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ABSTRACT 

 

 

Process capability indices (PCIs) provide a measure of the output of an in-control 

process that conforms to a set of specification limits. These measures, which assume that 

process output is approximately normally distributed, are intended for measuring process 

capability for manufacturing systems. After implementing inspections, however, non-

conforming products are typically scrapped when units fail to meet the specification 

limits; hence, after inspections, the actual resulting distribution of shipped products that 

customers perceive is truncated. In this research, a set of customer-perceived PCIs is 

developed focused on the truncated normal distribution, as an extension of traditional 

manufacturer-based indices. Comparative studies and numerical examples reveal 

considerable differences among the traditional PCIs and the proposed PCIs. The 

comparison results suggest using the proposed PCIs for capability analyses when non-

conforming products are scrapped prior to shipping to customers. The confidence interval 

approximations for the proposed PCIs are also developed. A simulation technique is 

implemented to compare the proposed PCIs with its traditional counterparts across 

multiple performance scenarios.   

 The robust parameter design (RPD), as a systematic method for determining the 

optimum operating conditions that achieve the quality improvement goals, is also studied 

within the realm of censored data. Data censoring occurs in time-oriented observations 

when some data is unmeasurable outside a predetermined study period. The underlying 

conceptual basis of the current RPD studies is the random sampling from a normal 
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distribution, assuming that all the data points are uncensored. However, censoring 

schemes are widely implemented in lifetime testing, survival analysis, and reliability 

studies. As such, this study develops the detailed guidelines for a new RPD method with 

the consideration of type I-right censoring concepts. The response functions are 

developed using nonparametric methods, including the Kaplan-Meier estimator, 

Greenwood’s formula, and the Cox proportional hazards regression method. Various 

response-surface-based robust parameter design optimization models are proposed and 

are demonstrated through a numerical example. Further, the process capability index for 

type I-right censored data using the nonparametric methods is also developed for 

assessing the performance of a product based on its lifetime. 

  



 

 

 

iv 

ACKNOWLEDGMENTS 

  

First and foremost, I would like to express my sincere gratitude to my mentor and 

advisor, Dr. B. Rae Cho, for his guidance and encouragement throughout my doctoral 

study. It has been such a memorable and invaluable experience for me to work with and 

to learn from him. This dissertation would not have been possible without his support.  

My gratitude also goes to my dissertation committee members, including Dr. Joel 

Greenstein, Dr. Tugce Isik, and Dr. David Neyens, for their insightful advice and 

constructive comments to improve my research, and for their considerations and support 

during the process of conducting this dissertation.  

I would like to extend my gratitude to all the excellent professors at Clemson 

University, who have shaped my academic life in various ways. I am also very grateful to 

my friends at Clemson University for their guidance and friendship during my 

challenging journey. A special thank you goes to my friends in the advanced quality 

engineering laboratory, for their support, encouragement, and care.  

Last but not least, I would like to express my deepest appreciation to my parents, 

my brother, my husband, and my daughter, for their endless love and support that give 

me strength to overcome this critical stage of my life.  

 

 

 

  



 

 

 

v 

TABLE OF CONTENTS 

 

 Page 

TITLE PAGE  ................................................................................................................... i 

ABSTRACT ..................................................................................................................... ii 

ACKNOWLEDGMENTS .............................................................................................. iv 

LIST OF TABLES ........................................................................................................ viii 

LIST OF FIGURES ..........................................................................................................x 

CHAPTER 1  

INTRODUCTION ............................................................................................................1 

1.1 Introduction .............................................................................................................1 

1.2 Research motivations ..............................................................................................2 

CHAPTER 2  

INTEGRATING CUSTOMER PERCEPTION INTO  PROCESS CAPABILITY 

MEASURES ...................................................................................................................10 

2.1 Introduction ...........................................................................................................10 

2.2 Traditional process capability indices ...................................................................12 

2.3 Development of customer-perceived process capability indices ..........................14 

2.4 Comparisons and insights .....................................................................................22 

2.5 Numerical example ...............................................................................................25 

2.6 Comparison of proposed PCIs and traditional PCIs .............................................31 

2.7 Conclusions ...........................................................................................................34 

 



 

 

 

vi 

Table of Contents (Continued) 

                                                                                                                                    Page 

CHAPTER 3  

THE TARGET-BASED PROCESS CAPABILITY INDICES  FOR THE  

TRUNCATED NORMAL DISTRIBUTION  AND THE CONFIDENCE 

INTERVAL ESTIMATORS ..........................................................................................38 

3.1 Introduction ...........................................................................................................38 

3.2 Traditional target-based process capability indices ..............................................40 

3.3 Development of target-based PCIs using the truncated normal distribution ........43 

3.4 Comparison study of PCIs ....................................................................................49 

3.5 Numerical examples..............................................................................................59 

3.6 Confidence intervals for the truncated normal PCIs .............................................62 

3.7 Numerical examples of confidence intervals for proposed posterior PCIs...........71 

3.8 Concluding remarks ..............................................................................................72 

CHAPTER 4  

ROBUST PARAMETER DESIGN OPTIMIZATION AND  PROCESS  

CAPABILITY ANALYSIS FOR TYPE I-RIGHT CENSORED DATA ......................75 

4.1 Introduction ...........................................................................................................75 

4.2 Model development ..............................................................................................81 

4.3 Development of type I-right censoring based RPD optimization models ............91 

4.4 Numerical example ...............................................................................................94 

4.5 Additional remarks on the parametric approach and recommendations .............103 



 

 

 

vii 

Table of Contents (Continued) 

                                                                                                                                    Page 

4.6 Process capability index for type I-right censored data ......................................106 

4.7 Concluding remarks ............................................................................................114 

CHAPTER 5  

CONCLUSIONS AND FUTURE STUDIES ...............................................................117 

APPENDICES ..............................................................................................................122 

Appendix A Derivation of Greenwood’s Formula .......................................................123 

Appendix B Derivation of the Variance of Survival Time ...........................................126 

Appendix C Minitab Output for Chapter 4 ...................................................................127 

Appendix D Numerical Programming Code .................................................................130 

REFERENCES .............................................................................................................136 

 

  



 

 

 

viii 

LIST OF TABLES 

 

Table                                                                                                                               Page 

 1.1 Dissertation overview ..............................................................................................8 

 1.2 Dissertation summary ..............................................................................................9 

2.1 Sensitivity analysis scenarios .................................................................................25 

2.2 Data of the customers.............................................................................................29 

2.3 Critical values obtained using the Johnson transformation method ......................33 

2.4 Process capability indices obtained from the comparison study ...........................35 

2.5 Defective rate for the Cpk .......................................................................................36 

2.6 The index and defective rate comparison ..............................................................37 

3.1 Scenario settings ....................................................................................................51 

3.2 Average PCI values obtained from Scenario 1 ......................................................55 

3.3 Average PCI values obtained from Scenario 2 ......................................................56 

3.4 Average PCI values obtained from Scenario 3 ......................................................56 

3.5 Average PCI values obtained from Scenario 4 ......................................................56 

3.6 Average PCI values obtained from Scenario 5 ......................................................56 

3.7 Average PCI values obtained from Scenario 6 ......................................................57 

3.8 Confidence intervals of the proposed PCIs under different settings......................73 

4.1 Experimental format for the modified central composite design  

      for censored and uncensored data under the type I-right censoring scheme .........84 

4.2 Proposed type I-right censored RPD optimization models ....................................93 

4.3 Experimental data ..................................................................................................96 



 

 

 

ix 

List of tables (Continued) 

Table                                                                                                                               Page 

4.4 The survival distribution of observations taken at the first and  

      second design points ..............................................................................................98 

4.5 Median survival time, standard error of median survival time,  

      and variance of median survival time at each design point ...................................99 

4.6 Statistics associated with the fitted proportional hazard model ...........................100 

4.7  Optimization results ............................................................................................103 

4.8 Comparing statistical estimators ..........................................................................105 

4.9 Anderson-Darling test statistics for the experimental data ..................................106 

4.10 Observed failure time of the electrical appliances and  

        its survival distribution ......................................................................................114 

5.1 Future studies .......................................................................................................121 

 

 

 



 

 

 

x 

LIST OF FIGURES 

 

Figure                                                                                                                             Page 

1.1 Dissertation structure with corresponding research questions .................................7 

2.1 Different types of truncated normal distributions ..................................................11 

2.2 Truncated distributions under different scenarios..................................................24 

2.3 Sensitivity analysis results for scenarios 1 - 3 .......................................................26 

2.4 Sensitivity analysis results for scenarios 4 - 6. ......................................................27 

2.5 Illustrative truncated distributions associated with three customers ......................28 

2.6 Probability plot of the original data. ......................................................................33 

2.7 Comparison of the traditional PCI values, transformed data based PCI values,  

      and the proposed truncated normal based PCI values  ..........................................36 

2.8 Analysis diagram for using customer-perceived PCIs ...........................................37 

3.1 Index value of T pmC  and pmC under different specification limits ........................49 

3.2 Index values of T pmC  and pmC  ..............................................................................50 

3.3 Simulation procedure .............................................................................................53 

3.4 Results from Scenario 1 (n = 250) .........................................................................57 

3.5 Results from Scenario 2 (n = 250) .........................................................................57 

3.6 Results from Scenario 3 (n = 250) .........................................................................58 

3.7 Results from Scenario 4 (n = 250) .........................................................................58 

3.8 Results from Scenario 5 (n = 250) .........................................................................58 

3.9 Results from Scenario 6 (n = 250) .........................................................................59 



 

 

 

xi 

List of Figures (Continued) 

Figure                                                                                                                             Page 

3.10 Truncated distribution illustrations associated with three customers ..................60 

3.11 Histogram of the supplier’s submitted lot ............................................................61 

3.12 Estimated confidence intervals of the proposed posterior PCIs with  

        different sample sizes confidence levels ..............................................................74 

4.1 Structure of Chapter 4 ............................................................................................84 

4.2 Survival curve of design points 1-5 .......................................................................98 

4.3 The scaled Schoenfeld plots.................................................................................101 

4.4 Comparison between the MLE estimator and KM estimator ..............................105 

4.5 Probability plot of the experimental data .............................................................106 

4.6 Survival distribution of the electrical appliances .................................................113 

C.1 Residual Plots for ˆ ( )M x and  ˆ ( )SE M x  ............................................................129 

C.2 Normality plot for error terms of ˆ ( )M x and  ˆ ( )SE M x         

       at 95% confidence interval..................................................................................129 

 



1 

 

 

 

CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

  Quality as a competitive advantage has become one of the keys to business 

success. The importance of quality is recognized from any link in a supply chain to a 

manufacturing process, and also to a conceptual product design. Any quality flaw along 

the line could lead to consequences that jeopardize the safety of end users and the 

negative reputation that impacts on the profitability of a company. Since 1700’s, the 

empirical statistical methods for managing quality-related problems under different 

situations are continually developed and improved.  

  Due to variation that occurs during a production process, it is a fact that products 

are not identically produced. Quantifying the quality level using statistical parameters 

such as mean and variance, which are estimated from a probability distribution, are 

commonly used as primary measures. These parameters are then utilized in sequential 

quality control methods for measuring, controlling, and improving the overall quality of 

product. The traditional statistical quality control methods that are widely recognized 

among practitioners are developed on assumptions of the normal distribution, although 

data is non-normally distributed in several situations. In responding to this issue, 

numerous research efforts develop quality improvement approaches that suit various 

types of probability distributions, however, there remains a significant need for 

improvement.   
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1.2 Research motivations  

 The research scheme of this dissertation is twofold. The first scheme is the 

development of process capability indices based on the customer perception, which are 

developed using the statistical foundations of the truncated normal distribution. The 

second scheme is the development of robust parameter design optimization and process 

capability index for time-oriented quality characteristics, based on the nonparametric 

methods for censored data. The research motivations are presented as follows.   

1.2.1 Development of process capability indices based on the customer perception 

 The process capability index (PCI) is a unitless measure used for indicating the 

production performance in meeting the customer requirements. In addition to being used 

for communicating between production and managerial levels or comparing between 

different processes, PCIs are also employed for selecting suppliers, redesigning systems, 

and optimizing operating conditions. In a case that a probability distribution of a product 

follows the normal distribution, the traditional PCIs are widely used to estimate the 

capability of a process. However, the assumptions of the normality may not be satisfied 

in some situations. Using the traditional PCIs for assessing the process capability of a 

non-normally distributed data may mislead the analysis, hence, numerous alternative 

PCIs based on the non-normal distributions have been proposed in the research 

community. Only few of them, however, consider a case where the information of 

observations are partially known, hereafter referred to as the incomplete data, which 
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impacts the accuracy of statistical calculations if an improper statistical foundation is 

employed.  

  The incomplete data occurs in analysis consists of truncated distributions and 

censored data. Chapters 2 and 3 focus on the truncated distribution. Truncation of a 

probability distribution appears when some set of values in the distribution are unknown 

beyond a specific point, also called the truncation point. For instance, assume that 

observations of a product are normally distributed. After performing a quality inspection 

and screening within a given set of specifications, units that fail to meet the 

specifications, known as the nonconforming products, are removed from the shipped 

units, also called the conforming products. As a result, the probability distribution of 

conforming products that a customer perceives is truncated within the specification 

limits, which is statistically defined as the truncated normal distribution.  

  Upon reviewing the literature, we found that the truncated normal distribution is 

reported to cause difficulties for assessing the process capability under several situations, 

for examples, measuring PCI of a multi-level inspection process, selecting suppliers 

based on a PCI value of products received, and assessing PCI based on a quality 

characteristic withnin a specific range, e.g., the gap tolerance between two assembled 

components. Since the statistical estimators of the truncated normal distribution are 

measured differently from the normal distribution, ignoring the effects of truncated 

distribution may cause inaccuracy in the process capability analysis and the subsequent 

decision making. Despite the practical importance of the role of truncated normal 

distributions, there has been little work on the theoretical foundation of PCIs associated 
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with truncated normal distributions. Therefore, the goal of Chapter 2 is to develop a set of 

process capability indices for truncated normal distribution based on three types of 

quality characteristics. These include the nominal-the-best type (NTB-type) with lower 

and upper specification limits, the smaller-the-better type (STB-type) with only upper 

specification limit, and the larger-the-better type (LTB-type) with only lower 

specification limit. 

  In Chapter 3, we extend the collection of the PCIs in Chapter 2 by developing the 

PCIs based on the truncated normal distribution with respect to the quality loss function 

of a product. Since selling only perfect items to a customer seems impossible in 

economic reality, the interval of the specification limits, or tolerance, is used during an 

inspection process to determine if a unit satisfies the customer’s requirements. Although 

a customer may receive an item that has passed its inspection, there may be some level of 

risk incurred in producing a unit that fails to achieve its ideal target value, known as the 

quality loss. Therefore, measuring the process capability of a product with consideration 

of the quality loss may provide additional information for a comparison between 

processes.  

Furthermore, it is important to note that the degree of accuracy in PCI calculation, 

which is a point estimate, can be affected by the statistical fluctuations occurred from 

estimating statistical parameters under a specific sample size. Therefore, the confidence 

intervals estimators for the proposed PCIs are also needed to be developed, so that 

various levels of accuracy associated with a sample size of calculating PCI may be 

assessed. Besides, since a PCI can be obtained from estimating only variance or both 
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mean and variance, each index needs a unique statistical approximation method for 

deriving its confidence interval estimators. Thus, the second goal of Chapter 3 is to 

develop the confidence interval estimators for the truncated normal distribution based 

PCIs. Nevertheless, a simulation study is also required for providing the details and 

insights of PCI development to facilitate comparison between the traditional PCIs and the 

proposed PCIs under various truncation schemes, which becomes the third research goals 

of Chapter 3. 

1.2.2 Development of robust parameter design optimization and process capability 

index for censored data 

The robust parameter design (RPD) is a sequential mathematical method used for 

designing and improving products or processes by optimizing its operating conditions.  

Despite numerous extensions reported in the research community, RPD has been found in 

various engineering applications. The three mathematical phases of RPD consist of 

performing a planned experiment to observe experimental responses with respect to input 

variables, developing regression models for indicating the effects of input variables on 

responses, and optimizing the input variables to seek for the optimum operating 

conditions. It is important to note that RPD is mostly employed for minimizing the 

quality loss occurred in a process based on non-time orientated quality characteristics 

such as the strength of materials. Despite being considered as a critical quality criterion, 

the time-oriented quality characteristics, e.g., a product’s lifetime, has not been 

effectively utilized in the context of RPD.  
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The time-oriented quality characteristic, hereafter referred to as the survival time, 

is observed within a limited period; thus, the information about some of the observed 

survival times that last longer than a censoring time, e.g., a predetermined termination 

time of a study period, is partially known. For instance, if a unit fails within a study 

period, the survival time of a unit is recorded as its actual survival time. On the contrary, 

if a unit still survives at a termination time, the survival time is recorded as the 

termination time, known as the censored survival time, which implies that the survival 

time of a unit is longer than the termination time; however, its actual survival time is 

unknown. Thus, it is important to note that, first, each recorded survival time can be 

either an actual lifetime or a censored survival time. Second, there are several types of 

censoring and each type of censoring has its own set of statistical foundations. Third, 

since the survival time is non-negative, its probability distribution generally follows a 

non-normal distribution, e.g., the exponential distribution and the Weibull distribution. 

Fourth, the traditional RPD assumes the normal distribution as a default probability 

distribution. For these reasons, the traditional RPD requires an improvement for 

effectively obtaining the optimum operating condition when some observations are 

censored. Thus, the first goal of Chapter 4 is to fill the potential research gap stated 

above. Finally, upon investigating the practical situations of the time-oriented quality 

characteristics, we also found a significant research gap in the context of PCIs, which is 

the development of process capability index for censored data. Similar to the RPD, the 

problems of censored data in the PCI scheme appear when the quality characteristic of 
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interest is time-oriented type. Therefore, the development of PCI for censored data 

becomes the second goal of Chapter 4. 

Subsequently, Table 1.1 presents goals and features of each chapter in responding 

to the research questions in Figure 1.1. Also, the research tools, contributions, and 

disseminations of the dissertation are summarized in Table 1.2.  

Chapter 1 

Introduction, motivations, and overview

Research question II

How reliable the proposed 

process capability indices 

are?

Chapter 2 

Integrating customer perception into 

process capability measures

Research question I

How do we correctly asses 

the process capability based 

on a customer s point of view? 

Chapter 3 

The target-based process capability indices 

for the truncated normal distribution and its 

confidence interval estimates

Research question III

How do the proposed indices 

perform compared to its 

traditional counterparts? 

Research question IV

How to obtain the optimum 

operating conditions when 

experimental data is type I-

right censored? 

Research question V

Which statistical estimation 

method is robust and practical 

for censored observations? 

Chapter 4 

Robust parameter design optimization

and process capability analysis 

for type I-right censored data

Research question VI

How to include the hazard 

rate as a new decision 

criterion in optimization 

models? 

Research question VII

How to measure the process 

capability concerning  

product s lifetime? 

Chapter 5 

Conclusions and future studies

 

Figure 1.1 Dissertation structure with corresponding research questions 
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Table 1.1 Dissertation overview 

Chapters and goals Research features 

Chapter 1: Introduction  Address research motivations, goals, and overview of the 

dissertation 

Chapter 2: Integrating customer perception 

into process capability measures 

 

Goal: To develop a set of PCIs for assessing the 

capability of a process that follows the 

truncated normal distribution 

 Develop CTN-p, CTN-pl, and CTN-pu, for the NTB-type quality 

characteristic  

 Develop the CST for the STB-type quality characteristic 

 Develop the CLT for the LTB-type quality characteristic 

 Derive the truncated normal estimators for two-sided 

truncations, left-sided truncation, and right-sided truncation 

 Conduct sensitivity study for the proposed PCIs under various 

ranges of specifications and levels of statistical parameters 

 Demonstrate the proposed PCIs through a case study of 

chemical product with multi-specification limits 

 Conduct comparison study among the proposed PCIs, the 

traditional PCIs, and the traditional PCIs with data 

transformation 

Chapter 3: The target-based process 

capability indices for the truncated normal 

distribution and its confidence interval 

estimators  

Goals:  

 To develop target-based PCIs concerning the 

truncated normal distribution 

 To develop the confidence interval estimators 

for the truncated normal distribution based 

PCIs focusing on the NTB-type quality 

characteristics  

 To investigate the features of the proposed 

PCIs compared to its traditional counterparts  

 

 Develop CTN-pm and CTN-pkm as the target-based PCIs with 

respect to the truncated normal distribution  

 Conduct sensitivity study for the proposed target-based PCIs  

 Develop the confidence interval estimators for the proposed 

PCIs, including  ,L U

TN p TN pC C 
, ,L U

TN pk TN pkC C 
,

   and, , , .L U L U

TN pm TN pm TN pmk TN pmkC C C C   
  

 Develop a simulation model to investigate characteristics of 

PCI values under various shapes of truncated normal 

distribution  

 Demonstrate the proposed PCIs and its confidence interval 

estimators through a case study of chemical product with 

multi-specification limits and a case study of supplier selection  

Chapter 4: Robust parameter design 

optimization and process capability analysis 

for the type I-right censoring data  

 

Goals:  

 To optimize the process parameters using 

robust parameter design where data is time-

oriented and is type I-right censored 

 To develop PCI for type I-right censored data 

 

 Modify the central composite design for censored data 

 Incorporate nonparametric methods, the KM estimator, 

Greenwood’s formula, and the Cox PH model, for constructing 

response functions of type I-right censored data 

 Develop optimization models for obtaining the optimum 

operating conditions with inclusion of the median survival 

time, the variance of median survival time, and the hazard rate  

 Demonstrate the developed method through a case study of 

drug degradation 

 Conduct a study to investigate the problems of using 

parametric approaches for censored data  

 Develop the PCI for type I-right censored data 

 Develop the confidence interval estimator for the type I-right 

censoring based PCI 

Chapter 5: Conclusion and future studies Summarize research works, discuss limitations, and suggest 

future studies  
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Table 1.2 Dissertation summary      
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CHAPTER 2  

INTEGRATING CUSTOMER PERCEPTION INTO  

PROCESS CAPABILITY MEASURES 

 

2.1 Introduction  

Quantifying the ability of a process to produce output that conforms to 

specifications is vital to understanding a performance baseline – it is an integral 

component of continuous process improvement. Process capability indices (PCIs) often 

serve as a tool and basis for comparing practices, redesigning systems, selecting 

suppliers, and optimizing operating conditions. A comprehensive review of PCIs can be 

found in the survey papers by Kane (1986), Kotz et al. (2002), Spiring et al. (2003), and 

Yum and Kim (2011), most of which assume that process output is normally distributed. 

However, there are practical situations where specification limits on a process are 

imposed externally, and the product is typically scrapped if its performance does not fall 

within the specification range. As such, the actual distribution that the customer perceives 

after the inspection is truncated. Despite the practical importance of the role of truncated 

distributions, there has been little work on the theoretical foundation of PCIs associated 

with truncated normal distributions.  

The focus of this chapter is on the development of customer-perceived PCIs (i.e., 

a consumer versus manufacturer perspective) under three types of quality characteristics. 

These include the nominal-the-best type (NTB), the smaller-the-better type (STB), and 

the larger-the-better (LTB) type, which have not been fully explored in the literature. 

Figure 2.1 shows (a) a two-sided left and right truncated distribution at the lower 
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specification limit (LSL) and upper specification limit (USL) for an NTB-type 

characteristic, (b) a one-sided left truncated distribution at the LSL (xl) for an LTB-type 

characteristic, and (c) a one-sided right truncated distribution at the USL (xu) for an STB-

type characteristic. Dotted and solid lines represent the original normal and truncated 

normal distributions, respectively. It is noted that the shape of a truncated normal 

distribution ( )xf x  varies based on the number of specification limits that are implemented 

and where they are located. It is also observed that the variance of the distribution, after 

implementing a truncation, will no longer be the same as the original variance associated 

with the untruncated normal distribution ( )xf x . Applications of the truncated normal 

distribution are found in Khasawneh et al. (2004, 2005), Hong and Cho (2007), Shin and 

Cho (2009), Cha et al. (2013), and Cha and Cho (2014).  

 

   
(a)   (b)   (c) 

Figure 2.1 Different types of truncated normal distributions 

Regarding the field of process capability analysis within contemporary literature, 

this chapter offers several contributions that have not been previously explored. A new 

set of process capability indices, referred to as customer-perceived PCIs, are developed, 

which are based on the truncated normal distribution and are designed to provide 

improved accuracy when inspections are implemented. Our proposal accounts for the 

three different types of quality characteristics, using two-sided, left, and right truncations. 
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Upon illustrating these measures using a numerical example, a comparison study is 

performed to relate the customer-perceived PCIs to their traditional counterparts. Finally, 

the PCIs are further investigated using data transformation methods when the process 

output is not normally distributed. This chapter is organized into five remaining sections 

as follows. In Section 2.2, previous work with respect to process capability analysis is 

presented; then, in Section 2.3, the models for the customer-perceive PCIs are developed 

in detail. A numerical example is provided and comparison study is performed in 

Sections 2.4 and 2.5, respectively, with a summary of conclusions in Section 2.6.  

2.2 Traditional process capability indices 

The PCI is one of the most popular tools for measuring the performance of a 

process. The initial concept of the PCI was first introduced by Feigenbaum (1951) and 

Juran (1951) as a process measurement contained within six standard deviations, or 6σ, 

representative of the inherent variability of a process. Juran (1962) and Juran and Gryna 

(1980) examined PCI ratios on various tolerance intervals. Cp, one of the most basic 

PCIs, is given as   6pC USL LSL   . It is believed that Kane (1986) is credited with 

introducing Cp into the process capability literature. However, to correctly measure a 

process using Cp, it must be approximately normally distributed with the process mean 

centered between the LSL and USL. If these assumptions are not met, PCI values may 

incur serious error (Montgomery, 2007), since different processes with the same level of 

variation may provide the identical Cp value regardless of the mean location. It is 

precisely this issue with Cp for which Cpk, a PCI designed to relax the centered mean 
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assumption (see Kane, 1986), was developed. Given a process with an LSL and USL, 

mean (), and standard deviation (), Cpk is obtained as  =min , pk pu plC C C , where 

  3plC LSL    and   3puC USL    . As an extension, multivariate PCIs are 

introduced by Chan et al. (1991), Chen (1994), Hubele et al. (1991), Wang and Chen 

(1998), Bothe (1992), and Goethals and Cho (2011).  

In manufacturing processes, non-normal data is frequently found in several forms, 

as illustrated by Polansky et al. (1998), Sweet and Tu (2006), and Pearn et al. (2007). 

Measuring non-normal data with PCIs that are based upon a requisite normal distribution 

is one common real-world problem. Some prominent transformation methods are the 

Johnson transformation method (Johnson, 1949) and the Box-Cox power transformation 

method (Box and Cox, 1964). However, these data transformation methods are not 

appropriate for small sample sizes and can require excessive computing time (Tang and 

Than, 1999). For data that follows an unknown distribution, Clements (1989) developed 

percentile-based PCIs, whereby percentiles are estimated through the four data 

characteristics, i.e., mean, standard deviation, skewness and kurtosis. Tang and Than 

(1999) and Chang et al. (2002) concluded that, in order to validate the reliability and 

precision of skewness and kurtosis, a large sample size is required. In addition, Johnson 

et al. (1992) introduced the flexible PCI, Cjkp using Cpm as a basis that accounts for the 

associated difference in variability above and below the target, and hence incorporates 

the asymmetry of a non-normal process. Moreover, Wright (1995) proposed Cs as an 

index to account for skewness by incorporating a correction factor obtained from process 

data. Furthermore, Kotz and Lovelace (1998) proposed a heuristic weighted variance 
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method, a technique which divides a non-normal skewed distribution into two different 

distributions, resulting in a normally distributed outcome distribution with the same mean 

but a different standard deviation. Using the weighted variance method, Wu and Swain 

(2001) modified standard PCIs with the skewness and kurtosis of distribution. Also, a 

specific PCI for data that follows a log-normal distribution was proposed by Lovelace 

and Swain (2009). 

For process capability analysis that is based on a truncated distribution, Sweet and 

Tu (2006) applied the truncated distribution concept to the tolerance of the assembled gap 

between a bore and a shaft. In order to obtain increased accuracy for analysing a 

truncated normal process, Pearn et al. (2007) derived the probability density function of a 

truncated normal distribution data – in doing so, they suggested obtaining the exact 

probability density and the distribution function using the Edgeworth expansion 

technique. Finally, Tao and Xinzhang (2012) studied the effect of a truncated distribution 

in measuring the yield and performance of semiconductor manufacturing.  

2.3 Development of customer-perceived process capability indices  

A typical NTB-type characteristic has the desired target value where two-sided 

specifications (LSL and USL) are accordingly implemented. Similarly, the respective 

target values of STB-type and LTB-type characteristics are zero and infinite; thus, one-

sided specifications, such as the USL for the STB-type and the LSL for the LTB-type, are 

known useful. The well-known two underlying assumptions behind PCIs, which are a 

normally distributed quality characteristic and an in-control process, also hold here. In 
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this section, the customer-perceived PCI is derived from each type of quality 

characteristic.  

2.3.1 The NTB-Type case 

The quality characteristic of interest (X) is normally distributed,  2~ ,X N   , 

with two specification limits ,l ux x . Let 
TNX  be the truncated normal random variable. 

The probability density function of 
TNX  is then given by  
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For the variance of two-sided truncated normal distribution, we note  
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By incorporating Equation (2.4) into Equation (2.3), we have  
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Finally, the proposed PCIs for an NTB-type characteristic,   TN pC  , TN plC  , TN puC  , and 

TN pkC  , are described as 
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 ,  TN pk TN pu TN plC min C C                          (2.9) 
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2.3.2 The STB-Type case 

For the STB-type quality characteristic, only the upper specification limit is 

implemented. Note that with  2~ ,X N    in the range [ , ux ], the distribution is 

considered as a right-sided, or STB-type, truncated normal distribution. Let TSX  

represent the quality characteristic of the distribution, whereby the probability density 

function is given by  
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Since TSX  conforms to the upper specification only,    lx  is assumed to be negative 
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zero. Therefore, the mean and variance of this distribution can be modified as follows 
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Further, the variance for the STB-type truncated normal distribution is obtained as 
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   (2.11) 

To evaluate the STB-type quality characteristic using the Cp index family, the Cpu is 

recommended. Therefore, the truncated normal distribution based index for STB-type 

characteristic (i.e., TSC ) is proposed as  
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              (2.12) 

2.3.3 The LTB-Type case 

The LTB-type truncation characteristic is modified from the NTB-type truncated 

normal distribution, with the USL being infinity. By letting  2~ ,X N   ,  , ,lX x   

Lx  , TLX is considered a quality characteristic with a left-sided truncated normal 

distribution.  

For 
lx x  , the probability density function is given as 

 
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  ( )  

l

TL

x
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f x
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
,  

and the cumulative density function is defined as 
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.  

The truncated mean is expressed as ( )TL TLx f X dx




  , and the variance is obtained 

using     
2

2 2

TL TL TLx f X dx x f X dx
 

 
   . Since the LTB-type truncated normal 

distribution has only a lower specification, ux  is assumed to be infinity. Hence, the term 
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By assuming an infinite upper specification, Equation (2.5) then becomes 
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Finally, the variance for the LTB-type truncated normal distribution is given as 
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   (2.14) 

Based on the Cpl, the proposed LTB-type truncated normal distribution based PCI, 

denoted by the
TLC , is given as 
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    (2.15)  

2.4 Comparisons and insights 

In this section, we examine and compare the customer-perceived PCIs based on a 

truncated normal distribution with traditional PCIs. A sensitivity analysis is performed to 

identify the effects of changing the truncation point and range, as well as altering the 

location of the mean and increasing variability. The proposed index, CTN-p, will be 

compared with traditional PCIs, such as Cp and Cpk. Six scenarios were examined based 

on two different groups: the two-sided truncation-based and the one-sided truncation-

based groups. The sensitivity analysis testing utilizes various factors to include the 

truncation points, range, mean, and variance. The scenario settings, whose results are 

illustrated in Figure 2.2(a)-(f), are summarized and shown in Table 2.1. Each graph 

consists of three different lines which represent the characteristic of the proposed 

truncation-based PCIs, the traditional PCIs, and the ratio between the compared PCIs 

( /p p TN pr C C  and /pk pk TN pkr C C  ). If the ratio is equal to one, both PCIs provide 

identical values. Given the settings 0  , 2 1  ,    
two-sided

, 3, 3a b   , 
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   
one-sided

, ,1 a b   , and 6  , where a is the left truncation point (LSL), b is the right 

truncation point (USL), and b a   , the results are shown in Figures 2.3 and 2.4.  

The first scenario aims to capture the effect of altering the truncation range. For 

the two-sided truncated normal distribution, when both truncation points are shifted away 

symmetrically from the specification midpoint   / 2c USL LSL  , the effect of 

truncation is small, as shown in Figure 2.3(a)-(b). In Scenario 2, where the mean is 

relocated from the LSL to the USL (from a to b), we observe that the difference between 

the ratios is larger when the mean is shifted away from the midpoint, as shown in Figure 

2.3(c)-(d). For the third scenario, when the variance is increased, both the customer-

perceived and traditional PCIs demonstrate similar trends in their index values, as shown 

in Figure 2.3(e)-(f).  

For the one-sided truncation-based scenario, the effect of decreasing the 

truncation range by moving the truncation point from b to a  is a significant change in the 

increase of kurtosis for the distribution. While the Cp and the Cpk values decrease 

proportionally to the truncation range, the TN pC  and the TN pkC   index values decrease 

quadratically, as depicted in Figure 2.4(a)-(b). The location of the mean also affects the 

PCI value in the one-sided truncation - specifically, it is at the specification midpoint 

where we observe similar values among the different PCIs, with variation elsewhere, as 

shown in Figure 2.4(c)-(d). Furthermore, as variability increases, the truncation-based 

PCI values tend toward the traditional PCI values – the difference observed is greater for 

the one-sided truncation-based scenario than that of the two-sided truncation based 
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scenario, as shown in Figure 2.4(e)-(f). Based on these results, the customer-perceived 

PCIs are recommended when the mean is not located at the specification midpoint, and 

the right truncation point is less than 3.5  3.5xa z   or the left truncation point is 

larger than -3.5  3.5xb z   , where   /xz x    . 

    
                (a)  Scenario 1      (b) Scenario 2                         (c) Scenario 3                                                       

 

   
                    (d)  Scenario 4         (e) Scenario 5                            (f) Scenario 6 

Figure 2.2 Truncated distributions under different scenarios  
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Table 2.1 Sensitivity analysis scenarios 

 Sensitivity analysis setting 

    [a, b]   

Scenario 1: 

Two-sided truncation with 

symmetric truncation points 

Fixed 

(0) 

Fixed 

(1) 

Varied 

[-0.1, 0.1] to [-3.5, 3.5] 

Varied 

(0.2 to 7) 

Scenario 2: 

Symmetric two-sided truncated 

distribution with varied mean  

Varied 

(-3 to 3) 

Fixed 

(1) 

Fixed 

[-3, 3] 

 

Fixed 

(6) 

Scenario 3: 

Symmetric two-sided truncated 

distribution with varied variance 

Fixed 

(0) 

 

Varied 

(1 to 3.5) 

Fixed 

[-3, 3] 

 

Fixed 

(6) 

Scenario 4:  

One-sided truncation  

Fixed 

(0) 

Fixed 

(1) 

Varied 

[-3.5, -3.4] to [-3.5, 3.5] 

Varied 

(0.2 to 7) 

Scenario 5:  

One-sided truncated distribution 

with varied mean  

Varied 

(-∞ to 1) 

Fixed 

(1) 

Fixed 

[-∞, 1] 

 

Fixed 

(6) 

Scenario 6:  

One-sided truncated distribution 

with varied variance 

Fixed 

(0) 

Varied 

(1 to 3.5) 

Fixed 

[-∞, 1] 

 

Fixed 

(6) 

2.5 Numerical example 

A chemical company supplies a chemical solvent to three customers, companies 

A, B, and C, with three different specifications on the same product. Products are sorted 

according to each customer’s specifications and the company ships the product to the 

customers within their specifications, as shown in Figure 2.5. This example was first 

published in Polansky et al. (1998). The process distribution is assumed normal with a 

process mean of 0 and a variance of 1. The customer specifications are given as follows:  

(1) Customer A : LSL = -1.0 and USL = 1.0 

(2) Customer B : LSL = 0.5 and USL = 2.0 

(3) Customer C : LSL = 0 and USL = 1.5 

The data for each customer is shown in Table 2.2, whereby the sequence of the data is 

read from top to bottom in each column.  
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(a)              (b) 

       
 (c)              (d) 

        
(e)              (f) 

 

Figure 2.3 Sensitivity analysis results for scenario 1 in (a) and (b), scenario 2 in (c),(d), 

and scenario 3 in (e),(f). 

a) The NTB-Type case 

The data for customer A is chosen to illustrate the proposed NTB-type of the 

truncated normal distribution based PCI. Given that the LSL = -1, USL = 1,   = 0, and 

 =1, the truncated mean and variance can be calculated as 
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(a)              (b)  

      
(c)              (d) 

        
(e)              (f) 

 

Figure 2.4 Sensitivity analysis results for scenario 4 in (a) and (b), scenario 5 in (c) and 

(d), and scenario 6 in (e) and (f). 

 
   

   

1 0 1 0

0.2420 0.24201 1
0 1 0

1 0 1 0Φ Φ 0.8413 0.1587
Φ Φ

1 1

LSL USL

TN

USL LSL

z z

z z

 
 

  

      
                               

    

 

and   
       

   

   

   

2

2 1
Φ Φ Φ Φ

LSL LSL USL USL LSL USL

TN

USL LSL USL LSL

z z z z z z

z z z z

   
 

     
         

  



 28 

        

  

Figure 2.5 Illustrative truncated distributions associated with three customers 
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The process capability indices are obtained from Equations (2.6) through (2.9) as follows 

 1 1
0.6178

6  6  0.5396
TN p

TN

USL LSL
C




 
  


, 

 1 0
0.6178

3  3  0.5396

TN
TN pu

TN

USL
C







  


   

 0 1
0.6178

3  3 0.5396

TN
TN pl

TN

LSL
C






 
  


  ,  ,   0.6178TN pk TN pu TN plC min C C         

  

(b) The truncated distribution for customer A (a) The distributions with the specification 

limits for each customer 

(d) The truncated distribution for customer C (c) The truncated distribution for customer B 
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Table 2.2 Data of the customers  

Customer A Customer B Customer C 
-

0.3314 0.3181 0.3995 -0.9821 -0.6882 1.1406 0.9594 0.5850 0.5406 0.7355 0.3467 1.2699 0.3117 0.4415 0.7530 

0.9871 -0.9333 -0.0249 0.5218 0.8087 0.6138 1.7288 0.8751 0.7356 1.1082 1.0546 0.3202 0.0924 0.6491 0.9401 

-

0.0222 0.9424 0.2824 -0.3579 0.9668 1.0374 1.7490 0.7996 0.9462 0.5758 0.5673 1.3605 0.9591 0.5836 0.2313 

-

0.1130 -0.2151 0.7865 0.8831 -0.0197 1.3188 0.9031 0.8934 1.0329 0.5084 0.2269 0.6790 0.4091 1.1681 0.9829 

0.0585 0.2964 -0.2800 0.0085 -0.3628 0.7905 1.5853 1.3405 1.8386 0.7622 0.1113 0.2993 0.1137 0.2129 0.2120 

-

0.4999 -0.5243 0.0741 -0.1524 -0.7510 0.8623 1.4824 1.1584 0.7914 0.7295 0.7628 1.3471 0.8687 0.0686 0.4409 

-

0.0676 0.0790 0.3984 0.7267 -0.2529 0.8770 0.6876 1.2322 0.5323 0.6744 1.1362 0.1241 1.1161 0.3874 0.1360 

-

0.1426 0.9448 0.5491 0.9173 0.8778 0.7615 0.9814 1.5953 0.8678 1.4955 0.3228 0.9451 0.8438 0.0676 0.0207 

0.0519 0.5985 -0.1320 -0.6884 -0.3272 1.1473 0.5594 0.7797 1.5403 1.5533 0.7295 0.4653 0.5284 1.0303 0.3291 

0.6074 0.9539 0.0857 -0.7616 0.6671 1.1369 1.5243 0.9859 0.7377 1.9755 0.0302 0.7422 0.5711 0.8494 0.7975 

0.8159 0.2884 0.2524 0.4083 -0.9650 1.1099 1.5907 0.7457 1.8796 1.2574 0.8329 0.1912 0.6166 0.0965 0.2843 

-

0.7168 0.2427 0.2838 0.8312 0.6599 0.5236 0.6842 1.2462 1.0946 1.0963 0.7761 0.7005 0.1574 1.0634 0.0750 

0.4865 0.2178 -0.1875 -0.1620 0.9484 1.3765 0.8826 0.7021 1.7426 1.3252 0.1942 0.9106 0.5871 0.2685 0.6785 

0.7044 -0.9101 0.1434 0.6199 -0.4557 0.6238 1.0611 0.8859 0.6368 0.8379 0.0161 0.2735 1.1293 0.7615 0.5379 

0.0026 0.2207 0.5125 0.6892 0.4990 1.2996 0.7719 0.5550 1.6381 0.8758 0.5083 0.6930 0.5776 0.0753 0.7954 

0.7188 0.9643 -0.9541 0.0960 0.4609 1.1196 0.5555 1.3757 1.0401 1.3272 1.1085 0.1773 0.3160 0.0727 1.2133 

0.6194 0.0359 0.5481 0.1275 0.3393 0.8620 0.9493 1.9274 1.1346 0.8109 0.5458 0.1725 0.5196 0.7597 1.0395 

0.9915 0.0055 0.2320 0.9682 -0.8213 1.1570 1.8238 1.3392 1.6988 1.2029 0.3832 0.2601 0.0418 0.9121 0.8435 

0.9688 0.3119 0.3708 0.6984 0.8547 1.5462 0.7122 1.2931 1.0386 1.1110 0.1489 0.0524 0.1468 0.3237 0.7018 

0.2022 0.6260 0.3297 -0.7264 -0.0782 0.7522 0.5110 0.8669 1.8537 0.7924 0.1426 1.0624 0.5885 0.0725 1.1738 

b) The STB-Type case 

For the STB-type quality characteristic, the data for customer C is used to 

demonstrate this calculation. Given that the USL = 1.5, 0TS   and 1  , 
TSC is 

obtained as follows 

From 
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Using Equation (2.12), we then obtain 
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c) The LTB-Type case 

The data for customer B is used to illustrate an LTB-type characteristic. The LSL 

is given as 0.5, with the process mean and variance remaining the same at 0 and 1, 

respectively. The LTB-type truncated normal distribution is used to measure this case as 

follows 

Since 
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From Equation (2.15), we have that 
1.1413   0.5

0.7706
3  3  0.2774

TL
TL

TL

LSL
C





 
  


  

2.6 Comparison of proposed PCIs and traditional PCIs  

2.6.1 Traditional PCIs 

Using the numerical example in Section 2.5, the PCIs are calculated directly from 

the process mean, variance, and specification limits for each customer by assuming that 

the process is normally distributed. The capability indices are obtained through the 

following equations:  
6

p

USL LSL
C




  , and  pkC =min , pu plC C  where  

3
pl

LSL
C






  

and  
3

pu

USL
C






 . The results are shown in Table 2.4.  

2.6.2 The data transformation method  

Considering the distributions depicted in Figures 2.5(a)-(d), the truncated normal 

distribution appears to be a more reasonable fit than that of the normal distribution. In 

this case, as suggested in Polansky et al. (1998) and Chou et al. (1998), the truncated 

normal data needs to be transformed to satisfy the normality assumption in order to 

obtain the true PCI values. After transforming the data using the Johnson data 

transformation method, the non-normal data and its corresponding specification limits 

then meet the normality requirement. Using Minitab®, the transforming equations for 

each customer were obtained; in Table 2.3, the transformation critical values, including 

the p-value, Z value, transformation type, and transformation function are presented. The 

transformed specification limits, mean, variance, and the calculated PCIs values are then 
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shown in Table 2.4. Using the equations shown in Section 2.6.1, the traditional PCIs 

( ,  ,  ,  )p pl pu pkC C C C  are then obtained for the purpose of comparison. As part of the 

comparison, the probability plot of the original data (non-normal) and the transformed 

data (normal) are graphed in Figure 2.6(a)-(f). It is noted that the PCI values for 

Customer C could not be calculated – the logarithm term returned a complex number 

when the specification limits were substituted into the transformation function, a 

limitation that is generally found in some instances with the Johnson transformation 

application.  

2.6.3 The proposed customer-perceived PCIs based on the truncated normal 

distribution concept 

The same data set is used for testing our proposed models. Since the data has both 

USL and LSL, the NTB-type truncated normal distribution PCIs, TN plC  , TN puC  , TN plC  , 

and TN pkC  , will be used in this comparison. The process mean and variance are 

substituted by the two-sided truncated normal distribution mean  TN  and variance 

  TN using Equations (2.2) and (2.6), respectively, and the specification limits are used 

as the truncation points. Shown in Table 2.4 are the process capability index values 

obtained from Equations (2.6) through (2.9). Of note is the fact that the proposed PCI 

values are higher than the values obtained from the traditional PCIs method in Table 2.4, 

as illustrated in Figure 2.7(a)-(c). 
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Table 2.3 Critical values obtained using the Johnson transformation method 

Data 
P-value for  

the best fit 

Z value for  

the best fit 

Transformation 

type 
Transformation function 

Customer A 0.2641 0.54 Sb 
x  1  .80074 

0.851737  1  .01175 ln   
1.20522   x 

 


  


 
 
 

  

Customer B 0.8054 0.82 Sb 
x   0.452505 

0.710664   0.932677  ln  
2.19812  x 


 



 
 
 

  

Customer C 0.8132 0.67 Sb 
x   0.00053786

0.413628   0.618295   ln
1.38902   x 


 



 
 
 

  

 

    
(a)                (b)              (c)  

 

     
(d)      (e)         (f)  

Figure 2.6 Probability plot of the original data of (a) customer A, (b) customer B, (c) 

customer C, and the probability plot of the transformed data of (d) customer A, (e) 

customer B, and (f) customer C. 
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2.6.4 Studies on linking the proposed PCIs to defective rates  

A defective rate is another convenient indicator of measuring process 

performance. The defective rate is the number of defective parts per total inspected 

samples. Assuming that the quality characteristic X is normally distributed, 

 2~ ,X N   , the defective rate is expressed as:  

               Defective rate 1

USL

LSL

f x dx                    (2.16) 

The proportion of defective units is affected by the sigma level and Cp value, as shown in 

Table 2.5.  

In this study, a customer’s perception of the number of defective units is found to 

be zero, since all defective units are assumed to be eliminated during the inspection and 

screening processes. Thus, by using Equation (2.16), the Cpk values from Table 2.4, the 

defective rate is calculated for each of the indices and is shown in Table 2.6. The results 

present evidence that the proposed PCIs have a lower defective rate when compared to 

traditional PCIs; in Figure 2.7(d), a defective rate comparison is illustrated.   

2.7 Conclusions 

Process capability indices are a vital means of understanding and interpreting a 

process’ ability to manufacture a product that meets specifications. Several process 

capability indices that apply a manufacturer’s point of view, such as Cp, Cpl, and Cpu, 

have gained considerable popularity in many industries. As part of customer-driven 

continuous quality improvement, the proposed customer-perceived capability indices 

developed in this chapter fill this void. In this chapter, we observed that the proposed 
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process capability indices that the customer actually perceives offer higher ratios and 

lower parts per million than the manufacturer-focused traditional process capability 

indices. It is believed that the proposed capability indices can offer some valuable 

insights as a complementary system of measures for process performance. An analysis 

diagram of the customer-perceived process capability indices is depicted in Figure 2.8. 

New findings have the potential to impact a wide range of many other engineering and 

science problems such as those found in process improvement, allowing for a more 

accurate understanding of process capability analysis.  

 

Table 2.4 Process capability indices obtained from the comparison study 
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A -1 1 0 0.3717 0.8969 0.8969 0.8969 0.8969 
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Table 2.5 Defective rate for the Cpk 

Cpk Value Sigma Level % Defective Defective Rate (ppm) 

0.33 1 0.317310508 317,311 

0.50 1.5 0.133614403 133,614 

0.67 2 0.045500264 45,500 

0.83 2.5 0.012419331 12,419 

1.00 3 0.002699796 2,700 

1.17 3.5 0.000465258 465 

1.33 4 0.000063342 63 

1.50 4.5 0.000006795 7 

1.67 5 0.000000573 1 

1.83 5.5 0.000000038 0 

2.00 6 0.000000002 0 

 

  
(a)                (b) 

  
(c)               (d) 

Figure 2.7 Comparison of the traditional PCI values, transformed data based PCI values, 

and the proposed truncated normal based PCI values for (a) customer A, (b) customer B, 

(c) customer C, and (d) the comparison of defective rates. 

 

  



 37 

Table 2.6 The index and defective rate comparison 

Customer 

Method 

The traditional PCIs 
The data transformation based 

PCIs 

Customer’s perceived PCIs 

based on the truncated normal 

distribution 

Cpk 
Defective Rate 

(ppm) 
Cpk 

Defective Rate 

(ppm) 
 CTN-pk 

Defective Rate 

(ppm) 

A 0.61728 64,049 0.6385 55,429 0.89687 7,132 

B 0.46154 166,169 0.7874 18,167 1.64381 1 

C 0.50407 130,480 * * 1.27229 135 
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Figure 2.8 Analysis diagram for using customer-perceived PCIs 
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CHAPTER 3  

THE TARGET-BASED PROCESS CAPABILITY INDICES  

FOR THE TRUNCATED NORMAL DISTRIBUTION  

AND THE CONFIDENCE INTERVAL ESTIMATORS 

3.1 Introduction 

Process capability analysis, which is a technique frequently used to measure 

process performance, involves a comparison of product output against its specifications. 

To do so, statistical parameters for quality control, such as the process mean and variance 

are investigated. The process mean for a particular product characteristic indicates the 

average value of its observations, while the process variance depicts the spread of these 

observations around the mean. To consider the position of the mean or the relationship 

between variance and a characteristic’s specifications alone is usually not sufficient 

enough for comparing different processes. A benchmark for comparison such as the 

sigma level is needed, where processes that have natural output at higher sigma levels 

may be considered more capable. For this reason, process capability indices became very 

popular – a specific index value may be obtained, just by computing the ratio between the 

natural variability of an in-control process and its tolerance. Larger index values suggest 

that the number of product defects is small and the process is well-performed.  

Recently, researchers have sought to relax the assumption of normality for 

processes in the development of PCIs. These efforts have considered either transforming 

non-normal data to satisfy using PCIs based on a normal distribution, or altering the 

distribution itself, such as indices developed with the log-normal distribution as its basis. 
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Another trend in the PCI research is the extension toward measuring process performance 

when multiple quality characteristics are considered. These multivariate PCIs included 

work with data transformations, new approaches in approximation, and even vector-

valued results as a means to provide a greater sense of capability. 

When observations on a product’s characteristics fail to fall within the 

specification limits, the product is typically scrapped. As a result, the actual distribution 

of observations after inspection that is recognized (or perceived) by the customer, is 

truncated. If PCIs based on the assumption of normality are used to assess process 

performance where the underlying distribution is actually truncated, it is likely that the 

measurement will be significantly inaccurate. The study of PCIs based on a truncated 

normal distribution was the focus of several studies in the last twenty years. For instance, 

the distribution was used to model a concentrated product in a chemical process by 

Polansky et al. (1998), a supplier’s screened lot by Asokan and Unnithan (1999), the 

tolerance of an assembled gap between a bore and a shaft by Sweet and Tu (2006), a light 

emitting diode production process by Pearn et al. (2007), the yield of a semiconductor 

manufacturing practice in Tao and Xinzhang (2012), and non-target based quality 

characteristics by Wu et al. (2015) and Khamkanya, et al. (2016).  

To accurately evaluate and compare the capability among different processes, it is 

imperative that an appropriate model be chosen for the underlying distribution of 

characteristic observations. With little previous work done on the theoretical foundation 

of PCIs using the truncated normal distribution, this chapter proposes a set of indices that 

incorporate the distribution in their development. We refer to these indices as “posterior” 
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process capability indices, since they are formulated based upon the underlying 

distribution following product inspection. A loss function is also included to account for 

the diminished product quality when the process mean deviates from the ideal target 

value. After providing the posterior PCI development details and insights in Section 3.3, 

a simulation study is introduced in Section 3.4 to facilitate comparing traditional PCIs 

with the proposed posterior PCIs. Subsequently, numerical examples are presented in 

Section 3.5 to illustrate their use in practice, given an industrial context. Finally, prior to 

concluding the manuscript, the confidence interval bounds for the proposed indices are 

derived, so that various levels of accuracy associated with sample size may be calculated. 

3.2 Traditional target-based process capability indices  

In measuring the capability of a process, a PCI is designed to quantify the 

relationship between the actual observations of a quality characteristic and its 

specification limits. Several well-known PCIs, such as Cp, Cpk , and Cpm, are widely cited 

and continue to be studied. The first PCI to appear in the research literature, introduced 

by Kane (1986), was Cp. Assuming that the process mean is centered at its target value, 

Cp not only computed its ratio based upon a standard six sigma spread, but also provided 

an interpretation of its corresponding defective rate. For instance, a process with 

observations following a normal distribution and Cp = 1.0 would have 0.27 percent of its 

observations beyond the specification limits. Unfortunately, however, this index fails to 

account for both the mean and variance in its measurement of process performance. To 

account for the simultaneous position of the mean and the spread of observations, the 

index, Cpk, was introduced. While Cpk was adept at measuring process yield in terms of its 
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specification limits, it failed to adequately assess whether the process mean was centered 

on a target value. Hence, Cpk was often used in comparison with Cp, whereby an off-

center process resulted in Cpk < Cp. The performance testing of Cpk is studied in Pearn and 

Lin (2004)  

In order to ensure a product characteristic is achieving its highest level of quality, 

it is necessary to minimize the difference between the process mean and its ideal value, or 

target. Since selling only perfect items to the customer seems impossible in economic 

reality, the interval of the specification limits, or tolerance, is used during an inspection 

process to determine if an item is acceptable (or passing). Although a customer may 

receive an item that has passed its inspection, there may be some level of risk incurred in 

delivering an item that fails to achieve its ideal target value. This risk of receiving an 

imperfect item is frequently referred to as customer loss, and can be represented by 

linear, step, or quadratic loss functions in a model framework, see Cho and Leonard 

(1997). The quadratic loss function, also known as the Taguchi loss function, is well-

known for approximating the loss to the customer. The earliest use of the loss function 

within a process capability index, whereby off-target production may be measured, was 

that of the target-based index, Cpm, proposed independently by Chan et al. (1988) and 

Boyles (1991). The index is defined as    
22  6 ,pmC USL LSL        

 
 where LSL 

and USL are the lower and upper specification limits, respectively,    is the process 

mean, 2  is the process variance, and   represents the target value. Despite the 

improvements offered by Cpm, the index failed to serve as an adequate measure when the 
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position of the target is asymmetric with respect to the specification limits. Furthermore, 

Cpm index values may be identical for several different combinations of the process mean 

and variance. For example, consider two processes with the same set of specification 

limits, A and B, where process A has a mean of 50 and variance of 5, and process B has a 

mean and variance of 53 and 3.83, respectively. Given these settings, Cpm calculates the 

capability of both processes to be 1.0. To address this issue and differentiate among 

identical Cpm values, the Cpmk index was proposed by Pearn et al. (1992) to adequately 

treat this problem.  

Several other variations of Cp, Cpk, and Cpm have been proposed by PCI 

researchers. Vännman (1995) proposed a unified class of indices to generalize the four 

well-known index forms (Cp, Cpk, Cpm and Cpmk), by using two non-negative parameters u 

and v in a composite index  ,pC u v . Chen and Pearn (1997) modified  ,pC u v  and 

proposed a quantile-based PCI,  ,NpC u v , which relaxed the assumption of normality in 

the PCIs. Eslamipoor and Hosseini‐nasab (2016) later incorporated the loss function into 

 ,pC u v  to account for the deterioration in product quality when the mean diverges from 

its target value. An extended version of Cpmk to evaluate both process yield and a 

potential process loss of resubmitted lots is proposed in Wu et al. (2015). Moreover, to 

deal with the non-normal effect of a process distribution, Wang et al. (2016) proposed the 

inverse normalizing transformation method for the process capability index computation.  
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3.3 Development of target-based PCIs using the truncated normal distribution  

Although observations of a quality characteristic for a product may conform to the 

specification limits, an off-target and on-target observation should not be considered the 

same. Taguchi (1986) recognized this and used the loss function to account for the target 

deviation. Given a target value,  , for a nominal-the best type of quality characteristic Y 

assumed to have observations y that are normally distributed, the quadratic loss function 

is given by    
2

NL Y k y   , where k, a proportionality coefficient, may be calculated 

by comparing the known function limit and the amount of loss caused by a defect. In this 

construct, the loss is zero at the target value and increases when y deviates from the target 

in any direction. The average loss of n products is 

 
           

2 2 2
2 2 2

1 2
1 2

   
n
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k y y yk y k y k y
L Y

n n

    
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   
2

1

 
n

N i

i

k
L Y y

n



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     
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L Y k
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  
 

      
   
 
 

      (3.1) 

Taking the expected value of the loss function, we obtain the NTB-type formulation:  

     22   NE L Y k         , where   is the process mean, and 2  is the process 

variance.    
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3.3.1  Model development  

Suppose that the quality characteristic of interest, Y, is normally distributed with 

process mean and variance,   and 2 , respectively, and yl and yu represent the lower 

and upper specification limits for the process, respectively. Moreover, let TY  represent 

the truncated normal random variable with observations Ty  for this distribution. Then, 

the probability density function of TY  is defined as  
 

 
   

u

l

T

T y

Y
y

f y
f Y

f y dy



, and the 

cumulative probability density function of TY  is written as  
 

 
 

T

u

l

y

T

T Ty

Y
y

f y
F Y dy

f y dy

 


. 

The truncated mean and the truncated variance are obtained from  T T T Ty f Y dy



   

and     
2

2 2 .T T T T T T Ty f Y dy y f Y dy
 

 
    When l T uy y y  , the truncated mean 

and variance are formulated as 
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           (3.3) 

where l
l

y
z






 , u

u

y
z






 , and    and  Φ  represent the probability density 

function and cumulative density function for the distribution, respectively. In addition, 
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readers may find more information regarding the statistical inferences and applications of 

the truncated distribution in Cohen (1991), Cha and Cho (2015), and Krenek et al. (2016). 

When Equations (3.1), (3.2), and (3.3) are integrated into the formulation of the 

Cpm index, a target-based PCI for a truncated normal distribution, T pmC  , may be 

introduced as 

       
   
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             (3.4) 

In addition, to increase the sensitivity of measurements to the deviation of the 

process mean from the desired target, a truncated formulation based upon pmkC  may also 

be introduced. Pearn et al. (1992) defined Cpmk as 
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For the truncated version of this index, the Cpk term is replaced with CT-pk, where  
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Using Equations (3.5) and (3.6), we can then formulate T pmkC  as a truncated 

version of pmkC , which is expressed as 
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A similar procedure was performed to develop the truncated posterior index, T pC   

modelled from the traditional Cp.      
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3.3.2 Insights 

 To observe the behavior of the index, T pmC  , we first examined the effect of the 

mean location within the truncation range on its measurements. Since one of the most 

important assumptions of pmC  is that the mean is located in the center within the interval 

of the specification limits, a specific objective of the study is to see if the proposed index 

can relax this assumption. In testing the indices, the variables are initially fixed, with the 

target set to zero, standard deviation to one, and the mean ranging from -4 to 4. In Figure 

3.1(a), where [LSL, USL] = [-4, 4], it is observed that both pmC  and T pmC   have similar 

trends in measurement. If the truncation points [ , ]l uy y  approach ( , )  , it can be seen 

that the truncated normal distribution becomes the normal distribution, and hence T pmC 

approaches .pmC  When the specification range is tightened, both PCI values decrease, as 

depicted in Figures 3.1(b), 3.1(c), and 3.1(d). However, the T pmC   index values are 

observed to be higher than pmC , especially when the mean is not centered on the target.  

 We also examined how the indices responded to an asymmetric tolerance setting 

as opposed to the target being positioned at the specification interval midpoint (m), 

  2m USL LSL  . Given that 0u  , 1  , m  , LSL = [-4, 4) and USL = 4; when 

the target is at the midpoint of the interval and the specification widens asymmetrically, 

both pmC and T pmC  increase quadratically. The difference between these indices 

decreases when the specification range is expanded, as depicted in Figure 3.2(a). As can 

be seen in Figure 3.2(b), we study a characteristic of pmC when target is not centered with 
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asymmetric changed specifications by setting 0u   , 1  , LSL = [-4, 4) and USL = 4. 

We found that pmC  increases linearly because pmC  computes its specification range as 

USL-LSL, and so we cannot differentiate shifts in the range, with the intervals [4,0] and  

[-2, 2], and each has a specification range of 4. As a result, when the process mean and 

variance are fixed and the specification range is widened, pmC  exhibits a linear increase 

in measurement regardless of the type of specification range (symmetric or asymmetric). 

In contrast, since the truncated mean and variance are derived using the specific bounds 

for the probability density function and the cumulative density function, T pmC  exhibits a 

quadratic increase in measurement with asymmetric adjustments in the specification 

limits. In Figure 3.2(c), we observe the effect of broadening the specification range 

around a centered target, as the settings change to u m  , 1  , LSL = [-4, 0) and 

USL = (0, 4]. In this case, the difference between pmC  and T pmC   decreases as the 

specification interval width increases. In Figure 3.2(d), we use the same settings as Figure 

3.2(c) except 1.05   to study the characteristic of the indices when the process variance 

is increased. The result shows that T pmC   is more responsive to the increased variance 

than pmC . In conclusion, if the statement   2m USL LSL     is valid, pmC is 

recommended for its ease of calculation; otherwise, T pmC  is recommended as a viable 

alternative for evaluating process capability. 
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Figure 3.1 The index value of T pmC  and pmC under different specification limits 

3.4 Comparison study of PCIs  

After gaining some insights on the behavior of truncated PCIs, a comparison 

study is performed between the proposed posterior indices and their complementary 

traditional formulation. Generally, simulation techniques are employed in the comparison 

of PCIs to assess the efficacy and accuracy of their measurement. For example, English 

and Taylor (1993) used fixed values of Cp and Cpk in their simulation model to investigate 

the robustness of the indices to non-normality, while Rivera et al. (1995), Tang and Than 

(1999), and Hosseinifard et al. (2009) utilized the actual number of non-conforming units 

to evaluate the measurement of their respective PCIs.   

 

(a) [LSL, USL] = [-4, 4]   

 
(b) [LSL, USL] = [-3, 3]   

 

(c) [LSL, USL] = [-2, 2]   

 

(d) [LSL, USL] = [-1, 1]   
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Figure 3.2 Index values of T pmC  and pmC  

In order to evaluate the performance of traditional PCIs, Cp, Cpk, Cpm and Cpmk, 

against their truncated posterior counterparts, CT-p, CT-pk, CT-pm and CT-pmk, respectively, 

the sample sizes are varied under a diverse array of settings. Furthermore, greater focus is 

given to two factors that may have a high impact on the difference in PCI values, the 

truncation range and the location of the mean. Since it is known that a narrow truncation 

range tends to create leptokurtic conditions (i.e. a positive kurtosis or high-peaked bell 

curve), two settings of the truncation range are implemented: narrow and wide truncation 

ranges. In addition, three different mean locations are applied to gain an understanding of 

(a) , 0m    with asymmetric 

specification adjustments 

 

(b) 0    with asymmetric 

specification adjustments 

 

(c) m    with symmetric 

specification adjustments 

 

(d) , 1.05m      with 

symmetric specification 

adjustments 
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PCI measurement for the off-target case. In summary, a simulation model programmed in 

Matlab® was developed with six testing scenarios (see Matlab code in Appendix D), 

whose settings are shown in Table 3.1. Also, the simulation procedure is depicted in 

Figure 3.3. 

Table 3.1 Scenario settings 

Scenario Truncation range Mean LSL USL 

1 Wide 0 -3 3 

2 Wide 1 -3 3 

3 Wide -1 -3 3 

4 Narrow 0 -2 2 

5 Narrow 1 -2 2 

6 Narrow -1 -2 2 

 

3.4.1 Simulation Steps  

Step 1: Generate the population:  A set of the population (Y) is generated that has 

Cp = 1.0, by assuming that 
2( , )Y N   , where  1,0,1   ,   6USL LSL   , 

where  1,0,1   ,   6USL LSL   , and [LSL, USL] = {[-2,2], [-3,3]}, depending on 

the specific scenario setting.  

Step 2: Evaluate the process capability index of the population:  The traditional 

PCIs  , , ,p pk pm pmkC C C C , along with their complementary truncated indices 

 , , ,T p T pk T pm T pmkC C C C    , are calculated to further use as a baseline. The sample mean 

of the traditional PCIs is obtained from 
1

ˆ
n

i

i

x n


  and the sample variance is 
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calculated from  2

1

ˆ ( 1)
n

i

i

x x n


   ; for the truncated PCI, the mean and variance 

are obtained from Eqautions (3.2) and (3.3), respectively. For the target-based PCIs, the 

given target is 1   for all scenarios. 

Step 3:  Draw samples randomly. A sample is then taken with replacement among 

four different sample sizes from the generated population in Step 1, where n = 50, 100, 

150, 250, or 500; as such, this represents a sample rate of 1%, 2%, 3%, 5%, or 10%, 

respectively. 

Step 4: Calculate descriptive statistics and PCIs from samples. To compare index 

values, the sample mean and variance are considered. The PCIs are then computed 

similar to Step 2. 

Step 5:  Repeat Steps 2 to 4 until all of the index values are obtained for the entire 

settings of sample size.  

Step 6: Repeat Steps 3 to 5 (10,000 replications). The average value of PCIs with 

different sample sizes are computed. 

Step 7: Repeat Steps 1-6 for all scenarios.  
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Generate population 

(N = 5,000), 

where Cp = 1.0

Calculate PCIs of 

the population 
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and plot results

Start

End
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10,000 times?
Yes
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Figure 3.3 Simulation procedure 

3.4.2 Results and discussions 

The simulation study is conducted to enable a comparison of the characteristics 

among the truncated posterior indices and their traditional index counterparts. The test 

was designed in a manner to facilitate observing the effects of altering the truncation 

range, the location of the mean, or both, on the corresponding index values. Scenario 1 

 is used to validate the accuracy of the simulation model. For this scenario, the mean and 
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target are set to zero and the truncation range is set at the lower level (wide specification 

interval), where the LSL and USL are -3 and 3, respectively. At this setting, all of the 

index values are expected to be equivalent to 1.0; the results shown in Table 3.2 and 

Figure 3.4 confirm this expectation. The reason behind this result is that when the mean 

is located at the target (  ), the bias term,  
2

   equals zero, and the Cpm 

formulation reduces to Cp and pmkC reduces to pkC . Moreover, when the specification 

limits are symmetric about the target, we get pl pu pC C C  ; hence

min{ , }pk pl pu pC C C C  .  

Scenario 2 and 3 are designed to verify the effects of shifted mean, i.e.  , 

when the truncation range is wide, which facilitates a comparison of the characteristics in 

Cpk, Cpm, and Cpmk. In Scenario 2, the mean is set to the left-side of the target,  , and 

in Scenario 3, is set to the right-side of the target,   . In doing so, as can be seen in 

Scenario 2 in Table 3.3 and Figures 3.5 and Scenario 3 in Table 3.4 and Figure 3.6, the 

Cp values remain at 1.0 due to the index being insensitive to the location of the mean, 

while the values for Cpk, Cpm, and Cpmk drop below 1.0, suggesting the ability to measure 

a deviation from the target.  Moreover, when the truncation range for these scenarios is 

wide, both traditional and truncated posterior PCI values are close in proximity, yet 

slightly higher for the truncated indices.  

To examine the responsiveness of the indices when the truncation range is set at 

the higher level (or narrowing specification interval), the experiments are repeated for all 

of the scenarios with the [LSL, USL] set to [-2, 2]. In Scenario 4, where  , the Cp, 
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Cpk, Cpm and Cpmk values remain at 1.0, see Table 3.5 and Figure 3.7. For Scenarios 5 and 

6, the observed trends are similar to that of Scenarios 2 and 3. With the narrow 

specification interval setting, however, the truncated posterior index values are 

significantly higher than that of the traditional PCIs, as shown in Table 3.6 and Figures 

3.8 for Scenario 5, and in Table 3.7 and Figure 3.9 for Scenario 6.  

In general, the results show that the truncated Cp-based and Cpm-based posterior 

indices provide higher estimated values when the specification interval is narrow, in 

comparison to the traditional PCIs. With this considerable differentiation in 

measurement, when it is clear that the underlying process distribution is truncated, the 

proposed posterior indices are the recommended alternative. When the mean is on-target 

for a process, CT-p is the recommended capability measurement, for its sensitivity, ease of 

use, and dual ability to provide an estimate of the defect rate. For these same reasons, 

when the mean is off-target for a process, CT-pk serves as a more viable measurement tool. 

However, if process bias is a concern, either the CT-pm or CT-pmk indices may be useful, 

based upon the user’s preferences. Both indices provide a similar value; yet, CT-pm is 

easier to compute, while CT-pmk is more sensitive to the effects of narrowing or widening 

the truncation range.  

Table 3.2 Average PCI values obtained from Scenario 1 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0154 1.0303 1.0148 1.0298 1.0159 1.0309 0.9765 0.9919 1.0047 1.0197 0.9666 0.9819 

100 1.0074 1.0217 1.0066 1.0209 1.0082 1.0225 0.9803 0.9950 1.0022 1.0166 0.9753 0.9900 

150 1.0052 1.0193 1.0053 1.0194 1.0051 1.0192 0.9831 0.9975 1.0018 1.0159 0.9798 0.9942 

250 1.0030 1.0170 1.0032 1.0171 1.0029 1.0169 0.9856 0.9997 1.0009 1.0148 0.9835 0.9976 

500 1.0019 1.0157 1.0018 1.0156 1.0020 1.0158 0.9894 1.0034 1.0008 1.0146 0.9884 1.0023 

5,000 1.0001 1.0137 1.0001 1.0137 1.0001 1.0137 0.9963 1.0099 1.0000 1.0136 0.9962 1.0098 
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Table 3.3 Average PCI values obtained from Scenario 2 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0151 1.0771 1.3543 1.4176 0.6759 0.7365 0.6759 0.7365 0.7106 0.7523 0.4755 0.5179 

100 1.0081 1.0700 1.3438 1.4071 0.6723 0.7329 0.6723 0.7329 0.7098 0.7518 0.4745 0.5172 

150 1.0048 1.0669 1.3395 1.4029 0.6701 0.7309 0.6701 0.7309 0.7087 0.7510 0.4734 0.5163 

250 1.0029 1.0653 1.3376 1.4013 0.6682 0.7293 0.6682 0.7293 0.7075 0.7500 0.4719 0.5150 

500 1.0017 1.0640 1.3356 1.3993 0.6677 0.7288 0.6677 0.7288 0.7076 0.7501 0.4719 0.5150 

5,000 1.0001 1.0625 1.3334 1.3971 0.6667 0.7279 0.6667 0.7279 0.7072 0.7498 0.4715 0.5147 

Table 3.4 Average PCI values obtained from Scenario 3 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0163 1.0782 0.6769 0.7373 1.3557 1.4190 0.6769 0.7373 0.7113 0.7528 0.4761 0.5184 

100 1.0065 1.0686 0.6713 0.7321 1.3417 1.4050 0.6713 0.7321 0.7093 0.7515 0.4743 0.5171 

150 1.0047 1.0670 0.6694 0.7304 1.3399 1.4035 0.6694 0.7304 0.7081 0.7505 0.4726 0.5156 

250 1.0027 1.0648 0.6688 0.7297 1.3365 1.4000 0.6688 0.7297 0.7083 0.7507 0.4729 0.5159 

500 1.0022 1.0644 0.6685 0.7294 1.3359 1.3994 0.6685 0.7294 0.7082 0.7506 0.4726 0.5156 

5,000 1.0002 1.0626 0.6668 0.7279 1.3337 1.3974 0.6668 0.7279 0.7071 0.7498 0.4714 0.5146 

Table 3.5 Average PCI values obtained from Scenario 4 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0159 1.0387 1.0171 1.0399 1.0147 1.0375 0.9779 1.0014 1.0056 1.0286 0.9683 0.9917 

100 1.0084 1.0301 1.0081 1.0298 1.0086 1.0303 0.9814 1.0036 1.0032 1.0250 0.9765 0.9986 

150 1.0056 1.0270 1.0053 1.0267 1.0060 1.0274 0.9833 1.0051 1.0021 1.0235 0.9799 1.0017 

250 1.0034 1.0245 1.0032 1.0243 1.0036 1.0247 0.9861 1.0076 1.0013 1.0225 0.9841 1.0055 

500 1.0016 1.0225 1.0015 1.0224 1.0017 1.0226 0.9892 1.0103 1.0005 1.0214 0.9881 1.0092 

5,000 1.0001 1.0207 1.0001 1.0207 1.0001 1.0207 0.9963 1.0170 1.0000 1.0206 0.9962 1.0169 

Table 3.6 Average PCI values obtained from Scenario 5 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0145 1.2609 1.5209 1.8062 0.5081 0.7155 0.5081 0.7155 0.5578 0.6583 0.2812 0.3951 

100 1.0062 1.2517 1.5086 1.7913 0.5039 0.7120 0.5039 0.7120 0.5564 0.6581 0.2795 0.3945 

150 1.0053 1.2514 1.5080 1.7915 0.5027 0.7114 0.5027 0.7114 0.5556 0.6576 0.2784 0.3937 

250 1.0030 1.2493 1.5046 1.7881 0.5013 0.7105 0.5013 0.7105 0.5551 0.6575 0.2778 0.3936 

500 1.0017 1.2473 1.5023 1.7845 0.5012 0.7101 0.5012 0.7101 0.5552 0.6577 0.2780 0.3937 

5,000 1.0001 1.2459 1.5001 1.7824 0.5000 0.7094 0.5000 0.7094 0.5547 0.6575 0.2774 0.3935 
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Table 3.7 Average PCI values obtained from Scenario 6 

n Cp CT-p Cpl  CT-pl Cpu CT-pu Cpk CT-pk Cpm CT-pm Cpmk CT-pmk 

50 1.0158 1.2629 0.5081 0.7159 1.5236 1.8098 0.5081 0.7159 0.5576 0.6579 0.2806 0.3945 

100 1.0080 1.2546 0.5039 0.7125 1.5121 1.7966 0.5039 0.7125 0.5560 0.6576 0.2788 0.3938 

150 1.0065 1.2528 0.5032 0.7119 1.5098 1.7938 0.5032 0.7119 0.5558 0.6575 0.2785 0.3936 

250 1.0036 1.2495 0.5019 0.7107 1.5053 1.7883 0.5019 0.7107 0.5554 0.6576 0.2781 0.3937 

500 1.0020 1.2480 0.5010 0.7101 1.5030 1.7858 0.5010 0.7101 0.5550 0.6575 0.2777 0.3935 

5,000 1.0001 1.2460 0.5001 0.7094 1.5002 1.7826 0.5001 0.7094 0.5547 0.6575 0.2774 0.3935 

 

 
Figure 3.4 Results from Scenario 1 (n = 250) 

 
Figure 3.5 Results from Scenario 2 (n = 250) 
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Figure 3.6 Results from Scenario 3 (n = 250) 

 
Figure 3.7 Results from Scenario 4 (n = 250) 

 
Figure 3.8 Results from Scenario 5 (n = 250) 
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Figure 3.9 Results from Scenario 6 (n = 250) 

3.5 Numerical examples  

3.5.1 Chemical concentrate case 

A chemical company supplies a chemical solvent to three customers, companies 

A, B, and C, with three different sets of specifications on the same product. Products are 

sorted in line with each customer’s specifications and the company ships the product to 

the customers according to the truncated distributions shown in Figure 3.10. This 

example was first published in Polansky et al. (1998). The process distribution is assumed 

to be normally distributed with a process mean of 0 and variance of 1. The customer 

specifications are: LSL = -1.0 and USL = 1.0 for Customer A, LSL = 0.5 and USL = 2.0 

for Customer B, and LSL = 0 and USL = 1.5 for Customer C.  
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Figure 3.10 Truncated distribution illustrations associated with three customers  

For Customer A, given that the LSLA = -1, USLA = 1, A  = 0, A =0.54, and  

A =0, the truncated mean and variance can be calculated using Equations (3.2) and (3.3), 

we get 0T  , and 0.3717T  . Consequently, the process capability indices are 

obtained from Equations (3.4) and (3.6) through (3.9) as follows: 0.8969,T pmC    

0.8969,T puC    0.8969,T plC    0.8969,T pkC    and 0.8969.T pmkC    In repeating the 

calculations above, from LSLB = 0.5, USLB = 2, B  = 1.04, B = 0.39, and B = 1.25, we 

obtain T pmC  = 1.6349 and T pmkC  = 1.4974 for Customer B; and, with LSLC = 0,  

(b) The truncated distribution for customer A (b) The distributions with the specification 

limits for each customer 

(d) The truncated distribution for customer C (c) The truncated distribution for customer B 
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USLC = 1.5, C  = 0.725, C = 0.41, and C = 0.725, we have T pmC  = 1.3327 and  

T pmkC  = 1.2705 for Customer C.  

3.5.2 Supplier’s process capability problem  

As noted by Asokan and Unnithan (2007), the submitted lot from a vendor for a 

supplier problem appears to follow a truncated normal distribution (shown by the 

histogram, Figure 3.10). The quality characteristic of interest for this problem is the width 

of a particular component, established at 20 2 mm. The average ( )y  and standard 

deviation of 100 samples is observed to be 20.0876 and 0.9393 mm, respectively. 

 

Figure 3.11 Histogram of the supplier’s submitted lot  

The problem specifies that LSL = 18, USL = 22,   = 20.0876,  =0.9393, and  

 = 20. To find the PCI values for this study, we start by calculating T  and T from 

Equations (3.2) and (3.3), followed by the formulations outlined at Equation (3.4) and 

Equations (3.6) through (3.9). The resulting measurements obtained are T = 20.07056, 

T = 0.8424, T pC  = 0.7914, T pkC  = 0.7635, T pmC  = 0.7886, and T pmkC  = 0.7608. 
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3.6 Confidence intervals for the truncated normal PCIs 

Confidence intervals (CI) for process capability indices provide an alternative 

method for estimating capability, by relaxing the statistical fluctuation that can occur 

with various statistical parameters. Another purpose of using the CI for process capability 

indices is to evaluate the degree of accuracy in calculations pertaining to a specific 

sample size. Since the confidence limit of PCIs may be obtained from estimating only 

variance (for Cp), both mean and variance (for Cpk), and the process bias term (for Cpm), 

each index needs a unique statistical approximation method, as will be discussed later in 

this section. Several closed forms for obtaining the CI of the traditional PCIs have been 

proposed from researchers. Kushler and Hurley (1990) suggested a specific method for 

evaluating the lower confidence interval of Cp, Cpk, and Cpm. In addition, Chou et al. 

(1990) developed lower confidence limits for both Cp and Cpk, Boyles (1991) proposed an 

approximate confidence interval for Cpm, and both Johnson and Kotz (1993), as well as 

Pearn and Kotz (2006), provided a review of confidence interval estimates for the 

traditional indices. 

3.6.1 The approximate confidence intervals for T pC   

Given that ˆ
T pC   is an estimator for T pC  and  ˆ ˆ6T p TC USL LSL    , where ˆ

T  

is the truncated form of the sample standard deviation, it is clear that an estimator for the 

standard deviation is the only parameter needed. The quality characteristic Y is assumed 

to follow a normal distribution,  1 2, ,..., nY y y y , with mean   and standard deviation 

 , whereby ̂  and ̂  represent the sample mean and sample standard deviation of Y. 
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Hence, ̂ is distributed according to the chi-square distribution, 2

1n  , with n-1 degrees of 

freedom, for which 
2

2 2

1
ˆ
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n


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
.  

From Equation (3.3) in Section 3.3.3, we have that 
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2ˆ
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chi-square distribution; hence, 
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
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To estimate the confidence interval for ˆ
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, or 
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     (3.10) 

When multiplying the inverse of the constant term for ˆ
T pC   in Equation (3.10), we have 

2 2
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2 2
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Finally, the100(1 )%  confidence interval for ˆ
T pC   is derived as 

2 2

1, /2 1,1 /2ˆ ˆ,
1 1

n n

T p T pC C
n n

    

 

  
 

   

               (3.12) 

If the desired percentage is not found in the standard chi-square table, the Wilson-

Hilferty method introduced by Johnson and Kotz (1970) can be used to approximate the 

chi-square percentile point, which is expressed as  

3
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,              (3.13) 

where   represents the degrees of freedom for the chi-square, and z is the upper quartile 

of the standard normal distribution. If the sample size is less than ten, it is noted that this 

approximation may not offer a suitable level of precision.  

By substituting formulation (3.13) in (3.12), the 100(1 )%  confidence intervals 

for ˆ
T pC   is derived as  
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 (3.14) 
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3.6.2 The approximate confidence intervals for T pkC   

Estimating the confidence interval for T pkC   involves not only the variance, but 

the mean as well. While several distributions have been suggested previously by 

researchers, such as the folded normal distribution, t distribution, or chi-square 

distribution, the most prevalent method is to use the normal distribution. The distribution 

is first reported in use by Zhang et al. (1990) for confidence interval estimation, with 

major modifications proposed by Kusher and Hurley (1992), and Nagata and Nagahata 

(1993).  

For a normally distributed process with a large sample size, i.e., kn > 30, where k 

is the subgroup size and n is the sample size of each sub group, ˆ
T pkC  can be estimated 

using the Bissell method outlined by Bissell (1990). This particular method was shown 

by Kushler and Hurley (1992) to outperform other approaches when n is large. 

Using the general form, min ,
3 3

T T
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T T
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C

 
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 
, we use the 

coefficient of variation for T pkC  , CV( T pkC  ) to estimate ˆ
T pkC  , which is defined as 

 
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. 

From the Taylor series expansion, it follows that    
2 2

( ) ( ) ( )CV a CV b CV c   , where

/a b c  (see Stuart and Ord, 1987). Hence, 

                 
2 2ˆ ˆ ˆ( ) ( ) (3 )T pk T TCV C CV USL CV        (3.15) 
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From   
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The standard error of ˆ
T pkC  , ˆ( )T pkSE C  , is obtained by multiplying ˆ

T pkC  and ˆ( )T pkCV C  . 

As a result, we get 
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 When n is large, i.e., n > 30, the term 
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9kn
approaches zero, thus, with one 
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3.6.3 The approximate confidence intervals for T pmC   

With 
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we have 
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see Taguchi (1985). As reported in Boyles (1991), Pearn et al. (1992), Vannman and 

Kotz (1995), and Zimmer et al. (2001), it is generally known that the bias term follows a 

non-central chi-square distribution, 2 2
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Thus, with 
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To approximate the 100(1 )%  lower confidence bound for T pmC  , we have 
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Since 
2

ˆ, ,n  is the 100(1 )% lower confidence interval for 
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Finally, the 100(1 )%  interval approximation for CT-pm is written as 
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Equation (3.17) is similar to Equation (3.12), yet in this case, the non-central parameter is 

added to the calculation. Thus, by using Equation (3.13) and letting
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  (3.18) 

3.6.4 The approximate confidence intervals for T pmkC    

The index, T pmkC  , is a combined function of T pkC   and T pmC  . Hence, from 

Sections 3.6.2 and 3.6.3, a natural estimator of T pmkC   is distributed as a mixture of the 

chi-square and the non-central chi-square distribution. In this section, the approximate 

confidence interval of ˆ
T pmkC  will be modified from a derivation provided by previous 
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researchers. In particular, Chen and Hsu (1995) derived the sampling distribution of Cpmk 

and reported that ˆ
pmkC  is asymptotically normal and consistent if the fourth moment of Y 

is finite. Therefore, under similar circumstances, since we will assume that ˆ
T pmkC  is 

distributed by a truncated normal distribution, the confidence interval is estimated by 

considering the variance of ˆ
T pmkC   at a certain confidence level from the standard normal 

distribution. 

Staring with min ,
3 3

T T
T pk

T T

USL USL
C

 

 


  
  

 
, and using the formula
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2 2
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.Similarly, the estimator for T pmkC  is 
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 
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 . If the mean is centered at the midpoint 

between the specification limits,
2

USL LSL



 , then we have ˆ ˆ

T pmk T pmC C  , so that 

ˆ
T pmkC  can be estimated using Equation (3.18). Otherwise, the 100(1 )%  interval 

approximation for ˆ
T pmkC   is obtained as  
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where 2z  is the upper 2  quartile of the standard normal distribution, and 
2ˆ
T pmk  is the 

asymptotic estimator of ˆ( )T pmkVar C  , which is formulated as 
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where 
( )
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  , 

 
4
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ˆ
T
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m
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




 , and 

ˆ

ˆ
T

T

 





 . See the full derivation of 

ˆ
pmkC in Pearn et al. (1992) and Chen and Hsu (1995). 

3.7 Numerical examples of confidence intervals for proposed posterior PCIs 

Given that n = 30, [LSL, USL] = [-3, 3],   = 0.05, ˆ
T = 1, ˆ

T = 0, and  = 0, the 

confidence intervals of the posterior PCIs are shown as follows. Using Equation (3.13), 

the estimated 95%  confidence interval for ˆ 1.0T pC    is obtained as 

 ˆ0.7439  1.2556T pC   . The estimated 95%  confidence interval for ˆ 1.0T pkC    is 

computed as  ˆ0.7426 1.2574T pkC   using Equation (3.15). Similarly, the estimated 

confidence interval of ˆ
T pmC   is obtained from Equation (3.17). With  ˆ ˆ 0d T Tt      , 

the 95%  confidence interval of ˆ 1.0T pmC    is then  ˆ0.7481  1.2514T pmC   . Finally, 

the asymptotic 95%  confidence interval for ˆ
T pmkC   is computed using Equation (3.19). 
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Prior to using Equation (3.19), the 
2ˆ
T pmk  need to be obtained from Equation (3.20). 

Assuming 41, 0,d m  and 0  , we then have
2ˆ 0.0694T pmk   . Using Equation 

(3.19), the confidence interval of ˆ 1.0T pmkC    then yields  ˆ0.9057  1.0943 .T pmkC    

The estimated confidence intervals of the proposed posterior PCIs with different sample 

size n and different confidence level  are presented in Table 3.8 and Figure 3.12, where 

the wider confidence intervals are observed as sample size or the confidence level 

decreases.  

3.8 Concluding remarks 

In summary, this chapter proposes a new set of posterior process capability 

indices for the situations where the underlying process follows a truncated normal 

distribution and a target-based framework is desired. The simulation results demonstrate 

that the proposed posterior indices have higher index values, compared to traditional PCI 

values. This is because smaller process variances are transmitted to the customer after 

implementing specifications on a process. As a result, a significant degree of difference 

may result from using traditional PCIs on processes where the observations clearly follow 

a truncated normal distribution which is the actual process distribution transmitted to the 

customers. The purpose of this chapter is twofold. First, the proposed customer-based 

posterior PCIs are derived and compared with traditional manufacturer-based PCIs. The 

confidence interval is a prominent tool providing an interval estimation of PCIs designed 

to increase the versatility of the process capability analysis. Accordingly, the confidence 

intervals for the proposed posterior PCIs are also developed. 
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Table 3.8 Confidence intervals of the proposed PCIs under different settings  

ˆ
T pC 

 n   ˆLower T pC 
 ˆUpper T pC 

  ˆ
T pC 

 n   ˆLower T pC 
 ˆUpper T pC 

 

1.0 10 0.05 0.5478 1.4538  1.0 30 0.1 0.7814 1.2114 

1.0 20 0.05 0.6847 1.3149  1.0 30 0.05 0.7439 1.2556 

1.0 30 0.05 0.7439 1.2556  1.0 30 0.025 0.7110 1.2955 

1.0 50 0.05 0.8025 1.1971  1.0 30 0.010 0.6726 1.3434 

1.0 100 0.05 0.8608 1.1389  1.0 30 0.005 0.6467 1.3767 

1.0 250 0.05 0.9122 1.0877  1.0 30 0.0025 0.6228 1.4081 

1.0 500 0.05 0.9380 1.0620 
 

1.0 30 0.0010 0.5938 1.4472 

ˆ
T pkC 

 n   ˆLower T pkC 
 ˆUpper T pkC 

 ˆ
T pkC 

 n   ˆLower T pkC 
 ˆUpper T pkC 

 

1.0 10 0.05 0.5380 1.4620  1.0 30 0.1 0.7840 1.2160 

1.0 20 0.05 0.6821 1.3179  1.0 30 0.05 0.7426 1.2574 

1.0 30 0.05 0.7426 1.2574  1.0 30 0.025 0.7057 1.2943 

1.0 50 0.05 0.8020 1.1980  1.0 30 0.010 0.6618 1.3382 

1.0 100 0.05 0.8607 1.1393  1.0 30 0.005 0.6314 1.3686 

1.0 250 0.05 0.9122 1.0878  1.0 30 0.0025 0.6030 1.3970 

1.0 500 0.05 0.9380 1.0620  1.0 30 0.0010 0.5679 1.4321 

ˆ
T pmC 

 n   ˆLower T pmC 
 ˆUpper T pmC 

  ˆ
T pmC 

 n   ˆLower T pmC 
 ˆUpper T pmC 

 

1.0 10 0.05 0.5698 1.4312  1.0 30 0.1 0.8141 1.1807 

1.0 20 0.05 0.6925 1.3071  1.0 30 0.05 0.7816 1.2180 

1.0 30 0.05 0.7481 1.2514  1.0 30 0.025 0.7529 1.2516 

1.0 50 0.05 0.8045 1.1952  1.0 30 0.010 0.7195 1.2920 

1.0 100 0.05 0.8615 1.1382  1.0 30 0.005 0.6967 1.3200 

1.0 250 0.05 0.9124 1.0875  1.0 30 0.0025 0.6757 1.3464 

1.0 500 0.05 0.9380 1.0619 
 

1.0 30 0.0010 0.6501 1.3793 

ˆ
T pmkC 

 n   ˆLower T pmkC 
 ˆUpper T pmkC 

 ˆ
T pmkC 

 n   ˆLower T pmkC 
 ˆUpper T pmkC 

 

1.0 10 0.05 0.8367 1.1633  1.0 30 0.1 0.9209 1.0791 

1.0 20 0.05 0.8845 1.1155  1.0 30 0.05 0.9057 1.0943 

1.0 30 0.05 0.9057 1.0943  1.0 30 0.025 0.8922 1.1078 

1.0 50 0.05 0.9270 1.0730  1.0 30 0.010 0.8761 1.1239 

1.0 100 0.05 0.9484 1.0516  1.0 30 0.005 0.8649 1.1351 

1.0 250 0.05 0.9673 1.0327  1.0 30 0.0025 0.8545 1.1455 

1.0 500 0.05 0.9769 1.0231  1.0 30 0.0010 0.8417 1.1583 
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Figure 3.12 Estimated confidence intervals of the proposed posterior PCIs under various 

sample sizes (left) and various levels of type I error (right) 
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CHAPTER 4  

ROBUST PARAMETER DESIGN OPTIMIZATION AND  

PROCESS CAPABILITY ANALYSIS FOR TYPE I-RIGHT CENSORED DATA 

4.1 Introduction 

 Continuous process improvement is critical in maintaining a competitive 

advantage in the marketplace. It is also recognized that process improvement activities 

are most efficient and cost-effective when implemented during the early design stage. 

Based on this awareness, robust parameter design (RPD) was introduced as a systematic 

method for applying experimental design and optimization tools. The primary goal of 

RPD is to determine the best design factor settings, or the optimum operating conditions, 

that minimize performance variability and deviations from the target value of a product. 

Because of their practicability in reducing the inherent uncertainty associated with system 

performance, the widespread application of RPD techniques has resulted in significant 

improvements in product quality, manufacturability, and reliability at low cost (see 

Robinson et al., 2004, Jen, 2005, Hasenkamp et al., 2009, and Montgomery, 2013). 

Although a number of RPD methods have been developed, there is still ample room for 

improvement, particularly when censored data are under study. This chapter aims to 

develop new RDP methodologies that can be applied in survival analysis and reliability 

studies where censored data are common. In this section, applications of RPD that have 

not been widely explored by the research community are discussed, and specific 

objectives of this chapter are outlined.    
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4.1.1 Current research gaps and research objectives 

 The main purpose of this chapter is twofold. We first develop a series of RPD-

based methodological models for a time-oriented quality characteristic, coupled with type 

I-right censoring. We then propose various RPD optimization models to determine the 

optimum operating conditions that maximize survival times and minimize proportional 

hazards in conjunction with variability. The specific goals of this chapter with supporting 

rationales are as follows.   

 Static non-time oriented quality characteristics have been the main focus in 

traditional RPD studies, even though time-oriented quality characteristics routinely 

appears in many engineering problems, particularly in survival analysis and reliability 

studies. The term survival analysis refers to statistical inferences for time-related data 

with censoring. A survival data set contains observations within a predetermined time or 

restricted values. On the other hand, unmeasured data outside the restricted time range or 

values are called censored data. By definition, censoring is a form of incomplete data 

similar to data truncation. In truncation, any data beyond the truncation points is 

neglected. However, for censoring, any data beyond the censoring points are censored but 

are still included in the study, although its actual value is unknown. For instance, 

censored observations t that survive longer than censoring time tc (i.e., 
ct t ) are entered 

as tc. Therefore, the distribution of this incomplete data set is said to follow a censored 

distribution (see Cohen, 1991). There are four main types of censoring mechanisms: left 

censoring, right censoring, interval censoring, and progressive censoring. In addition, 

there are two types of censoring. Type I-censoring is a scheme based on a specific time, 
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and time-censored experiments take place when a test is terminated at a pre-specified 

time; hence, the number of data points censored is a random variable. In contrast, the 

basis of type II-censoring is a fixed number of data points being censored, and the 

censoring threshold becomes a random variable. While each censoring type has its own 

set of statistical foundations, type I-right censoring is the most common methodology in 

reliability studies. Despite the potential application areas and practical needs, there is 

little research work on the censoring-based RPD modeling and optimization. As such, 

this chapter develops detailed guidelines for the design of a new RPD with the 

consideration of type I-right censoring concepts.   

It is expected that incorporating considerations for reliability in the early stages of 

production design leads to a higher level of product quality over time and less costs due 

to product recalls. However, little research has been done on how to achieve this when 

optimizing process parameters. The survival time used in reliability studies is restricted to 

be positive and often has a skewed distribution. In contrast, the standard statistical 

methods of the traditional RPD rely on the normal distribution, which may be unsuitable 

to fit the survival time into such models. As a result, the connection between the survival 

time and RPD requires further methodological developments. To this end, we propose the 

censoring-based RPD methods for assessing the optimum operating conditions using the 

response surface methodology. In addition, special methods that can estimate failure rates 

with censored data, such as the hazard function, the Kaplan-Meier (KM) estimator, and 

the maximum likelihood estimation, are routinely used for regression in survival analysis. 

However, the statistical inferences for survival time can be developed parametrically or 



 78 

non-parametrically. Since the distribution of survival time is typically unknown prior to 

the actual data collection, nonparametric estimation methods for survival time are often 

preferred over the parametric counterpart. In particular, hazard functions, accompanied 

with median survival functions, may provide more insights into a failure mechanism. 

More specifically, survival times are often highly skewed, and the median is generally 

considered a better measure of central location than the mean. While the median survival 

function represents the survival probability of a subject at time t, the hazard function 

indicates the risk of failure of the subject at time t. The proportion of hazard rates, called 

a hazard ratio or proportional hazards, is useful in this particular research context. For a 

predicted response surface model, the semiparametric Cox proportional hazards (PH) 

regression model is often employed, as outlined in the literature review section. Thus, 

another purpose of this chapter is to propose a new set of response-surface-based 

optimization models by incorporating the nonparametric methods, such as the Cox PH 

model and the KM estimator, to investigate the effect of input variables under the  

type I-right censoring scheme.  

4.1.2 Literature review 

Traditionally, RPD and survival analysis have been treated as separate fields with 

no significant connections to each other. Previous works in those areas are abundant, but 

virtually no research work on potential links between the two fields has been reported. In 

this section, some key papers that are potentially aligned with this study are included. 

 The basic concepts of RPD were introduced by Taguchi (1986) and have been 

successfully used as an efficient tool for building quality into the design of processes to 
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improve the quality of products. The main purpose of the RPD is to minimize variability 

in the output response of a product around the target value. The comprehensive 

discussion of Taguchi’s RPD concepts and tools was examined by Nair et al. (1992), 

Robinson et al. (2003), and Park et al. (2006). Vining and Myers (1990) were among the 

first to offer the response-surface-based RPD as an alternative approach for modeling 

process relationships. They used a well-established statistical method, the response 

surface methodology, while incorporating basic principles of Taguchi’s original version 

of RPD that include minimizing process variability and deviations from the target value. 

Along those lines, Del Castillo and Montgomery (1993) proposed the use of the 

generalized reduced gradient method as an optimization technique in order to obtain RPD 

solutions more efficiently. Lin and Tu (1995) then showed that the RPD solutions 

obtained from the aforementioned models might potentially eliminate better solutions 

from consideration, since their models strictly force the process mean to be located at a 

specific target value. Accordingly, they used the mean squared error (MSE) model to 

include a bias allowance based on the deviations between the process mean and the target 

value. The tradeoff in balancing bias and variability is a significant research issue. Based 

on this awareness, Cho et al. (2000) conducted further modifications of the MSE model 

by incorporating priority concepts and developed a nonlinear goal programming RPD 

model. In addition, Kim and Cho (2002) introduced a priority-based preemptive RPD 

model.  

Special optimization methods are necessary to optimize the multiple response 

processes when there are multiple quality characteristics under study. For instance, 
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Kovach and Cho (2009), He et al. (2012), Goethals and Cho (2012), and Brito et al. 

(2014) proposed various multi-criteria optimization models for studying tradeoffs in RPD 

problems. Also, Shin and Cho (2005) proposed a bias-specified bi-objective RPD model 

as a relaxed zero-bias approach while keeping variability at the minimum. As an 

extension, Shaibu and Cho (2009) proposed an RPD model by incorporating a higher-

order polynomial function. Another challenge in solving RPD problems is that part of the 

data is often missing when conducting experiments. Cho and Park (2005) developed RPD 

models using the iterative expectation maximization algorithm when the data is 

unbalanced. Other RPD articles written by Hu et al. (2014), Fang et al. (2015), Bao et al. 

(2016), Brito et al. (2016), and Ouyang et al. (2016) illustrated a wide spectrum of 

application areas of RPD, including the hydrokinetic turbine system, the fatigue life of a 

product, and machine parts. Finally, there are many practical situations where some of the 

input variables are constrained to be integer values. Ozdemir and Cho (2016, 2017) 

developed mixed nonlinear integer programming RPD models and numerically solved the 

Karush-Khun-Tucker system of equations.  

  Survival time and hazard functions are well developed in the area of survival 

analysis (see Kleinbaum and Klein, 2006, and Kalbfleisch and Prentice, 2011).  

A few authors studied how to maximize the survivability using regression functions in 

the medical research (see Mead and Pike (1975) and Carter and Wamper (1986)).  

In particular, Carter et al. (1979) proposed a regression model using a hazard function to 

estimate drug interactions from chemotherapy experiments. In addition, Solana et al. 

(1987) evaluated biological interactions of three genotoxic agents by maximizing the 
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median survival time using a polynomial regression. Das (2009) also proposed a 

regression model for handling survival data using a modified least squares estimator, 

assuming that the data follows a Weibull distribution. Similarly, Kuhn et al. (2000) used 

regression models to find an optimal combination of two drugs that maximizes survival 

time of patients in tumor studies and used the maximum likelihood estimator to estimate 

the mean and variance of experimental data. On the other hand, Shaibu et al. (2009) 

proposed new optimization models for censored data and obtained optimal factor settings 

using the expectation maximization method. Finally, Li et al. (2012a, 2012b, 2013) 

developed censoring-embedded nonlinear optimization models to find the optimal 

formulations for new tablet drugs in dissolution and bioequivalence studies.  

4.2 Model development 

This study consists of three sequential phases: experimentation, estimation, and 

optimization. In Section 4.2.1, the modified central composite design (CCD) for type I-

right censored data is developed since the experimental design schemes that are currently 

available may not be effective in handling censored data. Based on the proposed CCD, 

Section 4.2.2 develops the survival distribution to estimate the median survival time and 

standard error of the median survival time, followed by their fitted functions in Section 

4.2.3. In parallel with the fitted functions for median survival time and standard error of 

the median survival time based on the KM estimator, the fitted function for proportional 

hazards rate using the Cox proportional hazards model is developed in Section 4.2.4. 

Based on the fitted functions developed in Sections 4.2.3 and 4.2.4, various RPD 

optimization models are proposed in Section 4.3, followed by the numerical examples in 
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Sections 4.4.1, 4.4.2, and 4.4.3, where optimum operating conditions are compared. 

Based on the numerical results, Section 4.5 presents additional insights on the advantage 

of the nonparametric KM estimator over the maximum likelihood estimator using other 

parametric distributions. Finally, conclusions and future studies are discussed in Section 

4.6. The structure of the research is depicted in Figure 4.1.  

4.2.1 Development of the modified central composite design under the type I-right 

censoring scheme 

For many production processes, a model that incorporates linear and quadratic 

effects of input variables on the response variable of interest is often required to 

approximate the response (see Montgomery, 2013). The central composite design (CCD), 

developed by Box and Wilson (1951), is a useful design of experiments for building the 

second-order model for the input variables. The CCD is partitioned into three sets of 

design points, which are factorial points to estimate linear and interactions effects, axial 

points to capture curvature effects and maintain the design rotatability, and center points 

to maintain the orthogonality of a design with the parameters minimally correlated to 

each other. The CCD is rotatable in the sense that all equidistant points from the center 

point in any direction have approximately the same variance in prediction.  

This rotatability is achieved by setting the axial points, , equal to  
1/4

,fn where fn

represents the number of factorial points. The rotatability is a crucial design property 

because the optimum operating conditions determined through the CCD can maximize 

process yield in a consistent manner, particularly when making prototyping decisions 

about process models in the early stages of industrial research and development.  
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Under the type I-right censoring scheme, the traditional CCD needs to be 

modified for two reasons. First, when the data is censored, we assume that there are two 

types of observations: the actual survival time of a unit (i.e., uncensored survival time) 

and the survival time at the termination time of an experimental period (i.e., censored 

survival time). Let T  denote the matrix of the observed survival times from r 

experimental runs with n units in the ith run where ijt T , 1,...,i r , and 1,...,j n . 

Then, each recorded survival time ijt is determined as follows: 

for  and 

for and 

ij ij c

ij

c ij c

t t t i j
t

t t t i j

 
 

 
 

where ijt T , T is an r n  matrix of recorded survival times, ct is the termination time, 

known as censoring time, and 0  and ijt i j  . Second, to appropriately estimate the 

statistical descriptions of the recorded survival data at each design point, the traditional 

statistical estimators used in CCD (i.e., the mean and the variance of the normal 

distribution) are then replaced with two survival analysis-based nonparametric estimators. 

These include the median survival time and the variance of the median survival time. As 

such, the erroneous results from assuming an improper underlying distribution of the 

recorded survival time can be prevented; see Section 4.5. Table 4.1 portrays the modified 

rotatable CCD in coded levels, along with center point replications, under the type I-right 

censoring scheme.  
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Section 4.2.1

Develop the central composite design 

for type I-right censoring

Section 4.2.2

- Develop survival distribution using 

  nonparametric estimator 

- Derive median survival time (M) 

- Derive standard error of median 

  survival time, SE(M)

Section 4.2.3

Develop fitted function for M(x)  and 

SE[M(x)] using multiple linear 

regression

Section 4.2.4

Develop fitted function for hazard 

rate, H(x), using Cox proportional 

hazard regression

Section 4.3

Develop RPD optimization models

- Three schemes; Scheme I: Minimizing hazard rate; Scheme II: Maximizing   

   survival time; Scheme III: Minimizing variation  

- Three tiers within each scheme; Tier I: single constraint; Tier II: 

   dual constriants; Tier III: triple constraints. 

Phase I:

Experimentation 

Phase II:

Estimation 

Phase III:

Optimization 

Section 4.4.1

- Develop survival distribution 

- Estimate M and SE(M)

- Obtain fitted function for M(x) and 

  SE[M(x)]

Section 4.4

Present numerical example from 

pharmaceutical field

Section 4.4.2

- Develop initial fitted function for H(x)

- Check the proportional hazard (PH)   

   assumption

- Revise the fitted function for H(x) 

  until the PH assumption is satisfied

Section 4.4.3
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Table 4.1 Experimental format for the modified central composite design for censored 

and uncensored data under the type I-right censoring scheme 

 Input variables 
Observations M  SE(M) 

1x  2x  … kx  

Factorial 

points 
-1 -1 … -1 11t  12t  … int  1m  1( )SE m  

1 -1 … -1 21t  22t  … 2nt  
2m  2( )SE m  

          

1 1 … 1       

Axial 

points 

  0 … 0       
  0 … 0       

0   … 0       

0   … 0       

          

0 0 …         

0 0 …         

Center 

points 

0 0 … 0       

0 0 … 0       

          

0 0 … 0 1rt  2rt  … rnt  rm  ( )rSE m  
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4.2.2 Development of the fitted functions for median survival time and variance of 

the median survival time  

4.2.2.1 Construction of the survival distribution for type I-right censored samples 

A survival distribution is a probability distribution that links each outcome of an 

experiment to its probability of being survived. In this chapter, the Kaplan-Meier (KM) 

estimator developed by Kaplan and Meier (1958), one of the most-widely used 

nonparametric estimators for evaluating survival times with right censoring, is used. 

Initially, the observations in the experimental run i are ranked in increasing order; thus, 

we have 1 andij ijt t i j  . The survival distribution, also known as a survival curve, at the 

ith design point consists of survival functions, ( ) .ijS t j Note that the survival function 

shows the probability that a unit survives longer than time ijt and T denotes the random 

variable of observed survival times. Since the units that survive at time ijt (i.e., ijT t ) 

also survive at the time 1ijt  (i.e., 1ijT t  ), the survival function ( )ijS t is estimated from 

the joint probability density function of ijT t and 1ijT t  . Thus, it can be defined as

1 1 1( ) ( , ) ( | ) ( ).ij ij ij ij ij ijS t P T t T t P T t T t P T t           Consequently, we have 

1 1 2 2 3

2 1 1

( | ) ( | ) ( | )
( )

( | ) ( | 0) ( 0)

ij ij ij ij ij ij

ij

i i i

P T t T t P T t T t P T t T t
S t

P T t T t P T t T P T

             
  

        
  

Suppose that ijn is the number of units at risk at time ijt  and ijd  is the censoring indicator 

associated with ijt where  0, for ; 1, for ij ij c ij ijd t t t t   . The conditional probability 
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function 1( | )ij ijP T t T t    is then estimated as 1( | )
ij ij

ij ij

ij

n d
P T t T t

n



    and 

( 0) 1P T   . Therefore, the estimated survival function at time ijt  is obtained as 

       
1 1

( ) 1 ,
j j

i i i
ij

i i

n d d
S t

n n

  

   

 
   

 
     (4.1)  

where 0 ( ) 1ijS t   and ( 0) 1.ijS t   Note that if the survival time is censored  0ijd  , 

we obtain 1( ) ( ).ij ijS t S t   As a result, ( )ijS t j  can be plotted versus ijt j to show the 

survival curve of the ith design point. An illustrative plot is shown in the numerical 

example section.  

4.2.2.2 Estimation of the median survival time and the variance of the median survival 

time 

To find the central value of the survival data and the variation of the central value, 

the median is used because it is more effective in capturing the characteristics of a 

skewed distribution that is often found in censored data. For details, see Kaplan and 

Meier (1958), and Lee and Wang (2003). The median is, by definition, the 50th percentile 

of the distribution, or the largest data point ijt  such that ( ) 0.5.ijS t   Therefore, the 

estimated median survival time of experimental observations of the ith design point, im ,  

is obtained as  

 max | ( ) 0.5i ij ijm t S t i       (4.2) 
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For instance, given that 
3( 5) 0.45iS t    and

4( 7) 0.51iS t   , the estimated median 

survival time is 
3 5i im t   since 3

ˆ( 5) 0.45iS t    is the closest survival function below 

0.5. 

 Since the survival probability distribution is developed nonparametrically, the 

variance of the median survival time , ( ),iVar m  is estimated from the variance of the 

survival function at the median survival time  , ijVar S t 
 

where ij it m , using 

Greenwood’s formula (see Greenwood, 1926, Kaplan and Meier, 1958, and Breslow and 

Crowley, 1974), which is expressed as  

 
 

2

1

( ) ( )
j

i
ij ij

i i i

d
Var S t S t

n n d



   

    
    (4.3) 

The derivation of Equation (4.3) is presented in Appendix A. Consequently,  iVar m can 

be approximated by using the estimation method of variance at the (100p)th percentile 

(see Collett, 2015 and Klein and Moeschberger, 2005). Let   f t p be the estimated 

probability density function of the survival time t at the (100p)th percentile where

       f t p S t p t p   ; see the derivation in Appendix B. Further, suppose that

mp = 0.50 is the percentile at the median in probability terms and   i mf t p   is the 

estimated probability density function of the median survival time im  under the type I 

error probability . We then have   

         
         

     

min | max |

max | min |

ij ij m ij ij m

i m

ij ij m ij ij m

S t S t p S t S t p
f t p

t S t p t S t p

 


 

    
  

    
   (4.4) 
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Finally, the variance of the median survival time of at the design point ith is obtained as  

 
 

  
2

[ ]i

i

i m

Var S m
Var m

f t p 

  

      (4.5) 

where  [ ]iVar S m is obtained from Equation (4.3), i.e., .ij it m  Similarly, the standard 

error of the median survival time,   ,iSE m is written as  

 

  
2

[ ]
( )

i

i

i m

Var S m
SE m

f t p 


  

     (4.6) 

4.2.3 Estimation of fitted functions for median survival times and variance of 

median survival times  

The fitted function, known as the response surface function, is a statistical model 

for estimating the relationship between input variables and their responses, which serves 

as a bridge between the experimentation phase and the optimization phase of RPD. The 

fitted function for a curvature is generally obtained using the multiple linear regression, 

which is defined as  y Xβ e , where 

1

2

r

y

y

y

 
 
 
 
 
 

y , 

11 12 1

21 22 2

1 2

1

1

1

k

k

r r rk

x x x

x x x

x x x

 
 
 
 
 
 

X ,

0

1

k







 
 
 
 
 
 

β , 

and  1 2 .
T

re e ee  Note that y is an 1r  vector of responses; X  is an r k  

vector of design matrix of k regression parameters; β is a 1k vector of regression 

coefficient; and e is an 1r vector of random errors, where ˆ e y y . Using the least 

squares method, the vector of least squares estimates,b , is then obtained from 

1( )b X'X X'y . Therefore, ˆ y Xb . Letting M  be a vector of the estimated median 
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survival time where  1 2 ,r

T
m m mM  the fitted function of the median survival 

time is estimated as  

 ˆ
MM x Xb         (4.7) 

where
1( )M

b X'X X'M . In a similar manner, the fitted function for the standard error of 

the median survival time is then obtained as  

 ˆ ˆ
SSE M  

 
x Xb ,       (4.8) 

where 
1( )S

b X'X X'S  and S is a vector of the estimated standard error of the median 

survival time,      1 2 .
T

rSE m SE m SE m   S  

4.2.4 Development of fitted function for proportional hazards using the Cox 

proportional hazards regression 

In parallel with the fitted functions for median survival times and variance of 

median survival times as shown in Section 4.2.3, the fitted functions for proportional 

hazards rate are developed in this section.  In order to strengthen the traditional RPD 

optimization model, one of this study’s contributions is to incorporate the proportional 

hazards rate as an additional measure of the product’s lifetime. Unlike the median 

survival time and its variance, the proportional hazards rate give better insights on the 

failure risk of a unit, which is known as the mortality rate in the medical research. To 

estimate the functional relationship between the input variables and their proportional 

hazards rate, the Cox proportional hazards (PH) model (Cox and Oakes, 1972) is 

recommended since it does not require the assumption of the underlying distribution of 
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censored data. This section presents the definition of the proportional hazards, as well as, 

a brief background of the Cox PH model.  

The hazard rate  ( )h t represents another perspective of survivability, and it is 

defined as the risk (or probability) that an observed unit fails within [t, t + t ] with 

0t   , or 
 

 0
( ) lim .

t

P t T t t
h t

t P T t 

   


  
 Denoting ( )f t and ( )F t as a probability density 

function and a cumulative density function of survival time T respectively, we have

0

( ) ( )
( ) lim

t

F t t F t
f t

t 

  



,

0

( ) ( )

t

F t f u du  , and    S t P T t   where ( ) 1 ( ).S t F t   

The hazard rate is then defined as 
 0

( ) ( )
( ) lim

t

F t t F t
h t

t S t 

  


 
, yielding 

( )
( )

( )

f t
h t

S t
 . 

Suppose that x is a vector of regression parameters where  1 2, ,..., kx x xx  and  |h t x  is 

the hazard rate of x at time t where  0 |h t  x . Since  |h t x  is non-negative, a 

logarithmic linear regression is used to predict the relationship between x and  |h t x , 

which is written as  log |h t  x βx e , where e  is the vector of random errors. Since the 

logarithm is the inverse operation to exponentiation, the general form of the Cox PH 

model (Cox, 1975) is expressed as  

  0| ( )h t h t e βx
x        

where 0( )h t is the baseline hazard rate (i.e., the exponential error term) at time t, which 

does not depend on the input variables, and  1 2, ,...,
T

k  β is the estimated 
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coefficients of x . We assume that x  is time independent where the effect of the input 

variables is constant for all t. Thus, the previous equation reduces to 

  0h h e βx
x        

 The proportional hazards rate indicate the ratio of the hazard rate at the level of 

the optimum operating conditions  0 h  x  *ˆ, ,h x  to the hazard rate of the baseline 

operating conditions or  ĥ x  where x 0 in order to compare their predicted values. 

Thus, the fitted function for proportional hazards rate of x  ˆ, ,H x is expressed as   

 
 
 

  
*

*
*

0

0

ˆ
ˆ

ˆ

H
H

H

h h e
H e

h eh



  
β x

β x x

β x

x
x

x
      (4.9) 

where Hβ  is a vector of regression coefficients obtained by maximizing the Cox’s partial 

log-likelihood function; see Cox (1975). The Cox PH model does not require an 

assumption regarding the distribution shape of observations. However, since the input 

variables are assumed to be time independent, the Cox PH model assumes that the 

proportional hazards rate remains constant over time.  

4.3 Development of type I-right censoring based RPD optimization models 

One of the measures of product quality is a fraction of units that meets 

specifications. This is only a partly correct measure because, in fact, a product that meets 

the specifications will not necessarily be working properly over time. If the notion of 

such defects over time can be incorporated into the conceptual design of products, 

significant cost savings would be made by avoiding the likelihood of product recalls. 
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Unfortunately, there is little research work on this particular subject. As such, this section 

proposes various RPD optimization models for the optimum operating conditions x* that 

maximize the median survival time ˆ ( )M x , minimize the standard error of the median 

survival time ˆ ( )SE x , and minimize the proportional hazards rate ˆ ( )H x , as shown in 

Table 4.2.  

Optimization criteria 

a. Survival time. The fitted function for median survival time,  M̂ x , is obtained 

using Equation (4.7) where  max | ( ) 0.5 .i ij ijm t S t   

b. Variability of survival time. The fitted function for the standard error of median 

survival time,   ˆ ,SE M x is estimated from Equation (4.8). The standard error of 

median survival time at each design point under a significance level of , or a 

type I error probability, is computed as 
 

  
2

[ ]
( )

i

i

i m

Var S m
SE m

f t p 


  

, where 

   
 

max( | ( ) 0.5)
2

1

( ) ( ) ,
ijj S t

i
i i

i i i

d
Var S m S m

n n d



   








  

max( | ( ) 0.5)

1

( ) 1 ,
ijj S t

i
i

i

d
S m

n



 





 
  

 
  

and   
         

     

min | 0.55 max | 0.45
0.5 0.05

max | 0.55 min | 0.45

ij ij ij ij

i

ij ij ij ij

S t S t S t S t
f t

t S t t S t

  
  

  
.  

See Section 4.2.4. 

c. Proportional hazards. The fitted function for the proportional hazards,  Ĥ x , is 

obtained using the Cox PH model in Equation (4.9).  
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Constraints   

a. Operability range of input variables associated with the modified central 

composite design,  
1
4

2k   where k is the number of input variables 

b. Desired lower bound of the median survival time,   

c. Desired upper bound of standard error of the median survival time,  

d. Desired minimum level of proportional hazards, 1   

 

Table 4.2 Proposed type I-right censored RPD optimization models 

I  ˆMaximize

subject to

M



x

x

 

V  ˆMinimize [ ]

subject to

SE M



x

x

 

IX  ˆMinimize 

subject to

H



x

x

 

II  

 

ˆMinimize

subject to

ˆ [ ]

M

SE M









x

x

x

 

VI  

 

ˆMinimize [ ]

subject to

ˆ

SE M

M









x

x

x

 

X  

 

ˆMinimize 

subject to

ˆ

H

M









x

x

x

 

III  

 

ˆMinimize

subject to

ˆ 1

M

H







 

x

x

x

 

VII  

 

ˆMinimize [ ]

subject to

ˆ 1

SE M

H







 

x

x

x

 

XI  

 

ˆMinimize 

subject to

ˆ [ ]

H

SE M









x

x

x

 

IV  

 

 

ˆMinimize

subject to

ˆ [ ]

ˆ 1

M

SE M

H











 

x

x

x

x

 

VIII  

 

 

ˆMinimize [ ]

subject to

ˆ

ˆ 1

SE M

M

H











 

x

x

x

x

 

XII  

 

 

ˆMinimize 

subject to

ˆ

ˆ [ ]

H

M

SE M













x

x

x

x
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4.4 Numerical example  

To illustrate how the proposed models are applied, the actual data collected by 

Cho et al. (2010), shown in Table 4.3, is used. The selected experimental deign is a 

rotatable central composite design with three input variables (x1, x2, x3), eight factorial 

points, six axial points with  
1/4

32 1.6818,   and five center points. Each design point 

has thirteen observations, and the censoring time is set at 500 hours, meaning that any 

observations survived after 500 hours are censored and recorded as 500+.  

4.4.1 Fitting the median survival time and its variance 

The goal of this phase is to obtain the fitted functions for the median survival time 

and the standard error of median survival time. The computation steps are explained as 

follows.  

Step 1: Developing the survival distribution. The survival data points are sorted in 

increasing order at each design point. For instance, the smallest survival time at the first 

design point is 1,1t  = 480.21. Furthermore, the survival time 1,1t  is uncensored; thus,  

1,1d  =1. Since there is no failed observation occurred prior to time 1,1t , 1,1n = 13. Using 

Equation (4.1), the first survival function at the first design point (i.e., the probability that 

the observed units at the first design point survive longer than 1,1( )t  is computed as  

1,1( )S t = 0.9231 where 1,1d = 1 and 1,1n  =13. Table 4.4 shows the survival functions for the 

first and second design points. The same procedure is repeated for the entire design 

points. As a result, the distribution of the survival function is plotted in Figure 4.2.  



 95 

Step 2: Estimating the median survival time. The median survival time is obtained 

from Equation (4.2). Based on the survival distribution of the first design point in Table 

4.4, the largest survival time under the 50th percentile is the seventh survival time (j = 7). 

Thus,    1 1,7S m S t  0.4615. As a result, the estimated median survival time at the first 

design point is m1 = 490.76. Similarly, the median survival times at other design points 

can be computed.  

Step 3: Estimating the standard error of the median survival time. At the first 

design point, the median locates at  1,7
ˆ 490.76 0.4615S t   . By using Equation (4.3), we 

have      1 1,7 0.0191Var S m Var S t  . Given 0.05  ,   1 mf t p  is then 

obtained using Equation (4.4). From Table 4.4, we have that 

      1,5min | 0.55ij ijS t S t S t   = 0.6154,       1,9max | 0.45ij ijS t S t S t  = 

0.3846,    1,5max | 0.55ij ijt S t t    491.43, and    1,9min | 0.45ij ijt S t t   = 494.94. 

Hence,   1 0.5 0.05f t   = 0.1789. Finally, using Equations (4.5) and (4.6), 

  1Var m = 0.5974 and  1SE m = 0.7729.  

Step 4: Repeating steps 1 – 3 for all other runs. The median survival times and 

their standard errors are summarized in Table 4.5.  

Step 5: Estimating the fitted function of median survival time and its standard 

error. Using the multiple linear regression (see Section 4.2.3), the fitted function for the 

median survival time is obtained as 
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  2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

488.38 0.392 1.086 0.716 1.721 0.084 1.104

2.28 1.10 0.25

ˆ x x x x x x

x x x x

M

x x

     

 





x
  

Similarly, the fitted function for the standard error of the median survival time is    

  2 2 2

1 2 3 1 2 3

1 2 1 3 2 3

1.904 0.771 0.438 0.002 0.324 0.361 0.286

0.601 0.575 0.252

ˆ [ ] x x x x x x

x x x x x

SE M

x

      

  

x
  

4.4.2 Fitting the proportional hazards function using the Cox PH regression 

In this section, the observed survival times in Table 4.3 are analyzed using the 

Cox PH model to predict the relationship between the input variables and their 

proportional hazards, as shown in Section 4.2.4. The evaluation of the fitted function of 

hazard and the testing of the PH assumption are conducted using Stata® (2016). The 

computational steps with Stata commands are presented as follows. 

Step 1: Define the survival time and the censoring indicator using the stset 

command.  

Step 2: Obtain the initial PH model. The coefficient of the variables  1 2 3, ,x x x , 

the quadratic terms  2 2 2

1 2 3, ,x x x , and the interaction terms  1 2 1 3 2 3, ,x x x x x x  are obtained by 

using the command stcox. As a result, the initial PH model is fitted as  

 
2 2

1 2 3 1 2

2

3 1 2 1 3 2 3

0.0395 0.1023 0.2619 0.0992 0.0279
ˆ exp

0.0516 0.1780 0.0672 0.1786

x x x x x
H

x x x x x x x

     
       

x   

The estimated coefficients of the initial Cox PH model are presented on the upper part of 

Table 4.6.  
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Table 4.3 Experimental data  

Design point x1 x2 x3 Observed Survival time* (ni = 13, N = 247) 

1 -1 -1 -1 488.77 484.37 490.76 491.34 486.22 494.56 494.56 

    480.21 490.18 491.48 490.94 489.65 492.9  

2 -1 -1 1 490.04 500+ 497.1 491.24 499.2 500+ 495.78 

    500+ 500+ 490.24 486.72 500+ 490.98  

3 -1 1 -1 500+ 481.27 494.05 499.71 500+ 494.94 497.41 

    479.66 480.62 493.16 500+ 485.29 491.43  

4 -1 1 1 487.54 493.1 500+ 493.21 496.16 500+ 500+ 

    483.45 489.48 500+ 493.74 495.65 492.99  

5 1 -1 -1 487.89 478.91 490.46 482.31 497.64 483.87 492.14 

    490.22 483.14 475.39 488.49 482.59 500+  

6 1 -1 1 500+ 500+ 494.1 483.43 492.28 480.28 488.82 

    488.58 488.99 486.25 500+ 494.3 493.38  

7 1 1 -1 497.25 476.03 492.48 495.82 500+ 493.55 489.71 

    500+ 493.49 500+ 494.64 500+ 494.26  

8 1 1 1 487.3 500+ 500+ 479.5 487.46 500+ 488.1 

    481.7 487.01 478.47 500+ 500+ 486.42  

9 -1.6818 0 0 490.77 491.81 497.81 500+ 493.45 494.39 495.14 

    484.87 491.27 491.4 484.78 486.2 488.27  

10 1.6818 0 0 498.66 500+ 492.2 500+ 500+ 500+ 492.7 

    479.7 500+ 489.38 482.63 483.34 487.33  

11 0 -1.6818 0 494.54 493.15 484.01 487.66 481.6 474.94 495.89 

    486 491.56 490.95 500+ 500+ 500+  

12 0 1.6818 0 489.11 481.27 481.71 500+ 479.88 480.88 500+ 

    479.64 488.63 480.32 478.63 489.37 486.08  

13 0 0 -1.6818 489.23 493.16 490.49 492.2 486.29 488.58 489.22 

    486.15 485.8 493.09 490.11 487.99 492.68  

14 0 0 1.6818 491.17 485.89 495.96 491.42 496.56 495.09 487.21 

    484.58 489.85 488.74 486.52 500+ 500+  

15 0 0 0 491.77 475.6 477.4 484.54 489.3 492.6 479.5 

    487.2 490.6 487.77 492.66 497.1 486.16  

16 0 0 0 500+ 482.63 488.45 500+ 500+ 485.89 488.29 

    486.76 500+ 500+ 488.74 491.71 484.5  

17 0 0 0 488.67 497.35 485.83 481.85 491.62 484.24 489.29 

    485.72 491.98 492.07 488 478.05 489.91  

18 0 0 0 497.66 494.57 480.59 488.67 485.43 483.58 482.46 

    490.65 486.79 489.4 487.12 486.59 491.09  

19 0 0 0 487.5 481.79 478.6 500+ 487 481.67 490.79 

    489.6 494.68 500+ 500+ 493.01 483.6  
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Table 4.4 The survival distribution of observations taken at the first and second design 

points 

The first design point (i=1) 

where [x1, x2, x3] = [-1,-1,-1] 
 

The second design point (i=2) 

where [x1, x2, x3] = [-1,-1, +1] 

j  
1 jt   

1 jn  
1 jd  

1( )jS t   j  
2 jt   

2 jn  
2 jd  

2( )jS t  

1 480.21 13 1 0.9231  1 486.72 13 1 0.9231 

2 484.37 12 1 0.8462  2 490.04 12 1 0.8462 

3 486.22 11 1 0.7692  3 490.24 11 1 0.7692 

4 488.77 10 1 0.6923  4 490.98 10 1 0.6923 

5 489.65 9 1 0.6154  5 491.24 9 1 0.6154 

6 490.18 8 1 0.5385  6 495.78 8 1 0.5385 

7 490.76 7 1 0.4615  7 497.1 7 1 0.4615 

8 490.94 6 1 0.3846  8 499.2 6 1 0.3846 

9 491.34 5 1 0.3077  9 500 5 0 0.3846 

10 491.48 4 1 0.2308  10 500 5 0 0.3846 

11 492.9 3 1 0.1538  11 500 5 0 0.3846 

12 494.56 2 1 0.0769  12 500 5 0 0.3846 

13 494.56 1 1 0.0000  13 500 5 0 0.3846 

 

 

Figure 4.2 Survival curve of design points 1-5  
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Table 4.5 Median survival time, standard error of median survival time, and variance of 

median survival time at each design point 

Design point ith x1 x2 x3 M  ( )Var M  ( )SE M  

1 -1 -1 -1 490.76 0.5974 0.7729 

2 -1 -1 1 497.1 22.7452 4.7692 

3 -1 1 -1 494.05 4.4226 2.1029 

4 -1 1 1 493.74 2.3342 1.5278 

5 1 -1 -1 487.89 10.2747 3.2054 

6 1 -1 1 492.28 7.4644 2.7321 

7 1 1 -1 494.64 1.8498 1.3601 

8 1 1 1 487.46 0.4265 0.6531 

9 -1.6818 0 0 491.4 0.3883 0.6231 

10 1.6818 0 0 492.7 30.9143 5.5601 

11 0 -1.6818 0 491.56 10.8195 3.2893 

12 0 1.6818 0 481.71 9.7067 3.1155 

13 0 0 -1.6818 489.23 0.8403 0.9167 

14 0 0 1.6818 491.17 2.5783 1.6057 

15 0 0 0 487.77 3.5393 1.8813 

16 0 0 0 488.74 4.1987 2.0491 

17 0 0 0 488.67 4.2975 2.0731 

18 0 0 0 487.12 1.5531 1.2462 

19 0 0 0 489.6 5.1563 2.2708 

 

Step 3: Testing the PH assumption. The constant proportional hazards assumption 

is tested using the scaled Schoenfeld residuals (Grambsch and Therneau, 1994) using the 

stphtest command. The result shows that the PH assumption is invalid for the initial PH 

model since p-value < 0.05.  

Step 4: Adjusting the fitted model. The inactive variables are removed one at a 

time, and the adjusted model is retested until the PH assumption is satisfied. After 

removing the four input variables  2 2

1 2 3 1 2, , ,x x x x x as shown on the right-hand side of 

Table 4.6, the fitted function of proportional hazards rate is finally obtained as  
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   
2

2 3 1

1 2 1 3 2 3

0.0996 0.2683 0.1067ˆ exp
0.1837 0.0716 0.1813

x x x
H

x x x x x x

   
  

   
x   

Using the stphtest command the PH assumption is checked once again. The result shows 

that the the PH assumption of this model is now satisfied with p-value = 0.3709. Figure 

4.3 presents the scaled Schoenfeld plots where the horizontal trend lines are pproximately 

constant. This confirms that the proportional hazards rate is approximately constant over 

time. 

Table 4.6 Statistics associated with the fitted proportional hazard model 

In
it

ia
l 

fi
tt

ed
 P

H
 m

o
d

el
 

x  Coefficient SE Z P-value 95% CI 

1x  -0.039 0.089 -0.45 0.656 -0.213 0.134 

2x  -0.102 0.090 -1.13 0.258 -0.279 0.072 

3x  -0.262 0.087 -3.03 0.002 -0.431 -0.092 

2

1x  -0.099 0.092 -1.08 0.282 -0.280 0.081 

2

2x  0.028 0.092 0.30 0.762 -0.153 0.209 

2

3x  0.052 0.088 0.58 0.560 -0.122 0.225 

1 2x x  -0.178 0.109 -1.63 0.103 -0.392 0.036 

1 3x x  0.067 0.109 0.61 0.540 -0.147 0.282 

2 3x x  0.179 0.110 1.63 0.103 -0.036 0.393 

Test of the regression model : P-value = 0.0362; Test of the proportional hazards assumption : P-value = 0.0001 

A
d

ju
st

ed
 f

it
te

d
 P

H
 m

o
d

el
 x  Coefficient SE Z P-value 95% Confidence interval 

2x  -0.100 0.089 -1.12 0.262 -0.274 0.074 

3x  -0.268 0.088 -3.07 0.002 -0.440 -0.097 

2

1x  -0.107 0.090 -1.19 0.235 -0.283 0.070 

1 2x x  -0.184 0.110 -1.67 0.095 -0.399 0.032 

1 3x x  -0.072 0.110 0.65 0.516 -0.145 0.288 

2 3x x  0.181 0.111 1.63 0.102 -0.036 0.399 

Test of the regression model : P-value = 0.0082; Test of the proportional hazards assumption : P-value = 0.3595 
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Figure 4.3 The scaled Schoenfeld plots (the first row from left to right: x2, x3, 
2

1x ; the 

second row from left to right: x1x2, x1x3, x2x3)  

4.4.3 Optimization results and findings 

Using the fitted functions obtained in Sections 4.4.1 and 4.4.2, the optimization results 

based on the twelve models proposed in Section 4.3, are compared. Suppose that the 

minimum survival time allowed is 495, the maximum standard error of the median 

survival time allowed is 5, and the maximum proportional hazards allowed is 0.75. That 

is, ˆ ( ) 495,M x  ˆ ( ) 5,SE M x and ˆ ( ) 0.75.H x  Maple® (2016) programming codes for 

the twelve nonlinear programming models were  developed, and the optimization results 

are summarized in Table 4.8, where italicized numbers represent the predicted values. As 

expected, all the optimum operating conditions satisfy the requirement for the operability 

region associated with the proposed type I-right censored central composite design. Also, 

the addition of constraints decreases the survival time and failure rate and increases the 

variability of the median survival time. 
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Table 4.7  Optimization results   

Optimization models x1
* x2

* x3
*  *M̂ x   *ŜE M 

 
x   *Ĥ x  

Tier 1 models with one constraint 

 ˆModel I: Maximize M x   

. . | |s t x  
1.6818 -1.6818 -1.6818 510.60 {4.6705} {3.1479} 

 ˆModel  V: Minimize SE x   

. . | |s t x  
-1.2079 -0.3095 -1.6818 {492.45} 0.8961 {1.6446} 

 ˆModel  IX: Minimize H x  

. . | |s t x  
1.6818 1.6818 -1.6818 {492.67} {3.9707} 0.2857 

Tier 2 models with two constraints 

 ˆModel II: Maximize M x   

 ˆ. . [ ] ; | |s t SE M   x x  
1.6818 -1.1996 1.6818 498.42 5.0000 {0.6531} 

 ˆModel III: Maximize M x   

 ˆ. . ; | |s t H   x x  
1.6818 -1.6818 1.6818 500.48 {5.5999} 0.6866 

 ˆModel  VI: Minimize SE x   

 . . ; | |s t M   x x  
1.3239 -0.9208 1.6818 495.00 4.3292 {0.6416} 

 ˆModel  VII: Minimize SE x  

 ˆ. . ;| |s t H   x x  
-0.6000 -0.5288 1.6818 {491.52} 3.1468 0.4825 

 ˆModel  : MinimizeX H x

 ˆ. . [ ] ; | |s t SE M   x x  
1.6818 0.9824 1.6818 {488.65} 5.0000 0.5207 

 ˆModel  XI: Minimize H x

 . . ; | |s t M   x x  
1.6818 -0.4176 1.6818 495.00 {4.4887} 0.6022 

Tier 3 models with three constraints 

 ˆModel  IX: Maximize M x  

   ˆ ˆ. . [ ] , ,| |s t SE M H    x x x

 

1.6818 -1.1996 1.6818 498.42 5.0000 0.6531 

 ˆModel VIII: Minimize SE x  

   ˆ. . , ,| |s t M H    x x x  
1.3239 -0.9208 1.6818 495.00 4.3292 0.6416 

 ˆModel  XII: Minimize H x

   ˆ. . , [ ] ,| |s t M SE M    x x x

 

1.6818 -0.4176 1.6818 495.00 4.4887 0.6022 

Note that predicted values are shown in italics in brackets 
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Finally, the optimum operating conditions from Models I, III, and IX provide the longer 

survival time in tiers 1, 2, and 3, respectively. Also, Models V, VII, and VIII provide a 

smaller variability associated with the median survival time in each tier. Similarly, the 

optimum operating conditions from Models IX, VII, and XII result in the lowest 

proportional hazards rate in each tier.  

4.5 Additional remarks on the parametric approach and recommendations  

Under the type I-right censoring scheme, the distribution of censored data is very 

likely to have a right-skewed shape, caused by the observations that are censored at the 

censoring time.  However, the actual distribution of the censored data is unknown and 

may possibly follow a skewed distribution such as the exponential distribution, the 

Weibull distribution, or the lognormal distribution. It is important to note that selecting 

an inappropriate distribution may lead to inaccurate information that affects the ability to 

make proper decisions on designing production processes and engineering systems, 

resulting in product recalls and possibly the safety of end users. Therefore, the critical 

part of analyzing the censored survival data is choosing the distribution that fits the data. 

One of the methods used for fitting an appropriate distribution is the Anderson-Darling 

(AD) goodness-of-fit test (see Anderson and Darling (1954)). In the case of censored 

data, the AD test is computed based on the squared distance between a fitted distribution 

line and the estimated cumulative probability based on the KM estimate of survival data. 

As a result, selecting an appropriate distribution of the survival time using the AD test 

statistic values can be done by seeking the smallest test statistic value among the set of 

presumed distributions. To illustrate the parametric distribution fitting, the data used in 
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the numerical example is fitted to eleven parametric distributions. The AD goodness-of-

fit tests for the survival data are shown in Table 4.9 and Figure 4.5. For the particular data 

set given in the numerical example, the most appropriate fitted distribution turns out to be 

a 3-parameter log-logistic distribution.  

 As shown in Table 4.8 and Figure 4.4, we compare the mean and variability 

obtained from the parametric survival analysis using the maximum likelihood estimator 

(MLE) for the normal distribution, which is the default underlying distribution used in 

RPD, with the median and standard error from the nonparametric survival analysis using 

the KM estimator. The percentage of the difference between the MLE estimates xMLE and 

the KM estimates xKM is given by  ( ) 100%diff MLE KM MLE

i i i ix x x x i    . Our results show 

that the mean survival times using the MLE and the median survival times using the KM 

estimator are very close to each other. However, the standard deviation of the survival 

time using the MLE is slightly larger than the standard error of the median survival time 

using the KM estimator. This result agrees well with the findings reported by Breslow 

and Crowley (1974) that the survival distribution is known to converge weakly to a zero-

mean Gaussian process. Another explanation is that the standard deviation is calculated 

using the entire set of observations, while the standard error is obtained by accounting 

only the observations around the median survival time under a specific level of the type I 

error, as shown in Equation (4.7). Finally, the AD test statistics in Table 4.9 indicate that 

the data lacks a strong evidence for assuming the normal distribution. Hence, for this 

particular right-censoring data, the use of the nonparametric KM estimator to obtain the 

optimum operating conditions appears to be an effective method.  
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Figure 4.4 Comparison between the MLE estimator (left) and KM estimator (right) 

Table 4.8 Comparing statistical estimators  

Design 

point 

Number 

of failure 

time 

Number of 

censored 

time 

MLE  KM  Percent of difference 

Mean  Standard 

deviation  

 Median  Standard 

error  

 Central 

value 

Variation 

1 13 0 489.69 3.8994  490.76 2.1494  -0.0022 44.88 

2 8 5 497.31 7.0543  497.1 3.4100  0.0004 51.66 

3 10 3 493.38 9.3079  494.05 4.0622  -0.0014 56.36 

4 9 4 495.52 6.8398  493.74 3.7184  0.0036 45.64 

5 12 1 487.39 7.2921  487.89 4.0214  -0.0010 44.85 

6 10 3 492.50 7.5987  492.28 3.9384  0.0004 48.17 

7 9 4 496.06 8.3056  494.64 5.3856  0.0029 35.16 

8 8 5 493.47 12.3592  487.46 5.5284  0.0122 55.27 

9 12 1 491.70 4.8523  491.4 2.4870  0.0006 48.75 

10 8 5 495.59 10.9868  492.7 5.2126  0.0058 52.56 

11 10 3 491.97 9.2540  491.56 5.0049  0.0008 45.92 

12 11 2 486.34 8.2484  481.71 3.8411  0.0095 53.43 

13 13 0 489.62 2.5323  489.23 1.1024  0.0008 56.47 

14 11 2 492.19 5.8776  491.17 2.7716  0.0021 52.84 

15 13 0 487.09 6.1523  487.77 3.2204  -0.0014 47.66 

16 8 5 494.53 10.1144  488.74 4.4602  0.0117 55.90 

17 13 0 488.05 4.8001  488.67 2.8909  -0.0013 39.77 

18 13 0 488.05 4.5691  487.12 2.5568  0.0019 44.04 

19 10 3 490.94 8.9225  489.6 4.2739  0.0027 52.10 
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Table 4.9 Anderson-Darling test statistics for the experimental data 

Distribution AD test statistics Correlation Coefficient 

3-Parameter Loglogistic 287.380 0.998 

3-Parameter Lognormal 287.415 0.998 

3-Parameter  Weibull 287.558 0.997 

Lognormal 287.655 0.994 

Normal 287.692 0.993 

Loglogistic 288.120 0.983 

Loglogistic 288.186 0.982 

Weibull 292.046 0.965 

Smallest Extreme Value 292.332 0.963 

2-Parameter Exponential 299.491 * 

Exponential 335.570 * 

 

  

 

Figure 4.5 Probability plot of the experimental data  

4.6 Process capability index for type I-right censored data 

The process capability index (PCI) is a measure for evaluating and comparing 

process performance in manufacturing and production processes. The vast selection of 

PCI makes them becomes popular in practice, influencing researchers to continually 
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propose a customized PCI to better measure the capability in process environments. 

Under censoring schemes, several PCIs are developed for assessing the performance of a 

product based on its lifetime, known as the lifetime performance index. In particular, 

Tong et al. (2002) proposed the lifetime index for exponentially distributed data. Along 

the same lines, extensive studies were conducted by Wu et al. (2008) and Lee et al. 

(2009), to incorporate the interferences of censoring into the exponential lifetime index. 

On the other hand, lifetime indices based on other skewed distributions have been 

proposed. Some noteworthy lifetime indices include the index for a Weibull distribution 

(Ahmadi et al., 2013), a Weibull distribution with censoring (Lee, 2011; Hong et al., 

2012; Dey et al., 2016; and Wu and Lin, 2017), and a Rayleigh distribution with 

censoring (Lee et al., 2011). Note that the PCI for assessing lifetime are modified based 

on the same structure,  LC LSL   , where the   and  are estimated based on a 

specific probability distribution. Although there remain challenging research gaps based 

on parametric approaches with respect to censored data, this study focuses on the 

development of PCI using nonparametric approach. It is because, as mentioned in Section 

4.5, the distribution fitting of censored data may not provide sufficient evidence to 

properly selecting the underlying distribution, which may lead to erroneous results of 

subsequent calculations. In this regard, within the nonparametric scheme, the process 

capability index for type I-right censored data and its confidence interval estimators are 

developed in Section 4.6.1. Finally, the numerical example to illustrating the proposed 

models is presented in Section 4.6.2.  
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4.6.1 Developments of PCI for type I-right censored data 

Prior to the PCI development, the probability distribution of product’s lifetime 

requires identification. Assume that observed survival time of a product is obtained under 

type I-right censoring scheme and the probability distribution of observed survival time, 

hereafter referred to as survival distribution, is estimated nonparametrically using KM 

estimator (see Section 4.2.2). From this point forward, let T reduces to a 1 n  matrix of 

recorded survival time where jt T , 1,...,j n  and 1j jt t j  ; and ( )jS t denotes the 

survival function of jt estimated from   
1

( ) 1
j

jS t d n 



   where jd ={0, for 

censored observations; 1, for uncensored observations}, and jn is the number of units at 

risk at time .jt  As such, the survival distribution curve of the observed survival time is 

then obtained by plotting time jt j versus its survival function ( )jS t j .  

The definition of the PCI for type I-right censored data based on nonparamatric 

survival distribution is given as the proportion of the width of actual conforming rate and 

the width of the expected conforming rate. Since the survival distribution is constructed 

nonparametrically, the statistical estimates are obtained using percentiles. Given LSL is 

the lower specification limit (i.e., the minimum requirement of product’s lifetime), the 

width of actual conforming rate is estimated from the survival probability correspoding to 

LSL, i.e., the probability that products last longer than the LSL, which is defined as 

 ( ) min ( )|j jS LSL S t t LSL  . Similarly, the expected conforming rate is given as  , 
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where 0 1  . Therefore, the process capability index for type I-right censored data 

based on nonparametric survival distribution is proposed as   

 
   

max | ( ) 0

max | ( ) 0 min | ( )

j j

T

j j j j

t S t LSL
C

t S t t S t 

 


  
    (4.10) 

where  max | ( ) 0j jt S t  is the maximum recorded survival time of the entire 

observations,  min | ( )j jt S t   is the survival time corresponding to the probability of 

producing conforming units. Additionally, the numerator of TC ,  max | ( ) 0j jt S t LSL  , 

denotes the width of specifications, and the denominator, 

   max | ( ) 0 min | ( )j j j jt S t t S t    , represents the width of survival distribution, i.e., 

the variation of data, under the level of conforming rate  . Therefore, the value of TC

consists of three types. Firstly, if  min | ( )j jt S t LSL  , we have TC = 1, implying that 

the conforming rate of a process equals to the expected level  . Secondly, if 

 min | ( )j jt S t LSL  , then 1TC  , which indicates that the conforming rate of a 

process is lesser than  . Thirdly, if  min | ( )j jt S t LSL  , we get 1TC  , meaning 

that the conforming rate of a process is higher than  . Thus, the larger TC value is 

preferred.  

Furthermore, the nonconforming rate (
ncp ), i.e., the probability that a unit fails to 

meet a specification limit, is estimated from the survival function at the lower 

specification limit, ( )S LSL ; see Figure 4.6 in Section 4.6.2. Note that the survival 
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function is a conditional probability function where 0 ( ) 1jS t  , and is a decreased 

probability function where   max ( ) min | ( ) 1 1j j jS t S t S t   . Thus, the nonconforming 

rate is obtained from

    min | ( ) 1 min | ( ) 1 ( )nc j j j j jp S t S t t LSL S t S t S LSL       
  ; that is, 

1 ( )ncp S LSL  .  Since ( ) min( ( ) | )i iS LSL S t t LSL  . Therefore, the nonconforming 

rate is expressed as 

1 min( ( ) | )nc i ip S t t LSL       (4.11)  

The confidence interval approximation of TC can be manually calculated as follows. For 

simplicity of the following derivations, let  max | ( ) 0a j jt t S t  and 

 min | ( ) .j jt t S t    Thus, Equation (4.10) becomes a
T

a

t LSL
C

t t





. Since LSL is 

given, the fluctuation of TC  can be estimated from the confidence intervals of survival 

functions associated with 
at  and t . Suppose that the confidence intervals of 

at  and t  

are  ,L U

a at t  and  ,L Ut t  , respectively. Based on the structure of TC , the lower 

confidence bound of TC , 
L

TC , can be calculated from a proportion of the smallest 

possible value of the numerator to the largest possible value of the denominator. On the 

contrary, the upper confidence bound of TC , 
U

TC ,  is calculated from the ratio of the 

largest value of numerator and the smallest value of denominator. As a result, the 

confidence interval approximations of TC  is estimated from 
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 , ,
L U

L U a a
T T U L L U

a a

t LSL t LSL
C C

t t t t 

   
  

   

   (4.12) 

Consequently, the confidence intervals of jt under level of type I error are estimated 

based on the corresponding confidence interval of its survival function. Given that 

 ( ), ( )L U

j jS t S t  are the lower bound and the upper bound of survival function of time jt . 

Using Greenwood’s formula,  
 

2

1

( ) ( )
i

j j

d
Var S t S t

n n d



   

    
  (see Section 4.2.2 

and Appendix A), the confidence intervals for ( )jS t is written as  

        
2 2

( ), ( ) ( ) ( ) , ( ) ( )L U

j j j j j jS t S t S t z Var S t S t z Var S t            (4.13) 

where z is the  1
th

  percentile of the standard normal distribution,  0,1N . 

Therefore, the confidence intervals of survival time jt is expressed as   

      , max | ( ) ( ) ,min | ( ) ( )L U U L

j j j j j j j jt t t S t S t t S t S t     (4.14) 

At this point, we have 
  
  

2

2

max | ( ) ( ) ( ) ,

,

min | ( ) ( ) ( )

j j a a
L U

a a

j j a a

t S t S t z Var S t

t t

t S t S t z Var S t





  
 

  
  
 

and 

 
 
 

2

2

max | ( ) ( ) ( ) ,

,

min | ( ) ( ) ( )

j j
L U

j j

t S t S t z Var S t

t t

t S t S t z Var S t





 

 

 

      
  
      

. Thus,  
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 

  
    

  
  

2

2 2

2

2 2

max | ( ) ( ) ( )

min | ( ) ( ) ( ) max | ( ) ( ) ( )

,

min | ( ) ( ) ( )
,
max | ( ) ( ) ( ) min | ( ) ( ) ( )

j j a a

j j a a j j
L U

T T

j j a a

j j a a j j

t S t S t z Var S t LSL

t S t S t z Var S t t S t S t z Var S t

C C

t S t S t z Var S t LSL

t S t S t z Var S t t S t S t z Var S t



 



 

 

 

  

       


  

       

 
 
 
  
 
 
 
 

  

 

However, since  max | ( ) 0a j jt t S t  is the maximum observed survival time available 

from observations, the upper bound of 
at  U

at and its corresponding survival function 

 L

aS t is unobtainable. Therefore,   
2

min | ( ) ( ) ( )U

a j j a a at t S t S t z Var S t t     and 

the previous equation of ,L U

T TC C  becomes  

 

  
 

    

2

2

2 2

max | ( ) ( ) ( )
,

max | ( ) ( ) ( )
,

max | ( ) ( ) ( ) min | ( ) ( ) ( )

j j a a

a j jL U

T T

a

j j a a j j

t S t S t z Var S t LSL

t t S t S t z Var S t
C C

t LSL

t S t S t z Var S t t S t S t z Var S t





 

 

 

   
 
 

     
  
 
 

        

. 

Finally, the confidence interval estimators of TC is rewritten in a simpler form as  

      , ,
L

L U a a
T T L L U

a a

t LSL t LSL
C C

t t t t 

   
  

   

   (4.15) 

4.6.2 Numerical example of the PCI for type I-right censored data 

The calculation procedures of TC  are illustrated using the data set of observed 

failure time of 60 electrical appliances in a life test, as an adaptation of Lawless (2003). 

Assume that the termination time of the test is 5,000 hours, the lower specification limit 

is 500 hours, and 90% of the product is expected to last longer than 500 hours, i.e., the 

conforming rate with respect to the lower specification limit be 0.90. Table 4.10 presents 
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the ranked failure time, survival functions, and the variance of the survival function. The 

survival distribution based on KM estimator is shown in Figure 4.6. The TC is calculated 

as follows. From Table 4.10, we get  max | ( ) 0j jt S t  = 4,584,  min | ( ) 0.90j jt S t  = 

80. Since LSL = 500, using Equation (4.10) we have 0.9067TC  . The nonconforming 

rate of the electrical appliances is computed based on Equation (4.11), which is

1 min( ( ) | ) 1 0.7833 0.2167nc i ip S t t LSL      . Furthermore, the confidence 

intervals of TC  are obtained from Equation (4.15). Given 0.05  , 
0.025 1.96z  ,  

( ) 0.0833aS t  , and [ ( )] 0.0357aVar S t  ; we have  ( ), ( )L U

a aS t S t  0.0134, 0.1533 . 

As a result, 4,100L

at   and 4,584U

a at t  . Similarly, since 

   ( ), ( ) 0.8241, 0.9759L US t S t   , we get 34Lt  and 381Ut  . Finally, we obtain

   , 0.7912, 1.0981L U

T TC C  . 

 

Figure 4.6 Survival distribution of the electrical appliances  
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Table 4.10 Observed failure time of the electrical appliances and its survival distribution 

j tj nj dj S(tj) Var[S(tj)]  j tj nj dj S(tj) Var[S(tj)] 

1 14 60 1 0.9833 0.0165  31 1702 30 1 0.4833 0.0645 

2 34 59 1 0.9667 0.0232  32 1893 29 1 0.4667 0.0644 

3 59 58 1 0.9500 0.0281  33 1932 28 1 0.4500 0.0642 

4 61 57 1 0.9333 0.0322  34 2001 27 1 0.4333 0.0640 

5 69 56 1 0.9167 0.0357  35 2161 26 1 0.4167 0.0636 

6 80 55 1 0.9000 0.0387  36 2292 25 1 0.4000 0.0632 

7 123 54 1 0.8833 0.0414  37 2326 24 1 0.3833 0.0628 

8 142 53 1 0.8667 0.0439  38 2337 23 1 0.3667 0.0622 

9 165 52 1 0.8500 0.0461  39 2628 22 1 0.3500 0.0616 

10 210 51 1 0.8333 0.0481  40 2785 21 1 0.3333 0.0609 

11 381 50 1 0.8167 0.0500  41 2811 20 1 0.3167 0.0601 

12 464 49 1 0.8000 0.0516  42 2886 19 1 0.3000 0.0592 

13 479 48 1 0.7833 0.0532  43 2993 18 1 0.2833 0.0582 

14 556 47 1 0.7667 0.0546  44 3122 17 1 0.2667 0.0571 

15 574 46 1 0.7500 0.0559  45 3248 16 1 0.2500 0.0559 

16 839 45 1 0.7333 0.0571  46 3715 15 1 0.2333 0.0546 

17 917 44 1 0.7167 0.0582  47 3790 14 1 0.2167 0.0532 

18 969 43 1 0.7000 0.0592  48 3857 13 1 0.2000 0.0516 

19 991 42 1 0.6833 0.0601  49 3912 12 1 0.1833 0.0500 

20 1064 41 1 0.6667 0.0609  50 4100 11 1 0.1667 0.0481 

21 1088 40 1 0.6500 0.0616  51 4106 10 1 0.1500 0.0461 

22 1091 39 1 0.6333 0.0622  52 4116 9 1 0.1333 0.0439 

23 1174 38 1 0.6167 0.0628  53 4315 8 1 0.1167 0.0414 

24 1270 37 1 0.6000 0.0632  54 4510 7 1 0.1000 0.0387 

25 1275 36 1 0.5833 0.0636  55 4584 6 1 0.0833 0.0357 

26 1355 35 1 0.5667 0.0640  56 5000+ 5 0 0.0833 0.0357 

27 1397 34 1 0.5500 0.0642  57 5000+ 4 0 0.0833 0.0357 

28 1477 33 1 0.5333 0.0644  58 5000+ 3 0 0.0833 0.0357 

29 1578 32 1 0.5167 0.0645  59 5000+ 2 0 0.0833 0.0357 

30 1649 31 1 0.5000 0.0645  60 5000+ 1 0 0.0833 0.0357 

 

4.7 Concluding remarks  

The proposed nonparametric RPD provides an effective approach for process 

parameter optimization associated with time-oriented quality characteristics. Under a 

censoring scheme, the traditional RPD method based on the normal distribution may not 
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be a suitable approach. Upon serving the purpose stated above, the guidelines for 

estimating the response functions based on nonparametric approaches, including the KM 

estimator, Greenwood’s formula, and the Cox PH model, are provided in this study. 

Further, the applications of the proposed RPD method is not limited to the process 

optimization problems under type I-right censoring with fixed starting time. The set of 

methodologies developed in this chapter can also adapt to right censoring with random 

starting time. As a result, the advantages of the nonparametric approaches employed in 

RPD can enable applications of RPD in several potential research areas where time is the 

quality characteristic of interest, such as reliability engineering, medical research, and 

agriculture.  

This chapter also develops optimization models that demonstrate the application 

of nonparametric-based response functions. The case study results show that, although 

the optimization models concerning all the three optimization criteria return similar 

optimal values, the obtained optimum operating condition satisfy the minimum 

requirement of survival time within the acceptable level of variation and proportional 

hazards. Therefore, unlike the traditional RPD for time-oriented data, which only focus 

on the average survival time and the variance of survival time, the proposed optimization 

models with the consideration of the proportional hazard rate provide additional guidance 

and confirmative information for making decisions under the quality improvement 

scheme. In the particular numerical example used in this chapter, Models II and IX 

provide the same expected median survival time, which implies that the upper bound of 

the proportional hazards rate λ has been set relatively high. If the lower λ value were 
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specified, Model II would give longer expected median survival time. Also, it is observed 

that the standard deviation of the survival time using the MLE is slightly larger than the 

standard error of the median survival time using the KM estimator, mainly because the 

survival distribution is known to converge weakly to a zero-mean Gaussian process.  
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CHAPTER 5  

CONCLUSIONS AND FUTURE STUDIES 

 

The original motivation for the dissertation is to develop a set of quality 

engineering approaches for improving the accuracy of mathematical calculations when 

solving engineering problems under the complications of incomplete data, i.e., the data 

with partially known information. Failure to use appropriate statistical foundations for 

analyzing the incomplete data could lead to aggregate errors of subsequent calculations, 

resulting in the lack of accuracy when making decisions. Therefore, strengthening the 

quality engineering approaches, such as the process capability index and the robust 

parameter design, with consideration of the proper statistical foundations for incomplete 

data bridges a noteworthy research gap. Despite a significant practical need, this research 

gap has not been previously explored. Therefore, this chapter develops several quality 

engineering approaches based on the appropriate statistical foundations for accurately 

quantifying the incomplete data. These developments are summarized as follows.  

Chapter 2: a set of the PCIs focused on the customer perception is developed for 

accurately measuring the process capability of a product whose probability distribution 

follows the truncated normal distribution. The truncated normal distribution parameters, 

i.e., the mean and variance of truncated normal distribution, for two-sided truncated 

distribution, left-sided truncated distribution, and right-sided truncated distribution are 

derived in this chapter. Also, the data transformation-based PCI, which is the currently 

recommended method for obtaining PCI concerning the truncated normal distribution, is 
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studied and is then compared to the proposed PCIs and the traditional PCIs. The 

comparative study reveals that the proposed PCIs provide the largest index values and the 

smallest defective rate, which seems more reasonable for evaluating the process 

capability of the post-inspection products, which assume that non-conforming products 

are removed prior to shipping to customers. 

Chapter 3: two traditional target-based PCIs are modified to measure the process 

capability with the consideration of the customer perception. Moreover, to complete the 

development of the proposed PCIs regarding the truncated normal distribution, the 

confidence interval approximations for CTN-p, CTN-pk, CTN-pm, and CTN-pmk are developed for 

indicating the reliable of PCI values within a specific sample size. Furthermore, a 

simulation technique is employed to study the features of the proposed PCIs compared to 

its traditional counterparts across multiple scenarios. As a result, we found that the 

proposed PCIs provide higher PCI values for a narrow range of truncation points, i.e., 

when a probability distribution is obviously truncated. 

Chapter 4: a series of methods based on RPD is developed to obtain the optimum 

operating conditions where experimental observations are type I-right censored. The 

modification is applied to the three phases of RPD. Firstly, for the experimentation phase, 

the central composite design is modified for dealing with censored data. The 

nonparametric survival analysis methods, i.e., the KM estimator and Greenwood’s 

formula, are utilized to estimating the median value and the variation of observations at 

each design point. Secondly, in the response function development phase, the fitted 

functions for the median survival time and the variance of the median survival time are 



 119 

obtained based on multiple linear regression, and the fitted function for hazard rate is 

estimated using the Cox PH model. Thirdly, the optimization models for obtaining the 

optimum operating conditions based on the three fitted functions are proposed in the 

optimization phase. From the numerical example, the optimization results indicate that, 

under nonparametric assumptions, the proposed optimization models return the optimum 

operating conditions that meet the requirements of the design, with guidance information 

of the product’s reliability based on its survival time. Also, insights regarding the 

parametric based survival analysis methods for RPD are provided. Furthermore, we 

expand the application of the nonparametric statistical estimators for type I-right 

censored data to redesign the process capability index for assessing the performance of a 

product based on its observed survival times.  

 The future studies are summarized in Table 5.1. Although the collection of the 

customer-perceived PCIs developed in this chapter could handle several cases in 

practices, there are still opportunities for further enhancements. Since the proposed PCIs 

are a univariate analysis, which are designed to measure the process capability based on a 

single quality characteristics, a future study regarding how the truncated distribution 

affects an intersected tolerance region in multivariate PCIs and the development of 

multivariate PCIs concerning the effects of a truncated distribution would be another 

interesting topic. Moreover, since the data involving the capability measurement in 

services industries is generally a time-oriented data, the further extensions may 

investigate the effects of censoring in a non-normal distribution, such as the exponential 
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distribution or the Weibull distributions. With extensions of the censoring-based PCI, the 

service industries may benefit from future process capability analyses.  

Moreover, under the RPD scheme, despite the fact that the type I-right censoring 

is a preferred censoring mechanism for a critical reliability study and medical research, it 

is considered as an expensive reliability experiment and may be unsuitable for some 

situations, for instance, to study the failure of an electronic component that is designed to 

last for years. A counterpart censoring mechanism such as the type I-right censoring 

which may reduce the duration of an experiment, e.g., an experiment is terminate after 

the third failure regardless of time, seems to be a considerable alternative. It is important 

to note that since the data from type II-right censoring is partially observed, the survival 

distribution of type II-right censoring is then estimated based on parametric approaches. 

To strengthen the connection between the time-oriented quality characteristics and RPD, 

it is of interest to develop RPD for time-oriented data based on type II-right censoring. 

Furthermore, an adaptation of RPD method using another survival analysis approach such 

as the accelerated failure time, which allows experimenters to speed up failure time by 

testing a unit under an extreme environmental setting, is also an important future study. 

The optimization phase in Chapter 4 could be extended as follows. Since the 

optimization criteria have different units of measurement, which are also conflicted, the 

optimization models are developed based on the single objective optimization. Under 

those circumstances, the most important criterion is prioritized by being set as an 

objective function while the other criteria are forced to be the optimization constraints. 

Hence, to optimize the criteria as objective functions simultaneously, the multi-objective 



 121 

optimization could be incorporated as a potential extension of this study. Ultimately, the 

future developments of quality improvement methods concerning the effects of 

incomplete data is not only a remarkable research opportunity for academia, but its 

contributions could also provide more accurate information for improving the level of 

quality in both manufacturing and services industries.  

Table 5.1 Future studies 

Chapters Limitations Future studies 

Chapters 2 and 3 The proposed PCIs are derived by 

setting the truncation points at the 

specification limits. Therefore, these 

PCIs are invalid if the specification 

limits and the truncation points are 

different. 

Extensions of the proposed customer-perceived PCIs 

(the truncation points are set at the specification limits) 

- Sampling plan for the resubmitted lot  

- Criterion for supplier selection  

Manufacturing-based PCIs for the truncated normal 

distribution (the specifications and the truncation points 

are set differently) 

- Process capability analysis for gap tolerance  

- Process capability analysis for data with limitation of 

devices 

Chapter 4  

 

Nonparametric method requires a 

full set of observations, which may 

be unobtainable in some situations. 

Extensions of the proposed RPD for censored data 

- RPD for type II-right censored data 

- RPD for time-dependent variables 

- Modifications of the optimization phase by 

incorporating these following concepts 

- Multi-objective optimization model  

- Desirability function 

- Multivariate optimization  

Extensions of the proposed PCI for censored data 

- Distribution-free PCIs for lifetime performance 

assessment 

- PCIs for duration data 
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Appendix A 

Derivation of Greenwood’s Formula 

 

To start with, we simplify the product term of Equation (1) by taking the log of both sides 

of the equation, as shown in Equation (A.1).    

     
1

log ( ) log 1
j

i
ij

i

d
S t

n



 

 
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 
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Thus, the variance of log ( )ijS t is given by  
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Note that, for the further derivation, these following assumptions should hold. First, 

assume that ijY is the number of units that survive through the interval 1,ij ijt t 
   , 

ij ij ijY n d  , which is independent and is binomially distributed,  ,ij ij ijY B n p , where

ijn is a number of units at risk at time ijt and the ijp is the success rate of survival,

ij ij ij

ij

ij ij

n d Y
p

n n


  . Therefore, from Equation (A.2), log ( )ijVar S t   can be estimated by  

   
1 1

log ( ) log log
j j

ij i i iVar S t Var p Var Y n  
  

   
       

   
    (A.3) 

Second, from the first assumption, it yields that the random variable ijY is uncorrelated. 

Therefore, the covariance terms are zero, so that  
1

log
j

i iVar Y n 
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  is equal to 
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    Thus, Equation (A.3) becomes   
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Third, for large N, the binomial random variable  ,ij ij ijY B n p  can be approximated as 

  , 1 .ij ij ij ij ij ijY N n p n p p  Consequently, we obtain ˆ
ijY ij ijn p   and 

 2ˆ 1 .
ijY ij ij ijn p p   Thus, using the delta method based on the Taylor series expansions; 

that is, if  2,X N   and g(X ) is a functional form of X, then 

      2 2,g X N g g'     , we obtain  ( ) ( )E g X g   and 

   
2 2( )Var g X g      . From  2ˆ ˆ, ,

ij ijij Y YY N   using the delta method for estimating 

function log( )ijY , we have  

 
2

2Var log( ) log
ij ijij Y Y

d
Y

dx
 

 
     

 
     (A.5) 

From ( ) ( ) ( )ij ij ij ij ij ij ij ijE Y n E Y n n p n p   and  

2 2( ) ( ) ( (1 )) ( (1 ))ij ij ij ij ij ij ij ij ij ij ijVar Y n Var Y n n p p n p p n     ,  log ij ijVar Y n 
  is 

calculated as

      
   2

2

1 11
log log

ij ij ij

ij ij ij ij ij ij

ij ij ij ij

p p pd
Var Y n E Y n Var Y n

dx p n p n

           
. Since 

ij ij

ij

ij

n d
p

n


 , we have  

 
log

ij

ij ij

ij ij ij

d
Var Y n

n n d
  
  

. Thus, Equation (A.4) becomes  

     
 1

log ( )
j

i
ij

i i i

d
Var S t

n n d



   

    
     (A.6) 

Similarly, based on the delta method, we have the variance of the exponential function of 

ijY as  
2

2Yij ij

ij

Y

Y

d
Var e e

dx




 
  
 

. From 
log ( )

( ) ijS t

ijS t e  and 
log ( )

( ) ijS t

ijVar S t Var e
 
        

, 

we obtain   

    
2

log ( )
( ) log ( )

ijE S t

ij ijVar S t e Var S t
 
           (A.7) 
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From      
1

log ( ) log
j

ij i iE S t E Y n 


 
       

 
 ,

       1 1 1 1

1

log log log log
j

i i ij ij ij ij i iE Y n E Y n E Y n E Y n 


 



 
                

 
 , and

     log log log log 1
ij

ij ij ij ij ij

ij

d
E Y n E Y n p

n

 
            

 

, we have

 
1

log ( ) log 1 log ( )
j

ij

ij ij

ij

d
E S t S t

n

 
          

 
 . Thus, 

   
2

log ( )
( ) log ( )ijS t

ij ijVar S t e Var S t
 
        . Finally, the estimated variance of the survival 

function, also known as Greenwood’s formula (see Greenwood, 1926), is written as 

 
 

2

1

( ) ( )
j

i
ij ij

i i i

d
Var S t S t

n n d



   

    
 .   

Although Greenwood’s formula is said to be a consistent estimate of the variance of the 

survival function based on the KM estimator (Brookmeyer and Crowley, 1982) and has 

been used widely among researchers, there are discussions regarding the assumptions of 

Greenwood’s formula. Additionally, the nonparametric likelihood ratio method is 

proposed in Thomas and Grunkemeier (1975) as an alternative confidence intervals 

estimation for the nonparametric survival function without using the normal 

approximation to the binomial. Li (1995) provides discussions regarding the performance 

of Greenwood’s formula and the nonparametric likelihood ratio method. Moreover, the 

modification of Greenwood’s formula based on the correlated random variables is studied 

in Kang and Koehler (1997).  
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Appendix B 

Derivation of the Variance of Survival Time 

 

The delta method for estimating the variance of a density function is given as

     
2

( )
d

Var g X g X Var X
dx

 
  
 

. Since ( )ijS t is a cumulative probability function of 

,ijt  we have  

   
2

( ( ))
( ( )) ( )

( )

dS t p
Var S t p Var t p

dt p

 
  
 

    (B.1) 

where ( )t p  is the time at (100p)th percentile of a distribution. Let ( ( )) ( ( ))f t p S' t p be 

the estimated probability density function at survival time ( )t p . Using the mean value 

theory to estimate the ( ( ))S' t p  where ( ( ))S t p is a decreased function, we have 

( ( ))
( ( )) ( ( ))

( )

S t p
f t p S' t p

t p


  


. Given that p  is the confidence intervals of interest 

where is the probability of type I error, we obtain
( ( )) ( ( ))

( ( ))
( ) ( )

S t p S t p
f t p

t p t p

 

 

  


  
. 

Thus, Equation (B.1) becomes      
2

( ( )) ( ( )) ( )Var S t p f t p Var t p . Finally, the variance 

of ( )t p is expressed as  
 

 
2

( ( ))
( )

( ( ))

Var S t p
Var t p

f t p
 .  
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Appendix C 

Minitab Output for Chapter 4 

Response Surface Regression of ˆ ( )M x   

Analysis of Variance 

 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                 9  138.038  15.3375     1.79    0.199 

  Linear              3   25.486   8.4954     0.99    0.440 

    X1                1    2.156   2.1561     0.25    0.628 

    X2                1   15.835  15.8350     1.85    0.207 

    X3                1    7.495   7.4952     0.88    0.374 

  Square              3   60.831  20.2771     2.37    0.139 

    X1*X1             1   46.127  46.1270     5.38    0.045 

    X2*X2             1    0.079   0.0793     0.01    0.925 

    X3*X3             1   19.142  19.1418     2.23    0.169 

  2-Way Interaction   3   51.720  17.2400     2.01    0.183 

    X1*X2             1   41.496  41.4961     4.84    0.055 

    X1*X3             1    9.724   9.7241     1.14    0.314 

    X2*X3             1    0.500   0.5000     0.06    0.815 

Error                 9   77.093   8.5659 

  Lack-of-Fit         5   73.431  14.6862    16.04    0.009 

  Pure Error          4    3.662   0.9154 

Total                18  215.131 

 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

2.92675  64.16%     28.33%       0.00% 

 

 

Coded Coefficients 

Term      Effect    Coef  SE Coef  T-Value  P-Value   VIF 

Constant          488.28     1.31   373.49    0.000 

X1         0.795   0.397    0.792     0.50    0.628  1.00 

X2        -2.154  -1.077    0.792    -1.36    0.207  1.00 

X3        -1.482  -0.741    0.792    -0.94    0.374  1.00 

X1*X1      3.677   1.838    0.792     2.32    0.045  1.04 

X2*X2     -0.152  -0.076    0.792    -0.10    0.925  1.04 

X3*X3      2.368   1.184    0.792     1.49    0.169  1.04 

X1*X2     -4.56   -2.28     1.03    -2.20    0.055  1.00 

X1*X3     -2.21   -1.10     1.03    -1.07    0.314  1.00 

X2*X3      0.50    0.25     1.03     0.24    0.815  1.00 

 

Regression Equation in Uncoded Units 

 

Median = 488.28 + 0.397 X1- 1.077 X2 - 0.741 X3 + 1.838 X1*X1 - 0.076 X2*X2 

+ 1.184 X3*X3 - 2.28 X1*X2 - 1.10 X1*X3 + 0.25 X2*X3 

 

Fits and Diagnostics for Unusual Observations 

 

Obs  Median     Fit  Resid  Std Resid 

  9  481.71  486.26  -4.55      -2.48  R 

 12  493.74  489.86   3.88       2.30  R 
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Response Surface Regression for  ˆ ( )SE M x  versus A, B, X3 

Analysis of Variance 

Source               DF   Adj SS   Adj MS  F-Value  P-Value 

Model                 9  15.6511  1.73902     1.65    0.234 

  Linear              3   8.1166  2.70553     2.56    0.120 

    X1                1   2.2640  2.26400     2.15    0.177 

    X2                1   0.7584  0.75840     0.72    0.419 

    X3                1   5.0942  5.09419     4.83    0.056 

  Square              3   7.1381  2.37936     2.25    0.151 

    X1*X1             1   0.9551  0.95505     0.90    0.366 

    X2*X2             1   2.9791  2.97915     2.82    0.127 

    X3*X3             1   2.3142  2.31418     2.19    0.173 

  2-Way Interaction   3   0.3965  0.13216     0.13    0.943 

    X1*X2             1   0.2375  0.23754     0.23    0.647 

    X1*X3             1   0.0918  0.09179     0.09    0.775 

    X2*X3             1   0.0672  0.06716     0.06    0.807 

Error                 9   9.4991  1.05545 

  Lack-of-Fit         5   6.6413  1.32827     1.86    0.284 

  Pure Error          4   2.8577  0.71444 

Total                18  25.1502 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

1.02735  62.23%     24.46%       0.00% 

 

 

Coded Coefficients 

Term      Effect    Coef  SE Coef  T-Value  P-Value   VIF 

Constant           3.456    0.459     7.53    0.000 

X1          0.814   0.407    0.278     1.46    0.177  1.00 

X2         0.471   0.236    0.278     0.85    0.419  1.00 

X3         1.221   0.611    0.278     2.20    0.056  1.00 

X1*X1      0.529   0.265    0.278     0.95    0.366  1.04 

X2*X2      0.934   0.467    0.278     1.68    0.127  1.04 

X3*X3     -0.823  -0.412    0.278    -1.48    0.173  1.04 

X1*X2     -0.345  -0.172    0.363    -0.47    0.647  1.00 

X1*X3     -0.214  -0.107    0.363    -0.29    0.775  1.00 

X2*X3      0.183   0.092    0.363     0.25    0.807  1.00 

 

 

Regression Equation in Uncoded Units 

SE = 3.456 + 0.407X1 + 0.236X2 + 0.611 X3 + 0.265 X1*X1 + 0.467 X2*X2 - 0.412 X3*X3 

- 0.172 X1*X2 - 0.107 X1*X3 + 0.092 X2*X3 

 

 

Fits and Diagnostics for Unusual Observations 

Obs     SE    Fit   Resid  Std Resid 

  9  3.841  5.174  -1.333      -2.07  R 
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Figure C.1 Residual Plots for (left) ˆ ( )M x  (right)  ˆ ( )SE M x   

 

 

Figure C.2 Normality plot for error terms of ˆ ( )M x and  ˆ ( )SE M x at 95% confidence 

interval  
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Appendix D 

Numerical Programming Code 

Simulation code for Chapter 3 (Matlab®) 

%Scenario1 LSL=-3, USL=3, target=0, mean=0, sigma=1, truncation 

effect=Low, mean_location=Centered 

  
clear all; clc; 

  
filename = 'scenario1-n500.xlsx'; 
 

rep = 10000;N = 5000; n = 500; 
USL = 3; LSL = -3; target = (USL + LSL)/2; mu = 0; sigma = 1; 

  
pop_table = zeros(rep,N); 
stat_pop = zeros(rep,10); 
PCIs_pop = zeros(rep,12); 

  
samp_table = zeros(rep,N); 
stat_samp = zeros(rep,10); 
PCIs_samp = zeros(rep,12); 

  
diff_PCIs = zeros(rep,8); 

  
i=1; j=1; 

  
while i <= rep ;  

  
%generate population 
pop = mu + (((USL-LSL)/6)*randn(1,N)); 

  
mean = sum(pop)/N; 
sigma = std(pop); 

  
%%PCIs calculation 
pdfLSL = normpdf(LSL,mean,sigma); 
cdfLSL = normcdf(LSL,mean,sigma); 

  
pdfUSL = normpdf(USL,mean,sigma); 
cdfUSL = normcdf(USL,mean,sigma); 

  
zLSL = (LSL-mean)/sigma ; 
zUSL = (USL-mean)/sigma ; 

  
meanTN = mean + sigma*((pdfLSL-pdfUSL)/(cdfUSL-cdfLSL)); 

  
sigmaTN= (sqrt( sigma^2 * (1+((zLSL*pdfLSL - zUSL*pdfUSL)/(cdfUSL - 

cdfLSL))- ((pdfLSL - pdfUSL)/( cdfUSL - cdfLSL))^2 ))); 
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Cp =(USL-LSL)/(6*sigma); 
Ctnp = (USL-LSL)/(6*sigmaTN); 

  
Cpl =(mean-LSL)/(3*sigma); 
Ctnpl = (meanTN-LSL)/(3*sigmaTN); 

  
Cpu =(USL-mean)/(3*sigma); 
Ctnpu = (USL-meanTN)/(3*sigmaTN); 

  
Cpk = min(Cpl, Cpu); 
Ctnpk = min(Ctnpl, Ctnpu); 

  
Cpm=(USL-LSL)/(6*sqrt(sigma^2+(mean-target)^2)); 
Ctnm=(USL-LSL)/(6*sqrt(sigmaTN^2+(meanTN-target)^2)); 

  
Cpmk = Cpk / sqrt(1+((mean-target)/sigma)^2) ; 
Ctnpmk = Ctnpk / sqrt(1+((mean-target)/sigma)^2) ; 

  
%storing values 
pop_table(i,:) = pop; 
stat_pop(i,:) = [mean; sigma; pdfLSL; cdfLSL; pdfUSL; cdfUSL; zLSL; 

zUSL; meanTN; sigmaTN];    
PCIs_pop(i,:) = [Cp; Ctnp; Cpl; Ctnpl; Cpu; Ctnpu; Cpk; Ctnpk; Cpm; 

Ctnm; Cpmk; Ctnpmk]; 
%%end PCIs for pop 

  
samp = datasample(pop,n); 
mean = sum(samp)/n; 
sigma = std(samp); 

  
%%PCIs calculation 
pdfLSL = normpdf(LSL,mean,sigma); 
cdfLSL = normcdf(LSL,mean,sigma); 

  
pdfUSL = normpdf(USL,mean,sigma); 
cdfUSL = normcdf(USL,mean,sigma); 

  
zLSL = (LSL-mean)/sigma ; 
zUSL = (USL-mean)/sigma ; 

  
meanTN = mean + sigma*((pdfLSL-pdfUSL)/(cdfUSL-cdfLSL)); 

  
sigmaTN= (sqrt( sigma^2 * (1+((zLSL*pdfLSL - zUSL*pdfUSL)/(cdfUSL - 

cdfLSL))- ((pdfLSL - pdfUSL)/( cdfUSL - cdfLSL))^2 ))); 

  
Cp =(USL-LSL)/(6*sigma); 
Ctnp = (USL-LSL)/(6*sigmaTN); 

  
Cpl =(mean-LSL)/(3*sigma); 
Ctnpl = (meanTN - LSL)/(3*sigmaTN); 
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Cpu =(USL-mean)/(3*sigma); 
Ctnpu = (USL-meanTN)/(3*sigmaTN); 

  
Cpk = min(Cpl, Cpu); 
Ctnpk = min(Ctnpl, Ctnpu); 

  
Cpm = (USL-LSL)/(6*sqrt(sigma^2+(mean-target)^2)); 
Ctnm = (USL-LSL)/(6*sqrt(sigmaTN^2+(meanTN-target)^2)); 

  
Cpmk = Cpk / sqrt(1+((mean-target)/sigma)^2) ; 
Ctnpmk = Ctnpk / sqrt(1+((mean-target)/sigma)^2) ; 

  
%storing values 
samp_table(i,:) = pop; 
stat_samp(i,:) = [mean; sigma; pdfLSL; cdfLSL; pdfUSL; cdfUSL; zLSL; 

zUSL; meanTN; sigmaTN];    
PCIs_samp(i,:) = [Cp; Ctnp; Cpl; Ctnpl; Cpu; Ctnpu; Cpk; Ctnpk; Cpm; 

Ctnm; Cpmk; Ctnpmk]; 
%%end PCIs for samples 

  
%diff_PCIs(i,:) =  PCIs_samp(i,:)- PCIs_pop(i,:); 

  
i=i+1; 
end; 

  
avg_pop = sum(PCIs_pop)/rep  
avg_samp = sum(PCIs_samp)/rep  

  
%write to Excel file 

  
tab_head_stat = {'mean', 'sigma', 'pdf LSL', 'cdf LSL', 'pdf USL', 'cdf 

USL', 'meanTN', 'sigmaTN'}; 
tab_head_PCIs = {'C_p', 'CTN-p','Cpl', 'Ctnpl', 'Cpu', 'Ctnpu', 'Cpk', 

'Ctnpk', 'Cpm', 'Ctnm', 'Cpmk', 'Ctnmk'}; 
tab_head_blank = {' ', ' ',' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 

' '}; 

  
xlswrite(filename, tab_head_stat, 'stat_pop'); 
xlswrite(filename, stat_pop, 'stat_pop', 'A2'); 

  
xlswrite(filename, tab_head_PCIs, 'PCIs_pop', 'A1'); 
xlswrite(filename, PCIs_pop, 'PCIs_pop', 'A2'); 
xlswrite(filename, tab_head_PCIs, 'PCIs_samp', 'R1'); 
xlswrite(filename, avg_pop, 'PCIs_pop', 'R2'); 

  
xlswrite(filename, tab_head_stat, 'stat_samp', 'A1'); 
xlswrite(filename, stat_samp, 'stat_samp', 'A2'); 

  
xlswrite(filename, tab_head_PCIs, 'PCIs_samp', 'A1'); 
xlswrite(filename, PCIs_samp, 'PCIs_samp', 'A2'); 
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xlswrite(filename, tab_head_PCIs, 'PCIs_samp', 'R1'); 
xlswrite(filename, avg_samp, 'PCIs_samp', 'R2'); 

  
x0=10;y0=10;width=600;height=300; 
set(gcf,'units','points','position',[x0,y0,width,height]) 
 

%drawing Boxplot  

 
boxplot(PCIs_samp, 'Labels', tab_head_blank); 
ylim([0 2]) 
set(gca,'XTick',[]); 
[hx,hy] = format_ticks(gca,{'\itC_p', '\itC_{T-p}','\itC_{pl}', 

'\itC_{T-pl}', '\itC_{pu}', '\itC_{T-pu}', '\itC_{pk}', '\itC_{T-pk}', 

'\itC_{pm}', '\itC_{T-pm}', '\itC_{pmk}', '\itC_{T-pmk}'},... 
                 [],[1:1:12]); 

 

Optimization code for numerical example in Chapter 4 (Maple®) 

>  

 

 

 

 

 
>  
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