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ABSTRACT 

 

Robust parameter design (RPD), originally conceptualized by Taguchi, is an 

effective statistical design method for continuous quality improvement by incorporating 

product quality into the design of processes. The primary goal of RPD is to identify optimal 

input variable level settings with minimum process bias and variation. Because of its 

practicality in reducing inherent uncertainties associated with system performance across 

key product and process dimensions, the widespread application of RPD techniques to 

many engineering and science fields has resulted in significant improvements in product 

quality and process enhancement. There is little disagreement among researchers about 

Taguchi’s basic philosophy. In response to apparent mathematical flaws surrounding his 

original version of RPD, researchers have closely examined alternative approaches by 

incorporating well-established statistical methods, particularly the response surface 

methodology (RSM), while accepting the main philosophy of his RPD concepts. This 

particular RSM-based RPD method predominantly employs the central composite design 

technique with the assumption that input variables are quantitative on a continuous scale.  

There is a large number of practical situations in which a combination of input 

variables is of real-valued quantitative variables on a continuous scale and qualitative 

variables such as integer- and binary-valued variables. Despite the practicality of such 

cases in real-world engineering problems, there has been little research attempt, if any, 

perhaps due to mathematical hurdles in terms of inconsistencies between a design space in 

the experimental phase and a solution space in the optimization phase. For instance, the 
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design space associated with the central composite design, which is perhaps known as the 

most effective response surface design for a second-order prediction model, is typically a 

bounded convex feasible set involving real numbers due to its inherent real-valued axial 

design points; however, its solution space may consist of integer and real values.  

Along the lines, this dissertation proposes RPD optimization models under three 

different scenarios. Given integer-valued constraints, this dissertation discusses why the 

Box-Behnken design is preferred over the central composite design and other three-level 

designs, while maintaining constant or nearly constant prediction variance, called the 

design rotatability, associated with a second-order model. Box-Behnken design embedded 

mixed integer nonlinear programming models are then proposed. As a solution method, the 

Karush-Kuhn-Tucker conditions are developed and the sequential quadratic integer 

programming technique is also used. Further, given binary-valued constraints, this 

dissertation investigates why neither the central composite design nor the Box-Behnken 

design is effective. To remedy this potential problem, several 0-1 mixed integer nonlinear 

programming models are proposed by laying out the foundation of a three-level factorial 

design with pseudo center points. For these particular models, we use standard optimization 

methods such as the branch-and-bound technique, the outer approximation method, and the 

hybrid nonlinear based branch-and-cut algorithm.  

Finally, there exist some special situations during the experimental phase where the 

situation may call for reducing the number of experimental runs or using a reduced 

regression model in fitting the data. Furthermore, there are special situations where the 

experimental design space is constrained, and therefore optimal design points should be 
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generated. In these particular situations, traditional experimental designs may not be 

appropriate. D-optimal experimental designs are investigated and incorporated into 

nonlinear programming models, as the design region is typically irregular which may end 

up being a convex problem. It is believed that the research work contained in this 

dissertation is the initial examination in the related literature and makes a considerable 

contribution to an existing body of knowledge by filling research gaps. 
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CHAPTER ONE 

INTRODUCTION TO RESEARCH 

 

Introductory Remarks 

Continuous quality improvement is a disciplined, data-driven, process-based 

approach to improving the quality of a product or service which often lies in the intersection 

between statistics and operations research in various engineering settings. The response 

surface methodology (RSM) is a significant branch of continuous quality improvement. 

The general RSM approach is an accumulation of mathematical and statistical methods for 

the modeling and analysis of problems in which a response variable is affected by several 

input variables and the objective is to maximize or minimize the response problems. In 

addition, it has many applications in the development of new product designs, as well as in 

the improvement of existing product designs. Further, reduction of variability and 

enhanced product and process performance may be achieved directly using the RSM 

approach. Variation in a key performance characteristic may result in poor quality. 

Therefore, Taguchi (1986) introduced the term robust parameter design (RPD) for 

industrial problems. Robust means that the product or process performs on target and is 

relatively insensitive to environmental conditions. The RPD philosophy strives to reduce 

variation by selecting levels of input variables that make the system robust (insensitive). 

The RPD philosophy also incorporates many useful concepts within the RSM framework. 

The RSM-based RPD approaches may be an effective tool to determine optimum operating 

conditions for input variables with minimum product or process variation. In this chapter, 
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we present the problem statements and approaches of this dissertation, research goals and 

significance, and outline of this dissertation. 

 

Problem Statements and Approaches 

A careful investigation of the RSM-based RPD literature reveals that the vast 

majority of the research works has assumed that input variables are quantitative and that 

both input variables and robust parameter design solutions are allowed to be any real 

numbers on a continuous scale. It is unfortunate, however, that there has been little attempt 

to extend the RSM-based RPD research to several real-life situations encountered by 

engineers and scientists, where (1) some of the input variables are qualitative, (2) some of 

the input variables and robust design solutions are restricted to be other than real numbers, 

and (3) standard response surface designs may not work for quantitative input variables 

due to safety concerns, the scarcity of resources and cost considerations. The main goal of 

this dissertation is to develop customized the RSM-based RPD models to address these 

special situations. In addition, Table 1.1 summarizes the current status of statistical 

modeling and optimization issues in the RSM-based RPD methodology. 

In this dissertation, the method of least squares for mean and variance responses is 

considered for data from a Box-Behnken design to integer-constrained RPD optimization 

problems. The Box-Behnken design is rotatable (or nearly so) and it is fewer design points 

than the central composite design. Box-Behnken design embedded nonlinear integer 

models are developed using the sequential quadratic programming and the Karush-Kuhn-
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Tucker conditions. JMP software is used for statistical modeling data analyses. In addition, 

optimization problems are utilized in the Maple nonlinear programming solver package. 

Table 1.1: Problem Statements and Approaches of This Dissertation 

Modeling Optimization 

Experimental 

Design 

technique 

Design 

points 

Design 

space 

Solution 

space 
Solutions 

Operations 

research technique 

Central 

composite 

design 

 

± 1, ±α 
Circle, 

sphere 

Bounded 

convex 

set (BCS) 

Real 

numbers 

Nonlinear 

Programming 

(Available in the 

literature) 

Pure or 

mixed 

integers  

Unexplored but may 

not be valid 

Box-Behnken 

design 
0, ±1 Cube BCS 

Pure or 

mixed 

integers 

Nonlinear integer 

programming 

(Unexplored) 

Factorial 

design with 

pseudo center 

points for the 

combination 

of qualitative 

and 

quantitative 

input 

variables 

Pseudo 

center 

points, 

±1 

Square, 

cube 
BCS 

Pure or 

mixed 

integers, 

binary 

0-1 nonlinear integer 

programming 

(Unexplored) 

Optimal 

experimental 

designs 

Non-

standard 
Irregular BCS 

Real 

numbers 

Nonlinear 

programming 

(Unexplored due to a 

nonlinearly-

constrained irregular 

experimental design 

space) 

 

Further, it is elaborated on why traditional response surface designs may not be 

effective with the two different types of input variables and lay out the statistical foundation 

by embedding those input variables into a factorial design with pseudo-center points. A 0-
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1 mixed integer nonlinear programming model is then developed and compared the 

solutions using the three optimization tools, such as the outer approximation method, the 

branch-and-bound technique, and the hybrid branch-and-cut algorithm, with traditional 

counterparts. In addition, JMP and BONMIN (basic open-source nonlinear mixed integer 

programming) software packages are used for statistical data analyses and the optimization 

phase, respectively. 

 Finally, the experimental design space may not be a cube or a sphere due to safety 

concerns, physical processing constraints and the scarcity of resources; therefore, 

traditional experimental design techniques are not appropriate. In these particular 

situations, an optimal experimental design may be the best choice for a linearly- or 

nonlinearly-constrained irregular experimental design space to conduct experiments. 

While several iterative exchange algorithms for D-optimal experimental designs are 

available for a linearly-constrained irregular design space, it has not been clearly 

understood how D-optimal experimental design points need to be generated when the 

design space is nonlinearly constrained. Therefore, a selection scheme of D-optimal 

experimental design points is then proposed for a nonlinearly-constrained irregular 

experimental design space. D-optimal experimental design embedded robust parameter 

design models are proposed to obtain optimal operating conditions for real-valued 

variables. JMP and MATLAB software packages are used to generate design points and 

MAPLE software is used to obtain optimal robust parameter design solutions. 
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Research Goals and Significance 

The RSM-based RPD aims at process improvement by obtaining optimal factor 

level settings, also known as robust parameter design solutions, which minimize the 

deviation of process mean from the target value of interest and a product variation. Because 

of the significant potential for industrial applications, the RSM-based RPD approaches 

have been identified as one of the most important research topics by many federal funding 

agencies, including the National Science Foundation (NSF). Consequently, hundreds of 

research papers have been published. In addition, the expected benefits of each chapter are 

summarized as follows: 

In Chapter III, the Box-Behnken design is preferred over the central composite 

design and other three-level designs to integer-constrained robust parameter design 

problems. The central composite design (CCD) may not be appropriate for integer-valued 

input variables due to axial points. Other three-level designs are not rotatable designs and 

they may give poor pure quadratic coefficients over entire design spaces. In addition, we 

investigate the rotatability property for maintaining predicted responses. The integer-

valued solution space is also developed. Then, a nonlinear integer programming approach 

is proposed for solving the Box-Behnken design embedded robust parameter design 

optimization problem for potential application areas of automotive, electronic, mechanical, 

and process industries. In addition, analytical and numerical solution methods are 

proposed. The proposed model may also be useful for practitioners and researchers if 

variance reduction is more significant than meeting the target value. 
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In Chapter IV, the Box-Behnken design is not capable of assessing binary-valued 

design points because of three-level design points. Similarly, traditional response surface 

designs are not appropriate due to binary-valued design points. Therefore, a factorial design 

with pseudo-center points is offered in order to optimize binary-constrained RPD problems 

considering the combination of binary qualitative and quantitative input variables with two 

coded levels. A 0-1 mixed integer nonlinear programming model is proposed for binary-

constrained robust parameter design problems to solve the RSM-based RPD optimization 

problems. The three different solution methods are also performed to obtain optimal 

operating conditions when the optimization model is either convex or nonconvex. Finally, 

the proposed model may result in better solutions than the traditional models. 

In Chapter V, factorial designs and other traditional response surface designs are 

no longer effective if an experimental design space is constrained due to the physical 

infeasibility, safety reasons, and cost considerations. For these situations, optimal designs 

are also good alternatives to overcome the limitations of traditional experimental designs. 

Therefore, a selection scheme of optimal design points is a significant issue for a 

nonlinearly-constrained irregular experimental design space. In addition, the proposed 

exchange algorithm is proposed to find global solutions of optimal design points. Then, D-

optimal experimental design incorporated robust parameter design models are offered in 

order to find global optimal solutions for real-valued variables. The proposed models may 

have an important advantage while the variance reduction is more significant than attaining 

the target value. 
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Finally, this doctoral dissertation lays out the theoretical foundations of the RSM-

based RPD and have the potential to impact a wide range of many other engineering science 

problems and, ultimately leading to process and quality improvement. 

 

Outline of Dissertation 

 Table 1.2 shows the structure of this dissertation. Chapter I introduces research 

concepts, including the problem statements and approaches of this dissertation, research 

goals and significance. In Chapter II, we present a review of the relevant research studies 

in the literature. Response surface based robust parameter design models are discussed in 

Chapter III, IV, and V, respectively. Each of these chapters consists of a statistical design 

phase, an optimization modeling phase, and a comparison phase. Finally, conclusions and 

future study are presented in Chapter VI.    

Table 1.2: Outline of Dissertation 

Chapter Outline 

I Problem statements and approaches, research goals and 

significance 

II Literature review of the relevant research studies 

III Proposed RPD optimization models for integer-valued input 

variables using the Box-Behnken design 

IV Proposed RPD optimization models for integer- and binary-

valued input variables using the factorial design with pseudo-

center points 

V Proposed RPD optimization models for nonlinearly-constrained 

irregular experimental design spaces using the D-optimality 

criterion for real-valued input variables 

VI Conclusions and Further Studies 
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CHAPTER TWO 

LITERATURE REVIEW 

 

In this chapter, we present an overview of relevant literature review of response 

surface methodology, Taguchi’s robust parameter design, response surface methodology 

based robust parameter design optimization models, optimization techniques to solving 

robust parameter design models, pseudo-center points based experimental designs, and 

optimal experimental designs. 

 

Response Surface Methodology 

The response surface methodology (RSM) approach was introduced in the early 

1950s. This approach includes major experimental designs, such as central composite 

designs for fitting linear response surface models and the determination of optimal 

operating conditions. In particular, the work by Box and Wilson (1951) is considered 

seminal. They also addressed the determination of the optimal settings for chemical 

processes with considerable success. The RSM approach was further developed by Box 

and Hunter (1957). In addition to these works, Box and Draper (1987), Khuri and Cornell 

(1996), and Myers et al. (2009) also discussed more detailed techniques of the RSM 

approach, including Taguchi’s RPD and its response surface approach. Furthermore, Khuri 

and Mukhopadhyay (2010) provided a comprehensive discussion of the various steps in 

the development of the RSM approach. They also discussed generalized linear models, 
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graphical methods for comparing response surface designs, and response surface models 

with random effects in the modern RSM approach. 

Considerable attention has been focused on the Taguchi’s approach, and a number 

of flaws in his methodology have been identified. In addition, there are many research 

attempts to incorporate the RPD approach within the RSM framework. 

 

Taguchi’s Robust Parameter Design 

Taguchi (1986) introduced the basic concept of RPD by formulating, which was 

formulated as the nominal-the-best (N-type) into the concept of the signal-to-noise ratio 

(SNR), to optimize input variables. The goal is to maximize the SNR. Taguchi’s 

fundamental idea is that the mean of the response should be brought to the desired target 

value while keeping the variance of the response as small as possible. On the other hand, 

Leon et al. (1987), Box (1988), Box et al. (1988), Nair (1992), and Tsui (1992) discussed 

Taguchi’s main idea and criticized quality characteristics involving both the mean and 

variance of a response variable. Steinberg and Bursztyn (1998) also made a wide spectrum 

investigation on the Taguchi’s offline quality control method. In addition, Grize (1995), 

Robinson et al. (2004), Park et al. (2006), and Arvidsson and Gremyr (2008) also provided 

comprehensive reviews of the RPD approaches. 

 

Response Surface Methodology Based Robust Parameter Design Optimization Models 

Vining and Myers (1990) formulated Taguchi’s main idea using an N-type 

nonlinear programming (NLP) model with the RSM principles. Their model, called the 
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dual response model (DRM), was formulated in the way that the estimated standard 

deviation of the response is minimized when the estimated mean of the response strictly 

equals to the target value. They also used the Lagrange multiplier, quadratic response 

functions, and spherical regions. In addition, a full second-order model is necessary for this 

approach. On the contrary, we observe that there is a main disadvantage using the dual 

response approach. The main disadvantage is that the estimated mean response is strictly 

equal to the target value; therefore, feasible solutions of the model may not exist for input 

variables. Fathi (1991) and Del Castillo and Montgomery (1993) conducted the further 

developments of the dual response model, and they reformulated the model with an 

inequality form of the constraint instead of using the equality form of it. An optimal 

solution of the dual response model may be suboptimal because the zero-bias assumption 

forces to make the mean value at the target value. Therefore, Cho (1994) and Lin and Tu 

(1995) proposed relaxed zero-bias assumption models based on the mean squared error 

(MSE) criterion. These MSE models have equal priorities for the bias and variance 

response functions; in addition, they have symmetric quality loss functions and allow the 

bias. These models may provide less variance while attaining little bias. Lin and Tu (1995) 

also expressed two further improvements that their proposed approach can be used more 

realistic models than polynomial models. They also conveyed that the DRM would not 

work when the responses (e.g., the mean and variance) are dependent. As an extension of 

the DRM approach, Copeland and Nelson (1996) proposed a model based on a desired 

upper bound for the bias. Further, Cho et al. (1996) and Koksoy and Doganaksoy (2003) 

developed weighted mean square error models with a different weight assigned to each 
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quality characteristic. In addition, Koksoy and Doganasksoy (2003) also used Pareto 

optimal solutions for generating more alternative solutions.  

There were several research attempts made in developing more flexible RPD 

models. For example, Kim and Lin (1998) proposed a fuzzy model to optimize the dual 

response model, and their approach has a flexible model based on the preference and 

obtains a better balance between the variance and bias functions. Further, Cho et al. (2000) 

made further modifications of the mean square error model by incorporating the priority 

concept. Similarly, Tang and Xu (2002) developed an extended dual response model with 

different weights for the bias and variance. Kim and Cho (2002) saw the concept of 

priorities in balancing mean and variability as a critically important research issue and 

introduced a priority-based RPD model. Romano et al. (2004) then proposed a modified 

RPD model using the quality loss function concept. They also introduced the multivariate 

problem when a combined array is used for data collection, and they also included the total 

quadratic loss function based on maximum and minimum criteria for multiple responses. 

Formal multi-objective optimization methods were used for solving RPD problems. In 

particular, the works by Ding et al. (2004) and Shin et al. (2011) are considered seminal. 

In addition, they used the weighted sum methods in multi-objective optimization, and they 

proposed weighted MSE approaches. They also reach that the optimal solution to the DRM 

has to be found in the curve where the different weights clearly get dissimilar solutions for 

all feasible solution set. Shin and Cho (2005) offered another relaxed zero-bias approach 

by proposing a bias-specified model while keeping variability at minimum. They also used 

the epsilon-constrained method to the process bias. Robinson et al. (2006) introduced 
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generalized linear mixed models for estimated fitted functions of the mean and variance. 

Koksoy (2006) and Park et al. (2012) conducted further studies in the weighted mean 

square model in the multi-objective optimization context. Further, Shaibu and Cho (2009) 

considered higher-order polynomial models to improve the predictive of the RSM for the 

mean and standard deviation functions. Costa (2010) offered a variant model using the 

mean and standard deviation of a response to optimize associated quality characteristics, 

and the model minimizes an objective function with the deviation of each quality 

characteristic from specified target values to a specified range. As an extension, Goethals 

and Cho (2011) tried to enhance the regression methods using dynamic characteristics for 

building the model, and they used time-oriented dynamic approach with normal 

distribution by incorporating consideration of economic criteria on the model.  

The pharmaceutical field is one of the new application areas of the RPD. In 

particular, the determination of optimal pharmaceutical formulations using RPD concepts 

was studied by Li et al. (2012a, 2012b, 2013). Many products are subject to inspection to 

weed out defects based on specified specification limits. Chan and Cho (2013a, 2013b) 

noted that the mean and variance of a product quality characteristic would change after 

truncating the original process distribution and they incorporated truncated statistics into 

RPD models. Park (2013) provided another view of the RSM based RPD model using the 

bootstrap technique based on the concept of Bonferroni joint confidence regions. Another 

issue is in the multi-objective models is that a number of gaps could occur during a multi-

objective model technique applied to weighted sums as a trade-off method; therefore, Brito 

et al. (2014) offered a normal boundary intersection approach conjugated with the mean 
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square error equations. Time series response models were first introduced to the RPD 

research community by Shin et al. (2014) in which they formulated the pharmaceutical 

RPD model. Further, Yang and Du (2014) introduced a new RPD approach that applied to 

the maximum quality loss among multiple quality characteristics for associated quality 

problems in which the quality loss is not different regardless which quality characteristics 

or how many quality characteristics are imperfect. 

Recent RPD papers by Nha et al. (2013), Elsayed and Lacor (2014), Hu et al. 

(2014), Fang et al. (2015), Bao et al. (2016), Brito et al. (2016), Quyang et al. (2016), Hot 

et al. (2017), and Lu et al. (2017) illustrated a wide spectrum of application areas, including 

a lexicographical dynamic goal programming approach within the pharmaceutical 

environment, a multi-objective optimization with surrogate models, a hydrokinetic turbine 

system, an application from nanomanufacturing, the surface roughness in end milling 

process, the fatigue life of a product and machine parts, and a case study in automobile 

manufacturing, respectively.  

 

Optimization Techniques to Solving Robust Parameter Design Models 

Myers et al. (1992), Engel and Huele (1996a, 1996b), and Lee and Nelder (2003) 

studied a generalized linear modeling technique. Along the same line, Myers et al. (2005) 

proposed a modified dual response model using the generalized linear model. Vining and 

Myers (1990) used the Lagrange multiplier to obtain robust design solutions. Fathi (1991) 

also referred conventional optimization techniques, such as the successive quadratic 

variance approximation method for solving the RPD problems. In addition, Del Castillo 
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and Montgomery (1993) used a generalized reduced gradient algorithm with inequality 

constraints. The Nelder-Mead simplex search method is another viable solution method, 

which was used by Copeland and Nelson (1996). Genetic algorithms were also considered 

as another solution method (see Parkinson (2000), Koksoy and Doganaksoy (2003), and 

Koksoy and Yalcinoz (2008)). Xu et al. (2004) proposed a goal attainment method for 

multi-response systems using the sequential quadratic programming technique to solve 

RPD problems. The epsilon method with Karush-Kahn-Tucker conditions was developed 

by Shin and Cho (2005). Kovach et al. (2008) introduced physical programming techniques 

to improve flexibility in the development stage of the experiment. Tang and Xu (2002), 

Kim and Cho (2002), Kovach and Cho (2008a, 2008b), Kovach and Cho (2009), and 

Kovach et al. (2009) used nonlinear programming solution methods. Further, special 

optimization methods are necessary to optimize for the multiple response processes when 

there exists more than one quality characteristic from consideration. For instance, He et al. 

(2012) and Brito et al. (2014) proposed multi-objective optimization models using the 

desirability function and the normal boundary intersection approach, respectively. 

 

Pseudo-Center Points Based Experimental Designs 

There are a number of situations in which some variables should be qualitative input 

variables. However, center points are not employed when some input variables are 

qualitative. In these situations, pseudo-center points may be employed. Therefore, there 

exist some research attempts involving pseudo-center points in the current literature and 

they are summarized in Table 2.1. Note that coded levels of qualitative input variables in 
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these studies are (-1) and (+1) for low and high levels, respectively. In addition, the RSM-

based RPD approaches were not considered in these studies in order to find optimal 

operating conditions. 

Table 2.1: Pseudo-Center Points Based Studies in the Literature 

Studied by Approach Application area 

Kim et al. (2002) Full factorial design 
Ultraviolet curable 

coatings 

Li and Rasmussen (2003) Packett-Burman design 
Pharmaceutical 

experiments 

Marengo et al. (2005) Full factorial design Textile polyster fibers 

Passos et al. (2006) Full factorial design 
Batch adsorption 

procedure conditions 

Anderson-Cook and 

Robinson (2009) 
D-optimal design Screening designs 

Rajendran et al. (2011) Full factorial design Laccase fermentations 

 

Optimal Experimental Designs 

 The field of optimal designs has been in the literature for many years. Smith (1918) 

firstly studied optimal designs for prediction purposes. Wald (1943) then introduced a 

measure of the efficiency of the design by investigating the quality of parameter estimates. 

In addition, Wald (1943) first offered the criterion of D-optimality, which is the notion of 

maximizing the determinant of the information matrix. Later, Kiefer and Wolfowitz (1959) 

developed computational procedures for finding optimal designs, such as D-optimality and 

E-optimality, in regression problems of estimation, testing hypotheses, and so on. 

Similarly, Kiefer (1959) studied certain fundamental assumptions, such as the non-

optimality of the balanced designs for hypothesis testing, and certain specific optimality 

criteria in the spirit of Wald’s decision theory. Next, Kiefer (1961) extended the results of 
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the previous studies to the determination of D-optimal designs for several problems in the 

setting of simplex designs. Then, Fedorov (1972) further developed the research in optimal 

designs in order to solve numerical optimal design using the exchange algorithm. In 

particular, John and Draper (1975) reviewed the D-optimality for regression designs and 

examined the procedures for obtaining D-optimal designs. Along the same line, Cook and 

Nachtsheim (1980) provided a comparison of algorithms for the computer generation of 

D-optimal designs. On the other hand, computer-generated designs, such as D-optimal 

designs, have been criticized for being too independent based on statistical models. 

DuMouchel and Jones (1994) addressed this criticism and developed a modification of the 

D-optimal design with the Bayesian paradigm for reducing dependence on an assumed 

statistical model. DuMouchel and Jones (1994) also investigated that increasing the 

determinant of the range of information matrix usually decreased the error variance of the 

regression coefficients. Orthogonality is also useful in experimental designs due to the 

mutual independence of the model coefficients; therefore, de Augiar et al. (1995) expressed 

that a closer orthogonality is accomplished with a higher determinant for a constant size 

design. In addition to these research works, Cook and Fedorov (1995) also discussed 

several approaches proposed in experimental designs when some constraints, such as total 

cost of an experiment, a location of the supporting points and the value of the auxiliary 

objective functions are imposed.  

Another alphabetic design, I-optimality, was proposed by Box and Draper (1959). 

The I-optimality criterion is also called the IV-, Q-, and V-optimality criteria in the 

literature. In addition, Box and Draper (1959, 1963) defined as the integrated variance 
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function over a selected design region. Furthermore, Draper (1982) offered an integrated 

variance criterion to specify the number of center points in response surface designs. In 

addition, Borkowski (2003) reviewed the different prediction variance measures and 

developed an evaluation of the I-optimality criterion. Allen and Tseng (2011) conducted 

the further research study in the field of optimal experimental designs and developed 

variance plus bias optimal experimental designs for stem choice modelling. 

In addition to these studies, Myers et al. (2009) and Toro Diaz et al. (2012) provided 

comprehensive discussions on more theoretical aspects of optimal designs. In Table 2.2, 

we outline the key application areas utilizing optimal (non-standard) experimental designs, 

including the most recent studies. 

Table 2.2: Review of Application Areas for Optimal Experimental Designs 

Studied by Optimality Evaluation strategy Application area 

Welch (1984) D-optimality Mitchell’s 

DETMAX 

Leaching experiments 

Bezeau and 

Endrenyi (1986) 

D-optimality Hill model Dose-response 

parameters 

DuMouchel and 

Jones (1994) 

D-optimality Bayesian paradigm Gasoline blends 

Broudiscou et al. 

(1996) 

D-optimality Genetic algorithm Antigen and antibody 

tests 

Gianchandani and 

Crary (1998) 

D- and I-

optimality 

Parametric 

modelling 

Micro accelerometer 

examples 

Reeves and Wright 

(1999) 

D-optimality Genetic algorithm Design of hydraulic 

systems 

Lee et al. (2000) I-optimality Simulation Five-factor micro 

accelerometer 

examples 

Duffull et al. 

(2001) 

D-optimality Fisher information 

matrix 

Population 

pharmacodynamics 

experiments 

Kincaid and 

Padula (2002) 

D-optimality Tabu search 

approach 

Optimal location of 

sensors and actuators to 
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control noise and 

variation 

Han and Chaloner 

(2003) 

D-optimality Bayesian optimal 

designs 

Viral dynamics models 

Gadkar et al. 

(2005) 

D-optimality Maximizing the 

accuracy of the 

parameter estimates 

in subsequent 

iterations 

Model identification of 

biological networks 

Kovach and Cho 

(2006) 

D-optimality Robust design A new design for six 

sigma tools 

Sexton et al. 

(2006) 

D-optimality Exchange and 

genetic algorithms 

Assembly of an 

hydraulic gear pump 

and analysis of sound 

output 

Kovach and Cho 

(2008c) 

D-optimality Robust design The consideration of 

uncontrollable factors 

Kang et al. (2009) I-optimality Process 

optimization 

Etching experiments 

Kovach and Cho 

(2009a) 

D-optimality Nonlinear goal 

programming 

Multiple responses 

Chen et al. (2010) D-optimality Orthogonal forward 

regression 

Sparse kernel density 

estimations 

He (2010) D-optimality Laplacian 

regularized 

Image retrievals 

Chen et al. (2011) D-optimality Response surface 

methodology 

Micro-cutting tests 

Corthals et al. 

(2011) 

D-optimality D-optimality vs. 

full factorial design 

Dry reforming catalysts 

Fang and Perera 

(2011) 

D-optimality Response surface 

methodology 

Damage identifications 

Robinson and 

Anderson-Cook 

(2010) 

D-optimality Multiple objective Screening designs 

Spaggiari et al. 

(2011) 

D-optimality Critical distance 

approach 

Multiscale modelling of 

porous polymers 

Gupta and Dhingra 

(2013) 

D-optimality Novel approach Input load 

identification from 

optimally placed strain 

gages 

Kuram et al. 

(2013) 

D-optimality Response surface 

methodology 

Cutting fluids and 

cutting parameters 

during end milling 
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Rajmohan and 

Palanikumar 

(2013) 

D-optimality Response surface 

methodology 

Drilling hybrid metal 

matrix composite 

examples 

Abebe et al. (2014) D-optimality The logistic mixed 

model 

Longitudinal data 

Badawi and El-

Khordagui (2014) 

D-optimality Quality by design 

approach 

Emulsion composition 

Coffey (2015) D-optimality Four-parameter 

logistic models 

A bioassay case study 

El-Gendy et al. 

(2015) 

D-optimality Response surface 

methodology 

Produced biodiesel 

applications 

Silvestrini (2015) D-optimality Sequential 

experiments 

Examples of sequential 

optimal designs 

L’Hocine and Pitre 

(2016) 

D-optimality Screening of 

optimal extraction 

conditions  

Allergen extraction 

from peanuts and 

selected tree nuts  

Dette et al. (2017) D-optimality Generalized linear 

models 

Thermal spraying 

process 

Saleh et al. (2017) D-optimality Greedy search 

strategy 

Magnetic resonance 

imaging experiments 

Smucker et al. 

(2017) 

D- and I-

optimality 

Robustness of 

classical and 

optimal designs to 

missing 

observations 

Missing observations in 

real-world experiments 
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CHAPTER THREE 

A NONLINEAR INTEGER PROGRAMMING APPROACH TO SOLVING THE 

ROBUST PARAMETER DESIGN OPTIMIZATION PROBLEM 

 

Introductory Remarks 

Robust parameter design (RPD) has become well accepted by researchers as an 

effective engineering method for incorporating product quality into the design of processes. 

Originally conceptualized by Taguchi (1986), the primary goal of RPD methods is to 

determine the best factor level settings, or optimum operating conditions, that minimize 

the performance variability and the deviation from the target value of a product or process. 

Because of their practicality in reducing the inherent uncertainty associated with design 

factors and system performance across key process and product dimensions, the 

widespread application of RPD techniques has resulted in significant improvements in 

product quality. 

 

Research Motivations 

As shown in the literature studies, a vast majority of response surface methodology 

(RSM) based RPD models assume real-valued variables on a continuous scale. Despite 

their practical importance, however, there has been little research attempt to develop an 

RSM-based RPD model with integer-valued constraints. The main reason for a lack of 

research effort in developing the integer-constrained RPD models is attributed to the fact 

the design space for experimental purposes and the solution space for optimization 
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purposes are different; consequently, it is believed that there are three major research 

components which have not been explored in the literature. First, the central composite 

design (CCD), the commonly used RSM-based RPD tool, may not be capable of assessing 

integer-valued design points due to the axial points inherent in the CCD. Accordingly, an 

alternative design tool needs to be implemented. Second, the rotatability property for 

maintaining predicted responses more consistently within the integer-valued design space 

also needs to be investigated. Finally, optimization schemes with the integer-valued 

solution space within the real number based design space need to be developed.  

To address the aforementioned three problems, this chapter proposes the Box-

Behnken design (BBD) as an alternative to the CCD and other three-level designs, which 

generates integer design points within its design space and also satisfies the rotatability 

property. This chapter then develops nonlinear integer programming models, followed by 

analytical and numerical solution methods, such as the Karush-Khun-Tucker conditions 

and sequential quadratic programming. This chapter is organized as follows. The model 

development is presented with a detailed description of each phase. A numerical example 

is conducted with a comparison study of the proposed models and traditional counterparts. 

Finally, the conclusion and further studies are discussed. The proposed procedure consists 

of four main phases: the design, modeling, optimization, and verification phases, which are 

summarized in Table 3.1. 
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Table 3.1: Research Phases 

Phase I The design phase 

 Decide a response variable 

 
Decide input variables and their level settings (integer, continuous, or 

mixed) 

 Explain why a BBD-based experiment is most appropriate 

 Study the design space  

 Study the design rotatability 

Phase II The modeling phase 

 
Check the normality, randomization, and constant variance 

assumptions 

 Obtain estimated regression functions for the parameter of interest 

 Define an objective function and constraints 

 Develop optimization models 

 Study the solution space 

Phase III The optimization phase 

 Develop the sequential quadratic programming method 

 
Develop the Karush-Kuhn-Tucker (KKT) conditions and check the 

constraint qualifications 

 Obtain the optimal robust parameter design solutions 

Phase IV The verification phase 

 Compare the proposed models with existing models  

 

Model Development 

Abbreviations and Notation 

The abbreviations and notation used in this chapter are summarized in Table 3.2. 

Table 3.2: Abbreviations and Notation 

Abbreviations/Notation Description 

y  Response variable 

jy  Mean of the jth experimental run where j = 1, …, m 

ix  The ith input variable where i = 1, …, n 

x  
The vector of input variables 

 f x  Objective function  
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 kg x  The kth inequality constraint function  

 ̂ x  Fitted response function of mean 

 ̂ x  Fitted response function of standard deviation  

 Fitted response function of variance  

2

UB  Upper bound of the desired variance 

  Target value  

 ˆ
 x  Estimated bias function 

b  Upper bound of the desired bias  

is  
Estimated standard deviation of the ith run where i = 1, 

…, m 
2

is  Estimated variance of the ith run where i = 1, …, m 

i  Real valued space of the ith continuous input variable   
i  Integer valued space of the ith integer input variable 

RO Randomization order 

SO Standard order 

 Lower bound of an input variable  

 Upper bound of an input variable 

VM Vining and Myers’s model (1990)  

LT Lin and Tu’s model (1995)  

 

The Selection of the Response Surface Design 

Unlike the traditional CCD which requires all input variables to be real valued on 

a continuous scale, the proposed integer-valued RPD models require the investigation of 

two major issues associated with the design space: the selection of response surface design 

method and the issue of the rotatability. As shown in Figures 3.1 and 3.2, the design spaces 

of the traditional CCDs, including the rotatable, inscribed, and face-centered CCDs, are 

real valued for two and three input variables, respectively, while the design space of the 

Box-Behnken design (BBD) forms integer cutting planes. The design matrices D for the 

BBD with three and four input variables, and the experimental format of the BBD for m 

LB

UB
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runs and r replications are shown in Tables 3.3 and 3.4, respectively. The BBD may be 

preferred over the traditional CCD and other three-level designs for integer-valued RPD 

models. First, the three-level factorial design, which has -1, 0, and 1 coded levels, is a 

popular second-order design. However, this particular design is not rotatable and it can be 

excessively large (Khuri and Mukhopadhyay, 2010). Another popular three-level design is 

the face-centered CCD which is known to be not rotatable (Khuri and Cornell, 1996; Myers 

et al., 2009; Khuri and Mukhopadhyay, 2010). The property of rotatability affects the 

precision of a second-order model’s parameters, especially pure quadratic coefficients; 

therefore, the face-centered CCD may give poor quadratic coefficients. Three-level optimal 

designs, such as D- or I-optimal design, may not be appropriate to address constant or 

nearly-constant prediction variance when integer design points with -1, 0, and 1 coded 

levels are under study, since [ ] 3[ ] ( )iiii iijj i j   where [ ]iiii  and [ ]iijj  are the fourth pure 

and mixed moments, respectively (Khuri and Cornell, 1996). For example, suppose that 

we need 16 design-point runs for three input variables in the context of the I-optimal design 

with -1, 0, and 1 coded levels in order to obtain second-order model estimation coefficients. 

Thus, this particular optimal design is not rotatable, because the ratio moments become

[ ] 1.5[ ] ( )iiii iijj i j  . On the other hand, the BBD using the three-coded levels with four 

or seven input variables is exactly rotatable (Myers et al., 2009), while other BBDs are near 

rotatable. Hence, the BBD may be preferred over the traditional CCD and other three-level 

designs when maintaining consistent prediction variance is crucial in the context of integer-

valued RPD problems. 
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Figure 3.1: The RSM Approaches with Two Input Variables in the Real-valued Space 

 

 

 

Figure 3.2: The Design Spaces of CCDs and BBD 
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Table 3.3: Design Matrices for the BBD 

1x  
2x  

3x    1x  
2x  

3x  
4x  

-1 -1 0  -1 -1 0 0 

-1 1 0  -1 1 0 0 

1 -1 0  1 -1 0 0 

1 1 0  1 1 0 0 

0 -1 -1  0 0 -1 -1 

0 -1 1  0 0 -1 1 

0 1 -1  0 0 1 -1 

0 1 1  0 0 1 1 

-1 0 -1  -1 0 0 -1 

1 0 -1  -1 0 0 1 

-1 0 1  1 0 0 -1 

1 0 1  1 0 0 1 

0 0 0  0 -1 -1 0 

0 0 0  0 -1 1 0 

0 0 0  0 1 -1 0 

    0 1 1 0 

    -1 0 -1 0 

    -1 0 1 0 

    1 0 -1 0 

    1 0 1 0 

    0 -1 0 -1 

    0 -1 0 1 

    0 1 0 -1 

    0 1 0 1 

    0 0 0 0 

    0 0 0 0 

    0 0 0 0 
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Table 3.4: Experimental Format for the BBD 

RO 

Run 
SO Run Input variables (x) Replications  

  

m 1 

Design matrix of BBD 

    
4 2     
1 3     
. . … . . . 

. . … . . . 

. . … . . . 

2 m     
 

Once the BBD has been determined as the most appropriate experimental design 

method for integer-valued input variables, the next step is the check its rotatability. 

Rotatability is an important design property with constant prediction variance at all points 

that are equidistant from the design center at (0, ∙∙∙, 0). The prediction variance at any point 

x in the design space is denoted as 
2 ( ) 1 ( )ˆ[ ( )] ( )m mVar y   x x X X x  where ( )m x  is denoted 

as  for the second-order model and [ ,  ]X 1 D . 

In addition, the scaled prediction variance function is given by 

( ) 1 ( )

2

ˆ[ ( )]
( )m mVar y

N


 
x

x X X x  where N denotes the number of runs in the experiment.  

Intuitively, the prediction variance provides an estimate of the variability of the response 

surface prediction at different points within the design space of interest. Obviously these 

predicted variances at different points need to be approximately constant to maintain the 

predication stability. Let xi be an input variable of the BBD where 1 ( 1,  2,  ...,  )ix i n 

. The distance from the center, i , is then 2( 0)ix   for all i which results in 

y s
2s

11 1 ... ry y 1y 1s
2

1s

21 2 ... ry y 2y 2s 2

2s

31 3 ... ry y 3y 3s 2

3s

1  ... m mry y my ms 2

ms

2 2 2

1 2 1 2 1 2 1[1,  ,  ,  ..., ,  ,  ,  ..., ,  ,  ..., ]n n n nx x x x x x x x x x
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1 2 ... n     . Thus, the BBD maintains the rotatability or near rotatability. A detailed 

discussion of rotatability can be found in Box and Hunter (1957) and Khuri (1988). 

In addition, the second-order model matrix is denoted by 

 

2 2

11 21 1 11 1 11 21 11 1

2 2

12 22 2 12 2 12 22 22 2

2 2

1 2 1 1 2 1

1

1

1

i i i i

i i i i

N N iN N iN N N i N iN

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x







 
 
 
 
  
 

X  (3.1) 

where 1,  2,  ...,  i n . The design moment matrix is also defined by 
'( )

N


X X
M  where M 

is the design moment matrix and N is the number of total design points. The design moment 

matrix should have the following form for the rotatable second-order design with n-

variables. 

 

2

2

2 4

2

1 0 0

0 0 0( )

0 (2 ) 0

0 0 0

n

n

n n n n

t

j

I

N j I j j

I





 



 
 

  
   

  
 
 

X X
M  (3.2) 

where 1
2

( 1)t n n   and nI , kj , and  ( 2 and 4)i i   represent the n by n unit matrix, the 

nth column vector, and the quantity of the scaling design variables, respectively. In addition, 

the design is called a precise rotatable design if and only if 

1. All odd moments are zero. The odd moments are denoted by 

 
1

[ ] /  1,  2,  ...,  
N

ia

a

i x N i n


   (3.3) 

 
1

[ ] /  1,  2,  ...,  
N

ia ja

a

ij x x N i n


   (3.4) 
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3

1

[ ] /  1,  2,  ...,  
N

ia

a

iii x N i n


   (3.5) 

 
2

1

[ ] /  , 1,  2,  ...,   and 
N

ia ja

a

iij x x N i j n i j


    (3.6) 

 
1

[ ] /  ,  ,  1,  2,  ...,   and 
N

ia ja ka

a

ijk x x x N i j k n i j k


     (3.7) 

 
3

1

[ ] /  ,  1,  2,  ...,   and  
N

ia ja

a

iiij x x N i j n i j


    (3.8) 

 
2

1

[ ] /  ,  ,  1,  2,  ...,   and  
N

ia ja ka

a

iijk x x x N i j k n i j k


     (3.9) 

2. The second pure moments, [ii], are denoted by 

 

2

2

1

2

[ ] [ ] /   1,  2, ..., 

where 0

N

ia

a

ii ii x N i n





   




 (3.10) 

3. The fourth pure moments, [iiii], are denoted by 

 4

4

1

[ ] 3 [ ] /  = 1, 2, ..., 
N

ia

a

iiii iiii x N i n


    (3.11) 

4. The fourth mixed moments, [iijj], are denoted by 

 2 2

4

1

[ ] [ ] /  , = 1, 2, ...,  
N

ia ja

a

iijj iijj x x N i j n i j


     (3.12) 

Note that Equations (3.11) and (3.12) may be combined as a condition, which is 

[ ] / [ ] 3iiii iijj   for i j . We investigate the rotatability conditions for the n=4 and 7 BBDs 

as follows: 
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24 :  All odd moments are zero and 0.

[12 / (24 )]
            24 [ ] / [ ] 3

[4 / (24 )]

c
c

c

n

n
N n iiii iijj

n

 


    



 (3.13) 

 

27 :  All odd moments are zero and 0.

[24 / (56 )]
            56 [ ] / [ ] 3

[8 / (56 )]

c
c

c

n

n
N n iiii iijj

n

 


    



 (3.14) 

where cn  is the number of the center points. Thus, we prove that the BBD is precise 

rotatable for n=4 and 7. 

 

The Proposed Nonlinear Mixed and Pure Integer Programming Models 

It is well known that many engineering problems are well approximated by second-

order polynomial models (see Montgomery, 2012) which are given by 

 2

0

1 1 2 1

n n n

i i ii i ij i j

i i i j i

y x x x x    
    

        (3.15) 

where i  and   represent regression coefficients and an observed experimental error, 

respectively.  The estimated response of the process mean is then given by  
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1 1

11 12 1

2 2

1 2

ˆˆ ( )  

ˆ
ˆ ˆ ˆ/ 2 / 2

ˆ
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ˆ ˆ ˆ/ 2 / 2
ˆ
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n n

x

x

x

 


  



  


   

   
    
     
    
 

     
   

x x a x Ax

x a A
 (3.16) 

where  is the regression coefficients associated with estimated process mean, and a and 

A represent the vector of the estimated regression coefficients and the matrix of the 

i
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estimated regression coefficients associated with the process mean, respectively. Similarly, 

the estimated response of the process standard deviation is expressed by 

 

0

11

11 12 1

2 2

1 2

ˆˆ ( )  

ˆ
ˆ ˆ ˆ/ 2 / 2

ˆ
where = ,  ,  and 

ˆ ˆ ˆ/ 2 / 2
ˆ

n

n n nn
n

n

x

x

x

 


  



  


   

  
   
         
         

x x b x Bx

x b B
 (3.17) 

where  is the regression coefficients associated with estimated standard deviation, and b 

and  B are the vector of the estimated regression coefficients and the matrix of the estimated 

regression coefficients associated with the process standard deviation, respectively. In 

addition, the estimated response of the process variance is shown as follows.  

  (3.18) 

where  is the regression coefficients associated with estimated process variance, and c 

and C represent the vector of the estimated regression coefficients and the matrix of the 

estimated regression coefficients associated with the process variance, respectively. 

There are two dominant traditional optimization models for solving RSM-based 

RPD optimization problems: the dual response model developed by Vining and Myers 

(1990), referred to as the VM model, and the mean squared error model developed by Lin 

i

i
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and Tu (1995), referred to as the LT model. Note that these two models assume that input 

variables are real valued. The VM model is given by  

 
1

ˆMinimize ( ) ( )

subject to ( ) 0 

                

f

h

X







x x

x

x

 (3.19) 

where 1
ˆ( ) ( )h   x x  and '{ | }n nX    x x x . The goal of this optimization 

model is to reduce standard deviation while the mean should be located at the target value 

(i.e., the zero bias) in the bounded convex set. Along those lines, Goethals et al. (2009) 

investigated the different variability measurements to find optimum RPD solutions.  

We propose the nonlinear mixed integer programming (NLMIP) and nonlinear pure 

integer programming (NLPIP) models which incorporate the variance estimator while 

relaxing the zero-bias assumption (i.e., allowing some distance between mean and the 

target value) based on the following mean squared error model:    

  (3.20) 

where :   nf   and :   n mg   are twice continuously differentiable functions, 

n X  is a bounded convex set, and { 1,  ...,  }I c n   is the index set of integer-valued 

input variables in the model. Also, it would be more practical to impose an upper bound 

with the following constraint:  

 1 1
ˆ( ) 0 ( ) | ( ) | bg g       x x x  (3.21)     
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In addition, by imposing an upper bound on the process variance, we have the additional 

constraint as follows:   

  (3.22) 

The constraint associated with the design space should also be included as follows:  

 2

3 3

1

( ) 0 ( )
n

i

i

g g x n


   x x  (3.23)  

Finally, the proposed NLMIP and NLPIP models are shown in Table 3.5, where  ̂ x  and 

 are given in Equations (3.16) and (3.18). 

Table 3.5: The Proposed BB-Embedded NLMIP and NLPIP Robust Parameter Design 

Models 

The objective Function  

 subject to 

Constraint associated with the bias  
1( ) 0 | ( ) | bg      x x  

Constraint associated with the variance  

Constraint associated with the design 

space  
2

3

1

( ) 0
n

i

i

g x n


  x  

Constraints associated with the 

boundaries of input variables 
1 1 ( 1,  2,  ...,  )i iLB x UB x i n        

Other constraints associated with input 

variables 

 ( 1,  ...,  )

 ( 1,  ...,  )

i

i

x i c
NLMIP

x i c n

 
 

  
 

or { iNLPIP x    ( 1,  2,  ...,  )i n  

 

Notice that the convex hull of the solution space S, defined by 

1 1

( ) { |  1,  0 1,  1 1 and }
n n

i i i i i i

i i

conv S x x x S  
 

          , is a hypercube, while 
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( )f x  and ( )kg x  are convex combinations in the bounded convex set. In the next two 

sections, the analytical and numerical optimization methods are discussed as solution 

methods. 

 

Solution Methods 

In this section, two solution methods are discussed for solving the proposed BBD-

embedded, RSM-based nonlinear integer programming model. They are the Karush-Khun-

Tucker (KKT) conditions and the sequential quadratic programming method. 

 

The Karush-Khun-Tucker Conditions 

The constraint associated with process bias in the proposed model can be separated 

as follows: 
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x

x
  (3.24) 

Intuitively, the separated constraints improve the running time of the proposed 

optimization model. The Lagrangian function of the relaxed model is associated with the 

function , which is expressed as 
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 (3.25) 

: * n kL S  
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The set of active constraints is then expressed as follows: 

( ) { {1,  ...,  } | ( ) 0, }active kI i k g   x x x , where ( )activeI x  are referred as active 

constraints set. In addition, inactive constraints are denoted as 

( ) {1,  ...,  } / ( )inactive activeI k Ix x . The strict complementary slackness is then defined by 

 

* *

* *

( ) 0,  1

0,  ( )  

i i

i active

g i k

i I when





  

  

x

x x
 (3.26) 

Let * x  denote a local minimum of the model, and also let * λ  denote the Lagrange 

multipliers. The Karush-Kuhn-Tucker (KKT) conditions can be defined by 

 * * * * *( , ) ( ) ( ) 0L f g   x λ x x λ  (3.27) 

The three second-order sufficient optimality conditions can also be expressed. First, *( )G x  

are linearly independent where . Second, the complementary 

slackness holds at *
x . Third, 

* *0 for all 0 as ( ) 0kd L d d G d   H x . It is noted that the 

Hessian matrix of the Lagrangian function, H, is positive definite on the null space of 

. In addition, the second-order optimality conditions assure that *
x  is the local 

minimum of the model and Lagrange multipliers ( *
λ ) are unique. 

 

The Sequential Quadratic Programming Method 

Sequential quadratic programming (SQP) methods have proved highly effective for 

solving constrained optimization problems with smooth nonlinear functions in the 

objective function and the constraints (Gill et al., 2002). The essential notion of the SQP 

method is to formulate the model, such as the NLP at a given solution 
k

x , by using it as a 

1( ) ( ( ),  ...,  ( ))kG g g  x x x

*( )kG x
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quadratic sub-problem model, and applying the solution to this sub-problem to build an 

improved approximation 
1k

x . The SQP process, which is also well-suited to inequality 

forms, is a strong and iterative solution procedure for the NLP models. This procedure 

makes a sequence of approximations that will merge to a solution for *
x . Note that the SQP 

method is not a feasible-point optimization technique; that is, the SQP method allows the 

initial points which are not necessary to be feasible. Hence, the SQP method is a great 

choice as an optimization method for solving the proposed NLP problems since their design 

and solution spaces are not necessarily the same.  

The objective function of the model ( )f x  is defined by its local quadratic 

approximation by 

 
( )

1
( ) ( ) ( )( ) ( ) ( )

2
k

k k k k k

f
f f f H     

x
x x x x x x x x x  (3.28)

 

where ( )f x  is the gradient of ( )f x , and 
( )fH
x

 is the Hessian of ( )f x . Note that 

: ng S   is the vector-valued form of each inequality constraint in the proposed model. 

Using local affine approximations, the constraints of g are then defined as 

 ( ) ( ) ( )( )k k kg g g  x x x x x  (3.29) 

where ( )g x  is the gradient of ( )g x , and 1k k  x x x . 

The sub-problem of the proposed model is expressed as follows: 
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  (3.30) 

where ( )k

gJ x  is the Jacobian function of g. This procedure is terminated when 1k k x x  

is smaller than the specified tolerance. 

Note that the nonlinear branch-and-bound method may be performed based on 

lower and upper bounds in the integer-constrained solution space for the BBD to obtain 

integer-valued input variables and update continuous-valued input variables if the solutions 

of integer-valued variables are not integral. The nonlinear branch-and-bound method 

selects the branching input variables and branching nodes based on the iterative procedure. 

In addition, this procedure is repeated until all integer-valued variables obtained in the 

solution space. We also perform the sequential quadratic programming technique for the 

NLP optimization phase and we also use the Maple software. On the other hand, the idea 

of rounding is not a good notion because the optimum solution can change or be infeasible, 

and the continuous variables are also needed to update for optimal operating conditions. 
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Otherwise, one or more constraints can be violated finding the optimal solution for the 

optimization model if the rounding is just used to obtain integer variables. 

 

Numerical Example 

In this section, we consider a BBD with three input variables and four replications 

at each design point. The BBD is analyzed as the four-phased model development which 

has been explained in the proposed procedure flow map. Note that the computer codes are 

shown in Appendix A for this numerical example. 

 

The Design Phase 

In this study, the first and second input variables are assumed to be integer-valued 

variables, and the third input variable is assumed to be a continuous-valued variable. The 

experimental results are found using the four replications for the response. The coded 

variables and their levels for the BBD experiment are shown in Table 3.6. 

Table 3.6: Coded Variables and Levels for the BBD Experiment 

  Coded Levels 

  Coded -1 0 1 

The first input variable  1x  1 2 3 

The second input variable 2x  1 2 3 

The third input variable 3x  4 5 6 

 

The Modeling Phase 

The experimental results with four replications at each design point are shown in 

Table 3.7. 
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Table 3.7: The BBD Experiment 

SO    

    

 

  

1 -1 -1 0 49.2 43.1 43.0 40.5 43.95 3.70 13.70 

2 -1 1 0 62.6 52.7 68.0 62.2 61.38 6.36 40.44 

3 1 -1 0 68.2 69.3 59.9 50.2 61.90 8.86 78.45 

4 1 1 0 60.5 79.0 62.5 53.2 63.80 10.89 118.66 

5 0 -1 -1 55.9 50.9 52.5 73.5 58.20 10.41 108.39 

6 0 -1 1 70.0 58.4 71.5 47.4 61.83 11.26 126.75 

7 0 1 -1 81.2 62.0 60.3 73.8 69.33 9.94 98.72 

8 0 1 1 69.7 66.2 54.7 65.2 63.95 6.46 41.75 

9 -1 0 -1 80.9 67.8 58.8 55.0 65.63 11.51 132.51 

10 1 0 -1 43.3 40.8 72.3 57.6 53.50 14.56 211.86 

11 -1 0 1 54.3 55.2 52.3 36.7 49.63 8.70 75.72 

12 1 0 1 61.6 63.7 72.5 59.8 64.40 5.63 31.70 

13 0 0 0 39.7 49.6 69.6 43.8 50.68 13.25 175.68 

14 0 0 0 54.8 46.4 57.3 64.7 55.80 7.55 56.94 

15 0 0 0 53.0 62.2 55.1 41.6 52.98 8.54 73.00 

 

The normality and constant variance assumptions are checked using the normal 

probability and residual plots, shown in Figure 3.3 (a), and Figure 3.3 (b), respectively. 

 

(a)        (b) 

Figure 3.3: (a) Normal Quantile Plot of the Process Mean; (b) Residual Plot of the 

Process Mean 

1x 2x 3x 1y 2y 3y 4y y s 2s
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The Shapiro-Wilk test was used to check the normality assumption, and the p-value 

is 0.565; therefore, it is concluded that the normality assumption is supported with alpha 

value = 0.05. In addition, the residual plot shows that the constant variance assumption is 

met. Using JMP software, the second-order response surface models of the mean, standard 

deviation, and variance are obtained as follows: 

 

2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

ˆ ( ) 53.15 2.88 4.07 0.86 0.22 4.82 5.35

           3.88 6.73 2.25

x x x x x x

x x x x x x

       

  

x
 (3.31) 

 

2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

ˆ ( ) 9.78 1.21 0.07 1.80 0.87 1.46 1.19

           0.16 1.53 1.08

x x x x x x

x x x x x x

       

  

x
 (3.32) 

  (3.33) 

 

The Optimization Phase 

Using the Sequential Quadratic Programming Approach 

The proposed optimization model is given in Table 3.8. The sequential quadratic 

programming in the Maple NLP solver uses a BBD to obtain the optimal RPD solutions, 

which are shown in Table 3.9; in addition, the optimal values of process mean and standard 

deviation, along with the objective functional value, are also shown in Table 3.9. The SQP 

provides a global minimum at the 11th iteration. 
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Table 3.8: The Optimization Model 

Minimize 2 2 2

1 2 3 1 2 3 1 2

2

1 3 2 3 1 2 3

2 2 2

1 2 3 1 2 1 3 2 3

[53.15 2.88 4.07 0.86 0.22 4.82 5.35 3.88

6.73 2.25 60] 101.87 22.29 3.47 34.45

10.01 29.05 21.08 3.37 30.84 18.83

x x x x x x x x

x x x x x x x

x x x x x x x x x

      

      
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Subject to 2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

| 53.15 2.88 4.07 0.86 0.22 4.82 5.35

3.88 6.73 2.25 | b
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21.08 3.37 30.84 18.83 UB
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    
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2 2 2

1 2 3x x x n    

Given 260,  0.6,  144,  and 3b UB n     
 

1 2 3

1 1 ( 1,2,3)

 and ;

ix i

x x x
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   

Find Factor settings  and objective function value of the model 

 

Table 3.9: The Result of the Optimization Problem by Using the SQP 

Iteration Number 
*

1x  
*

2x  
*

3x  *ˆ ( ) x  
*ˆ ( ) x  

*( )f x  

11 -1.000 1.000 0.429 59.584 5.285 28.106 

 

Using the Karush-Kuhn-Tucker Conditions 

The proposed model is converted using the Lagrangian functions as follows: 

* * * *

1 2 3( ,  ,  )Tx x xx
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 (3.31) 

The constraint qualifications are met. As such, the Lagrangian method and the KKT 

conditions are computed using the Maple software, which are shown in Table 3.10. 

Table 3.10: The KKT Points and Multipliers for the Proposed Model 

Model Settings ( *
x ) 1  2  3  4  5  6  7  8  9  10  

The proposed 

model 

(-1.000, 

1.000, 0.429) 
0 0 0 0 

30.52

5 
0 0 

86.82

6 
0 0 

 

Running times for completing this example using the SQP method and the KKT 

conditions took 0.15 and 4.71 seconds, respectively, on the computer, which has 2.6 GHz 

Intel Core i5 with 8 GB 1600 MHz DDR3 memory. It was observed that the SQP required 

20.18 M (megabyte) for this numerical example, while the KKT conditions required 74.19 

M. For this particular example, the SQP technique solved the problem more quickly and 

also required less memory. It is noted that the KKT conditions do not always guarantee the 
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optimal solutions. It is also experimentally proved that the separation of the constraints 

may be a useful approach to reduce the computational time and increase the efficiency. 

 

The Verification Phase 

This section provides comparisons between the proposed model and traditional 

models (VM and LT), which are shown in Tables 3.11 and 3.12. 

Table 3.11: Comparison Study between the Proposed Model and the VM and LT Models 

Model Settings ( )   

VM  (1.000, 0, 0.493) 60.000 8.768 

LT (1.000, 1.000, 0.392) 56.938 6.884 

Proposed (-1.000, 1.000, 0.429) 59.584 5.285 

 

Table 3.12: Six Different Cases with Results 

Case 

Number 

Variables 

Types 
Model Coded Settings ( )   

Case 1  

VM (1.000, 0.668, 0.316) 60.000 8.154 

LT (1.000, 0.953, 0.418) 58.870 6.961 

Proposed (-1.000, 1.000, 0.429) 59.584 5.285 

Case 2  

VM (1.000, 0, 0.493) 60.000 8.768 

LT (-1.000, 1.000, 0.355) 59.999 6.001 

Proposed (-1.000, 1.000, 0.429) 59.584 5.285 

Case 3  

VM (-0.726, 1.000, 1.000) 60.000 6.450 

LT (-0.913, 1.000, 1.000) 58.865 6.273 

Proposed (-0.825, 1.000, 1.000) 59.403 5.883 

Case 4  

VM (1.000, 0.913, 0) 60.000 8.693 

LT (1.000, 1.000, 0) 60.82 8.430 

Proposed (-1.000, 0.869, 0) 60.598 6.457 

Case 5  

VM (0.247, 0, 1.000) 60.000 9.038 

LT (-0.913, 1.000, 1.000) 58.865 6.273 

Proposed (-0.825, 1.000, 1.000) 59.403 5.883 

Case 6  

VM - - - 

LT (1.000, 1.000, 0) 60.820 8.430 

Proposed (1.000, -1.000, 0) 60.440 9.230 

 

*
x

*ˆ ( ) x
*ˆ ( ) x

*
x

*ˆ ( ) x
*ˆ ( ) x

1

2 3,

x

x x





2

1 3,

x

x x





3

1 2,

x

x x





1 3

2

,x x

x





2 3

1

,x x

x





1 2 3, ,x x x 
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It is observed that the proposed model gives a smaller standard deviation than the 

VM and LT models, but generates a larger process bias compared to the VM and LT models. 

This particular example shows that if variance reduction is more important than meeting 

the target value, perhaps the proposed model is more useful. Note that Case 6 represents 

the NLPIP model in Table 3.12. 

 

Conclusions 

In this chapter, a four-phased procedure was proposed to obtain the BBD-based 

RPD solutions with minimum process bias and variability. This chapter also discussed the 

conceptual and technical frameworks supporting the BBD as a preferred experimental 

design method over the CCD and other three-level designs with integer-valued variables. 

Nonlinear mixed and pure integer models were then proposed with two suggested solution 

methods: the sequential quadratic method and the Karush-Khun-Tucker conditions. A 

numerical example was illustrated to compare the proposed nonlinear mixed and pure 

integer programming models with the existing models. It was observed that the proposed 

models generally provide a better solution in terms of process variance. It was also found 

that both solution procedures we suggested, particularly the sequential quadratic 

programming method, were efficient in finding robust parameter solutions. As an 

extension, incorporating multiple quality characteristics could be a fruitful future research 

area. Another extension would be the consideration of binary input variables in the context 

of the nonlinear mixed or binary integer programming framework. 
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CHAPTER FOUR 

A 0-1 MIXED INTEGER NONLINEAR PROGRAMMING MODEL TO SOLVE THE 

RESPONSE SURFACE-BASED ROBUST PARAMETER DESIGN PROBLEM WITH 

QUALITATIVE AND QUANTITATIVE VARIABLES 

 

Introductory Remarks 

The robust parameter design (RPD) methodology, originally proposed by Taguchi, 

is an efficient tool for building quality into the design of processes and products by 

determining optimal operating conditions for input variables. The main concept of the RPD 

is to minimize variability in the output response of a product around the target value. A 

number of RPD models have been proposed and reported a significant improvement in 

product and process quality. 

 

Research Motivations 

The main purpose of this chapter is to establish the modeling and optimization 

framework when both quantitative and 0-1 based qualitative input variables are integrated 

into the response surface based RPD. To this end, we propose three phases: a statistical 

design phase, an optimization modeling phase, and a comparison phase. In the statistical 

design phase, we lay out the foundation of a special factorial design by embedding those 

input variables into a factorial design with pseudo-center points. In the optimization 

modeling phase, we formulate the proposed RPD problem with the binary-valued 

constraints which can efficiently provide solutions for both quantitative and qualitative 
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input variables in the 0-1 mixed integer nonlinear programming (MINLP) framework. 

Finally, we compare the solutions using three optimization tools, such as the outer 

approximation (OA) method, the branch-and-bound (BB) technique, and the hybrid 

branch-and-cut (HNBC) algorithm, with traditional counterparts.  

This chapter is organized as follows. First, the model development is presented. 

The proposed model is then shown. Next, the numerical example is conducted. Finally, 

conclusions and further study are drawn. 

 

Model Development 

Abbreviations and Notation 

The abbreviations and notation used in this chapter are described in Table 4.1. 

Table 4.1: Abbreviations and Notation 

Abbreviations/Notation Description 

y  Response variable 

jy  Mean value of the jth experimental run where j = 1, …, n 

ix  The ith quantitative input variable where i = 1, …, l 

x  The vector of input variables 

jz  The jth qualitative input variable where j= 1, …, m 

( )f x  The objective function of the model 

( )kg x  The kth inequality constraint of the model 

ˆ ( ) x  The fitted response function of process mean 

ˆ ( ) x  The fitted response function of process standard deviation 

 The fitted response function of process variance 

  The target value of a quality characteristic  

2
  A desired upper bound of process variance 

is  The estimated standard deviation of the ith run 
2

is  The estimated variance of the ith run 
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fn  Number of factorial points 

cn  Number of center points 

pcn  Number of pseudo-center points 

i
 Real space of the ith continuous input variable   

j
 Integer valued space of the jth integer input variables 

NLP Nonlinear programming 

VM Model of Vining and Myers (1990) 

LT Model of Lin and Tu (1995) 

 

The Selection of Coded Levels for Qualitative and Quantitative Input Variables 

In this chapter, the coded levels of input variables, denoted by -1, 0, and 1, represent 

low, intermediate, and high levels, respectively. Qualitative variables are classified as 

binary and trinary and their coded levels are denoted as  

 

             1  if the level is low

  0  if the level is low/intermediate Trinary and 1,  2,  ....,  
Binary

  1  if the level is high

j

j

j

z

z j m

z

  


  
 

 

 (4.1) 

In addition, quantitative variables are classified as continuous or integer valued variables 

whose coded levels are denoted as 

 

1  if the level is low

  0  if the level is intermediate  or  (  1,  2,  ....,  )

  1  if the level is high

i

i i

i

x

x x R Z i l

x

  


  
 

 (4.2) 

 

The Inclusion of Center and Pseudo-Center Points 

Draper (1982) reviewed the existing approaches for selecting the number of center 

points in certain types of second-order response surface designs and discussed an integrated 

variance criterion for fewer center points. The proper choice of the number of center points 
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is important and it should be accurately set for a good design (see Box and Draper, 1987; 

Draper and Lin, 1996). Furthermore, Myers et al. (2009) conducted the most recent study 

for choosing the number of center points. They suggested that one or two and three to five 

center points are sufficient to provide a reasonable stability of the scaled prediction 

variance in the cuboidal and spherical design spaces, respectively. 

The number of center points influences the prediction variance, 

 
( ) 1 ( ) 2ˆ[ ( )] ( )m mVar y  x x X X x , (4.3)  

where ( )ˆ[ ( )],  ,  ,  mVar y x x X and 
2  represent the variance of a predicted value (or the 

prediction variance), a vector corresponding to the model terms, the model matrix, and a 

variance, respectively. It is known that the prediction variance, ˆ[ ( )]Var y x , is based on the 

location of x which is dependent on the inverse matrix of information matrix ( X X ). In 

this chapter, we include center point runs to obtain an independent estimate of pure error 

for a lack-of-fit test and we then verify the adequacy of the fitted model. It is needed to run 

at least one center point for fitting a quadratic model; otherwise, the information matrix 

will be singular and cannot be inverted to obtain a least square fit. Checking the adequacy 

of a fitted model is also crucial to avoid misleading conclusions. In addition, the inclusion 

of center points also provides the variance stability and check for curvature for second-

order models.  

Table 4.2 shows values of ˆ[ ( )]Var y x  at design points and the degrees of freedom 

(df) for pure error for two, three and four quantitative input variables in factorial designs 

with center points. In Table 4.2, we consider the center points for quantitative input 
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variables in the design; however, a proper selection of actual center points does not exist 

in the literature when both qualitative and quantitative input variables are under study. 

Table 4.2: Selected Numbers of Center Points in Factorial Designs 

Input 

variables cn  

ˆVar[ ( )]y x  at design points df for 

pure 

error  (0, 0) 
(-1, -1)  

or (1, 1) 

(-0.5, -0.5)  

or (0.5, 0.5) 

1x  and 

2x  

1 0.200 2  0.950 2  0.341 2  - 

2 0.167 2  0.917 2  0.307 2  1 

3 0.143 2  0.893 2  0.283 2  2 

4 0.125 2  0.875 2  0.266 2  3 

5 0.111 2  0.861 2  0.252 2  4 

6 0.100 2  0.850 2  0.241 2  5 

  (0, 0, 0) 
(-1, -1, -1)  

or (1, 1, 1) 

(-0,5, -0.5, -0.5)  

or (0.5, 0.5, 0.5) 
 

1x , 2x  

and 3x  

1 0.111 2  0.861 2  0.228 2  - 

2 0.100 2  0.850 2  0.217 2  1 

3 0.091 2  0.841 2  0.208 2  2 

4 0.083 2  0.833 2  0.201 2  3 

5 0.077 2  0.827 2  0.194 2  4 

6 0.071 2  0.821 2  0.189 2  5 

  (0, 0, 0, 0) 
(-1, -1, -1, -1)  

or (1, 1, 1, 1) 

(-0.5, -0.5, -0.5, -0.5)  

or (0.5, 0.5, 0.5, 0.5) 
 

1x , 2x , 

3x  and 

4x  

1 0.059 2  0.684 2  0.145 2  - 

2 0.056 2  0.681 2  0.141 2  1 

3 0.053 2  0.678 2  0.139 2  2 

4 0.500 2  0.675 2  0.136 2  3 

5 0.048 2  0.673 2  0.134 2  4 

6 0.045 2  0.670 2  0.131 2  5 

 

The inclusion of pseudo-center points for the qualitative input variables is 

recommended in such a way that the pseudo-center points are added to the low- and high-

level treatment combinations of the qualitative input variables. In other words, we can 

assign pseudo-center points to the centers of the left and right surface of the factorial design 
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space. For example, consider a 22  full factorial design with one qualitative input variable 

and three center points. In this case, six pseudo-center points are added, three at each of 

the 2 combinations of the quantitative input variables. 

Table 4.3 examines the prediction variance at different design points and the 

degrees of freedom for pure error for quantitative and qualitative input variables in a 

factorial design with pseudo-center points (FDPCP) where ( ) 2

1 1 1 1 1[1    ].m z x z x x x  This 

table shows that the stability of the prediction variance, detection of curvature, and the 

degrees of freedom for pure error increase, as the number of pseudo-center points increases.  

Table 4.3: Pseudo-Center Points in Factorial Designs 

pcn  
ˆVar[ ( )]y x  at design points df for pure 

error  (0, 0) or (1,0) (0, -1), (0, 1), (-1, 1) or (1, 1) 

2 0.667 2  0.917 2  - 

4 0.375 2  0.875 2  2 

6 0.267 2  0.850 2  4 

8 0.208 2  0.833 2  6 

10 0.171 2  0.821 2  8 

12 0.146 2  0.813 2  10 

 

The Design Rotatability Issue 

A rotatable design should have the same variance of a predicted response, 

ˆ[ ( )]Var y x , when the design is rotated around its center point. The rationale of the design 

rotatability indicates that the prediction variance has the same value at any two points, 

which are equidistant from the design center. In an FDPCP, the inclusion of pseudo-center 

points changes the prediction variance with any rotation in the Cartesian coordinate space 

because the distances from the pseudo-center points, 0i  and 1i , are 2

0 ( 0)i ix    and 
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2

1 ( 1)i ix    for i=1, 2, …, l which does not result in 10 0 11 1... ...l l        . 

Thus, the point x does not maintain the equidistance from the pseudo-center points of an 

FDPCP. This observation is proved through the following proposed lemma:  

 

Lemma: An FDPCP with coded 1ix    and 0 and 1jz   for i = 1, 2, …, l and j = 1, 2, 

…, m is not a rotatable design. 

 

Proof: As a counter argument, assume that an FDPCP is a rotatable design. Suppose there 

are two input variables, 1 1 and z x , in a 
22  design with six pseudo-center points. A model 

matrix is given below. 

 

1 1 1 1 1 1         1            

1 0 1 1 0

1 0 1 1 0

1 1 1 1 1

1 1 1 1 1

1 0 0 0 0

1 1 0 0 0

1 0 0 0 0

1 1 0 0 0

1 0 0 0 0

1 1 0 0 0

z x x x z x

 
 
 
 
 
 
 

  




 


 
 
 
 
 
 
 

X
 (4.4) 

Then, we have the information matrix as follows: 
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10 5 0 4 0

5 5 0 2 0

0 0 4 0 2

4 2 0 4 0

0 0 2 0 2

'

 
 
 
 
 
 
 
 

X X  (4.5) 

The design moment matrix (M) is then found as follows: 

 

1 0.5 0 0.4 0

0.5 0.5 0 0.2 0

0 0 0.4 0 0.2

0.4 0.2 0 0.4 0

0 0 0.2 0 0

' '

2

10

.

N

 
 
 
   
 
 
 
 

X X X X
M  (4.6) 

where 
f pcN n n  . This design is not rotatable because the design moment matrix in 

Equation (4.6) does not have the following form (see Box and Draper, 1963; Khuri, 1988): 

 

2

4

4

2

2

2

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

' '

10
3

N

I

I













 
 
 
   
 
 
 
 

X X X X
M  (4.7)  

where 2  and 4  represent the quantities determined by the scaling of the input variables. 

Thus, an FDPCP is not a rotatable design. Further, we also observe that rotatability or near-

rotatability is not a significant priority due to cuboidal design regions (see Myers et al., 

2009). It is also clear that we do not have the advantage of the rotatable design for the 

variance stability. However, pseudo-center point runs may be sufficient to produce a 

reasonable stability of the scaled prediction variance (SPV(x)) where

 
1

12 ( ) ' ( ) ( ) ' ( )'
ˆ( ) [ ( )] / = 'm m m mSPV NVar y N

N



 

   
 

X X
x x x x x X X x . 
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The Experimental Format 

The experimental format is shown in Table 4.4, where SDP stands for standard 

design points. Design matrix (DM) examples for two, three and four input variables are 

illustrated in Table 4.5 where the numbers in the parentheses represent the numbers of 

quantitative and qualitative input variables, respectively. 

Table 4.4: Experimental Format 

SDP Input variables (x) 
Observations 

(Replications) 
y  s  2s  

1 

D (design matrix) with 

factorial points + pseudo-

center points  

11y … 1uy  1y  1s  2

1s  

2 21y … 2uy  2y  2s  2

2s  

3 31y … 3uy  3y  3s  2

3s  

. … . . . 

. … . . . 

. … . . . 

n 1ny … nuy  uy  us  2

us  
  

Table 4.5: (a) DM for Two Input Variables (1, 1); (b) DM for Three Input Variables (1, 

2); (c) DM for Four Input Variables (1, 3) 

                 (a)                   (b)        (c) 

  1z  1x     1z  1x  2x     1z  1x  2x  3x  

fn  

0 -1  

fn  

0 -1 -1  

fn  

0 -1 -1 -1 

0 1  0 -1 1  0 -1 -1 1 

1 -1  0 1 -1  0 -1 1 -1 

1 1  0 1 1  0 -1 1 1 

pcn  

0 0  1 -1 -1  0 1 -1 -1 

1 0  1 -1 1  0 1 -1 1 

0 0  1 1 -1  0 1 1 -1 

1 0  1 1 1  0 1 1 1 

0 0  
pcn  

0 0 0  1 -1 -1 -1 

1 0  1 0 0  1 -1 -1 1 
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    0 0 0  1 -1 1 -1 

    1 0 0  1 -1 1 1 

    0 0 0  1 1 -1 -1 

    1 0 0  1 1 -1 1 

         1 1 1 -1 

         1 1 1 1 

         

pcn  

0 0 0 0 

         1 0 0 0 

         0 0 0 0 

         1 0 0 0 

         0 0 0 0 

         1 0 0 0 

 

Linking the Experimental Design Space of the FDPCP to the Solution Space for 

Optimization 

The solution space of the FDPCP problem, defined as a set of all feasible points 

satisfying inequality constraints, including boundary, continuous, integer and binary 

constraints, is a bounded convex set (BCS) due to a bounded square or n-cube design space 

involving both qualitative and quantitative input variables with pseudo-center points. The 

design and solution spaces associated with the FDPCP are summarized in Table 4.6. 

Table 4.6: Design and Solution Spaces for an FDPCP 

Number of input 

variables (n) 

FDPCP 

Design space Solution space 

2 Square region BCS 

3 Cube region BCS 

4 or more n-cube region BCS 

 

The feasible solution spaces of two- and three-dimensional FDPCPs are given in 

Figure 4.1, where 1 {0,  1}z   and 1 2,  x x  . 
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Figure 4.1: Two- and Three-Dimensional FDPCPs 

 

Model Selection and Formulation Phase 

When both quantitative and qualitative input variables are used in response surface 

designs, a traditional response surface design, such as the central composite design, may 

not be applicable to fit a second-order model. This is because the central composite design 

requires five coded levels which the binary qualitative input variables cannot have. The 

true response surface function is denoted as follows: 

 ( )y f  x  (4.8) 

where f is an unknown function of x, 
1 1[ ,  ...,  ,  ,  ...,  ]l mx x z z x  and   is an observed error. 

Our goal is to approximate the functional relationship between y and x. A Taylor series 

expansion of f(x) about 
0 01 0 01 0[ ,  ...,  ,  ,  ...,  ]l mx x z z x  is 
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x
, i=1, 2, …, l and j=1, 2, …, m. The above expression can be written as  

 
2

0

1 1 2 1 1 1 1

l l l m l m

i i ii i ij i j j j ij i j

i i i j i j i j

y x x x x z x z      
       

            (4.10) 

where 
i , j  and i  represent regression coefficients, and   is an observed error. Then, 

the second-order fitted function of the process mean is expressed as: 
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(4.11) 

Similarly, the fitted function of process standard deviation and variance are: 

 ˆˆ ( ) b x X  where ' 1 '

1 2
ˆ ( ) ,  [ ,  ,  ...,  ]nb s s s  X X X s s  (4.12) 

  where ' 1 ' 2 2 2 2 2

1 1
ˆ ( ) ,  [ ,  ,  ...,  ]nc s s s  X X X s s  (4.13)  

In addition, the inclusion of all quadratic effects in the second-order model may not 

be possible for all quantitative input variables in the FDPCP because the quadratic effect 
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vectors may not be linearly independent due to 
1 2 +...+ 0lcol col col 2 2 2

1 2 lx x x  where 

1 2,  ,  ..., lcol col col  are real numbers and  0icol   (i = 1, 2, …, l). It means that X will not 

have full rank; therefore, 'X X  is rank-deficient and singular. The rank deficiency and 

singularity indicate that there are no unique estimators of the regression coefficients. 

However, we desire to have unbiased estimators with minimum variance (see Montgomery, 

2013). Therefore, it is proposed that some quadratic effects indicator columns from X be 

dropped until a finite set of vectors is linearly independent to avoid linear dependent 

vectors for this particular situation.   

 

Proposed Model 

Review of VM and LT models 

The VM and LT models assume that input variables are real valued. First, VM 

proposed the dual response model that the process variation is minimized while adjusting 

the process mean to the target value. The model is shown below: 

  

' 1 '

' 1 '

Minimize ( )  (The fitted variability function)

subject to ( )  (The mean constraint)

[ , ] (Boundary constraints)LB UB





 



X X X Xs

X X X X y

x

 (4.14) 

where LB and UB denote lower and upper bounds, respectively. However, this zero-bias 

assumption associated with the mean constraint can sometimes cause infeasible solutions, 

when integer and binary valued input variables are used. Further, the mean squared error 

(MSE) model, proposed by LT, may not achieve a desired upper bound of the process bias. 

Notice that we consider these models as a 0-1 MINLP problem in order to obtain integer-

valued and binary-valued input variables. 
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The Proposed 0-1 MINLP Model 

The objective of the proposed model is to minimize the estimated fitted variance 

function while allowing a process bias. The proposed model may result in a further 

reduction of the variance than traditional models proposed by VM and LT. Therefore, the 

objective function of the proposed model is written as follows: 

 1 1 2Minimize [ ( ) ] [ ( ) ]     2
X X X X s X X X X y  (4.15) 

Three constraints due to the boundary requirements associated with process mean and 

variability and the boundary requirements associated with the design space of the FDPCP 

are explained below.  

 

1. Constraints due to boundary requirements associated with process mean: 

Taguchi’s main idea is that the process mean is at the desired target value while the 

process variation is as small as possible (Taguchi, 1986). However, the mean may 

not be achieved at the target value in many real-life engineering situations. These 

lower and upper limits of a process mean are often specified by the customer, and 

incorporating the customer’s voice is an important part of continuous quality 

improvement program. The two bounds are the values within which products 

should operate. Therefore, it can be more practical that these requirements need to 

be characterized by the lower and upper limits on the process mean. The constraints 

are then written as follows: 
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ˆ ( ) ( )

UB UB
LB UB

LB LB

 
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









   
  

   

x X X X X y
X X X X y

x X X X X y
 (4.16) 

where LB  and UB  represent the lower and upper bounds for the process mean, 

respectively. 

 

2. Constraints due to boundary requirements associated with process variability: A 

process variance should always be minimized, and this can be done by imposing 

the upper bound, often specified by the customer, on the process variance. In an 

optimization sense, the epsilon-constraint method is closely associated with the 

bounds of constraints imposed on process mean and variance.  In fact, the epsilon-

constraint method is one of the most popular optimization methods in the literature, 

and many authors have reported advantages of the method. As outlined in Steuer 

(1986) and Mavrotas (2009), the epsilon-constraint method, unlike other methods 

such as the weighting method, is capable of generating non-extreme efficient 

solutions and the user can control the number of the generated efficient solutions 

by adjusting the number of grid points in the range of an objective function. It is 

also noted that  (see Goethals et al., 2009). This implies that the 

selection of variability measures affects optimal RPD solutions. Therefore, the 

variance estimator may produce a better point estimation than the standard 

deviation counterpart.  Finally, the variance must be non-negative. As a result, the 

constraints are written as follows: 
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  (4.17) 

 

3. Boundary requirements associated with the design space of the FDPCP: The 

FDPCP contains the coded design points at -1, 0, and 1. The associated design 

boundary constraints are shown as: 

 

1 1 for  1,  2, ...,  

1 1 for  1,  ...,  

{0,

Number of design 

 1} for 1,  2, 
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..  

 

.,
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pc

x x i l c

x x i l c l

z j m

n n

     

     








 (4.18) 

The proposed 0-1 MINLP optimization model is summarized in Table 4.7. 

Table 4.7: The Proposed Model 

Given Response (y) 

Fitted response models ( ˆ ( ) x ) and 
2 ( ) x ) 

Desired target value ( ) 

Lower and upper bounds of the mean ( LB  and UB ) 

Desired upper bound for the variance ( 2
 ) 

Design region  (An n-cuboidal design region due to an FDPCP where 

f pcn n ) 

Goal 1 1 2Minimize [ ( ) ] [ ( ) ]     2
X X X X s X X X X y  

Subject 

to 

Constraints: 

    (1) 
' 1 '( )LB UB 

 X X X X y  

    (2) 2

' 1 ' 20 ( )


  X X X Xs  

    (3) 

1 1 for  1,  2, ...,  

1 1 for  1,  ...,  

{0,  1} for 1,  2, ...,   

i i

i i

j

x x i l c

x x i l c l

z j m

     

      

 

 

Method MINLP optimization methods 

Find Robust parameter design solutions ( *

ix  and *

jz  where i = 1, …, l and j = 

1, …, m) 
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Investigation of convexity and quality of solutions 

(1) Convexity: A close look at the proposed model for the RPD optimization problem 

defined in Table 4.7 reveals that ' 1 ' 2[ ( ) ] X X X X y  is of a fourth-order function 

because ' 1 '( )  X X X X y  is a quadratic function which is a strictly convex 

function. Denoting ' 1 '( )  X X X X y  as u, it is noted that u2 is also a convex 

function since u:  [0, )  is a convex function and u is twice-differentiable. 

The term u, also referred to as a product bias, represents the deviation of the 

expected value of a process mean from the customer-specified target value τ.  It is 

noted that the objective function is a convex function and the constraints form a 

bounded feasible region, which now satisfies the convexity assumption. 

(2) Quality of solutions: One of the most effective methods to determine the quality of 

the solutions is done by checking the optimality gap which is a measure for how 

close the solutions are to the optimal solution. The proposed model in Table 4.7 

guarantees the objective value of the solution within the optimality gap of the 

optimal solution. The first step in checking the optimality gap is done by examining 

the local and global minima for the proposed model. It is noted that a feasible 

solution *
X  and *u  for ' 1 ' 2 2[ ( ) ] u X X X X s  is the global minimum solution for the 

model if * * ' * 1 * ' 2 * 2 ' 1 ' 2 2[ (( ) ) ( ) ] ( ) [ ( ) ]u u   X X X X s X X X X s . It is also noted that 

the value of the allowable gap is zero for the global minimum solution, while a 

feasible solution *
X  and *u  for ' 1 ' 2 2[ ( ) ] u X X X X s  becomes the local minimum 
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solution if * * ' * 1 * ' 2 * 2 ' 1 ' 2 2[ (( ) ) ( ) ] ( ) [ ( ) ]u u   X X X X s X X X X s  and * e X X  

for 0e   where e is a quite small value. The solution does not violate the constraints 

defined in Table 4.7. 

 

The Solution Procedures of the Proposed Model 

In the literature, Borchers and Mitchell (1997) reported that both the branch-and-

bound (BB) and outer approximation (OA) methods for a 0-1 MINLP resulted in optimal 

solutions with less computational times. In particular, the OA method is known to be quite 

effective in solving convex problems (see Duran and Grossmann, 1986; Fletcher and 

Leyffer, 1994). On the other hand, the BB method can be used for both convex and 

nonconvex problems (see Gupta and Ravindran, 1985; Borchers and Mitchell, 1997). Also, 

Bonami et al. (2008) concluded that the hybrid nonlinear based branch-and-cut (HNBC) 

algorithm was effective for a large number of design points. In this chapter, we perform 

the OA, BB, and HNBC algorithms for solving the proposed 0-1 MINLP models. Although 

no specific theoretical efficiency results are available for solving RPD problems in the 

literature, the three methods have been successful for solving practical problems. 

Computational results are then compared. The outline of the optimization phases is shown 

in Table 4.8. 

In Figure 4.2, a better approximation of the objective function and constraints can 

be found from the outside. In addition, the linearization provides valid over estimators of 

the feasible solution space because the objective function and constraints are convex. 
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Figure 4.3 also shows the feasible solution spaces of the BB and hybrid based BC methods 

using the integrality relaxations. 

Table 4.8: Optimization Phases for the Proposed Model 

Phase I Relaxation type  

     The polyhedral relaxation for the OA method 

     The integrality relaxation for the BB and hybrid based BC methods 

Phase II Deterministic method  

     The OA algorithm for a convex MINLP 

     The BB and HNBC algorithms for a convex or nonconvex MINLP 

Phase III Comparisons  

     Compare the solutions  

Phase IV Model verification  

     Compare the proposed model with the VM and LT models 

 

 
Figure 4.2: Geometric Interpretation of the OA Method 
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Figure 4.3: Geometric Interpretation of the BB and BC Methods 

 

Note that the proposed FDPCP has a convex region (see Figure 4.1). With a convex 

objective function, convex constraint functions, and a convex feasible region, an 

optimization problem is convex. Hence, there will be only one optimal solution which is 

global optimal. Geometrically, a function, ( )f x , is called convex if a line segment drawn 

any point ( 1,  ( )f
1

x x ) to another point ( 2 2,  ( )fx x ) lies on or above the graph of ( )f x . 

Algebraically, ( )f x  is called convex if [ (1 ) ] ( ) (1 ) ( )f f f       
1 2 1 2

x x x x  where 

1
x  and 2x  are any two points on an interval with any   where 0 1  . If ( )f x  has a 

second derivative on an interval, then the function is convex on that interval where 

( ) 0f  x  for all x  on an interval. 

 

Some Insights 

Two observations are made.   
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1. The set of feasible solution is a bounded polyhedral set due to the solution 

space. Therefore, the convexity becomes an important aspect to obtain a 

feasible solution for the proposed model for the following reasons. First, 

nonconvex functions may cause concerns and therefore the BB method should 

have an accurate lower bound for a global solution. Second, if a nonconvex 

function exists in any constraint, it may end up with an overestimation or 

underestimation of the function. For example, assuming f(x) is a nonconvex 

function for a response, and a quadratic function, which is an inequality form, 

may be underestimated over a design region. It is also denoted below: 

 1 1

'

1 1

( ) ( ) ( 1 )(1 ) (0 )(1 )

where [ ,  ..., ,  ,  ..., ]

l m

i i i j j j

i j

l m

L f x x z z

x x z z

 
 

       



 x x

x

 (4.19) 

2. The functions ( )f x  and ( )kg x  are twice continuously differentiable convex 

functions. Since the proposed model satisfies a constraint qualification for all 

points in the convex hull of the feasible set S of the proposed model, the convex 

hull of S, conv(S), is then expressed as follows: 

 

1 1 1 1

1

2

3

( ) { | 1,  0 1,  

                   0 1,   and }

where ={ | 1 1,  1,  2, ...,  }

          { | 1 1,  1,  ...,  }

          {

l m l m

i i j j i j i

i j i j

j i j

i i

i i

conv S x z

x S z S

X x x i l c

X x x i l c l

X

    


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      

      

     

       



   

{0,  1} |  1,  2, ...,  }jz j m 

 (4.20) 

 and iX  represents a set of feasible solution and i = 1, 2, 3. 
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The Outer Approximation (OA) Method for the Proposed Model 

The solution of the continuous relaxation of the proposed model is not an extreme 

point of the feasible set. As a one-unit distance extends beyond the design space, the 

prediction variance increases, thereby decreasing the precision of the solution. As a result, 

the feasible set lies in the strict interior of the solution space associated with the proposed 

model. We can reformulate in Table 4.7 by defining the objective function   and the 

constraint 1 2[ ( ) ]+u   2
X X X X s  because the optimal solution of the equivalent MINLP 

defined in Equation (4.21) always lies on the boundary of the convex hull of the feasible 

set. The equivalent proposed MINLP is then as follows: 

 

2

, 

' 1 ' 2 2

' 1 '

' 1 '

' 1 ' 2

Minimize  

subject to [ ( ) ]

                ( )                

                ( )

                

                0 ( )

               

x

u

u

u

LB u UB



 











 









 

 

 

   
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

X X X X s

X X X X y

X X X X y

X X X X s

1 1 for  1,  2, ...,  

               1 1 for  1,  ...,  
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i i

i i

j

x x i l c

x x i l c l

z j m
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      

 

 (4.21) 

The constraint qualification test is necessary to ensure the existence of multipliers 

and the convergence of the NLP solvers. As a result, Slater’s constraint qualification is 

valid due to the existence of an interior feasible point for the proposed model (see Griva et 

al., 2009). Note that the objective function and constraints of the proposed model can be 

relaxed with a set of hyperplanes acquiring from the first-order Taylor Series 

approximation as follows: 
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where a and c represent the vectors of the estimated coefficients for the process mean and 

variance, respectively, and A and C denote the matrices of the estimated coefficients 

associated with the process mean and variance, respectively. This type of relaxation is 

called a polyhedral relaxation and it will be used in the outer approximation algorithm in a 

later section of this chapter. We initially solve an NLP, given initial point ( 1) (0)v x x  and 

a subset kX X  with {0}kX  , by including an upper bound on   as follows: 

 kUB   where ( ) (v)min{ ( ) :  NLP( ) is feasible}k v

IUB f x x  (4.23) 

where ( )v

Ix  is the fixed integer variables for the NLP sub-problem and ( )v

I Ix x . We can 

then replace the constraint in Equation (4.23) with kUB e    for computational 

efficiency where 0e   is a small tolerance. The master problem solved at iteration k is then 

shown as 
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 (4.24) 

The detailed description of the outer approximation (OA) algorithm is given in Table 4.9. 

Table 4.9: The Outer Approximation for 0-1 MINLP Problems 

Given an initial point, choose a tolerance, set 
1U    , set k=0 and 

initialize 1 {}X    

do 

     Solve NLP ( )( )v

Ix  and let the solution be ( )v
x  

     If NLP ( )( )v

Ix  is feasible and 1( )v kf U x  then 

          Update current point: * vx x  and ( )k vU f x  

     Else 

          Set 1k kU U   

     Linearize objective and constraint f(x) and g(x) and set 
1 { }k kX X v  . 

     Solve the master problem and let 1k
x  and set 1k k   

until the model in Equation (4.24) is not feasible at iteration k 

 

The Branch-and-Bound Method for the Proposed Model 

A branch-and-bound (BB) method implements a top-down recursive search by 

updating solutions through a decision tree. The BB method starts by solving the continuous 

NLP relaxation. If all quantitative input variables take integer values, the search is stopped. 

Otherwise, a tree search is performed in the space of the integer variables (see Gupta and 

Ravindran, 1985). The BB method is particularly effective in solving the proposed RPD 

model because of the low dimensionality of the qualitative variables, as a typical number 
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of qualitative and quantitative input variables is three or four in RPD programs. The 

algorithm of the BB method for the proposed model is shown in Table 4.10. 

Table 4.10: Branch-and-Bound Algorithm for the Proposed 0-1 MINLP Problems 

Given choose a tolerance, set U  , set k=0 and initialize the heap {}H  . 

Add NLP to the heap where {NLP( , )H H    . 

do 

     Remove an NLP problem from the heap: \{NLP( ,  )}H H LB UB  

     Solve NLP ( ,  )LB UB  and let the solution be ( , )LB UB
x  

     If ( , )LB UB

Ix  is integral then 

          Update solution: ( , )( )LB UBU f x  and * ( , )LB UBx x  

     else if ( , )( )LB UBf Ux  then 

          Node can be pruned  

     else if NLP(LB, UB) is not feasible then 

          Node can be pruned  

     else branch on a fractional input variable ( ( , )LB UB

ix  for i I ) and set

( , )LB UB

i iUB    x , LB LB   and ( , )LB UB

i iLB    x , UB UB  . The heap is 

updated and {NLP( ,  ),  NLP( ,  )}.H H LB UB LB UB       

until {}H   

 

The Hybrid Nonlinear Based Branch-and-Cut Method for the Proposed Model 

A hybrid nonlinear based branch-and-cut (HNBC) algorithm, like the OA 

algorithm, uses linear relaxation concepts in solving MINLP problems. However, instead 

of successive approximations, the HNBC algorithm performs a branch-and-cut procedure, 

where the linear outer approximation is updated at selected nodes of the search tree (see 

Bonami et al., 2008). This particular method may be useful, especially when there is a large 

number of design points.  The description of the algorithm for the proposed model is 

defined in Table 4.11. 
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Table 4.11: Hybrid Nonlinear Based Branch-and-Cut Algorithm for 0-1 MINLP 

Problems 

Given choose a tolerance, set U  , set k=0 and initialize the heap {}H  . 

Add NLP to the heap where {NLP( , )H H    . 

do 

     Remove an NLP problem from the heap: \{NLP( ,  )}H H LB UB  

     repeat 

     Solve NLP ( ,  )LB UB  and let the solution be ( , )LB UB
x  

          If ( , )LB UB

Ix  is integral then 

              Update solution: ( , )( )LB UBU f x  and * ( , )LB UBx x  

         else if ( , )( )LB UBf Ux  then 

               Node can be pruned  

         else if NLP(LB, UB) is not feasible then 

               Node can be pruned  

         else if more cuts would be generated then 

Generate cuts ( ( , )LB UB
x , j) where generate a valid inequality that cuts off 

( , ) {0,  1}LB UB

j x . Solve a problem in ( , )LB UB
x  in order to obtain an 

inequality that cuts off  ( , ) {0,  1}LB UB

j x  from the feasible set of NLP 

(LB, UB). And then, this inequality is added to NLP (LB, UB). 

      until new cuts are not generated 

      if NLP (LB, UB) is not pruned then branch on a fractional input variable (
( , )LB UB

ix  for i I ) and set ( , )LB UB

i iUB    x , LB LB   and ( , )LB UB

i iLB    x , 

UB UB  . The heap is updated and

{NLP( ,  ),  NLP( ,  )}.H H LB UB LB UB        

until {}H   

 

Numerical Example 

Consider the problem of optimizing the amount of extraction which is a function of 

solvent ( 1z ) in addition to temperature ( 1x ), pressure ( 2x ) and time ( 3x ), where 1z  is a 0-1 

input variable and others are continuous variables. This optimization model becomes a 0-

1 MINLP model. The desired target value for the amount of extraction is 20 grams, where 

the allowable lower and upper bounds are 19.5 and 20.5 grams, respectively. Additionally, 



 71 

the maximum process variation we want to allow is 0.02. The goal is to determine the 

optimal operating conditions while the process bias and variance are minimized at the same 

time. Note that the computer codes are shown in Appendix B for this numerical example. 

 To estimate a quadratic model of the response, a 42  factorial design with six 

pseudo-center design points is decided for this experiment. In addition, the experiment is 

replicated four times and data are collected. The experimental design and the data are 

shown in Table 4.12. 

Table 4.12: Experimental Design and Observations 

SDP 
Coded units Observations 

uy  us  2

us  
1z  1x  2x  3x  1uy  2uy  3uy  4uy  

1 0 -1 -1 -1 20.934 20.009 19.967 19.527 20.109 0.592 0.350 

2 0 -1 -1  1 20.008 20.515 20.095 19.827 20.111 0.292 0.085 

3 0 -1  1 -1 20.503 19.865 20.590 20.899 20.464 0.434 0.188 

4 0 -1  1  1 20.311 20.107 19.838 20.419 20.169 0.256 0.065 

5 0  1 -1 -1 20.237 20.053 20.247 18.766 19.826 0.712 0.507 

6 0  1 -1  1 19.491 19.408 19.870 20.514 19.821 0.504 0.254 

7 0  1  1 -1 19.740 20.165 19.967 20.545 20.104 0.341 0.116 

8 0  1  1  1 20.242 19.528 19.740 20.049 19.890 0.318 0.101 

9 1 -1 -1 -1 20.140 19.757 19.821 20.241 19.990 0.237 0.056 

10 1 -1 -1  1 19.615 19.767 20.425 20.157 19.991 0.368 0.136 

11 1 -1  1 -1 20.337 20.084 19.351 19.772 19.886 0.425 0.181 

12 1 -1  1  1 20.062 20.039 20.290 19.661 20.013 0.260 0.068 

13 1  1 -1 -1 19.849 20.842 19.914 19.536 20.035 0.563 0.316 

14 1  1 -1  1 19.796 20.063 20.761 19.621 20.060 0.501 0.251 

15 1  1  1 -1 19.944 19.711 19.844 20.212 19.928 0.212 0.045 

16 1  1  1  1 19.188 20.428 19.723 20.087 19.856 0.531 0.282 

17 0  0  0  0 19.875 19.934 20.154 19.701 19.916 0.187 0.035 

18 1  0  0  0 20.272 19.774 19.928 20.057 20.008 0.210 0.044 

19 0  0  0  0 19.687 19.822 19.984 20.009 19.876 0.151 0.023 

20 1  0  0  0 19.912 19.688 19.730 19.712 19.760 0.102 0.010 

21 0  0  0  0 19.725 19.460 19.714 20.551 19.863 0.475 0.226 

22 1  0  0  0 19.883 19.519 19.525 20.884 19.953 0.644 0.415 
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We run a full second-order model with , , , and . Notice that the full 

second-order model with all quadratic effects has the singular X X  matrix. The response 

surface polynomial model is then expressed as follows: 

 
2 2 2

0 1 1 2 2 3 3 11 1 22 2 33 3 12 1 2

13 1 3 23 2 3 1 1 11 1 1 22 2 1 33 3 1     

y x x x x x x x x

x x x x z x z x z x z

       

      

       

      
  (4.25) 

where 22 0   and 33 0   because the quadratic effect vectors are linearly dependent. In 

addition, 11  is a biased estimator. Therefore, we drop 2

2x  and 2

3x  indicator columns from 

the X  model matrix. In addition, the updated X X  matrix is not singular and therefore all 

estimators are unbiased. Then, the response surface polynomial model is shown below: 

 
2

0 1 1 2 2 3 3 11 1 12 1 2 13 1 3 23 2 3 1 1

11 1 1 22 2 1 33 3 1     

y x x x x x x x x x x z

x z x z x z

        

   

        

   
 (4.26) 

 Using JMP software (2013), the fitted response surface functions for the process 

mean, process standard deviation, and process variance are obtained as follows: 

 

2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

ˆ ( ) 19.986 0.076 0.023 0.027 0.12 0.018

           0.006 0.03 0.03 0.076 0.072 0.037

x x x x x x

x x x x z z x z x z x

      

     

x
 (4.27) 

 

2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

ˆ ( ) 0.295 0.051 0.062 0.03 0.114 0.048

           0.037 0.024 0.01 0.014 0.032 0.058

x x x x x x

x x x x z z x z x z x

      

     

x
 (4.28) 

  (4.29) 

These fitted functions are now incorporated into the BB and HNBC algorithms, as 

shown in Table 4.13. 

 

1x 2x 3x 1z
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Table 4.13: Proposed Model Using the BB and HNBC Methods 

Given 
220,  0.02,  19.5,  20.5,  16 and 6f pcLB UB n n 

         

Objective Minimize 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05

(19.986 0.076 0.023 0.027 0.12 0.018

0.006 0.03 0.03 0.076 0.072

x x x x x x

x x x x z z x z x z x

x x x x x x

x x x x z z x z x

    

     

     

      2

1 30.037 20)z x 

 

Subject to C(1) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

19.986 0.076 0.023 0.027 0.12 0.018

0.006 0.03 0.03 0.076 0.072 0.037 19.5

x x x x x x

x x x x z z x z x z x

    

      
 

C(2) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

19.986 0.076 0.023 0.027 0.12 0.018

0.006 0.03 0.03 0.076 0.072 0.037 20.5

x x x x x x

x x x x z z x z x z x

    

      
 

C(3) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05 0

x x x x x x

x x x x z z x z x z x

    

      
 

C(4) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05 0.02

x x x x x x

x x x x z z x z x z x

    

      
 

Boundary constraints: 11 1 and  ( 1,2,3);  {0,  1}i ix x i z       

Method The branch-and-bound and hybrid nonlinear based branch-and-cut 

methods 

Find Factor settings * * * *

1 1 2 3( ,  ,  ,  )z x x x *
x  and an objective function value of 

the model 

 

In addition, we propose another optimization model for the outer approximation 

using the extraction process, as shown in Table 4.14. Notice that the model in Table 4.13 

is reformulated based on Equation (4.21) due to the boundary of the convex hull of the 

feasible set. 
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Table 4.14: Proposed Model Using the OA Method 

Given 
220,  0.02,  19.5,  20.5,  16 and 6f pcLB UB n n 

         

Objective Minimize   

Subject 

to 

C(1) 
2

1 2 3 1 1 2

2

1 3 2 3 1 1 1 1 2 1 3

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05

x x x x x x

x x x x z z x z x z x u 

    

       
 

C(2) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

19.986 0.076 0.023 0.027 0.12 0.018

0.006 0.03 0.03 0.076 0.072 0.037 20

x x x x x x

x x x x z z x z x z x u

    

       

C(3) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

19.986 0.076 0.023 0.027 0.12 0.018

0.006 0.03 0.03 0.076 0.072 0.037 20

x x x x x x

x x x x z z x z x z x u

    

       

C(4) 0.5u    

C(5) 0.5u   

C(6) 

2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05 0

x x x x x x

x x x x z z x z x z x

    

      
 

C(7) 
2

1 2 3 1 1 2

1 3 2 3 1 1 1 1 2 1 3

0.126 0.046 0.057 0.032 0.062 0.041

0.02 0.031 0.006 0.01 0.034 0.05 0.02

x x x x x x

x x x x z z x z x z x

    

      
 

Boundary constraints: 11 1 and  ( 1,2,3);  {0,  1}i ix x i z       

Method The outer approximation method 

Find Factor settings * * * *

1 1 2 3( ,  ,  ,  )z x x x *
x  and an objective function value of 

the model 

 

The results of the proposed models with the three different method using BONMIN 

(basic open-source nonlinear mixed integer programming) are summarized in Table 4.15.  

Table 4.15: Results of the Proposed Model Using the BB, HNBC, and OA Methods 

Method 
Input variables 

( )f *
x  

Total running 

time (seconds) 

Total 

memory *

1z  *

1x  *

2x  *

3x  

BB 1 0.106 0.924 0.945 9.91E-09 0.103 330736 

HNBC 1 0.109 0.928 0.942 9.65E-09 0.257 330736 

OA 1 0.107 0.925 0.944 9.98E-09 0.078 328704 
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It is observed that the three methods basically provide almost identical solutions. 

For this particular problem, however, the OA method seems a bit more effective than the 

other two methods in terms of the required total memory and total running time. Response 

surface plots and optimal solutions are depicted in Figure 4.4. 

 

 

 

Figure 4.4: Response Surface Plots of the Proposed Model 
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We now provide the comparisons of solutions using the proposed model with the 

OA method and traditional models (VM and LT) in the 0-1 MINLP framework, which are 

summarized in Table 4.16. 

Table 4.16: Comparison Study between the Proposed Model Using the OA Method and 

Traditional Models 

Model 
Input variables 

*ˆ ( ) x  2 *( ) x  *

1z  *

1x  *

2x  *

3x  

VM 1 0.104 1 1 20.000 0.023 

LT 1 -0.012 1 1 19.981 0.022 

Proposed 1 0.107 0.925 0.944 20.000 0.001 

 

Note that the VM model is convex, while The LT model is nonconvex due to a 

fourth-order objective function. We also observe that both the VM and proposed models 

achieve the desired target value. In this particular example, the proposed model using the 

OA method outperforms the traditional VM and LT models for three reasons. One, the VM 

and LT models provide larger variances. Two, the VM and LT models do not satisfy the 

desired upper bound for the process variance. Three, the proposed model gives the smallest 

optimum objective value, the smallest optimum standard deviation, and the smallest bias 

value. The particular numerical example supports the merit of the proposed models in 

finding better solutions. 
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Conclusions 

Following the pioneering work of Taguchi (1986) and Vining and Myers (1990), a 

number of research attempts have been made to strive for better RPD solutions. Common 

denominators of those attempts include central composite designs and convex RPD 

problems with quantitative input variables on a continuous scale. In this chapter, we have 

developed special 0-1 mixed integer nonlinear programming models using a response 

surface based factorial design with pseudo center points by incorporating both qualitative 

and quantitative input variables. Compared to the existing RPD models, such as the dual 

response and MSE models, the proposed models may significantly reduce process 

variation, thereby obtaining better RPD solutions, as shown in the numerical example. 

Three different solution methods, which are the outer approximation method, the branch-

and-bound method, and the hybrid nonlinear based branch-and-cut algorithm, were 

selected in order to measure computational efficiency and computing time to solve 

proposed convex and nonconvex RPD problems. The numerical example shows that the 

outer approximation method for the proposed models may be superior to the branch-and-

bound method and the hybrid nonlinear based branch-and-cut algorithm for the particular 

numerical example illustrated in this chapter. 

The proposed model may have limitations which can serve as fruitful future 

research areas. One, engineers may need to deal with more than one quality characteristic 

in real-life situations. Our proposed models allow only one quality characteristic. As such, 

models need to be expanded into a multi-response design of experiments and possibly 

multi-criteria integer programming models by balancing trade-offs between conflicting 
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objectives. Two, there are situations in which a design space where the model is fitted may 

not be the same as a solution space where the optimal solution is to be determined. 

Incorporating such ideas into optimal designs may be worth some attention. Finally, the 

proposed model allows only three levels mainly because factorial designs with center 

points consists of -1, 0, and +1. If main factors are of primary interest, Taguchi’s orthogonal 

designs may be effective with more than three levels. 
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CHAPTER FIVE 

ROBUST PARAMETER DESIGN OPTIMIZATION WITH A NONLINEARLY-

CONSTRAINED IRREGULAR EXPERIMENTAL DESIGN SPACE 

 

Introductory Remarks 

Continuous process improvement is a critical concept in maintaining a competitive 

advantage in the marketplace. It is also recognized that process improvement activities are 

most efficient and cost-effective when implemented during the early design stage. Based 

on this awareness, robust parameter design (RPD) was introduced as a systematic method 

for applying experimental design and optimization tools. The primary goal of RPD is to 

determine the best design factor settings, or optimum operating conditions, that minimize 

performance variability and deviations from the target value of a product. Because of their 

practicability in reducing the inherent uncertainty associated with system performance, the 

widespread application of RPD techniques has resulted in significant improvements in 

product quality, manufacturability, and reliability at low cost. 

 

Research Motivations 

When designing an experiment, there are numerous situations in which standard 

multi-level, multi-factor experimental designs, such as full factorial designs, fractional 

factorial designs, Box-Behnken designs, and central composite designs, are no longer 

effective. The situations include that the experimental design space of interest may be 

constrained, or already-performed experiments many have to be included. The experiment 
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may involve qualitative factors with more than two levels, mixture and process factors in 

the same design, or the experimenter may specify a certain set of design points. In addition, 

the situation may call for reducing the number of experimental runs or using a reduced 

regression model in fitting the data. Optimal designs, also referred to as computer-

generated designs, are an effective experimental design platform for handling these special 

situations. In loose terms, the optimality of a design is defined with respect to two main 

characteristics. One is the ability to estimate accurately the coefficients of the regression 

model and the other is to estimate accurately the response function. The first approach is 

very useful when the experimenter knows the exact form of a response function. The latter 

case corresponds to a situation in which the underlying model is not known and therefore 

the experimenter wants to approximate a functional relationship within a given region of 

interest defined by the intersection of the ranges for several critical parameters. Among the 

optimal designs available in the literature, D-optimal designs are perhaps one of the most 

popular designs.   

 This chapter focuses on D-optimal designs when the experimental region of 

interest, or an experimental design space, is irregular due to non-linear process constraints. 

Several algorithms for linearly-constrained D-optimal designs are available. They are the 

Fedorov exchange algorithm (Fedorov, 1972), the search algorithm (Dykstra, 1971), the 

exchange algorithm (Mitchell and Miller, 1970), and the DETMAX algorithm (Mitchell, 

1974); however, there has been little research work on nonlinearly-constrained D-optimal 

designs. Also, standard statistical software packages, including SAS, JMP, MATLAB, 

Minitab, and Design-Expert, do not support nonlinearly-constrained D-optimal designs. 
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This chapter uses a linearization scheme for nonlinear constraints on the design space. By 

implementing the linearization process, two challenges are observed. First, some of 

generated optimal design points may be infeasible since they can be located in between the 

approximate linear constraints and the original nonlinear constraints. This can be overcome 

by imposing additional piecewise linear functions until the feasibility condition is met. 

Another challenge is to establish a mechanism for the optimality condition, noting that the 

D-efficiency decreases as additional piecewise linear functions are imposed on the design 

space. This chapter proposes an algorithm for generating optimal design points based on 

the D-efficiency concept that satisfy both feasibility and optimality conditions for the 

nonlinearly-constrained design space. Once the D-optimal design points with both 

conditions met are obtained in the experimentation phase, the next task is to obtain a fitted 

response function and develop nonlinear programming RPD models, referred to as D-

optimality-embedded RPD models in this chapter, to obtain the optimum operating 

conditions for process factors on the nonlinearly-constrained design space. 

 

Review of the D-Optimality Criterion 

The abbreviations and notation used in this chapter are described below. 

y   : A scalar-valued response 

N  : The total number of design points 

ix   : Input variables where 1,  2,  ...,  i m  

X   : An m k  matrix consisting of the levels of the input variables 

is   : The estimated standard deviation of the ith run 
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2

is   : The estimated variance of the ith run 

 f x   : A function where 1 1 2 2( ) [ ( ),  ( ),  ...,  ( )]N Nf f f f x x x x  

 M ξ   : The design moment matrix 

    M ξ  : A function of the design moment matrix 

LD   : The minimum desired D-efficiency defined by the user 

X  : Design space 

k  : The number of parameters in the model 

aN   : The number of additional design points 

LB  : Lower bound of x 

UB  : Upper bound of x 

ˆ ( ) x   : The fitted response function for process mean 

   : A desired target value of process mean 

ˆ( )  x  : A process bias 

ˆ ( ) x   : The fitted response function for process standard deviation 

  : The fitted response function for process variance 

LSL   : Lower specification limit for process output 

USL   : Upper specification limit for process output 

 

Traditional experimental designs, such as full factorial designs, fractional factorial 

designs, Box-Behnken designs, and response surface designs, are appropriate for the 
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experiment where all factor settings are feasible in the design space. In some engineering 

situations, however, certain combinations of factor levels are infeasible or too expensive 

to measure, and as a result, its design space becomes asymmetric and irregular. D-optimal 

designs, one of the classes of computer-generated optimal designs, seek optimal design 

points that minimize the covariance of the parameter estimates by a computer-aided 

iterative exchange algorithm. Unlike the aforementioned traditional experimental designs, 

D-optimal designs are not typically orthogonal and as a result, parameter estimates may be 

often correlated. Since D-optimality is essentially a parameter estimation criterion, the 

quality of the parameter estimates is determined by their covariance structure.  Minimizing 

the covariance of the parameter estimates is equivalent to maximizing the determinant of 

the information matrix ,X X or ,X X  where X is the design matrix. It can be shown that 

for fixed diagonal terms in X, X X  becomes the largest when all off-diagonal terms are 

zero. Note that the determinant is the product of the eigenvalues, which is inversely 

proportional to the product of the axes of the confidence ellipsoid around the parameter 

estimates. Accordingly, maximizing the determinant of the information matrix is also 

equivalent to minimizing the volume of the confidence ellipsoid on the vector of regression 

coefficients. Thus, maximizing the determinant of the information matrix leads to 

minimizing the covariance of the parameter estimates and minimizing the volume of the 

confidence ellipsoid. 

The design moment matrix is found using the information matrix ( X X ) as follows: 

 ( )
N




X X
M ξ  (5.1) 
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where ξ  is a matrix of design points for a set of N experimental runs. The D-optimality 

criterion focuses on good estimation of model parameters and it is defined as follows: 

 [ ( )] | ( ) |  and ( ,  ) ( ,  )k d   Μ ξ Μ ξ x ξ x ξ  (5.2) 

where 1( ,  ) ( ) ( ) ( )d f fx ξ x Μ ξ x  for an D-optimal experimental design. Then, we have 

the following equations, which are equivalent to 

 * arg  max  | ( ) |
ξ

ξ Μ ξ  (5.3) 

 * arg min max  ( ,  )d 
ξ x

ξ x ξ  (5.4) 

 *max  ( ,  )
X

d k


 
x

x ξ  (5.5) 

The design *
ξ  is D-optimal if and only if      1f f k x M ξ x  for ∀x∈X. Note that the 

D-optimality criterion satisfies all the assumptions below (Kiefer, 1959; Cook and Federov, 

1995): 

 X is a compact design space. 

 ( )f x  is a continuous function and :f  . 

 [ ( )] Μ ξ  is a convex function.  

 { :  [ ( )] }q   ξ Μ ξ  for a real number q. 

 [(1 ) ( ) ( )] (1 ) [ ( )] ( )         Μ ξ Μ ξ Μ ξ Μ ξ  

where ( , ]  ξ  and  0,1  . 
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Proposed Cutting-Plane Outer Linearization Scheme for Nonlinear Constraints within an 

Irregular Design Shape 

Let nonlinear constraints consist of nonlinear functions ( ).ig x  We assume that all 

constraints are active, which means that constraints will influence finding design points 

and that the set of x  satisfying Equation (5.6) is not empty. Then, we consider a D-optimal 

experimental design problem with a nonlinearly-constrained design space in order to 

maximize the determinant of the  M ξ  while satisfying the nonlinear constraints in the 

convex design space. The conceptual optimization model is then written as: 

 

       

   

   

1* *arg  max   or arg  min  

subject  to 0 for 1,  2,  ...,   Nonlinear constraints

                 0 for 1,  2,  ...,   Linear constraints

                  Boundary constraints f

i

j

g i l

h j p

LB UB


   

 

 

 

ξξ
ξ M ξ ξ M ξ

x

x

x  

 

 

or input variables

                  The total number of design points

                 

N

N




X X
M ξ

 (5.6) 

where  ig x  are convex and twice continuously differentiable functions. Given the total 

number of runs for an experiment, the computer-generated candidate sets of design points 

are updated until  * ξ is achieved. 

We apply the outer approximation concept to convert a nonlinearly-constrained 

experimental design into a linearized experimental design space for obtaining optimal 

interior design points. For the nonlinear functions  ig x associated with the nonlinear 

constraints in Equation (5.6) on the design space, linearization of the nonlinear constraints 

is used in this chapter. Linearization is a linear approximation of a nonlinear function in a 



 86 

small region around anchor points. As shown in Figure 5.1a, inner linearization of  ig x is 

done first and the inner linear function would move parallel towards the nonlinear function 

until it touches any point on the nonlinear function. In this chapter, the touching point will 

be referred to as an anchor point. Around the anchor point at a=(0.707, 0.707), three outer 

linear functions are created on the design space. Due to the nature of outer linear functions, 

infeasible design spaces are often created and computer-generated optimal design points 

may fall in those regions. In order to reduce the infeasible space, imposing additional outer 

linear functions on the design space is recommended. As shown in Figure 5.1b and 5.1c, 

the nonlinear function is well approximated by imposing additional outer linear functions 

on the design space. The potential question is how many piecewise outer linear functions 

are needed. This is an issue of feasibility conditions, and the proposed exchange algorithm 

outlined in the proposed exchange algorithm section defines the required number of outer 

linear functions. Outer linear functions can be obtained as follows: 

 
         

        

( )

1 2

0,  1,  2,  ...,  ,  

 and ,  ,  ...,  .

r rri
i

r r

g
g i l

P P


    

 

a x a a
x

a a a a

 (5.7) 

where  r
a  is the rth anchor point which touches the nonlinear function. 
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 (a) (b) (c) 

Figure 5.1: (a) Three Outer Linear Constraints with One Anchor Point; (b) Four Outer 

Linear Constraints with Two Anchor Points; (c) Five Outer Linear Outer Constraints with 

Three Anchor Points 

 

The corresponding design problem in Equation (5.6) can be stated for each iteration 

in the following way: 

 

 

     

* * 1( ) arg  max  | ( ) |  or ( ) arg  min  | ( ) |

subject  to ( ) 0 1,  2,  ...,   (Outer linear constraints)

                 0 1,  2,  ...,   Linear constraints

                 

          

i

j

L i l

h j p

LB UB

   

  

  

 

ξξ
ξ M ξ ξ M ξ

x

x

x

         The total number of design points

where ( ) .

N

N




X X
M ξ

 (5.8)  

where        ( )( )
r rri

i i

g
L g


  x a x a a

x
. We can reformulate the design problem in 

Equation (5.8) with the Lagrangian function to verify a solution of optimal design points 

for piecewise linear functions on an experimental design space as follows: 
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  
1 1

max  ( , , , )= ( ,  ) ( )  
pl

i i j j

i j

q u L v h
 

  
x

x u v ξ x ξ x x  (5.9) 

where iu  and 
jv  are the Lagrange multipliers for  1,  2,  ...,  i l   and  1,  2,  ...,  j p  . 

For each iteration, a D-optimal experimental design ( *
ξ ) is optimal with the existence of 

*
u ,  *

v  and *
ξ  if Equation (5.10) holds true. 

 

   

   

 

* * * * * *

1 1

* * *

1 1

*

*

*

*

max  , , , = ( ,  ) ( )  

where ,  ( )  0

           ( ) 0

           0

           0,   and 1,  2,  ...,  

           

pl

i i j j
x

i j

pl

i i j j j

i j

i i

j j

l

i i

j

q u L v h

u L v h R

u L

v h

u u i l

v





 

 

 

     





  



 

 

x u v ξ x ξ x x

x ξ x x

x

x

0,   and 1,  2,  ...,  

            and .

p

jv j p

LB UB N

 

 x

 (5.10) 

Note that  * * *, , , 0q x u v ξ  due to the Lagrangian  stationarity where  * * *, , , q x u v ξ  is 

zero.  

 

Simulation Study on the Effect of Number of Runs and Number of Piecewise Outer 

Linear Functions on D-Efficiency 

In this section, we study the effect of number of runs and number of outer linear 

functions on D-efficiency. The findings are then incorporated into the proposed algorithm 

outlined in the proposed exchange algorithm section. Recall that a design is said to be D-

optimal if X X is maximized or  
1

X X  is minimized.  Note that the D-efficiency can be 

found as follows: 
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 

1/
1

efficiency

k

D
N




 
X X

 (5.11) 

where  
1

X X  is the product of the eigenvalues of  
1

X X  and the kth root of the 

determinant is the geometric mean. Lucas (1976) further developed a measure of the 

relative D-efficiency, De, of design 1 to design 2 based on the D-criterion, which is defined 

as 

 

 

1

1eD





 
 
  
 

2 2

1 1

X X

X X
 

where 1
X and 2

X are the design matrices for the two designs and k is the number of model 

parameters. A Relative D-efficiency ranges from 0% to 100%. When designs are balanced 

and the factor levels appear an equal number of times (i.e., orthogonal) within the design, 

the D-efficiency of those designs will be 100%. As such, full factorial designs have a 100% 

D-efficiency measure.  

 Consider the nonlinear constraint 2 2

1 2 1 for [0,1] ix x x i     and the linear 

constraint  1 2 1.5 for [ 1,0] 1,2ix x x i        over the design space X =

    1,1 1,2 .i ix x i     Table 5.1 shows the results of D-efficiencies with different 

numbers of runs, piecewise outer linear constraints (POLCs) and linear constraints (LCs). 

Two observations are made. First, as the number of runs increases, D-efficiency increases 

and reaches a state of little change when the number of runs is very large. Second, for a 

fixed number of runs, D-efficiency decreases for a large number of runs, as more POLCs 
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are added. This is because the design space becomes smaller by imposing additional 

POLCs. However, for a relatively small number of runs, D-efficiency does not always 

decrease as more POLCs are added to the design space. This pattern is observed when the 

numbers of runs are 1, 10, and 100. This pilot study indicates that for the small number of 

POLCs, 1,000 runs seem to provide the nearly highest D-efficiency. However, when 

POLCs are added due to the existence of infeasible design points in any iteration, it is 

recommended to significantly increase the number of runs.  These observations are of a 

particular importance in developing the exchange algorithm in the proposed exchange 

algorithm section. 

Table 5.1: Simulation Study 

            

D –efficiency 

(De) with 

(POLCs, LC) 

        

Number of runs 

1 10 100 1,000 10,000 100,000 

 De with (3, 1) 38.719↑ 38.911↑ 38.912↑ 38.913↑ 38.913↑ 38.914 

 ↓ ↓ ↓ ↓ ↓ ↓ 

De with (4, 1) 36.662↑ 37.926↑ 37.933↑ 37.935↑ 37.936↑ 37.937 

 ↑ ↓ ↓ ↓ ↓ ↓ 

De with (6, 1) 36.895↑ 37.116↑ 37.117↑ 37.121↑ 37.125↑ 37.127 

 ↓ ↓ ↓ ↓ ↓ ↓ 

De with (10, 1) 34.974↑ 36.870↑ 36.904↑ 36.967↑ 36.970↑ 36.971 

 ↑ ↑ ↑ ↓ ↓ ↓ 

De with (14, 1) 35.281↑ 36.919↑ 36.923↑ 36.931↑ 36.933↑ 36.934 
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Proposed Exchange Algorithm for D-Optimal Design Points within an Irregular Design 

Space 

D-optimal designs are model-specified designs. In this chapter, a second-order 

model is considered. Based on the results, we propose the iterative exchange algorithm to 

obtain the D-optimal design with the D-efficiency close to the highest, which satisfy the 

feasibility and optimality requirements, over a nonlinearly-constrained design space.  As 

shown in Table 5.2, the purpose of the proposed exchange algorithm is to find D-optimal 

design points by maximizing the determinant of ( )Μ ξ  at each step by incrementally 

exchanging design points in the design matrix X. 

The complexity of the algorithm is ( ) ( ) ( )d e inO N O N O N  , where ( )dO N , 

( )eO N  and ( )inO N  are the size of the desired design, the number of edge points, and the 

number of interior points, respectively. Compared to first-order models, second-order 

models will require significantly large number of runs to achieve very high D-efficiency. 

We recommend at least 1,000 random runs and the proposed exchange algorithm should 

be able to find nearly global optimal design points. 

Decision makers should choose the number of design points based on cost 

considerations and resource limitations. Equation (5.7) implies that we have k design points 

in order to construct a D-optimal design. Imposing additional design points may be 

beneficial in maximizing the determinant of ( )Μ ξ  while retaining near orthogonality as 

much as possible (see de Auigar et al., 1995). Therefore, the total number of design points 

is aN k N   for D-optimal designs. 
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Table 5.2: Proposed Exchange Algorithm for a Nonlinearly-Constrained Design Space 

Phase Explanation 

I Specify input variables where ix , iLB x UB   and 1,  2,  ...,  i m . 

II Specify process parameters. 

III Find outer linear constraints using Equation (5.7). 

IV Determine a linearized-constrained irregular experimental design space. 

V Determine the number of design points for the D-optimal experimental 

design and the number of random runs. 

VI Construct a random design matrix  

where 1( ) ( ) ( )f f k x Μ ξ x  for ∀x∈X and | ( ) | 0Μ ξ . 

VII Set j=0. 

VIII Calculate | ( ) |Μ ξ  

where ( )j
N




X X
M ξ , 

2 2

11 1 11 21 ( 1)1 1 11 1

2 2

12 2 12 22 ( 1)2 2 12 2

2 2

1 1 2 ( 1) 1

1       

1       

1       

m m m m

m m m m

m mN N N m N mN N mN

x x x x x x x x

x x x x x x x x

x x x x x x x x







 
 
 
 
 
 
 

X and jξ  

represents a design matrix with design points of the jth run. 

IX Define the new design matrix as 
jξ  using each coordinate for each input 

variable for each point by other coordinates and new points in the design. 

X Set j=j+1 and define the new design matrix (
jξ ).  

XI Repeat steps (VIII-X) until the number of runs improves the D-efficiency. 

XII Check the optimality and feasibility requirements for D-optimal design 

points. 

 The optimality requirement: L

eD D where LD is the desired lower 

bound of D-efficiency.  

 The feasibility requirement: All design points are feasible. 

     If both requirements are met, then stop and *
ξ has been obtained. 

     If the optimality requirement is not met but the feasibility requirement is   

met, then increase number of runs significantly and go to phase step 

(VIII). 

     If the feasibility requirement is not met but the optimality requirement is 

met, then go to phase (XIII).  

XIII Find new outer approximation constraints using Equation (5.7) for each 

nonlinear function using new anchor points. 

XIV Modify the linearized design space from phase (XIII) and go to phase (V). 
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Some common design properties in the response surface methodology include 

orthogonality and rotatability. A design is orthogonal if the information matrix is diagonal 

(see Khuri and Mukhopadhyay, 2010). The aim is to minimize the variance of the estimated 

parameters while maximizing determinant of the diagonal matrix. The off-diagonal entries 

of the variance of the estimated parameters will be zero because the entries outside the 

diagonal are all zeros. Therefore, the effects of regression parameters can be independent 

while the design is orthogonal. In addition, all odd moments should be zero, such as 

1

[ ] /  and 1,  2,  ...,  
N

ia

a

i x N i m


   if the design is orthogonal. As for rotatability, a design 

is rotatable if the prediction variance, ˆ[ ( )]Var y x , is approximately constant at all the points 

in the design space that are equidistant from the center point. In general, however, D-

optimal designs for a constrained design space are not rotatable because odd moments are 

not zero and 4 2 2

1 1

[ ] / [ ] / 3 and ,  1,  2,  ...,   ( )
N N

ia ia ja

a a

iiii iijj x x x i j m i j
 

      where [ ]iiii  and 

[ ]iijj  represent the fourth pure and mixed moments, respectively. In addition, the 

rotatability may not be a desirable priority in the constrained design space because the 

design space is not a hypercube, sphere, or   hyper-sphere. 

 

Proposed D-Optimal Design-Embedded Robust Parameter Design Models 

The next task is to make transitions of the D-optimal points obtained in the 

proposed exchange algorithm section into the robust parameter design phase. Recall that 

the primary goal of robust parameter design (RPD) is to determine the best design factor 

settings, or optimum operating conditions, that minimize performance variability and 
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deviations from the target value of a product. This is done by obtaining fitted response 

surface functions. Consider the following second-order response model:  

 
0

1 2 1 1

m m m

i i ij i j ii i

i i j i i

y x x x x    
    

         (5.12) 

where i  and   are regression coefficients and an uncorrelated observed error, 

respectively. Using the D-optimal design points that have been generated using the 

proposed exchange algorithm, Respective fitted response functions for process mean, 

standard deviation, and variance are as follows.  

        
11

1 2
ˆ  and = ,  ,  ...,  NN y y y


      x X X X X y X M ξ Xy y  (5.13) 

      
11

1 2
ˆ( )  and = ,  ,  ...,  NN s s s


      x X X X X s X M ξ X s s  (5.14) 

  (5.15) 

2 2

11 1 11 21 ( 1)1 1 11 1

2 2

12 2 12 22 ( 1)2 2 12 2

2 2

1 1 2 ( 1) 1

1       

1       
where .

1       

m m m m

m m m m

m mN N N m N mN N mN

x x x x x x x x

x x x x x x x x

x x x x x x x x







 
 
 
 
 
 
 

X  

The system requirements are important in determining an effective RPD 

optimization model. For some situations, it is important that the mean response needs to be 

strictly equal to the desired target value. Then, the goal is to minimize the response standard 

deviation subject to the process mean equal to the target value of interest. Vining and Myers 

(1995) proposed the following dual response model: 

 

ˆMinimize ( )

ˆsubject to ( )=

                 and LB UB





 

  

x

x

x x

 (5.16) 
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It should be noted that the outer linear constraints in the design stage are now part of 

constraints in this optimization model. Under some other engineering situations, the mean-

squared error (MSE) optimization model may be preferred over the dual response model. 

The MSE model, proposed by Cho (1994) and Lin and Tu (1995), incorporates the concept 

of the squared deviations of the process mean from the target value and the process 

variance. The optimum operating conditions are then obtained by minimizing the squared 

deviations from the target and the variance at the same time. The model is given as follows: 

  (5.17) 

Three observations are made. First, both dual response and MSE RPD models were 

developed under the assumption that the design space of interest was either a cube for a 

full factorial design or a sphere for the central composite design. There has been little work 

on RPD models that incorporate D-optimality concepts. Second, the dual response model 

may create a relatively large amount of variability around the mean but the process bias 

would be essentially zero due to the equality constraint. Contrarily, the MSE model may 

provide less variability but may create some process bias.  Finally, the variability measures 

may change optimum operating conditions for a response surface (see Goethals et al., 

2009). The standard deviation estimator may produce a better point estimator than the 

variance counterpart. However, the variance estimator may result in smaller values of mean 

squared error than the one from the dual response model. While both RPD models are their 

own merits, in practice, however, the requirement for the process mean being at the target 

as a strict system constraint would result in large process variability. Also, large process 
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bias would exhibit by minimizing the process variability. To address these potential 

weaknesses, the new RPD model, namely the D-optimal design embedded RPD model for 

nonlinearly constrained design space, is proposed, as shown in Table 5.3. The proposed 

model includes the proposed concepts of the outer linear constraints and the proposed 

exchange algorithm for D-optimal design points. In addition, the lower and upper bounds 

of process mean defined by users are included as a constraint. Finally, the proposed model 

allows users to choose either standard deviation or variance measure. 

Table 5.3: Proposed D-Optimal-Design-Embedded RPD Optimization Model for 

Nonlinearly-Constrained Design Space 

Minimize  
1

* N


  
 

X M ξ X s  or  
1

* N


  
 

2
X M ξ X s ; see Table 5.2 

Subject to  
1

*LSL N USL


   
 

X M ξ X y  

 
1

* 0N


   
 

X M ξ X s  or  
1

* 0N


   
 

2
X M ξ X s  

     

   

0 1,  2,  ...,   Outer linear constraints

0 1,  2,  ...,   (Linear constraints)

i

j

L i l

h j p

  

  

x

x
 

,   and LB UB N  x x  

Given ,  ,  USL LSL  and a linearized-constrained design space 

Find Factor settings *
x  and an objective function value of the model 

where *

1 2[ , , ...,  ]mx x x x   

 

The optimum operating conditions, or the RPD solutions, to the proposed model 

provide the global minimum since the objective function and constraints are convex. These 

observations are proved through the following proposed lemma. 
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Lemma: Assume that *
x  is the minimum of the problem in Table 5.3, the objective 

function, ( ),f   is continuous at a feasible point *
x  and Slater’s condition is satisfied. Then, 

there exists 
*

λ  subject to 

  

*

1 2

3 3 3 2

3 2

1 2

3 3

3 2

ˆ ˆ ˆ0 ( ) ( ( ) ) ( ( ) )

ˆ     ( ( )) ( ) ( )

     ( ( ))

ˆ ˆ*( ( ) ) 0,  *( ( ) ) 0,  

ˆ       *( ( )) 0,  *( ) 0,

       *( ) 0,  and 

m m

m l i

m

m

LSL USL

LB UB

g

LSL USL

LB

UB

    

   



   

  

 

 

 





     

      



    

    

 

x x x

x x x

x

x x

x x

x 3 2 *( ( )) 0m l ig  x

 (5.18) 

Furthermore, if the objective function and constraints are convex and *
x  and  

*

λ  

are satisfied, then *
x is the global minimum of the problem shown in Table 5.3. 

 

Proof: There exists *ˆ ( )s  x  subject to 
0

*( )Xs N  x . In addition, the following 

equation is hold: 

 
0

0
0

o o

0 0 0

( )

[ ( )] [ ( )] cone[ ( )]X X i

i I

T T g


  
x

x x x  (5.19) 

where 0( )XT x  is the set of all tangent directions for X  at x is a closed cone, 0

0( )I x  is the 

set of {1,  2,  3, ...,  3 2 },i m l    and 
0 0

* o *[ ( )] ( )X XT Nx x . Equation (5.19) is valid 

because Slater’s condition is satisfied. We then have 

 
0

0 *

* *

( )

( ) cone[ ( )]X i

i I

s N g


   
x

x x  (5.20) 

Using Equation (5.20), there exists * 0i   and 0 *( )i I x . Thus, we have the following 

equation 
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0

0 *

* * *

( )

( ) ( )X i i

i I

s N g


   
x

x x  (5.21) 

By setting * 0i   for 0 *( )i I x in Equation (5.18), there exist sub-gradients 

* * 0 *ˆ( ),  ( ),  ( )i is s g i I  x x x  and 
0

*( )Xv N x  subject to 

 
0 *

*

( )

0 i i

i I

s s v


  
x

 (5.22) 

Suppose that fx  is a feasible point of the problem in Table 5.3. We obtain the following 

equation using the scalar product of *

f x x : 

 
0 *

*

( )

0 ,  ,  ,  f i f fi
i I

s s v


     * * *

x

x x x x x x  (5.23) 

where 
0

* *( )f XN x x x  because fx  is feasible and 
*,  0fv  x x  due to 

0

*( )Xv N x . 

In addition, we have  

 ,  0 ( ) ( ) 0f i f ii
s g g    * *

x x x x  (5.24) 

 ,  0fs  *
x x  (5.25) 

where 0 *( )i I x  and ( ) 0i fg x . Then, *ˆ ˆ( ) ( )f x x . Therefore, *
x  is the minimum of 

the problem. Since *

0Xx , *
x  is the global minimum of the optimization problem in Table 

5.3 where 0X  is a convex polyhedron. █ 

 

Numerical Example 

We consider the adhesive bonding experiment described in Myers et al. (2009). In 

the experiment, there are two input variables, which are the amount of adhesive ( 1x ) and 
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cure temperature ( 2x ).The response of interest is the pull-off force and its desired target 

value is 195, and the allowable lower and upper bounds of the force are 190 and 200, 

respectively. The coded low and high levels of those input variables are denoted by -1 and 

+1, respectively; thus, the design space is jointly formed by 1 [ 1,  1]x   and 2 [ 1,  1].x    

This leads to a regularly-shaped square design space. Consider the two constraints on the 

current design space are imposed as follows. 

 

2 2

1 2 1 2

1 2 1 2

1 for [0,1] and [0,1]
Constraints on design space =

1.5 for [ 1,0] and [ 1,0]

x x x x

x x x x

    


      
 (5.26) 

Figure 5.2a shows the irregular design space that results from applying these linear and 

nonlinear constraints. This section illustrates the application of the proposed exchange 

algorithm to generate the D-optimal design for N = 12 by linearizing the nonlinear 

constraint on the design space. This was executed using JMP and MATLAB software on 

the computer with 2.3 GHz Intel Core i5 and 8 GB DDR4 memory (see Appendix C for 

the computer code and procedure). Based on the D-optimal design points that are 

generated, several optimization models are developed and the optimum operating 

conditions are compared. 

 

Generating D-Optimal Design Points for the Nonlinear Design Space 

The proposed computer-aided coordinate-exchange algorithm requires multiple 

stages Using the outer approximation method described, 2 2

1 2 1x x   for 

1 2[0,1] and [0,1]x x   is approximated by 1 2 1 20.707 0.707 1, 1 and 1x x x x    . Figure 
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5.2 shows the nonlinear design space and linearized approximation of the design space for 

the ith iteration  1,  2,  ...,  5i  . 

 

  

 (a) (b) (c) 

 

 

 (d) (e) (f) 

Figure 5.2: (a) The Nonlinear Design Space; (b) The Linearized Design Space for the 

First Iteration; (c) The Linearized Design Space for the Second Iteration; (d) The 

Linearized Design Space for the Third Iteration; (e) The Linearized Design Space for the 

Fourth Iteration; (f) The Linearized Design Space for the Fifth Iteration 

 



 101 

As shown in Figure 5.2, blue points are feasible design points and red points are 

infeasible design points for each iteration. Figures 5.2a-5.2f show that the nonlinearly-

constrained design space is convex and the linearized design space is a convex polyhedron 

for each iteration. We start the first iteration of the proposed algorithm with points (0, 1), 

(0.707, 0.707) and (1, 0) to linearize the nonlinear function for the irregular experimental 

design. The outer linear functions are found as follows:  

1 2 1 20.707 0.707 1, 1 and 1x x x x     

The primary design problem can be expressed in the following models:  

 

1 2

1

2

1 2

2 2

11 21 11 21 11 21

12 22 12 22

Maximize | ( )|

subject to 0.707 0.707 1

                1

                1

                1.5

             1 1 and 1,  2

1   

1  
where ( )  and 

i

x x

x

x

x x

x i

x x x x x x

x x x x x

N

 





  

   


 

M ξ

X X
M ξ X

2 2

12 22

2 2

1 2 1 2 1 2 6

 
     

1   N N N N N N N

x

x x x x x x


 
 
 
 
  
 

 (5.27) 

Since the number of parameters is six, we need at least six design points to run the D-

optimal design for this experiment. For N=12 design points, Tables 5.4 and 5.5 show the 

D-optimal design points for the ith iteration and their associated piecewise linear 

constraints, respectively. 
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Table 5.4: Iterations 1-5 

Iteration i 1 2 3 4 5 

Input 

variables 1x  2x  1x  2x  1x  2x  1x  2x  1x  2x  

 

Design 

Matrix 

(DM) 

 1.00 -1.00 -0.50 -1.00 -1.00  1.00 -1.00  1.00 -1.00  1.00 

-1.00 -0.50  1.00 -1.00  1.00 -1.00  0.92  0.38  0.96  0.26 

-1.00  1.00 -1.00 -0.50 -0.50 -1.00  0.19  0.98  0.96  0.26 

 1.00  0.41 -1.00  1.00 -1.00 -0.50 -1.00 -0.50  0.26  0.96 

 0.41  1.00  0.76  0.76  0.94  0.39 -0.06 -0.04 -1.00 -0.50 

 1.00  0.41 -0.03 -0.02  0.10  1.00  1.00 -1.00 -0.50 -1.00 

-0.50 -1.00  1.00  0.19 -1.00  1.00  1.00 -1.00  1.00 -1.00 

-1.00  1.00 -0.03 -0.03  1.00 -1.00  0.19  0.98  0.26  0.96 

-0.01 -0.01 -1.00  1.00  0.39  0.94 -1.00  1.00  1.00 -1.00 

-0.01 -0.01 -0.50 -1.00  1.00  0.10 -0.50 -1.00 -0.06 -0.05 

 0.41  1.00  0.19  1.00 -0.05 -0.04  0.98  0.20 -1.00  1.00 

 1.00 -1.00  1.00 -1.00 -0.06 -0.03 -0.04 -0.06 -0.06 -0.04 

Number of 

runs 
100,000 100,000 100,000 100,000 100,000 

Relative 

eD  
38.914 37.937 37.127 36.971 36.934 

Feasibility 

condition 
No No No No Yes 

Optimality 

condition 
Yes Yes Yes Yes Yes 

Number of 

constraints 
4 5 7 11 15 

 

The optimality requirement, 36,L

eD D  is met in the fifth iteration. The 

feasibility requirement is met because all design points in the fifth iteration are feasible. 

Therefore, both feasibility and optimality conditions for this particular D-optimal design 

are satisfied in the fifth iteration. Note that the D-optimal design shown in the fifth iteration 

provides a near orthogonality because [1]=0.068 and [2]=0.070.  As expected, however, 
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this D-optimal design is not rotatable because the design space is asymmetric and irregular, 

or because 
[1111] [2222]

1.425 and 1.425.
[1122] [2211]

   

Table 5.5: Piecewise Linear Constraints 

Iteration i Piecewise linear constraints 

1 
1 2 1 2 1 20.707 0.707 1, 1,  1,  and 1.5x x x x x x        

2 
1 2 1 2

1 2 1 2

0.414 1.082,  2.414 2.613

1,  1,  and 1.5

x x x x

x x x x

   

    
 

3 
1 2 1 2

1 2 1 2

1 2 1 2

0.198 1.020,  0.667 1.203

1.497 1.801,  5.025 5.128

1,  1,  and 1.5

x x x x

x x x x

x x x x

   

   

    

 

4 
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1

2 1 2

0.0974 1.005,  0.303 1.046,  0.534 1.135,

0.820 1.293,  1.217 1.577,  1.870 2.123,

3.296 3.448,  10.153 10.204,  1,  

1,  and 1.5

x x x x x x

x x x x x x

x x x x x

x x x

     

     

    

   

 

5 
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

0.0651 1.003,  0.198 1.020,  0.339 1.057,

0.493 1.116,  0.667 1.203,  0.877 1.331,

1.139 1.517,  1.497 1.801,  2.027 2.262,

2.947 3.115,  5.025 5.128,  15.3

x x x x x x

x x x x x x

x x x x x x

x x x x

     

     

     

    1 2

1 2 1 2

38 15.384,

1,  1,  and 1.5

x x

x x x x

 

    

 

 

RPD Optimization and Comparison Study 

For the robust parameter design optimization, the experiment is replicated four 

times at each D-optimal design point and data are collected, as shown in Table 5.6. 
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Table 5.6: D-Optimal Design and Relevant Summary Statistics 

Design 

point run 

Input variables Observations 
uy  us  2

us  
1x  2x  1uy  2uy  3uy  4uy  

1 -1.00  1.00 184.2 170.1 174.2 181.4 177.5 6.5 41.9 

2  0.96  0.26 202.6 184.0 177.8 193.2 189.4 11.0 11.8 

3  0.96  0.26 193.1 199.6 177.2 192.9 190.7 9.5 90.7 

4  0.26  0.96 191.2 210.9 195.4 202.9 200.1 8.7 75.3 

5 -1.00 -0.50 179.7 164.7 180.2 181.4 176.5 7.9 62.4 

6 -0.50 -1.00 186.2 182.4 185.0 204.0 189.4 9.9 97.3 

7  1.00 -1.00 196.0 213.0 202.6 200.8 203.1 7.2 51.2 

8  0.26  0.96 215.8 192.3 196.4 194.0 199.6 11.0 119.0 

9  1.00 -1.00 190.5 200.1 201.8 193.6 196.5 5.3 28.5 

10 -0.06 -0.05 203.0 204.4 202.6 196.1 201.5 3.7 13.7 

11 -1.00  1.00 160.5 194.3 185.1 159.7 174.9 18.0 306.0 

12 -0.06 -0.04 200.2 188.0 201.3 204.5 198.5 7.2 52.3 

 

The fitted response functions for process mean, standard deviation, and variance 

are found as follows: 

   2 2

1 2 1 2 1 2
ˆ 200.50 8.75 2.25 4.31 17.11 0.29x x x x x x      x  (5.28) 

   2 2

1 2 1 2 1 2
ˆ 5.51 0.36 2.11 2.09 3.23 2.59x x x x x x      x  (5.29) 

  (5.30) 

The D-optimal-design-embedded RPD model and the optimum operating 

conditions are shown in Tables 5.7 and 5.8, respectively. For this particular example, the 

optimal operating conditions from the proposed RPD model with ˆ ( ) x provide the smallest 

objective function value. Therefore, x* = (-0.104, -0.317). 
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Table 5.7: Proposed RPD Model 

Given 195,  190,  200,  and 12LSL USL N      

Objective Minimize 

  2 2

1 2 1 2 1 2
ˆ 5.51 0.36 2.11 2.09 3.23 2.59x x x x x x      x  

or 

 

Subject to 2 2

1 2 1 2 1 2190 200.50 8.75 2.25 4.31 17.11 0.29x x x x x x       

2 2

1 2 1 2 1 2200.50 8.75 2.25 4.31 17.11 0.29 200x x x x x x       

2 2

1 2 1 2 1 25.51 0.36 2.11 2.09 3.23 2.59 0x x x x x x       for ˆ ( ) 0 x  

2 2

1 2 1 2 1 233.94 14.90 41.66 18.08 53.88 37.15x x x x x x      for  

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2

0.0651 1.003,  0.198 1.020,  

0.339 1.057,  0.493 1.116,  

0.667 1.203,  0.877 1.331,

1.139 1.517,  1.497 1.801,  

2.027 2.262,  2.947 3.115,

 5.025 5.128,  15

x x x x

x x x x

x x x x

x x x x

x x x x

x x

   

   

   

   

   

 



1 2

1 2

Outer linear constraints

.338 15.384

1.5                            Linear constraint

x x

x x










  

  

 

1 1 and  ( 1,  2)                     Boundary constraint si ix x i      

Find Input variables * * *

1 2[ ,  ]x x x  and an objective function value of the model 

 

Table 5.8: Results of Each Model 

Model 
The dual 

response model 

The MSE 

model 

Proposed model 

with ˆ ( ) x  

Proposed model 

with  

Objective 

function 
5.927 34.420 5.243 26.349 

Optimal 

setting ( *
x ) 

(-0.374, -0.223) (-0.336, -0.245) (-0.104, -0.317) (-0.124, -0.465) 

Standard 

deviation 
5.927 5.806 5.243 5.133 

Bias 0.000 0.842 5.000 5.000 
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Conclusions 

Due to potential safety concerns, physical processing constraints, or the scarcity of 

resources, all factor combinations may not be implemented when conducting the 

experiment. In such situations, standard experimental designs are practically ineffective 

and as a result, the experimental design space forms an asymmetric and irregular space. 

While D-optimal designs for a linearly-constrained irregular design space are available in 

the literature, perhaps, to the best of our knowledge, this study on the development of D-

optimal design models and their associated RPD models for a nonlinearly-constrained 

experimental region is the first research attempt in the literature. The contribution of this 

chapter to the body of knowledge is threefold. First, the selection scheme of D-optimal 

design points and the exchange algorithm is proposed by using the outer linear 

approximation concept. Second, the feasibility and optimality conditions were developed. 

In particular, the proposed exchange algorithm can determine how many piecewise linear 

functions are required to meet the optimality condition. Finally, new RPD models were 

developed by linking the proposed exchange algorithm. We also proved that the proposed 

RPD model provides the global solutions.  

 The proposed methodology may have some limitations, which can serve as fruitful 

further research areas. First, the D-optimality criterion does not address the prediction 

variance to generate a measure of prediction performance. In this particular situation, the 

I-optimality criterion would be a suitable alternative for constructing optimal design points. 

Second, we assumed that nonlinear constraints form a convex set. Optimal designs for non-

convex design spaces could be another future study. Finally, we consider a single quality 
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characteristic in this chapter; however, incorporating multiple quality characteristics could 

be another potential future research area. 
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CHAPTER SIX 

CONCLUSIONS AND FURTHER STUDIES 

In this chapter, conclusions are drawn for solving response surface-based robust 

parameter design optimization problems considering both qualitative and quantitative input 

variables using special experimental designs and further studies are also discussed. 

Concluding Remarks 

Many RPD models have focused on continuous valued input variables in the 

literature. In this dissertation, response surface-based robust parameter optimization 

models were proposed to obtain robust optimal solutions for both qualitative and 

quantitative input variables using special experimental design methods. In Chapter III, a 

four-phased methodology was developed for finding optimal operating conditions with 

striving minimum bias and variance. It was also discussed that the Box-Behnken design 

was preferred over the other second-order designs, such as the traditional central composite 

design and three-level designs. The Box-Behnken design provides some important design 

properties, such as orthogonality, rotatability or near rotatability in order to maintain a 

consistent prediction variance over the design space. In addition, Box-Behnken design 

incorporated nonlinear mixed and pure integer programming optimization models were 

developed with the sequential quadratic integer programming and the Karush-Kuhn-

Tucker method. The numerical example showed that the proposed integer programming 

model provided a better optimal solution when considering more variance reduction. 
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In Chapter IV, a response surface-based factorial design with pseudo-center points 

was proposed to attain optimal operating conditions for both quantitative and qualitative 

input variables. Compared to the existing RPD methods, such as the dual response and 

MSE methods, the proposed model may significantly reduce the process variation when 

determining optimal solutions of 0-1 MINLP problems, where other methods may not be 

tailored to satisfy the process requirements for RPD optimization problems. The three 

different solution methods, such as the outer approximation, branch-and-bound and hybrid 

nonlinear based branch-and-cut algorithms, were performed in order to increase 

computational efficiency and reduce computing time for convex or nonconvex problems. 

Further, an application of the proposed model was illustrated and its computational results 

with the three different solution algorithms were found. The numerical example showed 

that the outer approximation method for the proposed model might be superior to the 

traditional methods, such as the branch-and-bound algorithm, in finding an optimal 

solution efficiently. 

Traditional experimental designs are not suitable to conduct experiments for 

nonlinearly-constrained irregular experimental design spaces due to safety concerns, 

process requirements and the scarcity of resources. In Chapter V, a D-optimal design was 

used to generate optimal design points with the proposed exchange algorithm as an 

efficient, fast and reliable method. In addition, D-optimal design embedded robust 

parameter design models were proposed to obtain global robust parameter design solutions 

for continuous-valued input variables. The proposed models resulted in more variance 

reduction than the traditional counterparts. 
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Finally, the proposed RSM-based RPD models in this dissertation may significantly 

decrease process variation for a wide range of many quality engineering problems while 

considering both qualitative and quantitative input variables using special experimental 

designs. 

 

Further Studies 

While we bridge the research gap between experimental designs and optimization 

models in this dissertation, there are a number of situations that may be unexplored. 

Therefore, we may make some possible extensions of the entire work. First, we considered 

single quality characteristic in the entire dissertation. In such situations, multiple quality 

characteristics would be considered to conduct special experimental designs. In addition, 

multi-criteria nonlinear programming models would be incorporated in order to obtain 

optimal operating conditions for input variables. Second, response surface design models 

are polynomial in nature due to second-order models. Indeed, second-order models are 

used in the response surface methodology due to flexibility, easy estimations and working 

well in solving real-world quality engineering problems. However, non-polynomial 

response functions would be another fruitful research area for some situations. Third, the 

ordinary least square method was used to generate unbiased estimators and statistics in 

regression analysis for the modelling phase. However, the weighed least square regression 

method would be useful for estimating the values of parameters in the model when the 

estimators have different weights. Finally, we would like to prioritize several objective 

functions for products and processes. Therefore, we would incorporate a nonlinear integer 
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goal programming model as another fruitful research area in order to obtain optimal 

operating conditions for both qualitative and quantitative input variables using special 

experimental designs. 
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APPENDICES 
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Appendix A 

Maple Codes for the Numerical Example in Chapter Three 

Sequential quadratic programming solution for the proposed RPD model (Maple) 

restart; with(Optimization); 

f := proc (x1, x2, x3) options operator, arrow; (53.15+2.88*x1+4.07*x2+(-1)*.86*x3+(-

1)*.22*x1^2+4.82*x2^2+5.35*x3^2+(-1)*3.88*x1*x2+6.73*x1*x3+(-1)*2.25*x2*x3-

60)^2+101.87+22.29*x1+(-1)*3.47*x2+(-1)*34.45*x3+(-1)*10.01*x1^2+(-

1)*29.05*x2^2+21.08*x3^2+3.37*x1*x2+(-1)*30.84*x1*x3+(-1)*18.83*x2*x3 end 

proc; 

g1 := proc (x1, x2, x3) options operator, arrow; abs(53.15+2.88*x1+4.07*x2+(-

1)*.86*x3+(-1)*.22*x1^2+4.82*x2^2+5.35*x3^2+(-1)*3.88*x1*x2+6.73*x1*x3+(-

1)*2.25*x2*x3-60)-.6 end proc; 

g2 := proc (x1, x2, x3) options operator, arrow; 101.87+22.29*x1+(-1)*3.47*x2+(-

1)*34.45*x3+(-1)*10.01*x1^2+(-1)*29.05*x2^2+21.08*x3^2+3.37*x1*x2+(-

1)*30.84*x1*x3+(-1)*18.83*x2*x3-144 end proc; 

g3 := proc (x1, x2, x3) options operator, arrow; x1^2+x2^2+x3^2-3 end proc; 

g4 := proc (x1, x2, x3) options operator, arrow; -1-x1 end proc; 

g5 := proc (x1, x2, x3) options operator, arrow; -1+x1 end proc; 

g6 := proc (x1, x2, x3) options operator, arrow; -1-x2 end proc; 

g7 := proc (x1, x2, x3) options operator, arrow; -1+x2 end proc; 

g8 := proc (x1, x2, x3) options operator, arrow; -1-x3 end proc; 

g9 := proc (x1, x2, x3) options operator, arrow; -1+x3 end proc; 

m := NLPSolve(f(x1, x2, x3), [g1(x1, x2, x3) <= 0, g2(x1, x2, x3) <= 0, g3(x1, x2, x3) 

<= 0, g4(x1, x2, x3) <= 0, g5(x1, x2, x3) <= 0, g6(x1, x2, x3) <= 0, g7(x1, x2, x3) <= 0, 

g8(x1, x2, x3) <= 0, g9(x1, x2, x3) <= 0], method = sqp, output = solutionmodule); 

m:-Results() 

Karush-Kuhn-Tucker points for the proposed RPD model (Maple) 

restart; with(VectorCalculus); with(LinearAlgebra); with(Optimization); 

f := proc (x1, x2, x3) options operator, arrow; (53.15+2.88*x1+4.07*x2+(-1)*.86*x3+(-

1)*.22*x1^2+4.82*x2^2+5.35*x3^2+(-1)*3.88*x1*x2+6.73*x1*x3+(-1)*2.25*x2*x3-

60)^2+101.87+22.29*x1+(-1)*3.47*x2+(-1)*34.45*x3+(-1)*10.01*x1^2+(-

1)*29.05*x2^2+21.08*x3^2+3.37*x1*x2+(-1)*30.84*x1*x3+(-1)*18.83*x2*x3 end 

proc; 

NULL; 

Delf := unapply(Gradient(f(x1, x2, x3), [x1, x2, x3]), [x1, x2, x3]); 

NULL; 

g1 := proc (x1, x2, x3) options operator, arrow; 53.15+2.88*x1+4.07*x2+(-1)*.86*x3+(-

1)*.22*x1^2+4.82*x2^2+5.35*x3^2+(-1)*3.88*x1*x2+6.73*x1*x3+(-1)*2.25*x2*x3-

60-.6 end proc; 
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g2 := proc (x1, x2, x3) options operator, arrow; -53.15+(-1)*2.88*x1+(-

1)*4.07*x2+.86*x3+.22*x1^2+(-1)*4.82*x2^2+(-1)*5.35*x3^2+3.88*x1*x2+(-

1)*6.73*x1*x3+2.25*x2*x3+60-.6 end proc; 

g3 := proc (x1, x2, x3) options operator, arrow; 101.87+22.29*x1+(-1)*3.47*x2+(-

1)*34.45*x3+(-1)*10.01*x1^2+(-1)*29.05*x2^2+21.08*x3^2+3.37*x1*x2+(-

1)*30.84*x1*x3+(-1)*18.83*x2*x3-144 end proc; 

g4 := proc (x1, x2, x3) options operator, arrow; x1^2+x2^2+x3^2-3 end proc; 

g5 := proc (x1, x2, x3) options operator, arrow; -1-x1 end proc; 

g6 := proc (x1, x2, x3) options operator, arrow; -1+x1 end proc; 

g7 := proc (x1, x2, x3) options operator, arrow; -1-x2 end proc; 

g8 := proc (x1, x2, x3) options operator, arrow; -1+x2 end proc; 

g9 := proc (x1, x2, x3) options operator, arrow; -1-x3 end proc; 

g10 := proc (x1, x2, x3) options operator, arrow; -1+x3 end proc; 

g := proc (x1, x2, x3) options operator, arrow; `<,>`(g1(x1, x2, x3), g2(x1, x2, x3), g3(x1, 

x2, x3), g4(x1, x2, x3), g5(x1, x2, x3), g6(x1, x2, x3), g7(x1, x2, x3), g8(x1, x2, x3), 

g9(x1, x2, x3), g10(x1, x2, x3)) end proc; g(x1, x2, x3); 

#Enter vector-valued constraint function. 

lambda := `<,>`(lambda1, lambda2, lambda3, lambda4, lambda5, lambda6, lambda7, 

lambda8, lambda9, lambda10); 

L := unapply(f(x1, x2, x3)+Transpose(lambda) . g(x1, x2, x3), [x1, x2, x3, lambda1, 

lambda2, lambda3, lambda4, lambda5, lambda6, lambda7, lambda8, lambda9, 

lambda10]); 

L(x1, x2, x3, lambda1, lambda2, lambda3, lambda4, lambda5, lambda6, lambda7, 

lambda8, lambda9, lambda10); 

LG := Gradient(L(x1, x2, x3, lambda1, lambda2, lambda3, lambda4, lambda5, lambda6, 

lambda7, lambda8, lambda9, lambda10), [x1, x2, x3]); 

CS := seq(g(x1, x2, x3)[i]*lambda[i] = 0, i = 1 .. 10); 

solutions := evalf(solve({CS, LG[1] = 0, LG[2] = 0, LG[3] = 0}, {lambda1, lambda2, 

lambda3, lambda4, lambda5, lambda6, lambda7, lambda8, lambda9, x1, x2, x3, 

lambda10})); n := nops([solutions]); 

NULL; 

for i to n do print(i, subs(solutions[i], g(x1, x2, x3)), subs(solutions[i], [`l&lambda;1`, 

lambda2, lambda3, lambda4, lambda5, lambda6, lambda7, lambda8, lambda9, 

lambda10])) end do; 

k := 16; 

 #The sixteenth solution is both feasible and satisfies multiplier conditions. 

solution := solutions[k]; #The KKT point for the RPD model. 
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Appendix B 

BONMIN Codes for the Numerical Example in Chapter Four 

Branch-and-Bound Method code for the proposed RPD model 

reset; 

var z binary;    

var x{1..3} >=-1 <= 1;  

minimize MSE: (19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 

0.018 * x[1] * x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 

0.072*z*x[2] - 0.037*z*x[3] -20)^2 + 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 

0.062*x[1]^2 - 0.041*x[1]*x[2] + 0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 

0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3];    

subject to   

c1: 19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 0.018 * x[1] * 

x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3] <= 20.5 ;   

c2: 19.986 - 0.076*x[1] + 0.023*x[2] - 0.027*x[3] + 0.12*x[1]^2 - 0.018*x[1]*x[2] - 

0.006*x[1]*x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3] >= 19.5 ;   

c3: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

<=0.02 ;   

c4: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

>=0 ; 

options solver bonmin; 

option bonmin_options "bonmin.algorithm B-BB"; 

solve;

display x;   

display z; 

Hybrid branch-and-cut code for the proposed RPD model 

reset; 

var z binary;    

var x{1..3} >=-1 <= 1;  

minimize mse: (19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 

0.018 * x[1] * x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 

0.072*z*x[2] - 0.037*z*x[3] -20)^2 + 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 

0.062*x[1]^2 - 0.041*x[1]*x[2] + 0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 

0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3];    

subject to   
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c1: 19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 0.018 * x[1] * 

x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3] <= 20.5 ;   

c2: 19.986 - 0.076*x[1] + 0.023*x[2] - 0.027*x[3] + 0.12*x[1]^2 - 0.018*x[1]*x[2] - 

0.006*x[1]*x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3] >= 19.5 ;   

c3: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

<=0.02 ;   

c4: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

>=0 ; 

 

options solver bonmin; 

option bonmin_options "bonmin.algorithm B-Hyb"; 

solve;               

display x;   

display z; 

 

Outer Approximation code for the proposed RPD model 

 

reset; 

var z binary;    

var x{1..3} >=-1 <= 1;   

var u; 

var n >=0; 

minimize mse: n;   

subject to   

c1: n>=(u)^2 + 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 

0.041*x[1]*x[2] + 0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 

0.034*z*x[2] - 0.05*z*x[3]; 

c2: u <= 0.5 ;   

c3: u >= -0.5 ;   

c4: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

<=0.02 ;   

c5: 0.126 + 0.046*x[1] - 0.057*x[2] - 0.032*x[3] + 0.062*x[1]^2 - 0.041*x[1]*x[2] + 

0.02*x[1]*x[3] + 0.031*x[2]*x[3] + 0.006*z - 0.01*z*x[1] - 0.034*z*x[2] - 0.05*z*x[3] 

>=0 ; 

c6: 19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 0.018 * x[1] * 

x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3]-20<=u; 
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c7: 19.986 - 0.076 * x[1] + 0.023 * x[2] - 0.027 * x[3] + 0.12 * x[1]^2 - 0.018 * x[1] * 

x[2] - 0.006 * x[1] * x[3] - 0.03*x[2]*x[3] + 0.03*z - 0.076*z*x[1] + 0.072*z*x[2] - 

0.037*z*x[3]-20>=u; 

options solver bonmin; 

option bonmin_options "bonmin.algorithm B-OA"; 

solve;

display x;  

display z;  

display u; 

display n; 
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Appendix C 

MATLAB Codes and JMP Procedures in Chapter Five  

Nonlinearly-constrained irregular experimental design space codes/procedures 

MATLAB Codes 

The proposed algorithm 

The first iteration 

nfactors=2; 

nruns=12; 

f1=@(x) [x]*[0.707;0.707]<1|[x]*[0;1]<1|[x]*[1;0]<1; %The linearized constraints 

bnds=[-1 -1;1 1]; 

x=sortrows(cordexch(nfactors,nruns,'quadratic',’tries’,100000,'bounds',bnds,'levels',101,'e

xcl',f1)) 

The second iteration 

nfactors=2; 

nruns=12; 

f2=@(x) [x]*[0.414;1]<1.082|[x]*[2.414;1]<2.613|[x]*[0;1]<1|[x]*[1;0]<1; 

bnds=[-1 -1;1 1]; 

x=sortrows(cordexch(nfactors,nruns,'quadratic','tries',100000,'bounds',bnds,'levels',101,'e

xcl',f2)) 

The third iteration 

nfactors=2; 

nruns=12; 

f3=@(x) 

[x]*[0.198;1]<1.020|[x]*[0.667;1]<1.203|[x]*[1.497;1]<1.801|[x]*[5.025;1]<5.128|[x]*[0

;1]<1|[x]*[1;0]<1; 

bnds=[-1 -1;1 1]; 

x=sortrows(cordexch(nfactors,nruns,'quadratic','tries',100000,'bounds',bnds,'levels',101,'e

xcl',f3)) 

The fourth iteration 

nfactors=2; 

nruns=12; 

f4=@(x) 

[x]*[0.0974;1]<1.005|[x]*[0.303;1]<1.046|[x]*[0.534;1]<1.135|[x]*[0.820;1]<1.293|[x]*[

1.217;1]<1.577|[x]*[1.870;1]<2.123|[x]*[3.297;1]<3.448|[x]*[10.153;1]<10.204|[x]*[0;1

]<1|[x]*[1;0]<1; 

bnds=[-1 -1;1 1]; 
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x=sortrows(cordexch(nfactors,nruns,'quadratic','tries',100000,'bounds',bnds,'levels',101,'e

xcl',f4)) 

 

 The fifth iteration 

nfactors=2; 

nruns=12; 

f5=@(x) 

[x]*[0.0651;1]<1.003|[x]*[0.198;1]<1.020|[x]*[0.339;1]<1.057|[x]*[0.493;1]<1.116|[x]*[

0.667;1]<1.203|[x]*[0.877;1]<1.331|[x]*[1.139;1]<1.517|[x]*[1.497;1]<1.801|[x]*[2.027

;1]<2.262|[x]*[2.947;1]<3.115|[x]*[5.025;1]<5.128|[15.338;1]<15.384|[x]*[0;1]<1|[x]*[1

;0]<1; 

bnds=[-1 -1;1 1]; 

x=sortrows(cordexch(nfactors,nruns,'quadratic','tries',100000,'bounds',bnds,'levels',101,'e

xcl',f5)) 

 

JMP Procedure 

 

The proposed algorithm 

1. Select DOE>Custom Design 

2. Select Custom Design>Optimality Criterion>Make D-Optimal Design 

3. Select Custom Design>Number of Starts and then enter “100000” 

4. Add the number of input variables and click continue 

5. Select Define Factor Constraints>Specify Linear Constraints Then Enter the outer 

linear constraints 

6. Select Model>RSM 

7. Select Design Generation>Number of Runs and then Enter the number of points 

defined 

8. Click Make Design 

9. Select Design Evaluation>Run Order>Keep the Same>Make Table 

10. Check the optimality and feasibility conditions  

a. If the design is optimal, then stop. 

b. Otherwise go to Step 1.  
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