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Abstract 

Ultrasonic additive manufacturing (UAM) is an additive manufacturing technology 

that combines an additive process of joining thin metal foils layer by layer using ultrasound 

and a subtractive process of CNC contour milling. UAM can join similar or dissimilar 

materials and allows for embedded objects such as fibers and electronics. Despite these 

advantages, the UAM process exhibits a critical bonding failure issue as the height of the 

built feature approaches its width. Based on previous studies, we believe that the loss of 

bonding is due to complex dynamic interactions between the high frequency excitations of 

the sonotrode and the built feature. While the previous investigations have qualitatively 

explained the cause of the height to width ratio problem by showing the change of dynamic 

states as new layers of foils are deposited, they do not explain how the change of dynamics 

affects bond formation. Specifically, a UAM model is needed to be able to predict the bond 

quality, i.e. bond or debond, as the dynamics of the substrate state change. 

In order to establish the model, a comprehensive understanding of the welding pro-

cess and bonding mechanisms is required. Due to the complexity of the bonding process, 

the model is first decomposed into several sub-models based on the different factors that 

affect the process. The key factors that govern the bonding process: material plasticity, heat 

transfer, friction, and dynamics need to be characterized. An experiment setup is designed 

to investigate and characterize the effects of ultrasound on aluminum 6061-O, 6061-T6, 
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1100-O, and Copper 11000-O. A plasticity model is proposed by modifying the Johnson-

Cook plasticity model to introduce strain-rate hardening and acoustic softening effects. A 

lumped parameter model consisting of mass-spring network is proposed to replace the fi-

nite element dynamic model for reducing computational cost. An asperity layer model 

based on sinusoidal shape solid asperities is proposed to associate the plastic deformation 

of the material to the linear weld density of the bonding at the interface. Other sub-models 

(thermal and friction models) are defined based on studies in the literature. The sub-models 

are implemented in the commercial software ABAQUS by using user subroutines and are 

integrated into one UAM model. The model is validated by comparing its prediction with 

experimental results in the literature. The proposed model can thus be used to understand 

the effects of dynamics on the stress state close to the bond interface, understand the energy 

flow within the UAM system, and evaluate the effects of different process parameters on 

the bond quality for process optimization.  
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Chapter 1 

1 Introduction 

1.1 Overview of Ultrasonic Additive Manufacturing 

The ultrasonic additive manufacturing (UAM) is a solid-state free form fabrication 

process that combines ultrasonic welding and CNC contour milling. The technology was 

invented and patented by Dawn White, and was commercialized by Solidica Inc. Now the 

technology is owned by Fabrisonic Inc. The fabrication process consists of an additive step 

(Figure 1.1) and a subtractive step (Figure 1.2). It begins with the placement of a thin metal 

foil (typically 100 - 150 µm thick) on a sacrificial base plate that is bolted on a moderately 

heated (150 °C) anvil. The foil is compressed onto the base plate or on previous layers 

under moderate compressive load (50 – 1600 N) by a rolling ultrasonic horn, which vibrates 

at a frequency of 20 kHz in a direction transverse to its rolling direction. The vibration 

amplitude ranges between 5 and 40 µm. The vibrating horn grabs the foil because of its 

textured surface, and as they vibrate together, the surface oxides at the foil-to-foil interface 

are displaced or eliminated through friction, the surface asperities are leveled off (Kong, 

Soar, and Dickens 2003; Ram, Yang, et al. 2007), the foils are compressed, and atomic 

1



2 

bonding is initiated by allowing metal-to-metal contact. When the bonding of a layer is 

completed, the next layer is welded to the previously deposited layer using the same pro-

cedure. Typically, four layers of deposited metal foils are defined as one level in UAM. 

When one level is finished, the subtractive step is started. A CNC milling head is used to 

shape the deposited layers to the required sliced contour. The additive-subtractive process 

is repeated until the desired dimensions of the feature are reached. 

Figure 1.1 Additive step of UAM Figure 1.2 Subtractive step of UAM 

In the additive step, the mechanism for bonding deposited foils originates from the 

ultrasonic metal welding (UMW). The UMW was invented over 60 years ago and has been 

under study ever since. It is a solid-state joining process in which metals are joined due to 

the introducing of ultrasonic vibrations and moderate compression. The joining process has 

been studied by many researchers but the exact mechanism is still not completely under-

stood (de Vries 2004). However, the most widely accepted theory is that by applying a 

moderate compression normal to the foil-to-foil interface and a high frequency differential 

motion parallel to the foil-to-foil interface, the asperities on the surfaces of the foils are 
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progressively sheared and plastically deformed, dispersing oxides and contaminants to al-

low for an increasingly close contact of pure metals (de Vries 2004).  The contact of pure 

metals then leads to the formation of bonds which are then plastically deformed by the 

differential motion and generate heat. The heat generated further promotes the diffusion, 

recrystallization, mechanical interlock, or possibly localized melting of materials at the 

foil-to-foil interface, resulting in true metallic bonds.  

The UAM allows for joining of a wide variety of metallic foils. The most commonly 

used foils are made of aluminum (ex. Aluminum 3003, 6061, and 1100) because of their 

extensive applicability. Other materials such as copper, nickel, and titanium can also be 

joined depending on the application. In theory, all of the metallic materials that can be 

joined through UMW are compatible with UAM. A list of the material combinations is 

shown in Figure 1.3. By joining different materials, the UAM process allows for the pro-

duction of metal matrix composites, functionally graded materials, fiber/sensor embedded 

metal structures, etc. (Fabrisonic 2016).  

The UAM has several advantages when compared to other metal additive manufac-

turing processes such as selective laser sintering (SLS), direct energy deposition (DED), 

and electron beam melting (EBM). Most of the metal printing processes operate at a tem-

perature close to or above the melting temperature of the metals, which negatively impacts 

the original mechanical properties obtained from heat treatment, leaves thermal residual 

stresses, and generates porous structures with limited ductility and low surface finish (J. 

Gibert 2009). In contrast, the overall temperature at which the UAM operates is claimed to 

be less than half of the melting point of the metals (White 2003). The joining process keeps 
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the mechanical properties of the stock materials and leaves little thermal residual stresses. 

The hybrid fabrication process of UAM allows for grinding steps to be added in between 

additive steps for better control over the surface finish. Additionally, UAM is capable of 

fabricating parts with large dimensions. The work space of UAM can be as large as 6 ft. in 

length, 6 ft. in width, and 3ft. in height (Fabrisonic 2016). 

 

 

Figure 1.3 Material combinations for UAM (KE Johnson 2008) 

 

Despite the advantages of being able to operate at relatively lower temperature (150 

°C), to yield higher surface finish, and to produce larger dimension structures than other 

metal additive manufacturing techniques, UAM has not established itself as an attractive 
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manufacturing alternative because of a critical operational issue known as “height to width 

ratio problem” (Robinson, Zhang, and Ram 2006). Specifically, as the height of the built 

feature approaches its width, bonding failure occurs between the foil and the feature and 

additional layers cannot be bonded. The issue is observed to be independent of the length 

of the feature. In aluminum 3003, the bond failure is observed as the height to width ratio 

of the feature falls in the range of 0.7 to 1.2. As the aspect ratio of the feature exceeds the 

critical range, however, the bond can be re-initiated (J. M. Gibert, Austin, and Fadel 2010) 

(Figure 1.4). 

 

 

Figure 1.4 The height to width ratio problem of UAM (J. M. Gibert, Austin, and Fadel 2010). 

 

The causes of bond failure at the critical aspect ratio has been studied by several 

researchers. Robinson et al. claim that the bond degradation is due to a decrease in the static 

lateral stiffness of the structure (Robinson, Zhang, and Ram 2006). They explain that, as 

the height of the feature increases, the static stiffness of the structure decreases, resulting 

in a deflection that decreases the magnitude of differential motion between the foil and the 

built feature. This differential motion is critical in removing the oxide layer and initiating 

BOND 
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bonding. Later, Zhang et al. investigated the stresses and strains distribution within the 

built feature and identify the superposition of ultrasonic waves within the built feature as 

responsible for the decreasing differential motion (Cunbo Zhang, Zhu, and Li 2006).  

Gibert et al. observe that as the height of the built feature exceeds a certain value, 

bonding can be re-initiated (J. M. Gibert, Austin, and Fadel 2010). Based on the observa-

tion, they state that if static stiffness alone is responsible for this bonding failure, then one 

would expect that bonding can never be re-initiated as long as the stiffness of the feature 

is reduced. By investigating the dynamic response and vibration modes of the built feature 

experimentally and analytically, they demonstrate that resonance of the built feature is ex-

cited as the height to width ratio falls in the range of 0.7-1.2 and that the resonance signif-

icantly reduces the differential motion between the foil and the substrate. The reduction of 

differential motion leads to either pure stick or aperiodic stick-slip motions, resulting in 

insufficient plastic deformation for removing surface oxides and initiating bonding (J. M. 

Gibert, Fadel, and Daqaq 2013).  Further, Gibert et al. show that by increasing the kinetic 

friction coefficient at the bond interface or the compression load, the aperiodic stick-slip is 

reduced and the bond quality is improved.  The bond degradation can also be avoided by 

adding a support structure next to the built feature. The natural frequency of the built fea-

ture is shifted and the resonance is avoided (Swank 2010).  

Researchers such as Zhang et al. and Gibert et al. qualitatively show that the bond 

degradation is due to the decrease of differential motion which is caused by changes in the 
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dynamic state of the built feature. However they do not further quantify that decrease, ex-

plain the change of material behavior in response to the change of dynamics, nor relate the 

built feature dynamics to bond quality.  

1.2 Motivation 

This research goes beyond the macroscopic dynamics perspective and focuses on 

the understanding of the mechanisms of the bonding process under dynamic conditions. 

While the previous investigations have qualitatively explained the cause of the height to 

width ratio problem by showing the change in the dynamics of the system as new layers of 

foils are deposited, they do not explain how the change of dynamics affects bond formation. 

Consequently, a better understanding of the UAM process is needed to capture the material 

behavior as bonding occurs and predict the resulting bond quality, i.e. bond or debond, as 

the dynamics of the built feature changes. In order to establish the model, a comprehensive 

understanding of the bonding process and bonding mechanisms is required. The key factors 

that govern the bonding process need to be identified experimentally and characterized. A 

model is developed and then used to predict the material behavior and to assess bond qual-

ity. In summary, the UAM model serves as a key link that connects the macroscopic dy-

namics of the built feature and the material behavior which determines bond quality at the 

interface. This dissertation presents the development of such a model and its use to predict 

bond formation and quality. 

 

1.3 Dissertation Outline 
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The dissertation is organized as follows. 

Chapter 2 starts with reviewing the literature related to the bond process and bond 

mechanisms of UAM in order to identify the most critical factor that governs the bond 

formation. Section 2.2 explores the literature in search of all the influential elements. Once 

the critical factor and its influential elements are identified, the third section 2.3 presents a 

review of the modeling techniques that are available in the literature to model the critical 

factor(s) and account for all its influential elements. The fourth section 2.4 reviews the 

existing models of UAM to identify the gaps in the literature. The last section 2.5 summa-

rizes the identified gaps and proposes the research questions with the associated hypothe-

ses.  

Chapter 3 presents an experimental investigation of acoustic softening. The chap-

ter starts with a review of the existing experimental setups and then proposes a design of 

the setup. The test procedures are described. The observations of acoustic softening in four 

different materials are presented and discussed. Finally, a macroscopic model is proposed 

to characterize the acoustic softening in a plasticity framework.  

Chapter 4 presents a plasticity model for UAM. The first section 4.1 discusses the 

hardening in case of a high strain rate deformation process of UAM, develops an analytical 

model for characterizing the effect, and incorporate the model into the plasticity frame-

work. The second section 4.2 introduces the acoustic softening model developed in section 

3.4 into the plasticity model. Section 4.3 discusses thermal softening of the specific mate-

rials used in this study and presents the model constants that are identified based on thermal 
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softening data in the literature. In section 4.4, the final plasticity model is presented with 

the associated model constants.    

Chapter 5 presents the thermal and friction models developed for UAM. The chap-

ter first describes the thermal model and the associated boundary conditions. The model 

constants are determined based on studies from the literature. Then the friction model is 

presented starting with a short review about the influential factors that should be accounted 

for in modeling the friction coefficient. Then the friction model is developed and taken into 

account the most influential factors.   

Chapter 6 describes how the dynamic, thermal, plasticity, and friction models are 

combined for developing a thermo-mechanical, finite element UAM model. Specifically, 

the integration of the sub-models are shown in section 6.1. The integrated model is then 

implemented in a commercial finite element software as explained in section 6.2. Section 

6.3 presents an asperity model that associates the prediction from the UAM model to the 

linear weld density of the bond. In section 6.4, the predictions from the UAM model are 

first validated by comparing to experimental results in the literature and then used to study 

the effects of dynamics on the stresses necessary for bonding. Furthermore, different ener-

gies dissipations are determined to understand the energy flow within the process. Last, 

The UAM model is run at different combinations of weld parameters and the resulting bond 

qualities (the linear weld densities) are evaluated for identifying an optimum process win-

dow.   

Chapter 7 summarizes the work by addressing the list of research questions pre-

sented in chapter 2. Then, the contributions from this work are presented to show its impact 
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on the understanding of the fundamental principles of UAM as well as the application of 

UAM technique. Last, the future work is discussed to show how this research could be 

possibly expanded to have a broader impact.  

Appendix B presents a lumped parameter model consisting of mass-spring net-

works for characterizing the dynamics of the built feature. The related work which is 

mostly found in the field of computer graphics are reviewed and the mechanics principles 

behind the lumped model are explained. The 2-D and 3-D lumped models are then pre-

sented. The performance of the model is then evaluated by comparing its prediction and 

computational cost to those of a finite element dynamic model. Finally, details are pre-

sented regarding how the lumped model can be interfaced with the finite element model of 

UAM for predicting the transient dynamics of the built feature.  
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Chapter 2 

 

2 Literature Review 

 

This chapter provides background literature necessary to start the research. Specif-

ically, Section 2.1 presents the literature that studies the bonding process and bonding 

mechanisms of UAM. From the literature, the most critical factor that governs the bond 

formation is identified for characterization. In section 2.2, all the possible influential ele-

ments that could affect the critical factor are identified. Knowing the critical factor and its 

influential elements, Section 2.3 reviews the modeling techniques that are available in the 

literature for modeling the critical factor. Section 2.4 reviews the existing modeling work 

of UAM for identifying the gaps in the literature. Section 2.5 presents the results of studies 

related to bond quality evaluation. Based on the literature, a set of criteria can be extracted 

to deduce from the modeling prediction of bond quality. Section 2.6 summarizes the iden-

tified gaps and proposes the research questions with the associated hypotheses.  
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2.1 Bonding Principles of UAM 

This section aims to identify the most critical factor that governs the bond formation 

by reviewing the literature related to UAM bonding principles. Due to the fact that UAM 

shares with UMW the same bonding mechanism, the literature cited comes from both pro-

cesses. The sections starts with a general overview of the bond formation process without 

specifying the underlying mechanisms. Then the different bonding mechanisms are pre-

sented followed by a summary discussion.   

 

2.1.1 Overview of the Bonding Process 

There exist three stages in the UAM bonding process. It is a point on which re-

searchers agree. It was originally proposed by Wodara and later generalized by de Vries 

(de Vries 2004; Wodara 1986). In the first stage, the surfaces to be welded are drawn to-

gether by normal compression from the sonotrode. At microscale, the asperity tips are 

brought into contact and plastically deformed by the combined effect of normal stresses 

generated from normal compression and interfacial shear stresses generated from interfa-

cial vibration. Simultaneously cracks are generated in the brittle surface oxides due to the 

difference in hardness between the hard oxides and the pure metals. The metal becomes 

even softer and plastic regions are formed as the ultrasonic energy and the plastic and fric-

tional heat are dissipated into the material, thus facilitating the breakup of surface oxides. 

In the second stage, the metal-to-metal contact area increases and the interfacial voids are 

closed by the plastic flow as the weld cycle proceeds. Meanwhile, the broken oxides are 

carried by the metallic flow and are dispersed to the edge of the weld zone. In the third 
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stage, a strong bond is formed across the interface where surface oxides are removed and 

close metallic contacts are maintained. The already formed bonds are maintained by the 

plastic deformation that accommodates the interfacial vibration. The three stages of bond 

process take place within very short time intervals and are therefore hard to separate. For 

the modeling purpose, an underlying assumption can be deduced from the generalized three 

stages: the plastic deformation promotes bonds formation by dispersing surface oxides and 

contaminants, increasing contact areas of pure metal, and maintaining the already formed 

bonds (Ram, Yang, et al. 2007; de Vries 2004). 

 

2.1.2 Bond Mechanisms 

The bonding mechanism of UAM has been studied for decades, yet no uniform 

conclusion has been achieved.  Metallurgical adhesion is supported by many researchers 

as the bonding mechanism (Kong, Soar, and Dickens 2003; Lee 2013; Ram, Yang, et al. 

2007; de Vries 2004). The theory states that layers of atoms move across the bond interface 

and form “adhesive” bonds due to van der Waals forces under intimate metal-metal contact 

(Czichos 1972). The intimate contact requires surface asperities and adjacent bulk material 

to undergo elasto-plastic deformation for removing surface oxides and generating metallic 

flows that fill the valleys between asperities (Kong, Soar, and Dickens 2003; Ram, Yang, 

et al. 2007). Diffusion across the weld interface is supported by some researchers based on 

the observed evidences of high strain rate plastic deformation. The high strain rate is be-

lieved to enhance diffusion significantly by increasing vacancy concentrations within ma-

terials (Cheng and Li 2007; Gunduz et al. 2005). Moreover, the high vacancy concentration 
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resulted from high strain rate is supposed to lower the melting temperature of the material 

significantly, thus allowing localized melting to occur (Gunduz et al. 2005). Recrystalliza-

tion is also proposed as a cause of bonding (Kenik and Jahn 2003; D. E. Schick et al. 2010). 

The grains are observed to become finer in aluminum and copper after the UAM process, 

indicating the occurrence of recrystallization. It is believed that severe plastic deformation 

and temperature rise due to the continuous input of ultrasonic energy provide the necessary 

conditions for recrystallization. Mechanical interlocking is reported by a few researchers 

who studied the bonding of dissimilar materials as one material being soft and the other 

hard (K. Johnson et al. 2011; Joshi 1971; Ram, Yang, et al. 2007).  Severe plastic defor-

mation is observed in the soft material.  

In summary, plastic deformation is identified as the key factor that governs the 

bonding process. Specifically, it plays a vital role in all stages of bond formation: 1) at the 

beginning of the bonding process, plastic deformation is observed in a thin layer of pure 

metal (~20 µm thick) beneath the surface oxides. The metallic flow helps break up brittle 

oxides and disperse broken fragments. 2) When oxides are removed and pure metals are in 

contact, the plastic deformation of asperities increases metal-to-metal contact areas and the 

metallic flow closes the voids, resulting in a more complete, intimate contact of foils and 

higher quality bonding. 3) When bonds are partially formed, a layer of metal (20-60 µm 

thick) underneath the bonded locations are believed to undergo plastic deformation to ac-

commodate the differential motion and to protect the bonds from breaking up (de Vries 

2004). Moreover, while the exact bond mechanism is still subjected to argument among 

researchers, plastic deformation is shown to enhance bonding regardless of the theories in 
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use: metallic adhesion, diffusion, recrystallization, mechanical interlock, and localized 

melting. As a result, it can be concluded that plastic deformation serves as a critical factor 

in promoting bond formation regardless of its causes.  

 

2.2 Influential Elements for Plastic Deformation 

The section aims to identify all the elements that influence the plastic deformation 

of materials at the bond interface. From the energy point of view, the sonotrode, top foil, 

built feature, and substrate form a system which is subjected to three external energy input: 

work due to ultrasonic vibration and compression, and thermal energy due to external heat-

ing. While the external heating has only one effect on plastic deformation: the thermal 

softening effect, vibration and compression could affect plastic deformation in multiple 

aspects. Specifically, the ultrasonic vibration on one hand directly delivers ultrasonic en-

ergy into the metals, on the other hand generates frictional forces together with compres-

sion. According to Kong, the ultrasonic energy has two types of effects on material plas-

ticity: 1) a volumetric effect referred to as “acoustic softening” that occurs in the bulk ma-

terials and 2) a surface effect referred to as thermal softening caused by friction that occurs 

only close to the bonding interface (Kong, Soar, and Dickens 2003). Eaves et al. observe 

that the thermal energy reduces plastic stresses by 45% while the ultrasonic energy reduces 

it by 75% (Eaves et al. 1975). The frictional forces have two effects: 1) the high strain rate 

which causes hardening in the bulk materials, 2) the forced vibration of the built feature 

which causes stick-slip motion at the bond interface that affects the bonding. The defor-

mation strain rate is believed to reach up to 10
3
 𝑠−1 due to the high frequency oscillation 
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of the sonotrode (Gunduz et al. 2005). It has been observed that the high strain rate (above 

10
3𝑠−1 ~10

5𝑠−1) deformation leads to an abrupt increase in flow stresses for a variety of 

metals with face-center-cubic (f.c.c.) structures (Lesuer, Kay, and LeBlanc 2001). Gibert 

et al. showed that bonding is affected by the stick-slip interfacial motion which is governed 

by the dynamics of the built feature (J. M. Gibert, Fadel, and Daqaq 2013). When the built 

feature undergoes resonance, the interfacial motion becomes pure slip and the bond de-

grades. In summary, the plastic deformation is affected by the ultrasonic energy, high strain 

rate deformation, temperature, friction, and dynamics of the built feature which need to be 

accounted in the modeling work. The detailed review of each of these factors is shown as 

follows.   

 

2.2.1 Effect of Ultrasonic Energy 

It is widely believed that ultrasonic energy has a significant effect on metal plastic-

ity. This effect, known as “acoustic softening”, is first documented by Blaha and 

Langenecker (Blaha and Langenecker 1955). It results in a significant reduction of static 

yield stress in tensile tests when applying longitudinal ultrasonic waves to various metals. 

The physics that governs acoustic softening is still not well understood and its effects are 

still not fully characterized. Since ultrasonic energy serves as the major energy input in the 

UAM process, the acoustic softening effect needs to be well understood. 

 

 

 



17 

 

2.2.1.1 Experimental observations of acoustic softening   

In 1955, Blaha and Langenecker reported a significant decrease of stress in tensile 

test of zinc single crystal induced by an ultrasonic field (Langenecker 1963). Later, they 

also observed acoustic softening on aluminum single crystal, steel, iron, cadmium, beryl-

lium, tungsten, and titanium (Langenecker 1966). The softening effect takes place as soon 

as the ultrasound passes through the material. The stress reductions are observed in both 

elastic and plastic regions and are “proportional” to the applied ultrasonic intensities 

(Langenecker 1963). When the intensity of ultrasound exceeds a certain critical value (typ-

ically depends on the material), a “zero stress” is reached in both the elastic and plastic 

regions of the stress strain curve. When the intensity of ultrasound remains below a certain 

critical value, no residual effects are observed on stress strain relations after the ultrasound 

stops (shown on curve a’b in Figure 2.1). When the intensity of ultrasound exceeds the 

critical value, however, residual hardening is observed and permanent changes in the mi-

crostructure of metals are observed (shown on curve b’ and curve c’ in Figure 2.1). More-

over, the softening effects are shown to be strongly similar to thermal effects (Figure 2.2). 

However, Blaha and Langenecker calculated that the required ultrasonic energy is 107 

times less than the required thermal energy to reach a similar stress reduction on the stress 

strain curve (Langenecker 1966). Based on the observations, Langenecker concluded that 

the ultrasonic energy is preferably absorbed at dislocations, which are the regions respon-

sible for plastic deformation of materials. 
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Figure 2.1 Acoustic softening and residual hardening reproduced from Langenecker (Langenecker 1966) 

 

 

Figure 2.2 Softening effect induced by ultrasound (left) and the softening effect induced by heating (right); the 

“zero stress” is reached at ultrasonic intensity of 50 watt/cm2 (left). (Langenecker 1966) 

Though Langenecker’s observations are largely recognized and cited by many re-

searchers, different observations also exist. Nevill and several other researchers conducted 

experiments similar to Langenecker’s and reported that rather than being a function of ul-

trasonic intensities, the stress reduction is a linear function of vibration amplitude (Biddell 
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and Sansome 1974; Nevill and Brotzen 1957; Pohlman and Lehfeldt 1966; Winsper and 

Sansome 1969). Some researchers reported that ultrasound does not change the Young’s 

modulus of metals (Biddell and Sansome 1974; Pohlman and Lehfeldt 1966). Other re-

searchers documented a “residual softening” effect as opposed to the “residual hardening” 

effect observed by Langenecker (D. R. Culp and Gencsoy 1973; Huang et al. 2009; Lum 

et al. 2009). 

In recent studies, Siu (Siu, Ngan, and Jones 2011) investigated the deformation of 

microstructure of polycrystalline aluminum with and without ultrasonic irradiation using 

scanning electron microscope (SEM), ion-induced secondary electron (SE) imaging and 

electron backscattered diffraction (EBSD). They observed a significant increase of sub-

grain formations in the microstructure after ultrasonic irradiation and further predicted the 

reduction of dislocation density (Figure 2.3). Different from Siu’s observation, Dutta in-

vestigated the microstructure of DC 04 steel after ultrasonic irradiation utilizing SEM, 

EBSD and X-ray diffraction (XRD) and observed a reduction in sub-grain formation (Dutta 

et al. 2013). They further point out that the contradiction between their observations with 

those of Siu’s could be due to the difference in the microstructures of the materials.  
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Figure 2.3 Ion-induced SE image (a) and EBSD orientation map (b) of a cross-sectional foil cut from an indent 

made by 0.05 kg load without vibrating the sample. Ion-induced SE image (c) and EBSD orientation map (d) of 

a foil cut from an indent by 0.05 kg load made with 2 lm vibration. Many tiny subgrains with clear boundaries 

and sharp contrast can be seen (Siu, Ngan, and Jones 2011) 

From the reviewed literature, it is clear that ultrasonic energy has a significant in-

fluence on material plasticity (Blaha and Langenecker 1955; Langenecker 1963, 1966). 

Yet the specific behavior of materials under ultrasound is still elusive due to the many 

contradicting observations of experiments conducted with various materials from different 

researchers. As a result, it is not possible to characterize the effects of acoustic softening 

based on the existing literature to define an appropriate model. Experimentations are nec-

essary to characterize acoustic softening before starting modeling.  

2.2.1.2 Models of acoustic softening 

The existing acoustic softening models are reviewed in order to introduce acoustic 

softening in the modeling of UAM bonding. Notice that all these analytical models rely 

largely on the researchers’ experimental observations and assumptions about the physical 

mechanisms governing acoustic softening. Different assumptions may result in distinctive 
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analytical models. As a result, these assumptions are summarized before reviewing the 

analytical models. 

1) Stress superposition assumes that the observed stress reduction on a stress strain 

curve is due to a simple superposition of quasi-static tensile stresses and alternating acous-

tic stresses induced by ultrasound (Nevill and Brotzen 1957). It is assumed that the stress 

superposition does not change the microscopic structure of materials.  

2) Dislocation activation assumes that in metals the ultrasonic energy is preferably 

absorbed at dislocations whose motions and interactions with obstacles are responsible for 

plastic deformations (Blaha and Langenecker 1955). The absorbed energy increases the 

potential energy of dislocation lines by means of internal friction, allowing dislocations to 

move and overcome obstacles at much lower stresses than those required at room temper-

ature.  

3) Dislocation annihilation (in polycrystalline aluminum) assumes that the su-

perposition of ultrasound-induced stresses and quasi-static tensile stresses facilitates dipole 

annihilation of screw dislocations in polycrystalline material (Siu, Ngan, and Jones 2011). 

The annihilation leads to a reduction of the dislocations density, which is responsible for 

intrinsic flow resistance, i.e., the stress necessary to deform polycrystalline materials. The 

superimposed oscillatory stress periodically slows down the motion of dislocations which 

allows them to have greater chances to cross slip and annihilate, leading to a reduction in 

dislocations.  

4) Contraction of extended dislocations, based on Gilman’s theory, assumes that 

the extended dislocations moving at high speed tend to contract into unit dislocations and 
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cross-glide without the aid of thermal activation (Gilman et al. 2015; Amir Siddiq and El 

Sayed 2011). The ultrasonic energy causes the speed of dislocations to increase such that 

the extended dislocations become movable without aid of thermal activation energy.  

Based on abovementioned explanations of mechanisms, various models are re-

viewed and evaluated highlighting their benefits and limitations. These models are pro-

posed based on one or multiple assumptions. 

Winsper and Sansome assumed the mechanism of acoustic softening to be the stress 

superposition, i.e., the stress reduction on stress strain curve equals the acoustic stress in-

duced by ultrasound (Winsper and Sansome 1971). This acoustic stress can be written as: 

 𝜎 =
𝜔𝑋𝐸

𝑐
 (2.1)  

𝜎 is stress reduction, ω the radius frequency, 𝑋 the vibration amplitude, 𝐸 the Young’s 

modulus, and 𝑐 the wave speed defined in terms of the Young’s modulus and the density 

by 𝑐 = √
𝐸

𝜌
. This equation was obtained by Timoshenko for modeling the stress wave in a 

vibrating rod (Timoshenko 1970). In contrast, Kirchner et al. studied the actual internal 

stresses inside a sample subjecting to ultrasonic irradiation and found them to be extremely 

difficult to quantify since they are not homogeneously distributed (Kirchner et al. 1985).  

Additionally, the stress superposition theory indicates that the stress reduction should be 

direction dependent. The reduction reaches its maximum when the directions of ultrasound 

and tensile stresses are parallel, and reach its minimum when these directions are perpen-

dicular. However, no such dependency is observed in the literature (Krausz and Krausz 
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1996; Yao, Kim, Wang, et al. 2012). In summary, the prediction from stress superposition 

theory is not sufficient to account for the observed stress reduction. 

Rusinko proposed an analytical model to characterize the effects of ultrasound 

based on Rusynko’s synthetic theory of irreversible deformation (Rusinko 2011; Rusynko 

2001). The synthetic theory, based on Langenecker’s observations, utilizes the same set of 

constitutive equations to characterize both acoustic softening and residual hardening  

(Langenecker 1966). Rusinko assumes that the combined effects of static loading and ul-

trasonic oscillation decrease the dislocation density by activating the blocked dislocations 

whereas the ultrasonic oscillation alone increases the dislocation density by generating 

more dislocations which become entangled with each other. However, the model prediction 

lacks support of experiments. Additionally, the synthetic theory which the model relies on 

applies to only small strains of plastic hardening materials, thus limiting the application of 

the model.   

Yao et al. modeled acoustic softening based on the Kocks’ thermal activation model 

which assumes that the flow stress at constant strain rate is significantly affected by tem-

perature (Kocks 1987; Yao, Kim, Wang, et al. 2012). The original thermal activation model 

is in described by the Arrhenius equation (Frost and Ashby 1982) 

 �̇�𝑝 = �̇�0 exp (
∆𝐺

𝑘𝑇
) (2.2) 

where (Frost and Ashby 1982; Kocks 1987)  

 ∆𝐺 = ∆𝐹[1 − (
𝜏

�̂�
)𝑝]𝑞  (2.3) 

where �̇�𝑝 is the shear plastic strain rate; �̇�0 the pre-exponential factor; k the Boltzman con-

stant; T the Kevin temperature; ∆𝐺 the Gibbs free-energy of activation for dislocation to 
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overcome an obstacle; ∆𝐹 the activation energy; �̂� the “mechanical threshold”: the yield 

strength at absolute zero temperature;  𝑝 and 𝑞 are obstacle distribution parameters set as 

𝑝 = 𝑞 = 1 based on work by Frost and Ashby (Frost and Ashby 1982). 

The stress reduction is characterized in terms of the ultrasonic energy and the me-

chanical threshold is defined using a power law. Notice that although the authors claim that 

the acoustic softening model is derived from the theory of thermal activation of dislocations 

proposed by Langenecker (Blaha and Langenecker 1955), the model is essentially phe-

nomenological based on experimental observations: 

 ∆𝜆 = 𝛽(
𝐸

�̂�
)𝑚 (2.4) 

where ∆𝜆 is the static stress reduction; E is the applied ultrasonic energy intensity; 𝛽 and 

m are constants determined by curve fitting.  The characterization of acoustic softening 

using the power law is simple and effective. However, the assumed mechanism of thermal 

activation is debatable. Additionally, the sound wave frequency in the study is 9.6 kHz, 

which is far below the ultrasound threshold (20 kHz).    

 

2.2.2 Effect of High Strain Rate Deformation 

Due to the high frequency oscillation of the sonotrode, the material close to the 

sonotrode undergoes plastic deformation at a high strain rate. The evidences of the high 

strain rate deformation in the UAM bonding process have been shown by Gunduz et al. 

who calculated the diffusivity and the effective vacancy concentration within metals and 

found the strain rate to be up to  103 /𝑠 (Gunduz et al. 2005). Several other researchers 
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reported the maximum plastic shear strain in UAM to be 104 − 105/𝑠 (Sriraman et al. 

2011; Sriraman, Babu, and Short 2010; Yang, Janaki Ram, and Stucker 2009). The high 

strain rate is claimed to cause adiabatic heating and a significant increases in local temper-

ature (Sriraman et al. 2011). This increase leads to the thermal softening of the material 

and therefore the decrease of flow stress.  

In addition to thermal softening, the high strain rate is also observed to cause a 

dramatic increase of dependence of dynamic flow stress on the instantaneous strain rate as 

the strain rate exceeds certain threshold (typically around 103 /𝑠) (Lesuer, Kay, and 

LeBlanc 2001; Sakino 2006). Luseur et al. showed that this abrupt change of strain rate 

sensitivity of the flow stress is due to the change of deformation mechanism (Lesuer, Kay, 

and LeBlanc 2001). At low strain rate, the deformation is governed by the cutting or by-

passing of obstacles by the dislocations. As the strain rate exceeds the threshold, the defor-

mation starts to be controlled by phonon drag forces and the flow stress necessary to deform 

the material increases abruptly (Figure 2.4).  

 



26 

 

 

Figure 2.4 The strain rate sensitivity diagram of aluminum 6061-T6 reproduced from (Lesuer, Kay, 

and LeBlanc 2001) 

 

Based on their observations, Lesuer et al. proposed a model which, based on the 

change of the mechanism, characterizes the strain rate dependencies with different equa-

tions. At low strain rate (below 103 /𝑠), a relation in form of Arrhenius equation is intro-

duced based on the work of Frost and Ashby (Frost and Ashby 1982): 

 휀1̇ = 휀0̇exp [
𝑄

𝑘𝑇
(1 −

𝜎

𝜏
)] (2.5) 

Where 휀1̇ represents the strain rate at which cutting and bypassing of obstacles by the dis-

location is dominant, 휀0̇ is a reference strain rate which is determined by the attempt fre-

quency (the number of attempts made to thermally activate the dislocation) and the strain 

achieved with each successful attempt. The value of 휀0̇ varies between  105 𝑠−1 and 

 1010 𝑠−1. 𝑄 is the activation energy, 𝑘 is Boltzmann’s constant, 𝜎 is the flow stress, 𝜏 is 

the strength of obstacles at 0 K, and 𝑇 is temperature in Kelvin. At high strain rate (be-

yond 104 /𝑠), the relation is a power law equation: 
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 휀2̇ = 𝐶1𝜎𝐶2 (2.6) 

where 휀2̇ represents the strain rate at which the phonon drag force on dislocation is domi-

nant, 𝐶1 and 𝐶2 are constants whose values are obtained through curve fitting. At the inter-

mediate strain rate (between  103 /𝑠 and 104 /𝑠), the strain rate sensitivity is controlled by 

both low and high strain rates: 

 휀�̇�𝑓𝑓 =
̇ 1 ̇ 2

̇ 1+ ̇ 2
  (2.7) 

Similar models can also be found in the works by Manes et al and Sakino (Manes et al. 

2011; Sakino 2006). 

 

2.2.3 Effects of Temperature  

The temperature affects the plastic deformation by means of thermal softening, i.e. 

the reduction of the flow stress of the materials when heated. Thermal softening has been 

thoroughly studied as one of the most common material behaviors and therefore will not 

be reviewed. The temperature changes in UAM, instead, is reviewed in order to understand 

its influences on plastic deformation.  

The temperature during the UAM process has been measured by embedding ther-

mocouples (Cheng and Li 2007; D. Schick et al. 2011; Sriraman et al. 2011). Sriraman et 

al. observed that the measured peak temperatures close to the bond interface increase with 

the increase in shear strength of the material and the ultrasonic vibration amplitude, which 

indicates that the rise in interfacial temperature is directly related to the heat dissipation 

due to plastic deformation. Moreover, since the plastic strain rate is so high and the de-
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forming process is very rapid, there is no sufficient time to conduct heat away. Conse-

quently, the heating process is considered “adiabatic”. The authors further point out that 

the temperature increase could be used as an indicator of bond quality: the higher the tem-

perature, the more sufficient the plastic deformation and the higher the bond quality. Cheng 

and Li found in ultrasonic spot welding that heating is due to both friction and plastic de-

formation. The heat flux due to friction is high but unstable whereas the heat flux due to 

plastic deformation is low but stable (Cheng and Li 2007).  Schick et al. showed that 30% 

of the ultrasonic energy that propagates across all layers is converted into heat which in-

creases temperature at all interfacial layers. The top layer absorbed 10% of the ultrasound-

induced heat whereas 90% are absorbed by the built feature (D. Schick et al. 2011). In 

addition, they found that the actual thermal diffusivity is much lower than the theoretical 

value of the bulk materials, suggesting that the voids and defects at the bond interfaces 

significantly increase the thermal contact resistance across the layers  

Based on this thermal study, it is concluded that interfacial friction and plastic de-

formation are the two major heat sources responsible for temperature increase in the ther-

mal process of UAM. The generated heat is mostly conducted through the built feature and 

the convection can be neglected. The thermal conductivity is anisotropic within the built 

feature due to the voids and oxides at the bonded interfaces. It also affects the temperature 

distribution.  
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2.2.4 Effects of Friction  

Friction affects bonding in three aspects: 1) breaking and removing surface oxides, 

2) driving elasto-plastic deformation of surface asperities to form close contact, and 3) 

dissipating heat from friction work and softening materials close to bond interface. This 

study focuses on the material behaviors after the removal of surface oxides.  

Based on the role of friction in UAM bonding process, a number of influential fac-

tors are identified: material combination, initial surface roughness, normal load, slip rate, 

and temperature. The bonding of the same materials is governed by the metallurgical ad-

hesion process. The initial surface roughness is found to have a strong influence on the 

static friction coefficient but not on the kinetic friction coefficient (Espinosa, Patanella, 

and Fischer 2000).  The kinetic friction coefficient is controlled by the plastic deformation 

of asperities and the associated contact area (Moore 2013; Pei et al. 2005). The increase of 

normal load is shown to reduce the friction coefficient due to the nonlinear increases of 

contact area (Kragelski 1965). The slip rate shows no direct influence on the friction coef-

ficient according to the experimental studies by Zhang et al. (Cunbo Zhang, Zhu, and Li 

2006). However, the normal load and slip rate contribute to dissipation which affects the 

local temperature. The temperature is shown to have the most significant influence on the 

friction coefficient (Kragelski 1965). As the temperature increases, the friction coefficient 

first increases due to the increasing viscous plastic stress and then decreases due to the 

thermal softening of the deformed asperities.  
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In conclusion, the most influential factors for the friction coefficient are the normal 

load and the temperature. The two factors are considered when developing the friction 

model.  

 

2.2.5 Effects of Dynamics  

The dynamics of the UAM system has a profound influence on the plastic defor-

mation at bond interface by affecting the differential motion between the top foil and the 

built feature. As additional layers are deposited, the dynamic response of the built feature 

changes and the differential motion changes accordingly. The change in the differential 

motion induces the so called “stick-slip friction” at the top foil-built feature interface. Spe-

cifically, when the differential motion is large enough, due to the slip between the top foil 

and built feature, kinematic friction is dominant; when the differential motion is small 

enough, the top foil and the built feature stick to each other and static friction is dominant. 

In between large and small differential motions, stick and slip alternate resulting in a com-

plex variation of the friction coefficient at the interface. This variation of friction coeffi-

cient further affects the plastic deformation at the interface. 

Robinson et al. studied a bond degradation as the height of the built feature ap-

proaches its width, i.e. the height-to-width ratio approaches unity (Robinson, Zhang, and 

Ram 2006). Zhang and Li associated the bond failure to the change in dynamic response 

resulting from the superposition of the traveling ultrasonic waves as additional layers are 

added (Cunbo Zhang and Li 2006). Gibert et al. found that the loss of bonding can be 

reinitiated beyond the critical aspect ratio of one (J. M. Gibert, Austin, and Fadel 2010). 
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By measuring the dynamic response of the built feature using a laser vibrometer, they also 

found that the built feature is excited to resonate at the critical aspect ratio, which leads to 

stick-slip or pure stick between the top foil and the built feature (Figure 2.5). They further 

show that stick-slip is aperiodic due to the complex dynamic interaction (J. M. Gibert, 

Fadel, and Daqaq 2013). As the aspect ratio is far from the critical value, however, the 

response becomes steady and periodic. The undesired stick-slip or pure stick can be re-

duced by increasing either the normal load or the kinematic friction coefficient. Pal and 

Stucker also account for the stick-slip effect in studying the inhomogeneous deformation 

at the bond interface (Pal and Stucker 2012). It is shown that a severe plastic deformation 

takes place within a depth of 20 µm from the interface and is profoundly affected by stick-

slip at the bond interface. 

 

Figure 2.5 Stick/slip at different height-to-width ratios (J. M. Gibert, Austin, and Fadel 2010) 
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2.2.6 Summary 

In summary, the bonding process is affected by acoustic softening due to ultra-

sound, thermal softening due to temperature increases, strain rate hardening due to high 

strain rate deformation, friction, and stick-slip due to the dynamics of the built feature. All 

of these factors require investigations and characterizations. The modeling approaches for 

characterizing these factors are discussed in the next section.  

 

2.3 Modeling Methods for UAM 

In this section, the general methodology used for modeling the UAM bonding pro-

cess is detailed. Plastic deformation has been identified as the major modeling objective as 

explained above. The major difficulties involved in the modeling of plastic deformation 

are: 1) plastic deformation is closely coupled with a number of factors such as temperature 

and friction, which makes direct modeling difficult, and 2) the values of model parameters 

are difficult to identify in a coupled model.  By reviewing the literature, a viable path is 

identified to overcome these difficulties.  

 

2.3.1 Inverse Modeling 

Some of the earliest analytical models of ultrasonic bonding are proposed by Mayer 

and Schwize (Mayer and Schwize 2003), who characterize the bond growth in the ultra-

sonic ball bonding process using a modeling method known as “inverse modeling”.  They 
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use the measurements of observable parameters to calculate the values of the model pa-

rameters of interest. Notice that in the inverse modeling process, the number of observable 

parameters does not necessarily equal the number of model parameters. There are three 

possible cases: 1) if the number of observable parameters is greater than the number of 

model parameters, then the problem is over constrained and there could be no solution. 2) 

If the number of observable parameters is less than the number of model parameters, then 

there is more than one set of values for the model parameters and optimization needs to be 

introduced to determine the optimal set of values. 3) If the number of observable parame-

ters equals the number of model parameters, the model could yield a unique set of solution.  

The inverse modeling is used by many researchers (G Kelly 2012; GS Kelly and Advani 

2013; A. Siddiq and Ghassemieh 2008a; Amir Siddiq and El Sayed 2011; Amir Siddiq and 

Sayed 2012; Amir Siddiq and Schmauder 2006) to establish analytical models and study 

certain specific parameters. 

 

2.3.2 Decomposition and Integration of Models 

Siddiq and Ghassamieh proposed a finite element thermo-mechanical model to 

characterize the  UAM process (A. Siddiq and Ghassemieh 2008a).  The process involves 

multiple factors: plasticity, heat transfer, and friction. Each of the factors is coupled with 

the others. In order to model the bonding process, they first start a decomposition based on 

the factors and established several analytical sub-models: plasticity model, thermal model, 

and friction model. The analytical models are then integrated into a unified model and 

solved using finite element method. By using explicit integration schemes, all the sub-
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models are solved simultaneously and the couplings are accounted for at each time incre-

ment. Inverse modeling method is used to identify the values of model parameters in the 

integrated model. This work provides an approach to comprehensive modeling of ultra-

sonic welding process. Later the method is applied in multiple works (G Kelly 2012; A. 

Siddiq and Ghassemieh 2008a; Amir Siddiq and El Sayed 2012; Amir Siddiq and 

Schmauder 2006).  

To summarize, the general modeling methodology for the UAM is to decompose 

the problem into sub-problems, model each sub-problem separately, and considering the 

coupling effects integrate the sub-models into a unified comprehensive model. The inverse 

modeling method is used to identify the value of the model parameters for each sub-model.   

 

2.4 Existing UAM Models 

A limited number of models are found related to the UAM bonding process in lit-

erature (J. Gibert 2009; G Kelly 2012; A. Siddiq and Ghassemieh 2008a; Amir Siddiq and 

Schmauder 2006; de Vries 2004; C Zhang and Li 2008). Each of the model considers some 

of the influential elements discussed in section 2.2 but none of the models accounts for all 

the factors. In order to clarify this point, these models are compared and evaluated in terms 

of each of the sub-models. Gaps are identified through comparisons. The sub-models pre-

sented below are: plasticity model, thermal model, friction model, and dynamic model.  

 

2.4.1 Plasticity Model 
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The material plasticity in UAM has been studied by many researchers. Siddiq and 

Ghassemieh utilized the cyclic plasticity model of Lemaitre and Chaboche to model plastic 

deformation of aluminum 6061 (Broggiato, Campana, and Cortese 2008; A. Siddiq and 

Ghassemieh 2008b). By modifying its isotropic and kinematic hardening rules, the cyclic 

plasticity framework is able to account for “acoustic softening”: a unique effect of ultra-

sound under which the flow stress on a stress-strain curve of metals is reduced considerably 

(Blaha and Langenecker 1955). However, the proposed model relies on the experimental 

data of a different material and under a different test condition. For instance, the cyclic data 

are collected from aluminum 6060 loaded at a strain rate of 10−3 𝑠−1 which is much lower 

than the strain rate in UAM (104 𝑠−1 - 105 𝑠−1) (Hopperstad, Langseth, and Remseth 

1995). The acoustic softening data are collected from aluminum single crystals rather than 

aluminum 6061 (Langenecker 1966). Kelly et al. proposed a power law function to capture 

the plastic deformation (GS Kelly and Advani 2013). The acoustic softening effect is char-

acterized as a constant factor added to the power law function. Due to the lack of acoustic 

softening data, the factor is calibrated such that the prediction of the foil deformation from 

the plasticity model matches the experimental measurements. Siddiq and El Sayed modi-

fied the crystal plasticity model of Hill and Rice (Hill and Rice 1972) in order to account 

for the acoustic and thermal softening of aluminum single crystal (Amir Siddiq and 

Schmauder 2006). The model is then extended to polycrystalline aluminum based on EBSD 

studies of aluminum 6061-O (Zhu et al. 2009). The model provides insights to the mecha-

nism of acoustic softening but is very complicated. A large set of model parameters needs 

to be identified based on a small set of experimental data. Pal and Stucker established a 
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dislocation-based constitutive model within the finite element crystal plasticity framework 

and studied the inhomogeneous plastic deformation at the bond interface (Pal and Stucker 

2012). The model sheds light to the deformation mechanisms under UAM condition but 

requires further experimental validation.  

In summary, the existing plasticity models of UAM suffer from the following two 

issues. First, the acoustic softening effect lacks experimental studies to support the model-

ing. The models are built on either qualitative experimental observations or experimental 

data of a different material. Second, the plasticity models are either too simple to fully 

account for all the influential factors in UAM or too complicated and thus require a large 

set of experimental data to realistically reflect the material behavior. In order to address 

these issues, experimental studies and characterizations are necessary for the materials spe-

cific to the UAM. The plasticity model should account for all the influential factors and be 

sufficiently calibrated by experimental data of the material considered. 

2.4.2 Thermal Model  

The thermal model characterizes the heat transfer between the sonotrode, top foil, 

built feature, and ambient environment. De Vries proposed that in UMW process heat is 

generated from two sources: the interfacial friction and plastic deformation (de Vries 

2004). A 2-D finite element thermal model is established accordingly. The model considers 

only heat conduction and neglect convection. The thermal model is not coupled with the 

mechanical model. Zhang and Li established a 3-D finite element thermo-mechanical 

model assuming that the frictional heat is the only heat source due to limitations of the 

software (C Zhang and Li 2008). They also neglected the lamination-induced anisotropy 
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of the thermal conductivity of the built feature. Koellhoffer et al. established a 2-D lumped 

parameter thermal model for UAM assuming that the temperatures are spatially invariant 

within foils due to the high conductivity of the bulk material (Koellhoffer et al. 2011). 

Kelly et al. established a 2-D thermo-mechanical model that accounts for heat generation 

from both friction and plastic deformation (G. S. Kelly, Advani, and Gillespie 2012). The 

thermal properties of the laminated built feature are approximated using those of the bulk 

material.  

 

2.4.3 Friction Model  

The friction model characterizes the interaction between the top foil and the built 

feature. The existing models are either oversimplified or has redundant dependencies on 

different variables. A constant friction coefficient has been extensively used for simplicity 

and a value of 0.4 is taken in most of the studies (J. M. Gibert, Austin, and Fadel 2010; de 

Vries 2004; Cunbo Zhang, Zhu, and Li 2006). Zhang and Li modeled the friction coeffi-

cient as a function of temperature based on experimental studies of sliding of aluminum 

sheets (Chunbo Zhang and Li 2007). Siddiq and Ghassemieh further studied the depend-

ency of the friction coefficient on the contact pressure and the number of weld cycles in 

addition to temperature (A. Siddiq and Ghassemieh 2008a). However, the dependency of 

friction on the weld cycles and the temperature may be coupled. Kelly et al. modeled the 

friction coefficient as a function of amplitude, compression, frictional heat, and vibration 
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frequency (G. S. Kelly, Advani, and Gillespie 2012). Again, the dependencies on the am-

plitude, frequency, and frictional heat may be coupled, thus making it difficult to derive an 

explicit form of the relation.  

 

2.4.4 Dynamic Model  

The studies of UAM dynamics is motivated by solving the height-to-width problem 

which is first documented by Robinson et al. Zhang and Li developed a 2-D finite element 

model to study the behavior of contact frictional stresses and interfacial displacement as 

the height to width ratio of the build feature increases from 0.25 to 2.0 (Cunbo Zhang, Zhu, 

and Li 2006). The model introduces a sonotrode, a foil being welded to the built feature 

and a substrate made of deposited foils. The substrate is assumed to remain elastic and the 

friction coefficient at the mating interface is assumed constant. By running transient dy-

namics analysis on the 2-D model, they observed a decrease in contact frictional stress and 

interfacial displacement at the mating interface as the height-to-width ratio of the substrate 

approaches a critical value. They associated the observations to complicated interference 

or superposition of traveling vibrational waves in the substrate. However, the illustration 

of wave superposition is vague. There is no quantitative study that shows how the bond 

process is affected by the change of dynamics of the UAM.   

Later, Zhang et al. introduced material plasticity and the stick/slip friction condi-

tions to the finite element model (C Zhang and Li 2008). To validate the prediction of the 

finite element model, they built a 2-D analytical model of the substrate to compare the 

predictions of strains. However, both models are macroscopic dynamic models in which 
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the bonding process is not accouted. Some of the crucial factors such as the acoustic sof-

tening are not considered. Other factors such as plasticity and friction are implemented but 

are not explained in terms of how they affect the macroscopic dynamics of the UAM.  

Gibert  et al. proposed that resonance of the built feature at the critical height to 

width ratio is responsible for the bond failure (J. Gibert 2009). By using the Rayleigh-Ritz 

method, they showed that an increase in height to width ratio causes several natural fre-

quencies of the substrate to approach the 20 kHz excitation frequency of the sonotrode. 

They also developed a 3-D finite element model and a 2-D lumped parameter model to 

show a substantial decrease of differential motions due to resonance as the height to width 

ratio approaches critical values. In these models, the change in differential motion leads to 

pure slip, stick-slip and pure stick motions which further leads to changes in friction. How-

ever, the dynamic model does not consider material plasticity, heat transfer, or variation of 

friction coefficient.  

It is apparent that there exists a gap between the study of the dynamics and the 

thermo-mechanical bonding process. Research in UAM dynamics concentrates on the dy-

namics of the built feature without considering the thermal mechanical aspects of the bond-

ing process. Research on the bonding process concentrates on material plasticity, heat 

transfer, and friction without considering the change in dynamics as the height of the sub-

strate increases. For a comprehensive UAM model, both dynamics and bonding process 

have to be considered simultaneously.  
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In summary, the UAM bonding process is a complicated welding process that in-

volves elastic and plastic deformation of the materials, contact and friction at bond inter-

face, heat transfer, and dynamic interaction between different components of the welding 

system. All the influential factors should be considered and properly modeled. Some of the 

unique effects of ultrasound, such as acoustic softening and extremely high strain rate re-

quire further understanding and characterization.  

 

2.5 Bond Quality Evaluation  

This section reviews the studies related to bond quality evaluation in UAM. Based 

on the literature, a set of criteria can be extracted to connect the modeling prediction to 

bond quality. 

 

2.5.1 Lap-shear Test 

Lap-shear tests are first performed by Kong at al. in order to test the shear strength 

of the bonds (Kong, Soar, and Dickens 2004). The specimens are prepared by welding two 

overlapped foils. The overlapped distance is controlled to be approximately 10 mm. The 

specimens are then installed in a tensile test machine for lap-shear tests. The test procedure 

follows the standard BS EN 1465:1995 where possible.  

The lap-shear tests, however, proves to be unsuccessful because the thickness of 

the foil is too small (Kong, Soar, and Dickens 2004). All specimens under testing broke 

within the base metal adjacent to the weld, including specimens within which visibly poor 
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welds were produced. The foils are too thin to provide the moment necessary to initiate 

shear at the bond region. As a result, the specimens break in tensile rather than shearing 

mode (Figure 2.6). 

 

 

Figure 2.6 The failure mode of foils in lap-shear tests (Kong, Soar, and Dickens 2004) 

 

2.5.2 Peel Test 

Kong applied a peel test, which is normally associated with adhesive bonding and 

is based on the maximum load a specimen can withstand, to evaluate the bond quality of 

aluminum 6061 in the UAM process (Kong, Soar, and Dickens 2003). The peel test speci-

mens are prepared by first welding a layer of foils to a supporting plate and then welding a 

second layer to the first, as is shown in steps 1 and 2 in Figure 2.7. The supporting plate is 

used to prevent specimen from bending during the peel test. The specimen is installed on 



42 

 

a peeling apparatus and the peeling apparatus is attached to a tensile test machine (step3, 

Figure 2.7). By recording the tensile load applied during the peel test, the bond quality is 

evaluated in terms of the required tensile load and the observed failure modes: “clear 

break”, “teeth formation” and “peel off”. Specifically, the “clear break” indicates a good 

bond with little or no tearing and a high resistance to peeling (>70 N). The “teeth for-

mation” represents a less favorable bond with tearing propagating from the contact points 

and a relatively low peeling loads (45 – 70 N). The “peel-off” indicates that the second 

layer of foils peels completely away from the first layer with no tearing observed and a low 

resistance to peeling (<45N). By applying peel tests to specimens made under various com-

binations of the operating parameters (amplitude, compression load, and weld speed), it 

was observed that the peel load increases as compression load increases and weld speed 

decreases.  

 

Figure 2.7 Peel test specimen preparation and peeling test apparatus (Kong, Soar, and Dickens 2004) 

 

2.5.3 Three-point Bending Test 
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In addition to lap-shear and peel tests, other testing methods are introduced to eval-

uate the strength of UAM-built specimens. Leagon utilized three-point bending to measure 

the inter-laminar shear strength along the build feature (Leagon 2007) (). It was found that 

the interlaminar shear strength is around 55% of the ultimate shear strength of the wrought 

material. The tensile strength of laterally-oriented specimens is around 78% of the ultimate 

tensile strength of the wrought material.  

 

Figure 2.8 Test configuration for the three-point bending test (Leagon 2007) 

 

2.5.4 Push-Pin and Finite Element Method 

Zhang and Li proposed a push-pin experiment coupled with a finite element (PPFE) 

method to evaluate the bond strength (C. (Sam) Zhang, Deceuster, and Li 2009). To prepare 

the specimen, a built block feature is made using ultrasonic consolidation. A hole is ma-

chined from the bottom of the baseplate while the depth of the hole depends on the depth 

of interface of which the bond strength is to be measured. A push-pin experiment is per-

formed such that a uniform load is applied with a given strain rate on the specimen by a 

push rod until the specimen fails while the force-displacement history is recorded. The 
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method follows three steps: 1) conduct push-pin experiment and record the force and dis-

placement data, 2) develop a layer-structured FE model with the same dimensions to sim-

ulate the push-pin experiment; 3) try different settings of material properties (Young’s 

modulus and yield strength) until the curves of force versus displacement calculated from 

the FE model match those from the experiment, 4) pick the maximum stress normal to 

bonded areas from the FE model as the bond strength. The limitation of the method is that 

the identified values of material properties are not unique since there are two model pa-

rameters that need to be identified (Young’s modulus and yield strength) whereas there is 

only one observable parameter (the displacement load data).   

 

2.5.5 Linear Weld Density 

In addition to the lap-shear and peel test, Kong also introduced the concept of “lin-

ear weld density (LWD)” for evaluating the bond quality (Kong, Soar, and Dickens 2004). 

The LWD is defined as the percentage of real contact area over the apparent weld area.  

 𝐿𝑊𝐷 =  
𝐴𝑟𝑒𝑎𝑙

𝐴𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡
× 100% (2.8 ) 

The LWD is measured from micrographs of the bond interface of specimens. The 

specimens are made by welding two layers of foils to the base plate and cut from the be-

ginning, center, and end of the bond interface. These cut specimens are mounted, polished, 

and etched with Keller’s solution.  The LWD is observed at the cut interface using an x200 

optical microscope. By varying the operating parameters, the LWD is observed to increase 

linearly as amplitude increases. However, the bond strength does not increase at this point 

possibly because the excessive vibration weakens the already formed bonds.  
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2.5.6 Process Optimization  

Based on the reviewed bond quality evaluation methods, the UAM process can be 

optimized in order to achieve the optimum bond quality. Kong conducted peel tests and 

measured linear weld density on specimens made under various combinations of operating 

parameter values (Kong, Soar, and Dickens 2005). As a result, they identified a general 

process window for aluminum 6061 in the UAM process (Figure 2.9).  The window is 

defined based on the peel load greater than 69 N and the linear weld density of 45%±5%.  

From a design perspective, the optimum process window is identified through a design of 

experiment (DOE). The identification process requires multiple experiments which are en-

ergy, material and labor consumptive. Moreover, the result is material specific. If a differ-

ent material is to be used, the entire process has to be repeated.  

 



46 

 

Figure 2.9 General process window for aluminum 6061 – T0 based on peel test and linear weld density (Kong, 

Soar, and Dickens 2004) 

 

In summary, different methods of bond quality evaluation are reviewed in this sec-

tion. All existing evaluations are post-weld evaluation and are destructive to the bonds. The 

proposed UAM model which predicts plastic stress, strain, displacement, temperature, 

contact stress and contact area between the built feature and the foil, is potentially capable 

of predicting bond quality provided that a solid relation can be established between the 

bond quality and the plastic deformation of the foils.    

 

2.5.7 Relating Plastic Deformation to Bond Quality 

The initial surface roughness, even though has little influence on kinematic friction 

during bonding, is shown to influence the ultimate bond quality. Due to the relatively low 

stiffness and high stress concentration, the initial asperities undergo plastic deformation 

rapidly at the beginning of bonding and provide materials necessary to form the bonds. 

Johnson shows in electron micrographs of multiple bond interfaces that severe plastic de-

formation takes place in the surface layer of material with a depth of approximately 20-60 

µm from the mean plane of the asperities (K. E. Johnson 2008). This plastic deformation 

layer, according to Johnson, is the primary driver of the solid state bond quality. Further-

more, multiple experimental studies reveal that a rougher initial surface leads to stronger 

bonds (Friel et al. 2010; Kulakov and Rack 2010; Truog 2012; Wolcott, Hehr, and Dapino 

2014). Others found the roughened initial surface being the source of bond defects (Ram, 

Robinson, et al. 2007).  Li and Soar point out that the roughened surface has a significant 
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influence on bond quality because, on one hand, it facilitates the transfer of ultrasonic en-

ergy to the built feature and, on the other hand leads to voids that do not get filled by 

plastically deformed materials when the consolidation amplitude is not sufficiently high 

(Li and Soar 2009). Troug found that a rougher foil surface improves bond quality using 

high power UAM (9 kW) (Truog 2012). Wolcott et al. theorize about the asperities and 

deduce that larger asperities introduce more plastic deformation and larger friction force 

which drives dynamic recrystallization, resulting in higher bond strength (Wolcott, Hehr, 

and Dapino 2014). As a result, the deformation of asperities serves as a good indicator of 

bond quality. If a model of asperity layer can be established, it can then be directly used to 

predict bond quality based on the degree of deformation of the layer.  

 

2.6 Hypotheses and Research Questions 

2.6.1 Summary of Gaps in Literature 

In this chapter, the literature associated with UAM bond process is reviewed. Gaps 

are summarized below: 

1. The acoustic softening effect has not been fully investigated and characterized. The ex-

isting literature reports diverging observations of acoustic softening in metals, making it 

difficult to characterize for a specific metal without conducting experiments. Most of the 

existing analytical models of acoustic softening reviewed lack support of experimental 

data.  Moreover, to the best knowledge of the author, few acoustic softening data are found 
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in the literature for metals that are extensively used in UAM, such as Aluminum 6061, 

1100, or Copper 11000.  

2. There exists a gap between the modeling work of dynamics and bonding process. It can 

be seen from the literature that the dynamics models do not consider the bonding process, 

whereas some models that focus on the bonding process, although they include the dynamic 

equations, do not take into account the change in dynamics due to the change of the built 

feature geometry. In order to have a comprehensive understanding of the UAM process, 

both the macroscopic dynamics and the local bonding process at the interface need to be 

taken into account. 

3. None of the existing models have considered all of the influential factors discussed in 

this work. These factors include acoustic and thermal softening, strain rate hardening, tem-

perature, friction, and dynamics.  

4. None of the reviewed models has associated their model prediction to bond quality.  

5. None of the existing models have been used to identify the optimum process parameters 

for UAM. In the literature, process optimization has been conducted through design of ex-

periment (DOE), i.e. setting up a series of experiments in which operating parameters (vi-

bration amplitude, compression, weld speed, and temperature) are varied to search for the 

set of parameters that yield the optimum bond quality. However, it has never been investi-

gated using UAM models to the knowledge of the author. If the DOE is replaced by running 

UAM models, the number of tests can be increased, leading to smaller increments of design 

variables and a larger design space.  



49 

 

6. None of the existing models have been used to understand the energy flow. Many re-

searchers have investigated the energy flow in the UAM process. The energy flows are 

difficult to be quantified experimentally but are relatively easy to compute in numerical 

models. By varying the energy input and observing the change in kinematics, strain energy, 

heat dissipation, etc, the model could help gain insights into understanding energy flow 

within the UAM process.  

 

2.6.2 Primary Hypotheses 

Primary hypothesis: the dynamics of UAM system affect the plastic deformation of materi-

als at the bond interface and vice versa. The change in dynamics leads to a change in 

differential motion and therefore a change in the degree of plastic deformation. The plastic 

deformation is also believed to affect the dynamics in return. In the elasto-dynamic model 

where the stiffness of the components is modeled as the stiffness of an elastic spring, the 

plasticity can be qualitatively modeled by introducing nonlinear dampers that alter the dy-

namics of the system.  

 

2.6.3 Secondary Hypotheses 

Secondary hypothesis 1: in order for bonding to take place there is a minimum 

amount of plastic deformation needed. The degree of plastic deformation is positively cor-

related to bond quality, i.e., the higher the plastic deformation, the better the bond quality. 

The hypothesis supports the soundness of considering plastic deformation as a linkage to 
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connect macroscopic dynamics and the bond quality localized at the bond interface. The 

degree of plastic deformation depends on a series of factors including acoustic and thermal 

softening, strain rate hardening, heat transfer, and stick-slip friction. These factors further 

depend on the type of material, geometry of the built feature, and the operating parameters: 

amplitude, compression, weld speed, and heating temperature of the substrate.   

Secondary hypothesis 2: the bond quality can be characterized by the degree of 

plastic deformation of the asperities on the sonotrode-textured surface of the built feature. 

With this hypothesis the degree of plastic deformation can be further characterized in terms 

of contact stresses, contact area, and separation distance between the bonding interfaces.  

 

2.6.4 Research Questions 

Based on the hypotheses,  five research questions are proposed: 

1. How can the acoustic softening effect be taken into account in the modeling of the UAM 

process? 

o How can one design an experiment to quantify the acoustic softening effect? 

o How to analytically model acoustic softening? 

2. Which analytical models should be integrated to better characterize the UAM process? 

o How to establish a plasticity model that incorporates acoustic and thermal soften-

ing? 

o How to account for all the factors associated with heat transfer and friction in 

UAM? 

o How to account for the variation of dynamic conditions in a UAM model? 
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o How can the UAM model be validated? 

3. What are the criteria and how can they be used to evaluate the performance of the UAM 

model? 

4. How can one evaluate the performance of the proposed UAM model in terms of optimi-

zation of process parameters? 

5. How can one quantify the energy flow in the UAM process? 

We are hoping that, by answering these questions, a comprehensive thermo-me-

chanical UAM model can be established to have a better understanding of the solid state 

bonding process.  
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Chapter 3 

 

3 Experimental Investigation of Acoustic Softening 

Blaha and Langenecker are the first to document the phenomenon known as “acous-

tic softening”: a significant reduction of static stress in tensile tests when applying longi-

tudinal ultrasonic waves to various metals. Since then different researchers have endeav-

ored to investigate the phenomenon.  Different experimental setups have been designed to 

test the effects of ultrasound on various materials, leading to diverging observations and 

alternative theories of the softening process. In order to clarify the acoustic softening in the 

UAM bonding process, we have conducted experimental investigations on two types of 

metals that are extensively used in UAM: aluminum alloys and copper alloys. Specifically, 

the aluminum alloys include Aluminum 6061-T6 and –O, and Aluminum 1100-O. The 

copper alloy is Copper C11000-O. This chapter first details the design of the setup, the 

execution of the test, and observations, and then proceeds to discuss the results by compar-

ing the softening in different materials. Finally, an analytical model is developed to char-

acterize the acoustic softening in different materials. 
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3.1 Design of Experimental Setup 

3.1.1 Review of Existing Setups 

The difference in the designs of the experiments could potentially lead to differ-

ences in observations, causing differing interpretations of the results and the formation of 

competing theories. Therefore, in this section, we review the different experimental setups 

in order to identify an optimum design that measures acoustic softening with minimum 

noise factors.  

In 1955, Blaha and Langenecker reported a significant decrease of static stress, in 

stress strain relations of zinc single crystal subject to an ultrasonic field (Blaha and 

Langenecker 1955). In their experiment, the researchers place a standard tensile specimen 

in a liquid 𝐶𝐶𝑙4 bath (Figure 3.1, left). While being tensioned, the specimen is subjected 

to ultrasonic oscillations generated from the liquid bath. Based on the experiment, the au-

thors concluded qualitatively that a reduction of required tensile stress occurs when the 

ultrasounds start and disappears when the ultrasounds cease. Later the researchers simpli-

fied the experiment by removing the liquid bath and applying the ultrasound directly to the 

specimen (Langenecker 1963). A filament tensile test machine is combined with an ultra-

sonic transducer to provide tensile loading and ultrasonic vibration respectively (Figure 

3.1, right). The ASTM standard circular tensile test specimens made of aluminum single 

crystals, beryllium single crystals, low-carbon steel, stainless steel, and tungsten are tested 

with the setup. 

The experimental setup proposed by Blaha and Langenecker was later adopted by 

many researchers for its effectiveness in measuring the effect of ultrasound on the tensile 
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stress strain relation of metal specimen (Baker and Carpenter 1965; Daud, Lucas, and 

Huang 2006; Mignogna and Green  J. 1979; Nevill and Brotzen 1957; Pohlman and 

Lehfeldt 1966; Winsper and Sansome 1969). The setups used by Mignogna and Green, 

Daud and Huang are very similar to Blaha and Langenecker’s setup and will not be dis-

cussed in details (Daud, Lucas, and Huang 2006; Mignogna and Green  J. 1979). Nevill 

and Brontzen, Baker and Carpenter, Pohlman and Lehfeldt, Winsper and Sansome made 

small modifications on the design of the specimens (Baker and Carpenter 1965; Nevill and 

Brotzen 1957; Pohlman and Lehfeldt 1966; Winsper and Sansome 1969). Instead of using 

standard tensile circular specimens, they used long thin metal wires with the longitudinal 

length tuned to one half or multiple halves of the wave length of the ultrasound. Note that 

one issue with using the long thin wire is that the effect of the ultrasound could be signifi-

cantly reduced as the wave is attenuated by propagation. 

  

Figure 3.1 Blaha and Langenecker’s first setup (left) and second setup (right), reproduced from (Blaha and 

Langenecker 1959b; Langenecker 1963). 
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In addition to investigating tensile tests for application in extrusion type metal pro-

cesses, researchers investigated compression type tests for possible application of ultra-

sound in compression type processes, such as upset forging and wire bonding (D. Culp and 

Gencsoy 1973; Daud, Lucas, and Huang 2006; Huang et al. 2009; Hung, Tsai, and Hung 

2007). In their experimental setups, the specimen is fixed at one end and subjected to both 

compressional loading and ultrasonic vibration at the other end (Figure 3.2). The shapes 

of the specimens include short cylinders (D. Culp and Gencsoy 1973; Daud, Lucas, and 

Huang 2006), rings (Hung, Tsai, and Hung 2007) and ball shapes (Daud, Lucas, and Huang 

2006), depending on the specific industrial application. The material softening in compres-

sional stress strain relations shows qualitatively similar behavior to the material softening 

in tensile stress strain relations. However, the compressional tests introduce contact friction 

as specimens deform, which must be considered when quantifying material softening in-

duced by ultrasound. Hung et al. investigated the frictional effect of superimposing ultra-

sonic vibration during upsetting (Hung, Tsai, and Hung 2007). They demonstrated that the 

frictional condition at the horn-specimen interface has a noticeable influence on the static 

compressional force. They concluded that the effect of friction requires it to be decoupled 

from the effect of ultrasound in compressional tests.   
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Figure 3.2 Daud’s setup (Daud, Lucas, and Huang 2006). 

 

Some researchers modified the compression tests by replacing longitudinal vibra-

tion with transversal vibration of the ultrasonic horn on the specimen (Siu, Ngan, and Jones 

2011; Yao, Kim, Wang, et al. 2012). Siu et al., for instance, use a hardness tester equipped 

with a Vicker’s indenter tip and an ultrasonic transducer to perform such an experiment 

(Siu, Ngan, and Jones 2011). A polycrystalline aluminum square slab (10 x 10 x 1.5 mm) 

is glued onto the tip of an ultrasonic horn and is subjected to compression. The horn vi-

brates transversally while the Vicker’s indenter presses down against the slab along a lon-

gitudinal direction (Figure 3.3, left). The microstructures of the indents are then analyzed 

using transmission electron microscopy (TEM) and crystal orientation mapping by electron 

backscattered diffraction (EBSD). Yao et al. describe a similar setup, using short cylindri-

cal specimens that are compressed by an acoustic horn vibrating in the transverse mode 

(Figure 3.3, right) (Yao, Kim, Wang, et al. 2012). The material softening is measured in 

form of stress reduction in the stress strain relations. By substituting longitudinal vibration 
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with transversal vibration in compression tests, significant frictional heat is introduced at 

the horn-specimen interface. The interfacial friction causes thermal softening of the speci-

men which is not easily separated from acoustic softening. In Siu’s work, no discussion is 

found describing the effect of frictional-heating on sub-grain formation which they have 

observed at the indentation site (Siu and Ngan 2013; Siu, Ngan, and Jones 2011). Similarly, 

Yao et al. do not consider the effect of frictional-heat on material softening, although they 

report a temperature rise by 10 ℃ within specimen during acoustic softening (Yao, Kim, 

Faidley, et al. 2012).  

  

Figure 3.3 Siu’s setup (left) and Yao’s setup (right). 

Dutta et al. present another variation of setup for tensile tests. They designed the 

experimental apparatus so that longitudinal ultrasonic vibration is applied in a direction 

perpendicular to the axis of the specimen (Figure 3.4) (Dutta et al. 2013). They used ASTM 

standard tensile specimens made from steel sheets. The contact force between horn and 

specimen is carefully controlled to prevent excessive bending of specimens. The material 

softening is identified as the static stress decreases on the stress strain curves. In this setup, 

both contact friction and interfacial friction are avoided. However, the stress caused by 
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bending requires decoupling from the stresses caused by tensile loading, when evaluating 

the tensile stress reduction induced by ultrasound. 

 

 

Figure 3.4 Dutta’s setup (Dutta et al. 2013). 

 

In summary, it is evident that the various experimental setups are combinations of 

tensile or compressional tests and longitudinal or transversal ultrasonic vibration. Further-

more the following conclusions can be drawn: 

1. In general, compressional tests introduce more friction than tensile tests. 

2. Transversal ultrasonic vibration introduces more friction than longitudinal ultra-

sonic vibration.  

Blaha and Langenecker, together with other researchers who used similar setups, 

effectively minimize the effect of friction by using an apparatus that utilizes tension with 

longitudinal ultrasonic vibration.   Based on this observation, we describe our experimental 

setup. 
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3.1.2 Proposed Design of Setup 

Figure 3.5 shows our design of experimental setup. It follows the design of Blaha 

and Langenecker, and consists of an MTS hydraulic tensile test machine with an Instron 

controller (Instron 8800, software version 8.4, build 244), a Branson 2000 ultrasonic plastic 

welder and a rigid frame made of steel plates of 1” thickness. The MTS tensile test machine 

provides static tensile load from the bottom end of the specimen in the vertical direction, 

stretching or compressing the material to its failure. The loading profile is recorded by an 

MTS load cell (2000 lbs) that connects the MTS actuator and the specimen while the de-

formation history is recorded by an Instron 2630 extensometer (gauge length: 1 inch, travel: 

0.5 inches). The Branson ultrasonic welder delivers ultrasonic energy to the upper end of 

specimen. The welder consists of an ultrasonic transducer that converts electric energy into 

ultrasonic vibration, a booster that amplifies ultrasonic vibration and an ultrasonic horn 

that further magnifies and delivers ultrasonic vibration onto the specimen.  The vibration 

frequency is fixed by the transducer at 20 kHz whereas the vibration amplitude is mainly 

determined by the profile of ultrasonic horn and the amount of energy delivered. In our 

current setup, a circular high gain horn made of aluminum heat-treated aluminum alloy is 

used and the maximum vibration amplitude is 24 microns based on measurement from a 

laser vibrometer. Due to the fact that the ultrasonic welder is designed to take compres-

sional load rather than tensile load, the ultrasonic horn cannot be directly connected to the 

specimen that is tensioned by the MTS machine. Therefore, a steel frame had to be built to 

provide a fixing position for the specimen to take the tensile load off the welder. The spec-

imen is installed such that it oscillates with the ultrasonic horn at its upper end, fixed to the 
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frame at a point just below the oscillating end, and is stretched at the bottom end (Figure 

3.6). In addition, a Polytech laser vibrometer measures the vibration amplitude of speci-

men. A FLIR thermal camera and Omega DP490 thermo-couples are used to observe the 

temperature of the specimen surface close to the deformation region. 

 

Figure 3.5 Experimentation setup: the CAD model (left) and the actual setup (right) 
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Figure 3.6 Frame Design: the CAD model (left) and the actual frame (right). 

 

3.1.3 Special Considerations in Designing the Setup 

Special considerations are taken in designing the setup to ensure that the loss of 

ultrasonic energy is minimized. Specifically, due to the fact that the specimen is fixed to 

the frame at a location below the ultrasonic vibration interface, a portion of the ultrasonic 

energy will propagate through the frame instead of the specimen, causing ultrasonic energy 

losses and reduction of acoustic softening effects (Figure 3.7). In order to minimize the 

energy losses, three steps are taken while building the frame: 1) the frame is designed such 

that it is much stiffer than the specimens under testing. The frame is built using hot rolled 

steels which are much harder than the aluminum and copper alloys used for specimens. 

The steel plates are of 1” thickness and are bolted together to build in a box structure in 
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order to achieve high stiffness. 2) A dynamic analysis is performed on the 1:1 size CAD 

model using ABAQUS 6.10 to ensure that the ultrasonic horn does not excite any reso-

nances in the frame. Modal analysis is carried out to examine the first five modal frequen-

cies of the frame to make sure that they are far away from the operating frequency which 

is 20 kHz. We also performed a dynamic transient analysis by imposing 20 kHz vibration 

to the frame model. The dynamic response, stress distribution, and deformation are exam-

ined to ensure minimal deflection at the application point to the specimen, and that stress 

is well below the yield stress. 3) Dry lubricants are applied to all the contact interfaces 

where ultrasonic waves propagate from one solid medium to another. Dry lubricants are 

applied to the horn-specimen and the specimen-frame interfaces to minimize vibration-

induced friction. The friction on one hand dissipates ultrasonic energy by means of fric-

tional work, on the other hand introduces noises to the measuring of acoustic softening. 

The dry lubricants applied include extreme fine graphite and Molly EP. The extreme fine 

graphite can minimize metal-to-metal contact and wear of sliding surfaces. The Molly EP 

has the extreme pressure (EP) additives that can react with steel surfaces under pressure to 

form a surface film and to prevent metal-to-metal contact or welding.  
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Figure 3.7 The propagation of the ultrasonic waves into specimen and into frame 

 

3.2 Experimental Details 

This section documents details of the experiments including the preparation of ma-

terials, design of specimen, experimental procedures, and some special considerations in 

executing the experiment. 

 

3.2.1 Preparation of Materials 

The materials under study are Aluminum 6061-T6, Aluminum 6061-O, Aluminum 

1100-O, and Copper C11000-O due to their extensive application in UAM and availability. 

The Aluminum 6061-T6 and Aluminum 1100-O are used as received, whereas the Alumi-

num 6061-O and Copper 11000-O are obtained through heat treatment. Specifically, the 
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annealing of Copper 11000 involves heating the material to 370 °C for 1 hour and cooling 

it down in an oven. The annealing process of Aluminum 6061 includes heating the material 

to 417 °C for 2.5 hours and then cooling it down from oven to room temperature. The 

Aluminum 6061-O is obtained by annealing Aluminum 6061-T6 to –O temper. Therefore 

the composition of Aluminum 6061-T6 and –O are the same. The chemical composition of 

Aluminum 6061-T6, Aluminum 1100-O, and Copper 11000 are shown in Table 3.1. 

 

Table 3.1 Chemical compositions of Aluminum 6061-T6, Aluminum 1100-O, and Copper 11000-O (“McMaster 

Carr” 2015) 

Aluminum 6061-T6 Aluminum 1100-O Copper 11000 

Al 95.1-98.2% Al 97.85-99.4% Copper 99.9% 

Mg 0.8-1.2% Si + Fe 0.55-1.0% Pb 0-0.005% 

Si 0.4-0.8% Cu 0.05-0.2% Bi 0-0.005% 

Cr 0.4-0.8% Mn 0-0.05% O 0-0.04% 

Fe 0-0.7% Mg 0-0.05%   

Cu 0.05-0.4% Zn 0-0.1%   

Mn 0-0.15% Ti 0-0.6%   

Ni 0-0.05% Other 0-0.15%   

Zn 0-0.25%     

Ti 0-0.15%     

Zr 0-0.25%     

Other 0.15%     
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3.2.2 Specimens  

The design of specimens, where possible, follows the ASTM standard E8-04. How-

ever, due to the limited capacity (2000 lbs) of the load cell and high yield strength of the 

test material, the gauge diameter for specimens made of aluminum 6061-T6 is constrained 

to 3/16 inch and the specimen profile deviates from the standard profile. The profile di-

mensions and the actual specimen are shown in Figure 3.8. The rest of the specimens that 

are made of Aluminum 6061-O, Aluminum 1100-O, and Copper C11000-O conform to the 

standard profile and have a gauge diameter of 1/4 inch. The profile dimensions and the 

actual specimens are shown in Figure 3.9. 

 

 

Figure 3.8 Specimen design: specimen dimension (top) and actual specimen (unit: inch) made of Aluminum 

6061-T6 (bottom) (Mao, Gibert, and Fadel 2014). 

 

Unit: inch 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.9 Specimen design: specimen dimension (a) and actual specimens (unit: inch) made of Aluminum 6061-

O (b), Aluminum 1100-O (c), and Copper C11000-O (d). 

 

 

3.2.3 Testing Procedure 

The tests starts with a standard quasi-static tensile test operated in displacement-

controlled mode. The specimen is subjected to quasi-static tensile load at a constant loading 

Unit: inch 
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speed of 0.1 mm/s until it fails. Meanwhile, the ultrasonic welder is started after the spec-

imen begins to yield. As the welder starts, the ultrasonic horn is brought into contact with 

the upper end of the specimen at a constant speed and is compressed on top of the specimen 

with a moderate force of around 150 lbs. The compressive preload is critical for the prop-

agation of ultrasonic waves within the specimen. Some may argue that this compressive 

preload would affect the measuring of tensile stress from the load cell. Based on our ob-

servation, however, the compressive force barely changes the measured stress since it is 

counteracted by the clamping force exerted by the frame. As soon as the compressive force 

reaches the set value, the ultrasound starts and the longitudinal ultrasonic waves propagate 

through the specimen that is being tensioned. The ultrasonic irradiation lasts for 10 seconds 

for Aluminum 6061-T6 and 20 seconds for the other three materials before it stops. The 

compression is then removed and the ultrasonic horn is brought up. The amount of ultra-

sonic energy applied during the irradiation is recorded by the welder controller and can be 

retrieved when the test completes. 

The testing procedure is summarized in Figure 3.10. Figure 3.10 (left) shows the 

load profile from the MTS tensile test machine and Figure 3.10 (right) from the Branson 

ultrasonic welder. The MTS machine is run in displacement-controlled mode and the dis-

placement 𝑠 follows a ramp curve with its slope being fixed to 0.1 mm/s. The Branson 

welder is run in amplitude-control mode and the displacement 𝐴 follows a sinusoidal curve 

with its frequency fixed at 20 kHz and its amplitude to the set percentage. Figure 3.11 

shows a schematic of the stress history in response to the loads. At the beginning, a tensile 
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stress is established in response to the quasi-static loading of the tensile tester. The ultra-

sound is started after yielding, introducing an oscillating stress in addition to tensile stress. 

The oscillation interval is 𝑡𝑢 and the oscillating stress amplitude is far smaller than the 

magnitude of the tensile stress. However, the resulted reduction in tensile stress is signifi-

cant. By comparing the load-induced stresses and the actual softened stress curves in sec-

tion 3.3.1, it is shown that acoustic softening is not a result of simple superposition between 

tensile and ultrasonic stresses. Finally, the operating parameters used in the testing are 

summarized in Table 3.2. 

 

  

Figure 3.10 Load profiles: MTS tensile test machine (left), Branson ultrasonic welder (right). 

 

 

Figure 3.11 A schematic of history of stresses induced by external loading  
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Table 3.2 Summary of operation parameters of testing 

Amplitude Frequency Preload Load Speed Ultrasound-on Time 

0-24 µm 20 kHz 140–160 lbs 0.1 mm/s 20 s (10s for Al6061-T6) 

 

3.3 Observations and Discussions 

This section presents the observations from each material tested and then compares 

the observations between these materials. The differences in acoustic softening are inter-

preted based on the materials’ similarities and differences in the microstructure. Finally a 

macroscopic analytical model characterizing acoustic softening effect is proposed based 

on these observations.  

 

3.3.1 Experimental Observations 

The observations are presented for Aluminum 1100-O, Aluminum 6061-O, Alumi-

num 6061-T6, and Copper 11000-O. The Aluminum 1100-O is tested as received while 

the Aluminum 6061-O and Copper 11000-O are annealed. The details of the heat treatment 

as well as the chemical composition of each of the materials are presented in section 3.2.1.  

 

3.3.1.1 Aluminum 1100-O 

A total of 7 tests are carried out successfully and the results of 5 tests are shown in 

Figure 3.12. The stress-strain curves are obtained with ultrasound being set to 5 different 
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levels: 0 J (quasi-static loading), 9053 J, 10041 J, 10869 J, and 11394 J. The energy levels 

are normalized by the maximum energy to show their relative magnitude. The strains used 

in the plot are estimated based on the displacement of the tensile tester actuator rather than 

being measured by the extensometer due to some technical issues. The details of the sof-

tening process can be seen from the enlarged view of the plot. When the ultrasound starts, 

the stress drops drastically to a minimum point and then increases slightly before stabiliz-

ing at a low stress level. The curve shows strain hardening during the application of ultra-

sound. In Aluminum 1100-O, stain hardening is induced by the multiplication and interac-

tions of dislocations. Interestingly, when the energy level is high enough, the curves be-

come ragged which suggests that the ultrasound has certain effects on the moving of dis-

locations. As the ultrasound stops, the stress increases radically but still stays below the 

tensile stress without ultrasonic irradiation. This effect is known as “residual softening”. 

As the tensile load continues, the stress continues to increases due to strain hardening. 

However, depending on the level of the ultrasonic energy applied, the residual softening 

effect could remain in effect till the end of loading (i.e., the fracture of the specimen) or 

gradually die down before loading is completed.  

Figure 3.13 shows the work hardening rate of true stress-true strain curve for Alu-

minum 1100-O. The work hardening rate is defined as the derivative of true stress with 

respect to true strain: 𝜃 =
𝑑𝜎

𝑑
. The solid line shows the work hardening rate when being 

subjected to an ultrasonic energy input of 11349 J and the dashed line shows the one with-

out ultrasound. The two curves highly overlap before and after the application of ultrasound 

but diverge in between. The softened curve shows two large spikes which correspond to 
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the abrupt change in stress at the start and the end of the ultrasonic irradiation. The magni-

tudes of the spikes indicate how radical the stress varies in response to the ultrasound. The 

small fluctuation during the irradiation indicates the influence of ultrasound on the inter-

actions of dislocations.  

Figure 3.14 shows the reductions of stresses with respect to different levels of ul-

trasonic energy. The stress reduction increases as the energy level escalates and a linear 

relation can be drawn between the two.  

Finally, the observations from the Aluminum 1100-O are summarized as: 

1. An instantaneous change in stresses is observed in response to the application of 

ultrasound.  

2. The ultrasound reduces the stress necessary to deform material in the plastic de-

formation region.  

3. The stress reduction is linearly proportional to the ultrasonic energy consumed.  

4. A residual softening effect is observed when ultrasound stops.  

5. The ultrasound is found to have an influence on the interactions between dislo-

cations.  
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Figure 3.12 The effect of ultrasound on stress-strain curves of Aluminum 1100-O: overview (top), details of sof-

tening (bottom) 
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Figure 3.13 The work hardening rate as a function of true strain for Aluminum 1100-O with and without ultra-

sound. 

 

 

Figure 3.14 The stress reduction versus ultrasonic energy input relation of Aluminum 1100-O  
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3.3.1.2 Aluminum 6061-O 

The same experimental procedure was repeated for aluminum 6061-O. Due to the 

relatively low hardness and strength of the material, the time interval of the applied ultra-

sound is extended from 10s to 20s. A total of 14 tests are carried out successfully and 6 of 

them are selected to present their stress strain curves at 5 different levels of energy input: 

0 J, 5631 J, 5907 J, 6458 J, 7864 J (Figure 3.15). When the ultrasound is stopped, the 

stress-strain curves show residual hardening effects at low energy levels (US = 5631 J, 

5907 J) and residual softening at high levels (US = 6458J, 7864 J). The stress reduction is 

linearly related to the ultrasonic energy as indicated by Figure 3.16. Figure 3.17 shows 

the work hardening rate curve of Aluminum 6061-O with and without ultrasound. The two 

curves show overlapping throughout the course except at the time when ultrasound is 

started and stopped. The initial value of the work hardening rate of Aluminum 6061-O (4e4 

MPa) is much higher than that of Aluminum 1100-O (5000 MPa) which indicates a higher 

dislocation density in Aluminum 6061-O when yielding starts. The radical changes in stress 

due to ultrasound (indicated by the magnitude of the spikes) are less significant in Alumi-

num 6061-O than in Aluminum 1100-O. It makes sense because Aluminum 6061-O has a 

higher dislocation density which requires more energy to achieve a similar stress reduction. 

Moreover, the existence of precipitates and their interactions with dislocations could also 

add to the dissipation of ultrasonic energy. Figure 3.18 shows the effect of different ultra-

sonic irradiation time intervals on the softening and residual behaviors of materials. Spe-

cifically, the ultrasound is applied for 10 s, 20 s, and 30 s at three separate tests. The ultra-

sonic power for the 10 s and 20 s irradiation tests are held at a similar level (348W and 359 
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W) whereas for 30s irradiation test the power is higher (528W). The 10 s and 20 s irradia-

tion tests show similar stress reductions during softening and similar residual effects after 

the ultrasound is stopped. The 30 s irradiation test shows slightly higher stress reduction 

during softening and slightly higher residual hardening than the 10 s and 20 s irradiation 

tests. These observations indicate that the softening and residual effects are not accumu-

lated effects and therefore do not depend on the time interval of the ultrasonic irradiation.  
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Figure 3.15 The effect of ultrasound on stress-strain curves of Aluminum 6061-O: overview (top), details of sof-

tening (bottom) 

 

 

Figure 3.16 The stress reduction versus ultrasonic energy input relation of Aluminum 6061-O 
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Figure 3.17 The work hardening rate as a function of true strain for Aluminum 6061-O with and without ultra-

sound. 

 

 

Figure 3.18 The effect of different irradiation time intervals on the softening and residual behavior of material 

of Aluminum 6061-O 
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3.3.1.3 Aluminum 6061-T6 

A set of preliminary tests were initially carried out applying the ultrasound sepa-

rately at strains with in (a) the elastic and (b) the plastic tensile deformation regions. The 

yield stress that separates the elastic and plastic regions was determined based on 0.2% 

offset in plastic strain. The stress strain curves with and without an ultrasound vibration 

were recorded and compared. These preliminary tests are designed to show qualitatively 

the acoustic softening behavior in the elastic and plastic deformation regions. Triplicate 

tests were performed with the stress-strain characteristics of one of three tests being shown 

in Figure 3.18 and Figure 3.19. 

When the ultrasonic vibration was applied within the elastic deformation region, 

the static stress immediately decreases. The starting point of ultrasonic vibration is shown 

in Figure 3.18 (bottom). The stress reduction gradually increases until it stabilizes at 

around 59.45 MPa. Then the stress strain curve runs parallel to the reference curve at the 

lower stress level. When the ultrasound is stopped (shown as the end of ultrasound in Fig-

ure 3.18 ), the static stress gradually increases. However, the stress strain relation after 

stopping the ultrasonic vibrations does not overlap with the reference curve, but runs par-

allel at a stress level approximately 14.86 MPa lower than the reference curve until fracture 

occurs, indicating a residual softening effect. 



79 

 

 

 

Figure 3.19 Stress strain relations with ultrasonic vibration in elastic deformation region for Aluminum 6061-

T6: overview (top) and enlarged view (bottom) 

 

When ultrasound vibration was applied within the plastic deformation region (Fig-

ure 3.19), similar behavior of stress strain relations is observed. The static stress is reduced 

by approximately 29.04 MPa in the plastic region. After the termination of ultrasonic vi-

bration, a residual softening of approximately 15.64 MPa in stress reduction is observed. 
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The detailed comparisons of acoustic softening and residual softening induced by ultra-

sound in elastic and plastic regions are listed in Table 3.3. The data are based on 3 repeated 

tests, which are shown in Table 3.4. The yield stresses are determined based on 0.2% offset 

of plastic strain as indicated by the black dash line in Figure 3.18. 

 

 

Figure 3.20 Stress strain curve with ultrasonic vibration in plastic deformation region for Aluminum 6061-T6: 

overview (top) and enlarged view (bottom). 
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. 

Table 3.3 Comparison of effects of ultrasound applied in elastic and plastic deformation regions 

 

Acoustic 

Softening 

(MPa) 

Residual  

Softening 

(MPa) 

YS 

(0.2 %) 

(MPa) 

UTS 

(MPa) 

Without  

Ultrasound 0.00 0.00 372.46 395.12 

Ultrasound  in Elas-

tic Region 59.45 14.86 348.38 376.58 

Ultrasound Close to 

Plastic Region 29.04 15.64 320.39 375.10 

 

Table 3.4 The repeated tests of effects of ultrasound applied in elastic and plastic deformation regions 

Tests Acoustic Softening 

(MPa) 

Residual Softening 

(MPa) 

Quasi-static Load 

(MPa) 

Elastic Plastic Elastic Plastic YS (0.2%) UTS 

1 50.85 29.62 11.40 11.44 372.43 394.26 

2 74.24 45.11 22.68 23.10 373.93 396.98 

3 53.29 12.40 10.49 12.39 371.02 394.12 

Aver. 59.45 29.04 14.86 15.64 372.46 395.12 

 

 

Based on the preliminary tests, the following observations can be drawn: 1) the 

application of ultrasound on a specimen during tensile testing has the effect of reducing the 

static tensile stress in the stress strain relation, i.e., displays the effect of acoustic softening. 

2) The ultrasound reduces the necessary static stress but does not change the slope of the 

stress strain relation, i.e., the Young’s modulus of material in the elastic deformation region 
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remains the same. 3) The ultrasonic vibration has a residual softening effect on the mate-

rial, i.e., the required static stress causing material to fail is lower after the application of 

ultrasound. 

Following the preliminary tests, more tests were carried out by varying the ampli-

tude of the ultrasound while keeping the other operation parameters unchanged. 26 runs 

that are completed with success, 6 tests are selected to present their stress strain curves at 

different amplitudes which lead to different levels of ultrasonic (US) energy input: 0 J, 

915J, 2684 J, 3718 J, 5506 J and 6040 J (Figure 3.20). By setting the maximum ultrasonic 

energy input as the 100% energy level, the energy inputs are converted into percentages 

for clarity. As the ultrasonic energy level increases, the stress reduction increases accord-

ingly and the material becomes “softer”. In the four lowest energy levels, the softening 

curves show a combined effect of acoustic softening, i.e. stress reduction, and strain hard-

ening. In the other two high energy levels however, the strain hardening diminishes and 

the curves become straight lines, which are similar to curves reported by Blaha and 

Langenecker when ultrasonic intensity is large (Langenecker 1963). During the experi-

ment, a thermal camera is used to record the temperature gradient at the acoustic softening 

spot. Two thermocouples are glued to the surface of the spot to identify the temperature 

increase. The room temperature is 70 °F (21 °C) and the highest temperature during ultra-

sonic irradiation is recorded by the thermal couples to be 120 °F (49 °C). No significant 

temperature increases is recorded by the thermal camera. As a result, the thermal softening 

effect in the experiments is considered insignificant.  
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Figure 3.21 The engineering stress-strain relations at different levels of ultrasound (US) (top). The zoom-in of 

the stress-strain relations to show the details of the softening phenomena (bottom).   

 

Figure 3.21 shows the work hardening rate with true stress-strain curve for Alumi-

num 6061-T6. As the true plastic strain reaches 0.5, the value of working hardening rate 
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becomes negative indicating the initiation of necking and the onset of plastic instability. It 

can be seen from the enlarged view that the application of ultrasound slightly shift the onset 

point of plastic instability.   

 

Figure 3.22 The work hardening rate as a function of true strain for Aluminum 6061-T6 

 

In order to better understand the relation between stress reduction and energy input, 

the engineering stress-strain relations are converted into true stress-strain relations for cal-

culating the stress reduction. The stress reduction is approximated by averaging the reduc-

tion at two sampled points (εtr=0.02, εtr=0.03) that are taken from the softening process. 

The calculation is summarized and shown in Table 3.5. It is then plotted against the energy 

input and a strong linear correlation is shown (Figure 3.23).  
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Figure 3.23 The stress reduction as a function of ultrasonic energy input  for Aluminum 6061-T6. 

 

Table 3.5 The summary of the calculated stress reduction 

Energy 

level 

(𝑬𝒖) (J) 

Stress at 

𝜺𝒕𝒓 = 𝟎. 𝟎𝟐 

(MPa) 

Stress at 

𝜺𝒕𝒓 = 𝟎. 𝟎𝟑 

(MPa) 

Average 

stress (�̅�) 

(MPa) 

Averaged stress 

reduction (∆𝝈̅̅ ̅̅ ) 

(MPa) 

Stress re-

duction Ra-

tio (𝜼) 

0 372.10 381.88 376.99 0 1.00 

916 366.95 378.11 372.53 4.45 0.99 

2684 359.65 371.52 365.59 11.40 0.97 

3718 355.82 364.05 359.94 17.05 0.96 

5560 347.34 356.31 351.83 25.16 0.94 

6040 341.75 345.55 343.65 33.34 0.92 

 

In summary, the major observations from the effect of ultrasound on Aluminum 

6061-T6 include: 

1. The ultrasound has the effect of reducing static tensile stress on the stress strain relation. 

2. A residual softening effect is observed after the ultrasound is turned off. 

y = 0.0049x

R² = 0.9728

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000 5000 6000 7000

S
tr

es
s 

re
d
u
ct

io
n
 (

M
P

a)

Energy (J)



86 

 

3. The stress reduction is observed to be linearly proportional to the ultrasonic energy input. 

4. The Young’s modulus does not change in the elastic deformation region. 

 

3.3.1.4 Copper 11000-O 

For copper 11000-O, a total of 12 tests are successfully carried out and 4 different 

energy levels are presented in Figure 3.24. Residual softening is observed after ultrasound 

is stopped. A strong linear relation is found between stress reduction and energy input 

(Figure 3.25). The stress reduction and energy input for copper are significantly higher 

than the other materials (Figure 3.26). This is due to the fact that copper has a much higher 

work hardening rate which leads to higher reduction of stress and higher consumption of 

ultrasonic energy than the aluminum.  
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Figure 3.24 The effect of ultrasound on stress-strain curves of Copper 11000-O: overview (top), details of soften-

ing (bottom) 
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Figure 3.25 The stress reduction versus ultrasonic energy input relation 

 

Figure 3.26 The stress-intensity curves of all materials under study 
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3.3.2 Comparison of Acoustic Softening Among Different Materials 

The observations indicate a reduction of flow stresses when the ultrasound is ap-

plied in aluminum and copper studied. The reduction is shown to have a strong linear rela-

tion to the applied ultrasonic energy. In this section, this relation is compared among dif-

ferent aluminum. Due to the divergences in specimen diameters and ultrasonic irradiation 

time while testing different materials, the energy (unit: 𝐽) is converted to intensity (unit: 

𝑊/𝑐𝑚2) so that the effects of irradiation time and specimen dimension are removed. The 

stress-intensity relations are used for comparison. The differences in stress-intensity rela-

tions are discussed based on the qualitative differences in microstructures of the materials.  

Before starting the discussion, some features of microstructures in four aluminums 

are compared in Table 3.6. 

 

Table 3.6 The comparison of microstructure of four different aluminum 

 Single crystal 1100-O 6061-O 6061-T6 

Grain  

boundary 
No Yes Yes Yes 

Dislocation 

Density 

 (𝒎/𝒎−𝟑) 

104 105 107 108 

Precipitates None None 
Incoherent 

𝛽′(𝑀𝑔2𝑆𝑖) 

Coherent 

𝛽′(𝑀𝑔2𝑆𝑖) 
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3.3.2.1 Aluminum single crystals and Aluminum 1100-O 

Figure 3.27 shows the stress-intensity curves of aluminum single crystals and alu-

minum 1100-O. The data of single crystals are obtained from the work of Blaha and 

Langenecker (Langenecker 1963). The aluminum single crystal has 99.993% purity 

whereas aluminum 1100 is commercially pure with 99% purity. The aluminum single crys-

tal comprises of a single grain with one crystallographic orientation whereas the aluminum 

1100 comprises of randomly oriented grains whose orientations vary from crystal to crys-

tal.  

Figure 3.27 shows that the single crystal yields much higher stress reduction than 

the 1100-O does when subjected to ultrasound of same intensity. The difference in stress 

reduction may be associated with the differences in structures. For aluminum single crystal, 

the magnitude of stress reduction depends on how the ultrasonic wave is oriented with 

respect to its slip plane. The reduction is most significant when the direction of the ultra-

sonic waves is aligned with the slip plane, and least significant when the propagation di-

rection is orthogonal to the slip plane. Specifically, when the single crystal is subjected to 

a tensile load, its dislocations travel along the slip plane whose direction depends on the 

crystallographic orientation of the crystal. The tensile stress increases when the traveling 

dislocations are impeded by obstacles (impurity atoms or other dislocations). If the ultra-

sound is aligned with the slip plane, the ultrasonic waves facilitate the travel of dislocations 

by helping them overcome the obstacles, thus causing reduction in tensile stress. In 

Langenecker’s work, the angle between the slip plane and the propagation direction is re-



91 

 

ported to be 26 °~ 28 °, which indicates that the ultrasound direction has a significant in-

fluence on the tensile stress (Blaha and Langenecker 1959a). For polycrystalline aluminum, 

however, the crystals are more randomly oriented and no favorable orientation can be 

found for stress reduction. When the dislocation on a favorable slip plane is activated and 

travels in a grain, it will be constrained by its less-favorably oriented neighbors. As a result, 

the stress reduction in aluminum 1100 is significantly lower than in aluminum single crys-

tals. In addition to microscopic structures, the energy loss while delivering ultrasonic en-

ergy into the specimen could also affect the stress reduction. This loss, however, is difficult 

to quantify due to the differences in experimental setups.   

 

Figure 3.27 Comparison of stress-intensity curves between aluminum single crystals and aluminum 1100-O 
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It is shown in Figure 3.28 that the stress reduction of aluminum 6061-O is slightly 

higher than that of aluminum 6061-T6. Since the aluminum 6061-O is obtained by anneal-

ing aluminum 6061-T6 to -O state, the chemical compositions of the two materials are the 

same. The difference in stress reduction is postulated to be caused by the precipitate growth 

during annealing process. Specifically, the Aluminum 6061–T6 is strengthened by small 

size (~100 Å) precipitates of coherent 𝛽′(𝑀𝑔2𝑆𝑖) which pin dislocations and impede their 

moving. In the annealing process, the precipitates grow in size and decrease in number. 

The process is thermodynamically spontaneous due to the fact that large size particles are 

more energetically stable than small ones. The coherent 𝛽′(𝑀𝑔2𝑆𝑖) become incoherent due 

to the size increase. The resulted large size precipitates (~1000 Å) are less effective in 

impeding the moving of dislocations. The number of precipitate-dislocation interactions is 

also reduced due to the reduction in the number of precipitates. Moreover, the precipitates 

diffuse from inside the grain towards the grain boundaries, leading to less impediments to 

dislocations. As a result, the acoustic softening is more significant in aluminum 6061-O 

than in aluminum 6061-T6.  
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Figure 3.28 Comparison of stress-intensity curves between Aluminum 6061-T6 and Aluminum 6061-O 
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aluminum 6061-O is smaller than aluminum 1100-O. Based on the comparison, the alumi-

num 1100-O is expected to yield greater stress reduction than aluminum 6061-O due to its 

lack of precipitates strengthening and larger grain size. However, this is assumption devi-

ates from our experimental observation which shows higher stress reduction in aluminum 

6061-O than in aluminum 1100-O. The cause of such divergence is unclear at this point. 

Further investigation into the microstructure of the materials is required to understand the 

underlying mechanisms. This could be a part of the future work.  

 

Figure 3.29 Comparison of stress-intensity curves between Aluminum 1100-O and Aluminum 6061-O 
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�̅�

𝜎0̅̅̅̅
= 1 − 𝑑𝐼𝑢 (3.1) 

 

Where 𝜎 is the flow stress under ultrasonic irradiation, 𝜎0̅̅ ̅ is the reference flow stress with-

out ultrasonic irradiation, 𝐼𝑢 is the ultrasound intensity which can be derived from the ex-

periment, and 𝑑 is a constant that fits the model to experimental data. At room temperature, 

the values of 𝑑 for the four different materials are shown in Table 3.8. In the UAM process, 

while the sonotrode amplitude is known, a direct measure of ultrasonic energy is not appli-

cable. Therefore a relation is introduced to estimate the oscillation magnitude of the ultra-

sonic field based on the ultrasound intensity. The relation is derived based on the definition 

of sound intensity and is written as (Frederick 1965):  

 

 𝐼𝑢 =  𝜌�̅�2𝜔2𝑐 (3.2) 

 

Where �̅� is the equivalent oscillation amplitude of the ultrasound field. 𝜌 is the density of 

the medium, 𝑐 is the speed of sound in the medium, and 𝜔 is the angular frequency of the 

ultrasound, defined as 𝜔 = 2𝜋𝑓. 𝑓 is the frequency of ultrasound and is fixed at 20 kHz. 

Since the bonding interface is very close to the sonotrode surface (roughly 0.1 mm), it is 

assumed that in UAM the oscillation amplitude of the ultrasonic field is the same as the 

amplitude of the sonotrode. Consequently, the ultrasound intensity can be characterized 

using vibration amplitude. This characterization relies on the assumption that the amplitude 

of the ultrasound at the bonding interface equals the vibration amplitude of the sonotrode. 

In reality, however, intermittent slip takes place between the sonotrode and the top foil as 

well as between the top foil and the built feature, which leads to an overestimation of the 
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energy input at the bonding interface. On the other hand, the acoustic softening effect of 

the ultrasonic energy is underestimated in our experimental investigation due to the fact 

that a portion of the delivered ultrasonic energy is dissipated in the supporting frame rather 

than the in the specimen.  

 

 

 

Table 3.7 The value of model constant d for different materials 

 
Aluminum 

6061-T6 

Aluminum 

6061-O 

Aluminum 

1100-O 

Copper 

11000-O 

Value of 𝒅 

(𝐜𝐦𝟐/𝐖) 
2.2564E-05 8.5027E-05 8.0106E-05 7.3078E-05 

 

 

The following chapter shows how the acoustic softening model is accounted in a 

plasticity framework. Besides acoustic softening, other influential factors of plastic defor-

mation are also taken into consideration. 
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Chapter 4 

 

4 A Plasticity Model for UAM 

As is shown in the literature review (section 2.2.2), the plastic deformation is af-

fected by a number of factors: ultrasonic energy, plastic strain rate, temperature, friction, 

and dynamics. Among these factors, ultrasonic energy, plastic strain rate, and temperature 

have a direct influence on material plasticity. The ultrasonic energy and temperature cause 

acoustic and thermal softening whereas the high strain rate causes strain rate hardening in 

materials. The existing plasticity models such as the power law model (GS Kelly and 

Advani 2013), cyclic plasticity model (A. Siddiq and Ghassemieh 2008a), crystal plasticity 

model (Amir Siddiq and Sayed 2012), or the dislocation-based crystal plasticity model (Pal 

and Stucker 2012) are either phenomenological models that are too simple to account for 

all the effects or physically based models that are too complicated to be sufficiently sup-

ported and validated by experimental data. As a result, an appropriate plasticity model 

needs to be selected or tailored such that it is capable to account for all the unique effects 

of UAM, and at the same time, be simple enough to be validated by the existing experi-

mental data. As a result, the Johnson-Cook model is selected to serve this purpose. The 

Johnson-Cook model is effective in modeling large deformations, high strain rates, and 
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high temperatures (G. Johnson and Cook 1983). The model is phenomenological, which 

indicates that it is difficult to interpret the physics behind the plasticity behavior. For the 

same reason, however, it has a relatively simple mathematical form and does not require 

excessive data from microscopic studies to be able to represent the macroscopic plasticity. 

The Johnson-Cook model is a particular type of von Mises plasticity model with an explicit 

form of hardening law and rate dependence. The original Johnson-Cook model is based on 

the equation (G. Johnson and Cook 1983):  

 𝜎 = (𝐴 + 𝐵휀̅𝑛)(1 + 𝐶𝑙𝑛
̅̇

̅̇0
)(1 − 𝑇∗𝑚) (4.1) 

Where 휀 ̅is the equivalent plastic strain, 휀̅̇ is the equivalent plastic strain rate, 휀̅0̇ is 

a reference equivalent plastic strain rate defined as: 휀̅0̇ = 1 𝑠−1. 𝐴 is the yield strength 

measured at room temperature as 휀̅  = 0 𝑠−1 and 휀̅̇ = 휀̅0̇. 𝐵 is the strain-hardening constant; 

𝑛 the strain-hardening exponent, 𝐶 the strain-rate hardening constant, 𝑚 the thermal-sof-

tening exponent, and 𝑇∗ is a nondimensionalized temperature defined as: 𝑇∗ =
𝑇−𝑇𝑟𝑜𝑜𝑚

𝑇𝑚𝑒𝑙𝑡−𝑇𝑟𝑜𝑜𝑚
, 

where 𝑇𝑟𝑜𝑜𝑚 is the room temperature and 𝑇𝑚𝑒𝑙𝑡 is the melting temperature of the material. 

The different terms on the right hand side of equation (4.1) are associated to different ef-

fects. The first bracketed term is associated to strain hardening, the second term to strain 

rate hardening, and the third term to softening at elevated temperature. At room tempera-

ture (𝑇 = 20 ℃), zero strain (휀̅𝑛 = 0 𝑠−1), and reference strain rate (휀̅̇ = 휀̅0̇), the JC model 

is reduced to:  

 𝜎 = 𝐴 + 𝐵휀̅𝑛 (4.2) 
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Based on quasi-static tests, a set of material parameters for aluminum 6061 under -

T6 and -O conditions are identified and shown in Table 4.1. The comparison between 

model prediction and experimental data are shown in Figure 4.1.  

 

Table 4.1 JC model constants for Aluminum 6061 –T6 and -O 

Aluminum 6061 𝑨/MPa 𝑩/MPa 𝒏 

-T6 311.22 240.11 0.28 

-O 55.00 165.35 0.40 

 

 
 

Figure 4.1 The comparison of experimental data and model prediction for Aluminum 6061 -T6 (left) and –O 

(right). 

The Johnson-Cook model, despite its modeling advantages and mathematical sim-

plicity, fails to predict the stress with accuracy when high strain rate (beyond 103 𝑠−1) and 

ultrasound-induced softening are involved (Lesuer, Kay, and LeBlanc 2001; Sakino 2006). 

Therefore, the original JC model is modified to tackle these issues and the modfications 

are detailed in the following two sections.  
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4.1 Strain Rate Hardening 

The existence of high strain rate (103 𝑠−1~105 𝑠−1) deformation in UAM has been 

demonstrated by several researchers (Gunduz et al. 2005; Sriraman et al. 2011; Sriraman, 

Babu, and Short 2010; Yang, Janaki Ram, and Stucker 2009). In this study, the strain rate 

is estimated based on two assumptions: 1) there is no slip between the sonotrode and the 

top surface of the top foil, i.e. the top surface and the sonotrode move together, and 2) the 

bottom surface of the top foil is fully welded to the built feature and undergoes no displace-

ment. These two assumptions define an extreme deformation case for the top foil and would 

not be satisfied simultaneously most of the time. However, with these assumptions, an up-

per limit of the strain rate can be estimated in order to define the range within which the 

strain rate varies. The sonotrode amplitude 𝐴 is between 5 to 40 µm while the thickness of 

the top foil 𝑡 is 150 µm. The sonotrode frequency is 𝑓 = 20 𝑘𝐻𝑧. As a result, the maximum 

shear strain 𝛾𝑚𝑎𝑥 and maximum strain rate �̇�𝑚𝑎𝑥  in the top foil can be estimated as:  

 𝛾𝑚𝑎𝑥  =
𝐴

𝑡
 (4.3) 

 �̇�𝑚𝑎𝑥  = 𝜔𝛾𝑚𝑎𝑥 = 2𝜋𝑓𝛾𝑚𝑎𝑥 (4.4) 

An similar estimation is used in the work by Sriraman et al. (Sriraman et al. 2011):  

The maximum shear strain rate is estimated to be between 4.2 × 103 and 3.4 × 104  𝑠−1. 

While the strain rate hardening at low strain rate is well captured by the standard JC model, 

it starts to increase dramatically at high strain rate, which is beyond the modeling scope of 

the standard JC model. It has been shown in multiple experimental investigations that met-

als with face-centered-cubic (f.c.c.) structures demonstrate a dramatic increase of the de-

pendence of dynamic flow stress on the instantaneous strain rate as it exceeds a certain 
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threshold (typically around 102 𝑠−1) (Lesuer, Kay, and LeBlanc 2001; Sakino 2006; Yadav 

and Chichili 1995). This change of strain rate sensitivity is due to the change of deformation 

mechanism. At low strain rate, the deformation is governed by the cutting or by-passing of 

obstacles (such as other dislocations, point defects, or precipitates, etc.) by the dislocations. 

As the strain rate exceeds the threshold, the deformation starts to be controlled by phonon 

drag forces and the flow stress necessary to deform the material increases abruptly.  

 Based on the change of mechanism, Lesuer et al. proposed two strain rate harden-

ing models which yield satisfactory predictions at low and high strain rates (Lesuer, Kay, 

and LeBlanc 2001). However, at intermediate strain rate (103 𝑠−1~104 𝑠−1) between low 

and high strain rates, the model predicts an abrupt change in stress which deviates from the 

real case. In the real deformation, the transition of mechanism will not take place in all 

forest dislocations simultaneously and therefore the sharp turn prediction is physically un-

realistic (Lesuer, Kay, and LeBlanc 2001). This intermediate strain rate overlaps well with 

the UAM strain rate. However, no feasible model has been found in the literature that cap-

tures the strain rate hardening at the intermediate strain rate. As a result, a strain rate hard-

ening model is developed based on the experimental data presented by Yadav and Chichili 

(Yadav and Chichili 1995) (Figure 4.2).  
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Figure 4.2 The strain rate sensitivity diagram reproduced from Yadav and Chichili (Yadav and Chichili 1995) 

 

Yadav and Chichili collected rate sensitivity data for aluminum 6061-T6 from mul-

tiple studies (Yadav and Chichili 1995). Their data are adopted for model development 

since most of the data fall in the intermediate strain rate (103 𝑠−1~104 𝑠−1) range. Figure 

4.2 shows that the flow stress is not sensitive to strain rate when it falls below 40 𝑠−1. 

Beyond the threshold of 40 𝑠−1, the stress starts to increase at an increasing rate. Notice 

that the rate sensitivity diagram is plotted with the strain rate being evaluated in logarithmic 

scale. If evaluated in regular scale, the stress-strain relation follows a power law function. 

Since the developed model applies only to intermediate strain rate which is not a large span 

of strain rate, a power law model can be introduced as: 

 
�̅�

𝜎0̅̅̅̅
= 𝐶 + 𝐷(

̅̇

th̅̅ ̅̅̅̇
)𝑝 (4.5) 
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Where 𝜎0̅̅ ̅ is the reference yield stress evaluated at the reference strain rate 휀0̇̅ and at room 

temperature. The reference strain rate is set to the rate sensitivity threshold 휀th̅̅ ̅̇̅ = 40 𝑠−1.  

The same model is also applied to Aluminum 6061-O and the constants are identified based 

on the experiemntal data of Sakino and Ogawa (Ogawa 2002; Sakino 2006). The rate sen-

sitivity threshold is set to 휀th̅̅ ̅̇̅ = 100 𝑠−1. When the strain rate 휀̅̇ is less than or equal to 휀th̅̅ ̅̇̅ , 

its value is set equal to 휀th̅̅ ̅̇̅  in equation (4.6), leading to a strain rate hardening factor of 

unity; when the strain rate is greater than 휀th̅̅ ̅̇̅ , its actual value is used in equation 4.12 for 

calculating the hardening factor. The relation is written as: 

 
�̅�

𝜎0̅̅̅̅
= {

𝐶 + 𝐷(1)𝑝,                   𝑖𝑓  휀̇̅ ≤  휀th̅̅ ̅̇̅  

𝐶 + 𝐷(
̅̇

th̅̅ ̅̅̅̇
)𝑝,                  𝑖𝑓 휀 ̅̇ >  휀th̅̅ ̅̇̅  

 (4.6) 

𝐶, 𝐷, and 𝑝 are constants whose values are determined by fitting the model to the 

experimental data. From equation (4.6) it can seen that 𝐶, 𝐷 determine the intial strain rate 

hardening whereas 𝐷, 𝑝 determine the hardening rate. The values of 𝐶, 𝐷, and 𝑝 for 

Aluminum 6061-O and 6061-T6 are shown in Table 4.2. The predictions from the 

proposed model are compared with the experimental data for validation (Figure 4.3).  

 

Table 4.2 JC model parameter values for aluminum 6061-T6 and -O 

Aluminum 6061 𝑪 𝑫 𝒑 

-T6 0.46 0.49 0.10 

-O 0.77 0.39 0.22 
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Figure 4.3 The strain rate sensitivity comparison between model prediction and experimental data for alumi-

num 6061-T6 and aluminum (Ogawa 2002; Sakino 2006; Yadav and Chichili 1995). 

 

Once the strain rate model is established, it is introduced into the Johnson-Cook 

model to replace the original strain rate hardening term. According to Yadav et al., the 

shapes of the stress-strain curves are identical at high strain rates, indicating that the strain 

rate hardening term is not coupled to the strain hardening term (Yadav and Chichili 1995). 

As a result, the modified Johnson-Cook model (thus far) is written as: 

 𝜎 = (𝐴 + 𝐵휀̅𝑛){𝐶 + 𝐷 (
̅̇

̅̇th
)

𝑝

}(1 − 𝑇∗𝑚)  (4.7) 

The modified model is evaluated at various strain rates which range between the reference 

strain rate and 100,000 𝑠−1 for both Aluminum 6061-T6 and Aluminum 6061-O ( Figure 

4.4). 
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Figure 4.4 The effect of strain rate hardening in Aluminum 6061-T6 (top) and -O (bottom) 
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4.2 Acoustic Softening 

The development of an analytical model for the acoustic softening effect has been 

presented in the previous chapter (Section 3.4) and is not repeated here. The analytical 

model is introduced into the Johnson-Cook model and the modified model is written as 

follows: 

 𝜎 = (1 − 𝑑𝐼𝑢)(𝐴 + 𝐵휀̅𝑛){𝐶 + 𝐷(
̅̇

̅̇th
)𝑝}(1 − 𝑇∗𝑚) (4.8)  

The values of constant 𝑑 in acoustic softening term for Aluminum 6061-T6 and -O are 

shown in Table 4.3. The term associates stress reduction to energy intensity based on our 

study of acoustic softening. In the UAM process, however, a direct measure of ultrasonic 

intensity is not possible but the sonotrode amplitude is known. Therefore a relation is in-

troduced to estimate the oscillation magnitude of the ultrasonic field based on the ultra-

sound intensity.  The equation is already presented in the previous chapter and is repeated 

here: 

 𝐼𝑢 =  𝜌�̅�2𝜔2𝑐 (4.9) 

This equation is obtained as follows. Based on the definition of sound intensity: 

 𝐼 = 𝑝 ∙ 𝑣  (4.10) 

where 𝑝 is the acoustic pressure, and 𝑣 is the particle velocity of the ultrasonic wave. The 

acoustic pressure traveling through a solid can be calculated using the equation (Lindsay 

1960): 

 𝑝 = 𝜌𝜔𝐴𝑐  (4.11) 
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where 𝜌 is density, 𝐴 is particle amplitude, 𝜔 is circular frequency, and 𝑐 is the ultrasound 

wave speed in the solid medium. Assuming the displacement of the particle to be 𝑥 =

𝐴𝑐𝑜𝑠(𝜔𝑡), the particle velocity can be derived as: 

 𝑣 =
𝑑𝑥

𝑑𝑡
= −𝜔𝐴𝑠𝑖𝑛(𝜔𝑡)  (4.12) 

The magnitude of the particle velocity is 𝑣 = 𝜔𝐴. As a result, the ultrasound intensity is 

written: 

 𝐼𝑢 = 𝜌𝜔2𝐴2𝑐  (4.13) 

Based on equation (4.19), the ultrasound intensity is characterized using equivalent ampli-

tudes so that a relation between stress reduction and amplitude can be established. The 

acoustic softening effect is evaluated at different amplitudes by assuming a reference strain 

rate and room temperature.  The stress-strain curves are shown in Figure 4.5. 

 

Table 4.3 The acoustic softening constants for aluminum 6061-T6 and -O 

Aluminum 6061 𝒅 (𝐜𝐦𝟐/W) 

-T6 2.2564E-05 

-O 8.5027E-05 
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Figure 4.5 The acoustic softening for Aluminum 6061-T6 (top) and -O (bottom). 

 

4.3 Thermal Softening 
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exhibit strong dependencies on temperature (Epler 2004). For aluminum 6061-T6, the typ-

ical T6 hardening treatment process involves the solution treatment at around 810 K which 

is followed by quenching and artificial aging. The solution heat treatment enables the solid 

solution to be supersaturated homogeneously. The quenching process then takes the super-

saturated solid solution to a two-phase region of the phase diagram. In the aging step, the 

magnesium silicide (𝑀𝑔2𝑆𝑖) phase is precipitated and evenly distributed inside the grains. 

The precipitated particles strengthen the alloy by pining the dislocations and impeding their 

motion. When the temperature increases, however, the precipitates start to diffuse towards 

the grain boundaries, thus decreasing the strength of aluminum 6061-T6 significantly.  

In contrast, aluminum 6061-O does not show so significant temperature depend-

ence as the aluminum 6061-T6. The aluminum 6061-O is annealed from aluminum 6061-

T6 and therefore it also has precipitates 𝑀𝑔2𝑆𝑖. However, during annealing, these 𝑀𝑔2𝑆𝑖 

particles increase in sizes and decrease in density, leading to a reduction in the number of 

dislocation-precipitate interactions and therefore a reduction in strengthening. As a result, 

the yield stress of the aluminum 6061-O is much lower than that of aluminum 6061-T6. 

When aluminum 6061-O is heated, the size and density of the precipitates barely change 

and therefore no significant change in strength is shown. Figure 4.6 shows how the Alu-

minum-O and -T6 depend on temperature. In the UAM process, the substrate that fixes the 

built feature is heated to 300˚F (around 150 ˚C). However, the local temperature at the 

bonding interface could be higher due to heat dissipation from interfacial friction and se-

vere plastic deformation.   
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In the modified Johnson-Cook model, the temperature dependencies for aluminum 

6061-O and –T6 behave differently. The temperature dependence for Aluminum 6061-T6 

is shown throughout the tested temperature range whereas for -O, it can been seen when 

the temperature exceeds 200 °C. Specifically, when the temperature is below 200 °C, the 

nondimensionalized temperature 𝑇∗ is set to zero by letting 𝑇 = 𝑇𝑟𝑜𝑜𝑚 and the thermal 

softening term to be unity; when temperature is above 200 °C, the thermal softening is 

introduced using the term: 

 
σ̅

σ̅0
= 1 − 𝑇∗𝑚

  (4.14) 

At this point, the reference temperature is no longer the room temperature but the temper-

ature threshold beyond which thermal softening starts to take effect. As a result, the tem-

perature threshold 𝑇 = 205 °C is set as the new “room temperature” for calculating the 

softening term. The values in the thermal softening exponent are identified based on fitting 

the model to experimental data. The values of the exponent are summarized in Table 4.4 

together with the associated room (reference) temperature and melt temperature of the ma-

terial. Figure 4.7 shows the comparison between the prediction from the softening term 

and the experimental data. The term in the original Johnson-Cook model is shown to be 

effective in capturing the stress reduction and therefore is kept without any modification.  
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Figure 4.6 The temperature dependencies of Aluminum 6061-O and T6 (Kaufman 1999). 
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Figure 4.7 The comparison between model prediction and experimental data for thermal softening in Aluminum 

6061 -T6 (top) and -O (bottom) 

 

Table 4.4 The values of thermal exponent for Aluminum 6061-T6 and -O. 

Aluminum 6061 𝒎 Reference Temperature (°C) Melting temperature (°C) 

-T6 0.4668 25 889 

-O 0.6779 205 616 

 

4.4 Summary 

To summarize, a plasticity model is proposed by modifying the Johnson-Cook 

model in order to capture the unique effects of ultrasound. The final form of the modified 

Johnson model is presented as follows: 

 𝜎 = (1 − 𝑑𝐼𝑢)(𝐴 + 𝐵휀̅𝑛){𝐶 + 𝐷(
̅̇

̅̇th
)𝑝}(1 − 𝑇∗𝑚) (4.21) 

In equation (4.21), the constants 𝐴, 𝐵, and 𝑛 are determined to characterize the strain hard-

ening effect based on the quasi-static tensile tests carried out for Aluminum 6061-T6 and 
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-O. The constants 𝐶, 𝐷, 𝑝 are determined for a power law model that captures the hardening 

at intermediate strain rate (103 𝑠−1~104 𝑠−1) based on the experimental data in the litera-

ture. The acoustic softening is studied by carrying out experiments on the two materials. A 

linear relation is found between stress reduction and ultrasound intensity and constant 𝑑 is 

identified for the relation. The thermal softening effect in Aluminum 6061-T6 and –O are 

studied and the values of constant 𝑑 are determined accordingly. The new constants asso-

ciated to the modified Johnson-Cook model are shown in Table 4.5. The changes made in 

the modified Johnson-Cook model are summarized in Table 4.6.  

 

Table 4.5 Constants for the modified Johnson-Cook model 

Al 𝑨(𝐌𝐏𝐚) 𝑩(𝐌𝐏𝐚) 𝒏 𝑪 𝑫 𝒑 𝒅(𝐜𝐦𝟐/𝐖) 𝒎 

-T6 311.22 240.11 0.28 0.46 0.49 0.10 2.2564E-05 0.47 

-O 55.00 165.35 0.40 0.77 0.39 0.22 8.5027E-05 0.68 

 

Table 4.6 Comparison between the original and the modified Johnson-Cook models. 

 

 

 Classical JC model Modified JC model 

Strain hardening Characterized based on quasi-

static test 

Characterized based on quasi-

static test 

Strain rate 

hardening 

Inaccurate prediction beyond 

strain rate of 10
3
 /s 

Accurate prediction up to 

strain rate 10
5
 /s 

Thermal softening Characterized based on tests 

at elevated temperatures 

Characterized based on tests at 

elevated temperature 

Acoustic softening Not available Characterized based on 

acoustic softening studies 
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The new plasticity model was developed in this chapter and the thermal and friction 

models will be presented in the next chapter.  The thermal softening in the plasticity model 

depends on the temperature obtained from the thermal model whereas the strain and strain 

rate depend on the interfacial friction force which is determined by the friction model.  
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Chapter 5 

 

5 A Thermal and a Friction Model for UAM 

In this chapter, a thermal and a friction model are established to account for the heat 

transfer and mechanical interaction between the sonotrode, top foil, and built feature. The 

thermal model is presented first and is followed by the friction model.  

5.1 Thermal Model in UAM 

The energy equation is governed by: 

 𝜌𝑐
𝜕𝑇

𝜕𝑡
= �̇� + ∇ ∙ (𝐤 ∙ ∇T) (5.1) 

where  𝜌 is density, 𝑐 is specific heat, 𝑇 is temperature, 𝐤 is the conductivity tensor, and 

∇ is the nabla operator: ∇= (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
). �̇� is the heat rate per unit volume due to dissipa-

tion of plastic deformation. The work done by plastic deformation is written: 

 �̇�𝑝𝑙 = 𝝈: �̇�𝑝𝑙 (5.2) 

where �̇�𝑝𝑙 is the rate of plastic work per unit volume done by plastic deformation, 𝝈 is the 

stress tensor, �̇�𝑝𝑙 is the plastic strain rate tensor. It has been shown that not all of the plastic 

work is converted to heat as metals undergo dynamic plastic deformation (Hodowany et 

al. 2000). Most of the plastic work is dissipated into heat while the rest is stored in defect 
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structures such as dislocations, grain boundaries, and stacking faults that are generated due 

to plastic deformation. For aluminum, the fraction of plastic work which is converted into 

heat is shown to vary between 0.2 and 1.0 depending on the magnitude of the plastic strain 

(Hodowany et al. 2000). As the plastic strain exceeds 0.4, however, the heat fraction is 

stabilized around 0.95. Due to the large deformation (a plastic strain up to 0.47) in UAM 

bonding, a constant heat fraction of 0.95 is assumed. As a result, the rate of heat flow per 

unit volume due to plastic deformation is written: 

 �̇�𝑝𝑙 = 𝜂𝑝�̇�𝑝𝑙 = 𝜂𝑝𝝈: �̇�𝑝𝑙 (5.3) 

where 𝜂𝑝 is the heat fraction of plastic work: 𝜂𝑝 = 0.95. The volumetric heat flux �̇� is 

assumed to be equal to �̇�𝑝𝑙  in equation 5.1 and: 

  𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝜂𝑝𝝈: �̇�𝑝𝑙 + 𝛻 ∙ (𝒌 ∙ 𝛻𝑇) (5.4) 

The boundary conditions associated to the governing equation include a prescribed 

temperature and a heat flux. The temperature of the top foil and the sonotrode is assumed 

to be 20 °C which is the room temperature. The built feature is prescribed to an initial 

temperature that could vary between 20 °C and 150 °C depending on the set of operating 

parameters. The heat flux at the interface between the top foil and the built feature takes 

into account interfacial friction. Assuming that the frictional work is dissipated completely 

into heat, the heat flux can be written as: 

 �̇�𝑓 = 𝝉: �̇� (5.5) 

where �̇�𝑓 is the frictional heat rate per unit area, 𝝉 is the friction stress tensor, �̇� is the rate 

of differential motion tensor. The heat conduction from the frictional heat flux is assumed 

to be equally partitioned between the top foil and the built feature since the two surfaces 
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are of the same material. The convective boundary condition is not considered since its 

contribution is small when the welding time under study lasts only a fraction of a second.  

Due to the existence of voids at the bond interface of each layer, the built feature 

demonstrates a thermal conductivity with a transverse isotropy along the direction normal 

to the bond interface. The voids are filled with air and therefore their thermal conductivity 

is much lower than that of the bulk material. Foster established a laminated finite element 

model in which bulk material and bond interface layers alternate (Daniel R Foster 2014).  

The thermal conductivity of the bond interface layers is predicted using four different an-

alytical models by Misnar, Maxwell, Russel, and Bruggemann assuming a 37% (a typical 

averaged weld density produced from Solidica Formation Machine) bonded area and the 

lowest prediction is adopted here (Daniel R Foster 2014). As a result, the effective thermal 

conductivity in the direction normal to the laminated layers is estimated to be 112 W/(m·K) 

in comparison to 155 W/(m·K) for the conductivity of bulk aluminum.   

The thermal contact conductance at the sonotrode-top foil and the top foil-built fea-

ture interfaces depend on the surface topography, contact pressure, and conductivities of 

the materials in contact. In the UAM, the top foil undergoes severe plastic deformation on 

its top and bottom surfaces and forms close contact with the sonotrode and the built feature, 

leading to high thermal contact conductance. Jedrasiak et al. used a thermal conductance 

of 106 𝑊/(𝑚𝐾) for both interfaces (Jedrasiak et al. 2014). Jenq et al. proposed an analyt-

ical model for predicting the thermal contact conductance of metals under plastic contact 

based on the plastic contact theory by (Abbott and Firestone 1995; K. L. Johnson 1985) 
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and the thermal contact conductance model developed by (Cooper, Mikic, and Yovanovich 

1969): 

 ℎ𝑐 =
2𝑘𝑠𝑛𝑏𝑐

(1−√𝐴𝑡 𝐴𝑛⁄ )1.5
 (5.6) 

where 𝑘𝑠 is the harmonic mean conductivity defined as 
1

𝑘𝑠
=

1

𝑘1
+

1

𝑘2
, 𝑛 is the density of 

asperities, 𝑏𝑐 is the mean radius of spherical asperity, 𝐴𝑛 is the nominal contact area, and 

𝐴𝑡 is the real contact area (Jenq and Sheu 1994). In plastic contact, 𝐴𝑡 is written (Abbott 

and Firestone 1995): 

 𝐴𝑡 = 2𝜋𝑅𝑚𝜔  (5.7) 

where 𝑅𝑚is the mean radius of curvature of the asperity and 𝜔 is the interference of the 

asperities defined as the difference between the height of asperities and the separation dis-

tance of the contact surfaces. For Aluminum 6061, assuming an initial surface roughness 

of 2.22 µm, under contact pressure of around 100 MPa and plastic contact condition, the 

thermal contact conductance is calculated to be 105 𝑊/(𝐾 ∙ 𝑚2). The constants used for 

determining the thermal model are summarized in Table 5.1.   

 

Table 5.1 Constants for thermal model 

Thermal Conductivity (𝐖/𝐊 ∙ 𝐦) 155 (horizontal), 112 ( normal) 

Thermal Contact Conductance (𝐖/𝐊 ∙ 𝐦𝟐) 10
5
 

Specific heat (𝐉/𝐤𝐠 ∙ 𝐊) 896 

Thermal expansion  (/ K) 23.4×10
-6

 

Heat fraction of plastic work (-) 0.95 
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5.2 Friction Model in UAM 

Based on the literature review (section 2.2.4), the most influential factors for the 

friction coefficient between top foil and built feature are temperature and normal load. As 

the temperature increases, the change in the stresses that drives plastic deformation of sur-

face asperities causes the friction coefficient to first increase and then decrease. This  

change of friction coefficient is captured by the experimental studies of Zhang et al. (Cunbo 

Zhang, Zhu, and Li 2006). The kinetic friction coefficient between two aluminum foils (Al 

3003-H18, 100 µm thick) subjected to a normal load of 10kg at various slip rate and tem-

peratures was measured. The friction tests are carried out on a Gleeble™ 1500D system, 

the temperature varying between 25 °C and 250 °C and the slip rate between 0.8 mm/s – 

800 mm/s. The results showing the effect of temperature are shown in Figure 5.1. The slip 

rate is reported to have little influence on the friction coefficient in the range tested.  

The normal load affects the friction coefficient by means of affecting the effective 

contact area between asperities. It has been shown by Williamson and Greenwood that in 

a Hertzian contact, as the normal load increases, the effective contact area increases at an 

order higher than the order of unity (Greenwood, J. A., & Williamson 1966). Since the 

overall friction force increases linearly with the normal load, the friction coefficient is re-

versely related to the normal load. This effect is shown in the work of Naidu and Raman 

who studied the variation of friction coefficient under different loads for aluminum 6061-

T6 (Naidu and Raman 2005).  They found that the variation of the friction coefficient with 

respect to the normal load can be modeled using a power law model as is shown in Figure 

5.28.  
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Figure 5.1 The variation of friction coefficient as a function of temperature reproduced from (C Zhang and Li 

2008). 

 

 

Figure 5.2 The variation of friction coefficient with respect to the normal pressure reproduced from (Naidu and 

Raman 2005). 
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A friction model is established to account for both effects. Considering the two 

factors as independent, the friction coefficient is modeled:  

 𝜇 = 𝜇0(𝑇0, 𝑃0)𝜉(𝑇, 𝑇0)𝜂(𝑃, 𝑃0) (5.8) 

where 𝜇0 is the friction coefficient at a reference temperature 𝑇0 and a reference normal 

pressure 𝑃0. 𝜉(𝑇) is the contribution from the temperature, and 𝜂(𝑃) is the contribution 

from the normal pressure. Both  𝜉(𝑇) and 𝜂(𝑃) are calibrated with respect to the reference 

temperature 𝑇0 and the reference normal load 𝑃0. Since both tests are carried out at room 

temperature, the room temperature is set as the reference temperature: 𝑇0 = 20 °𝐶. Due to 

the lack of information regarding the normal pressure in Zhang’s work, the reference pres-

sure is determined by mapping the friction-temperature data to the friction-pressure data 

for determining the reference pressure. Specifically, at the reference temperature 𝑇0 =

20 °𝐶, the friction coefficient indicated by the temperature-friction plot is 0.27. Since the 

pressure-friction relation is a monotonic function, the pressure at which the friction coeffi-

cient is equal to 0.27 is 230 𝑀𝑃𝑎 (Figures 5.1 and 5.2). As a result, the reference pressure 

is set to: 𝑃0 = 230 𝑀𝑃𝑎.  

The temperature effect is modeled using linear interpolation: 

 𝜉(𝑇) = ∑ (∏
�̂�−𝑇�̂�

�̂�𝑗−�̂�𝑖
𝑖≠𝑗𝑗 )𝜇�̂�, 𝑖 = 1,2. . ,6  (5.9) 

where �̂� =
𝑇

𝑇0
, �̂� =

𝜇

𝜇0
 , (𝑇𝑘, 𝜇𝑘) (𝑘 = 𝑖, 𝑗) are the experimental data sets shown in Figure 

5.1. The pressure effect is modeled using a power law function: 

 𝜂(𝑃) = 𝑎(
𝑃

𝑃0
)𝑏 (5.10) 
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where 𝑎, 𝑏 are constants identified by fitting the power law model to the normalized exper-

imental data sets. Finally, the friction model is written: 

𝜇 = 𝜇0𝑎(
𝑃

𝑃0
)𝑏 ∑(∏

�̂� − 𝑇�̂�

�̂�𝑗 − �̂�𝑖𝑖≠𝑗𝑗

)𝜇�̂�, 𝑖 = 1,2. . ,6 

The constants introduced in the model are shown in Table 5.2.  

 

Table 5.2 Model constants for friction model 

𝝁𝟎 𝑻𝟎(°C) 𝑷𝟎(MPa) 𝒂 𝒃 

0.3 25 200 1.05 -0.94 

 

This section presents the thermal and friction models that are developed based on 

the UAM process and the specific material used. These models will be assembled in Chap-

ter 7 to for establishing a comprehensive UAM model.  
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Chapter 6 

 

6 The Assembly of Submodels for the UAM Model  

6.1 Integration of Sub-models 

In this section, sub-models are integrated and solved using the finite element 

method. The sub-models include the plasticity, thermal, friction, and dynamic models. The 

chapter starts with the integration of the plasticity model to solve for the constitutive rela-

tion (section 6.1.1). The constitutive relation is then used to solve the dynamic equation. 

Since the dynamic model is coupled with the thermal model, they have to be solved sim-

ultaneously. The integration schemes are shown in section 6.1.2. The friction model is in-

tegrated to the thermo-mechanical model as a boundary condition. The frictional force 

serves as a boundary condition for the dynamic model and the frictional heat serves as a 

boundary condition for the thermal model (section 6.1.3). Finally, the coupling of all the 

submodels are summarized in section 6.1.4.  

 

 

 

 



125 

 

6.1.1 Plasticity Model Integration 

6.1.1.1 Fundamentals of Plasticity 

The integration of the Johnson-Cook plasticity model requires introducing the yield 

criterion and making assumptions about the flow rule, the hardening rule, and the rate-

independency of the plasticity model. These rules and assumptions are explained in this 

section. Specifically, the plastic deformation represents the irreversible relative displace-

ment of atoms along certain planes when subjected to external load. The stress limit nec-

essary to trigger such irreversible displacement is defined by the yield criterion below 

which the deformation is elastic and beyond which the deformation becomes plastic. The 

relation can be written as. 

𝑓 < 0: 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

𝑓 = 0: 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

where 𝑓 is the yield criterion and  𝑓 = 0 defines the yield surface in the stress space. Dif-

ferent yield criteria have been proposed, among them the von Mises and the Tresca criteria 

are the two most commonly used criteria to predict the yielding of metals. Figure 6.1 shows 

the yield surfaces defined by von Mises and Tresca in 2-D stress space. The stress state is 

represented by a point which moves within (elastic state) or on the yield surface (plastic 

state). In this work, the von Mises yield criterion is used.  
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Figure 6.1 The yield surfaces defined by the von Mises and the Tresca yield criteria in 2-D stress space 

Due to the interactions between dislocations and other particles, the yield surface 

evolves as the plastic flow continues, resulting in either increase or decrease of the stress. 

For aluminum alloys, the yield surface expands in size and the yield stress increases as the 

plastic flow continues. This increase is defined by a hardening rule. The von Mises yield 

criterion and the hardening rule are written as follows: 

 𝑓(𝝈, 𝜺𝒑) = 𝐽(𝝈) − 𝑟(𝜺𝒑) − 𝜎𝑦 = 0 (6.1) 

where 𝑓 is the yield function, 𝜎𝑦 the initial yield stress, and 𝑟 the hardening rule. Based on 

the von Mises yield criterion, 𝐽 is the von Mises stress which is written as:  

 𝐽(𝝈) = √
3

2
𝝈′: 𝝈′  (6.2) 

where 𝝈′ is the deviatoric part of the Cauthy stress tensor defined as: 𝝈′: 𝝈′ = 𝝈 −

1

3
𝑡𝑟(𝝈)𝑰. The hardening is assumed to be isotropic, i.e., the yield surface only expands in 

size but does not change in its shape or shift its origin (Figure 6.2). The assumption is valid 

for polycrystalline materials due to their random crystallographic orientations.  
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Figure 6.2 The expansion of yield surface due to isotropic hardening. 

 

The flow rule defines the magnitude and the direction of the plastic strain rate �̇�𝒑. 

By considering the associated flow rule which states that the potential function is identi-

cal to the yield function, and the normality condition which is a consequence of 

Drucker’s maximum dissipation principle, the flow rule can be written as: 

 �̇�𝒑 = �̇�
𝜕𝑓(𝝈)

𝜕𝝈
= �̇�𝒏 (6.3) 

where �̇� is a plastic multiplier that represents the magnitude of �̇�𝒑; 𝒏 =
𝜕𝑓(𝝈)

𝜕𝝈
 defines the 

unit normal vector of �̇�𝒑which is always normal to the yield surface (normality condition). 

The multiplier �̇� can be determined by introducing the consistency condition which states 

that under the rate-independent framework, the stress must always stay on the yield surface 

during plastic loading, i.e. 𝑓 = 𝑓̇ = 0. The relation can be further written as follows:   

 𝑓(𝝈, 휀𝑝) = 𝑓̇(𝝈, 휀𝑝) =
𝜕𝑓(𝝈)

𝜕𝝈
: �̇� −

𝜕𝑟

𝜕𝜺𝒑
휀�̇� = 0 (6.4) 

With these plasticity rules and assumptions introduced, the integration of the plas-

ticity model is explained in the next section. 
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6.1.1.2 Integration of the Plasticity Model 

The plasticity model is integrated at each point in the constitutive matrix 𝐃𝒆𝒑 which 

defines the elasto-plastic constitutive relation between the stress 𝝈 and the total strain 𝜺:  

 𝝈 = 𝑫𝒆𝒑: 𝜺  (6.5) 

Since 𝐃𝒆𝒑is nonlinear, it has to be solved iteratively. First partition the total strain into 

elastic and plastic contributions: 

 𝜺 = 𝜺𝒆 + 𝜺𝒑 (6.6) 

Based on Hooke’s law for linear elasticity, the stress-strain relation can be written as: 

 𝝈 = 𝑫: (𝜺 − 𝜺𝒑) (6.7) 

where 𝑫 is the linear elastic stiffness matrix. Introducing the von Mises yield criterion, the 

associated flow rule, and the normality condition, the plastic strain rate is written as: 

 �̇�𝒑 = �̇�
𝜕𝑓(𝝈)

𝜕𝝈
 (6.8) 

rewriting equation (6.7) in rate form and inserting equation (6.3) yields: 

 �̇� = 𝑫: (�̇� − �̇�
𝜕𝑓(𝝈)

𝜕𝝈
) (6.9) 

In order to determine the magnitude of �̇�, the consistency condition is introduced: 

 
𝜕𝑓(𝝈)

𝜕𝝈
: �̇� −

𝜕𝑟

𝜕𝜺𝒑
휀�̇� = 0 (6.10) 

Inserting equation (6.9) into (6.10) and letting 𝐻 =
𝜕𝑟

𝜕𝜺𝒑
, 𝒏 =

𝜕𝑓(𝝈)

𝜕𝝈
, the plastic multiplier �̇� 

can be derived in explicit form: 

 �̇� =
𝒏:𝑫:�̇�

𝒏:𝑫:𝒏+𝐻
  (6.11) 

Inserting equation  (6.11) back into equation (6.9) yields: 
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 �̇� = (𝑫 −
𝑫:𝒏⊗𝒏:𝑫

𝒏:𝑫:𝒏+𝐻
): �̇� (6.12) 

Comparing equation (6.12) with equation (6.5), the constitutive matrix 𝑫𝒆𝒑is written as: 

 𝑫𝒆𝒑 = 𝑫 −
𝑫:𝒏⊗𝒏:𝑫

𝒏:𝑫:𝒏+𝐻
  (6.13) 

Once �̇� at time 𝑡 is obtained (equation (6.12)), the stress, strain, and isotropic hardening 

factor at time 𝑡 + ∆𝑡 can be updated accordingly (the time increment is denoted by the 

subscript): 

 𝝈𝒕+𝟏 = 𝝈𝒕 + �̇�𝒕  (6.14) 

 𝜺𝒕+∆𝒕
𝒑

= 𝜺𝒕
𝒑

+ 𝜆�̇�𝒏  (6.15) 

Going back the constitutive matrix 𝑫𝒆𝒑 and updating the isotropic hardening factor 𝑟 in the 

yield function 𝑓, since 𝑑𝑟 = 𝐻𝑑𝜆: 

 𝑟𝑡+△𝑡 = 𝑟𝑡 + 𝐻𝑑𝜆𝑡  (6.16) 

The process is implemented in the commercial finite element software ABAQUS as a user-

defined material subroutine (VUMAT). The subroutine is coded in Fortran 95 and the script 

can be found in Appendix A.  

Once the constitutive relation is integrated and the constitutive matrix [𝐷]𝑒𝑝 ob-

tained, [𝐷]𝑒𝑝 can be used to calculate the stiffness matrix [𝐾] in the dynamic equation. 

Specifically, the discretized governing equation of dynamics is written as: 

     [𝑴] {
𝜕2𝒖

𝜕𝑡2 } + [𝑪] {
𝜕𝒖

𝜕𝑡
} + [𝑲]{𝒖} = {𝑭} (6.17) 

where  {𝒖} is the nodal displacement vector, {
𝜕𝒖

𝜕𝑡
} the nodal velocity vector, and {

𝜕2𝒖

𝜕𝑡2 } the 

nodal acceleration vector. [𝑴] is the global mass matrix, [𝑪] the global damping matrix, 
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[𝑲] the global stiffness matrix, and {𝑭} the external load vector. At each time increment of 

the mechanical (dynamic) analysis, a quasi-static equilibrium is achieved: 

 [𝑲]{𝒖} = {𝑭} (6.18) 

The stiffness matrix [𝑲] can be written in terms of the deformation matrix [𝑩] and the 

constitutive matrix [𝑫𝒆𝒑]: 

 [𝑲] = [𝑩]𝑇[𝑫𝒆𝒑][𝑩] (6.19) 

 Since the constitutive matrix [𝑫𝒆𝒑] is nonlinear, [K] must be solved iteratively. Writing 

equation (6.18) in incremental form and using a tangent stiffness matrix [𝑲𝑻] to approxi-

mate the nonlinear stiffness matrix [𝑲]: 

 [𝑲𝑻]{∆𝒖} = {∆𝑭}  (6.20) 

Since {∆𝑭} is known, {∆𝒖} can be readily obtained using the above equation. Then {∆휀} 

can be calculated from {∆𝒖} using the deformation matrix [𝑩]: 

 {∆𝜺} = [𝑩]{∆𝒖} (6.21) 

Inserting equations (6.19) and (6.21) back to the incremental form of equation (6.18) 

yields: 

 [𝑩]𝑇[𝑫𝒆𝒑]{∆𝜺} = {∆𝑭} (6.22) 

Since [𝑫𝒆𝒑] is obtained, the stress increment is obtained using the following equation: 

 {∆𝝈} = [𝑫𝒆𝒑]{∆𝜺} (6.23) 

Inserting equation (6.23) into equation (6.22), rewriting the equation into differential form, 

and integrating over the material domain yields: 

 [𝑩]𝑇{𝝈} = {𝑭} (6.24) 

Let {𝒒} =  [𝑩]𝑇{𝝈} and defining the force residual {𝒓} as: 
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 {𝒓} = {𝒒} − {𝑭} (6.25) 

Equation (6.25) is used as a convergence criterion and is checked at each iteration. The 

above process can be summarized into four steps: 

1. Apply the load increment ∆𝐹 and calculate for 𝛥𝑢 and 𝛥휀 using the tangent stiffness 

matrix (equations (6.18)-(6.21)) 

2. Solve for D𝑒𝑝 by integrating the constitutive relation and updating ∆𝜎 (equations (6.22) 

and (6.23) 

3. Compute the residual 𝑟 (equation (6.25)) 

4. If ‖𝑟‖ > tolerance, let ∆𝐹 = −𝑟 and return to step 1. 

 

6.1.2 Thermo-mechanical Model Integration 

The dynamic model is fully coupled with the thermal model presented in section 

(5.1) since the thermal and mechanical solutions strongly affect each other. The equations 

are written as:  

 𝜌𝑐
𝜕𝑇

𝜕𝑡
= �̇� + 𝛻 ∙ (𝒌 ∙ 𝛻𝑇) (6.26) 

 𝜌
𝜕2𝒖

𝜕𝑡2 = 𝒇 + 𝛻 ∙ 𝝈 (6.27) 

where 𝜌 is the density, 𝑐 the specific heat, 𝑇 the temperature, 𝒌 the conductivity vector, 

and ∇ the nabla operator: ∇= (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
). �̇� is the heat rate per unit volume due to heat 

dissipation, 𝒖 the displacement vector, 𝒇 the body force tensor, and 𝝈 the stress tensor. In 

the thermo-mechanical model, the equations are fully coupled as the material properties in 

stress analysis depend on local temperature and the heat generation in thermal analysis 
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depends on the work due to frictional and plastic stresses. In order to achieve the coupling, 

the mechanical and thermal models have to be solved simultaneously. The explicit integra-

tion schemes are selected for their advantages in solving highly nonlinear, high speed dy-

namics and contact involved problems. Specifically, the heat transfer equation is integrated 

using the explicit forward-difference time integration scheme written as (Abaqus 2015): 

 𝑇𝑖+1 = 𝑇𝑖 + ∆𝑡𝑖+1�̇�𝑖  (6.28) 

Where the subscript is the time increment number, 𝑇 the temperature, ∆𝑡 the time incre-

ment. �̇�𝑖 is calculated at the end of the increment 𝑖 and is written as: 

 �̇�𝑖 = 𝑪−𝟏(𝑸𝒊 − 𝑭𝒊)  (6.29) 

where 𝑪−𝟏 is the inverse lumped capacitance matrix, 𝑸𝒊 and 𝑭𝒊 are the applied heat source 

vector and the internal thermal flux vector at the end of increment 𝑖. The dynamic equation 

is integrated using the explicit central-difference integration scheme (Abaqus 2015): 

 �̇�𝒊+𝟏/𝟐 = �̇�𝒊−𝟏/𝟐 +
∆𝑡𝑖+1+∆𝑡𝑖

2
�̈�𝒊  (6.30) 

 𝒖𝒊+𝟏/𝟐 = 𝒖𝒊 + ∆𝑡𝑖+1�̇�𝒊+𝟏/𝟐  (6.31) 

where 𝒖 is the displacement vector, �̇� is velocity vector, and �̈�𝒊 is acceleration vector. The 

acceleration vector is defined as: 

 �̈�𝒊 = 𝑴−𝟏(𝑷𝒊 − 𝑰𝒊)  (6.32) 

where 𝑴−𝟏 is the inverse mass matrix. 𝑷𝒊 and 𝑰𝒊 are the applied load vector and the internal 

force vector.  

The explicit integration schemes are conditionally stable and therefore stability cri-

teria need to be imposed. For the mechanical model, the criterion is based on the mechan-

ical wave propagation: within the time increment, the distance that the ultrasound wave 
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propagates should not exceed the minimum dimension of any finite element. The criterion 

on ∆𝑡𝑚𝑒 is written as (Abaqus 2015): 

 ∆𝑡𝑚𝑒 ≈
𝐿𝑚𝑖𝑛

𝑐𝑑
  (6.33) 

where 𝐿𝑚𝑖𝑛 is the dimension of the minimum element, 𝑐𝑑 is the longitudinal wave speed 

defined as: 

 𝑐𝑑 = √
𝐸

𝜌
  (6.34) 

where 𝐸 is the Young’s modulus. For the integration of the thermal model, the criterion is 

defined such that within the time increment, the distance that thermal wave propagates 

should not exceed the minimum dimension of any element. The criterion on ∆𝑡𝑡ℎ is written 

as (Abaqus 2015): 

 ∆𝑡𝑡ℎ =
𝑙𝑚𝑖𝑛

2

2𝛼
  (6.35) 

where 𝑙𝑚𝑖𝑛 is the dimension of the minimum element and 𝛼 the thermal diffusivity. Based 

on the finite element model setup and on the thermal and mechanical properties defined in 

sub models, the maximum time increment for the mechanical model is 2e-8 seconds and 

for the thermal model is 1e-3 seconds. The maximum time increment for integrating the 

thermo-mechanical model is constrained by the smaller increment of the two and therefore 

is 2e-8 seconds.  

 

6.1.3 Friction Model Integration 
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The critical friction stress 𝜏𝑐𝑟𝑖𝑡 necessary to initiate friction is determined based on 

Coulomb’s friction law: the product of friction coefficient and normal pressure. The fric-

tion coefficient is determined at each time increment based on the friction model which 

characterizes the two influential factors: normal pressure and temperature. The values of 

these factors are obtained from the stress and thermal analyses by solving the thermo-me-

chanical model. The shear stress 𝜏 obtained from stress analysis is compared to the critical 

friction stress 𝜏𝑐𝑟𝑖𝑡 such that the surfaces in contact stick as 𝜏 < 𝜏𝑐𝑟𝑖𝑡, and slip as 𝜏 ≥ 𝜏𝑐𝑟𝑖𝑡. 

The friction stress also governs the heat dissipation from friction work which serves a heat 

flux boundary condition for the thermal model.  

 

6.1.4 Summary 

In summary, five sub-models including thermal, dynamic, plasticity, and friction 

models are integrated and solved using the finite element method. The five sub-models are 

coupled with each other and a schematic of the couplings is shown in Figure 6.1.  Each 

dashed box contains an individual equation that supports the sub models. Each solid line 

indicates a coupling between the solution from the equation in a dashed box and a specific 

parameter in another equation. The arrow indicates the cause-effect relationship between 

the parameters. For instance, the heat dissipation from both friction and plastic deformation 

contribute to the heat flux �̇� in the thermal model whereas the temperature solution from 

the thermal model contributes to the thermal softening in the plasticity model. From the 

energy point of view, the lines and arrows also indicate the energy flow within the thermo-

dynamic system.  
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Figure 6.3 The couplings between sub-models 

 

6.2 The Setup of UAM Model in ABAQUS 

The setup of a 3-D thermo-mechanical model in ABAQUS is described. The model 

introduces a sonotrode, a top foil, and a built feature (Figure 6.2 (left)). The titanium sono-

trode is modeled as a rigid shell whereas the aluminum top foil and the built features are 

modeled as deformable solids. The laminated built feature is simplified to a parallelepiped 

with homogenous material properties. The sonotrode has a radius of 76.2 mm (3 in.). The 

nominal width of the foil, the sonotrode, and the built feature are 23.876 mm (0.94 in.). 

The thickness of the foil is 0.13 mm (0.0051 in.). The length of the built feature is set to 

63.5 mm (2.5 in.). 
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At the contact interface between the top foil and the built feature, the layers con-

sisting of surface asperities are observed to undergo severe plastic deformation on both 

surfaces in contact. The layer is characterized by the refinement and “flow” like morphol-

ogy of the sub-grains and is typically 10 – 60 µm in thickness from the weld interface (K. 

Johnson et al. 2011). As a result, two plastic deformation layers are introduced and attached 

to the mating surfaces of the top foil and the built feature respectively (Figure 6.2 (right)). 

The elastic properties in the plastic deformation layers are lower than those in the bulk 

material due to the existence of surface asperities. When subjected to compression force, 

the asperities crush and the layer yields larger deformation than the bulk material under-

neath. The effective elastic modulus is determined by assuming a Hertzian contact between 

two rough surfaces (K. L. Johnson 1985): 

 
𝟏

𝑬∗ =
𝟏−𝝂𝟏

𝟐

𝑬𝟏
+

𝟏−𝝂𝟐
𝟐

𝑬𝟐
 (6.36) 

where 𝐸1, 𝐸2, 𝑣1, 𝑣2 are the elastic modulus and Poisson’s ratio of the two materials in 

contact. For the contact between aluminum 6061-T6 foils, 𝑣1 = 𝑣2 = 0.33, the effective 

modulus is roughly half of the elastic modulus: 𝐸∗ = 0.56𝐸. Both plastic layers are 20 µm 

thick according to observation made by Johnson et al. and the overall thickness of the top 

foil is 150 µm (K. E. Johnson 2008). 
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Figure 6.4 UAM model overview (left), and the plastic deformation layers between the top foil and built feature 

(right, the sonotrode is removed for clarity) 

 

Both mechanical and thermal boundary conditions are imposed in the model. The 

sonotrode is subjected to a compression load in the normal direction and a sinusoidal dis-

placement at 20 kHz along the width of the foil in horizontal direction. Clamping is im-

posed at the bottom of the built feature. Along the rolling direction of the sonotrode, the 

part of the top foil behind the rolling path is already “bonded” and thus is fully constrained 

to the built feature whereas the part ahead of the rolling path is clamped at the end to min-

imize the dynamics effects from the top foil. The thermal boundary conditions include pre-

heating the top foil and built feature while maintaining the sonotrode at room temperature 

(25 °C). 

Mechanical and thermal contact interactions are defined between the sonotrode and 

the top foil as well as between the top foil and the built feature. In the normal direction on 

both contact interfaces, a surface-to-surface “hard” contact is defined which minimizes the 

penetration of the slave surface (with soft material) into the master surface (with hard ma-

terial or rigid body) at the contact locations using a penalty method and impedes the transfer 
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of tensile stress across the contact interface (Abaqus 2015). At the sonotrode-top foil inter-

face, a “rough” surface contact is defined which imposes no slip along the horizontal di-

rection. The assumption of the top being “grabbed” by the sonotrode without slipping is an 

ideal assumption for simplifying the problem, and is probably very realistic since the sono-

trode surface has a tailored rough surface to ensure such “grabbing”. The influence of a 

potential slipping could be covered in future work.  

In order to capture the plastic deformation underneath the sonotrode with sufficient 

accuracy and at the same time reduce computational cost, a contact patch is generated with 

refined mesh for the top foil, built feature, and plastic deformation layers in between (Fig-

ure 6.2 (right)). The 4-node linear tetrahedral element (C3D4) is selected for meshing due 

to its robustness over hexagonal shape and being able to adapt to relatively complex ge-

ometries. The linear elements are preferred over quadrature due to their robustness under 

contact conditions which leads to less convergence issues. The mesh size is determined 

based on the criterion of being able to capture the Hertzian contact stress distribution (J. 

M. Gibert et al. 2009). 

The ABAQUS Explicit solver is used to interface with the user defined subroutine 

VUMAT for solving the model. The simulation is run on a high-performance computing 

(HPC) cluster with 80 processors for roughly 24 hours (Intel Xeon processors, 2.33 GHz).  

The simulation time is set to 0.5 ms which covers 10 vibration cycles of the sonotrode. 

Since the rolling speed (0.03 m/s) is much lower than the vibration speed (0.4-4 m/s), the 

sonotrode is assumed to be dwelling and only oscillation is considered in the simulation. 
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Table 3.1 shows the range of variation of each operating parameter used for simulating the 

UAM process. The results will be shown in section 6.4. 

 

Table 6.1 The operating parameters used for UAM simulation 

Amplitude Frequency Compression load Temperature H/W 

10-35 µm 20 kHz 1600-6000 N 25-150 °C 0.2-2.0 

 

6.3 Bond Quality Evaluation using Asperity Layer Model 

6.3.1 Introduction 

In this section, an asperity layer model is proposed to associate the UAM model 

prediction to the bond quality. Specifically, the established UAM model is capable of pre-

dicting deformation stress and strain, displacement, temperature, contact stress, and contact 

area at the bonding interface. However these predictions cannot be directly quantified and 

associated to bond quality. From the literature review in section 2.5, it is shown that most 

of the existing bond quality evaluations are experiment-based and are destructive to the 

bonds. The only exception is the linear weld density which is defined as the ratio of the 

bonded area over the total area. As a result, attempts are made to develop a model that 

relates the deformation of asperities to the linear weld density. These attempts are also 

supported by experimental studies presented in section 2.5.7 which conclude that the de-

formation of the asperity layer serves as a good indicator of bond quality.  

Finite element models of asperities have been introduced for studying sliding con-

tacts between rough surfaces. Pei et al.  (2005) for instance, studied the contact between a 
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rigid smooth surface and a deformable rough surface by generating a 3-D finite element 

model of a self-affine fractal surface. 𝐽2 plasticity is introduced for modeling the plastic 

deformation of asperities. The authors found that the contact area varies linearly with the 

normal load while the contact pressure barely changes. They further point out that the plas-

tic deformation of asperities serves as an equalizer that reduces the sensitivity of area to 

surface roughness and leads to more uniform contact distribution. Deshpande et al. also 

studied the indentation and frictional sliding between a single rigid asperity and a deform-

able film using finite element models (Deshpande et al. 2007). The asperities are idealized 

as 2-D uniform sinusoidal and wedge shapes whose geometries are defined in terms of 

wave length to amplitude ratios (
𝑤

𝐴
). Cases are studied in the ratios of 10 and 20. They point 

out that the continuum plasticity is valid only when the asperity size is relatively large. 

This threshold is reported to be in the order of tens of micrometers (Song et al. 2015). When 

the asperity size is comparable to the dislocation source spacing, however, dislocation-

based plasticity has to be introduced.  Sun et al. simulate the ploughing of 2-D sinusoidal 

asperities using dislocation-based plasticity and find that the plastic contact pressure de-

pends only on the wave length but not the amplitude of the sinusoidal shape (Song et al. 

2015). At the same 
𝑤

𝐴
, larger asperities are easier to deform due to the fact that more dislo-

cations are available for nucleation. The ratios 
𝑤

𝐴
 used for modeling the sinusoidal asperities 

are 20 and 50. In summary, it is shown that the asperities can be approximated by uniform 

sinusoidal shapes for studying their deformation under contact and sliding friction. As a 
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result, a 3-D finite element model of a sinusoidal asperity layer is established for charac-

terizing the asperity deformation. The effective contact area ratio due to the deformation is 

then calculated and related to the linear weld density with the same definition.   

 

6.3.2 Model Setup 

A 3-D finite element model of sinusoidal asperities is established. The modeling 

process is similar to the one proposed by Padró (Padró 2015). Specifically, surfaces 

bounded by sinusoidal curves are generated by importing a set of control point coordinates 

in SolidWorks. The surfaces are then extruded to a solid body, tiled to a patterned asperity 

layer, and imported into ABAQUS for finite element analysis (Figure 6.3 (left)). The sono-

trode-textured foil is reported to have a surface roughness of  𝑅𝑎 = 10 𝜇𝑚 (Friel et al. 

2010; Kulakov and Rack 2010) where  𝑅𝑎 is arithmetic average roughness defined as: 

  𝑅𝑎 =
1

𝑁
∑ |𝑦𝑖|

𝑁
𝑖=1                               (6.37) 

𝑦𝑖 is the vertical distance from the 𝑖th point on the surface profile to the mean line, and 𝑁 

is the number of points measured along the surface profile. However, roughness is not 

sufficient to precisely model the microgeometry of the asperity and little information other 

than 𝑅𝑎 has been found in the literature. As a result, the 3-D sinusoidal asperity model is 

established such that the amplitude is fixed to 10 𝜇𝑚 while the wave length to amplitude 

ratio (
𝑤

𝐴
) can take different values: 

𝑤

𝐴
= 8, 20 (Figure 6.3 (right)). The two ratios are se-

lected based on their extensive use in the literature. Since the asperity size is on the order 

of tens of microns which is large comparing to dislocation spacing, the continuum plasticity 
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is valid to implement. The material properties (Aluminum 6061-O) assigned to the model 

are summarized in Table 6.2. 

 

Table 6.2 The material properties assigned to the asperity model 

 

 

Figure 6.5 the amplitude and wavelength of 2-D sinusoidal shape (left) and the 3-D sinusoidal shape (right) 

 

6.3.3 Preliminary Test 

 A compression test is carried out to determine the appropriate wavelength to am-

plitude ratios for UAM process. The test setup includes a top foil which is modeled as a 

rigid plane and an asperity layer which is modeled as deformable solid part. The amplitude 

𝐴 of the sinusoidal asperity is fixed to 10 µm whereas the wave length to amplitude ratio 
𝑤

𝐴
 

is varied at two different levels: 8 and 20 (Figure 6.4). Uniform normal pressure of 30 MPa 

which is equivalent to a load of 1600 N is applied to the top foil for simulating the com-

pression from the sonotrode. The bottom surface of the asperity layer is fixed while the 

Young’s modulus Poisson’s ratio Yield strength Ultimate tensile strength 

69 GPa 0.33 130 MPa 150 MPa 

𝑨 

𝒘 
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four vertical sides are free of constraints. The interaction between the top foil and asperity 

layer is modeled with ABAQUS surface-to-surface hard contact formulation. A constant 

friction coefficient of 0.4 is assigned to the mating surfaces based on the work of Zhang et 

al.(Cunbo Zhang and Li 2006). The 3-D model is meshed using C3D4 mesh. 

 

 

Figure 6.6 3-D top foil and sinusoidal asperity layer with w/A=8 (left) and w/A=20 (right). 

 

Figure 6.5 shows the deformation of the asperity layer at 
𝑤

𝐴
 equals 8 and 20, the top 

foil is removed for clarity of view. An ultimate tensile stress of 350 MPa is reached within 

the asperities in both cases (red contour), which indicates that the plastic deformation in 

these regions is sufficient for generating plastic flow and forming bonds. It can be seen that 

for small-spacing asperities (
w

A
= 8) the maximum stresses are distributed at the bottom rims 

of the asperities whereas for large-spacing asperities (
w

A
= 20) the maximum stresses are 

distributed at the peaks of asperities. The difference is speculated to be caused by the col-

lapse of small-spacing asperities due to their slender geometries. In UAM, however, this is 

not the case since asperities only collapse under both compression and sufficient ultrasonic 

10 µm 10 µm 
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vibration. As a result, the small-spacing asperities may not be realistic to capture the de-

formation of asperities.  

 

Figure 6.7 Steady state stress and strain response of asperity layer subjected to 30 MPa pressure: w/A=8 (left) 

and w/A=20 (right) 

 

The deformation of the asperity layer is measured in terms of the top foil displace-

ment in the normal direction and the effective contact area at the contact interface. The top 

foil displacement is 4.33 µm for small spacing asperities and 2.99 µm for large spacing 

asperities. The effective contact area is normalized by the total area of the top foil due to 

the difference in overall dimensions of the two models. For small spacing asperities, the 

normalized effective contact area is 10.60% and for large spacing asperities, the value is 

6.86% These results further validate our speculation that the small spacing asperities col-

lapse under normal compression and lead to greater displacement of the foil and higher 

normalized effective contact area. As a result, large spacing asperities (
w

A
= 20) is selected 

for the UAM process.  
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6.4 Results  

In this section, results generated from the UAM model are presented and discussed. 

In section 6.4.1, the UAM model is validated by predicting the foil deformation in bonding 

Aluminum 1100-O. The model predictions are then compared with experimental measure-

ments. In section 6.4.2, the UAM model is run at two different height-to-width ratios to 

understand the effect of the built feature aspect ratio on stresses close to the bond interface. 

In section 6.4.3, the different energy dissipations within the UAM bonding are evaluated 

using the UAM model. In section 6.4.4, the asperity layer model is implemented in the 

UAM model to associate the material deformation at the bond interface to the linear weld 

density of the bonds. The predictions are then compared to experimental studies in the 

literature. 

 

6.4.1 Validation of UAM Model 

In this section, the model is first validated by comparing its predictions with exper-

imental studies. Kelly et al. studied the variation of post-weld foil deformation under dif-

ferent combinations of process parameters (pressure, amplitude, and weld speed) (GS Kelly 

and Advani 2013). The change in width and thickness of the foil under different process 

parameters are examined using an image processing software Image J. The foil with 13 

mm width and 0.52 mm thickness is selected and its deformation in width is compared with 

the obtained deformation for validating the UAM model. The model parameters for the 

modified Johnson-Cook are shown in Table 6.3. Specifically, the model parameters for 

strain hardening and acoustic softening are determined based on our experimental studies. 
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The strain rate hardening and thermal softening models are calibrated based on data from 

the literature (Kaufman 1999).  

 

Table 6.3 Model constants of the modified JC model for Aluminum 1100-O 

Al 𝐀 (𝐌𝐏𝐚) 𝐁 (𝐌𝐏𝐚) 𝐧 𝐂 𝐃 𝐩 𝐝 (𝐜𝐦𝟐/𝐖) 𝐦 

1100 83.09 76.37 0.38 0.46 0.49 0.10 8.01E-05 0.51 

 

6 combinations of process parameters are selected from Kelly’s work. The peak-

peak vibration amplitude is set to 3 levels: 10 µm, 18 µm, and 36 µm whereas the com-

pression is set to 2 levels: 78.9 MPa and 45.2 MPa. The preheat temperature is held at 135 

°C and the weld speed is fixed at 40 mm/s. In the UAM model, the dwell time is chose as 

a parameter in replace of the weld speed. Specifically, the dwell time ∆t is estimated using 

the ratio of contact length (w) over weld speed (v) (Figure 6.6): ∆t=
w

v
. Since the minimum 

contact length is constrained by the size of the element, it is assumed that the contact length 

is equal to the length of the element along the rolling direction of sonotrode. As a result, 

the dwell time is estimated to be ∆t = 0.000285 second and is equivalent to 57 cycles. Due 

to the high computational cost of the UAM model, the simulation is usually limited to 10 

cycles. In order to predict the deformation after 57 cycles based on the simulation of 10 

cycles, an assumption is made that the deformation of the foil is constantly increasing dur-

ing the dwell time. It is a bold but reasonable assumption since the bonding process is 

sensitive to weld speed, meaning that plastic deformation takes place throughout the dwell 

time. Further, it is observed from the simulation that the width of the top foil is constantly 
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increasing. The deformation of the width can also be observed from the strain history of 

the element at the edge of the top foil (Figure 6.7). As a result, the deformation in width is 

evaluated using the relation:  

 
∆𝑊

𝑊𝑜
=

𝛿∆𝑡

𝑊𝑜∆𝑡𝑠
  (6.38) 

where ∆𝑊 is the overall deformation in width of the top foil,  𝑊𝑜 is the initial with of the 

foil, 𝛿 is the overall deformation in width predicted by the UAM model, ∆𝑡 is the dwell 

time and ∆𝑡𝑠 is the simulation time of the UAM model. Based on the relation shown in 

equation 6.38, the predictions of foil width deformation are given in Table 6.4 and are 

compared to the experimental data from Kelly et al. in Figure 6.8. A good agreement be-

tween the UAM model predictions and the experimental measurements can be seen. How-

ever, the foil deformation predicted by the model is constantly higher than the measure-

ments from the experiment. This overestimation is most likely due to the no slip assump-

tion between the sonotrode and the top foil. This assumption leads to excessive deformation 

of the top foil driven by the motion of sonotrode. In reality, however, slip exists at the 

sonotrode-top foil interface and reduces the actual deformation of the top foil.  

 

 

 

Figure 6.8 The contact length between top foil and sonotrode 
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Figure 6.9 The strain history of an element on the edge of the top foil 

 

Table 6.4 The predictions of width deformation by UAM model 

      Amplitude 

Pressure 
10 µm 18 µm 36 µm 

45.2 MPa 2.39% 7.26% 14.28% 

78.9 MPa 4.20% 7.15% 24.4% 
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Figure 6.10 he comparison of width deformation between model prediction and experimental data. Experi-

mental data is reproduced from work of Kelly et al. (GS Kelly and Advani 2013). 

 

6.4.2 The Effect of Height-to-width Ratio on Stresses  

The UAM model is setup to run at various height-to-width ratios and the stress 

variations are examined. The material in use is Aluminum 6061-T6. Some parameters are 

fixed: the amplitude to 10 µm; the compression to 1600 N; the preheat temperature to 

150°C; the simulation time to 0.0007 second (14 cycles). The different stress histories are 

compared at the critical height (height-to-width ratio equals to 1.0) and at a height away 

from the critical value (height-to-width ratio equals to 0.2). Notice that in this study the 

strain rate is set to a constant instead of being calculated based on local strain at each time 

increment. The value of the constant is estimated using equation (4.4). The reason for using 

a constant strain rate is that it allows the effect of dynamics to be more visible on the stress 
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history. If the strain rate varies with time and location,  it introduces additional variations 

to the stress history thus making the dynamic effect less visible.  

The dynamic responses of the built feature at various height-to-width ratios are first 

examined before showing the stress histories (Figure 6.11). The dashed line represents the 

amplitude of the sonotrode and the solid lines represent the oscillation responses from the 

built feature. It can be observed that both the amplitude and the phase of the dynamic re-

sponse varies with the height-to-width ratio. The amplitude is modulated due to the differ-

ence between the forcing frequency of the sonotrode and the natural frequency of the built 

feature. Such responses can be explained by considering a simple case in which the built 

feature is a single-degree-of-freedom (SDOF) oscillator. Neglecting damping and assum-

ing the forcing function to be: 

 𝐹(𝑡) = 𝐹0 cos Ωt  (6.39) 

also assuming zero initial conditions, the response of the built feature can be written as: 

 𝑢(𝑡) = [
2𝐹0

𝑚(Ω2−𝜔𝑛
2 )

sin (
(Ω−𝜔𝑛)𝑡

2
)]sin (

(Ω+𝜔𝑛)𝑡

2
)  (6.40) 

where 𝐹0 is the force amplitude, Ω is the circular frequency of the forcing function, 𝜔𝑛 is 

the natural circular frequency of the built feature. The response oscillates at a high fre-

quency (
Ω+𝜔𝑛

2
) while its amplitude (

2𝐹0

𝑚(Ω2−𝜔𝑛
2 )

) oscillates at a low frequency (
Ω−𝜔𝑛

2
). As the 

height-to-with ratio increases from 0.2 to 1.0, the natural frequency of the built feature 

decreases and approaches 20 kHz (𝜔𝑛 → Ω). As a result, the oscillation frequency and 

phase of the oscillator approaches those of the force. At a height-to-with ratio of 1.0, the 

amplitude is shown to reach a maximum as the built feature oscillates in phase with the 

sonotrode (Figure 6.11). 
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Figure 6.11 The dynamic responses of the built feature at different height-to-width ratios 

 

The dynamics of the built feature has a significant influence on the stresses which 

is shown as follows. The stresses measures are taken from both the center and the edge of 

four different layers of the UAM model: top foil, top foil plastic layer, built feature plastic 

layer, and built feature (Figure 6.12). The plastic layers represent the surface asperities of 

the top foil and the built feature. The stresses considered in this discussion are all taken 

from the center and the “edge defect” (bond degradation at the edge of the foil) will be 

discussed separately.  

Figure 6.13 shows the stresses in the bulk material of the top foil and its plastic 

layer as the height-to-width ratio equals 0.2. The yield stress is 225 MPa as indicated by 

the red centered line. Several observations can be made. First, the top foil undergoes plastic 
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deformation in both bulk material and plastic layer. Stresses from both bulk material and 

the plastic layer are above the yield stress in most of the weld cycles. The stress in plastic 

layer is higher than that in bulk material, indicating more plastic deformation takes place 

at the bond interface. The maximum stress in the plastic layer is 303.26 MPa and in the 

bulk material is 265.32 MPa. Second, large amplitude oscillations that resemble “spikes” 

are observed in both layers. Each spike represents a change in the stress as the sonotrode 

moves from one extreme position to the other. Therefore each weld cycle yields two spikes. 

The amplitude of the spike is associated to the amplitude of the differential motion between 

the top foil and the built feature. Due to the beat phenomenon in the built feature, the am-

plitude of the differential motion varies periodically which leads to the variation of the 

spike amplitude. The spike amplitude at the maximum stress in the bulk material layer is 

89.96 MPa and in the plastic layer is 77.94 MPa. Furthermore, the spikes are superimposed 

with the dynamic stresses caused by beating. Since both the dynamic stress and the spike 

amplitude are driven by beating, they reach the maximum at the same time, thus leading to 

the maximum in the superimposed stress. The dynamic stress is 175.36 MPa at the maxi-

mum stress in the bulk material layer and 225.32 MPa in the plastic layer.  

 

 

Figure 6.12 The locations of the measuring points on the built feature: side view (left) and top view (right). 

Edge 

Center 
Top foil  

Top foil plastic layer  

Built feature plastic 

layer  

Built feature 



153 

 

 

 

Figure 6.13 The stress history in the top foil and its plastic layer at H/W=0.2 

 

Figure 6.14 shows the stresses in the built feature and its plastic layer at an aspect 

ratio of 0.2. The stresses in the plastic layer are higher than in the built feature. The stress 

in the plastic layer becomes plastic as the dynamic stress approaches its maximum whereas 

the stress in the bulk material remains elastic in the entire course. Both stresses show strong 

amplitude-modulation and stress superposition between friction and dynamic stresses. The 

maximum stresses in the plastic layer and the bulk material of built feature are 259.24 MPa 

199.53 MPa respectively. A contribution to the stress comes from the oscillation stress 

whose amplitude is 65.16 MPa in the plastic layer and 25.49 MPa in the built feature. The 

remainder is due to the dynamic stresses whose amplitude is 194.08 MPa in the plastic 

layer and 174.04 MPa in the built feature.  
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In summary, the stresses in top foil bulk material, top foil plastic layer, built fea-

ture plastic layer, and built feature bulk material are examined at the height-to-width ratio 

of 0.2. Stresses in the plastic layers of both the top foil and the built feature exceed the 

yield stress and are higher in their bulk material counterparts, which indicates more plas-

tic deformation at the bond interface. The stresses result from the superposition of the 

high frequency oscillating stresses due to sonotrode vibration and the low frequency dy-

namic stresses due to the beat phenomenon in built feature vibration. The oscillation am-

plitude is higher in the top foil than in the built feature, which indicates that the stresses 

in top foil are more influenced by the vibrating sonotrode. In contrast, the amplitude 

modulation of the stress due to the beat phenomenon is more significant in the built fea-

ture than in the top foil, which indicates that the stresses in built feature are more influ-

enced by the vibration of the built feature. To conclude, the stresses close to the bond in-

terface are significantly affected by the dynamics of both the sonotrode and the built fea-

ture. The maximum stresses and the dynamic and friction stresses that contribute to the 

stress are summarized in Table 6.5. 
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Figure 6.14 The stress histories in the built feature and its plastic layer at H/W=0.2 
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oscillation and dynamic stresses that contribute to the maximum stress are shown in Table 

6.5.  

 

 

Figure 6.15 The stress histories in the top foil and its plastic layer at H/W=1.0 

 

 

Figure 6.16 The stress histories in the built feature and its plastic layer at H/W=1.0 
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Table 6.5 Comparison of maximum stresses, friction stresses, and dynamic stresses at H/W=0.2 and H/W=1.0 

 

Figure 6.17 shows the comparison of maximum, friction, and dynamic stresses at 

height-to-width ratio of 0.2 and 1.0. The sum of friction stresses and dynamic stresses 

yields the maximum stresses. In the case of the 0.2 aspect ratio, the maximum stresses in 

the plastic layers are well above the yield stress whereas in the case of 1.0, only the maxi-

mum stresses in top foil plastic layer exceeds the yield stress. Moreover, the maximum 

stresses show significant differences between the plastic layers of the top foil and the 

built feature. These differences in the maximum stress are largely contributed by the dif-

ferences in the friction-induced stresses and little differences are seen in the dynamic 

stresses. As a result, it can be concluded that at the critical height-to-width ratio, the bond 

 H/W=0.2 H/W=1.0 

Max. 

stress 

(MPa) 

Contribu-
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dynamic 
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Contribu-

tion from 

friction 

stresses 

(MPa) 

Max. 

stress 

(MPa) 

Contribu-

tion from 

dynamic 

stresses 

(MPa) 

Contribu-

tion from 

friction 

stresses 

(MPa) 

Top foil  265.32 175.36 89.96 267.19 228.04 39.15 

Top foil 

plastic 

layer 

303.26 225.32 77.94 253.78 215.29 20.49 

Built fea-

ture 

plastic 

layer 

259.24 194.08 65.16 220.97 198.46 22.51 

Built fea-

ture 

199.53 174.04 25.49 187.25 180.14 7.11 
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degradation is caused by the insufficient plastic deformation at the bond interface due to 

the significant reduction in friction stresses.  

 

 

Figure 6.17 The comparison of the maximum, friction, and dynamic stresses at H/W=0.2 and H/W=1.0 
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interface at the critical aspect ratio and is assumed to be the cause of the bond degradation. 

The lack of plastic deformation is shown to be due to the lack of frictional stresses which 

is further associated to the beat phenomenon observed at the critical aspect ratio.   

 

6.4.3 Energy Flow in UAM 

From the energy point of view, the UAM is a process that joins metal foils using 

ultrasonic energy. While the energy flows are difficult to measure experimentally, they can 

be quantified in the numerical model. In this section, the different energy flows within the 

UAM model are examined and discussed.  

Here we confine our study to the overall energy exchange within the entire model 

and therefore the control volume is set to the entire UAM system. Since there exists no 

exchange of matter between the UAM system and its surroundings, the system is consid-

ered as a closed system. For the closed system, the conservation of energy for the system 

can be written (the first law of thermodynamics): 

 
𝑑𝐸

𝑑𝑡
= �̇� − �̇�  (6.41) 

where �̇� is the rate of total heat transferred to the system, �̇� is the rate of total work done 

by the system, 
𝑑𝐸

𝑑𝑡
 is the rate of change of energy of the system which can be further de-

composed: 

 𝐸 = 𝐸𝐼 + 𝐸𝐾𝐸 + 𝐸𝑃  (6.42) 

where  𝐸𝐼 is the internal energy, 𝐸𝐾𝐸 is the kinetic energy, and 𝐸𝑃 is the potential energy. 

The energy balance equation is reformulated in ABAQUS as (Abaqus 2015): 
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 𝐸𝑇𝑂𝑇 = 𝐸𝐼 + 𝐸𝐾𝐸 + 𝐸𝐹𝐷 + 𝐸𝑉𝐷 − 𝐸𝑊 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (6.43) 

where 𝐸𝑇𝑂𝑇 is the total energy of the system. 𝐸𝐼 is the internal energy defined as the sum 

of elastic, plastic, and “artificial” strain energies. Artificial strain energy refers to the en-

ergy used for resisting hourglass mode (zero energy mode due to the reduced-integration 

of the elements) in a finite element model. 𝐸𝐾𝐸 is the kinetic energy. 𝐸𝐹𝐷 and 𝐸𝑉𝐷 are 

energy due to friction and viscous dissipation respectively. 𝐸𝑊 is the work of the external 

forces and the prescribed boundary conditions which include the compressional force in 

normal direction and the force that drives the vibration of the sonotrode. The total energy 

should be close to zero or remain at a constant level based on the energy balance. These 

quantities are examined and discussed as follows. 

Figure 6.16 shows the evolution of the external work and the different energies 

with respect to time. The material used for the UAM model is Aluminum 1100-O. The 

operating parameter settings are shown in Table 6.6. The simulation is run for 10 cycles 

or equivalently 0.0005 seconds and the energies are calculated based on the time interval. 

From the plot, it can be observed that a majority of the external work is converted to the 

kinetic energy of the system (1.44e-3 J). It is found that the kinetic energy is almost entirely 

associated to the vibration of the sonotrode and the kinetic energy due to vibration of the 

built feature can be neglected. Since this energy study is focused on the energy flow in 

bonding process, the kinematic energy will not be considered. The second highest energy 

in the system is the internal energy (1.09e-4 J) which includes elastic, plastic, and artificial 

strain energy. Specifically, the artificial strain energy remains zero throughout the simula-

tion time which indicates that the model is free of hourglass effect. The elastic strain energy 
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is 2.52e-5 J whereas the plastic dissipation is 8.35e-5 J. This indicates that the majority of 

energy dissipation within the UAM system is due to plastic deformation. Further, the en-

ergy dissipation due to plastic deformation and friction are compared in Figure 6.19. The 

contribution from plastic deformation (8.35e-5 J) is shown to be far greater than from fric-

tion (2.45e-6 J). Similar conclusions are made by Sriraman et al. and Gao et al (Gao and 

Doumanidis 2002; Sriraman et al. 2011; Sriraman, Babu, and Short 2010). Sriraman et al 

find that the temperature increase at the bond interface is associated to the yield strength 

of the material and therefore conclude that the dissipation due to plastic deformation is the 

major contributor of interfacial heat generation. Opposite conclusions are made by Siddiq 

et al.(A. Siddiq and Ghassemieh 2008a; Amir Siddiq and Sayed 2012) who claimed that 

heat dissipation at the bond interface is largely contributed by friction. However, no de-

tailed justification is provided. The remaining energies such as viscous dissipation and 

creep dissipation are close to zero and their contribution are negligible.  

 

Table 6.6 The operating parameters used for studying energy flow 

Amplitude Compression Simulation time Preheat temperature 

9 µm 6000 N 0.0005 s (10 cycles) 135 °C 
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Figure 6.18 An overview of the work and energies involved in the UAM process 
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Figure 6.19 The comparison of energy dissipation due to friction and plastic deformation 
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the simulation is run under ultrasonic irradiation, the lowering in tensile stress leads to re-

duction of the work due to external load. The amount of reduction is equal to the ultra-

sonic energy consumed to achieve the softening. The relation can be written as: 

 𝑊𝑛𝑜𝑛−𝑠𝑜𝑓𝑡 = 𝑊𝑠𝑜𝑓𝑡 + 𝐸𝑢  (6.44) 

 where 𝑊𝑛𝑜𝑛−𝑠𝑜𝑓𝑡 is the work done by external load without ultrasound, 𝑊𝑠𝑜𝑓𝑡 is the 

work done by external load with ultrasonic irradiation, 𝐸𝑢 is the ultrasonic energy con-

tributing to acoustic softening. In the specific case under study, the ultrasound is esti-

mated to cause a stress reduction of 56%. Similar analyses can be applied for estimating 

the thermal energy consumption. With the preheat temperature used in the study, the ther-

mal softening effect is estimated to reduce the stress by 31%. As a result, the total energy 

consumed for acoustic softening in 10 weld cycles is estimated to be 5.40e-4 J and for 

thermal softening is 2.99e-4 J. The amount of different energies that participate in the 

UAM bonding process can be defined in Table 6.7 and the proportions are visualized in 

Figure 6.19. 

 

Table 6.7 The summary of different energies within the UAM system for 10 weld cycles 

Elastic 

Strain 

Energy 

Plastic 

Dissipation 

Friction 

Dissipation 

Acoustic 

Softening 

Thermal  

Softening  
Others 

2.52e-5 J 8.35e-5 J 2.45e-6 J 5.40e-4 J 2.99e-4 J 1.53e-08 J 
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Figure 6.20 The schematics of energy consumption estimation based on a stress strain curve for acoustic soften-

ing (left) and thermal softening (right). 

 

 

Figure 6.21 The proportion of different energies in UAM 
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6.4.4 Associating the UAM Predictions to Bond Quality 

In this section, the asperity layer model developed in section 6.3 is introduced into 

the UAM model in order to associate the predictions of plastic deformation to the bond 

quality. The percentage of area in contact in the bond region is calculated and directly 

associated to the linear weld density. Then the model is run with different operating pa-

rameter combinations and the resulting linear weld densities are compared.  

The asperity layer is built into the bond region on the top surface of the built feature 

and the plastic layers that represent asperities are removed accordingly. The entire bond 

region is covered by asperities whose amplitude-to-wave-length ratio is equal to 20. The 

selection of this ratio is discussed in section 6.3. As the welding starts, the sinusoidal as-

perities deform as they come into contact with the bottom surface of the top foil. The real 

contact area is calculated as the sum of areas of the element facets that are subjected to 

contact forces, whereas the nominal contact area is defined as the overall area of the region 

where contact takes place. The ratio of real contact area and the overall contact area is 

equivalent to the linear weld density in UAM which is defined by Kong et al as the per-

centage of real contact area 𝐴𝑟 to the apparent weld region 𝐴𝑝 (Kong, Soar, and Dickens 

2005): 

 𝛼 =
𝐴𝑟

𝐴𝑝
× 100%   (6.45) 

The material selected for testing the UAM model is Aluminum 6061-T6. The com-

binations of the operating parameters are selected based on the experimental work by Wol-

cott et al.(Wolcott, Hehr, and Dapino 2014). They carried out a series of UAM bonding 

tests using a very high power ultrasonic additive manufacturing (VHP-UAM) machine 
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whose amplitude can reach as high as 46.8 µm and normal load can reach 15 kN. Due to 

the significant increase of power, some materials that previously were not able to be welded 

are tested in the study. These materials include the Aluminum 6061-T6 which is bonded 

using amplitude between 28 µm and 33 µm, normal load between 4000 N and 6000 N, and 

weld speed between 84.6 mm/s and 106.8 mm/s. The bond quality are then evaluated using 

push-pin test to identify the optimum operating parameters. 

Based on the process parameters used in the literature, the model is run at two dif-

ferent compression loads: 4000 N and 6000 N, and three different amplitudes: 10 µm, 20 

µm and 35 µm. The preheat temperature is set to 150 °C. The simulation time is 0.0005 s 

(10 cycles). The predicted linear weld densities for different cases are presented in Figure 

6.20. It is shown that the predicted linear weld density varies between 22.3% and 36.9% 

and depends on both the amplitude and the normal load. The linear weld density is im-

proved by increasing either the amplitude or the normal load. The dependence of the linear 

weld density on the amplitude is close to linear. The prediction is reasonable since higher 

amplitude leads to more significant acoustic softening and higher shearing strain to initiate 

plastic deformation, and higher normal load leads to higher compression and shearing force 

that also facilitate the deformation. As a result, the highest linear weld density (36.9 %) is 

found under the highest amplitude (35 µm) and the higher normal load (6000 N). The push-

pin test, however, shows that the strongest bond depends only on the amplitude (Wolcott, 

Hehr, and Dapino 2014). When the normal load is higher than 4000N, the bond quality 

becomes constant as the normal load increases. This divergence in the prediction is due to 

the different bond criteria used for bond quality evaluation. The linear weld density and 
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the maximum load for breaking the specimen are not necessarily correlated. A bond that 

yields high linear weld density could give low load at breaking due to excessive strain 

hardening and cyclic stressing which improve interface contact but weaken the bond 

(Kong, Soar, and Dickens 2003). Similarly a bond that yields high load at breaking could 

give low linear weld density due to the inhomogeneous distribution of high strength bonds.  

The results is further compared to the linear weld density reported by Kong et al. 

(Kong, Soar, and Dickens 2003) who carry out a series of bond tests on Aluminum 6061-

O. The linear weld density is shown to vary between 16 % - 45 % which is similar to the 

range of our prediction: 22.31% - 36.90%. The variation of the linear weld density with 

respect to the amplitude and the normal compression is shown in Figure 6.21. Similar to 

our finding, strong dependence is observed on both operating parameters and the depend-

ence on the amplitude is close to linear. Also, the increase of normal load by 75% (in 

Kong’s work) and by 50% (in our work) both lead to the increase of 5%-10% in the linear 

weld density. However, the amplitude used in Kong’s work (8.4 µm – 14.3 µm) is lower 

than the amplitude used in our work (10 µm - 35 µm). This divergence could be caused by 

multiple factors. First, the temper of the materials used in two tests are different. Kong at 

al. use the O temper whereas T6 temper is used in our test. The yield strength of Aluminum 

6061-O is around 65 MPa whereas for Aluminum 6061-T6 the yield strength is 300 MPa. 

The difference in the strength of the materials requires different ultrasound intensity for 

achieving satisfactory bonds. Second, the asperity model is a phenomenological model and 

does not reflect the physical behavior of the asperities. As a result, the model has to be 

calibrated by the experimental data of linear weld density before quantitative predictions 
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are carried out. Parameters such as the nominal bond area as well as the spacing of the 

asperities may require adjustment depending on the material or the surface topography of 

the foils used in the experiments.  

 

 

Figure 6.22 The bond quality of Aluminum 6061-T6 at different amplitude and compression combinations. 

 

 

Figure 6.23 The bond quality of Aluminum 6061-O at different amplitude and compression combinations 
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 By using the linear weld density as the bond quality criterion, the height-to-with 

ratio problem can now be reconsidered to identify the threshold for bond/debond. The ma-

terial assigned to the model is Aluminum 6061-T6 and the material properties are the same 

as in the last test. Two sets of weld parameters are used: one optimum set which yields 

high quality bonds and one less satisfactory set which yields low quality bonds. Both sets 

are obtained from the work by Wolcott et al. who carried out a design of experiments study 

to optimize weld parameters for Aluminum 6061-T6 (Wolcott, Hehr, and Dapino 2014). 

The bond quality are evaluated using push-pin tests. The two sets of weld parameters are 

shown in Table 6.8. The model is run at different height-to-width ratios: 0.2, 0.6, 0.8, 1.0, 

1.2, 1.4, 1.8 and 2.0 and the results are shown in Figure 6.22.  

For tests using the optimum weld parameter setting, the predicted linear weld den-

sity varies between 38% and 46% as the height-to-width ratios varies between 0.2 and 2.0. 

The minimum value of the linear weld density is reached at the height-to-width ratios of 

1.2 which yields the minimum density of 38.67%. This value is relatively high compared 

to the experimental measurement. According to Foster, the lower limit of the typical linear 

weld density obtained from the Solidica Formation machine is around 37 % for Aluminum 

3003-H18 (D. R. Foster, Dapino, and Babu 2013). The linear weld density, however, could 

vary depending on the material and the operating parameters in use. In general, the welda-

bility of Aluminum 6061-T6 is not as good as Aluminum 3003-H18 and therefore requires 

higher power for bonding. However, the operating parameters (a compressive load of 6000 

N and an amplitude of 35 µm) used for welding 6061-T6 in our test are much higher than 
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the maximum capabilities of the Solidica Formation machine (a compressive load of 2200 

N and an amplitude of 26 µm). As a result, it is possible that by using significantly higher 

weld parameters, the minimum linear weld density could be improved. Experimental stud-

ies are needed to validate this point. The variation of the linear weld density indicates a 

drop as the height-to-width ratio increases from 0.8 to 1.0 and the value remains below 

40% up to a ratio of 1.4. Kong et al. uses a threshold of 45% ± 5% for identifying the 

“good bond” for Aluminum 6061-O and therefore 40% is adopted as the threshold that 

separates bond/debond. Therefore, the debond due to resonance of the built feature takes 

place as the height-to-width ratio varies between 1.0 and 1.4 for the specific material and 

operating parameters tested.  

For tests using less satisfactory weld parameter setting, a reduction of 12.7% is 

observed in the linear weld density comparing to tests using optimum weld parameter set-

ting. The data also shows a smaller range (27.9% - 32.5%) as the height-to-width ratio 

varies from 0.2 to 2.0. The linear weld density is well below the bonding threshold of 40%. 

By introducing the asperity layer to the UAM model, the macroscopic dynamics of the 

built feature is successfully related to the linear weld density at the bond interface.  

 

Table 6.8 The weld parameter sets for studying the H/W ratio problem for Aluminum 6061-T6 

Weld set Compression 

load (N) 

Amplitude 

(µm) 

Preheat  

temperature (°C) 

Simulation time (s) 

(# of cycles) 

Optimum  6000 35 150 0.001 (20) 

Less satisfactory  4000 25 150 0.001 (20) 

 



172 

 

 

Figure 6.24 The linear weld density (LWD) for bonding Aluminum 6061-T6 at different height-to-width (H/W) 

ratios. 
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the optimum process parameters for process optimizations. In the next chapter, the research 

questions are answered based on the completed work. The different contributions of this 

work and the potential future research that could further expand the implementation of the 

model are also highlighted.  
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Chapter 7 

 

7 Concluding Remarks 

 

In this chapter, the research questions presented in Chapter 2 are answered. These 

research questions are: 

1. How can the acoustic softening effect be taken into account in the modeling of 

the UAM process? 

1.1 How can one design an experiment to quantify the acoustic softening effect? 

1.2 How to analytically model acoustic softening? 

2. Which analytical models should be integrated to better characterize the UAM 

process? 

2.1 How to establish a plasticity model that incorporates acoustic and thermal sof-

tening? 

2.2 How to account for all the factors associated with heat transfer and friction in 

UAM? 

2.3 How to account for the variation of dynamic conditions in a UAM model? 

2.4 How can the UAM model be validated? 
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3. What are the criteria used for evaluating bond quality and how can they be used 

to evaluate the performance of the UAM model? 

4. How can one evaluate the performance of the proposed UAM model in terms of 

optimization of process parameters? 

5. How can one quantify the energy flow in the UAM process? 

 

7.1 Research Question 1 

The acoustic softening should be accounted for in a plasticity framework which 

characterizes the plastic behavior of the material. However, due to the lack of experimental 

data for modeling, experimental studies are carried out in the first place. To answer the two 

sub questions: 

 An experimental setup similar to the one used by Blaha and Langenecker is 

established and acoustic softening is quantified in terms of stress reduction 

on the stress-strain curves. 

 Based on the experimental observations, a relationship is established be-

tween the stress reduction and the ultrasound intensity. The analytical 

model is proposed to characterize this relationship. 
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7.2 Research Question 2 

The models that should be accounted for in the UAM model include the plasticity, 

thermal, friction, and dynamic models. These models are explained by answering the sub 

questions: 

 A new plasticity model was developed. It takes into account acoustic and 

thermal softening, and hardening due to high strain rate. 

 A thermal model is introduced and is closely coupled with the dynamic 

model making the UAM model a thermo-mechanical model.  

 Friction is accounted by establishing a friction model that characterizes the 

friction coefficient. Contributions from all the influential factors are identi-

fied from the literature and accounted for in the model. The friction model 

is closely coupled with the thermal model. 

 The dynamics of the UAM system is accounted for in a dynamic model 

which is solved using finite element method. Due to the expensive compu-

tational cost of the high frequency vibration, a lumped parameter model 

consisting of mass-spring networks is proposed as an alternative to reduce 

the computational cost. The implementation of the model could be a part of 

the future work.  

 Each of the sub-model can be validated by comparing its prediction with 

experimental data from our own experiments or from experiments in the 

literature. For instance, the plasticity model that incorporates acoustic sof-

tening is validated by comparing the predicted stress-strain curves with the 
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acoustic softened curves from our experiments. The integrated UAM model 

is validated by comparing its predictions on the material deformation with 

experimental studies reported in the literature.  

 

7.3 Research Question 3 

There are various criteria for evaluating the bond quality and the one selected for 

this study is the linear weld density. An asperity model is developed by idealizing and 

simplifying the shape and size of the asperities. The model is then implemented in the 

UAM model and the effective contact area between the top foil and the deformed asperities 

is calculated. The effective contact area is then used for calculating the linear weld density. 

The performance of the model can be evaluated by comparing the predicted linear weld 

density with those reported from experimental studies in the literature.  

 

7.4 Research Question 4 

By using the same materials and operating parameter setups, the UAM model can 

be used for process optimization and the predicted optimum process window can be com-

pared to the ones achieved through design of experiments (DOE) (i.e., setting up a series 

of experiments in which operating parameters are varied to search for the set of parameter 

that yields the optimum bond quality). Further, the predicted bond quality can also be as-

sessed if the DOE results is evaluated using linear weld density.  
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7.5 Research Question 5 

The overall energy flows in the UAM system can be quantified simply by calculat-

ing the different works and energies using the UAM model. A more detailed energy quan-

tification at a specific location or at a specific moment would require additional processing 

but is doable with the UAM model.  

 

7.6 Contributions 

A list of contributions from this work to the understanding of the UAM bonding 

process is listed as follows: 

 The first experimental investigation on the acoustic softening of several ma-

terials that are extensively used in UAM process: Aluminum 6061-T6, Alu-

minum 6061-O, and Copper 11000-O.  

 The work proposed a plasticity framework by modifying the Johnson-Cook 

plasticity model and accounted for the strain rate hardening, acoustic and 

thermal softening in the UAM process.  

 The work presented an asperity model to associate the material deformation 

to UAM bond quality. By using the model, the thermo-mechanical model is 

able to predict bond quality for the first time. 

 The work developed a lumped parameter consisting mass-spring network 

for characterizing the dynamics of the built feature. 
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 The thermo-mechanical UAM model explicitly elucidated how the macro-

scopic dynamics of the UAM system affect the internal stresses and the de-

formation of the material close to bond interface 

 The thermo-mechanical UAM model showed the energy conversion within 

the UAM system 

 The thermo-mechanical model showed its potential in UAM process opti-

mization.  

 

7.7 Future Work 

 To account for the cyclic effects in the plasticity model. The model frame-

work may have to be changed. 

 The softening effect could be better characterized using a physically-based 

model if changes in the microstructure (ex. the density of the dislocations, 

the rotation of grain orientations, the change in size and location of the pre-

cipitates in Aluminum 6061-T6 alloys, etc) of the softened materials are 

studied. 

 Improve and integrate the lumped parameter dynamic model into the UAM 

model. 

 Validate the bond quality predictions by carrying out experimental studies 

using different weld parameter combinations.  
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Appendices 

 

Appendix A  The User Defined Material Subroutine (VUMAT) 

C 
C Coding for Isotropic Hardening Plasticity VUMAT-Modified Johnson-Cook Model 
C 
 
       SUBROUTINE VUMAT( 
C Read only - 
     1 NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV, NPROPS, LANNEAL, 
     2 STEPTIME, TOTALTIME, DT, CMNAME, COORDMP, CHARLENGTH, 
     3 PROPS, DENSITY, STRAININC, RELSPININC, 
     4 TEMPOLD, STRETCHOLD, DEFGRADOLD, FIELDOLD, 
     5 STRESSOLD, STATEOLD, ENERINTERNOLD, ENERINELASOLD, 
     6 TEMPNEW, STRETCHNEW, DEFGRADNEW, FIELDNEW, 
C Write only - 
     7 STRESSNEW, STATENEW, ENERINTERNNEW, ENERINELASNEW) 
C 
       INCLUDE 'VABA_PARAM.INC' 
C 
       DIMENSION PROPS(NPROPS), DENSITY(NBLOCK), COORDMP(NBLOCK), 
     1 CHARLENGTH(NBLOCK), STRAININC(NBLOCK, NDIR+NSHR), 
     2 RELSPININC(NBLOCK, NSHR), TEMPOLD(NBLOCK), 
     3 STRETCHOLD(NBLOCK, NDIR+NSHR), DEFGRADOLD(NBLOCK,NDIR+NSHR+NSHR), 
     4 FIELDOLD(NBLOCK, NFIELDV), STRESSOLD(NBLOCK, NDIR+NSHR), 
     5 STATEOLD(NBLOCK, NSTATEV), ENERINTERNOLD(NBLOCK), 
     6 ENERINELASOLD(NBLOCK), TEMPNEW(NBLOCK), 
     7 STRETCHNEW(NBLOCK, NDIR+NSHR),DEFGRADNEW(NBLOCK,NDIR+NSHR+NSHR), 
     8 FIELDNEW(NBLOCK, NFIELDV), STRESSNEW(NBLOCK,NDIR+NSHR), 
     9 STATENEW(NBLOCK, NSTATEV), ENERINTERNNEW(NBLOCK), 
     1 ENERINELASNEW(NBLOCK) 
 
       CHARACTER*80 CMNAME 
 
C LOCAL ARRAYS 
C ---------------------------------------------------------------- 
C EELAS - ELASTIC STRAINS 
C EPLAS - PLASTIC STRAINS 
C FLOW - DIRECTION OF PLASTIC FLOW 
C ---------------------------------------------------------------- 
C 
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C 
       PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, SIX=6.D0, 
     1 ENUMAX=.4999D0, TOLER=1.0D-6,HALF=0.5D0, THIRD =  
     2 1.D0/3.D0, OP5=1.5D0, FORTY=40.D0, OP5R = 0.6667D0,  
     3 TWENTY=20.D0, THOUSAND_K=7.2685D2) 
 
C ---------------------------------------------------------------- 
C VUMAT FOR ISOTROPIC ELASTICITY AND ISOTROPIC MISES PLASTICITY 
C CANNOT BE USED FOR PLANE STRESS 
C 
C--------------------------------------------------------------------------- 
C         VUMAT FOR JOHNSON - COOK MODEL 
C--------------------------------------------------------------------------- 
C       PROPS(1) - YANG'S MODULUS 
C       PROPS(2) - POISSON'S RATIO 
C       PROPS(3) - INELSTIC HEAT FRACTION 
C       PARAMETER OF JOHNSON - COOK MODEL:  
C       PROPS(4) - A 
C       PROPS(5) - B 
C       PROPS(6) - n 
C       PROPS(7) - C 
C       PROPS(8) - D 
C       PROPS(9) - b 
C       PROPS(10) - m 
C       PARAMETERS OF ACOUSTIC SOFTENING: 
C       PROPS(11) - d (SOFTENING COEFF) 
C       PROPS(12) - I (ULTRASOUND ENERGY/INTENSITY) 
C--------------------------------------------------------------------------- 
C         STATE VARIABLES FOR TRACKING INTERNAL PARAMETERS 
C--------------------------------------------------------------------------- 
C       STATENEW(K, 1) = PLASTIC STRAIN 
C       STATENEW(K, 2) = PLASTIC STRAIN RATE 
C       STATENEW(K, 3) = YIELD STRENGTH 
C       STATENEW(K, 4) = YIELD FLAG 
C       STATENEW(K, 5) = THERMAL SOFTENING FACTOR 
C       STATENEW(K, 6) = ESTIMATE PLASTIC STRAIN USING MISES STRAIN 
C       STATENEW(K, 7) = ESTIMATE STRAIN RATE USING MISES STRAIN RATE 
C       STATENEW(K, 8) = DIFFERENCE BETWEEN MISES STRESS AND YIELD STRESS 
C       STATENEW(K, 9) = PLASTIC WORK  
C       STATENEW(K, 10) = FACTOR 
C--------------------------------------------------------------------------- 
C ELASTIC PROPERTIES 
C 
       EMOD=PROPS(1) 
       ENU=MIN(PROPS(2), ENUMAX) 
       EBULK3=EMOD/(ONE-TWO*ENU) 
       EG2=EMOD/(ONE+ENU) 
       EG=EG2/TWO 
       EG3=THREE*EG 
       ELAM=(EBULK3-EG2)/THREE 
       NVALUE=NPROPS/2-1 
C TEMPERATURE INFO 
       TEMP_ROOM=TWENTY                !ROOM TEMP IN CELCIUS 
       TEMP_MELT=THOUSAND_K            !MELT TEMP IN CELCIUS 
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C 
C CALCULATE PREDICTOR STRESS AND ELASTIC STRAIN 
C 
       IF ( STEPTIME .EQ. ZERO ) THEN 
       DO K = 1, NBLOCK 
       TRACE = STRAININC(K,1) + STRAININC(K,2) + STRAININC(K,3) 
       STRESSNEW(K,1) = STRESSOLD(K,1) 
     *                  + EG2 * STRAININC(K,1) + ELAM * TRACE 
       STRESSNEW(K,2) = STRESSOLD(K,2) 
     *                  + EG2 * STRAININC(K,2) + ELAM * TRACE 
       STRESSNEW(K,3) = STRESSOLD(K,3) 
     *                  + EG2 * STRAININC(K,3) + ELAM * TRACE 
       STRESSNEW(K,4)=STRESSOLD(K,4) + EG2 * STRAININC(K,4) 
       IF ( NSHR .GT. 1 ) THEN          !!FOR 3D CASES 
       STRESSNEW(K,5)=STRESSOLD(K,5) + EG2 * STRAININC(K,5) 
       STRESSNEW(K,6)=STRESSOLD(K,6) + EG2 * STRAININC(K,6) 
       END IF 
       END DO 
       ELSE 
C 
       DO  K = 1, NBLOCK 
C 
       PEEQOLD=STATEOLD(K,1) 
       CALL VUHARD(YIELDOLD, HARD, PEEQOLD, PROPS(4)) 
       TRACE = STRAININC(K,1) + STRAININC(K,2) + STRAININC(K,3) 
C 
       S11 = STRESSOLD(K,1) + EG2 * STRAININC(K,1) + ELAM * TRACE 
       S22 = STRESSOLD(K,2) + EG2 * STRAININC(K,2) + ELAM * TRACE 
       S33 = STRESSOLD(K,3) + EG2 * STRAININC(K,3) + ELAM * TRACE 
       S12 = STRESSOLD(K,4) + EG2 * STRAININC(K,4) 
       IF ( NSHR .GT. 1 ) THEN 
       S13=STRESSOLD(K,5) + EG2 * STRAININC(K,5) 
       S23=STRESSOLD(K,6) + EG2 * STRAININC(K,6) 
       END IF 
C 
       SMEAN=THIRD*(S11 + S22 + S33) 
C 
       S11 = S11 - SMEAN 
       S22 = S22 - SMEAN 
       S33 = S33 - SMEAN 
       IF ( NSHR .EQ. 1 ) THEN 
       SMISES = SQRT(OP5*(S11*S11+S22*S22+S33*S33+TWO*S12*S12)) 
C      TRY USE THE MISES STRAIN FOR STRAIN RATE ESTIMATION 
       STRAINMISES = SQRT(OP5R*(STRAININC(K,1)*STRAININC(K,1)+ 
     1 STRAININC(K,2)*STRAININC(K,2)+STRAININC(K,3)*STRAININC(K,3)+ 
     2 TWO*STRAININC(K,4)*STRAININC(K,4))) 
       ELSE 
       SMISES = SQRT(OP5*(S11*S11+S22*S22+S33*S33+TWO*S12*S12 
     1 +TWO*S13*S13+TWO*S23*S23)) 
C      TRY USE THE MISES STRAIN FOR STRAIN RATE ESTIMATION 
       STRAINMISES = SQRT(OP5R*(STRAININC(K,1)*STRAININC(K,1)+ 
     1 STRAININC(K,2)*STRAININC(K,2)+STRAININC(K,3)*STRAININC(K,3) 
     2 +TWO*STRAININC(K,4)*STRAININC(K,4) 
     3 +TWO*STRAININC(K,5)*STRAININC(K,5) 
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     4 +TWO*STRAININC(K,6)*STRAININC(K,6))) 
       END IF 
       STRAINRATE = STRAINMISES/DT 
C       READ PARAMETERS OF JOHNSON-COOK MODEL 
C 
        A= PROPS(4) 
        B= PROPS(5) 
        EN = PROPS(6) 
        C = PROPS(7) 
        D = PROPS(8) 
        EB = PROPS(9) 
        EM= PROPS(10) 
C       READ PARAMETERS OF ACOUSTIC SOFTENING MODEL 
        DCOEFF = PROPS(11) 
        E = PROPS(12) 
C 
C CALCLULATE ACOUSTIC SOFTENING FACTOR 
        ACOUSTIC_SOFT=ONE-DCOEFF*E 
C CALCULATE THERMAL SOFTENING FACTOR 
      IF (TEMPOLD(K) .LT. TEMP_ROOM) THEN 
       TEMP_DIMENSIONLESS = ZERO 
      ELSE  
       TEMP_DIMENSIONLESS = (TEMPOLD(K)-TEMP_ROOM)/(TEMP_MELT-TEMP_ROOM) 
      END IF 
       THERMAL_SOFT = ONE-TEMP_DIMENSIONLESS**EM 
C CALCULATE STRAIN RATE HARDENING FACTOR, STATEOLD(*,2) STORES STRAIN RATES 
C  
      IF ( STATEOLD(K,2) .LT. FORTY) THEN 
       IF (STRAINRATE .LT. FORTY) THEN 
       TVP1 = C+D 
       HARD1 = HARD 
       ELSE  
       TVP = D*(STRAINRATE/FORTY)**EB  ! AN ESTIMATION OF STRAIN RATE!  
       TVP1 = C+TVP 
       HARD1 = HARD*TVP1+YIELDOLD*D*(ONE/FORTY)**EB*EB* 
     1(STRAINRATE)**(EB-ONE) 
       END IF 
      ELSE 
       TVP = D*(STATEOLD(K, 2)/FORTY)**EB 
       TVP1 = C+TVP 
       !THE DERIVATIVE CHANGES FOR STRAIN RATE MODEL, 40 /s IS THE REFERENCE 
       !HARD1 IS THE DERIVATIVE OF STRAIN, NOT STRAIN RATE!!! 
       CONST = (ONE/FORTY)**EB 
       !CONST = (ONE/DT)*(ONE/FORTY)**EB 
       HARD1 = HARD*TVP1+YIELDOLD*D*CONST*EB*(STATEOLD(K, 2))**(EB-ONE) 
      END IF 
C CONSIDER BOTH SOFTENING AND HARDENING FACTORS FOR "HARD" AND "YIELDOLD"      
       HARD2 = HARD1*THERMAL_SOFT*ACOUSTIC_SOFT 
       YIELDOLD = YIELDOLD*TVP1*THERMAL_SOFT*ACOUSTIC_SOFT 
       SIGDIF = SMISES - YIELDOLD 
       FACYLD = ZERO 
      IF (SIGDIF .GT. ZERO) FACYLD = ONE      !ELSE DEQPL = 0  
       DEQPL = FACYLD*SIGDIF/(EG3 + HARD2)     !UPDATE DEQPL EXPLICITLY 
C UPDATE STATE VARIABLES, STATE(*,1) STORES STRAIN, STATE(*, 2) STORES  
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C STRAIN RATE, STATE(*, 3) STORES ACTIVE YIELD FLAG 
       STATENEW(K, 1) = STATEOLD(K, 1)+DEQPL 
       STATENEW(K, 2) = DEQPL/DT 
       STATENEW(K, 3) = YIELDOLD   !TRACK THE CHANGE OF YIELD SURFACE  
       STATENEW(K, 4) = FACYLD 
       STATENEW(K, 5) = THERMAL_SOFT 
       STATENEW(K, 6) = STRAINMISES !ESTIMATE STRAIN USING MISES STRAIN 
       STATENEW(K, 7) = STRAINRATE  !ESTIMATE STRAIN RATE USING MISESE 
       STATENEW(K, 8) = SIGDIF 
 
C 
C UPDATE STRSSES 
       YIELDNEW = YIELDOLD + HARD2*DEQPL 
       FACTOR = YIELDNEW/(YIELDNEW + EG3*DEQPL)!FACTOR IS FLOW DIRECTION 
       STRESSNEW(K, 1) = S11*FACTOR + SMEAN 
       STRESSNEW(K, 2) = S22*FACTOR + SMEAN 
       STRESSNEW(K, 3) = S33*FACTOR + SMEAN 
       STRESSNEW(K, 4) = S12*FACTOR  
      IF (NSHR .GT. 1) THEN 
       STRESSNEW(K, 5) = S13*FACTOR 
       STRESSNEW(K, 6) = S23*FACTOR 
      END IF 
C 
C  UPDATE THE SPECIFIC INTERNAL ENERGY - 
C 
       IF ( NSHR .EQ. 1 ) THEN 
       STRESSPOWER = HALF * ( 
     * ( STRESSOLD(K,1) + STRESSNEW(K,1) ) * STRAININC(K,1) + 
     * ( STRESSOLD(K,2) + STRESSNEW(K,2) ) * STRAININC(K,2) + 
     * ( STRESSOLD(K,3) + STRESSNEW(K,3) ) * STRAININC(K,3) ) + 
     * ( STRESSOLD(K,4) + STRESSNEW(K,4) ) * STRAININC(K,4) 
       ELSE 
       STRESSPOWER = HALF * ( 
     * ( STRESSOLD(K,1) + STRESSNEW(K,1) ) * STRAININC(K,1) + 
     * ( STRESSOLD(K,2) + STRESSNEW(K,2) ) * STRAININC(K,2) + 
     * ( STRESSOLD(K,3) + STRESSNEW(K,3) ) * STRAININC(K,3) ) + 
     * ( STRESSOLD(K,4) + STRESSNEW(K,4) ) * STRAININC(K,4) + 
     * ( STRESSOLD(K,5) + STRESSNEW(K,5) ) * STRAININC(K,5) + 
     * ( STRESSOLD(K,6) + STRESSNEW(K,6) ) * STRAININC(K,6) 
       END IF 
       ENERINTERNNEW(K) = ENERINTERNOLD(K) + STRESSPOWER / DENSITY(K) 
C 
C UPDATE THE DISSIPATED INELASTIC SPECIFIC ENERGY - 
C 
       PLASTICWORKINC = HALF * (YIELDOLD+YIELDNEW) * DEQPL 
       ENERINELASNEW(K) = ENERINELASOLD(K) + PLASTICWORKINC / DENSITY(K) 
C TRACK THE DISSIPATED INELASTIC ENERGY  
       STATENEW(K, 9) = ENERINELASNEW(K) 
       STATENEW(K, 10) = FACTOR 
       END DO     
       END IF 
C 
       RETURN 
       END 
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C 
C 
C 
       SUBROUTINE VUHARD(SYIELD,HARD,EQPLAS,TABLE) 
C 
       INCLUDE 'VABA_PARAM.INC' 
       CHARACTER*80 CMNAME 
C       DIMENSION HARD(3) 
C 
       DIMENSION TABLE(3) 
C 
       PARAMETER(ZERO=0.D0, ONE=1.D0) 
 
C 
C     GET PARAMETERS, SET HARDENING TO ZERO 
C 
      A= TABLE(1) 
      B= TABLE(2) 
      EN= TABLE(3) 
      HARD= ZERO 
C 
C     CALCULATE CURRENT YIELD STRESS AND HARDENING RATE 
C  
      IF (EQPLAS.EQ.0.0) THEN  
          SYIELD= A 
      ELSE  
          HARD= EN*B*EQPLAS**(EN-ONE) 
          SYIELD= A+B* EQPLAS**EN 
      END IF 
          RETURN 
          END    
C 
C 
C 
CC    UMATHT IS FOR DEFINING THERMAL MATERIAL MODELS IN ABAQUS/EXPLICIT 
CC 
      SUBROUTINE UMATHT(U,DUDT,DUDG,FLUX,DFDT,DFDG, 
     1 STATEV,TEMP,DTEMP,DTEMDX,TIME,DTIME,PREDEF,DPRED, 
     2 CMNAME,NTGRD,NSTATV,PROPS,NPROPS,COORDS,PNEWDT, 
     3 NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'VABA_PARAM.INC' 
C 
      CHARACTER*80 CMNAME 
      DIMENSION DUDG(NTGRD),FLUX(NTGRD),DFDT(NTGRD), 
     1 DFDG(NTGRD,NTGRD),STATEV(NSTATV),DTEMDX(NTGRD), 
     2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3) 
       FOUT=111  
C       OPEN(UNIT=111,FILE="C:\TEMP\THERMAL.OUT",STATUS='UNKNOWN')  
C 
       COND = PROPS(1) 
       SPECHT = PROPS(2) 
C     INPUT SPECIFIC HEAT 
       DUDT = SPECHT 
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       DU = DUDT*DTEMP 
       U = U+DU 
C 
C     INPUT FLUX = -[K]*{DTEMDX} 
      DO I = 1, NTGRD 
           FLUX(I) = -COND*DTEMDX(I) 
      END DO 
C 
C    INPUT ISOTROPIC CONDUCTIVITY 
C 
      DO I = 1, NTGRD 
        DFDG(I, I)= -COND 
      END DO 
C 
      RETURN  
      END 

 



188 

 

Appendix B   A Dynamics Model for UAM 

 

The focus of this chapter is the dynamics modeling of the built feature. The moti-

vation of this work stems from the high computational cost for predicting transient dynam-

ics of the built feature using the finite element method. The high frequency characteristics 

of the problem and the conditional stability of the numerical integration scheme require 

extremely small step increments and a large number of iterations which lead to high com-

putational cost. In order to reduce the computational cost, a lumped parameter model con-

sisting of mass-spring networks is developed to replace the finite element model. The mass-

spring network model has been extensively used in computer graphics for modeling iso-

tropic and anisotropic behavior of materials under static load but has not been used for 

studying their dynamic responses. Preliminary tests of the model have shown its capability 

of predicting modal frequencies and mode shapes of parallelepiped solids. Based on the 

predicted mode shapes, a transient dynamic response can be obtained using mode-super-

position.  The predictions of modal parameters from the mass-spring model are compared 

with those from a finite element model in order to evaluate their accuracy, the computa-

tional cost, and the convergence. The limitations of the model are also pointed out for future 

work.  
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Introduction  

In the investigation of the height-to-width bond failure issue, Gibert et al. pointed 

out that at the critical height-to-width ratio, due to resonance, the large amplitude transver-

sal vibration of the built feature counteracts with the vibration of the sonotrode (J. M. 

Gibert, Austin, and Fadel 2010). In order to better understand the role of resonance in the 

reduction of the differential motion, a dynamic model able to capture natural frequencies 

and mode shapes of the built feature at critical height-to-width ratio is needed. 

Different dynamic models have been proposed to characterize the motion of the 

built feature in order to study the height-to-width ratio problem. The most extensively 

adopted models are finite element models. Zhang et al. (Zhang et al., 2006) developed a 2-

D finite element model and applied transient dynamic analysis using the commercial soft-

ware package ANSYS. However, the 2-D model provides only an approximation of the 

primary modal frequency and mode shape of the 3-D case. As the mode number increases, 

the prediction from the 2-D case diverges from the 3-D case. This is due to the weakening 

of the assumption of plane strain about the cross section as the mode shapes become com-

plicated at higher order (Cosby et al., 2013).  Gibert et al. (Gibert et al., 2009) established 

a 3-D finite element model for the built feature and performed a preliminary dynamic tran-

sient analysis using the commercial software ABAQUS/Explicit. Due to the high frequency 

characteristics, the analysis is computationally expensive and the simulations are run for 

only 2 milliseconds (40 cycles) (Mccullough, Arbor, and Austin n.d.).  As a result, the time 

limit may impede the foil from undergoing plastic deformation sufficiently, and a simpler 

and less computationally demanding dynamic model is required. 
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A mass-spring system is intuitive and simple in representing a continuum with mass 

particles that are linked by massless linear springs. The system was first introduce elasticity 

into the dynamical theory of Crystal Lattices (Born and Ann, 1914; Born, 1954), and later 

a mass-spring network was used in computer graphics to model the isotropic and aniso-

tropic behaviors of materials (Nealen et al., 2006). The displacement of the particle 𝑖 of 

mass 𝑚𝑖 is defined by 𝒙𝒊. The motion of each particle is governed by Newton’s second 

law: 𝑓𝑖 = 𝑚𝑖�̈�𝒊. The force 𝑓𝑖 is the sum of external forces (friction, gravity, etc.) and inter-

nal forces exerted by the springs, and �̈�𝒊 is the acceleration of the particle 𝑖. Gravity is small 

compared with the internal forces and is therefore ignored. Under the assumption that the 

continuum undergoes elastic deformation, the internal forces between particle 𝑖 and 𝑗, 𝑓𝑖𝑛,𝑖𝑗, 

are calculated based on Hooke’s law: 𝑓𝑖𝑛,𝑖𝑗 = ∑ 𝑘𝑖𝑗(𝒙𝒊 − 𝒙𝒋), where 𝑘𝑖𝑗 is the stiffness of 

the spring that connects particles 𝑖 and 𝑗, and depends on the configurations of the springs 

and the directional dependence of material’s mechanical properties (isotropic or aniso-

tropic). The spring stiffness can be determined either by finding optimal parameters that 

match the measured deformation data or from analytical expressions. The data-driven ap-

proach can be found in work by San-Vicente et al. (San-Vicente, 2012), and Louchet et al. 

(Louchet et al., 1995). The analytical approach can be found in work by Baudet et al. (Bau-

det et al, 2009), and Ladd et al. (Ladd et al., 1997). The data-driven approach may experi-

ence convergence issues, i.e., convergence towards zero, or negative spring stiffness 

(Lloyd et al., 2007). The analytical approach provides a more realistic spring stiffness 

based on the elasticity and dynamical theory of the discrete model. However, its application 
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is limited by the over simplified structure of the model. The detailed explanation is pre-

sented in sections 7.1.2 and 7.1.3. In this work, the analytical approach is used to determine 

spring stiffness. The prediction from the mass-spring model depends on the mesh resolu-

tion and the spring configuration. With a defined configuration, finer mesh leads to more 

accurate prediction but if the mesh is too fine the computational cost may goes up and 

undermines the use of such model. As a result, the established mass-spring system should 

be evaluated in terms of effectiveness and computational efficiency. 

 

2-D Mass-spring Models 

First we establish a 2-D model with UAM assumptions about UAM similar to those 

used by Zhang et al. in their 2-D model (Zhang et al, 2010). The 2-D plane is normal to the 

bonding interface and along the direction of the ultrasonic vibration. Plane strain conditions 

are adopted. In establishing the mass-spring model, we determine first the shape and spring 

configuration of the unit cell which is the minimum rectangular cell that is repeated in 

space for forming the mass-spring network. The possible shapes of the unit cell include 

rectangular, triangular, and hexagonal shapes. Since the built feature is a parallelepiped 

and its cross section is rectangular, rectangular unit cells were selected. Then a rectangular 

unit cell with the simplest spring configuration consisting of four edge springs is evaluated 

based on tensile and shearing tests. It is obvious that the edge springs of the square cell are 

capable of capturing the tensile deformation but fail the shearing tests. Since the rectangu-

lar cell is not constrained by torsional springs at the vertices, the structure can deform freely 

in the shearing tests without deforming any of the edge springs (Figure B.1 (left)). As a 
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result, two diagonal springs are introduced to account for the shearing effects (Figure B.1 

(right)). The two diagonal springs have equal stiffness coefficients. The spring constants 

for both the edge and the diagonal springs are derived based on tensile and shearing tests 

of actual physical models presented by Baudet et al. (Baudet et al, 2009). Based on the 

energy method, the relations between the internal forces and deformations are established 

and elastic parameters (Young’s modulus and Poisson’s ratio) can be introduced. As only 

diagonal springs are stressed in small shear deformation, the spring constants of edge 

springs 𝑘𝑖 and diagonal springs 𝑘𝑑 are easily obtained: 

 𝑘𝑖 =
𝐸(𝑗2(3𝜈+2)−𝑖2)

4𝑥0𝑦0(1+𝜈)
 , (𝑖, 𝑗) ∈ {𝑥0, 𝑦0} 𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑗 (B.1) 

 𝑘𝑑 =  
𝐸(𝑥0

2+𝑦0
2)

4𝑥0𝑦0(1+𝜈)
    (B.2) 

where 𝑥0 and 𝑦0 represent the width and height of the unit cell. In this study, square unit 

cells are implemented for their simplicity and effectiveness: 𝑥0 =  𝑦0. 𝐸 is the Young’s 

modulus, and 𝑣 is the Poisson’s ratio. Kot et al. (Kot et al., 2014) provided a comprehensive 

demonstration of the limitation of the model showing that for any particle models with 

central forces (the spring forces depend only on the distance between masses), Poisson’s 

ratios in 2-D and 3-D can always be written in terms of the Lamé constants 𝜆 and 𝜇: 

 𝜈2𝐷 =
𝜆

𝜆+2𝜇
   (B.3) 

 𝜈3𝐷 =  
𝜆

2(𝜆+𝜇)
  (B.4) 

For an isotropic solid, 𝜆 = 𝜇 holds for the central force models (Rice, 1993), and equation 

(B.3) and (B.4) become: 

 𝜈2𝐷 = 1/3 (B.5) 
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 𝜈3𝐷 = 1/4 (B.6) 

Therefore the mass-spring system provides exact prediction only for materials with 

Poisson’s ratio 𝜈2𝐷 = 1/3  in a 2-D case and 𝜈3𝐷 = 1/4 in a 3-D case. However, by intro-

ducing some corrective forces, any Poisson’s ratio can be considered (Baudet et al., 2009 

). Aluminum alloys have a Poisson’s ratio of 1/3 and thus can be modeled using a 2-D mass 

spring model. For the 3-D case, additional modifications are required to adapt the model 

for the assigned material.   

 

Figure 7.1 The unit cell without diagonal springs which fails in shear test (left), the unit cell with diagonal 

springs (right). 

 

Once the spring constants are determined, the governing equations of the system 

can be obtained using an energy method. The steps are shown as follows: 

1. Write the Lagrangian of the mass spring system as the difference between the  

kinetic energy and the potential energy of the springs, 

2. Derive the equations of motion by applying the principle of least action. 

For the potential energy of the springs, consider an arbitrary displacement  Δ  𝑖 of 

the discrete mass 𝑚𝑖 (Figure B.2). Assuming small deformations for the springs, the 
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change in length of the spring is approximated using a Taylor expansion. In the edge 

springs: 

 Δ  𝑖 = √(𝑖0 + Δ𝑖)2 + Δ𝑗2 − 𝑖0   

 ≈ Δ𝑖 +
Δ𝑗

𝑖0+Δ𝑖
+ 𝑂(Δ𝑖2, Δ𝑗2), (𝑖, 𝑗) ∈ {𝑥, 𝑦}  𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑗 (B.7)      

Since Δ𝑖, Δ𝑗 ≪  𝑖0, then 
Δ𝑗

𝑖0+Δ𝑖
≈ 0 and: 

 Δ  𝑖 = √(𝑖0 + Δ𝑖)2 + 𝑗0
2 − 𝑖0  ≈ Δ𝑖 + 𝑂(Δ𝑖2, Δ𝑗2), (𝑖, 𝑗) ∈ {𝑥, 𝑦} 𝑤𝑖𝑡ℎ 𝑖 ≠ 𝑗  (B.8) 

In the diagonal springs: 

 Δ 𝑑 = √(𝑥0 + Δ𝑥)2 + (𝑦0 + Δ𝑦)2 − √𝑥0
2 + 𝑦0

2  ≈  
𝑥0Δ𝑥+𝑦0Δ𝑦

√𝑥0
2+𝑦0

2
+ 𝑂(Δ𝑥2, Δ𝑦2)  (B.9) 

 

Figure 7.2 Aribitrary displacement of a discrete mass in a square unit cell 

 

3-D Mass-spring Models 

The 3-D model is a generalization of the 2-D model. The square unit cell is extended 

to a cubic cell with which three possible spring configurations are investigated. Fig. B.4 

shows the three elementary configurations of the springs. By combining (a) (b), (a) (c), and 
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(a) (b) (c), three possible spring configurations are obtained. The configuration (a) (b) is a 

direct extension of the 2-D case in three dimensional space. Each mass is connected to 18 

neighbors. Configuration (a) (c) replaces the face diagonal springs in (a) (b) with body 

diagonal springs, which reduces the number of connected neighbors of each mass to 14. 

Configuration (a) (b) (c) is the most complicated spring configuration with each mass con-

nected to 26 neighbors. Trade-off must be made between the effectiveness of the system 

and the complexity of the spring configuration. Baudet et al. present the analytical expres-

sion of the edge spring stiffness (𝑘𝑥) and the diagonal spring stiffness (𝑘𝑑) for configura-

tion (a) (c) based on tensile and shearing tests (Baudet et al., 2009): 

 𝑘𝑥 =
𝐸𝑥0(4𝑣+1)

8(1+𝑣)
   (B.10) 

 𝑘𝑑 =  
3𝐸𝑥0

8(1+𝑣)
  (B.11) 

where 𝑥0 is the edge length of the cubic cell, 𝐸 is the Young’s modulus, and 𝑣 is the Pois-

son’s ratio. However, modal analysis on a single cubic cell indicates that this configuration 

is unstable in vibration. Similar observation is also reported by Ladd and Kinney (Ladd 

and Kinney, 1997) showing that the configuration is unstable to local torsional mode. Con-

sequently the configuration (a) (b) is examined.  
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By assuming that the elastic material is isotropic and that all the springs have the 

same stiffness for the configuration (a) (b), the equation of motion can be written (Ladd et 

al., 1997): 

 𝜌
𝜕2𝒖

𝜕𝑡2 =
𝑘

𝑥0
(2∇(∇ ∙ 𝒖) + ∇2𝒖) (B.12) 

Where 𝑥0 is the edge length of the cubic cell, 𝑘 is the stiffness of the springs, 𝒖 is 

the displacement vector of the discrete mass. Based on linear elasticity theory, the equation 

of motion can be written in terms of the Lamé constants (Landau and Lifshitz, 1986):  

 𝜌
𝜕2𝒖

𝜕𝑡2 = 𝜆∇(∇ ∙ 𝒖) + μ(∇2𝒖 + ∇(∇ ∙ 𝒖)) (B.13) 

By comparing equations (B.12) and (B.13), 𝜆 = μ =
𝑘

𝑥0
 . Furthermore, the Young’s 

modulus and Poisson’s ratio can be expressed in terms of the Lamé constants: 

 𝐸 =  
𝜇(3𝜆+2𝜇)

𝜆+𝜇
=

5𝑘

2𝑥0
 (B.14) 

 𝜈 =  
𝜆

2(𝜆+𝜇)
= 0.25  (B.15) 

The spring stiffness for configuration (a) (b) is thus determined by 𝑘 =
2𝐸𝑥0

5
 . The 

Poisson’s ratio is fixed: 𝜈 = 0.25. The spring deformations are approximated using Taylor 

expansion with the small deformation assumption:  

 (a)  (b)  (c) 

Figure 7.3 Elementary spring configurations for 3-D cubic unit cell 
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Δ𝑖 = √(𝑖0 + Δ𝑖)2 + Δ𝑗2 + Δ𝑘2 − 𝑖0  ≈  
𝑖0Δ𝑖+Δ𝑗+Δ𝑘

𝑖0 
+  

 𝑂(Δ𝑖2,  Δ𝑗2, Δ𝑘2 ),   𝑖, 𝑗, 𝑘 ∈ (𝑥, 𝑦, 𝑧) (B.16) 

Since Δ𝑖, Δ𝑗, Δ𝑘 ≪  𝑖0,  

 Δ𝑖 = √(𝑖0 + Δ𝑖)2 + Δ𝑗2 + Δ𝑘2 − 𝑖0 ≈  Δ𝑖 + 𝑂(Δ𝑖2,  Δ𝑗2, Δ𝑘2 ) (B.17) 

Δ 𝑑 = √(𝑥0 + Δ𝑥)2 + (𝑦0 + Δ𝑦)2 + (𝑧 + Δ𝑧)2 − √𝑥0
2 + 𝑦0

2 + 𝑧0
2  

 ≈  
𝑥0Δ𝑥+𝑦0Δ𝑦+𝑧0Δ𝑧

√𝑥0
2+𝑦0

2+𝑧0
2 

+ 𝑂(Δ𝑥2,  Δ𝑦2, Δ𝑧2 )  (B.18) 

As is mentioned in the prior section that the 3-D mass-spring system gives an exact 

prediction only when the Poisson’s ratio 𝜈3𝐷 = 1/4. Since the material under study has a 

Poisson’s ratio of 1/3, additional care must be taken. According to Baudet et al. (Baudet et 

al., 2009), corrective forces can be introduced in addition to springs to account for addi-

tional Poisson’s effects and thus expand the validity of the mass-spring model as the Pois-

son’s ratio ranges between 0.1 to 0.5. The corrective forces can be introduced in transient 

dynamics analysis but not in modal analysis in which no forces are considered. The imple-

mentation of corrective forces will be a part of the future work.  

 

Model Validation 

The 2-D and 3-D mass-spring models are validated by comparing their predictions 

with those from the 2-D and 3-D finite element models. A modal analysis is carried out. In 

the modal analysis, the two models are compared in terms of computational time, mesh 

resolution, and convergence speed to solutions. Since the lumped parameter model is lim-

ited to modeling of materials with Poisson’s ratio of 0.33 in 2-D and 0.25 in 3-D. The effect 
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of Poisson’s ratio on transient analysis is examined by running the finite element model at 

different Poisson’s ratios.  

Modal Analysis 

The built feature is known to undergo resonance at the critical height-to-width ratio, 

the proposed model needs to accurately characterize the modal parameters (modal frequen-

cies and mode shapes) of the built feature. Moreover, as an alternative to modeling using 

the finite element method, the mass-spring model should be more computationally favora-

ble. Therefore, a modal analysis is carried out on the built feature using the proposed 2-D 

and 3-D mass-spring systems. 

The typical shape of the built feature is a parallelepiped. In the 2-D case, the nom-

inal width of the foil is 0.9375 in. (23.8 mm) and the height of the built feature such that 

the height-to-width ratio equals one. UAM accepts a broad range of metals such as alumi-

num alloys, copper, zinc, nickel, and titanium. Aluminum is selected for its most extensive 

application in UAM. Since all aluminum alloys share similar density and elastic properties, 

the type of the aluminum is not specified. The properties are listed in Table B.1. Although 

the built feature is laminated and the material is not isotropic, the influence of anisotropy 

is small and thus can be neglected. As a result, it is assumed that the material in the built 

feature is homogeneous and isotropic.   

 

Table B. 1 The material properties of aluminum alloys 

Density (𝒌𝒈/𝒎𝟑) Young’s Modulus (GPa) Poisson’s ratio 
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2700 69 0.33 

 

In the modal analysis, the equations of motion in the mass-spring system are de-

rived and assembled to form the system: 

 [𝑀]�̈� + [𝐾]𝒙 = 𝟎  (B.19) 

Where the mass matrix [𝑀] is diagonal and the stiffness matrix [𝐾] is symmetric 

and positive definite. Notice that the global mass and stiffness matrices are constructed 

such that the element matrices are superimposed, meaning that the mass/spring stiffness 

increases if multiple cells overlap at that position. Then the bottom of the parallelepiped is 

considered as fixed, leading to the suppressing of rows and columns in [𝑀] and [𝐾] matri-

ces that correspond to nodes at the bottom. By inserting a general solution 𝒙 = 𝑿𝑒−𝜔𝑡 to 

the system, the eigenvalue problem is formulated as: 

 ([𝐾] − 𝜔2[𝑀])𝑿𝑒−𝜔𝑡 = 𝟎  (B.20) 

yielding,  

 [𝐾] − 𝜔2[𝑀] = 0  (B.21) 

The eigenvalue problem can be readily solved using MATLAB. 

 

2-D Case 

The predictions from the modal analysis using mass-spring models are compared 

with those predicted by finite element models using the commercial software ABAQUS 6-

14. Figure B.4 shows the predictions for the first five modal frequencies from a mass-

spring model consisting of 20x20 unit cells and a finite element model consisting of 60x60 
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elements in 2-D case. The predictions show good agreement. Further comparisons of mode 

shapes are shown in Table B.2. A relatively coarse mesh (10x10) is used for plotting the 

mass-spring model when being compared with the mesh of the finite element model 

(60x60) simply for the clarity of the plot showing the mode shapes. In the mass-spring 

model, the blue lines represent the undeformed shape and the red ones represent the de-

formed mode shapes. The mode shapes predicted by the mass-spring model match well 

with those from the finite element model although the mesh of the mass-spring model is 

less fine.  

A convergence study is then performed on the predicted modal frequencies by var-

ying the mesh resolutions for both models (Table B.3). The mass-spring model shows very 

stable predictions as the mesh resolution increases from 5x5 to 60x60, meaning that the 

model does not require a highly refined mesh to obtain reliable predictions (Figure B.5, 

(top)). The finite element model, however, demonstrates a significant change in predictions 

as the mesh resolution increases in all but the primary mode (Figure B.5, (bottom)). The 

predictions converge as the mesh resolution reaches 40x40.  Moreover, the predictions 

from a 20x20 mass-spring model are compared with those from a 60x60 finite element 

model and the relative error between the two remains within 0.3% (Figure B.6). Finally, 

the two models are compared in terms CPU time required for solving the problem. The 

computer in use has an Intel 2.30 GHz double-core processor. The CPU time consumed for 

solving the 20x20 mass-spring model is 6.9 seconds whereas the time for solving the 60x60 

finite element model is 1.6 seconds. It can be concluded that the mass-spring model re-
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quires less number of elements than the finite element model does to obtain a similar pre-

diction. However, the computing time of the 2-D mass-spring model is longer than that of 

the finite element model possibly because the code developed in this work is not as struc-

turally concise and computationally efficient as the code used in the commercial software. 

 

 

Figure B.4 Modal frequency predictions from 20x20 and 60x60 finite element model in 2-D 

 

Table B. 2 Comparison of the mode shapes for the first five modes in 2-D case 

Mode # 2-D mass-spring model (10x10) 2-D finite element model (60x60) 

1 

  

0

20

40

60

80

100

120

0 1 2 3 4 5 6

F
re

q
u

en
cy

 (
k

H
z)

Mode number

Mass-spring model (20x20) Finite Element Model (60x60)



202 

 

2 

  

3 

 

 

  

4 

  

5 

  

 

 



203 

 

Table B. 3 Modal frequency predictions with different mesh resolutions in 2-D 

 

 

 

0

20

40

60

80

100

0 20 40 60 80

F
re

q
u

en
cy

 (
k

H
z)

Mesh Resolution

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode # Mass-spring model (frequency: kHz) Finite element model (frequency: kHz) 

5x5 20x20 40x40 60x60 5x5 20x20 40x40 60x60 

1 21.16 20.80 20.77 20.76 21.49 22.13 22.15 20.76 

2 50.09 50.11 50.10 50.09 24.21 46.94 53.44 50.08 

3 55.17 55.80 55.81 55.81 52.72 53.43 59.55 55.82 

4 84.62 88.69 88.91 88.94 54.44 59.42 85.79 88.90 

5 94.54 95.23 95.19 95.18 56.36 67.60 94.75 95.24 
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Figure B. 5 Convergence of the mass-spring model (top) and the finite element model (bottom) in 2-D  

 

 

Figure B. 6 Relative dofference (comparing to 60x60 finite element model) of frequency prediction of 20x20 

mass-spring model 
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3-D Case 

For the 3-D case, the geometry of the built feature is set to 0.9375 in. (23.8 mm) in 

height and width, and 1.875 in. (47.6 mm) in length. The length of the built feature is 

selected arbitrarily since the height-to-width ratio problem is not sensitive to length (Rob-

inson et al., 2006). The material selected is the same as in the 2-D case. Table B.4 presents 

a qualitative comparison of the first five mode shapes predicted by the two models. Again, 

the mass-spring model has a lower mesh resolution (5x5x10) than the finite element model 

(20x20x40), but this does not undermine its ability to predict the mode shapes. Most of the 

mode shapes are presented in top view or side view for clarity. Figure B.7 compares the 

convergence of the two models in 3-D. Similar to the observations in the 2-D case, the 

predictions from the mass-spring model show little changes as mesh resolution increases 

from 3x3x6 to 12x12x24 whereas the predictions in the finite element model undergo rad-

ical changes. Specifically, at a mesh resolution of 5x5x10, the finite element model pre-

sents multiple “hourglass” mode shapes indicating insufficient mesh refinement and results 

in five modal frequencies being extremely close to each other. At a mesh resolution of 

20x20x40, the predictions from the finite element model start to converge and small 

changes are found as the mesh is further refined. Notice that the finest mesh for the mass-

spring model in the evaluation is only 12x12x24, whereas for the finite element model, it 

is 30x30x60. Figure B.8 shows a comparison of the modal frequency prediction from a 

3x3x6 mass-spring model and a 30x30x60 finite element model. The relative error between 

the prediction from the two models lies within 5% (Figure B.9). In terms of computational 

cost, the CPU time for computing the 3x3x6 mass-spring model is only 1.01 seconds, 
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whereas the time for the 30x30x60 finite element model is 6.2 seconds. This is probably 

due to the fact that the mesh resolution rather than the conciseness of the code starts to 

constrain the computing time as the model changes from 2-D to 3-D.  Consequently, the 3-

D mass-spring model requires a much lower mesh resolution and thus less computation 

time than the 3-D finite element model does to obtain a reliable prediction.    

 

Table B.4 Comparison of the mode shapes for the first five modes in 3-D case 

Mode 

# 

3-D mass-spring model (5x5x10) 3-D finite element model (20x20x40) 
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Table B.5 Modal frequency predictions with different mesh resolutions in 3-D 

Mode 

# 

Mass-spring Model (Frequency: kHz) Finite Element Model (Frequency: kHz) 

3x3x6 5x5x10 10x10x20 12x12x24 5x5x10 10x10x20 20x20x40 30x30x60 

1 22.8 22.4 22.2 22.1 20.3 22.6 22.7 22.7 

2 27.5 27.4 27.3 27.3 20.4 27.9 28.0 28.1 

3 28.5 27.9 27.4 27.4 20.5 28.1 28.1 28.1 

4 44.6 45.1 45.1 45.1 20.7 41.3 46.0 46.1 

5 49.2 50.2 50.5 50.5 20.7 41.3 51.8 51.8 
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Figure B.7 Convergence of the mass-spring model (top) and the finite element model (bottom). 

 

 

Figure B.8 Modal frequency predictions from 3x3x6 mass-spring model and 30x30x60 finite element model in 3-

D 
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Figure B.9 Relative difference of frequency prediction of 20x20 mass-spring model 

 

The effects of Poisson’s Ratio 

The effect of Poisson’s ratios is examined by running the finite element model of 

the built feature under forced vibration of 20 kHz. The dimension and material properties 

of the model remain the same as the finite element model used in section 6.4.1. The bound-

ary condition is imposed such that the top surface of the built feature is subjected to a 

traction force along the sonotrode vibration direction while the bottom surface remains 

clamped. The traction force is the interfacial friction which is calculated from a compres-

sion force of 1600N and a constant friction coefficient of 0.4 based on the Coulomb’s law: 

𝐹𝑓 = 𝜇𝑃 = 640𝑁. The traction force assumed sinusoidal in time and its frequency is fixed 

to 20 kHz. The transient responses are measured at both center and edge along the width 

of the foil underneath the sonotrode and are shown in Figure B.10. No significant differ-

ence is observed between the responses with different Poisson’s ratios, meaning that in 3-
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D case the materials with Poisson’s ratio of 0.33 can be approximated using a mass-spring 

model with Poisson’s ratio of 0.25. More tests are needed for future work to identify an 

interval of Poisson’s ratio within which the dynamic responses can be approximated using 

mass-spring model. 

 

Figure B.10 The effect of Poisson's ratio on the transient response of the built feature. 

 

Summary 

In this section, a lumped parameter model consisting of mass-spring networks is 

established in both 2-D and 3-D to characterize the dynamics of the built feature with less 

computational cost. The model shows some promising results in terms of predicting natural 

frequencies and mode shapes of the built feature with coarse mesh in both 2-D and 3-D 

cases and with less computational time in 3-D case. The next step is to calculate the tran-
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method. Then the responses can be imported into finite element software for defining the 

dynamics of the built feature. In this way the computational time of the integrated UAM 

model is expected to reduce significantly.   

 



213 

 

Bibliography 

 

Abaqus. 2015. User Manual ver. “6.14.” Providence: Hibbit Karlsson and Sorensen. 

Abbott, E. .J., and F. A. Firestone. 1995. “Specifying Surface Quality: A Method Based on 

Accurate Measurement and Comparison.” SPIE MILESTONE SERIES MS 107: pp.63-63. 

Baker, G. S., and S. H. Carpenter. 1965. “Simultaneous Deformation and Internal Friction 

Measurements.” Review of Scientific Instruments 36(1): 29–31. 

Biddell, D. C., and D. H. Sansome. 1974. “The Development of Oscillatory Metal-Drawing 

Equipmentâ€”an Engineer’s View.” Ultrasonics 12(5): 195–205. 

Blaha, F., and B. Langenecker. 1955. “Dehnung von Zink- Kristallen Unter 

Ultraschalleinwirkung.” Die Natur-wissenschaften: 556. 

Blaha, F, and B. Langenecker. 1959a. “Plastizitätsuntersuchungen von Metallkristallen in 

Ultraschallfeld.” Acta Metallurgica 7(2): 93–100. 

Blaha, F, and B. Langenecker. 1959b. “Ultrasonic Investigation of the Plasticity of Metal 

Crystals.” 

Broggiato, G. B., F. Campana, and L. Cortese. 2008. “The Chaboche Nonlinear Kinematic 

Hardening Model: Calibration Methodology and Validation.” Meccanica 43(2): 115–24. 

Cheng, X. D., and X. C. Li. 2007. “Investigation of Heat Generation in Ultrasonic Metal 

Welding Using Micro Sensor Arrays.” Journal of Micromechanics and Microengineering 

17: 273–82. 

Cooper, M. G., B. B. Mikic, and M. M. Yovanovich. 1969. “Thermal Contact 

Conductance.” International Journal of Heat and Mass Transfer 12(3): 279–300. 



214 

 

Culp, D. R., and H. T. Gencsoy. 1973. “Metal Deformation with Ultrasound.” In 1973 

Ultrasonics Symposium, IEEE., 195–98. 

Czichos, H. 1972. “The Mechanism of the Metallic Adhesion Bond.” Journal of Physics 

D: Applied Physics 5(10): 1890. 

Daud, Y., M. Lucas, and Z. Huang. 2006. “Superimposed Ultrasonic Oscillations in 

Compression Tests of Aluminium.” Ultrasonics 44: e511–15. 

Deshpande, V. S., D. S. Balint, A. Needleman, and E. Van Der Giessen. 2007. “Size Effects 

in Single Asperity Frictional Contacts.” Modelling and Simulation in Materials Science 

and Engineering 15(1): S97–108. 

Dutta, R. K. et al. 2013. “The Effect of Tensile Deformation by in Situ Ultrasonic 

Treatment on the Microstructure of Low-Carbon Steel.” Acta Materialia 61(5): 1592–

1602. 

Eaves, A. E., A. W. Smith, W. J. Waterhouse, and D. H. Sansome. 1975. “Review of the 

Application of Ultrasonic Vibrations to Deforming Metals.” Ultrasonics 13(4): 162–70. 

Epler, M. 2004. “Structures by Precipitation from Solid Solution.” In ASM Handbook, 

Volume 9: Metallography and Microstructures, ed. Vander Voort. Materials Park, OH, 

134–39. 

Espinosa, H. D., A. J. Patanella, and M. Fischer. 2000. “Dynamic Friction Measurements 

at Sliding Velocities Representative of High-Speed Machining Processes.” Transactions 

of the AMSE 122(October). 

Fabrisonic. 2016. “Fabrisonic Inc.” http://fabrisonic.com/. 

Foster, D. R., M. J. Dapino, and S. S. Babu. 2013. “Elastic Constants of Ultrasonic Additive 



215 

 

Manufactured Al 3003-H18.” Ultrasonics 53(1): 211–18. 

Foster, D. R. 2014. “Mechanical and Thermal Characterization of Ultrasonic Additive 

Manufacturing.” Ohio State University. 

Frederick, J. R. 1965. Ultrasonic Engineering. 

Friel, R. J., K. E. Johnson, P. M. Dickens, and R. A. Harris. 2010. “The Effect of Interface 

Topography for Ultrasonic Consolidation of Aluminium.” Materials Science and 

Engineering A 527(16–17): 4474–83. 

Frost, H. J., and M. F. Ashby. 1982. Deformation Mechanism Maps: The Plasticity and 

Creep of Metals and Ceramics. Pergamon press. BOOK. 

Gao, Y., and C. Doumanidis. 2002. “Mechanical Analysis of Ultrasonic Bonding for Rapid 

Prototyping.” Journal of Manufacturing Science and Engineering 124(2): 426. 

Gibert, J. M., 2009. “Dynamics of Ultrasonic Consolidation.”  

Gibert, J. M. et al. 2009. “Stick-slip Dynamics in Ultrasonic Consolidation.” : 1–11. 

Gibert, J. M., E. M. Austin, and G. M. Fadel. 2010. “Effect of Height to Width Ratio on 

the Dynamics of Ultrasonic Consolidation.” Rapid Prototyping Journal 16(4): 284–94. 

Gibert, J. M., G. M. Fadel, and M. F. Daqaq. 2013. “On the Stick-Slip Dynamics in 

Ultrasonic Additive Manufacturing.” Journal of Sound and Vibration 332(19): 4680–95. 

Gilman, T. et al. 2015. “Using Nonlinear Kinematic Hardening Material Models For 

Elastic-Plastic Ratcheting Analysis.” ASME 2015 Pressure Vessels and Piping Conference 

137(June): 1–10. 

Greenwood, J. A., & Williamson, J. B. P. 1966. “Contact of Nominally Flat Surfaces.” 

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering 



216 

 

Sciences. 295(1442): 300–319. 

Gunduz, I. E. et al. 2005. “Enhanced Diffusion and Phase Transformations during 

Ultrasonic Welding of Zinc and Aluminum.” Scripta Materialia 52(9): 939–43. 

Hill, R., and J. R. Rice. 1972. “Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary 

Strain.” Journal of the Mechanics and Physics of Solids 20(6): 401–13. 

Hodowany, J, G Ravichandran, A. J. Rosakis, and P. Rosakis. 2000. “Partition of Plastic 

Work into Heat and Stored Energy in Metals.” Experimental Mechanics 40(2): 113–23. 

Hopperstad, O. S., M. Langseth, and S. Remseth. 1995. “Cyclic Stress-strain Behaviour of 

Alloy AA6060 T4 , Part II : Biaxial Experiments and Modelling.” International Journal of 

Plasticity 11(6): 741–62. 

Huang, H. et al. 2009. “Influence of Superimposed Ultrasound on Deformability of Cu.” 

Journal of Applied Physics 106(11): 113514–16. 

Hung, J. C., Y. C. Tsai, and C. H. Hung. 2007. “Frictional Effect of Ultrasonic-Vibration 

on Upsetting.” Ultrasonics 46(3): 277–84. 

Jedrasiak, P. et al. 2014. “Modeling of the Thermal Field in Dissimilar Alloy Ultrasonic 

Welding.” Journal of Materials Engineering and Performance 24(2): 799–807. 

Jenq, S. T., and S. L. Sheu. 1994. “An Experimental and Numerical Analysis for High 

Strain Rate Compressional Behavior of 6061-O Aluminum Alloy.” Computers & 

Structures 52(1): 27–34. 

Johnson, G. R, and W. H. Cook. 1983. “A Constitutive Model and Data for Metals 

Subjected to Large Strains, High Strain Rates and High Temperatures.” Proceedings of the 

7th International Symposium on Ballistics  (21): 541-547) 



217 

 

Johnson, K., H. C. Edmonds, R. L. Higginson, and R. A. Harris. 2011. “New Discoveries 

in Ultrasonic Consolidation Nano-Structures Using Emerging Analysis Techniques.” 

Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials 

Design and Applications 225(4): 277–87. 

Johnson, K. L. 1985. “Contact Mechanics.” Journal of the American Chemical Society 

37(22): 1–17. 

Johnson, K E. 2008. “Interlaminar Subgrain Refinement in Ultrasonic Consolidation.”  

Joshi, K. C. 1971. “The Formation of Ultrasonic Bonds between Metals.” Welding Journal. 

Kaufman, J. G. 1999. Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at 

High and Low Temperatures. ASM international. BOOK. 

Kelly, G. 2012. “A Thermo-Mechanical Finite Element Analysis of Acoustic Softening 

during Ultrasonic Consolidation of Aluminum Foils.” 

Kelly, G. S., S. G. Advani, and J. W. Gillespie. 2012. “Thermo-mechanical Modeling of 

Acoustic Softening During Ultrasonic Consolidation of Thin Aluminum Foils.” : 4048. 

Kelly, G. S., and S. G. Advani. 2013. “A Model to Characterize Acoustic Softening during 

Ultrasonic Consolidation.” Journal of Materials Processing Technology 213: 1835–45. 

Kenik, E., and R. Jahn. 2003. “Microstructure of Ultrasonic Welded Aluminum by 

Orientation Imaging Microscopy.” Microscopy and Microanalysis 9(S02): 720–21. 

Kirchner, H. O. K., W. K. Kromp, F. B. Prinz, and P. Trimmel. 1985. “Plastic Deformation 

under Simultaneous Cyclic and Unidirectional Loading at Low and Ultrasonic 

Frequencies.” Materials Science and Engineering 68(2): 197–206. 

Kocks, U. F. 1987. “Constitutive Behavior Based on Crystal Plasticity.” In Unified 



218 

 

Constitutive Equations for Creep and Plasticity, Springer. CHAP, 1–88. 

Koellhoffer, S., J. W. Gillespie, S. G. Advani, and Travis a. Bogetti. 2011. “Role of Friction 

on the Thermal Development in Ultrasonically Consolidated Aluminum Foils and 

Composites.” Journal of Materials Processing Technology 211(11): 1864–77. 

Kong, C. Y., R. C. Soar, and P. M. Dickens. 2005. “A Model for Weld Strength in 

Ultrasonically Consolidated Components.” Proceedings of the Institution of Mechanical 

Engineers, Part C: Journal of Mechanical Engineering Science 219(1): 83–91. 

Kong, C. Y., R. C. Soar, and P. M. Dickens. 2003. “Characterisation of Aluminium Alloy 

6061 for the Ultrasonic Consolidation Process.” Materials Science and Engineering: A 

363(1–2): 99–106. 

Kong, C. Y., R.C. Soar, and P. M. Dickens. 2004. “Optimum Process Parameters for 

Ultrasonic Consolidation of 3003 Aluminium.” Journal of Materials Processing 

Technology 146(2): 181–87. 

Kragelski, I. V. 1965. Friction and Wear. Butterworths. 

Krausz, A. S, and K. Krausz. 1996. Unified Constitutive Laws of Plastic Deformation. 

Elsevier. BOOK. 

Kulakov, M., and H. J. Rack, 2010. “Surface Damage during Ultrasonic Consolidation of 

3003-H18 Aluminum.” Rapid Prototyping Journal 16(1): 12–19. 

Langenecker, B. 1963. “Effect of Sonic and Ultrasonic Radiation on Safety Factors of 

Rockets and Missiles.” AIAA Journal 1(1): 80–83. 

Langenecker, B. 1966. “Effects of Ultrasound on Deformation Characteristics of Metals.” 

Sonics and Ultrasonics, IEEE Transactions on (1). 



219 

 

Leagon, J.M. 2007. Characterization of The Interlaminar Shear Strength of Ultrasonically 

Consolidated Components 

Lee, S. 2013. “Process and Quality Characterization for Ultrasonic Welding of Lithium-

Ion Batteries.” 

Lesuer, D R, G J Kay, and M M LeBlanc. 2001. “Modeling Large-Strain, High-Rate 

Deformation in Metals.” Third Biennial Tri-Laboratory Engineering Conference Modeling 

and Simulation: 3–5. 

Li, D., and R. Soar. 2009. “Influence of Sonotrode Texture on the Performance of an 

Ultrasonic Consolidation Machine and the Interfacial Bond Strength.” Journal of Materials 

Processing Technology 209(4): 1627–34. 

Lindsay, R. B. 1960. Mechanical Radiation. McGraw-Hill. 

Lum, I et al. 2009. “Effects of Superimposed Ultrasound on Deformation of Gold.” Journal 

of Applied Physics 105(2): 24905. 

Manes, A., L. Peroni, M. Scapin, and M. Giglio. 2011. “Analysis of Strain Rate Behavior 

of an Al 6061 T6 Alloy.” Procedia Engineering 10: 3477–82. 

Mao, Q., J. M. Gibert, and G. M. Fadel,. 2014. “Investigating the Ultrasound-Induced 

Acoustic Softening in Aluminum 6061.” In Proceedings of the ASME 2014 International 

Design Engineering Technical Conferences & Computers and Information in Engineering 

Conference (IDETC/CIE 2014), Buffalo, NY. 

Mayer, M., and J. Schwize. 2003. “Thermosonic Ball Bonding Model Based on Ultrasonic 

Friction Power.” : 3–8. 

Mccullough, D. T, Ann Arbor, and Eric M Austin. “Stick-slip Dynamics in Ultrasonic 



220 

 

Consolidation for Nominal Width Features: Theory and Experiment.” : 1–39. 

“McMaster Carr.” 2015. http://www.mcmaster.com/. 

Mignogna, R. B., and R. E. Green  J. 1979. “Multiparameter System for Investigation of 

the Effects of High-Power Ultrasound on Metals.” Review of Scientific Instruments 50(10): 

1274–77. 

Moore, D. F. 2013. Principles and Applications of Tribology: Pergamon International 

Library of Science, Technology, Engineering and Social Studies: International Series in 

Materials Science and Technology. Elsevier. 

Naidu, N. K. R., and S. G. S. Raman. 2005. “Effect of Shot Blasting on Plain Fatigue and 

Fretting Fatigue Behaviour of Al-Mg-Si Alloy AA6061.” International Journal of Fatigue 

27: 323–31. 

Nevill, G. E., and F. R. Brotzen. 1957. “The Effect of Vibrations on the Static Yield 

Strength of a Low-Carbon Steel.” Proceeding-American Society for Testing Material 57: 

751–58. 

Ogawa, K. 2002. “Impact Tensile Strength of 6061-O Aluminum Alloy.” Journal of Japan 

Institute of Light Metals 52(3): 131–35. 

Padró, P. M. 2015. “Finite Element Simulation of Elastic Contact between Rubber Rough 

Surface and Steel.” 

Pal, D., and B. E. Stucker. 2012. “Modelling of Ultrasonic Consolidation Using a 

Dislocation Density Based Finite Element Framework: In This Paper a Dislocation Density 

Based Constitutive Model Is Developed and Implemented into a Crystal Plasticity Quasi-

Static Finite Element.” Virtual and Physical Prototyping 7(1): 65–79. 



221 

 

Pei, L., S. Hyun, J. F. Molinari, and Mark O. Robbins. 2005. “Finite Element Modeling of 

Elasto-Plastic Contact between Rough Surfaces.” Journal of the Mechanics and Physics of 

Solids 53(11): 2385–2409. 

Pohlman, R., and E. Lehfeldt. 1966. “Influence of Ultrasonic Vibration on Metallic 

Friction.” Ultrasonics 4(4): 178–85. 

Ram, G. D. J., C. Robinson, Y. Yang, and B.E. Stucker. 2007. “Use of Ultrasonic 

Consolidation for Fabrication of Multi-Material Structures.” Rapid Prototyping Journal 

13(4): 226–35. 

Ram, G. D. J., Y. Yang, et al. 2007. “Interface Microstructures and Bond Formation in 

Ultrasonic Consolidation.” : 266–83. 

Robinson, C. J., C. Zhang, and G. D. Janaki Ram. 2006. “Maximum Height to Width Ratio 

of Freestanding Structures Built Using Ultrasonic Consolidation.” Proceedings of 17th …: 

502–16. 

Rusinko, A. 2011. “Analytical Description of Ultrasonic Hardening and Softening.” 

Ultrasonics 51(6): 709–14. 

Rusynko, A. K. 2001. “Mathematical Description of Ultrasonic Softening of Metals within 

the Framework of the Synthetic Theory of Plasticity.” Materials Science 37(4): 671–76. 

Sakino, K. 2006. “Strain Rate Dependence of Dynamic Flow Stress Considering Viscous 

Drag for 6061 Aluminium Alloy at High Strain Rates.” J. Phys. IV France 134: 183–89. 

Schick, D. E. et al. 2010. “Microstructural Characterization of Bonding Interfaces in 

Aluminum 3003 Blocks Fabricated by Ultrasonic Additive Manufacturing.” Welding 

Journal 89: 105–15. 



222 

 

Schick, D. et al. 2011. “Transient Thermal Response in Ultrasonic Additive Manufacturing 

of Aluminum 3003.” Rapid Prototyping Journal 17(5): 369–79. 

Siddiq, A., and E. Ghassemieh. 2008a. “Thermomechanical Analyses of Ultrasonic 

Welding Process Using Thermal and Acoustic Softening Effects.” Mechanics of Materials 

40(12): 982–1000. 

Siddiq, A., and T. E. Sayed. 2011. “Acoustic Softening in Metals during Ultrasonic 

Assisted Deformation via CP-FEM.” Materials Letters 65(2): 356–59. 

Siddiq, A., and T. E. Sayed. 2012. “A Thermomechanical Crystal Plasticity Constitutive 

Model for Ultrasonic Consolidation.” Computational Materials Science 51(1): 241–51. 

Siddiq, A., and T. E. Sayed. 2012. “Ultrasonic-Assisted Manufacturing Processes: 

Variational Model and Numerical Simulations.” Ultrasonics 52(4): 521–29. 

Siddiq, Amir, and Siegfried Schmauder. 2006. “Crystal Plasticity Parameter Identification 

Procedure for Single Crystalline Material During Deformation.” 7(1): 1–15. 

Siu, K. W., and A. H. W. Ngan. 2013. “Oscillation-Induced Softening in Copper and 

Molybdenum from Nano-to Micro-Length Scales.” Materials Science and Engineering: A. 

Siu, K W, A. H. W. Ngan, and I. P. Jones. 2011. “New Insight on acoustoplasticity–

Ultrasonic Irradiation Enhances Subgrain Formation during Deformation.” International 

Journal of Plasticity 27(5): 788–800. 

Song, H., R. J. Dikken, L. Nicola, and E. van der Giessen. 2015. “Plastic Ploughing of a 

Sinusoidal Asperity on a Rough Surface.” Journal of Applied Mechanics 82(7): 71006. 

Sriraman, M. R. et al. 2011. “Thermal Transients during Processing of Materials by Very 

High Power Ultrasonic Additive Manufacturing.” Journal of Materials Processing 



223 

 

Technology 211: 1650–57. 

Sriraman, M.R., S.S. Babu, and M. Short. 2010. “Bonding Characteristics during Very 

High Power Ultrasonic Additive Manufacturing of Copper.” Scripta Materialia 62(8): 

560–63. 

Swank, ML. 2010. “Support Materials Development and Integration for Ultrasonic 

Consolidation.” 

Timoshenko, S.P. 1970. Theory of Elasticity. McGraw-Hill. 

Truog, Adam G. 2012. “Bond Improvement of Al/Cu Joints Created by Very High Power 

Ultrasonic Additive Manufacturing.” 

de Vries, E. 2004. “Mechanics and Mechanisms of Ultrasonic Metal Welding.” 

White, D. R. 2003. “Ultrasonic Consolidation of Aluminum Tooling.” Advanced materials 

& processes. 

Winsper, C. E, and D H Sansome. 1969. “Fundamentals of Ultrasonic Wire Drawing.” J 

Inst Metals 97(9): 274–80. 

Winsper, C. E. and Sansome, D. H.. 1971. “Application of Ultrasonic Vibrations to the 

Plug Drawing of Tube.” Metal Forming 38(3): 71–75. 

Wodara, J. 1986. “Joint Formation in the Ultrasonic Welding of Metallic Substances.” ZIS 

Mitt. 28(1): 102–8. 

Wolcott, P J, A Hehr, and M J Dapino. 2014. “Optimized Welding Parameters for Al 6061 

Ultrasonic Additive Manufactured Structures.” Journal of Materials Research 29(17): 

2055–65. 

Yadav, S, and D R Chichili. 1995. “The Mechanical Response of a 6061-T6 A1/A12O3 



224 

 

Metal Matrix Composite at High Rates of Deformation.” Acta metall, mater. 43(12): 4453–

64. 

Yang, Y., G.D. Janaki Ram, and B.E. Stucker. 2009. “Bond Formation and Fiber 

Embedment during Ultrasonic Consolidation.” Journal of Materials Processing 

Technology 209(10): 4915–24. 

Yao, Z., G.Y. Kim, Z. Wang, et al. 2012. “Acoustic Softening and Residual Hardening in 

Aluminum: Modeling and Experiments.” International Journal of Plasticity 39: 75–87. 

Yao, Z., G. Y. Kim, L. Faidley, et al. 2012. “Effects of Superimposed High-Frequency 

Vibration on Deformation of Aluminum in Micro/meso-Scale Upsetting.” Journal of 

Materials Processing Technology 212(3): 640–46. 

Zhang, C., and L. Li. 2008. “A Friction-Based Finite Element Analysis of Ultrasonic 

Consolidation.” The Welding Journal-New York- 87(7): 187. 

Zhang, C., A. Deceuster, and L. Li. 2009. “A Method for Bond Strength Evaluation for 

Laminated Structures with Application to Ultrasonic Consolidation.” Journal of Materials 

Engineering and Performance 18(8): 1124–32. 

Zhang, C. and L. Li. 2007. “Effect of Friction on Ultrasonic Consolidation.” ASME 2007 

International 

Zhang, C., and L. Li. 2006. “A Study of Static and Dynamic Mechanical Behavior of the 

Substrate in Ultrasonic Consolidation.” Solid Freeform Fabrication Symposium: 546–57. 

Zhang, C., Z. Zhu, and L. Li. 2006. “A Study of Friction Behavior in Ultrasonic Welding 

(Consolidation) of Aluminum.” Proceedings of the AWS Conference: Session 7: 151–56. 

Zhu, Z, B P Wynne, E Ghassemieh, and a Siddiq. 2009. “Microstructural Analysis of 



225 

 

Ultrasonic Welded AA6061 by Electron Backscattered Diffraction.” Rare Metal Materials 

And Engineering 38: 147–51. 

 

 

 


	Clemson University
	TigerPrints
	5-2017

	Understanding the Bonding Process of Ultrasonic Additive Manufacturing
	Qing Mao
	Recommended Citation


	tmp.1497625926.pdf.BQji1

