPC) in power system state estimation [24�27].

On the other hand, there have been a good number of works on distributed

estimation in recent time. In [28], a distribution method is proposed using auxiliary

problem principle. Based on the fast decoupled state estimator, an algorithm consists

of ten steps is proposed in [29] which makes communication between the center and

the local unit during the estimation. Another multi-agent based estimator is devel-

oped for distribution systems which complete the estimation, bad data analysis, and

observability analysis at the cellular level [30].

In [31], the authors used the synchrophasor data to organize the distributed

results. A novel algorithm is developed based on the alternating direction method

of multipliers in [2]. In [32], the authors decentralized the dynamic state estimation

using unscented Kalman �lter. The purpose of the proposed project is the same of

this work with parallel implementation and handling random changes. A general
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distributed approach for WLS state estimator [33] will also be investigated.

2.2.4 Dynamic State Estimation

As mentioned earlier, the dynamic estimation is also proposed in the same year

state estimation was proposed. It did not lose its interest in the research society over

these four decades. As the Kalman �lter is evolving to incorporate new challenges, it

is becoming more suitable for power systems. The most prominent works on dynamic

state estimation includes, but are not limited to, [20,34�43].

The very �rst dynamic estimator appears in [18] where the existing Kalman �l-

ter is proposed instead of the static estimator. The main disadvantage of the dynamic

estimator is the state transition matrix which is designed with a uniform random vari-

able here. This is very e�ective under normal condition as the change of the power

system is slow and unpredictable. A variable dimension stage invariant suboptimal

discrete �lter is used in [20]. It reduced the computational requirement by using a

linear model of the system. Keeping the dimension variable enables it to add pseu-

domeasurements. The work of [34] focuses on the abrupt changes and its preventions.

The abrupt change can be due to any fault in the system, as well as due to bad data.

It is important that it be detected properly and no false alarm should appear. The

paper presented a summary on some works and analyzed the characteristics, advan-

tages, and tradeo�s of those methods. In [35, 36], the state transition is estimated

by Kalman �lter which is derived with a trend factor, and large errors in the state

transition equation are detected by testing an innovation process.

The di�erence between the tracking estimator and the dynamic estimator is

analyzed and a new hybrid estimator exploiting the advantages of both of them is

proposed in [37]. As the state transition of the dynamic state is not well de�ned,
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the tracking estimator works well under sudden change. On the other hand, the

dynamic estimator has the advantage of prediction under normal operations. Due

to the di�culties of the nonlinear systems, extended Kalman �lter (EKF) became

popular over time. However, the linearization of the EKF has some major drawbacks.

As a result, a new variation of Kalman �lter named Unscented Kalman Filter (UKF)

is introduced for nonlinear estimation in [44]. It does not require the derivative of

the states which makes it much suitable than EKF. [39] adds the state constraints

with the UKF. UKF is applied in power system state estimation in [42]. However,

the trend of dynamic state estimation changed its direction to synchronous machine

angles and speed variation as these states have trackable dynamic nature. An EKF

based �lter is proposed which reduces the requirements of the input signals in [41].

2.3 DC State Estimation

DC state estimation is a linearized form of the complete state estimation based

on 3 assumptions, a) the resistances of the transmission lines are signi�cantly small

compared to the the corresponding reactances, b) the phase angle di�erence between

two connected buses is small, c) the voltage magnitudes of all the buses are 1.0 per

unit.

Let z denote an m × 1 vector of all measurements in a power system such

as power �ows at transmission lines and power injections and loads at buses. The

power �ow measurements can be taken at one or both ends of a transmission line.

The measurements include errors of di�erent levels. In state estimation, the collected

set of measurements is used to estimate an n × 1 vector of unknown states x. The

number of measurements is usually higher than the number of state variables, i.e.

n < m. This makes the process an overdetermined system. Let Hd denote an m× n
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matrix which represents the network topology. The linear relation can be written as,

z = Hdx + e, (2.1)

where e denotes the measurement error vector. In general, there are three criteria

that are commonly used to estimate the system states: maximum likelihood, weighted

least-square, and minimum variance. When the measurement noise is Gaussian with

zero mean, these criteria lead to the same estimator [1],

x̂ = (Hd
TWHd)−1Hd

TWz, (2.2)

here, W is a m×m diagonal matrix which is called the noise co-variance matrix. It

represents the relative weight of all measurements,

W =



1
σ2
1

0 0 . . . 0

0 1
σ2
2

0 . . . 0

0 0 1
σ2
3

. . . 0

. . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1
σ2
m


(2.3)

2.4 Nonlinear State Estimation

Let, z denotes an ms × 1 measurement vector with errors. So, the relation

between z, the nonlinear function of the measurements h(.), the state vector x, and

the measurement error e is written as,

z = h(x) + e (2.4)
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In power system state estimation, voltage magnitudes and angles are consid-

ered as the state variables as they form the set with minimum cardinality that can

describe the whole system [45]. The angle of the reference bus is considered as the

reference angle and all other angles are calculated with respect to that. If there are

N buses, the state vector x can be represented as,

x = [θ2 θ3..θN V1 V2..VN ]T (2.5)

Here, θ and V , with proper subscripts, represent voltage angles and magnitudes

respectively. If the number of buses in the system is N , there will be 2N − 1 state

variables. In case, there is no measurement of voltage magnitude, the magnitudes

also become relative and the magnitude of the reference is set to 1.0. Therefore, the

number of states reduces to 2N − 2. In the process of estimation, the number of

measurements exceeds the number of states to form an overdetermined system.

As mentioned earlier, h(.) denotes the nonlinear relation between the states

and the measurements. For example, power �ows through the transmission lines from

bus i to j as well as the power injections of the buses maintain the following nonlinear

relationship with the bus voltage magnitudes and angles,

Pij = V 2
i gij − ViVjgijcos(θij)− ViVjbijsin(θij) (2.6)

Qij = −V 2
i bij + ViVjbijcos(θij)− ViVjgijsin(θij) (2.7)

Pi = Vi
∑
j∈M

Vj(Gijcos(θij) +Bijsin(θij)) (2.8)

Qi = Vj
∑
j∈M

Vj(Gijsin(θij)−Bijcos(θij)) (2.9)

Where, M represents the set of all buses connected to i, θij represents the
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di�erence of θi, and θj, gij, and bij represent the admittance and susceptance of

transmission line ij, G, and B represent the admittance and susceptance matrices

respectively.

The purpose of the state estimator is to �nd a value x̂ that minimizes the

di�erence between the actual value, z and the estimated value, h(x̂) of the mea-

surements. As there are multiple measurements, the accuracy is measured by the

L2-norm of the di�erences/residues. Minimizing the norm is the objective function

of the optimization problem,

min
x̂
||z− h(x̂)|| (2.10)

2.4.1 Weighted Least Square Estimation

Like other nonlinear problems, WLS estimator linearizes the system over a

small range. Then it applies linear operations to get an updated value. The system

is linearized again based on this updated value and uses the linear estimation. This

process is repeated unless the estimated value converges. In these methods, x is

started with a close value to the solution. In the beginning, when there is no previous

value, all voltage magnitudes start as 1 and all voltage angles as 0 which is known as

�at start [1],

x = [0 0...0 1 1...1]T

After collecting ms measurements and constructing the Jacobian matrix H(x) at �at

start, in WLS estimation, the following steps are repeated until the state vector con-

verges to a solution,
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• step 1: ∆x = (HTWH)−1HTW(z− h(x))

• step 2: xn+1 = xn + ∆x

• step 3: update h(x) with x = xn+1

• step 4: update H(x) with x = xn+1

Here, the matrix, W denotes the relative weights of the measurements that

are usually taken as the inverse of the corresponding error variances. This is also

known as the honest Gauss Newton method.

Though the WLS estimator search for the solution with a linear gradient, it

converges very fast as the search space is very narrow and organized for most cases.

However, it has the restriction of di�erentiability of the functions of some measure-

ments like the current �ows. Moreover, due to the linearization, it also contains

the issues related to ill-conditioning that occur when the product, HTWH becomes

singular or near singular. The heuristic methods are free of these issues.

2.4.2 Dishonest Gauss Newton Method

In dishonest Gauss Newton method, step 4 of the WLS method is not executed

[1]. H is calculated at the beginning and updated after a certain period. If H does

not change throughout the whole process, the method is called very dishonest.

The constant H helps in reducing the computation of step 1. As H remains

constant, (HTWH)−1HTW does not change. Therefore, a constant matrix can be

multiplied with the vector z− h(x) to complete step 1. The matrix-vector multipli-

cation is very suitable for GPU. The three steps can be reorganized as,
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• Before estimation: Calculate M = (HTWH)−1HTW

• During estimation:

� Take previous estimation, x

� For each measurement set, repeat the following steps for several times,

∗ step i: Calculate residuals, r = z− h(x)

∗ step ii: Calculate ∆x = Mr

∗ step iii: Calculate xn+1 = xn + ∆x

Though the method described in [1] proposes the �at start values for calcu-

lating H before estimation, it is not mandatory from the viewpoint of computational

requirements. In fact, instead of using one Jacobian, di�erent Jacobians can be used

for handling di�erent situations of the system.

2.5 Summary

Though there are di�erent methods for estimating the states of the power

system, a uni�ed approach is needed to re�ect the important characteristics. Though

dishonest method is fast and parallelizable, it needs to be distributed. The CCN

framework can help distribute the jobs of the dishonest method. This is the �nal

objective of this work.
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Chapter 3

Computational Intelligence and

Platforms

3.1 Introduction

Computational intelligence (CI) is a practical way of solving problems based

on its nature. Out of many methods of solutions, �ve basic methods have taken the

central place of CI - Neural Network, Genetic Algorithm, Particle Swarm Optimiza-

tion, Fuzzy Logic, and Arti�cial Immune System. Out of the �ve, the �rst three will

be discussed in this dissertation.

3.2 Cellular Computational Network

Cellular Computational Network (CCN) is a simpli�ed version of the NN. It is

primarily proposed to divide a large network into small subsystems. In power systems,

it forms a computational cell at each bus. The cells complete local estimations, and

exchange and update their result. As the cells run in parallel, it becomes a completely
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scalable framework. The process of exchange and update of CCN based network is

shown in Fig. 3.1. However, estimation at the cellular level reveals some unique

aspects which are not found at the traditional distributed estimators.

51

6

4

2

51

6

4

2

Figure 3.1: The process of exchange and update of the CCN.

3.3 Challenges

In the CCN based estimator of power system, each bus is equipped with a com-

putational cell which collects the local data to perform a local estimation. Running

the estimation of all the cells simultaneously yields two di�erent methods - static and

semi-dynamic. There are some challenges which must be met before implementing

the architecture.

3.3.1 Normalization of the Powers

State estimation of a power system is done with respect to a reference bus.

The angle of the reference bus is considered as zero. Moreover, the measured real and

reactive powers as well as the voltage and current magnitudes are represented in per

unit quantities. Usually the operating voltage of the reference bus is considered as

20



the base voltage, and all measured powers are converted to per unit based on that.

This is helpful for the centralized state estimation.

For the cellular estimation, it creates a problem. Each cell requires a reference

bus. As the measurements are normalized using the voltage angle and magnitude of

the reference bus, they are needed to be normalized with the local reference bus. But,

in the beginning, the voltage magnitude of the local reference bus is unknown.

The problem of normalizing can be solved in two di�erent approaches. One

of them is referred as the static estimation, another as the semi-dynamic estimation.

In the static estimation, the whole system is divided in some layers. The layer-based

architecture is discussed in details in Section 3.3.2.

In the semi-dynamic approach, the power �ows are normalized with the pre-

vious estimated values of the reference buses. As the values do not change a lot in

two consecutive samples, the values of sample t works �ne for t+ 1. This approach is

discussed in Chapter 7. A better solution can be achieved with the predicted values

of t+ 1. The process of prediction is presented in Chapter 8.

However, the scaling of the measurements does not take much e�ort. From

the standard power �ow equations of (2.6)-(2.9), it can be seen that the angles are

completely relative and they do not a�ect the power �ow. But, the power �ow

measurements are dependent on the scaling of voltage magnitudes. As a result, every

power �ow as well as power injection measurements are needed to be scaled with the

square of the voltage magnitudes of local reference bus voltage magnitude.

3.3.2 Layer Based Architecture

Though a cell cannot move forward without having the voltage magnitude of

its reference bus in the static estimator, a group of cells can work simultaneously on
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the same measurement set. Based on the execution of the reference cells, the whole

system is divided into several layers which can be seen in Figure 3.2. The cells of the

same layer work on the same measurements taken at the same time slot. The previous

layer can be described as the reference layer for the next layer. When all layers are

done, the states are accumulated to form the ultimate solution of the estimation

problem. As a result, if the system has L layers, L time slots will be needed to have

the full estimation.

Here comes a question, in the static estimation, what will the previous layer

do when the next layer is estimating their states with the scaled measurements taken

at time t? Do they have to wait for the whole system to complete estimation? The

answer is, no. The previous layer can run with the measurements taken at time slot

t + 1 at the same time the next layer is running with measurements of time slot t.

In this way, all the cells of all the layers can run simultaneously with measurements

taken at di�erent time slots.
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reference bus. The simulation results are taken under a fault in line between bus 8
and 9. The estimation of �ve states which are marked with yellow boxes are shown
in Fig. 6.4

.

3.4 Heuristic Methods

3.4.1 Genetic Algorithm

Genetic algorithm directly follows the process of evolution. It is based on the

principle of the survival for the �ttest. In GA, three main steps, selection, crossover,

and mutation, are repeated over a group of chromosomes which consists of some

possible solutions [46, 47]. Selection is the ordering of the chromosomes based on

their �tness. Crossover exchanges genes of one chromosome with another. Mutation

randomly changes a few genes of the chromosomes. The cross-over, and mutation

operations are shown in Fig. 3.3.
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Figure 3.3: The cross-over (a), and mutation (b) operations of the genetic algorithm.

The strength of GA over random search is thoroughly analyzed with hyper-

cubes in [48]. While the random search work on a single individual chromosome, GA

works on a population that gives it the bene�t of intrinsic/implicit parallelism. With

the selection operation, it increases the number of those chromosomes which are bet-

ter �ts for the solution. Crossover, and mutation operations create small diversities

to �nd a better solution hyperspace.

3.4.2 Particle Swarm Optimization

Inspired by the method of searching of the swarms and �ocking of the birds,

particle swarm optimization was �rst proposed by James Kennedy and Russell Eber-

hart in [49]. It was modi�ed over time to adapt to new requirements of di�erent

systems. PSO has been and continues to be used in many applications of power

systems [50]. In this method, a set of possible solutions are taken and the �tness
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function is evaluated for each of them [51]. Based on the �tness, the velocity as well

as the position of each dimension of each particle is updated towards the global and

the local best solutions with some random motion [52],

vid = wvid + c1r1(Pbd − xid) + c2r2(Gbd − xid) (3.1)

xid = xid + vid ∀i ∈ S, d ∈ N (3.2)

Here, vid and xid represent the velocity and the position of the dth dimension

of the ith particle respectively. Pbd and Gbd are the local and the global best positions

of the corresponding dimension. The parameters w, c1, and c2 are the inertia weight,

the cognitive acceleration constant, and the social acceleration constant. Two random

numbers r1 and r2 which lie in between [0, 1] control the randomness of the velocity

update. S and N are the sets of all particles and all dimensions. In the case of power

system estimation, N will be the set of all state variables.

At the end of each velocity and position update, these variables are checked

against their feasible limits. In case these cross their limits, these are set at the

corresponding maximum or minimum limit.

3.4.3 Comprehensive Learning PSO

CLPSO was �rst proposed in [53] to solve the problem of dimensionality. It

introduces mutation in at least one dimension of each particle [54]. The velocity

update equation is modi�ed as follows,

vid = wvid + c1r1(Pcd − xid) (3.3)
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Here, Pcd can either be the particle's own local best, or it can be another particle's

local best. The characteristics of CLPSO are,

• Whether a particle uses its own best or another particle's best depends on a

prede�ned value Pc.

• For each dimension a random value is picked and it is compared with Pc of

the dimension of that particle. If the random value is greater than Pc, it will

learn from its own local best. Otherwise, it will randomly pick two particles

and compare their �tness. Then it will pick the corresponding dimension of the

better of the two.

• If all dimensions of a particle follow its own local best, a dimension is chosen

randomly which takes another particle's best value.

Thus, CLPSO ensures the diversity of the particles to increase the search area.

It is shown to perform better than the basic PSO for high dimensional multimodal

functions.

3.4.4 Orthogonal Learning PSO

OLPSO was �rst proposed in [55]. In this method, an orthogonal experimental

design (OED) based algorithm is used to direct the velocity of the particles. Instead

of taking the local best from other particles, the local best of one particle competes

with the global best. The update equation is expressed as,

vid = wvid + c1r1(Pod − xid) (3.4)

Here, Pod is chosen either from its own local best or from the global best. So,

for each dimension, there are two options. But, the �tness of them should not depend
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on a speci�c combination of other dimensions, rather it should be universal. Even

with two options for each dimension, there would be 22N−1 set of experiments. To

solve the problem, an orthogonal experimental design (OED) method is used. With

the help of an Orthogonal Array (OA), OED reduces the number of experiments to

2×(2N−1). The outputs of the experiments are run through a factor analysis (FA) to

select the appropriate candidate for each dimension. To avoid the stagnation at a local

minimum, it updates Pod after certain number of iterations with no improvement.

3.5 Graphics Processing Unit

Graphics processing units were originally developed for rendering the images,

animation or video on the computer screen. It is a computation intensive process.

Due to its high computation power, it has got a big alternative application in parallel

computation. It divides the processors in blocks and threads which �ts the struc-

ture of a matrix. As a result, the implementation of a matrix or a vector becomes

straightforward. The blocks are run in streaming multiprocessors (SMs) that provide

the processors of moderate computation power.

3.6 Benchmark Power Systems

3.6.1 IEEE 68-bus Test System

The 16-machine, 68-bus system is basically developed as a benchmark system

for stability controls. It is based on the actual New England test system (NETS)

and New York power system (NYPS), with �ve geographical regions. A reduced

order equivalent of the interconnected systems is shown in Figure 3.4 with three

other neighboring areas approximated by equivalent generator models. It has 83
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transmission lines.
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Figure 3.4: The 5-area, 16-machine, 68-bus IEEE NY-NE test system. Bus 1 is the
system reference bus.

3.6.2 IEEE 118-bus Test System

The IEEE 118-bus test system represents a portion of the American Electric

Power System (in the Midwestern US) as of December, 1962 [56]. It has 118 buses,

186 transmission lines, 91 loads, 9 transformers, 19 generators and 35 synchronous

condensers [57].
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Figure 3.5: IEEE 118-bus test system.
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3.7 Summary

Computational intelligence is an advanced method of computation. They can

be used properly in di�erent areas of power systems. State estimation is a potential

area to test their eligibility. A semi-dynamic estimator is built in Chapter 6 using the

CCN and the GA which performs better than other intelligent methods.
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Chapter 4

Centralized Static Estimation Using

Dishonest Gauss Method

4.1 Introduction

In the traditional SCADA system, the measurements are collected at every 2-4

seconds which is much slower than the upcoming PMU rates. In order to make the

best use of the PMU data, the estimator has to run at the same speed as the PMU

rate of collection. Otherwise, the collected data may have to be downsampled or we

have to use the raw PMU data with the errors. One of the major solutions to this

problem is to use the parallel estimators.

Parallelizability is a speci�c quality of any algorithm. It does not exists in

most of the algorithms as they are not developed for parallel implementation. With

the advent of GPU technology, parallelization has got newer dimensions. In this

chapter, it will be shown that the dishonest method suits the structure of GPU, and

it runs very fast. The basic dishonest method is described in Section 2.4.2. Due to

the concern of the convergence, it is analyzed �rst in this chapter. Then the method
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is implemented on a GPU for IEEE 68, and 118-bus systems.

4.2 Convergence Analysis of Dishonest Method

Before analyzing the nature of convergence of the dishonest method, it is

important to illustrate the di�erence between the honest and the dishonest method.

To make it simpler, a single variable function, y = f (x ) is analyzed. The applicability

of this analysis on multi-variable functions will be made clear through simulations.

Let, the iterations start at x = x0 with an objective of y = yf (Fig. 4.1(a)).

The slope at x0 is denoted with m0. In the honest method, m0 is used with the

di�erence between f(x0) and yf to �nd the new position, x1. For x1, the slope is

calculated as m1 and the process is repeated to �nd the solution.

On the other hand, the dishonest method starts with a �xed slope, m. The

di�erence is always multiplied with this constant to �nd the new position of x as

shown in Fig. 4.1(b). The use of a constant slope, m does not only eliminate the

calculation of m, but it also changes the division operation to multiplication (m−1).

The contribution is not signi�cant for a single variable system, but it becomes an

important improvement for multi-dimensional large-scale systems.

However, the dishonest method does not ensure convergence for any slope,

m. The choice of m depends on the functions, the region of operations, the target

values, and on the starting values. Calculating the Jacobian for the extreme target

and extreme starting values can make the process slow. So, for each function, the

Jacobian can be developed for a normal, and some extreme conditions.

In power system state estimation, there exist a few speci�c types of functions

between the state variables and the measurements. It is su�cient to �nd a suitable

m for these functions. From the standard power �ow equations, the major functions
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can be written as,

• Pij, Qij = a1Vj + b1 = f1 (Vj )

• Pij, Qij = a2V
2
i + b2Vi = f2 (Vi)

• Pij, Qij = a3sin(θij) + b3cos(θij) + c3 = f3 (θij )

• θij = θij (PMU based phase di�erence)

• Vi = Vi

Here, the �ows are measured from bus i to bus j.

The measurement of current is excluded in this study. As the last two equations

do not include any function, they are skipped in this analysis as well. The power

injections are the combinations of power �ows; so their analysis resemble that of the

�ows. Before jumping to the speci�c functions, the nature of convergence is discussed

�rst.

4.2.1 Nature of Convergence

The state can converge under two major scenarios. They are referred as the

underdamped and the overdamped case. In the �rst case, there is an overshoot and

it follows a zigzag path to reach the �nal value. In the overdamped case, there is no

overshoot, and x changes monotonically to reach the �nal value as shown in Fig. 4.2.

In some situations, a mixture of the two cases appears in the same problem.

4.2.2 Linear Functions

The analysis of the linear function is simple. The overdamped and the under-

damped cases are shown in Fig. 4.3. There is no event where both cases can appear
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simultaneously.

To analyze the condition for convergence, the value of m is started with the

maximum. For m → ∞, the process reduces to an incremental search method. By

reducing the slope, the convergence can be made faster. It stays under overdamped

case for a1 < m < ∞, where a1 is the slope of the line. With further reduction, the

process converges up to a certain limit under underdamped case. After that, it fails

to converge.

4.2.2.1 Lower limit of m

In Fig. 4.3(b), if the process starts with x0 to �nd yf = f (xf ), it changes

according to the following equations,

at k = 0, x0 = x0

at k = 1, x1 =
yf − f (x0 )

m
+ x0

at k = 2, x2 =
yf − f (x1 )

m
+ x1

(4.1)

If x2 is closer to xf than x0, it will be able to converge. In case of xf > x0,

the condition of convergence can be written as,

x2 > x0

⇒ m >
yf − f (x0 )

f −1 (2yf − f (x0 ))− x0

(4.2)

The expression of (4.2) is common for any system with monotonically increas-

ing slope. For linear functions, it can be written as,
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m >
a1(yf − f (x0 ))

−b1 − a1x0 + 2yf − f (x0 )
(4.3)

as, f −1 (x ) =
x − b1
a1

By replacing y = f (x ) = a1x + b1 in (4.3), the �nal expression can be derived

as,

m >
a1
2

(4.4)

For linear functions, (4.4) shows that the minimum slope does not depend

on the starting or the �nal value. It only depends on the slope of the line. If the

quadratic and sinusoidal functions can be linearized over a small portion, it is also

applicable for that. This is the proof why a constant Jacobian always works for a

change over the linear region of the system.

However, it is noticeable that the best value for m is not the value given by

(4.2) or (4.4). Using a marginal value can lead to a very large number of iterations.

Those are the minimum values for which convergence can be secured. The best value

for a linear function is the constant slope, i. e., m = a1.

4.2.3 Quadratic Functions

The underdamped and the overdamped cases for the positive side of a quadratic

function are shown in Fig. 4.4. By taking a large value for m, convergence can always

be ensured. But, having a big m makes the steps small and the number of iterations

increases. The slope should be taken in such a way that it ensures convergence within

a limited number of iterations.
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If the slope is reduced, a mixture of the overdamped and the underdamped

response is found �rst. With further reduction, a complete underdamped case is

found as shown in Fig. 4.4(b).

x0' x0 x1x2

x0 x1 x2 x3

y=a2x +b2x2

y=a2x +b2x2

yf=f(xf)

yf=f(xf)

(a)

(b)

Figure 4.4: Convergence of a quadratic function in two di�erent ways when the
objective is higher than the starting value, (a) overdamped, (b) underdamped.
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4.2.3.1 Lower limit of m

The analysis is the same as the linear functions. For quadratic functions of

Pij, and Qij, f −1 (.) can be written as,

f −1 (x ) =
−b2 ±

√
b22 + 4a2x

2a2
(4.5)

where, f (x ) = a2x
2 + b2x (4.6)

As the voltage magnitude can only be positive, the expression of (4.2) can be written

as,

m >
2a2(yf − f (x0 ))

−b2 − 2a2x0 +
√
b22 + 4a2(2yf − f (x0 ))

(4.7)

Any value of m above this value will make the system converging. The min-

imum value depends on yf , x0, a2, and b2. The value increases with the increase of

yf . The relation between m, and x0 is complicated. To avoid the complication, the

slope at maximum possible xf is taken as the value of m that works for every x0. If

x0 is close to xf , it is the most e�cient slope as analyzed in Section 4.2.2. If not, the

process operates in the overdamped case that is ine�cient, but it is still better than

calculating a new Jacobian for practical power systems as shown in Section 4.7.3. For

the 118-bus system, one iteration of the WLS estimator takes around 42 times more

time than the dishonest one, while around six iterations of dishonest method gains

the same accuracy of the WLS method.

It is not expected that the starting point will always be lower than the target

value; it may also be at a higher position. In case of xf < x0, the searching occurs in

the downward slope. The two cases are shown in Fig. 4.5. The analysis is very much

similar to the upward case, and a similar expression can be derived.
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Figure 4.5: Convergence of a quadratic function for two di�erent ways of conver-
gence when the objective value is lower than the starting value, (a) overdamped, (b)
underdamped.

However, there has to be a single m irrespective of the position of xf . The

problem is resolved by taking the solution for the upward search. It is evident from

the fact that for any xfu, xfd, and x0, if xfd < x0 < xfu, then, mu > md. It can also

be inferred that there will be only the overdamped case for the downward search with

this value of m.

4.2.4 Sinusoidal Functions

Though the two typical cases can appear in sinusoidal operations, it is a bit

complicated, as the slope of the function does not increase monotonically. The over-

damped case is simple as shown in Fig. 4.6(a). In the underdamped case, if the slope
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at x1 is less than m, the convergence cannot be ensured. So, (4.2) is applicable in a

range of x where the slope is greater than m.

x0

x1

xf

x0

x1

xf

(a)

(b)

Figure 4.6: Two cases of convergence for sinusoidal function, (a) overdamped, (b)
underdamped. As the slope at x1 cuts the function at another point, the convergence
cannot be ensured.

For power system, the phase angle of a bus with respect to the reference bus can

vary a lot. Two connected buses usually keep a constant phase di�erence to maintain

an expected real power �ow between them. In case of typical faults, disturbances,

or sudden load changes, the phase di�erence of the connected buses can change, but

it usually does not exceed ±20◦. In this short region, the sinusoidal function can be

considered linear and the analysis for linear function can be applied. An easier choice

is the maximum slope of this region that can ensure convergence. The maximum slope

for a sine function occurs at θ = 0 and that for a cosine function occurs at θ = π
2
. Due

to the comparative values of a3, and b3, a value close to zero is preferred. However,

taking the maximums slope can make it a slower process, and a better value can be

obtained by choosing the closest possible value. For any transmission line ij, the

39



angle corresponding to the maximum slope, θm can be found with Algorithm 4.2.4.

Algorithm 1 Selection of θij
1: θmin = min(possible values of θij)
2: θmax = max(possible values of θij)
3: if θmin > 0 then
4: θm = θmin // closest to zero
5: else if θmax < 0 then
6: θm = θmax // closest to zero
7: else

8: θm = 0
9: end if

4.3 Multi-Jacobian Method

In the previous section, it is shown that the constant Jacobian calculated at the

nominal values can fail with diverse states. On the other hand, a Jacobian with higher

slopes can converge slower than the Jacobian with the nominal slope. A combined

e�ort yields the proper solution.

The proposed method is a simple addition to the existing method. From Fig.

4.13, it is clear that there exists a trade-o� between the range and the speed of

convergence for the dishonest method. The higher the slope, the bigger the range,

and the slower the speed. As the power system rarely runs into any non-converging

situation with nominal Jacobian, the main process runs with the existing method.

At the same time, a few optional Jacobians are added in the process. The

optional Jacobians are calculated with larger slopes (|Vi| = 1.2, 1.4 etc.) and saved

before starting the process. In case the nominal Jacobian fails, the options can be

tried one by one as shown in Fig. 4.7. The number of options can be set with practical

experiences.
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Figure 4.7: A simpli�ed block diagram of the proposed multi-Jacobian method.
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4.4 Practical Importance of the Multi-Jacobian Method

In reality, the power system can be very large including thousands of buses

with two states at each bus. For example, if a system contains 5000 buses, the number

of states will be 9999, and the number of measurements can be more than 12000. With

this large size, the WLS estimator may take as much as 4− 8 seconds. This may be

su�cient for SCADA rate of data collection. But, the PMU rate is much high, and

the slow process may not work at all. As a result, the dishonest method should get

preference over the WLS method.

Though the dishonest method may perform fast, it may fail to converge at

some cases. It is very di�cult to �nd the special combinations of the states for which

it fails. However, no solution is found in the literature to make it work in case of

failures. The proposed multi-Jacobian method gives a direction for that. This makes

the existing estimator much robust to system changes. The utilities should feel much

con�dent in using the dishonest method with the extension.

4.5 Illustrative Examples of Failure

It is already shown that a higher slope ensures convergence of the dishonest

method. Though it is easy to derive the expression for the range of convergence for

a single state, it is di�cult for the multi-state case. However, the importance of the

proposed method for the multi-state case can be realized through simulation.

To show the case of failure, two Jacobians (at |Vi| = 1.0 and at |Vi| = 1.2) are

applied on IEEE 68, and IEEE 118-bus test systems operating under disturbances.

The 68-bus system has 16 machines with 83 transmission lines. The details of the

systems can be found in [58] (68-bus), and [57] (118-bus). The states for the failed
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cases are shown in Table 9.1, and 9.2 of the Appendix. As the angles stay very close

to zero, the nominal Jacobian is taken at the highest slopes at θ = 0. The voltage

magnitudes vary a lot under the speci�ed case.

The norms of the residues over the iterations of estimation are shown in Figs.

4.8, and 4.9. For both cases, it can be seen that the norms decrease in the beginning for

both Jacobians. Then the nominal Jacobian (|Vi| = 1.0) starts a gradual increase after

around ten iterations. It continues increasing and the process explodes eventually.

On the other hand, the Jacobian with |Vi| = 1.2 converges with the iterations. These

two examples clarify the importance of the proposed method.

5 10 15 20 25 30
0

100

200

300

400

500

600

Number of Iterations

N
or

m
 o

f t
he

 r
es

id
ue

s 
(p

u)

 

 
Jacobian with |V|=1.0
Jacobian with |V|=1.2

Figure 4.8: The trends of convergence for a special case of 68-bus system where the
nominal Jacobian fails to converge and the Jacobian at |V|=1.2 converges successfully.
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Figure 4.10: The minimum voltage magnitude to calculate the Jacobian that is re-
quired for convergence of 68-bus system. The Jacobian needs to be calculated with
higher slope with increasing standard deviation of the states.
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An important point to be noted that the norm can increase after a low value

for |Vi| = 1.0. This means that a short distance with the starting value of the states,

x0 does not ensure convergence. The convergence depends on the closeness of the

point of Jacobian and the point of operation.

As analyzed in Section 4.2, the Jacobian should require higher |Vi| for higher

variations of the voltage magnitudes of the buses. The minimum required |Vi|s are

shown for di�erent standard deviations of the magnitudes in Fig. 4.10. It can be seen

that the nominal Jacobian fails for a standard deviation more than 0.1222. It is also

observable that the minimum |Vi| keeps a linear relation with the standard deviation

of the states.

It is important to remember that, the existing method with the Jacobian

calculated at |Vi| = 1.0 that worked upto a variance of 0.1222 is still a very strong

tool. Because, under normal operating conditions, the variance usually does not

exceed 0.05. Even with 10-20% load change of the 68-bus system, the magnitudes

does not change much and they can be easily estimated. However, with very low

probability, the states may reach some values that may not be possible to estimate

using |Vi| = 1.0. Two such cases are shown in the Appendix. In one study, one out

of 20000 samples failed to converge with |Vi| = 1.0. Though the probability of such

cases is low, it can be crucial as the states may undergo very high change during that

time. Under these failed cases, the safer choice will be to calculate the Jacobian with

a higher value of |Vi|, not with a lower one.

The single and the multi-Jacobian methods are compared in Table 4.1. The

range of convergence refers to the maximum variation of the states with which the

method can converge. The speed of convergence is the inverse of the time required to

converge. The computational requirement is shown for the case where both methods

converge. The storage requirement denotes the memory needed for saving the M-
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matrices for di�erent |Vi|.

Table 4.1: Comparison of the Single and the Multi-Jacobian Methods

Qualities Single Jacobian method Multi-Jacobian method

Range of Limited High and

Convergence not limited

Speed of Fast Equal/slower than the

Convergence Fast single-Jacobian method

Application All cases, except All cases

very high variations

of voltages

Computation Low High

requirement

Storage requirement Low High

4.6 Implementation on a GPU

The reordering of the steps of WLS estimator in Section 2.4.2 comes as a result

of the arrangement of the processors. In GPU computing, a set of threads are called

to execute a kernel. The threads belong to one or more blocks. So, the number of

threads needs to match the number of tiny operations. In the �rst step, there will

be an equal number of measurements and power �ow equations. Therefore, they can

be combined in a single equation and can be run in a single thread. If there are

ms measurements, the required number of threads is ms. As the GPU can handle

a maximum of 1024 threads per block (for K20c), it will require only one block if

ms ≤ 1024 [59].
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Figure 4.11: Parallel addition of 16 numbers.

Step ii is a matrix-vector multiplication that can be divided into two parts -

multiplication by rows to columns, and addition by rows. Though it can be imple-

mented in di�erent ways, the best possible method is to assign one processor for every

multiplication. As the size of M is (2N − 1)×ms, it can be separated by blocks and

threads. Each block will be responsible for each row and the threads of that block will

take care of the columns of that row. However, after completing the multiplications,

the columns need to be added. Adding ms elements of a row vector can be made

parallel according to the method shown in Figure 4.11 [60]. Instead of using the full

method, the �rst part can be implemented to get an acceptable speedup. This simple

method can add up to 2n elements in the required time of n addition.
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Figure 4.12: Parallel multiplication of a matrix and a vector.

Step iii is a simple vector-vector addition. It will require 2N − 1 threads that

can be accommodated in one block for a system of 511 buses.

4.7 Simulation Results

To test the proposed dishonest method based state estimation, it is imple-

mented on the IEEE 16-machine 68-bus New York -New England power system with

83 transmission lines. To analyze it's timing pro�le, it is also implemented on IEEE

118-bus test system. Measurement errors are added arti�cially which varies from

0.25-4% of the original value. The measurements are taken for three seconds under

a sudden change of load at bus 8 at a rate of 30 samples per second that is the typ-

ical sampling rate of the Phasor Measurement Units (PMUs). The data under fault

ensures a big variability to test the dishonest method.
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For estimating the states from the measurements, an NVIDIA Tesla K20c GPU

card with compute capability 3.5 is used. Based on the three steps, three di�erent

kernels are written which use di�erent number of blocks and threads. One of the

major advantages of GPU is that it does not require any extra time to launch and

�nish a new kernel. So, the kernels can be executed sequentially without any delay.

As analyzed in Section 4.2, it is safe to take the slopes at high values of the

state variables. Under normal operations, the voltage magnitudes do not deviate more

than ±5% of 1.0 pu. With large load changes, it may vary by ±20%. For simulation,

three sets of magnitudes are chosen to build the Jacobian matrix, at 0.9 pu, 1.0 pu,

and 1.2 pu. For all cases, the angle is set according to Section 4.2.4.

4.7.1 Accuracy

Accuracy is the most important characteristic of an estimator. It is well known

that the WLS estimator is the most accurate estimator for Gaussian noise [61]. As

expected from the analysis of the dishonest method, it also converges to the solution of

the WLS estimator. But, the number of iterations required for the dishonest method

to achieve the same accuracy is more than the WLS estimator. On the other hand, it

takes a very short time for each iteration. If it takes less time for achieving the same

accuracy, then it is meaningful to use the dishonest method.
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Figure 4.13: The trend of norms of the estimations with (a) iterations, (b) time. The
required time is taken from the serial implementation. It is very low and incomparable
in parallel programming with CUDA.

The accuracy achieved by the WLS estimator and the dishonest one over

iterations are shown in Fig. 4.13. It can be seen that the dishonest one with the

Jacobian calculated at the maximum points (|V|=1.2) takes longer time than the one

calculated at a nominal value. It takes around four iterations to reach the accuracy

of the WLS method while with |V|=1.0, it takes only two. In serial implementation,

an iteration of WLS method takes around six times more time than that of dishonest

method. So, the dishonest method saves around 33% time. However, it is way too

e�ective in parallel implementation.

The estimated as well as the actual voltage angle and magnitude for bus 8 are

shown in Fig. 4.14. The simulation results are taken with one iteration of WLS, and
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four iterations of the dishonest method. It can be seen that the results are very close,

and they can be considered equivalent.
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Figure 4.14: The accuracy of the estimation for di�erent methods. The �rst two parts
show the accuracy for voltage magnitude and angle of bus 8. The last part shows the
overall norm of the residues for all measurements.

Noise is not the single factor; the accuracy depends on some other factors

as well. Among the other factors, measurement collection rate and the number of
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iterations are connected together. If the measurements are collected at a slower rate,

the states change by a greater amount. So, starting from the previous estimation, it

takes longer time to reach the new estimation.

However, it does not create any problem. Assume that the measurement is

collected at a rate of nm samples per second, and the estimator runs at ne times per

second with k iterations per time. De�nitely, ne ≥ nm. Now, if the rate is decreased

by a factor of d, i.e., nm/d, the number of iterations per sample can be increased by

a factor of d. If the estimator can achieve the desired accuracy in that iterations, it

will not create any problem.

In practice, the rate of collecting measurements is way too slow than the time

required with dishonest method. Even with the fastest rate of the PMUs, the data is

collected at every 8.33 ms where the estimator runs at 200 µs with three iterations.

Even if the estimator runs for ten iterations, it will not take more than 670 µs.

The relation between the sampling rate of the measurements and the accuracy

for di�erent number of measurements for a 68-bus system [58] is shown in Fig. 4.15.

It can be seen that the accuracy increases with the increase of sampling rate as well

as with the number of iterations per sample. It also shows that seven iterations per

sample give a good accuracy for any rate of collection over three samples per second.

As the sampling rate is known, the number of iterations can be settled accordingly.
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Gauss Newton method for di�erent rate of data of 68-bus system.

4.7.2 Impact of Noise

In power systems, the noise is assumed to be Gaussian. It can play a big role on

the accuracy. Not only the level of noise, rather the pattern of noise can also change

the accuracy. The same values of noise redistributed to di�erent measurements can

cause di�erent accuracy.

The impact of noise on the accuracy is shown in Fig 4.16 for six di�erent

combinations of the noise values. The level of noise is de�ned as the mean noise to

measurement ratio. The simulation shows that the accuracy is a bit low (around

98%) for low level of noise. However, it gets upto a certain level in between 99 to

99.5%. It does not give 100% accuracy at any time.
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The e�ect of noise on the norm of the residue is shown in Fig. 4.17. This can

be referred as the absolute accuracy. It is completely linear which means that the

residue increases linearly with the increase of the level of noise. It is also shown for

six di�erent noises.

4.7.3 Computation Time

The main advantage of the dishonest method is that it is very suitable for

the GPU architecture. From the parallel programming on GPU platform, it is found

that on an average over 50 trials, the required time for each sample of IEEE 118-

bus system with four iterations is about 282µs. To the best of our knowledge, it is

the lowest time ever reported in any research work on parallel and distributed state

estimation [2, 29,62].

On the other hand, for parallel implementation, the WLS estimator takes

around 2.77ms with one iteration that is around 42 times of one iteration of the dis-

honest method. Due to a large portion of non-parallelizable parts such as Cholesky de-

composition, back-substitution or Gauss-Jordan elimination, it cannot speedup much

on a GPU.

The reported time of 282µs includes the transfer time of measurements and

estimation results between the CPU and the GPU. To �nd the communication time,

it is run for di�erent number of iterations and the required times are plotted in Fig.

4.18. For 118-bus system, the communication time is found to be around 26µs, and

each iteration takes around 64µs.
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Figure 4.18: The required time for di�erent number of iterations for IEEE 68-bus and
118-bus system.

4.8 Estimation for Very Large Systems

In reality power systems can be very large consisting of thousands of buses.

A single GPU is not enough for estimating the states of a thousand bus system.

However, it is possible to estimate the required time for system with any size.

Though it is expected that the blocks and the threads of a GPU will run

simultaneously, it is not possible in practice. Like other computation devices, GPU

has its own limitations.

Every block of a GPU runs a maximum number of threads at a time. In case

of the k20 series, 32 threads run at a time in one block. These 32 threads are called a

warp. On the other hand, the blocks are run on the streaming multiprocessors (SMs).

These SMs are physical entity, and they are limited as well. Each SM can take care

of more than one block, but their scheduling can di�er.
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For this analysis, let the computation unit consists of NG GPUs which are

connected through a suitable protocol like MPI. The maximum number of threads

and blocks that can run simultaneously on a single GPU be Nt and Nb, respec-

tively. A block can hold a maximum of Nmax threads. The times required for each

addition/subtraction and multiplication are ta, and tm. The number of states and

measurements are n(= 2N − 1), and ms.

The �rst step has ms calculations of h(x), and ms subtractions. As it is

dependent on the nature of h(x), let us take the time for h(x) is th. For ms additions,

it will require ceil(ms/Nmax) blocks which will be provided by NG GPUs. So, the

total time for step i is,

t1 = max(th) + ceil(
ceil( ms

Nmax
)

NbNG

)× ceil(Nmax

Nt

)× ta

It is highly likely that there will be enough blocks to handle this addition

operation and the expression can be simpli�ed as,

t1 = max(th) + ceil(
Nmax

Nt

)× ta (4.8)

The most time consuming part is step ii. There are n rows and ms columns

in matrix M. They can be distributed di�erently. As for regular cases ms >> Nmax

and n > Nb × NG, a good choice is to assign one block to each row and one thread

to each column. So, each block will require ceil(ms/Nmax) stages to complete the

corresponding row. They will be called in ceil(n/NbNG) stages to complete all rows.

Each stage will take the time of Nmax/Nt multiplications.
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After completing the multiplication of one stage, there will be Nmax addi-

tions before taking the new values for the next stage. This will take the time of

ceil(log2Nmax) addition operations. So, the total time required to complete NG ×Nb

rows is,

t21 ≈ (
Nmax

Nt

× tm + ceil(log2Nmax)× ta)× ceil(
ms

Nmax

)

The approximation comes from the last stage of the row which will have

remainder(ms/Nmax) additions. As there are ceil(n/NbNG) stages to complete all

rows, the total time required to complete step ii is,

t2 = ceil(
n

Nb ×NG

)× t21 (4.9)

Step ii produces ceil(ms/Nmax) columns for each row which need to be added

with x. In step iii, they are added together to �nd the new x. Using the same

assumption of step i, the required time for step iii can be calculated as,

t3 = ceil(
Nmax

Nt

)× (ceil(
ms

Nmax

) + 1)× ta (4.10)

Now, all of them can be added together with the communication time to

estimate the required time t to compute one iteration of estimation for a very large

system,

t = t1 + t2 + t3 + tcomm (4.11)
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It should be remembered that the launch or execution time of the threads or

blocks are not always equal and there is randomness. So, a random number should

be added with each term of (4.11). Moreover, each block or thread should wait for

the slowest ones to complete their jobs.

There are other factors like the number of registers and size of shared memories

that limits the exploitation of the processors. They are excluded from the calculations

for simplicity.

4.9 Summary

In this chapter, the convergence and the speedup of the dishonest Gauss New-

ton method have been investigated. It is shown that the method can ensure con-

vergence if the Jacobian contains the steepest slopes within the possible range of

operation. With this analysis, a multi-Jacobian method is proposed and it is shown

that it can converge at some cases where the traditional estimator fails.

With the parallel implementation of the dishonest method on a GPU, it is also

shown that it yields a very high speedup of around 42 times compared to the WLS

method. With this rate, every sample of PMU data can be estimated in real-time

and they can be used for better understanding of the status of the system. Though

PMU is not a mature technology to date and the outputs are used only for post-

mortem analysis, it is expected to take some real-time roles in the coming smart grid

technology. A fast estimator will have its impact in each real-time applications of the

PMU.

For large systems with thousands of buses, a cluster of GPUs is recommended.

The implementation strategy and the required time for large systems are provided.

From the analysis, it can be inferred that the implementation on multiple GPUs en-
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ables a fast state estimator while ensuring su�cient accuracy. Further investigations

are needed on the implementation of multiple GPU.
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Chapter 5

Distributed Static Estimation Using

Cellular Computational Network

5.1 Introduction

In order to solve the problem of scalability of any networked system, a new

framework referred as Cellular Computational Network (CCN) is proposed in [6].

In this framework, every cell will include a moderate powerful computational unit.

These units will communicate with each other to exchange information related to

their tasks.

This chapter presents a layer-based static estimator using cellular computa-

tional network. It is a preliminary work on developing the �nal distributed state

estimator. Due to its sequential operations, the process cannot be completed in a

very short time. However, the distributed nature of the estimator can keep the pri-

vacy of the deregulated market.
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5.1.1 Power System Mapping Using CCN

The idea of the cellular architecture can be summarized as follows,

• The system reference bus does not require any computation as the voltage

magnitude and the voltage angle are de�ned (Vref = 1 and θref = 0). The

powers are measured with respect to this bus. This single bus forms the �rst

layer.

• Buses connected to the system reference bus form the second layer. They take

that as their own reference bus, and they do not need to scale the powers. Each

bus runs their own estimation using the measurement taken at t, and calculates

voltage magnitude and angle.

• Every bus connected to the second layer forms the third layer. They collect the

estimated voltage magnitudes and angles of the connected reference bus from

the second layer and scale the local power measurements. Then they run the

estimation for the measurements taken at t. After completing estimation, the

estimated magnitudes and angles are adjusted for the system reference bus. At

the same time, layer 2 runs their own estimation using the measurements taken

at t+ 1.

• Buses connected with the third layer form the fourth layer. They take the buses

of third layer as their own references and run the estimation. By the time the

fourth layer is working on the measurements taken at t, the third layer works

on the measurements taken at t+ 1, and the second layer works on t+ 2.

In this way, all the buses of all layers work at the same time with di�erent

measurement sets taken at di�erent time slots.
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5.2 Test Systems and Results

In order to verify the feasibility of the cell based architecture, IEEE 68 bus

test system is taken as the model network. In Figure 3.2, the 68 bus, 16 generator

system is shown with its corresponding layers of computational cells.

5.2.1 Sequence of Layers

According to the proposed architecture, each bus is equipped with a cell ca-

pable of estimating states. As bus 1 is the reference bus for the whole system, it is

the single element of the �rst layer, and the states are known for it. The second layer

includes those buses which are connected with the reference bus. The sets of buses

in di�erent layers are given below,

• Layer 1: {1}

• Layer 2: {2 47 31 30 27}

• Layer 3: {3 17 25 53 48 62 38 32 9 26}

• Layer 4: {16 29 28 60 40 46 33 63 36 8 4 18}

• Layer 5: {19 21 24 61 14 15 5 7 37 64 34 49 41}

• Layer 6: {23 22 56 20 13 6 65 43 35 52 42 66}

• Layer 7: {59 58 57 10 11 12 54 44 45 50 68 67}

• Layer 8: {55 39 51}

The execution of the layers are shown in Figure 5.1. In the starting of the

process, only the cells of layer 2 execute estimation with the most recent data as they
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are directly connected with the system reference bus. In the second time slot, layer

3 takes the estimates from layer 2 and measurements of time slot t. At the same

time, the cells of layer 2 do not wait, rather they keep estimating their states using

measurements taken at time slot t + 1. At the next time slot, layer 3 starts running

with the measurements taken at t. It runs behind of layer 2 by two slots. Over time

all the layers get added to the execution. When the system is completely on, all the

layers run simultaneously with measurements taken at di�erent time slots.
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Figure 5.1: The starting and running of layer based estimation. Here, the labels in
side the boxes have two parts. The upper parts denote the layer numbers starting
with L, the lower parts show the time slots of the measurements for which the layer
is running. The horizontal line at the bottom shows the original time slots. For
example, at time slot t + 8, the cells of layer 2 is running with the measurements
taken at t + 8, while the cells of layer 3 is running with the measurements taken at
t+ 7.
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5.2.2 Accuracy

Accuracy is an important property of an estimator. Like all other estimators,

the accuracy of the cell based estimator depends largely on the measurement noise.

To keep consistency with practical cases, the measurement noise is taken within ±6%

with zero mean in these experiments.

The trend of accuracy of the estimator is shown in Figure 5.2. The states

are organized based on their layers. The buses of layer 2 are taken �rst, then the

buses of layer 3 and so on. It can be observed that the estimated state is getting

much deviation as it is going far from the reference bus. The reason behind that is

the �ow of estimation error. As the estimations of the buses of layer 3 depend on

the estimated values of the buses of layer 2, the errors of layer 2 get added with the

estimated values of layer 3.
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Figure 5.2: With a noise range of ±6%, the actual and estimated voltage angles. The
states are rearranged based on layers. The buses of layer 2 are taken on the left most
side. Then layer 3, 4, 5, 6, 7, and 8 are taken. It can be noticed that the layers far
from the system reference bus get much deviation from the actual angles.
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5.2.3 Flow of Errors

To solve the problem of the �ow of error, some terms need to be de�ned �rst.

The layers can be considered as generations. The reference of a bus is referred as the

�rst predecessor for that bus. The reference of the reference bus can be considered

as the second predecessor. The gap between two buses are known as generation gap.

For example, if bus 3 is the reference for bus 4, bus 3 is the predecessor for bus 4.

If bus 2 is the reference for bus 3, bus 2 is the second predecessor for bus 4. The

generation gap between bus 2 and bus 4 is 2.

The problem of the �ow of estimation error does not make big residue for those

connected buses who have their common predecessor in near generation. It means

that, if two buses have the same root in a near predecessor, the relative estimation

will be much accurate. For example, bus 23 and 22 are connected together. They

have the common root at bus 16. The generation gap is 2. So, the power �ow between

bus 22 and bus 23 will show less residue. But for the cells of the buses 11 and 12,

they have a distant common root. So the power �ow will show a big residue.
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Figure 5.3: Comparison of the abilities of the cellular estimator with the centralized
one to track the states under an unstable condition. The voltage angle of bus 8
is changing rapidly with time along with other bus voltages. Both estimators are
following the actual value with reasonable accuracy.

In order to verify the ability of the new architecture, the system is estimated

under an unstable situation created in RSCAD. The estimated voltage angle of one

bus is shown in Figure 5.3. It can be seen that the new architecture is able to

follow the unstable situation. Though the accuracy is not as good as the centralized

estimator, it is still good enough to meet the requirement of speed.

5.2.4 Detection of Bad Data

One of the major aspects of any estimator is the ability to detect and identify

the bad data. WLS estimator uses the L2-norm of the measurement residues to detect

the presence of the bad data. This norm is compared with a prede�ned threshold

value. However, in this experimental setup, for a realization of noise, the norm of the

residue for the centralized estimation comes 0.8311 where in the cellular architecture,

it becomes 3.9247. This shows that the proposed architecture is not as accurate as
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the centralized estimation. The speed is achieved with the cost of accuracy.
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Figure 5.4: Comparison of the residues of the cellular estimator with the central-
ized one. As can be seen, the residues are signi�cantly large than for the cellular
architecture for some speci�c measurements. This is caused by the generations.

5.3 Summary

This is an intermediate stage of a study on the application of cellular com-

putational network in static power system state estimation. The advantages and

challenges of the new CCN based WLS estimator is presented in this chapter. Us-

ing o�ine simulation results, important characteristics of the estimator like speed,

accuracy, observability etc. are analysed.

As the accuracy of the estimator was not well enough, it needs some modi�-

cations. Moreover, it can be understood that the addition of the layers will increase

the computation time. It can be kept constant if the cells can run simultaneously. It

is described in the next chapter.
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Chapter 6

Semi-Dynamic Hybrid State

Estimator Using CCN and Heuristic

Methods

6.1 Introduction

The privacy of the data in the deregulated market is an important factor for

energy market. It a�ects the policies of the utilities directly. With the centralized

estimator, the system-wide information needs to be gathered in a center that may

go against the interest of the energy market participants. The problem is partially

solved in the previous chapter with some concerns about the sequential operations.

In this chapter, a fully distributable method is developed that can keep the privacy

of the data and run a parallel cellular estimation.

The static estimator requires a sequential �ow of layers due to the dependency

on the reference bus. It increases the overall computation time with the addition of

new layers. To avoid the problem of the estimation of the reference bus, the previous
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estimation can be used for normalization. As the states do not change much with

a single time step, the normalizations of the powers do not deviate much from the

actual value. This makes a semi-dynamic estimator which enables the simultaneous

execution of computation cells.

To improve the accuracy of the semi-dynamic estimator, di�erent heuristic

methods are tested. Out of them, genetic algorithms show a better performance in

terms of accuracy and time. Several heuristic optimization methods including Particle

Swarm Optimization (PSO) have been studied for power system state estimation and

they perform quite well for small systems. However, in case of larger systems with

hundreds of states, they su�er from the curse of dimensionality. In this chapter, two

important variants of PSO, Comprehensive Learning PSO, and Orthogonal Learning

PSO, which are specialized for multimodal high dimensional systems, are implemented

and found to provide inaccurate estimations over time. To overcome this problem,

a hybrid state estimator which consists of the CCN based semi-dynamic estimator

and the Genetic Algorithm (GA) is developed. Through simulation, the proposed

CCN-GA is shown to outperform all other direct and hybrid methods in terms of

accuracy and time.

6.2 Structure of the Estimator

Due to the dependency to the previous estimation result, the �rst estima-

tion requires an independent development process which is taken from [10]. It is a

multi-layer static estimation process. In the running mode, the local estimation gives

the relative states and these are saved separately. Using these di�erences, the cells

exchange and update their results until these converge (Fig. 7.3). Then, these con-

verged states are used to normalize the measurements and the local estimator runs
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again. The process repeats for a �xed number of iterations, kmax. At the end of kmax,

it takes the next measurement set for estimation.

6.2.1 Value of Hybrid Methods

The proposed hybrid method based on CCN-GA is a fully distributed solution

for power system state estimation. This maintains the privacy of the data, and takes

moderate time that can be used for traditional SCADA rate.

A major practical importance of the heuristic methods is that it does not

require any di�erentiable function. Though the WLS estimator is very accurate, being

a gradient based method, there are some speci�c situations like the ill-conditions,

where it fails. Under this case, the gradient becomes zero and the method cannot

proceed. On the other hand, the heuristic parts of the hybrid methods do not require

any calculation of gradient, and they can perform pretty well for these cases.
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Figure 6.1: The complete estimation process of the hybrid estimator using CCN. The
upper box shows the �owchart of CCN in details. The output of CCN is fed to the
Genetic Algorithm or the PSOs.
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6.2.2 Estimation of a Single Cell

If a cell includes any measurement other than the power �ow, the estimation

will require a complete iterative WLS process. Otherwise, the estimation can be done

directly. Though the whole network can include loops, a single cell that is responsible

for only one bus includes only a star network without any loop as shown in Fig. 6.2.

For this single star network, Lemma 1 gives an insight about the WLS estimation.
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Figure 6.2: Estimation of a single cell. It forms a star network where no bus is
connected with other except the center one.

Lemma 1. For any star network with unique power �ow measurements and Gaus-

sian error, the WLS estimator yields an estimated value with zero residues given the

network is observable.

Proof. The WLS estimator is the most e�cient estimator for Gaussian error and it

gives the minimum L2-norm of the residues [61] for overdetermined systems. No

solution can give less residue than the solution given by WLS. For a square full-rank
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system, there exists an exact solution and the residue becomes zero. Therefore, for a

square system, WLS yields zero residue.

Let, n buses are connected with bus 0 whose state is to be estimated. For

each connected bus, there can be a real and a reactive power �ow measurement,

P0j, and Q0j. If any one of them is missing, the network becomes unobservable.

Therefore, according to the condition of observability of the lemma, there will be a

total of 2n measurements (as the measurements are unique). As the star network has

a total of (n + 1) buses, and there is no voltage magnitude measurement, there will

be (2(n+ 1)− 2) = 2n number of states. So, the number of states becomes equal to

the number of measurements that makes it a square system. As a result, the WLS

estimator will yield zero residue.

Under this situation of an equal number of equations and state variables, the

states can be calculated directly from the equations and no help is needed from the

WLS estimator. For example, for each transmission line, the voltage angle and the

magnitude can be calculated by the following equations which can be easily derived

from (2.6), and (2.7),

θ̂j = tan−1(
b0jP0j + g0jQ0j

g20j + b20j − g0jP0j + b0jQ0j

)

V̂j =
b0jP0j + g0jQ0j

(g20j + b20j)sinθ̂j

(6.1)

Where, θj and Vj are the relative angle and magnitude of bus j with respect

to bus 0. In the estimation stage, every bus gets its relative states with respect to

each of its neighbors. These are combined in the exchange and update process. The

relative values are combined by converting them to absolute values. To get those,

the states of the neighbors need to be known. In the beginning of each sample, these

start with the previous estimation results, and these change with each inner-loop of
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Fig. 7.3.

If there is no voltage magnitude as measurement in the system, the states can

be calculated directly and CCN does not require any other estimation method like the

WLS to execute the local estimation. It becomes a complete distributed algorithm of

estimation.

6.2.3 Exchange and Update

Through estimation, each cell produces a residue free raw result which needs

to be improved with the process of exchange and update. The exchange process

makes the use of the law of large numbers to improve the raw result. From (6.1),

it is understandable that the estimation result is nothing but the true value added

with some Gaussian error with zero mean. The exchange process aggregates errors

from all cells to cancel each others e�ects. A general expression of the voltage angle

is derived to show the improvement.

The expression is developed for a star network with no loop. If there are n

number of neighbors, the center state is estimated with respect to each neighbor using

(6.1). Then, the weighted average is taken as the updated value. For simplicity, the

weights are taken to be 1.0.

Let the estimation error of (6.1) of the phase di�erences of line i is denoted

with vi, and the initial error associated with state j is wj. For each neighbor of Fig.

6.2, bus 0 gets an estimation which contains these two errors,
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θ̂10 = θ0 + v1 + w1 (6.2)

θ̂20 = θ0 + v2 + w2 (6.3)

. . .

ˆ
θ
|A0|
0 = θ0 + v|A0| + w|A0|

Here, Ai denotes the set of all buses directly connected to bus i and |.| denotes

the cardinality of it. After getting the estimations from all neighbors, the updated

value is,

θ̂0 =
1

|A0|

|A0|∑
i=1

θ̂i0 (6.4)

From (6.2)- (6.4),

θ̂0 = θ0 +
1

|A0|
∑

n01∈A0

vn01 +
1

|A0|
∑

n01∈A0

wn01 (6.5)

The improvement of the update process is realizable from (6.5). As multiple v,

and w terms are getting averaged, these cancel each other to some extent and produce

a better result. For neighbor i of bus 0, the update results in,

θ̂i = θi −
1

|Ai|
∑
ni1∈Ai

vni1
+

1

|Ai|
∑
ni1∈Ai

wni1
(6.6)
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The second update of θ̂0 through the process of average adds another term,

θ̂0 = θ0 +
1

|A0|
∑

n01∈A0

vn01 −
1

|A0|
∑

n01∈A0

1

|An01|
∑

n02∈An01

vn02

+
1

|A0|
∑

n01∈A0

1

|An01|
∑

n02∈An01

wn02

(6.7)

Advancing in the same way, the expression of the estimated value after ith

exchange is found as,

θ̂0 = θ0 +
1

|A0|
∑

n01∈A0

vn01 −
1

|A0|
∑

n01∈A0

1

|An01|
∑

n02∈An01

vn02

...+ (−1)i
1

|A0|
∑

n01∈A0

...
1

|An0,i−2
|

∑
n0,i−1∈An0,i−2

vn0,i−1

+
1

|A0|
∑

n01∈A0

...
1

|An0,i−1
|

∑
n0,i∈An0,i−1

((−1)i+1vn0,i
+ wn0,i

)

(6.8)

With the increase of exchange, the number of terms containing vn0,i
and wn0,i

increases in the higher order summations as long as the system does not come to an

end. As a large number of random numbers are getting added in the higher order

terms, from the law of large numbers, these get converged to their true values which

are zeros. Thus the higher order terms can be neglected, and the �nal estimated

values can be approximated up to the third level as,
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θ̂0 ≈ θ0 +
1

|A0|
∑

n01∈A0

vn01 −
1

|A0|
∑

n01∈A0

1

|An01|
∑

n02∈An01

vn02

+
1

|A0|
∑

n01∈A0

1

|An01|
∑

n02∈An01

1

|An02|
∑

n03∈An02

vn03

(6.9)

In (6.9), the connection with the previous estimation (wn0,i
) vanishes over ex-

change which proofs that the initial value has less impact on the �nal result. However,

the analysis is shown for only one iteration (for k = 0). The error of �rst estimation

will get reduced in the subsequent iterations in a similar way.

The trend of the norm over the exchange and update process is shown in Fig.

6.3. It starts with a large residue, and reduces with the process.
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Figure 6.3: The convergence of the norm of the residues through exchange and update.
The local estimation does not give a good result. By exchanging, the norm gets
reduced and the states get closer to the actual values.
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In summary, CCN has two main parts, estimation, and exchange and update.

The estimation for a single cell creates star networks, and it reduces the WLS esti-

mation to some direct calculations. The exchange and update process reduces the

errors introduced by the estimation process.

6.2.4 Hybrid Estimation

The �nal result of CCN can be further improved by the use of the heuristic

optimization methods. Integrating the heuristic methods with CCN creates the hybrid

estimators as shown in the lower part of Fig. 7.3. The heuristic methods fail to keep

the track of the states over time with �xed or random initialization. CCN guides the

process and narrows the search range for the heuristic methods. The methods get a

better point to start, and produce better results.

With four heuristic methods, GA, PSO, CLPSO, and OLPSO, four hybrid

methods, CCN-GA, CCN-PSO, CCN-CLPSO, and CCN-OLPSO, are developed in

this chapter. Out of them, the CCN-GA improves so fast that it can also be used for

real-time estimation when parallelized. Its performance is discussed in Section 6.3.

Though, at �rst look, it seems that the required time will increase due to the

addition of CCN with the existing methods, it does not. CCN choses a good region

within a very short time where GA can �nd a better solution with a little e�ort. So,

the number of iterations reduces and it shortens the total required time.

6.3 Test Systems

To verify the performance of the CCN based estimation, an estimator is de-

veloped in MATLAB for IEEE 68-bus New York- New England test system which is

shown in Fig. 3.2. It is a 16-machine, �ve-area power system with 135 states. The de-
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tails can be found in [58]. The system is simulated on a Real-Time Digital Simulator

(RTDS). Two case studies are presented in this paper. For Case I, measurements are

collected for 90 time samples over a time period of 3s under a disturbance. Case II is

taken with some random changes in the system. Measurements are taken in the form

of voltage magnitudes and voltage angles. These measurements are used to calculate

the raw power �ows. Only the real and reactive power �ows of the transmission lines

are taken as measurements. The raw data is mixed with some arti�cially generated

Gaussian measurement errors. The variances of errors vary in between 1%-15% of the

original measurements. However, out of the 90 time samples, the �rst one is executed

with the principle mentioned in [10]. The rest of the estimation follows the running

mode shown in Fig. 7.3. The value of kmax in Fig. 7.3 is set at 20.

6.3.1 Parameters for PSO and Its Variants

PSO is implemented with 20 particles. To set the parameters, di�erent values

are tested and the best one is chosen. The inertia weights of velocity of θ and V are

swept from 0.5 to 0.3 and from 0.2 to 0.1 respectively. The cognitive acceleration con-

stant is set three times the social acceleration constant. This ensures much variation

in the search space for the particles. The velocities as well as the states are limited

with a practical boundary for the experiment.

For CLPSO, the values of Pc are chosen in a quadratic order as done in [53].

The values vary in between 0.004 and 0.4328 which makes it choosing more frequently

from the particle's own local value. The complete list is shown in Set I. c1 is set to
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1. Based on the experience, Pcd is refreshed every 20 iterations.

Set I = {0.0040, 0.0058, 0.0079, 0.0106, 0.0138, 0.0177, 0.0226, 0.0284,

0.0356, 0.0444, 0.0551, 0.0682, 0.0842, 0.1037, 0.1276, 0.1567,

0.1923, 0.2357, 0.2888, 0.3536, 0.4328}

In OLPSO, the OA is built on the algorithm given in the appendix of [55]. The

maximum number of iterations under stagnation is set to 5. During the recovery from

the stagnation, the velocities are also increased. However, in all the experiments with

PSO, the random numbers are generated from a uniform distribution. The maximum

number of iterations for the basic PSO, and the CLPSO is set to 5000, while it is set

to 1000 for the OLPSO. For all of them, the variances of the initial particles are are

set to 0.007. The variances of the initial velocities are set to 0.0007 rad and 0.000035

pu for the angle and the magnitudes respectively. For θ, the velocity is limited to

±0.2, and for V , it is ±0.08.

6.3.2 Implementation of GA

GA is implemented in a di�erent way. As the improvement continues for a

long time which is impractical, if the process cannot yield a speci�c improvement

(3%) in a �xed number of iterations (500), it stops. However, the similar scheme is

not possible for the PSOs due to their low accuracy. The number of chromosomes

are set to 20. There are 20 crossovers and 50 mutations in each iteration. 50% of the

chromosomes survive each iteration.
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6.4 Simulation Results

In this section, the accuracy, required time, e�ects of noise, and observability

of di�erent methods are analyzed. For accuracy, both direct and hybrid methods are

shown. For the hybrid method, two di�erent cases, one under a fault, another under

random changes are presented. A statistical test is run to �nd the level of signi�cance

of the proposed CCN-GA method.

6.4.1 Accuracy of Dynamic Behavior

State estimation is a continuous process. Accuracy is the most important

quality of an estimator. As the measurements are costly, it is expected that the

estimator will make the best use of it. However, it is also important to have the

estimation completed within a limited time. To reduce the estimation time, the initial

values for time t are taken from the estimation of t − 1 as the states do not change

much during two consecutive estimations. It is very important that the estimator

keeps the track of the true values over time.

6.4.1.1 Direct methods

The abilities of the estimators to track the dynamic behavior of a speci�c bus

are shown in Fig. 6.4. For all of them, the estimation at t = 2 is started with

the actual values of t = 1. It can be seen that due to the closeness, the PSOs are

performing quite well at t = 2. In fact, OLPSO performs better than CCN at this

point.

For t = 3, the starting values are taken from the previous estimation by

OLPSO at t = 2 which are not very accurate. The inaccuracies accumulate over time

and make the estimator completely unsuitable for such operations. On the other
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hand, though CCN takes help from the previous estimation, the �nal values do not

depend on the starting values. As a result, CCN does not deviate much from the

actual values.
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Figure 6.4: The abilities of the estimators to track the states over time. It is clear
that the basic PSO, CLPSO, and OLPSO are not able to track it while CCN does
quite well.
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The trends of convergence of the PSOs are analyzed in Fig. 6.5. The norms

of the residues over the iterations are shown for t = 2 where the PSOs work best. It

can be seen that the norms take some time to start improving. Once it gets a better

global best, the improvement starts and continues at a decreasing rate. Eventually,

these get stuck at a local minimum. It is interesting that the estimator which takes

the longest time to start improving, improves at the fastest rate.
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Figure 6.5: The trend of the norms of the residues over iterations. It seems that the
methods take some time to start improving. Among all of them, OLPSO seems to
perform better than others.

6.4.1.2 Hybrid methods

The norms of the residues for the estimators are shown in Fig. 6.6. Though

CCN works better than others for most of the times, it can easily be understood that

a better solution can always be obtained through a combined e�ort of CCN and other

estimators. To direct the estimators to the right path, CCN takes lead and others

work on the results of CCN. Thus the hybrid estimators are formed.
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Figure 6.6: The trend of the norms of the residues of the direct methods over time.
Except a few cases, CCN is performing better than others.

The settings of the PSOs and the GA for the hybrid estimators are a bit

di�erent than their direct implementations. As these can start from a better value,

the number of iterations/generations is reduced to one �fth. In case of CCN-GA,

the stopping criterion is changed to a threshold value within a certain number of

generations. If the estimator achieves an expected norm of the residues within a

maximum number of iterations, it stops. If not, it takes the best norm. However, this

threshold based criterion is not applicable for the PSOs due to their poor performance.

6.4.1.2.1 Case I The norms of the residues over time for hybrid estimators are

shown in Fig. 6.7. It is taken under a fault that disturbs the system states signi�-

cantly. It can be seen that the CCN based GA is giving the minimum residue. The

second best is the CCN based OLPSO. It is to be noted that the direct application

of GA does not yield a good result, but getting directed by CCN, it gives the lowest

norm within a limited time. The required time is discussed in Section 6.4.3.
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Figure 6.7: The trend of the norms of the residues of the hybrid methods over time.
The CCN led GA gives the lowest norms. The threshold norm is set at 2. Except a
few cases, it successfully reduces the norms to the limit.

6.4.1.2.2 Case II To increase the reliability of the proposed method, it is also

applied with random changes of generation in the system. The situation resembles

the normal operation that undergoes continuous load and generation imbalance. The

norms of the residues are plotted in Fig. 7.4 for a longer time with higher level of

measurement error. Where other estimators are su�ering from periodic inaccuracies,

CCN-GA is able to keep a relatively constant performance.
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Figure 6.8: The norm of the residues of the hybrid methods with random changes in
generations. The CCN led GA keeps a moderate constant rate.

6.4.2 Statistical Comparison of Accuracy

It is important to compare the results using statistical method. Kolmogorov-

Smirnov test is a well-known test for the purpose [63]. It compares the cumulative

distribution functions (CDFs) of the samples and takes the maximum absolute value

of their di�erence, d. This is compared with the signi�cance level α. If d is greater

than the signi�cance level, then there is a signi�cant di�erence between the samples.
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Figure 6.9: Statistical comparison using the K-S test of the results found for Gaussian
noise with fault. The CDFs are plotted for the overall norms of the 90 samples of
data.

Using the method, it is found that CCN-GA is signi�cantly better than the

others in term of norm of the residues for all typical values of α, 1%,5%, and 10%.

The CDFs shown in Fig. 6.9 are taken for Case I. Both CCN-PSO and CCN-OLPSO

have signi�cant di�erences with CCN-CLPSO for 5% or higher value of α. However,

there is no signi�cant di�erence between PSO, and OLPSO.

6.4.3 Required Time

As mentioned earlier, integration of the CCN to the existing optimization

methods helps to reduce the number of iterations/generations. Thus, it helps to save

a signi�cant amount of time. Among the hybrid estimators, CCN-GA does not only

yield the best accuracy, the required time is also noticeable. In Fig. 6.10(a), it can

be seen that the CCN-GA requires the lowest computation time in all cases. The
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experiments are run under similar conditions on an Intel(R) Xeon(R) CPU (E5-2609)

with 2.4 GHz core and 48GB of memory. For some samples, the output from CCN

yields a norm below the threshold and in these cases, the required times shown are the

times used by the CCN. Real-time state estimation can be realized if these methods

can be parallelized. As seen from Fig. 6.10(b), CCN-GA is the method with the least

cumulative runtime for parallelization and real-time implementation.
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Figure 6.10: The required time for the hybrid methods to achieve the accuracy shown
in Fig. 6.7. The CCN led GA requires the minimum time.

6.4.4 E�ects of Noise

Noise is an important factor in power system state estimation. The level as

well as the distribution of noise needs to be analyzed. The e�ect of the level is shown

in Fig. 6.11. Each point shows the cumulative norm of four consecutive samples. It

is clear that the accuracies of all estimators decrease with the increase of noise level.

However, CCN-GA provides the best solution for every level of noise. To analyze the
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e�ect of the distribution of noise, the estimators are run with uniform errors. The

simulation results are shown in Fig. 6.12. CCN-GA outperforms other estimators in

almost all samples.
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Figure 6.11: The response of the estimators to di�erent levels of noise. It can be
seen that the norms of the residues increases for all of them while remains lowest for
CCN-GA.

6.4.5 Observability

Observability is an integrated part of the estimator. It refers to the ability

of the estimator to perform estimation with minimum number of measurements. In

this regard, PSOs and GA perform better than the CCN. These can work with any

observable network. But for CCN, local observability is needed for every cell. How-

ever, in case of insu�cient local measurements, the cells can merge to form a bigger

observable supercell and it can eliminate the necessity of extra measurements. An-

other way to eliminate the extra measurements is to use the gossip-based distributed

methods [3, 64] which do not require any local observability.
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Figure 6.12: The norm of the residues with uniform distribution of the measurement
errors. The proposed CCN-GA performs better than other hybrid estimators.

6.4.6 Qualitative Analysis of the Simulation Results

From Figs. 6.7, 7.4, and 6.12, it is visible that CCN-GA is performing bet-

ter than other hybrid methods most of the times. CCN is the common part of all

methods. The di�erences in performance come from the heuristic parts. Besides the

acuumulation of errors, two major problems are found with the PSOs in power sys-

tem state estimation, tuning of a large number of parameters, and the low number of

�tness evaluations. PSOs have a high number of variable to choose (around 15), and

these work quite well within a limited range. With the change of the states, these

need to be changed. State estimation is a real-time continuous process and it is not

possible to test di�erent parameters of PSOs. As a result, the CCN led PSOs cannot

keep high performance over time. Moreover, due to the higher execution time, it

cannot evaluate the �tness function for a large number of times. This leads to a less
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accurate result for the PSOs.

On the other hand, mutations of GA is a �ner tool to �nd better positions. The

amount of change in mutation can be controlled directly to dig deeper in the solution

space. As an iteration of GA takes signi�cantly less time than that of OLPSO, it can

run more iterations with less time to �nd the lowest norms. This makes CCN-GA a

better choice.

There are di�erent qualitative measures to compare the performances of the

hybrid estimators. For the following analysis, instead of taking the norms, the mean

squared errors (MSE) are shown as the measure of accuracy. Two metrics are used for

convergence, the accuracy of convergence, and the probability of convergence. Besides

these two, the required time to convergence, and the number of �tness evaluations

are also shown in Table 6.1. 25 trials are taken for both case I (with 90 samples)

and case II (with 150 samples). Unlike previous setups, the estimators are run for

an unbounded time till their convergence. The metrics used are given below,

i) Convergence: If the method does not improve the norm of the residues by

1% in 100 consecutive iterations, it is considered to have converged.

ii) Mean Square Error (MSE): The mean of the square of the di�erence of the

actual measurements and the estimated measurements. If the number of samples is

Ns,

MSE =
1

mNs

Ns∑
j=1

m∑
i=1

(zij − ẑij)2 (6.10)

iii) Time to converge: The required time to reach convergence (as described in

(i)) for each sample.
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iv) Number of �tness evaluations: The average number of times the norms of

the residues (�tness function) are calculated for each sample to reach convergence.

v) Probability of convergence (POC): The percentage of the states whose esti-

mated values fall within a de�ned range of the actual values. The range is taken 0.01

for the experiments.

Table 6.1: Performance of the hybrid estimators with di�erent metrics

Features CCN-PSO CCN-OLPSO CCN-CLPSO CCN-GA

Mean Std Mean Std Mean Std Mean Std

Case I

MSE (pu) 0.045 3.24e-4 0.0367 3.1e-4 0.0454 6.9e-4 0.0143 6.92e-5
Time to 8.75 4.5 46.88 16.28 6.25 0.87 6.65 1.63

converge (s)
Number of 7289 246 5413 59.4 6623 111.9 11238 42.1
�tness

evaluations
Probability of 89.93% 0.056% 89.75% 0.071% 90.09% 0.04% 90.12% 0.065%
convergence

Case II

MSE (pu) 0.074 4.92e-4 0.0686 3.38e-4 0.1145 1.6e-4 0.0246 4.35e-5
Time to 25.38 16.15 73.80 21.91 6.84 1.395 18.84 6.08

converge (s)
Number of 15539 557.93 7707.9 73.55 7416.9 127.94 28701 114.24
�tness

evaluations
Probability of 82.01% 0.086% 81.67% 0.056% 82.18% 0.027% 82.05% 0.019%
convergence

Though CCN-CLSPO may require less time to converge, it is due to the pre-

mature convergence. The probability of convergence is also higher for CCN-CLPSO,

but that is not the objective of the optimization problem. The objective function is

to minimize the MSE and CCN-GA performed better than others in that.

The di�erences between the CCN-PSO, CCN-OLPSO, CCN-CLPSO and CCN-

GA are summarized below in Table 6.2.

6.4.7 Comparison of Static and Semi-dynamic Estimator

The performance of the static and the semi-dynamic estimators are shown in

Fig. 6.13. It can be seen that the semi-dynamic estimator works better than the

static estimator. It is due to the fact that the semi-dynamic estimator can improve
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Table 6.2: Summary of the performance of the hybrid methods

Qualities CCN-PSO CCN-OLPSO CCN-CLPSO CCN-GA

Accuracy Medium High Low High
Rate of Medium fast Slow Fast Fast

convergence
Number of Medium Low Low High
�tness

evaluations
Probability of Medium Medium Medium Medium
convergence

Dependency on Largely Largely Largely Less,
initialization dependent dependent dependent dependent
Real-time Not suitable Not suitable Not suitable Suitable
applications
Number of High High High Low
parameters

Online tuning of Needed Needed Needed Not Needed
parameters

its result with multiple iterations of k. On the other hand, the static estimator does

not have the option for such a loop.
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Figure 6.13: The performances of the static and semi-dynamic CCN based estimator.
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6.5 Summary

State estimation of large power systems is a challenging task for heuristic

optimization methods. In this paper, a hybrid state estimator based on CCN and GA

is developed to perform state estimation accurately and in a fast manner. Two parts of

the CCN method, estimation, and exchange and update, are investigated analytically.

CCN takes the values close to the optimal solution and prevents the heuristic methods

to search in non-related regions. The CCN-GA method is implemented for state

estimation on IEEE 16-machine 68-bus power system and improved results compared

to other heuristic method based hybrid estimators, CCN-PSO, CCN-CLPSO, and

CCN-OLPSO, are obtained.

Future work will involve parallel processing of the CCN-GA to realize a real-

time hybrid state estimator. Moreover, the distributability of the methods needs to

be explored. Di�erent hybridization methods can also be investigated to �nd a better

solution. To reduce the requirement for local observability, the supercells also need

further analysis.

99



Chapter 7

CCN Based Distributed State

Prediction

7.1 Introduction

State prediction can become an important concept in power systems operation.

With the advent of the PMU measurements, the dynamics of the system can be

tracked. As a result, it is possible to predict the states of the system and they can

be used in multiple parts of the power systems.

One of the major applications of the predictor can be its use in contingency

analysis (CA). In the traditional CA, the states are considered to remain the same at

the time contingency. However, the states change over time and the predicted values

can give a better accuracy for the CA. Moreover, with the predicted values, some

possible near-future conditions can be simulated as part of the CA.

The predictor can also play an important role in detecting large changes in the

system. It always assumes a normal operating condition and predicts the behavior of

the states according to that. If the system undergoes a rapid change, the estimated
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states and the predicted states will di�er signi�cantly. Based on their di�erence, it

will be possible to take some preventive measures.

The prediction can be of di�erent step size. With the increase of step size,

the accuracy of the prediction reduces. As a result, a trade-o� exists in between the

accuracy and prediction steps. In this chapter, both the single-step and multi-step

ahead predictors are developed and their performances are shown through simulation.

7.2 Background

Though the concept of state estimation is not new, prediction is not used in

power system. As mentioned earlier, it has a special use in Kalman �ltering which is

neither distributable nor extensible to multi-step.

7.2.1 Elman Recurrent Neural Network

One of the most well known variants of NN is Elman Recurrent Neural Network

(RNN). In general, the RNNs are useful for tracking the dynamic states. Beside the

input, output and the hidden layer, Elman network has a context layer as shown in

Fig. 7.1. The output of the hidden layer are fed in itself before being multiplied with

the output weights. Let the main input be denoted with xi, and the context layer

input be denoted with xc.

The full input xF(t)(= [xT
i xT

c ]T ) is multiplied with the input layer weight

matrix w and reaches the hidden layer. A bias is added with the input layer. Let

the hidden layer include N neurons. The output of the hidden layers, a are passed

through normalizing units and produces d. The normalized values d are saved in the

context layer for using in the next time step. The next input xF(t+ 1) is formed with

input and context layer neurons. The values of d are also multiplied with the output
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layer weights v to form ŷ for the current step t.

a = wxF

dn =
1

1 + e−an
for n = 1...N

ŷ = vTd

(7.1)

Input Layer

x(t)

x(t-tn)

x(t-2tn)
xp(t+tn)

Hidden Layer

Output Layer

x1(t)

x2(t)

Context 
Layer

wij

vij

z-1

z-1

z-1

z-1

z-1

Figure 7.1: The structure of the Elman recurrent neural network. The output of the
hidden layer is fed back in the next time step.
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Figure 7.2: The working principle of the back-propagation through time. A two step
unfolded network showing back propagation of error at time t.

7.2.2 Training of the Elman Network

Before using, the network needs to be trained with a known sequence of input

and its corresponding output. The training of the Elman network is di�erent from the

training of the canonical NN. It requires unfolding of the recurrent network to basic

networks and back-propagation is applied on those networks. This special method is

known as back-propagation through time (BPTT) [65].

7.2.2.1 Basic back-propagation

Back-propagation is a very simple and e�ective tool for training a non-recursive

network. The known sequence is fed in the network and an output is found. The

output is compared with the expected output and the error ey is determined. The

error is fed back to the network and the contribution of di�erent parts i.e. ed, and ea

are calculated. Then the weights are updated according to the contributions. It can
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be done in batch processing, i.e. the errors are summarized for all training samples

and the weights are updated with that. The process is described in the following set

of equations.

ey = y − ŷ

ed = vTey

ean = dn(1− dn)edn for n = 1...N

∆v = γm∆v + γgeydT

∆w = γm∆w + γgeax
T
F

v = v + ∆v

w = w + ∆w

(7.2)

Here, γg, and γm are the learning gain and the momentum gain respectively.

γg determines how fast the network should learn from one sample of the training

sequence. On the other hand, γm determines the rigidity of the network to changes.

7.2.2.2 Back-propagation through time

Due to the recurrent nature of the Elman network, the training is di�erent.

BPTT is an o�ine process of training the recurrent networks. A simple training

method is shown in Fig. 7.2.

To integrate the e�ects of previous input, the network is unfolded upto a

certain times, h. This is the depth of the network. In Fig. 7.2, the process of BPTT

is shown for h = 3. For a single time t, the inputs are fed for xi(t− 2), xi(t− 1), and

xi(t). The weights w, and v remain the same throughout the forward process. The

error for prediction of the last stage ey(t + 1) is fed back to update v, and w. For
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v, the update is similar to (7.2). However, as w is a�ected by the values of d, the

values of ed(t− 1) will be a�ected with both ∆d(t), and ey(t). If ∆xF(t) represents

the corresponding change of input, from the gradient based analysis, the expression

of it is found as follows,

∆xF(t) = eT
a (t)w (7.3)

∆xc(t) is the part of ∆xF(t) corresponding to the context layer. It gets added

with the e�ect of ey to form the complete e�ect on d(t− 1),

ed(t− 1) = ∆xc(t) + vTey(t) (7.4)

The process runs till the starting network and the necessary corrections are

determined. Then the last one of them are used to update the values of w and v.

7.2.3 Application of the State Predictor

Any time ahead prediction can be helpful in the operation of the power system.

The number of time steps depends on the time needed for the operator to take any

action. Di�erent actions require di�erent amount of time to be taken. As a result,

multiple predictor can run with di�erent time steps to serve di�erent purposes. It is

important to remember that the accuracy of the prediction depends on the time step.

If the prediction time is longer, the accuracy reduces.

The main application of the predictor can be in state estimation, contingency

analysis, load forecasting, automatic voltage regulation, load frequency control, au-

tomatic generation control, economic dispatch etc.
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7.3 Test Power System

The e�ciency of the proposed predictor is tested in IEEE 16-machine 68-bus

NY-NE test system. It has a total of 135 states with 83 transmission lines. For each

bus, there are two computation cells for estimating the magnitude and the angle as

shown in Fig. 7.3. As a result, there exists a total of 135 ERNN cells which are

separate from each other. They take the states of all neighboring cells. The states

are taken directly from the simulation of the 68-bus system in Real Time Digital

Simulator. In practice, they can be taken from the state estimator.

V2(t-2tn)
V2(t-tn)
V2(t)
V1(t)
V3(t)
V25(t)
V52(t)

V2(t+tn)

ERNN cell 
for the 

magnitude 
of bus 2 

θ2(t-2tn)
θ2(t-tn)
θ2(t)
θ1(t)
θ3(t)
θ25(t)
θ52(t)

θ2(t+tn)

ERNN cell 
for the 

angle of 
bus 2 

Figure 7.3: Inputs and outputs for the two cells of bus 2.
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7.3.1 Training Data

For both the single-step and the multi-step predictions, the training is done

with 20000 data sampled at 30 Hz from the simulation of the system. The samples

are iterated over 100-500 epochs to �t the training signals properly. To ensure a good

amount of disturbance in the system, pseudo random binary signals (PRBS) are

applied in the excitation control of the generators while collecting the measurements.

A part of the 16 PRBS signals for 16 generators is shown in Fig. 7.4. The random

changes take randomness in the training signals. The corresponding changes in the

outputs of the generators are shown in Fig. 7.5.
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Figure 7.4: PRBS signals used to perturb the generators in the power system.

The voltage magnitudes and the angles are separated. So, for each cell, there

are two separate networks at each cell. Each cell uses the previous values of the

corresponding state as well as the current value of it to predict the next value. If it

predicts for n step ahead result, it uses the previous values of t− tn and t− 2tn. For

the neighbors, it only uses the data of current values.
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Figure 7.5: The output of the generator voltages due to the PRBS signals.

The number of hidden layer neurons are taken to be double of the input layer.

The number of the neurons of the context layer is equal to that of the hidden layers.

As the network of each cell is producing either the magnitude or the angle, there is

only one output neuron for each network.

The context layer is initialized with random weights. The starting inputs for

this layer are zeros. As shown in Fig. 7.1, there is a one step delay between the

output and the input part of the context layer.

7.3.2 Testing Data

The testing is done with 15428 samples of data taken under the same condition

as of the training data. It is also initiated with zero values in the context layer.

Though it gives some incorrect results in the beginning, the e�ects wear out very

soon.
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7.4 Simulation Results

Accuracy is the most important quality of any predictor. Though the accuracy

of the voltage magnitude is well enough, the angles su�er a lot. The reason is the

very low variation of phase angles over time. It makes the tracking di�cult for the

predictor.

To measure the accuracies of the predictors, Mean Absolute Percentage Error

(MAPE) is taken for a single state over a speci�c number of time samples. MAPE is

de�ned as,

MAPE =
1

n

n∑
t=1

|Vjt − V̂jt
Vjt

× 100%| (7.5)

Here, MAPE is taken over n time steps for bus j. Vjt, and V̂jt represents the

true and predicted value of the corresponding state V .

7.4.1 Single-step Prediction

The accuracy is important for both the training session as well as for the

testing session. With a repetition of 100-500 epochs, the training session usually gets

an acceptable accuracy as shown in Fig. 7.6. For the testing session, the accuracies

of the phase angles and the voltage magnitudes of bus 8, 25, and 52 are shown in

Figs. 7.7, and 7.8. These are carried out for a single step prediction.

7.4.2 Multi-step Prediction

As the single step prediction is not suitable for some operations, multi-step

predictions are needed. The training is done for multiple steps and the testing is

shifted accordingly. The inputs are shifted according to the step size. For example,
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Figure 7.6: A part of the �nal training values and the predicted training values.

if the step size is six, the previous values are taken from t− 6 and t− 12. It is found

that the multi-step prediction is less accurate than the single step prediction. A six

step ahead prediction results are shown in Figs. 7.9, and 7.10.

The MAPEs and the standard deviation of the absolute prediction error (STD)

for the single and the multi-step predictions are shown in Table 7.1.

Table 7.1: MAPE±STD for Predictions

Bus Single-step Six-step

|V| θ |V| θ

8 0.77±0.61 3.48±2.29 1.84±1.21 16.5±15.4

25 0.85±0.57 3.81±2.42 2.41±1.52 15.5±12.9

52 0.55±0.39 6.81±4.37 2.19±1.27 24.4±31.4
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Figure 7.7: A part of the testing values and the predicted testing values for a single
step prediction of phase angle.
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Figure 7.8: A part of the testing values and the predicted testing values for a single
step prediction of voltage magnitude.
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Figure 7.9: A part of the testing values and the predicted testing values for a six step
prediction of phase angle.
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Figure 7.10: A part of the testing values and the predicted testing values for a six
step prediction of voltage magnitude.

7.5 Summary

A CCN inspired ERNN based dynamic state predictor is proposed for power

systems and the accuracy of the predictor are shown through simulation in this chap-

ter. The results show that the network works well for the single step prediction. The

accuracy of the multi-step predictor needs further analysis.

It should be noted that the same method of predictions can be applied for

predicting the renewable energy sources like the solar or wind power. The renewable

energies can change rapidly which is one of the major concerns. A proper prediction

of them can increase their contribution to the main grid signi�cantly.

The fully connected CCN is left as the future work. The single step prediction
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can be e�ectively used with distributed dynamic state estimation. It will be shown in

the next chapter. The relation between the step size and the accuracy of the predictor

is also an important area of research. Though not explored, the accuracy may get

better with some periods of steps.
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Chapter 8

Distributed Dynamic State Estimator

The application of a dynamic estimator depends on the nature of the states. If

the states change randomly over time, they can be considered as static. On the other

hand, if they show a gradual change which can be tracked properly, it is dynamic.

Before deciding what to use, it is important to investigate more about the true nature

of the states.

8.1 Nature of the State Variable

In the traditional SCADA system, measurements are taken at a very slow

rate of around 1 sample per 2-4 seconds. Under this rate, the collected samples miss

some important changes and they may look random. So, the use of the static WLS

estimator is rational for this rate.

However, the estimator is getting faster day by day, and it requires a faster

rate of collection of measurements. In recent time, PMUs are serving the purpose.

With the slowest PMU rate, i.e., 30 samples per second, the measurements show

a complete dynamic nature. It can be easily observed from the actual values of
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the previous simulation results that except during a fault, the states never change

abruptly. The actual values of the voltage magnitude of bus 25 is shown in Figure

8.1.
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Figure 8.1: The trend of one state variable under two di�erent sampling rates. The
upper one is taken at SCADA rate where the lower one shows at the PMU rate.

Using a static estimator can be ine�cient in dynamic system. Though the

WLS estimator is the most e�cient static estimator, it tries to optimize the states

for one sample only and does not take the advantage of the dynamic nature. As a

result, it cannot yield a better accuracy than the dynamic estimators.

8.2 CCN Based Predictive State Estimation

A distributed dynamic estimator can be the future of the state estimation.

Distributed estimation will preserve the privacy of the local market. At the same
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time it will be fast and scalable.

The e�ect of CCN is already shown in Chapter 5, and 6. It is an e�ective

method to distribute the responsibilities of a centralized process. On the other hand,

using the dishonest method yields a very fast and accurate result. Implementing the

dishonest method with CCN framework can be a good option to take the advantage

of both of them.

Cell 1 Dishonest 
unit

Cell 2 Dishonest 
unit

Cell 3 Dishonest 
unit

Dishonest 
Method

Cell 1 Predictor

Cell 2 Predictor

Cell 3 Predictor

State Prediction

Cell 1 Final 
Estimator

Cell 2 Final 
Estimator

Cell 3 Final 
Estimator

Final Estimation

Figure 8.2: Block diagram of the planned dynamic estimator. It preserves the dis-
tributed architecture of the CCN method.
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Building a fast, distributed, and dynamic estimator is the main objective of

the dissertation. Taking the advantage of the predicted value from the CCN based

distributed predictor, the CCN based dishonest method can give us the �nal product

as shown in Figure 8.2. The application of the cellular method for IEEE 14-bus

system is shown in Fig. 8.3, and 8.4.
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Figure 8.3: The basic diagram of the IEEE 14 bus test system.
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Figure 8.4: The planned estimator for IEEE 14 bus test system.

8.2.1 Distributed Dishonest Method

In Chapter 6, the canonical WLS estimator is used with CCN to make a semi-

dynamic estimator. In this chapter, the dishonest method is distributed with CCN.

The CCN based dishonest method produces an accurate estimation, and it can also

use the previous estimation to normalize the power measurements. Instead of using

the previous estimation, in this dissertation, the predicted values are used.

8.2.1.1 Description

The structure of the distributed estimator is shown in details in Fig. 8.5. The

output of the predictor is sent to both the CCN based dishonest estimator and to
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the �nal estimator. The cellular dishonest estimator normalizes the measurements

using the output of the predictor and produces the estimated value. The output of

the dishonest estimator is sent to the �nal estimator.

Dishonest Estimator

State Predictor

z -1 z -1 z -1

z13(t)

z9(t)

z14(t)

Final Estimator

V14(t-1)

V14(t-3)

V14(t-2)

V13(t-1)

V9(t-1)

V’’14(t)

V’14(t)

Figure 8.5: The �ow of information of cell 14 is shown in details. The neighboring
cells are 13, and 9.

8.2.1.2 Signi�cance for Practical Systems

From Figs. 8.2, 8.4, and 8.5, it can be seen that the method is completely

distributed to the cell level. With the distributed nature of the estimator, the com-

putational complexity reduces signi�cantly and the privacy is maintained. Due to
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this nature, the computation process runs faster than the PMU rate with the cellular

dishonest method. It is expected that the method will be able to meet the needs of

the real-time operations with the PMU data.

Another importance enhancement is the integration of the predictor in the

estimation. It takes very less time compared to the dishonest unit. With the predicted

values, it is possible to detect any large change in the system. For example, when

there is a large disturbance in the system, the traditional estimator gives a result

following the existing model of the system. But, the model looses its validity under

the large disturbance. In this estimator, with two outputs from two di�erent units,

it is easy to detect any big change in the system.

8.2.2 Finalizing Unit

The �nal estimator units collect the estimation result from the dishonest units

and the predicted values and it compares the values. If there is no signi�cant di�erence

between the two, then it is assumed that the system is running under a normal

operating condition. With this case, a weighted average is taken of the two using the

following equation,

xfinal = αxdishonest + (1− α)xpredicted (8.1)

After getting the �nal values, the �nalizing units send them back to the predic-

tion unit for handling the next sample. The output value of t is used in the prediction

of t+ 1, and t+ 2.

In case, a signi�cant di�erence is found between the two, then it is concluded

that the system is undergoing a large disturbance, and the presented system model

is no longer valid. Under this situation, the correct model needs to be formed based
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on the nature of the disturbance. The estimator hands the job over to fault analysis.

This is beyond the scope of the dissertation.

8.3 Simulation Results

The simulation results are shown for IEEE 68-bus NY-NE test system. The

value of α is varied from 0.4 to 1.0. The governors and the excitation systems of all

generators are disturbed with Pseudo-Random Binary Signals (PRBS) to emulate the

random changes of the load. Both the magnitudes and the frequencies of the PRBS

signals are varied randomly using the method delineated in Fig. 8.6. A part of the

PSBS signals are shown in Fig. 8.7.

Random Noise 
(white)

 

Random Noise 
(white)

Sampler 
(fixed frequency)

Sampler 
(fixed frequency)

Sampler

Magnitude

Frequency

Output with random 
magnitude and frequency

Figure 8.6: The PRBS signal generator. Both the magnitude and the frequency
inputs of the sampler is fed with two random generators.
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Figure 8.7: The PRBS signals with random magnitudes and frequencies that are
injected at the 16 generators of the 68-bus system.
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There is a speci�c di�erence between the PRBS signals of Chapter 7 and the

signals used here. As can be seen from Fig. 7.4, the frequency of the PRBS signals

are constant which may create a speci�c frequency of the voltage magnitude and the

phase angle. Having a speci�c frequency can make it easier to predict. As the loads

can be completely random, the states are expected to change with changing frequency.

To emulate the randomness, the frequencies are made random in this chapter.

8.3.1 Accuracy

The accuracy of the estimator are shown for six buses (bus 2, 8, 21, 32, 51,

60) with α = 0.7 in Fig. 8.8. The left column shows the angles and the right column

shows the magnitudes. Except a few samples, the overall estimation result is quite

satisfactory. It proves that the estimation can be executed at the cell level.

8.3.2 Smoothness

In order to measure smoothness of the output, a metric is de�ned in this

dissertation based on the de�nition of the total deviation described in [66]. It is the

mean change of the estimated values over one second of data. If the PMU rate is

Npmu samples/second in the process, the smoothness for state i is de�ned as,

Smoothness = [
1

Npmu − 1

Npmu∑
t=2

|(x̂i(t)− x̂i(t− 1))|]−1 (8.2)

8.3.3 Required Time

The run-time is an in�uential factor behind the distributed method. As the

distribution is made to the cell level, the required time is also low. The experiments

are run on an Intel(R) Xeon(R) CPU (E5-2609) with 2.4 GHz core and 48GB of
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memory. The average required time by the whole unit is around 1.8955 ms which

is much faster than the PMU data collection rate. The dishonest unit takes around

1.7122 ms, the prediction unit takes around 0.19 ms. The �nalizing unit takes a

negligible amount of time. The communication time is excluded in all these results.

8.3.4 Individual Contribution

The outputs of the dishonest unit, the predictor, and the �nal unit are shown

for bus 25 in Fig. 8.9, and 8.10. It is observable that the dishonest unit runs closer

to the actual value. On the other hand, the predictor unit yields a smoother result.
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Figure 8.8: The actual and the estimated values of the voltage magnitude and anglers
of six buses.
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The relative performances are shown in Table 8.1.

Table 8.1: Performance of di�erent parts of the distributed estimator.

Features Dishonest unit Prediction unit Over-all

Mean Std Mean Std Mean Std
Absolute error (θ) 2.37e-5 2.12e-5 3.39e-5 3.36e-5 2.42e-5 2.2e-5
Absolute error (|V |) 1.51e-4 1.5e-4 8.02e-4 9.39e-4 3.09e-4 3.29e-4

Time (ms) 1.7 0.102 0.19 0.096 1.9 0.159
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Figure 8.9: The outputs of di�erent parts of the distributed dynamic estimator with
the actual values of phase angle of bus 25.
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Figure 8.10: The outputs of di�erent parts of the distributed dynamic estimator with
the actual values of voltage magnitude of bus 25.

8.3.5 E�ects of α

The e�ects of the weight, α on the estimation are shown for two di�erent PMU

rates in Figs. 8.11 and 8.12. From the �gures it can be seen that with the increase of

α, the estimated values go close to the actual values. Like the previous results, it also

indicates that the output of the dishonest unit is more accurate than the prediction

unit. The absolute error and the absolute percentage error for di�erent values of α

are summarized in Tables 8.2 - 8.9.

But, the predictor units can make the output smoother. The e�ect of the

values of α on the smoothness can be seen from Tables 8.10 - 8.13. It can be seen

that the mean smoothness decreases with α.

For detailed performance analysis, both the accuracy and the smoothness for

one second of window are shown in Figs. 8.13 - 8.44. It is important to remember
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that for the 30 Hz data rate, there are 30 samples in a window and for the 60 Hz,

there are 60 samples.
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Figure 8.11: The actual and the estimated values of the voltage magnitude and anglers
of four buses for di�erent values of α for a PMU rate of 30 Hz.
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Figure 8.12: The actual and the estimated values of the voltage magnitude and anglers
of four buses for di�erent values of α for a PMU rate of 60 Hz.
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Figure 8.13: Absolute error of phase angle for α = 0.4, and PMU rate 30 Hz.
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Figure 8.14: Absolute error of phase angle for α = 0.6, and PMU rate 30 Hz.
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Figure 8.15: Absolute error of phase angle for α = 0.8, and PMU rate 30 Hz.
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Figure 8.16: Absolute error of phase angle for α = 1.0, and PMU rate 30 Hz. As
α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.17: Absolute error of phase angle for α = 0.4, and PMU rate 60 Hz.
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Figure 8.18: Absolute error of phase angle for α = 0.6, and PMU rate 60 Hz.
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Figure 8.19: Absolute error of phase angle for α = 0.8, and PMU rate 60 Hz.
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Figure 8.20: Absolute error of phase angle for α = 1.0, and PMU rate 60 Hz. As
α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.21: Absolute error of voltage magnitude for α = 0.4, and PMU rate 30 Hz.
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Figure 8.22: Absolute error of voltage magnitude for α = 0.6, and PMU rate 30 Hz.
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Figure 8.23: Absolute error of voltage magnitude for α = 0.8, and PMU rate 30 Hz.
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Figure 8.24: Absolute error of voltage magnitude for α = 1.0, and PMU rate 30 Hz.
As α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.25: Absolute error of voltage magnitude for α = 0.4, and PMU rate 60 Hz.
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Figure 8.26: Absolute error of voltage magnitude for α = 0.6, and PMU rate 60 Hz.
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Figure 8.27: Absolute error of voltage magnitude for α = 0.8, and PMU rate 60 Hz.
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Figure 8.28: Absolute error of voltage magnitude for α = 1.0, and PMU rate 60 Hz.
As α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.

140



Window number
0 100 200 300 400 500 600 700 800 900 1000

S
m

oo
th

ne
ss

 o
f a

ng
le

s 
(r

ad
-1

)

×104

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
α=0.4, 30Hz

Dishonest unit
Prediction unit
Final unit
True value

Figure 8.29: The smoothness of phase angle for α = 0.4, and PMU rate 30 Hz.
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Figure 8.30: The smoothness of phase angle for α = 0.6, and PMU rate 30 Hz.
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Figure 8.31: The smoothness of phase angle for α = 0.8, and PMU rate 30 Hz.
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Figure 8.32: The smoothness of phase angle for α = 1.0, and PMU rate 30 Hz. As
α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.33: The smoothness of phase angle for α = 0.4, and PMU rate 60 Hz.
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Figure 8.34: The smoothness of phase angle for α = 0.6, and PMU rate 60 Hz.
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Figure 8.35: The smoothness of phase angle for α = 0.8, and PMU rate 60 Hz.
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Figure 8.36: The smoothness of phase angle for α = 1.0, and PMU rate 60 Hz. As
α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.37: The smoothness of voltage magnitude for α = 0.4, and PMU rate 30 Hz.
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Figure 8.38: The smoothness of voltage magnitude for α = 0.6, and PMU rate 30 Hz.
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Figure 8.39: The smoothness of voltage magnitude for α = 0.8, and PMU rate 30 Hz.
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Figure 8.40: The smoothness of voltage magnitude for α = 1.0, and PMU rate 30 Hz.
As α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.
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Figure 8.41: The smoothness of voltage magnitude for α = 0.4, and PMU rate 60 Hz.
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Figure 8.42: The smoothness of voltage magnitude for α = 0.6, and PMU rate 60 Hz.

147



Window number
0 100 200 300 400 500 600 700 800 900 1000

S
m

oo
th

ne
ss

 o
f m

ag
ni

tu
de

s 
(p

u)

60

60.1

60.2

60.3

60.4

60.5

60.6

60.7

60.8

60.9
α=0.8, 60Hz

Dishonest unit
Prediction unit
Final unit
True value

Figure 8.43: The smoothness of voltage magnitude for α = 0.8, and PMU rate 60 Hz.
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Figure 8.44: The smoothness of voltage magnitude for α = 1.0, and PMU rate 60 Hz.
As α = 1.0, the output of the dishonest unit is the same as the �nal unit and they
completely overlap.

8.3.6 Analysis of the Results

The simulation results for di�erent values of α can be grouped for phase angles

and voltage magnitudes, and for accuracy and smoothness. All four combinations are
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discussed below,

• Accuracy of phase angles: This part is related to Tables 8.2, 8.3, 8.6, 8.7 and

Figs. 8.13 - 8.20. For almost all the values of α it can be seen that the prediction

units have the maximum errors, and the dishonest unit have the minimum

errors. Being an average, the �nal unit has a value in between these two for

most of the cases. In a few cases it has less error compared to both the dishonest

and the prediction units. This happens when the output of the two stays on

two opposite sides of the true value and their weighted average is closer.

• Accuracy of voltage magnitudes: From the Tables 8.4, 8.5, 8.8, 8.9 and Figs.

8.21 - 8.28, it can be seen that the dishonest units have the minimum error and

the prediction units have the maximum. For all cases, the �nal units have a value

in between the two. Unlike phase angles, there is no exceptional improvements

in voltage magnitudes.

• Smoothness of phase angles: The results are summarized in Tables 8.10 - 8.11,

and in Figs. 8.29 - 8.36. From the tables, it can be easily seen that the smooth-

ness of the �nal output increases with the value of α. It proves that with the

increase of the contribution of the prediction unit, the smoothness increases.

• Smoothness pf voltage magnitudes: Similar trends are found for voltage mag-

nitudes from Tables 8.12, 8.13 and Figs. 8.37 - 8.44. It can be noted that the

improvement is lower for voltage magnitudes compared to phase angles. It is

due to the di�erent variation of the two types.
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8.3.7 Necessity of Cooperation

From the simulation results, it can be seen that the estimator as a whole

pursuits the actual value quite well. In a few cases, the prediction units deviate a bit,

but it gets back to the track with the help of the dishonest units. On the other hand,

the dishonest units which have rough outputs get smoothed by the prediction units.

Thus these units help each other to improve the �nal output.

8.3.8 Distributability

It can be noted that, the whole system runs as cells on each bus. The dishonest,

and the predictor units are clearly visible as cells. The �nal units require the input

from only the corresponding bus's dishonest and prediction units. These do not even

require the neighbors' outputs. This preserves the distributability of the proposed

estimator.

8.3.9 Importance of the Predictor

From Tables 8.2 and 8.9, it can be seen that the errors get reduced with

the increase of α. The maximum possible value of α is 1.0. With this value, the

weighted average reduces to the following equation and the output of the dishonest

unit becomes the �nal output.

xfinal = xdishonest (8.3)

However, the predictor unit has some unique contributions that made its place

in the estimation process,

• With the predicted values, it is possible to compare the output of the dishonest
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estimator to detect any large disturbance in the system. Under that, the system

model becomes invalid and the estimation results lose their signi�cance.

• Though the normalization of the power �ows of each cell can be done with

previous estimated values, it is better to use the predicted values.

• The outputs of the dishonest method is not smooth and it usually re�ects the

e�ects of the errors. With the integration of the predictors, it gets smoother.

8.4 Summary

Due to the dynamic nature of the system, it is desired to have a dynamic

estimator for the state estimation. The existing WLS estimator is a static estimator,

and it cannot reduce the roughness of the result. Though the Kalman �lter based

dynamic estimator can reduce the roughness, it is still not distributed to the cell

level. The proposed work combines the concept of the dynamic estimator with the

distributed systems at the cell level.
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Chapter 9

Conclusion

9.1 Introduction

State estimation is considered to be an essential part of power system. The

traditional estimators are not suitable for the upcoming smart grid operations. A

fast and distributed estimator is needed with the exploitation of dynamic nature. It

should be able to use the data collected by the PMUs e�ectively and it will help in

avoiding big interruptions in the operation.

9.2 Summary of Research

In the �rst part of this dissertation, a fast and scalable estimator is developed

with dishonest Gauss Newton method. Using the constant slope for the Jacobian,

it runs very fast to meet the demand of the speed. Though, with current method,

the Jacobian needs to be updated every time the network topology changes, future

research may remove the necessity for minor changes.

The second part shows two CCN based distributed estimator - a static and
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a semi-dynamic hybrid estimator. The static estimator is a layer-based sequential

approach and the required time increases with the number of layers. On the other

hand, the semi-dynamic method runs all cells simultaneously and keeps a contant

time. With the help of GA, the semi-dynamic hybrid estimator gives an accept-

able accuracy. Though CCN is fully distributed, the hybrid one needs a centralized

processing for evaluating the �tness function. But it does not violet the privacy of

the deregulated market as the �tness function is distributable. Thus the complete

CCN-GA can be considered to be distributed.

However, due to the slow nature of the heuristic methods, it does not serve

the purpose of fast estimation. To keep the speed, the dishonest method is integrated

with the CCN framework. The power �ows of the dishonest method are normalized

with a predictor. The predictor is also based on the CCN framework to keep the

distributability of the process. In a separate chapter of the dissertation, it is shown

that the cellular Elman Recurrent Neural Network (ERNN) works quite well for the

single step ahead prediction.

In the end of the dissertation, the CCN based dishonest method is presented

as a distributed solution to power system dynamic state estimation. This should

be able to meet most practical requirements of the future smart grid. From the

simulation results on the 68-bus and 118-bus test system, it is expected that the

planned estimator will work e�ciently in real power systems.

9.3 Values for Practical Systems

The proposed distributed dynamic method has three major advantages as

mentioned in Chapter 1. Each of them is important for the future smart grid.

• Privacy of information: In the deregulated energy market, the participants do
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not want to share their information with others. It is very important for policy

making and it makes a distributed method inevitable. The method developed

in this dissertation is distributed to the smallest cells that demonstrates the

utmost level of security of information.

• Speed: Being fully distributed, the method runs faster than the PMU rate of

data collection. As the modern power systems are growing fast to cover new

geographical areas, the computational load is also increasing. The method can

distribute the load to small cells and keep an expected rate of throughput.

• Reduction of losses: Large disturbances are not very common in power systems.

But, these can cause a huge amount of losses. In most of the cases, these

do not occur instantaneously. Detecting the disturbance in the beginning can

reduce the losses signi�cantly. This is made possible in this estimator with the

predictors.

9.4 Future Work

A series of improvements can be incorporated in the existing estimation meth-

ods and it can be extended in a number of ways. The prediction can be integrated

with the prediction stage of the Kalman �lter. Instead of using the dishonest method,

the Kalman �lter can be set as the computation method with the CCN framework.

Thus a cellular Kalman �lter may be achieved.

The prediction of the state variables should be applied to other applications of

the power system like the contingency analysis or stability analysis. The inputs of the

predictors can be enriched with some other relevant factors like the angular deviation

of the rotating machines, the internal coherency of the generators etc. Instead of
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using the PRBS signals, the randomness can be included in the system with real

data from residential and industrial loads. Another practical way to investigate the

randomness is to integrate the real data from solar or wind plants.

There are some systems where the basic WLS or the dishonest methods do not

work due to the calculation of the gradients. These are known as the ill-conditioned

systems. The heuristic methods such as the PSO or GA can be applied to these

systems. The robustness of these heuristic methods against bad data also needs

further investigation.
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Appendix

Table 9.1: Values of the state variables, |V |, and θ for the failed case of 68-bus system
as shown in Fig. 4.8

Bus |V| θ Bus |V| θ
1 1.000000 0.000000 35 0.903346 0.294854
2 1.123044 -0.290585 36 0.660723 0.412601
3 1.077397 -0.297812 37 1.011343 0.550404
4 1.004883 -0.318400 38 1.042428 0.030962
5 0.958901 -0.312663 39 1.008511 0.554983
6 0.965078 -0.327882 40 1.225189 -0.058275
7 0.912044 -0.262654 41 1.240158 -0.393123
8 0.895098 -0.239621 42 1.339963 -0.143990
9 0.758673 0.152988 43 1.009167 0.549785
10 1.019755 -0.397631 44 1.009798 0.549518
11 0.998357 -0.374395 45 1.071776 0.347421
12 0.943231 -0.378499 46 1.123650 0.084432
13 1.017465 -0.386901 47 1.103357 0.023470
14 1.021613 -0.363019 48 1.161692 0.012454
15 1.052775 -0.386312 49 1.208029 0.091866
16 1.098565 -0.424251 50 1.363774 0.152734
17 1.097677 -0.367931 51 1.190591 0.304066
18 1.085835 -0.333407 52 1.504477 -0.049914
19 1.190758 -0.553913 53 1.125044 -0.289585
20 1.074964 -0.548420 54 0.967078 -0.326882
21 1.099046 -0.493611 55 1.021755 -0.396631
22 1.147669 -0.600822 56 1.192758 -0.552913
23 1.136976 -0.596297 57 1.076964 -0.547420
24 1.109760 -0.433404 58 1.149669 -0.599822
25 1.181595 -0.332462 59 1.138976 -0.595297
26 1.167035 -0.355902 60 1.183595 -0.331462
27 1.120066 -0.331762 61 1.204773 -0.488767
28 1.190985 -0.434027 62 1.043612 0.007477
29 1.202773 -0.489767 63 0.911234 -0.153819
30 0.916075 0.031617 64 0.662723 0.413601
31 1.041612 0.006477 65 1.013343 0.551404
32 0.909234 -0.154819 66 1.242158 -0.392123
33 0.863357 0.014014 67 1.341963 -0.142990
34 0.822119 0.271059 68 1.506477 -0.048914
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Table 9.2: Values of the state variables |V |, and θ for the failed case of 118-bus system
as shown in Fig. 4.9

Bus |V| θ Bus |V| θ
1 1.000000 0.000000 60 1.308048 0.217817
2 1.254920 0.009599 61 1.337683 0.233351
3 1.164455 0.015533 62 1.269382 0.222704
4 1.001670 0.080460 63 1.370614 0.210836
5 1.179872 0.088314 64 1.233405 0.241728
6 1.295964 0.040666 65 1.320579 0.296357
7 1.415903 0.032987 66 1.356102 0.293390
8 1.227277 0.176278 67 1.313056 0.247313
9 1.459855 0.302815 68 1.410197 0.294612
10 1.494270 0.435285 69 1.468543 0.337372
11 1.164272 0.035779 70 1.094830 0.207869
12 1.118547 0.026704 71 0.980916 0.200364
13 0.958780 0.011868 72 1.329444 0.179943
14 1.352468 0.014486 73 1.279064 0.196699
15 1.122560 0.009774 74 0.989765 0.191463
16 1.309046 0.021642 75 1.153070 0.213628
17 1.218902 0.053582 76 1.357104 0.193732
18 1.156968 0.015010 77 1.022439 0.280125
19 1.041672 0.006632 78 1.280089 0.274889
20 0.970780 0.021991 79 1.053564 0.280125
21 0.943039 0.049742 80 1.302247 0.319221
22 1.339004 0.094422 81 1.254347 0.304211
23 1.115642 0.180293 82 1.156091 0.289201
24 1.275740 0.178373 83 1.260887 0.309796
25 1.051693 0.301244 84 1.149754 0.353953
26 1.256510 0.332311 85 1.357216 0.381180
27 0.971014 0.081681 86 1.287170 0.357269
28 1.032003 0.051487 87 1.177100 0.361807
29 1.115463 0.034208 88 1.243606 0.435809
30 1.271346 0.141721 89 1.272952 0.506495
31 1.347401 0.036303 90 1.375289 0.394793
32 1.317138 0.072082 91 1.422980 0.395143
33 1.034026 -0.000698 92 1.303967 0.403695
34 1.105628 0.010996 93 1.186419 0.351160
35 1.407531 0.003491 94 0.962161 0.313636
36 1.076834 0.003491 95 0.981334 0.296706
37 1.015842 0.019199 96 1.368939 0.293913
38 1.279548 0.108909 97 1.416611 0.300371
39 1.057154 -0.039444 98 1.308081 0.291994
40 1.080127 -0.057945 99 1.188759 0.285710
41 0.913231 -0.065450 100 1.445616 0.302989
42 1.213370 -0.037350 101 0.979749 0.330565
43 1.146151 0.010647 102 1.130653 0.377515
44 1.012095 0.054978 103 0.956386 0.240332
45 1.285239 0.087266 104 1.212708 0.192335
46 1.224372 0.136485 105 1.194589 0.172788
47 1.092231 0.175580 106 0.913465 0.168424
48 1.165665 0.161617 107 1.191761 0.119730
49 1.095608 0.179245 108 1.092674 0.152018
50 1.239512 0.143641 109 0.925283 0.144164
51 0.938937 0.097913 110 1.408138 0.129503
52 1.203241 0.081158 111 0.992275 0.158301
53 0.910561 0.064228 112 1.196231 0.075398
54 1.331205 0.080111 113 1.371510 0.053582
55 1.068414 0.075049 114 1.246506 0.066148
56 0.955070 0.078365 115 0.922720 0.066148
57 1.213467 0.099309 116 1.172455 0.287107
58 1.219227 0.084474 117 1.139809 0.000000
59 1.322104 0.151844 118 1.276773 0.196350
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