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ABSTRACT 

 Heart valve diseases affect nearly 8 million people every year in the United States. 

Of these patients, 72% are affected by mitral valve diseases. Stenosis, regurgitation, and 

prolapse of the mitral valve are the primary pathologies affecting valve function resulting 

in atrial fibrillation, arterial thromboembolism, pulmonary edema, pulmonary 

hypertension, cardiac hypertrophy and heart failure. Surgical options to repair or replace 

the mitral valve are only palliative, especially for children with congenital defects, and do 

not exclude the need for reoperation. A tissue-engineered option is feasible and holds great 

potential through the combination of decellularized scaffolds, patient stem cells, and heart 

valve bioreactors.  Development of living tissue engineered mitral valves have not been 

reported in the recent literature. The primary focus of my research was threefold: 1) 

develop an acellular ECM scaffold which is mechanically robust, and allows for sufficient 

bioactivity for cellular seeding and signaling by use of a non-toxic matrix-binding 

polyphenolic antioxidant, pentagalloyl glucose (PGG); 2) confirm this scaffold to be 

biologically compatible with future hosts and limiting inflammatory responses in vivo by 

virtue of PGG’s antioxidant properties; 3) achieve recellularization of the mitral valve 

scaffold and direct differentiation and maturation through bioreactor preconditioning. 

 First, a complete decellularization of porcine mitral valves was established and 

optimized to remove all cellular and nuclear material from the scaffolds while still 

preserving ECM components and basal lamina proteins. Treatment with PGG recovered 

lost mechanical integrity due to the decellularization process. Seeded cells were able to 

grow and proliferate on and in the acellular scaffold confirming cytocompatibility. 
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 An in vivo rat study was conducted to evaluate the scaffolds’ biocompatibility. In 

comparing non-treated and PGG-treated groups, PGG –treatment regularly and 

significantly showed increased resistance to degradation, polarization of macrophages to 

the pro-healing M2 phenotype, discouragement of inflammatory markers, and no 

limitations towards cell infiltration. 

 Lastly, PGG-treated acellular scaffolds were recellularized with pre-differentiated 

fibroblasts and endothelial cells and placed in a newly developed mitral valve bioreactor. 

Design of the bioreactor required a full understanding and appreciation for the four tissue 

types present in the mitral apparatus. Preconditioning of the seeded constructs yielded a 

mitral construct similar to a native valve. 

 The overarching goal of this research was to develop a stable mitral valve construct. 

It is expected that the progress made by this project will have a positive impact on those 

that suffer from mitral valve pathologies. Our translatable approach towards this tissue 

engineered mitral valve should allow clinicians to readily adopt this regenerative 

replacement and contribute as a whole to the field of cardiovascular tissue engineering. 
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CHAPTER ONE: REVIEW OF LITERATURE 

1.1 Anatomy of the Mitral Valve: 

1.1.1 Introduction: 

The mitral valve, named so due to its likeness to that of a Bishop’s miter, is an 

intricate atrioventricular valve located on the left side of the heart. The mitral valve 

prevents backflow from the left atrium to the ventricle during systole. Housing a 

complicated anatomy, the mitral valve is built from four different tissue groups each 

performing different functions for this valvular apparatus. In its open state, the valve 

resembles a funnel extending from the hinge line at the atrioventricular junction and the 

ends of its two leaflets. Proper function of the valve not only requires normally functioning 

leaflets but also their coordinated interaction with the annulus, chordae tendinae, and the 

papillary muscles. Due to its placement within the heart, the effectiveness and function of 

the mitral valve is closely tied to its surrounding environment, namely the aortic valve and 

the left ventricular wall. Integrity of the valve is critical for the maintenance of normal left 

ventricle size and function.  

Figure 1.1: Anatomy of the mitral valve including its four major components, the mitral annulus, leaflets, 

chordae tendinae, and papillary muscles.(1) 
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1.1.2 Mitral Annulus: 

The foundation for proper mitral valve shape and function is established by the 

annulus, a thin, nonconductive, fibro-fatty transition region from the myocardia of the 

atrium (posteriorly) and fibrous aortic annulus (anteriorly) to the valve leaflets(2). The term 

annulus implies a solid ring-like fibrous cord to which the leaflets are attached; however, 

this is not the case. The mitral annular region is indistinct since the fibrous continuity is an 

extensive sheet(3). Some in literature distinguish the annulus as a tissue plane at the 

confluence of adjacent structures as opposed to a separate anatomical entity(4). The annulus, 

like the leaflets, is split into two regions, the anterior and posterior annulus. Each of these 

portions is different in size and purpose. The anterior annulus, which constitutes one-third 

of the annular surface area, is anatomically coupled with the aortic annulus and is flanked 

by the left and right trigones(2,4). This connection with the aortic annulus is termed the 

aorto-mitral curtain or intervalvular fibrosa(2). This attachment elevates this portion of the 

annulus as the aortic-mitral continuity comes up to meet the lower edges of the left and 

non-coronary sinuses and the interleaflet fibrous triangle(5). The posterior leaflet comprises 

the other two-thirds of the annular area and is externally related to the musculature of the 

left ventricle inflow region and internally to the left atrium where it merges with the 

leaflet(2). This area tends to be “weaker” due the lack of a formed fibrous cord(3).  

The geometric shape of the annulus approximates to that of a hyperbolic 

paraboloid(2,4,6–8). More simply, this shape resembles a saddle with peaks(“riding horns”) 

located anteriorly and posteriorly and valleys located medially and laterally at the 

commissures(9). Computational modeling has shown that as annular height (measured at 
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the peaks) increases relative to width of the valve (at the commissures), peak leaflet stress 

decreases, becoming maximally attenuated once this height to width ratio exceeds 

0.2(4,6,7,10,11). A higher ratio implies that the annulus is more saddle-shaped, while a lower 

ratio infers a flatter annulus. Although this nonplanar shape’s origins are not fully described 

in literature, it is understood that this shape is the determinant of optimal force distribution 

in the leaflets and chordae tendinae(4,8,12). Changes in annular shape and dynamics have 

been observed in patients with functional mitral regurgitation, acute ischemic mitral 

regurgitation, and different types of cardiomyopathies(8). Therefore, when anatomically 

correct, the annulus provides an optimal foundation for the remaining components of the 

valve. 

Figure 1.2: The hyperbolic paraboloid shape of the mitral annulus. (13)

Movement of the annulus is heavily influenced by its surrounding environment 

during atrial and ventricular filling and emptying. The mitral valve however is not entirely 

passive in its movement, as it contains smooth muscle cells and nerve fibers(14,15). The 

atrioventricular conduction bundle passes through the right fibrous trigone(3). This well-

defined network of nerve fibers work to contract the valve tissue. Three types of motion 

have been described for the annulus, translation between the left ventricular apex, 

sphincteric contraction, and folding across the intercommissural axis(4). During diastole, 
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the annulus acts as a conduit for blood flowing from the left atria into the left ventricle. 

During this period, when the left atrium is progressively relaxing, the annular area is 

allowed to increase where it reaches its maximum annular area at the end of diastole. Also 

during this time, area is increased by movement of the anterior horn towards the aortic 

annulus. When systole begins, the mitral valve begins to contract and it reaches its 

narrowest during mid-systole. During this moment, the posterior horn shifts apically, where 

the anterior horn shifts towards the left atrium. The narrowing of the annulus allows for 

curvature of the leaflets and therefore optimal coaptation. Note that the annulus is smallest 

during mid-systole, while contraction of the heart continues, annular circumference 

progressively increases to allow unobstructed flow from the atria to the ventricle during 

diastole(13). Sphincter-like contraction is also key to leaflet coaptation. Contraction of the 

annulus draws the free margins of the leaflets together in anticipation of the sharp rise in 

pressure during systole. The annular circumference decreases by 25% during diastole 

reaching its smallest at the very beginning of systole (end of diastole)(2,13). Folding of the 

annulus also occurs during ventricular systole. This conformation promotes normal 

function without wrinkling or distorting the leaflets. This folding action blunts the rise in 

leaflet closing stresses during the rise in pressure during left ventricular systole(4). 

 

Figure 1.3: Anatomy of the mitral valve leaflets. (13) 
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1.1.3 Mitral Leaflet: 

Similar to the annulus, the mitral valve leaflets are also divided into anterior and 

posterior positions. Due to the oblique location of the valve, strictly speaking the two 

leaflets do not technically reside in anterior or posterior positions, therefore these leaflets 

are also termed “aortic” due to its proximity to the aorta, and “mural” due to its attachment 

to the ventricular wall(3). The two leaflets are actually a single continuous structure that 

become confluent at the commissures(2). However, each designated leaflet is unique in 

shape, size, and composition. The anterior, or aortic leaflet, transitioning from the anterior 

annulus, is much more fibrous in nature and comprises about one third of the annular 

circumference. It does however make up a majority of the mitral orifice. In terms of pure 

surface area, the two leaflets are almost equal. The two leaflets meet to form an arc shaped 

closure line. The posterior, or mural leaflet, takes up a much smaller area of the valve 

orifice, but comprises about two thirds of the valve’s circumference. It is worth noting that 

the posterior leaflet is often divided into three or more segments (scallops) described as 

lateral, middle, and medial segments(2,3). The middle scallop is usually the largest of the 

three but it can vary. By having three segments, it allows the leaflets to act similarly to how 

pleats do on clothing, allowing the leaflet to accommodate to the shape of the curved 

closure(3,16).  

In a healthy valve, the leaflets are usually thin, pliable and translucent. Each leaflet 

is exposed to both the atria and the ventricle. The ventricle side of each leaflet can be 

dissected into zones designated so by the insertion of tendinous cords. The anterior leaflet 

has two distinguishable zones, while the posterior leaflet has three zones. Both leaflets have 
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a clear zone, which has no chordal attachments. This zone is closer to the free margin and 

because this zone is at the line of closure, it is the thickest part of the valve. Each leaflet by 

comparison also has a rough zone, where the chordae tendinae attach to the ventricular 

surface of the leaflets. This zone is broadest at the lowest portions of each leaflet but tapers 

toward the commissures(3,14,17). The basal zone, which is specific to the posterior leaflet, 

has insertions from the basal chordae to its ventricular surface. The anterior leaflet lacks 

this region due to the distance from the ventricular wall, and therefore lack of basal cords. 

Closure and function of the leaflets is obviously a product of annular movement and 

contraction and tension from the chordae, however the mechanics have not been fully 

defined. Convention holds that the pressures during ventricular systole force the leaflets 

closed with the chords attached on the ventricular side forbidding prolapse of the leaflets 

into the atrium. Atrial contraction, and the role it may play in leaflet closure has been 

debated(2). Some studies have shown that contraction of the annulus just before systole 

facilitates closure by approximating the leaflets. The stiffness of the anterior leaflet is 

influenced by electrical stimulation from the neurally-rich region of aortic-mitral 

continuity(18). Myocytes, which occupy a portion of the mitral leaflets are activated after 

contraction of the left atrium and this may position the leaflets prior to ventricular systole(3). 

This provides the basis of a paradigm shift from viewing the leaflets as passive collagenous 

flaps and as active tissues with a more complex function. 

Leaflet coaptation, while simple in function, are some of the most stressed tissues 

in the body, opening and closing nearly 3 billion times in a lifetime(19). The biomechanics 

of the leaflets can be broken down into three loading modes: tension, shear, and flexure. 
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These are imposed cyclically, the valve opens (flexure), permits blood to pass (shear), 

closes (flexure), and prevents the reverse flow of blood (tension)(19). Pressure across the 

valve (transvalvular pressure) ranges from 100-200 mmHg, usually averaging about 120 

mmHg(19,20). Valves on the left side of the heart experience pressures 5-8 times as large as 

those on the right(19). Left side heart valves are about 2 times thicker because of this(19). 

These pressures are largely felt during systole on the ventricular side of the valve. Atrial 

pressures are much lower on average, about 10mmHg for the left atrium. Mechanical data 

on leaflets, especially in vivo, is especially difficult. Therefore, most studies on valvular 

mechanics are estimated using some form of computer modeling. For mitral valve leaflets, 

biaxial testing is used frequently since they are thin and nearly incompressible. Radial and 

circumferential strains and stresses are applied during these studies. Due to the 

microstructural makeup of the leaflets and the direction the collagen fibers are aligned, the 

leaflets act anisotropically, yielding stiffer (lower strain rate) results in the circumferential 

direction. In fact, in vivo strains of 10.1 and 30.8% in the circumferential and radial 

directions respectively have been reported(21). This is because the collagen fibers are 

aligned in the circumferential direction in the leaflets. Collagen is known to withstand high 

tensile forces but have low torsional and flexural stiffness(21). Shear experienced by the 

valve is determined by the flow rate of blood passing through them. It has been shown that 

blood flow across the mitral valve is about 5610±620 mL/min(22). The leaflets are also 

capable of large deformations, ranging from 10-60% before reaching physiological stress 

levels(20). 
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1.1.4 Chordae Tendinae: 

The pressures experienced during ventricular systole are too great for the leaflets 

alone to successfully disallow regurgitant flow back up into the atrium. Tendinous cords 

descend on the ventricular side of the leaflets and attach to the papillary muscles where 

they transmit the force necessary to keep the valve closed during systole. In order to 

perform such functions and endure such pressures, the chordae tendinae must contain a 

high degree of strength and elasticity. The chordae are largely composed of parallel fibers 

of collagen and elastin with an outer layer of endothelial cells(23). This arrangement allows 

for an efficient transfer of the contraction forces from the papillary muscles to the leaflets. 

 

Figure 1.4: Chordae tendinae variety and attachments to corresponding leaflets. (24) 

Based on their point of insertion and their size and composition, three types of 

chords have been delineated: the primary (marginal), secondary (basal) and tertiary(2). The 

primary chords attach to the free margins of the leaflets while the secondary chords attach 

beyond the primaries. Primary or first order chords as they are also called, are numerous 

and delicate, often forming networks near the edge. Secondary chords are thicker than the 

primary chords. These two types of chords may rise from the same bifurcating stem 

however. The tertiary chords arise directly from the side of the left ventricular wall and 
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insert only into the posterior leaflet. These chords run only a short distance toward the free 

margin. Some groups have also delineated individual chords such as the commissural 

chords, strut chords, and the cleft chords(3,23). Each however have distinct purposes for the 

valve’s coaptation. Primary chords maintain leaflet apposition and facilitate valve closure. 

The secondary chords help play a role in maintaining normal size in the left ventricle. The 

thicker and longer of the secondary chords, also known as strut chords, act as the interface 

between the musculature of the wall and the mitral annulus (connecting at the fibrous 

trigones)(2). The strut chords are under continuous tension transmitted to the papillary 

muscles and trigones. 

Chordae tendinae however apparently have a paradoxical size-dependent 

mechanical behavior. Thinner chordae, such as the primary chords, were less extensible 

and more stiff than the thicker chordae(14). Thicker chordae have smaller crimp periods 

than thinner chordae, meaning that thicker chords could undergo greater strain before 

collagen was uncrimped. The tensile modulus is also greater in the thinner chordae. It has 

been reported that thinner chordae have a greater fibril density despite their smaller fibril 

diameter(25). Therefore, the smaller chordae, which are responsible for mitral valve 

competence, with greater interfibrillar interactions explains their greater modulus. 

1.1.5 Papillary Muscles: 

The last major component of the mitral apparatus are the papillary muscles. While 

their location can be variable, they are most commonly attached to the middle third of the 

left ventricle wall(2,3). In most cases, there are about two papillary muscles where most 

chordae tendinae are attached. Contraction of the papillary muscles is coordinated with the 
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left ventricle as a whole. Therefore, function of the papillary muscles is largely affected by 

the condition of the left ventricle. This coordinated contraction is essential, because were 

it not for the timely contraction of the papillary muscles, the fixed length of the chordae 

might otherwise permit the leaflets to prolapse into the atrium. Placement of the papillary 

muscles also effects the shape of the annulus through chordal attachment(24). This 

placement effects chordal forces and therefore coaptation of the valve. 

1.1.6 Microstructure: 

Interstitially, the extracellular matrix (ECM) of the valve differs within each 

component, but each is defined by their roles in the valve’s coaptation. The matrix is 

composed of various proteins and polysaccharides that are assembled into a meshwork 

created, organized, and secreted by the surrounding cells. The relationship between the 

matrix and the surrounding cells is dependent upon one another. Cells produce and 

constantly remodel the surrounding matrix. The ECM acts as a ground substance for which 

cells can exist. Inversely, the ECM exerts powerful influence on the cells. These influences 

are exerted through transmembrane cell adhesion proteins that act as matrix receptors. 

These influences can be either mechanical or chemical in nature. The primary membrane 

receptors that bind to ECM proteins are integrins. Through these matrix receptors, 

components of the ECM can affect almost any aspect of the cell’s behavior. Cells also use 

integrins to transmit signals from the cells to the matrix as well. Each component of the 

mitral valve contains a basal lamina or basement membrane, which separates the cells from 

the underlying connective tissue and forms the mechanical connection between them. Also 

formed by the surrounding cells, the basal lamina influences cell polarity, metabolism, 
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organize the proteins in adjacent plasma membranes, promote cell proliferation, migration 

and differentiation. Basal lamina are specific to the specific types of cells that establish the 

basement membrane. The basal lamina in this valve and in many tissues is composed of 

laminin and collagen type IV. 

 

Figure 1.5: Papillary muscles and their corresponding attachments to chordae and left ventricle wall.(26) 

There are two main classes of ECM macromolecules, fibrous proteins and polysaccharide 

chains of the type called glycosaminoglycans or GAGs. Fibrous proteins are largely 

glycoproteins, which have oligosaccharide side chains attached. These glycoproteins play 

an important role in cell-to-cell interactions. One of the most common examples of fibrous 

proteins are collagens and elastins. GAGs are usually found linked covalently to specific 

core proteins to form proteoglycans. These serve as the ground substance of many types of 

connective tissue. Because they are so heavily glycosylated, the balance has shifted close 

to carbohydrates in nomenclature. The carbohydrate chains attached to the core proteins 

are negatively charged due to their sulfate or carboxyl groups bound to their sugars. 
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1.1.7 Annulus: 

As form follows function, the annulus acts as the transition zone from the aortic 

annulus on the anterior side and the myocardium on the posterior side of the valve. 

Anteriorly, collagenous fibers radiate into the annulus form the collagenous root to which 

it is attached. Collagen, a common fibrous protein is a triple stranded helical structure. This 

rope-like structure is perfect for resisting the tension felt on the valves. The annulus, as the 

transition region from the myocardium and aortic root is moving constantly in several 

directions while also allowing for contraction. Resistance to tension is essential for its 

function. To also assist with the tensile stresses, the annulus’s ECM contains elastic fibers. 

The main component of the elastic fibers in the annulus is elastin, a highly hydrophobic 

protein, is elastic and supports tensile resistance while also allowing for stretching or 

contracting. The posterior annulus, which attaches to the myocardium, is muscular while 

also containing collagen and elastin within its matrix. From both annuli, radiates collagen 

and elastin into the leaflets which also have a unique matrix composition 

1.1.8 Leaflets: 

The mitral valve leaflets have a layered microstructure that readily supports the 

environment with which it functions. From top (atrial side) to bottom (ventricular side), 

the primary layers are the atrialis, spongiosa, and ventricularis(14,17). The atrialis layer is 

largely built of elastin fibers providing elasticity to the leaflet. The ventricularis, also called 

the fibrosa layer, is a thick collagenous layer built to withstand the tension caused by the 

high pressures of the ventricle. In the mitral valve, the collagen show a circumferential 

alignment in the leaflets(14,17,18). The inner layer contains proteoglycans and the GAG 
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hyaluronan. GAGs, one of the two main classes of macromolecules in the ECM, are 

unbranched polysaccharide chains composed of repeating disaccharide units. GAGs are 

naturally negatively charged because of the sulfate and carboxyl groups on most of these 

sugars. This high density of negative charge attracts cations like Na+ that are osmotically 

active and therefore attract large amounts of water into the matrix. This causes a swelling 

pressure that enables this GAG layer to withstand the compressive forces experienced by 

the leaflets. It is important to note that these layers are not exclusive to one type of ECM. 

The atrialis and spongiosa both contain some collagen and the spongiosa contains a 

network of elastic fibers(14). These layers are found in both leaflets. There are variations in 

the thickness of the layers. This is especially evident in the anterior leaflet, where the 

proximal third of the leaflet is marked by a very thick ventricularis, rich in highly aligned 

collagen and small leucine-rich PG, with only minor presence in the other layers.  

 

Figure 1.6: Three-layered extracellular matrix of the mitral valve leaflet. (27) 
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1.1.9 Chordae Tendinae: 

The chordae attached to the ventricular side of the leaflets are largely composed of 

collagen with some elastin fibers as well. This combination allows of elastic and highly 

crimped collagen fibers allows for appropriate deformations needed to handle the tension 

brought on the chords from the papillary muscles and translate this to the leaflets to which 

they are also attached. As mentioned, the chordae vary in thickness and collagen density. 

The thinner chordae have a greater fiber density than the thicker chords and thus show an 

increased modulus.  

1.1.10 Papillary Muscle: 

The papillary muscles as expected are largely composed of myocardium due to their 

origins from the muscle in the left ventricle. 

1.2 Valvular Interstitial Cells: 

Valvular interstitial cells (VICs) are the prevailing cell type in the heart valves and 

are found within each fibrosa, spongiosa, and ventricularis layer of the valve(28–33). They 

are a dynamic population of valvular-specific cells and are the living component of heart 

valves. VICs are responsible for synthesizing and preserving the composition of the valve 

matrix, which largely determines the valve’s ability to function as well as its material 

behavior(28). The central role of the VIC is to maintain the structural integrity of the valve 

and to act when the valve is in need of repair. These responsibilities are extremely 

important as heart valves are the most mechanically stressed tissue found in the body. VICs 

also function as key role players in the body’s pathological response to heart valve disease 

as well as regulating processes following valve injury.  



15 

 

 

Figure 1.7: The five phenotypes of valvular interstitial cells(34). 

Current literature supports five heterogeneous VIC phenotypes(14,28). Each of these 

phenotypes exhibits specific sets of cellular functions necessary for proper valve function, 

injury repair, and pathological processes. The five phenotypes would be: embryonic 

progenitor endothelial/mesenchymal cells, qVICs (quiescent VICs), pVICs (progenitor 

VICs), aVICs (activated VICs) and obVICs (osteoblastic VICs). These phenotypes are 

shown in Figure 1.7. It is important to note the differentiating potential for each phenotype 

into another as well as the plasticity that exists between qVICs and aVICs. This relationship 

is crucial for proper valve repair and can result in pathological problems if proper balance 

between them is not achieved. 

Embryonic progenitor endothelial/mesenchymal cells are included in the VIC 

family because the EMT (endothelial-mesenchymal transdifferentiation) paradigm, 

apparent in heart valve development, reappears in adult valves in response to injury(28). The 

endothelial cells involved in EMT actually have properties similar to heart valve progenitor 

cells and may give rise to VICs. As the potential originator of VICs, as illustrated in Figure 

1.7, many have investigated what factors contribute to the transformation of endothelial 

cells into these VICs. Transforming growth factor (TGF)-β and bone morphogenic 
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proteins, particularly BMP-2 have been noted to influence the pathway to VICs(28,35,36). The 

Notch and vascular endothelial growth factor (VEGF) are also well known to have distinct 

regulatory effects on EMT. Armstrong and Bischoff, understanding that VEGF is highly 

suggestive and its expression tightly controlled during development, concluded that VEGF 

facilitates valve formation by establishing an equilibrium between proliferation and 

differentiation(37). Others looking into developmental studies concluded that BMP-2 is 

essential for EMT it devotes progenitor cells into endothelial cells(38). Also, the Notch 

signaling pathway, often interacting with the TGF-β superfamily, is implicated in 

development of endocardial cushions and normal development of the aortic and mitral 

valves(28). 

1.2.1 VIC Phenotypes: 

qVICs are the predominant VIC phenotype in healthy valves and are thought to 

maintain the valves overall structure and function(28,29,32,36,39,40). In this resting state of VICs 

they act similar to fibroblasts(41,42). It is from this phenotype that VIC plasticity stems. From 

here, as shown in Figure 1.7, multiple phenotypes can be achieved by providing certain 

mechanical or chemical factors. To communicate, qVICs show two types of intercellular 

junctional complexes, gap and adhesion junctions(28–30). Gap junctions, commonly 

Connexin-26 and -45, are used to communicate with adjacent VICs. Adhesion junctions 

may be important in allowing gap junction function(28). N-cadherin and desmoglein are 

found faintly in these junctions. While the physiological presence of these junctions is not 

completely understood, it has been theorized that they are used to transmit information 

from mechanical cues for example across the cellular structure network. 
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 Progenitor VICs or pVICs, are essentially valvular stem cells and can be derived 

from various origins such as bone marrow stem cells. Unfortunately, these are the least 

understood VIC. Identification of this phenotype is difficult but some have differentiated 

hematopoietic stem cells into VIC like cells. Others have isolated progenitor cells from the 

pulmonary valves. There is some evidence that the microenvironment of the heart valve 

ECM influences bone-marrow stem derived pVICs once they are present in the valve, 

possibly arriving via microvessels at the base of the leaflets(28). How these pVICs travel to 

injury locations however is less understood. Perhaps it is done through some soluble signal 

molecules arising from the tissue injury and/or pathological effects occurring in a diseased 

valve. 

 obVICs are VICs that undergo osteoblastic differentiation and promote 

calcification within the valve. This phenotype is not typical of normally cultured VICs. 

TGF-β and BMP-2, may regulate valve calcification based on the increased rate of nodule 

formation after their application. Cultured VICs do not normally promote calcification. 

When cultured with media supplemented with organic phosphate, VICs begin to express 

chondrogenic and osteogenic markers and form calcific nodules(28,43,44). The calcification 

process relies on the upregulation of alkaline phosphatase activity because prevention of 

such inhibits in vitro calcification. To evaluate differentiation into obVICs, calcific nodule 

formation is often used as a barometer. TGF-β, as discussed before, promotes migration 

and activation of VICs but it can also promote the formation of these apoptotic alkaline 

phosphatase-enriched nodules. Literature shows us that TGF-β mediates the calcification 

of these VICs through mechanisms of apoptosis(28). Valvular endothelial cells (VECs) may 
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also play a role in encouraging an obVIC phenotype; however, this role is most likely as 

an outside transducer rather than a direct promoter. 

 In response to injury or disease, qVICs become activated VICs (aVICs) and take 

on the features of myofibroblasts. This phenotype is characterized by increased α-smooth 

muscle actin (α-SMA) expression, contractility, stress fiber formation, secretion of matrix 

remodeling enzymes (MMP-1, MMP-2, MMP-9, MMP-13), cytokines (TGF-β), and 

cathepsins(28,40,45,46). aVICs also exhibit heterogeneity in their morphologies. Round aVICs 

have more α-SMA stress fibers, while spindle-shaped aVICs show higher motility and are 

more proliferative(47). Activation of qVICs is brought on by changes in the mechanical 

environment or from several cytokines, often TGF-β. These changes in the ECM 

microenvironment are often due to disease or damage to the valvular tissue. When activated 

these VICs increase their secretion of extracellular matrix while also degrading the existing 

matrix, expressing MMPs and TIMPs. Proliferation and migration of aVICs is also 

increased, which is important for wound repair. After completing the necessary 

remodeling, many aVICs are eliminated by apoptosis or return to qVICs(28). It his however 

this regulation of aVICs that is crucial to valvular homeostasis. Many pathologies result in 

high cellularity and abnormal changes in ECM content; these are often caused by the 

dysregulation of aVICs. By persisting and not returning to the qVIC phenotype, 

pathological fibrosis, angiogenesis, chronic inflammation, and calcification can result from 

abnormal remodeling(28). Therefore, aVICs are crucial to valve remodeling and repair but 

a balance and proper regulation must be achieved or these interstitial cells cause more harm 

than good. 
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1.2.2 Regulation of VIC Activation: 

 TGF-β, a superfamily of proteins, is a well-known group of peptide growth factors 

that regulate biological processes and cellular systems in the body. It also has well 

documented effects on VICs differentiation into the activated phenotype. TGF-β binds to 

the cell surface to the TGF-β receptors I and II leading to signaling through the Smad 

proteins. Smad proteins reside intracellularly and transduce extracellular signals from 

TGF-β ligands. This pathway may also influence others including MAPK. Overall, these 

pathways regulate the cell cycle, their migration, proliferation, ECM synthesis and 

degradation and cytokine secretion. When VICs are bound to TGF-β, α-SMA, smooth 

muscle myosin and calponin all increase in expression(28). It is important to note that the 

expression of these proteins and the differentiation of the qVIC into the aVIC through 

interaction with TGF-β is unique. Cellular response to TGF-β is dependent on the cell types 

present and the environment with which the interactions are taking place. By becoming 

aVICs, contractility and fibronectin remodeling also increase. Fibronectin and other matrix 

components such as heparin, play important roles in regulating TGF-β’s interaction with 

VICs. When heparin is present, the stability of TGF-β’s binding to the pericellular 

microenvironment increases which causes an increase in α-SMA expression(48). TGF-β 

binds directly to fibronectin and VICs express and actively remodel fibronectin, a major 

ECM component. Because fibronectin can bind directly to TGF-β, it allows it to activate 

VICs. It is important to remember that induction into aVICs corresponds to a significant 

increase in stress-fiber formation and enhanced contractility and increased mechanical 



20 

 

stress. These changes can link aVICS to pathological matrix remodeling(28,43). This is one 

reason why bioavailability of TGF-β is tightly regulated by the body. 

 Wound repair is also an essential role of VICs, and is one inducer of the aVIC 

phenotype. TGF-β is well known to play a role in wound repair, but its effects on cell 

growth remain in question, this in part due to TGF-β’s effects varying from cell to cell and 

between environments. VICs, as mentioned have specific reactions to TGF-β, encouraging 

the activated phenotype. Most fibroblast cells proliferate in the presence of TGF-β. 

However for VICs, and also for endothelial cells, TGF-β actually inhibits proliferation in 

aortic VICs.(35) This could be a function of VICs retaining characteristics of endothelial 

cells during EMT. The outcome of TGF-β depends on cell type and local environment. It 

is important to remember that VICs activate and proliferate during valve injury. TGF-β is 

often found at these wound sites. One would question as to how this proliferation of VICs 

could occur given the above comments. Proliferation during wound models may allude to 

the fact that wounds act as an external stimulus that alters this specific qVIC signaling 

profile. Mechanical factors must effect this activation and proliferation. These interstitial 

cells are context dependent. VICs essentially could modulate their Smad signaling due to 

differing external stimuli. This would then mean that VICs proliferate during wound 

(external) and are active, but not proliferating during normal physiological conditions (as 

during normal remodeling) so as not to disrupt the valvular environment(35). If this 

signaling regulation were to malfunction, as it must do in some, pathological valve tissue 

results. 
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1.2.3 VICs in the ECM: 

 As mentioned, VICs are the key modulators of ECM quality and content. In this 

matrix that they remodel, there are variations of amounts of VICs in each layer due to ECM 

stratification and compartmentalization during development. VICs may play a role in this 

spatiotemporal coordination due to embryonic progenitor endothelial/mesenchymal cells’ 

activation, proliferation, and expression of MMPs(28). VICs interact with their matrix by 

focal and fibrillary adhesions. These two distinct adhesion complexes differ in 

morphology, protein composition, and location on the cell membrane. Focal adhesions are 

composed of FAK (focal adhesion kinase), as well as the cytoskeletal markers vinculin, 

talin, paxillin and α-actinin(33). Fibrillar adhesions are small globular or elongated adhesion 

complexes. This complex lacks cytoplasmic proteins paxillin and vinculin. Both adhesion 

complexes utilize the α5β1 integrin, while focal adhesions also use αvβ3
(33). These focal 

adhesions make contact with fibronectin, which provides a suitable matrix for cells to 

migrate. VICs secrete Fibronectin; the α5β1 integrin in migrating cells interacts thereby 

linking the actin cytoskeleton to fibronectin via tensin and the α5β1 integrin. Fibronectin 

acts as a means of motility and activation. VICs express it at the wound edge, thus 

facilitating VIC migration. aVICs, known to activate and quickly migrate to these wounded 

areas utilize the fibronectin they produce to move. Therefore, in qVICs, fibronectin 

expression is decreased. VICs also play a significant role in matrix degradation, expressing 

MMPs and TIMPs. MMPs and TIMPs vary among the different valve types, for example, 

MMP-2 is only expressed in the pulmonary and aortic valves. 
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 VICs reside in one of the most mechanically stressed environments. Heart valves 

undergo hemodynamic shear, cyclic flexure and bending, and compressive stresses and 

strains. VICs respond to these mechanical cues and forces altering their cellular stiffness 

and utilizing their influence on the ECM. On the left side of the heart for example, VICS 

show increased α-SMA content and collagen synthesis due to the fact that the heart’s left 

side faces larger transvalvular pressure which poses a larger tissue stress when compared 

to the right side of the heart(32). The degree of collagen synthesis is dependent on the degree 

and duration of the forces encountered. The obVIC phenotype can also be encouraged by 

matrix stiffness(44).  

 Mechanical cues can also be transduced by valvular endothelial cells (VECs) to 

regulate VICs. These cells are directly influenced by shear and hemodynamic stresses of 

the heart. VECs provide a protective and selective boundary between blood and VICs. The 

mechanical influences from the stressed valve exterior make VECs a critical modulator of 

VICs and their phenotype. In fact, VICs that have been co-cultured with VECs show an 

increase in vimentin expression and a decrease in the aVIC marker α-SMA, a possible 

indication that VECs encourage qVECs over aVICs(49). It is likely that VECs function to a 

similar importance that vascular endothelial cells have in regards to maintenance of vessel 

tone and inhibition of pathological differentiation of the interstitial smooth muscle cells. 

VECs can significantly reduce or reverse the activation of VICs(49). 
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Figure 1.8: VICs suppress TGF-β1-induced VEC EndMT. Immunofluorescence staining of a-SMA 

(green), cell nuclei (DAPI/blue)(50). 

 Through paracrine signaling, VECs release factors to affect VIC function, one such 

factor is nitric oxide (NO). NO, a known vasodialator is a free radical with many biological 

uses. NO released by iNOS, (inducible nitric oxide synthase) has been shown to play a role 

in valve wound repair(49,51). Possibly through proper regulation of VIC phenotype and its 

movement or proliferation. Under physiologically relevant stresses, NO has been shown to 

have beneficial effects on VICs. VIC contraction and activation have also been prevented 

through dosage of the VEC produced free radical(51). NO may act through the cGMP 

pathways, which ultimately down regulates Rho kinase (ROCK), which regulates α-SMA 

in VICs. Therefore, NO may act through cGMP to regulate VIC activation(51). It is also 

likely that other factors release by VECs, like c-type natriuretic peptide (CNP) and/or 

prostaglandins may play a role in regulating VIC phenotype(39). VICs may also release their 

own paracrine signaling which could influence VEC protein expression. Even in the 

presence of TGF-β1, which induces EMT, VICs can inhibit the transformation of VECs in 
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EMT(50). Otherwise, these transformed endothelial VICs (eVICs), can differentiating into 

obVICs, contributing to pathological remodeling and calcification. Therefore, 

communication between VICs and VECs remains crucial for the health and coaptation of 

the valve.  

1.2.4 VICs in Aortic and Mitral Valves: 

 VICs are the most abundant cell type within each of the heart valves, however 

transcriptional profiles of VICs varies between mitral and aortic valves. Differences in 

blood flow dynamics between the valves may explain some of this variation. Among the 

differences was expression of transcription factors NKX2-5, an important regulator during 

embryonic development, and TBX-5, which is very important for cardiogenesis. TBX-5, 

expressed significantly higher in mitral VICs, is expressed in developing atrioventricular 

valves and likely accounts for the mitral valve’s structural differences like the chordae 

tendinae(52). Expression of matrix degrading protein, MMP1, was also highly expressed 

only in mitral VICs(52). MMP1 mediates osteoblastic differentiation in osteogenic cells. 

When comparing migration and proliferation profiles between aortic and mitral VICs, both 

interstitial cells shows similar migration abilities, but mitral VICs showed greater 

proliferation than aortic VICs. 

 Regional interstitial cell variation also exists within sections of the mitral valve 

itself. Mitral valve tissue varies regionally when considering the different mechanical loads 

experience on each tissue type. As, previously mentioned, the matrix-VIC relationship is 

crucial in deciding VIC phenotype. Regionally the mitral valve does not possess 

homogeneity in the forces acting on the tissue. There are for example regions such as the 
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chordae tendinae and the anterior leaflet that are stiffer because they need to be stronger 

due to the forces acting upon them. These regions expressed higher amounts of α-SMA 

and vimentin. The α-SMA may be indicative of the contractile nature of these regions, 

which in turn could describe the type of loading experienced by these tissues(32). The “clear 

zone” on the posterior leaflet is a region that does not possess chordal attachment. The 

VICs present within this region expressed vimentin but at a much lower intensity(32). The 

cells in this region are also more like the VICs widely described by literature. GAG content 

also differs regionally, being secreted greatly by the more tensile-intensive regions. 

1.3 Pathology of the Mitral Valve: 

Pathologies of all heart valves affect an average of 2.5% of the population in the 

United States(53). This number drastically increases with age, as many heart valve diseases 

are degenerative in nature. The majority of this 2.5% of the country are sufferers of mitral 

valve pathologies(53). About 44,000 hospitalizations per year are due to mitral valve disease 

and this number represents about 44% of those who would benefit from some form of 

surgical correction(14). As the health of the mitral valve goes, so too does the health of the 

heart. Mitral pathologies can lead to atrial fibrillation, arterial thromboembolism, 

pulmonary edema, pulmonary hypertension, cardiac hypertrophy and heart failure(54–57). Of 

the many ailments that strike the mitral valve, most are degenerative in nature. This is a 

shift from the predominance of rheumatic diseases to degenerative etiologies. In 

developing countries, valvular diseases are still substantially caused by rheumatic heart 

disease. A consequence of acute rheumatic fever, rheumatic heart disease is still prevalent 

in developing nations. It is important to note that developing nations represent about 80% 
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of the world’s population, so while most journals report the importance and the alarming 

rise of degenerative mitral valve disease, the majority of the world’s patients suffering from 

valvular disease are caused by rheumatic heart disease(58). 

 

Figure 1.9: Conceptual model for mitral valve pathologies. Adapted from Levine et al., 2015(27). 

Degenerative etiologies of the mitral valve are however becoming increasingly the 

dominant focus for treating these diseases. Of the heart valves, the mitral valve is the most 

degenerative in nature. Mitral regurgitation, which can be caused by several other 

contributing ailments, is the most common form of heart valve disease in industrialized 

countries. It is especially prevalent in older patients, affecting almost 15% of the population 

that is 75 or older(58). This is largely due to an altered architectural organization of the ECM 

within the components of the valve. Each of these components of the valve are 

interdependent upon the other. This living apparatus, exhibits plasticity in that it can change 

cellular phenotype and behavior to adapt to its current ailment. Adaptive matching of valve 

mechanics to the needs for normal function illustrate the valve’s adaptability. Many of 

these self-incurred adaptations for coaptation, however show themselves in pathological 
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valves. There is a crucial interplay between biomechanics and biology(27). There are three 

major types of mitral valve diseases that can affect any part of the mitral apparatus. These 

include mitral stenosis, regurgitation, and prolapse. Each of these types of disease lead to 

failure of coaptation and could eventually lead to heart failure and death. 

1.3.1 Mitral Stenosis: 

Mitral valve stenosis is the least common valvular disease in industrialized nations, 

however it is the most common valvular disease in developing nations.(58). This again 

represents roughly 80% of the world’s population. Prevalence in these non-industrialized 

regions is largely due to poor socioeconomic conditions. Mitral stenosis is largely a result 

of repeated infection with Group A β-hemolytic Streptococci, which eventually leads to 

Rheumatic heart disease (RHD) from acute rheumatic fever (ARF). This disease primarily 

affects children and young adults, in fact acute rheumatic fever is the leading cause of heart 

disease in children worldwide(59). Given its distribution amongst the population, rheumatic 

mitral stenosis accounts for a large portion of pregnancy-related complications in 

developing countries(58). Based on conservative estimates by the WHO, at least 15.6 million 

people worldwide have RHD, and about 233,000 deaths annually are directly attributable 

to acute rheumatic fever or RHD(60). ARF (and eventually RHD) are a consequence of 

repeated infection with Class I strains of group A streptococcus. The role this virus plays 

in ARF is complex and not fully understood, however it appears that repeated exposure is 

necessary to “prime” the immunological response both qualitatively and quantitatively, 

before ARF occurs(60). It is believed that the autoimmune response caused by ARF could 

be triggered by molecular mimicry between the epitopes of specific human tissues and the 
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virus itself(60,61). Structurally, streptococcal M protein (a major virulence factor) and 

myosin are very similar. Both are alpha-helical coiled-coil molecules(60,61). This similarity 

seems to be essential in the autoimmune response. CD4+ T-cells proliferate in response to 

both the streptococcal M protein and cardiac myosin but not skeletal muscle myosin(60). 

 

Figure 1.10: Example of stenosis in the mitral valve. Clear calcification of the leaflets is visible(54). 

It is important to note however, that only a small portion of the mitral valve is 

composed of myosin, and diseases of the valve rather than acute myocarditis are 

responsible for most cardiac morbidity and mortality of ARF and mitral stenosis. How then 

can an immune response against myosin induce ARF and eventually mitral stenosis? It 

appears that several common valvular proteins including laminin and vimentin have several 

autoantigens that are recognized by T cells. Laminin is also structurally similar to the 

streptococcal M protein(60). Initial streptococcal infection with activation of B and T 

lymphocytes by streptococcal antigens would lead to antibody and cytokine production. 

The presence and increased production of these antibodies and cytokines leads to an 

autoimmune response to the valvular proteins through binding to the valvular endothelium 

leading to inflammation, cellular infiltration and valve scarring(61). The valve endothelium 
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is the prominent site of lymphocytic infiltration in RHD. The lymphocytes that adhered to 

the valve surface expressed VCAM-1, a protein responsible for adhering lymphocytes to 

vascular endothelium(59). Endothelial transmigration of these lymphocytes at the valve 

endothelium is an important step in ARF and mitral stenosis. The presence of activated 

macrophages in rheumatic lesions is characteristic of granuloma formation. These lesions 

are characteristic of mitral stenosis and the presence of CD4+ T-cell proliferation has been 

noted here indicating their role in the pathogenesis of RHD in mitral stenosis. With the 

upregulation of VCAM-1 on the endothelium and the binding of auto-antigenic antibodies, 

the valve becomes a localized microenvironment for continuous cytokine production and 

infiltration from lymphocytes(59). Repeated infection would result in larger and more 

frequent lesions, exposing more autoantigens on valvular proteins. Thus explaining why 

several infections are necessary to prime the immunological response before ARF occurs. 

Scaring is also an important event in the progression of this disease because this leads to 

neovascularization. The mitral valve is largely avascular, therefore, once scaring and 

neovascularization occurs, the transendothelial migration of lymphocytes is allowed(59). 

The activated endothelium and the valvular proteins play a large role in the development 

of ARF and mitral stenosis. It is important to note that the valvular endothelium is 

important in the regulation of phenotype in interstitial cells. It is likely that endothelial cells 

on valves function similarly to that of vascular endothelial cells in regards to maintenance 

of vessel tone and inhibition of pathological differentiation. Therefore, these lesions 

created on the valve endothelium most likely contribute to activation of VICs and 

aggressive remodeling of the valve’s interior. 
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The main pathologic features of mitral stenosis are leaflet thickening, nodularity, 

and commissural fusion(54). All of these features contribute to a narrowing of the valve and 

are a result of the repeated inflammatory response brought on by RHD. The normal mitral 

valve area ranges from 4—6 cm2 and symptoms from the narrowing show roughly, when 

the area has decreased by about 1.5 cm2. Chordal fusion and shortening are also caused by 

mitral stenosis and add further resistance to blood flow. Calcification of the annulus and 

leaflets can also occur, but rarely contributes to severe mitral stenosis. Calcification due to 

stenosis is seen in patients 65 years or older(58). Atrial fibrillation is often associated with 

mitral stenosis as is pulmonary hypertension. Mitral stenosis is also one of the common 

lesions found during pregnancy and is associated with high morbidity(54).  

1.3.2 Mitral Regurgitation: 

Mitral regurgitation is a large-encompassing and prevalent disorder of the mitral 

valve. It affects about 2% of the US population which equates to around 4 million 

patients(53). About 250,000 new patients are diagnosed yearly(57). These sizable statistics 

highlight the many mitral regurgitation (MR) can effect. MR is also however a broad term 

as it includes any mitral valve pathologies that allow regurgitant blood back into the atrium 

during ventricular systole. Regurgitation could be the result of mitral stenosis, annular 

calcification, degeneration, prolapse of the leaflets and other valvular diseases. The wide 

net that this pathology casts can and has caused serious illness and death. When the atrium 

is forced to handle additional regurgitant blood, it becomes dilated overtime and this leads 

to pulmonary edema, heart failure, and death. Degeneration of the valve is a certain factor 

as almost 10% of patients 75 and older are affected by MR(53). A particularity of MR is that 
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it can be the consequence of two primary abnormalities. Functional MR is caused by left 

ventricular remodeling, which results in incomplete closure of the valve through 

anatomical misalignment of the valvular components. The second type of MR, organic 

MR, is a consequence of primary anatomical abnormalities caused by valvular 

degeneration of the mitral apparatus. These two types are totally different diseases in both 

their pathophysiology and in how they are treated(58). Carpentier introduced a functional 

classification of MR based on leaflet movement. Type I with normal leaflet movement 

(e.g., MR caused by annular dilatation or leaflet perforation); Type II with exaggerated 

leaflet movement (e.g., mitral valve prolapse); and Type IIIa and IIIb with restricted leaflet 

movement in diastole and systole, respectively(57). There are varying degrees of 

regurgitation. Those with acute severe regurgitation, the pulmonary venous and atrial 

pressures increase quickly, leading to pulmonary congestion and edema(56). Edema is an 

abnormal accumulation of fluid in the cavities in the body, in this case with obstructions in 

the pulmonary veins, fluid builds in the lungs. Chronic regurgitation leads to a gradual 

increase in atrial size. The atrium compensates and as a result, the left atrium and 

pulmonary venous pressures do not increase until late in the course of the disease. Due to 

this compensation from the body, many patients with chronic or severe mitral regurgitation 

will be asymptomatic for years because the regurgitant volume load is tolerated. In 

addition, as mentioned, the ventricle experiences a significant overload. The ventricle, like 

the atrium will attempt to compensate, becomes hyperdynamic and dilates. Pathological 

hypertrophy also leads to an increase in muscle mass, but the muscle does not increase its 

pumping ability, and instead accumulates myocardial scarring. 



32 

 

 

Figure 1.11: Histological example of degeneration in the mitral valve ECM with an enlarged spongiosa(56). 

Functional MR is a consequence of abnormalities of the segmental left ventricle 

wall motion, dilation of the left ventricle, or papillary muscle displacement(57,58). Many 

times in functional MR, the structure of the mitral valve is normal, however due to its 

attachment to a diseased left ventricle, this can cause an incompetent valve. There are two 

categories for functional MR, ischemic and non-ischemic. Ischemic MR is associated with 

coronary artery disease most often associated with myocardial infarction and non-ischemic 

is associated with idiopathic dilated cardiomyopathies(57). Due to left ventricle dysfunction 

or remodeling, papillary muscles can be displaced laterally, apically and posteriorly. 

Because the chordae tendinae are not extensible enough to compensate for this 

displacement, the leaflets of the valve are affected causing tethering, apical leaflet 

displacement and dysfunction of the valve. This is a vicious cycle because the higher the 

degree of functional MR, the larger the left ventricle; the larger this left ventricle, the larger 

the displacement of the papillary muscles and thus the higher the degree of functional MR. 

It is also possible that the annulus experiences an increase in size due to its attachment to 

other areas of a diseased heart. The posterior leaflet’s insertion to the myocardium of the 

left ventricle is the cause for this. In functional MR, the annulus is dilated along the septo-
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lateral from about 28.2 to 35.1mm(62). This makes the annulus more circular in shape with 

a larger annular orifice area as well which decreases its ability to contract. The leaflets have 

also been known to increase in size by roughly 35% to cover the increased orifice area due 

to the left ventricle dilation(62). This adaptive mechanism is still insufficient to allow proper 

function of the mitral valve in patients with functional MR. The prevalence of functional 

MR is underestimated because heart failure in patients is often owed to left ventricular 

systolic dysfunction rather than a valvular disease. 

Organic MR is a degeneration of the valvular apparatus. Degeneration in this case 

does not always mean loss or degradation of tissue but rather a disruption from the 

homeostasis of the mitral valve’s ECM. Organic MR includes mitral valve prolapse, the 

most prevalent form of mitral valve diseases(55,57,58,63). Prolapse of the mitral valve means 

that the leaflets are allowed to billow into the atrium. This incompetence leads to 

regurgitation. However, this will be discussed in the next section. Other forms of organic 

MR include annular calcification, however this rarely becomes clinically important despite 

its high prevalence(58). Most literature however is focused on myxomatous mitral valve 

disease (MMVD), or degenerative mitral valve disease. Age is considered an important 

contributor to these forms of organic MR. 

MMVD is typified by enlarged leaflets and annular dilation(64). Mechanically the 

diseased leaflets are one third less stiff and considerably more extensible compared to 

healthy leaflets(65). It also commonly features thickened chordae, which over time become 

elongated. The chordae are about 75% less strong than normal chordae, thus promoting 

rupture(65). Microscopically MMVD is characterized by expansion of GAG and 
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proteoglycan content in the spongiosa, expanding this region of the ECM. Elastic fibers 

are often appear as granulated and fragmented clusters instead of stretching across the 

valve. It is important to note that there are varying degrees of MMVD causing organic MR. 

Barlow’s disease and fibroelastic deficiency (FED) present very different examples of 

degeneration. VICs dictate many of these changes in the ECM. As the resident response 

team for remodeling and preserving the matrix, VICs are responsible for the quality of the 

valve’s ECM. In MMVD, VICs are found in their activated state meaning they are 

behaving in a myofibroblastic manner and producing large amounts of ECM, particularly 

GAGs and proteoglycans. It has been mentioned in literature that the key to the VIC’s safe 

remodeling of the valve was the cell’s ability to deactivate into a quiescent state. If 

however, these cells remain in the activated state, they can overproduce ECM and MMVD 

can result. In progressively myxomatous valves, VICs can even shift further to a 

myofibroblastic phenotype(64). Activated VICs (aVICs) also secrete matrix remodeling 

enzymes (MMP-1, MMP-2, MMP-9, MMP-13) while collagen synthesis remain 

unchanged(28). This is important to note because it suggests that abnormalities in the valve’s 

leaflet structure and mechanical integrity are not a product of decreased collagen 

production, but rather an increase in collagenolytic activity(46,65). Cathepsins S and K are 

also released by aVICs and are heavily involved in elastin remodeling, especially Cathespin 

K(46). 
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Figure 1.12: A schematic showing the mechanisms of myxomatous degeneration, with activated VICs 

becoming myofibroblast-like which in turn increases matrix production and turnover. This increases MMP 

production and TGF-β production, which cyclically promotes further cell proliferation and activation of 

VICs. 

Endothelial cells will also show atypical phenotypes in advanced stages of mitral 

valve disease. The constantly changing leaflet environment and altered ECM environment 

lead to altered endothelial function(64). As described earlier, aVICs produce significant 

amounts of GAGs that accumulate within the tissue leading to its altered structure. 

Literature shows increases in proteoglycan and elastin content being 59% and 62% 

respectively(64). MR is perpetuated by this accumulation of proteoglycan content 

interstitially due the increasing stiffness of the leaflets. Accumulation of GAGs in the 

fibrosa are a common indicator of degeneration and a sign of the interplay between 

biomechanical forces outside the valve and the biological adjustments made interstitially. 

VICs in MMVD, largely aVICs, act as myofibroblasts which increase matrix production 

and turnover through the release of MMPs. MMPs drive the fragmentation of collagen and 

elastin, which releases peptides and additional TGF-β1 that further encourages 
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proliferation of cells and myofibroblast differentiation(27). TGF-β1 on a stressed valve’s 

exterior will also encourage VECs to undergo EMT, in which VECs retreat interstitially 

and become VICs, thereby increasing the number of matrix-producing cells.  

Also contributing to these aVICs and the dysregulation of ECM homeostasis are 

several signaling pathways implicated in MMVD. It is important to note that inflammatory 

cells are not found in degenerating valves and thus inflammation is not likely a player in 

the pathogenesis of MMVD(66). Much focus in literature has recently centered on the 

pathways that affect MMVD and have identified several signaling mechanisms that control 

the expression of key effector proteins. Meaning that MMVD while clearly associated with 

aging, is not solely a consequence of time. Progressive weakening of the ECM associated 

with aging does provide mechanical stimuli for VIC activation and proteoglycan 

accumulation mentioned above. Many chemical stimuli are being investigated in literature. 

Circulating serotonin has received attention lately not because serotoninergic valvulopathy 

and MMVD are identical, but because they share several features including increased 

GAG/proteoglycan deposition. Serotonin synthesis is governed by tryptophan hydroxylase 

(TPH). TPH1, the peripheral isoform, mediates the release of serotonin(66). Studies have 

shown significant increases in TPH1 expression in MMVD, and inhibition of this factor 

diminishes expression of myxomatous effector proteins in mitral valves(66). It has also been 

shown that serotonin (5-HT) induces an upregulation of TGF-β1 in VICs(67). The TGF-β 

superfamily of growth factors play a role in ECM production. Their overexpression is often 

linked to several valvular diseases including degenerative mitral valves(66,67). BMPs are 

also members of the TGF-β family and are a factor in their expression through Smad 
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phosphorylation(66). It is not only their association with TGF-β and its link to MMVD, but 

BMP2 induces the activation of Sox 9 which mediates expression of cartilage-specific 

structural genes(66,67). The similarities between chondrogenesis and MMVD implies BMP-

Sox 9 signaling as contributing pathways for MMVD. The role of nitric oxide (NO) is 

unclear as it relates to MMVD, however there is evidence of increased endothelial nitric 

oxide synthases (eNOS) activity and NO release in MMVD(66,67). However, this increased 

expression may merely be a response to the disturbed flow associated with MMVD. 

Despite increases in ECM content, there is no increase in mature collagen or elastic 

fibers(64). In fact, the compositionally collagen types change within myxomatous valves. 

The collagen content of a healthy mitral valve consists 74% Type I, 24% Type III, and 2% 

Type V. In myxomatous valves, the collagen type I decreases slightly and type III 

significantly increases by 53%(68). This change in collagen content has been debated in 

literature depending on which methods were used. It has been shown however that with 

higher collagen type III content stiffening can occur and a correlation seems to exist with 

other cardiovascular diseases(69). Also collagen type III has been shown to be more 

associated with GAGs and has more distensible properties than type I(70). Despite continued 

production of collagen, in myxomatous valves much of what is produced is immature 

collagen. Collagen is synthesized as the precursor procollagen containing non-triple-helical 

extensions(71). Formation of collagen fibrils requires an initial linear and lateral aggregation 

that is promoted by these extensions(71). As fibrils mature, they transition from a highly 

soluble material to an insoluble structure. Strong inter- and intramolecular forces cross-

links are the reason for this transition to maturity(71). These cross-links are vital to the 
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tensile strength and integrity to collagen matrices. Cross-links contribute to collagen’s 

mechanical strength. By lacking these cross-links or having abnormal cross-linkages, there 

is a marked decrease in mature collagen output, failure to form collagen fibrils and overall 

loss of mechanical integrity(69,71). The absence of these cross-links results in very weak and 

extensible fibers. In myxomatous valves, immature procollagen expression is upregulated 

by a factor of two(72). Collagen fibers in MMVD are also sparsely and irregularly arranged, 

characterized by fragmentation of the collagenous bundles(73). Often in these myxomatous 

tissues, fibrils had a spiraling substructure. These fibrils are larger in diameter and can have 

a “flower-like” appearance(68). Spiraling collagen is thought to develop due to dissociation 

or fraying of existing fibrils or defective aggregation of collagen filaments(68). Orientation 

of collagen fibrils is also irregular in MMVD. Fiber direction and organization is the most 

effective way to optimize strength without increasing weight and this direction reflects the 

existing forces acting upon the tissue(74). One possible explanation for this haphazard and 

disorganized fiber orientation could be the accumulation of GAGs. GAGs play a role in 

maintaining spatial order in the ECM as they act as space fillers. The significant increase 

in GAG composition in the ECM would certainly disturb this spatial order(74). Also 

overtime, alignment of the fibrils declines in MMVD. Age of the patient, as mentioned 

several times previously, is in clear association with the prevalence of MMVD. Collagen 

is the only protein in humans that shows definite age changes(70). Aging collagen and its 

effects in MMVD are not fully defined in literature; however, a clear correlation exists 

between them. It should be noted that despite this significant correlation, that MMVD is 

not simply an aging process. As mentioned, in MMVD collagen fibrils become 
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disorganized thus endangering the mechanical integrity of the valve. In elderly healthy 

patients however, collagen tends to have the best defined patterns and degree of 

regularity(74). Also depending on the form of MMVD, Barlow’s disease for example, the 

patients most affected by the disease may in fact be younger in age when compared to other 

forms such as fibroelastic deficiency(73).  

1.3.3 Mitral Prolapse: 

Mitral valve prolapse is the most prevalent form of mitral valve disease and is 

largely degenerative in nature. It affects more than 144 million people worldwide and about 

3% of the adult population in the US(75). It is the most frequent cause of chronic, pure and 

isolated mitral regurgitation(75). More specifically, mitral valve prolapse (MVP) is a form 

of organic mitral regurgitation. It is simply characterized by incorrect closure of the leaflets 

resulting in their billowing into the atrium. This inadequacy in function allows regurgitant 

blood to flow back up into the atrium and contribute to the well-known and deadly 

downstream effects. As a form of organic MR, this specific pathology is predominantly a 

result of the degenerative etiologies present in MMVD, described above. 

 

Figure 1.13: A resected mitral valve with prominent leaflet thickening and opacity and a prolapsing and 

domed posterior leaflet (arrow)(27). 
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As a form of MMVD, there are various causes of mitral valve prolapse, all of which 

are some disruption of ECM homeostasis resulting in incompetent valvular components. 

For example, degeneration in a myxomatous valve can result in changes to the annular 

complex. Changes to this or other structures can cause regurgitation from prolapse(76). 

Degeneration of the chordae tendinae can result in chordal rupture, which is in fact the 

most common finding with sufferers of mitral prolapse(63). There are many affected by 

abnormal leaflet structures are well. In fact, there is a spectrum of prolapse diseases that 

result from abnormal leaflet sizes. Common examples include Barlow’s disease and 

fibroelastic deficiency (FED), which range from excessive to insufficient ECM content 

respectively. In fact, MMVD is more currently called Barlow’s disease and is characterized 

by large valvular size with excessive leaflet tissue, dilated annulus, as well as thickened 

and elongated chordae. FED, a less common etiology, is more prevalent in older patients. 

This condition is associated with a fibrillin deficiency that often lead to a rupture of one or 

more thinned and elongated chordae, usually involving the middle scallop of the posterior 

leaflet. The chordae are thin and friable. This can all contribute to regurgitation and 

lessened coaptation(63). Marfan’s syndrome is a common condition of degenerative valves. 

It is a genetic disorder of the connective tissue(63). Similar to Barlow’s disease, a patient 

with Marfan’s will also experience a dilated annulus; however, unlike Barlow’s this 

syndrome involves the aortic root and aorta. It can be a systemic disease than Barlow’s 

often affecting the other connective tissues. 

Another etiology of mitral valve prolapse is bacterial endocarditis. Endocarditis 

occurs when bacteria enter the bloodstream (bacteremia) and attach to a damaged portion 
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of the inner lining of the heart or abnormal heart valves. Only those bacteria that are able 

to stick to the surface lining of the heart and to abnormal valves tend to cause endocarditis. 

The ability of these bacteria to stick to the surface lining is aided by a preexisting 

microscopic clot that often forms at these abnormal sites. This often results in ruptured 

chordae(77). Bacterial endocarditis is associated with necrotizing lesions in the leaflets, and 

annular abscess(55).  

Papillary muscle rupture is also a common cause of mitral valve prolapse. This can 

occur through myocardial infarctions. After infarction, the papillary muscles are displaced 

laterally, apically and posteriorly, pulling the leaflet into the left ventricle. Distortion is 

prominent in the basal anterior leaflet, creating a bend(57). Papillary muscle dysfunction 

plays only a minor role compared with apical and inferior papillary muscle displacement 

caused by ischemic LV remodeling and dilatation. As described above, due to the 

mechanical limitations of the chordae, the displacement of the papillary muscles is 

distributed to the leaflets, causing apical leaflet displacement, and impaired coaptation. 

Together with annular flattening, enlargement, and reduced contraction, mitral valve 

tenting affects leaflet coaptation and causes functional mitral regurgitation(57). 

1.4 Current Solutions for Mitral Valve Insufficiency: 

 Dysfunction of the mitral valve (MV) apparatus is a common ailment of the global 

population. It is especially common with advanced age, affecting almost 10% of 

individuals 75 years of age(78). The sheer number of sufferers of mitral valve pathologies 

warrant a myriad of solutions aiming for the reestablishment of proper function for the 

valvular apparatus. Pathological prevalence has driven demand from both the clinical and 
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engineering spheres to develop a solution for dysfunctional mitral valves. Over the course 

of several decades, beginning in the 1960’s, advancements in engineering and material 

sciences led to advances in treating these diseases. Annually there are more than 300,000 

people worldwide, 44,000 from the United States alone, that undergo open heart surgery 

to treat mitral valve diseases(79). Many of these operations utilize replacement prostheses 

or advanced repair techniques. Replacement of the mitral valve has been available to 

patients for the greater part of 4 decades. Mitral valve replacement is still the gold standard 

in developing countries(55,80–82). During these decades of prosthetic mitral valves, advances 

in surgical techniques and improvements in imaging and material development have paved 

the way for the successful restoration of mitral valve function using surgical repair. While 

there are various methods for repair, generally all repair methods aim to achieve the best 

leaflet coaptation area during systole and reduction of any regurgitant flow(83). Recent 

advances in repair have focused on restoring and/or reducing the annular area, preserving 

the 3D annular geometry. Due to the success of surgical repair of the mitral apparatus, rates 

for repair have gone significantly up in recent years. Currently MV repair represents over 

60% of surgical cases compared to valve replacement(84). In developing countries, however 

this number is reversed largely due to the lack of education, experience and therefore skill 

to repair the MV. Of the 44,000 MV surgeries in the US, this represents less than half of 

the patients with severe MV regurgitation and could benefit from some form of 

intervention(14,78,85). This is a similar statistic in most of the world due the pathology’s 

asymptomatic presentation. 
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 Predictable and reproducible results are considerable motivators when choosing 

repair vs replacement. Thanks to the work of Carpentier, Duran, and others, MV repair is 

generally the accepted alternative to valvular prostheses with most surgeons recognizing 

its superiority in both early and late results. However as there are many pathologies of the 

MV, there are several general considerations that must be made to determine the best 

course of action. Surgeons must bear in mind the continued degeneration of the valve. How 

will functional vs organic regurgitation affect the choosing of the repair or replacement? 

Will this surgical correction need to grow with the pediatric patient? The left ventricle is 

remodeling, will a repair now serve the patient years from now? Surgeons must tailor their 

solutions to the patients they have. Trends in MV dysfunction however due point to a heavy 

increase in reparative methods as compared to replacement, at least in the western world. 

1.4.1 Mitral Valve Replacement: 

 Heart valve prosthetics were born from concomitant developments in engineering 

and material science that solved a basic engineering question, how to fix a leaking valve. 

The first valve replacement, the ball and cage model, was used in 1960 and improvements 

upon the design and the materials used were completed over the next decade(81). Alongside 

the advancements of mechanical prosthetics, so too did the advancement of fixative 

techniques on tissue. Glutaraldehyde was initially used to fix porcine tissue, thus creating 

bioprosthetic mitral valve replacements with much improved hemodynamics(86). These two 

avenues for MV replacement, mechanical and bioprosthetic, are still the current treatment 

options several decades later. During their tenure, minor yet important improvements on 

their designs were achieved with advancements in polymer science and tissue fixation. 
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Mitral valve replacement surgery is most commonly performed using a vertical 

sternotomy(86).  

 As mentioned, mechanical prosthetics evolved originally from the ball and cage 

model, current models consist of pyrolytic carbon, a material similar to graphite. This 

material helps limit blood clots from forming on the material. Most models for MV 

replacement utilize a bileaflet design, with two semicircular disks surrounded by a suturing 

ring(83). There are several large companies that offer their own take on this general bileaflet, 

pyrolytic carbon design. Each of these companies which include Medtronic, St. Jude, On-

X, Sorin Group, etc. claim to have advantages over the other, many of which are minute 

changes in the hinges or use of an open pivot design which is intended to minimize the 

recesses or cavities present for example. Due to its design and material properties, 

mechanical replacements, as compared to bioprosthetics, tend to be more durable as a 

replacement(83). Three important factors that define mechanical valves’ durability are 

closing load, material fatigue and cavitation(81). Transvalvular pressures are the major load 

placed on mechanical valves, which is generated at and after closure. This can lead to 

impact wear and friction wear in the prosthetic. This load is felt the most at the hinges and 

joints associated with the bileaflet design. Use of pyrolytic carbon largely alleviated the 

material fatigue that metals and alloys experience as the initial mechanical valves. The 

third mode of failure, cavitation, is due to the formation of microbubbles due to pressure 

reduction. 
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Figure 1.14: Examples of variability in mechanical heart valves. Ball and cage, tilting disk and bileaflet 

valves are and have been used(81). 

 

 Bioprosthetic valves were developed to answer the thromboembolic complications 

found with mechanical valves. Animal tissues had to be chosen due their availability and 

the quantity needed for commercial use, therefore antigen-masking techniques were 

developed. Glutaraldehyde was chosen as the cross-linking chemical to treat either porcine 

valve leaflets or bovine pericardium. By extracting any un-bound glutaraldehyde from the 

treated tissues, improvements were seen in allowing endothelial growth and calcification 

was markedly decreased in patients(81). While not as durable as a mechanical valve, 

bioprosthetics generally last between 15 to 20 years(87). 

 Due to their differing material compositions and benefits each affords, choice of 

the surgeon to choose a mechanical or bioprosthetic valve is largely patient specific. 

 

Figure 1.15: Bioprosthetic heart valves from four of the major manufacturers(83). 
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 There are many criteria that must go into this selection including symptomatic 

status, occurrence of thromboembolic episodes, and myocardial function(86). Evaluating the 

patient’s age, whether they have co-morbidities, and the risks associated with reoperation 

are all criteria that need to be determined before a surgeon decides on the proper valve 

prosthetic to use. Age is one of the most important criteria when determining valvular 

prostheses. For example, elderly patients (65 years or greater), are often given bioprosthetic 

valves due to lack of anticoagulant therapy needed for this valve. Younger patients often 

receive mechanical valves instead. Surgeons will also need to look into the lifestyle of the 

patients, their body size and thus their left ventricle function(88).  

 

Figure 1.16: Decision tree for valvular prosthetic options(88). 

 Mechanical valves are preferred when the patient has no contradiction to 

anticoagulant therapies or is already on one, the patient is at risk of accelerated 

bioprosthesis structural deterioration due to their age (young patients) and the patient is 

younger than 65 years and has a long life expectancy. The bioprosthetic valve is preferred 
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on the other hand if an anticoagulant regimen is unavailable for them due to compliance 

problems or lifestyle, and the patient is at or greater than 65 years of age and has a limited 

life expectancy. Also worth noting is that bioprosthetics are preferred for woman of 

childbearing age. This is due to the fact that these women, who are or may become 

pregnant, cannot undergo anticoagulant regimens. It is also important to note however, that 

bioprosthesis degenerate more rapidly during pregnancy and in younger patients(88). 

 Despite some success from mitral valve replacements, improvement in their design 

and functionality stalled several decades ago and remain an unsatisfying option for valvular 

replacement. Given the fact that these prosthetics are foreign objects in a high stress 

environment consisting of living cells and rapid fluid flow, evidence has shown that these 

replacements cannot avoid cascades of biological events. For example, shearing and fluid 

flow across the mitral valve leads to platelet activation, which launches the coagulation 

cascade. Despite small advances in material science, the body still chronically reacts to 

these nonnative devices. This has been confirmed in mechanical valves’ continued 

vulnerability to thrombus formation due to high shear stress (activating platelets), flow 

separation, and blood damage. The most commonly used mechanical valve, the bileaflet 

valve, encourages thrombus formation at its hinges due to high stress, leakage regurgitation 

and stagnant flow in this area(81). Due to this risk of thrombus formation, anticoagulation 

is still required for patients. The rate of embolic events ranges from 0.6 to 6.5% with 

bileaflet prosthesis(89). Due to the need of long-term anticoagulation, there are inherent 

risks for hemorrhagic complications(81,90). Total rates of major bleeding were between 3.2 

and 12.9%(91). Thromboembolic events showed up in about 4.4% of pregnant women(92). 
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The anticoagulants used ranging from Coumadin, heparin and warfarin, were also 

associated with fetal malformation(92).  

 

Figure 1.17: Example of thrombus formation on a bileaflet mechanical valve replacement(93). 

 Another risk associated with mechanical heart valves is pannus overgrowth. 

Excessive tissue growth can occur at the sewing ring and can lead to insufficiency of the 

prosthetic. Pannus overgrowth is associated with obstructive valve failure in 53% of 

cases(94). Mitral valves show pannus formation on both the atrial and ventricular sides. This 

pannus formation is largely caused by macrophages and foreign giant body cells reacting 

to the sewing ring material. 

 Pediatric patients are also sufferers of the consequences of mechanical MV 

prostheses. When replacement is elected as the best option for pediatric patients, mortality 

rates range between 10 and 20%(95). This is due to the complexity of the surgery and 

coexisting cardiac abnormalities. It also goes without saying that long-term results for these 

children are difficult to obtain due to somatic growth of the patient. There is not a solution 

that exists for replacement options that can withstand normal growth of the patient. Tissue-

derived bioprosthetics were supposed to solve the issue of thrombogenicity presented from 
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the mechanical valves by using tissue that was much more hemodynamically efficient. This 

risk undoubtedly went down, although the rate of thrombus formation during the initial 

three months post bioprosthetic insertion occurred at a rate of 55% often incurring an initial 

anticoagulant regimen(96). This rate steadily declines at rate of about 10% and falls to 2.4% 

thereafter(96). Despite this apparent alleviation of the mechanical valve’s Achilles heel, 

bioprosthetic valves face other inherent complications. Due to the absence of living tissue 

and the attempt to mask xenogeneic antigens, faults in this valve’s design are numerous. 

Similar to the triggers mechanical valves put forth to initiate tissue overgrowth on the 

sewing ring, this process is also experienced by tissue valves due to insufficient masking 

of antigens and the onset of inflammation. This is not a new problem however as low-grade 

glutaraldehyde used in commercial fixation has long known to reduce immunogenicity but 

not abolish it(97). In addition to the immune response elicited by the patient, degradation of 

the prosthesis is common through inflammation. In the majority of explanted bioprosthetic 

valves, inflammatory cells are found rampant within and covering the surface of the 

tissue(98). Macrophage-mediated degradation is then shown to break down these tissue 

valves over time. Mechanically speaking, bioprosthetics are also not very stable. The VICs 

inside the tissue are devitalized due to crosslinking and therefore cannot repair or remodel 

the tissue due to the harsh mechanical stresses these valves endure. As many as 75% of 

failed porcine prostheses in the mitral position show a rupture on one of the free edges(81). 

Structural degradation is also due to calcification of the valve. For one, glutaraldehyde is a 

known promoter of calcification. More importantly though is that this chemical treatment 

destroys the viability of the resident cells in the tissues. These nonviable cells are incapable 
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of remodeling collagen and therefore ongoing repair of bioprosthetic valves is impossible. 

Also, devitalized VIC fragments serve as nuclei for calcification(90). Calcification is 

initiated predominantly at the devitalized VICs membranes and at areas where mechanical 

stress is concentrated. Normal VIC function involves maintaining a proper calcium 

gradient in the cytoplasm, and this cannot happen in nonviable cells(99). Initial calcium 

deposits will eventually enlarge and coalesce grossly affecting the bioprosthetic valve. The 

biochemical differences in younger patients disallows long implant survival due to 

advanced calcification in the prostheses. It has also been shown that denuding of VECs 

during the handling process increased availability for infiltration by host cells.  

 

Figure 1.18: Mechanisms of calcification in bioprosthetic heart valves(90). 

 Overall, heart valve replacements have aided many patients. However, these 

prostheses have many drawbacks and are not permanent solutions. In fact the ten year 

survival rate following mitral valve replacement is about 50%(86). While structural 

degradation is not relevant in mechanical heart valves, thrombus formation and chronic 
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reaction from the host limit its lifespan within the patient. Structural degeneration is quite 

relevant with bioprosthetic valves as it typically affects 20-40% of recipients after 10 years 

and over 60% after 15 years(86). Due to their unreliability patients often must undergo 

repeated surgeries to replace these failing prosthetics, and with each successive surgery 

patient mortality can increase up to 20% each time(100). Therefore, pediatric patients face a 

dire future with heart valve replacements. Lack of progress in this field of cardiovascular 

engineering has especially hurt developing nations, who represent about 80% of the 

world’s population and cardiovascular disease sufferers. Many of these countries do not 

have the socioeconomic capabilities to support heart valve surgeries for its citizens and 

once they do reach this point, heart valve replacements will dominate their options as 

complicated reparative techniques are out of the question. Therefore lack of innovation and 

improvements for these designs have really hurt the developing world. 

1.4.2 Mitral Valve Repair: 

 To combat the well-known and chronicled failures of replacements, surgical 

correction of the mitral valve apparatus through repair has risen in support. While the 

complicated anatomy of this “valvular machine” presents an intricate case for any surgeon, 

success rates and usage rates of these techniques have risen as replacement technologies 

decrease in use. 
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Figure 1.19: Carpentier’s classification of mitral valve regurgitation(101). 

The overarching goal of surgical repair of the MV is to restore the gross natural 

geometry of the mitral valve to allow for coaptation. Some of the advantages of mitral 

valve repair include low rates of thromboembolism, reduced need for anticoagulation, good 

long term prognosis and a decreased risk of endocarditis(102). As mentioned, Carpentier, 

Duran and others developed several surgical techniques and classifications for mitral 

valvuloplasty. Many of the advantages with surgical repair parallel the disadvantages of 

valvular replacement. Long term results for repair also appear to show good results with 

valvuloplasty having lower operative mortality, better preservation of left ventricular 

function and superior survival rates(103). Many of these corrections pioneered by Carpentier 

were based on a classification system. Because of the apparent advantages, the threshold 

for patients has been lowered to allow those patients with asymptomatic or early symptoms. 

Trends in mitral valve surgeries have shown a significant increase in the use of repair over 

recent years. This however represents less than half of those that would benefit from some 

form of surgical intervention(14). This, as mentioned, is often due to mitral pathology’s 

tendency to be asymptomatic and show itself in the later decades of life. It is important to 

note however, that valvuloplasty is far from being the norm in the developing world. Due 

to socioeconomic difficulties, lack of experience and education in these regions, surgical 



53 

 

repair of the mitral valve is unpopular. It could be argued that first world countries are at 

fault for this in that they had not developed innovative solutions for decades regarding 

mitral valve pathologies. Whatever the case, replacement surgeries still dominate the 

regions of the world that have the most patients that need such interventions. 

According to the classifications defined by Carpentier, general considerations must 

be taken when evaluating which type of repairs would best benefit the patient. This is 

dependent on the pathology afflicting the patient and the severity. Type I is present when 

there is dilation of the annulus due to endocarditis or some cardiomyopathy. Type II 

pertains to rupture or elongation of chordae tendinae, often due to degeneration or papillary 

misalignment. Type III has two sub-types, type IIIa occurs with commissural fusion, 

leaflet, and chordae thickening as in myxomatous valves or rheumatic disease. The second 

subtype, type IIIb, is often due to chordal retraction (rheumatic) or papillary retraction 

(ischemic) or displacement due to functional or ischemic cardiomyopathy(101). For a repair 

to be successful, proper preoperative or intraoperative work, such as a transesophageal 

examination, are imperative for full evaluation of dysfunction. Overall, the goal of any 

mitral repair is to first address the dysfunctioning motion of the valve, and secondly to 

correct and stabilize the shape of the annulus by an annuloplasty ring. Therefore providing 

a valve that no longer leaks while achieving anatomical restoration. 
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Figure 1.20: Trends in mitral valve surgeries favor reparative techniques in recent years(84). 

 One of the drawbacks of mitral valve repair that will be discussed later is that there 

are many different ways to repair a mitral valve. This can differ between each of the 

classifications mentioned above and even within each classification. Therefore, to avoid 

creeping of the scope in this review, concentration will be placed on several general areas 

and common reparative techniques. The first of which is the use of the annuloplasty ring. 

It is important to remember that the hyperbolic paraboloid shape of the mitral annulus is 

crucial for optimal force distribution throughout each of the valve’s components. 

Therefore, reestablishment of this shape is paramount in mitral repair. This is the goal of 

the annuloplasty ring, to restore mitral valve competence by reestablishing anatomical 

equilibrium in the valvular apparatus. Originally the annuloplasty ring used by Carpentier 

was rigid and flat, this was called the “French Correction”(104). However, it was apparent 

that the annulus moves dynamically during normal function, therefore the Physio ring was 

developed and more surgical techniques surrounding these annuloplasty ring like the 

“American Correction” were designed(83,104). Today, all manner of annuloplasty rings exist, 

including rigid, flexible, semi-rigid, incomplete or complete, planar or saddle-shaped, 
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adjustable and non-adjustable(83). In general, flexible incomplete bands are designed to 

preserve the contour of a healthy annulus, semi-rigid rings are to maintain coaptation and 

integrity of the valve especially during systole, and finally rigid valves are used to provide 

solid support to reshape very dilated annuli when the patient has significant ventricular 

dilation(79). Overall, the mitral annuloplasty has become the gold standard for treatment of 

most mitral etiologies.  

 Prolapse of the leaflets can often be a result of degenerating or ruptured chordae 

tendinae(105). Originally reparative techniques centered on chordal transfer where one 

chordae would be removed and then re-sutured where the surgeon saw fit(101). However, 

results from this procedure were not optimal and therefore other sources of chordae had to 

be used. Expanded polytetrafluoroethylene or ePTFE, was then discovered to provide 

adequate mechanical strength and host incorporation. ePTFE is a thermoplastic polymer 

used first in several other applications. It has great physical, chemical, thermal and of 

course mechanical properties. It is highly flexible with a high tensile strength and is also 

resistant to fatigue(105). ePTFE is a nonabsorbable monofilament that along with its 

micropores allows for great mechanical and biological properties. The pores allow for the 

covering of these neochordae in fibrous endothelial tissues and it provides attachment for 

fibroblasts(105). Chordal length for surgical repair is often decided using transesophogeal 

echocardiography. While mid-term results seem promising for this avenue of repair 

however long term results are very limited(105).  
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Figure 1.21: Variability in annuloplasty ring design for various pathological classifications(85). 

 As mentioned, mitral repair methods were used to parallel the disadvantages of 

replacement. One example of this is the utilization of catheter-based interventions as 

opposed to vertical sternotomy used in replacement surgery. There are two areas of the 

mitral valve where catheter interventions are used, the leaflet and the annulus. The Mitra-

Clip™ from Abbott Laboratories is the only FDA approved that is alternate to mitral 

regurgitation surgery(83). This device used a small clip to grasp the two leaflets of the mitral 

valve thus emulating the edge-to-edge repair instigated by Dr. Alfieri. Edge-to-edge repair 

essentially creates a tissue bridge between the two leaflets alleviating some regurgitation 

in patients with decent efficiency(57,85). Intervention of the annulus via catheter is for 

reduction of annular dilation, attempting to restore the optimal valvular shape. 

Percutaneous valve replacement and treatment are also growing minimally invasive 

surgeries. Percutaneous mitral balloon valvutomy has emerged as a choice for patients with 

severe mitral stenosis brought on by rheumatic fever(106). Complete valve replacement 

through transcatheter mitral valve replacement has also been attempted. Several products 
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including the Tiara™ from Neovasc, The Mitralign™ from Mitralign, and FORTIS from 

Edwards Lifesciences to name a few(83). Other minimally invasive surgeries include the 

use of robotics to repair an insufficient mitral valve(107). 

 In this review of literature regarding mitral valve repair, many of the articles report 

large success with the majority of corrections quite durable while still avoiding the apparent 

disadvantages of valvular replacement. However, a very recent review by the New England 

Journal of Medicine on the two year outcomes of patients with mitral repairs paints a 

different picture(108). Overall, patients who received repairs had significantly more 

reoccurrence of moderate or severe regurgitation two years after surgery. In fact the rate of 

reoccurrence for replacement patients was 3.8%, while the rate for the repair group was 

58.8%(108). Part of these discrepancies may lie in the controversy surrounding the most 

effective surgical strategies. Many clinicians prefer differing strategies for mitral valve 

repair. Not only that, but many articles in current literature note that repairs should only be 

conducted by experienced centers and surgeons as mitral valve repair surgeries are 

inherently complicated(107). Therefore severely bottlenecking opportunities for patients to 

receive treatment. A recent review also noted severe practice gaps in clinicians pertaining 

to mitral valve repair, proper identification of pathological classifications, and preferred 

choice of treatment for their patients(109). Annuloplasty treatment, the current gold standard 

for repair, can result in function mitral stenosis and is associated with a high rate of 

recurrent regurgitation(108). The much maligned mitral valve replacement on the other hand 

has shown less reoccurrence of mitral regurgitation with favorable ventricular remodeling. 

Compared to replacement, reparative techniques had significantly higher incidence of heart 
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failure, reoccurrence of moderate or severe mitral regurgitation(108). Reoccurrence of 

regurgitation is of course directly related to a predisposition to heart failure, atrial 

fibrillations and repeated visitations to the hospital for treatment. Replacement chordae 

have also show to rupture over time(105). In addition, it goes without saying that reparative 

techniques are difficult to perform on pediatric patients due to their smaller valve anatomy. 

Also, any repairs such as an annuloplasty ring or artificial chordae cannot grow with the 

patient overtime, still opening these patients up for reoperation in their near future. Overall, 

from this two-year study, replacement techniques are largely more reliable long term 

compared to reparative techniques and shows significantly less reoccurrence for mitral 

regurgitation. 

 

Figure 1.22: Cumulative failure of mitral valve repair or replacement(108). 

 This revelation regarding mitral valve repair leaves one surely disconcerted. On the 

one hand, mitral valve replacements have a long history of complications including 

thrombogencity, anticoagulant therapy, degradation, calcification and many more. On top 
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of this replacement techniques and devices have largely remained unchanged for 4 decades. 

To combat this reparative techniques were developed and while these do report in some 

cases improved success in treating mitral insufficiency, it appears that these positive results 

were short lived as reviews show that patients who undergo surgical repair are significantly 

more likely to have recurrent regurgitation resulting in reoperations, higher chances for 

related heart failure, ventricular remodeling and more. Neither option offers optimal results 

for pediatric patients who are in need of a more permanent solution for their growing 

bodies. This is nothing to say that developing countries are also far worse than first world 

nations that at least have opportunities for repairs. These countries’ patients, who are the 

bulk of valvular disease sufferers, often have no access to heart surgery. Cardiac surgery is 

only available to about 11% of Chinese citizens and 6.9% of the Indian population(81). 

There is serious deficiency is satisfactory and long lasting solutions for patients with mitral 

valve pathologies. Considerable progress must be achieved for all patients due to the lack 

of ideal solutions and the rising prevalence of mitral valve diseases. 

1.5 Heart Valve Tissue Engineering: 

Current treatment options for mitral valve insufficiency are limited in their 

duration, functionality, and true benefit to patients around the world and in any age range. 

This is true despite the enormous demand for permanent solutions to mitral valve diseases. 

Mitral valve replacements are thrombogenic, elicit pannus overgrowth, and calcification. 

Similarly as noted, reparative techniques offer significantly worse results regarding 

reoperation which leads to a steep slope of dangers for the patient. Also, it is important to 

remember that there are no true options for pediatric patients. No current option in mitral 
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valve repair or replacement can survive growth of the patient. Therefore, researchers have 

turned to tissue engineering to deliver an ideal solution to combat mitral valve pathologies. 

1.5.1 Introduction to Tissue Engineering Paradigm: 

 

Figure 1.23: The general tissue engineering paradigms. (Pathway A) This is the conventional 

incorporation of seeding cells into a scaffold, an in-vitro phase for preconditioning and an in-vivo phase of 

tissue growth and remodeling. (Pathway B) This modified paradigm does not utilize the in-vitro phase but 

instead depends on resident, circulating cells of the patient in-vivo to repopulate the scaffold and spur tissue 

growth and remodeling(110). 

Tissue engineering is a cross-disciplinary science between engineering principles 

and biology to overcome the limitations of artificial heart valves. The aim of tissue 

engineering is to utilize a 3D scaffold as a specific tissue template to develop new, healthy 

tissues from their specific cellular components(111). The scaffold, which provides the crucial 

microenvironment, allows for cell attachment and tissue growth. Specific cells are 

incorporated in these matrices to develop or regenerate new tissue to replace diseased or 

damaged tissues. The ultimate goal of tissue engineering is to fabricate a patient-tailored 
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neotissue from the combination of matrix and specific cells. Thus utilizing the 

characteristics of the original tissue, such as adequate mechanical properties, optimum 

hemodynamics, non-inflammation, non-immunogenic, and durability due to the capacity 

to remodel and heal. Tissue engineered constructs for mitral valve tissue engineering 

(MVTE) should be non-thrombogenic, non-obstructive, non-immunogenic, self-repairing, 

it should allow growth with the patient, allowing for a pediatric solution, and these 

constructs should be a permanent, integrated tissue replacement(110,112–115). As discussed, 

the general tissue engineering paradigm follows the incorporation of 3D scaffolds, with a 

cell-source specific to or with the potential to, differentiate to the neotissue, in-vitro 

preconditioning of the constructs to encourage cell attachment and development, finally 

followed by implantation into the patient and in vivo remodeling. As defined by 

Mendelson’s review, the more traditional, paradigm of scaffold, cells and maturation 

before implantation into the patient is widely accepted as framework from which most 

tissue engineering ventures follow. 

In above the classical paradigm, there are specific design criteria that must be met 

for a tissue engineered mitral valve. Considerations for these must include their overall 

function as a valve, the extreme stresses and strains experienced repeatedly by this tissue, 

cellular function, surgical considerations, and risks during implantation like infection and 

thrombogenesis. Many of these design criteria are a function of the environment with 

which these tissues would experience. Rapid and repetitious opening and closing 

corresponding to the pressure and shear forces acting on the valve define the needs for 

durability and resistance to degradation. Also, to be successful as a tissue engineered 
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construct, the living cells within the scaffold should inhibit thrombosis, resist degradation, 

resist calcification, have remodeling potential, and function as healthy quiescent VICs and 

VECs. 

Table 1: Design criteria for tissue engineered mitral valve(112). 

 

 

 

 

 

 

 

Specific to the mitral valve, each of these design criteria must apply to the four 

tissue types working cohesively in the valvular apparatus. While unique in their role for 

mitral coaptation, the annulus, leaflet, chordae tendinae, and papillary muscles making up 

the mitral valve scaffold must be able to function under each of those design criteria. It 

could also be added that in addition to functioning under these criteria, it is imperative that 

they all function together as unit. Difficulties in developing a mitral valve scaffold may in 

fact lie in the complexity of its anatomy. Literary searches for mitral valve tissue 

engineering to date yields 145 search results in PubMed, many of which are found in review 

articles. This is compared to the 518 for aortic valve tissue engineering and 1223 for heart 

Design Parameter Tissue Engineered Mitral Valve 

Closure of leaflets Rapid and complete 

Fluidic function Identical to the native valve 

Risk of thrombosis Inhibition by functioning VECs 

Surgical insertion and 
considerations 

Easy and permanent insertion 
using current surgical methods 

Risk of structural degradation Resistant to degradation and 
calcification 

Risk of infection Resistant 

Cellular function Quiescent VIC and VEC function 

Tissue function Durable and stable 

In-vivo monitoring requirements Cellular physiological and 
phenotype 
Changes in mass and/or tissue 
components 
Structure and mechanical 
properties 
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valve tissue engineering in general. This discrepancy isn’t for lack of need as mitral valves 

are the most diseased and degenerative in the world(53). The rise of successful surgical 

repairs in treating mitral valve insufficiency has probably driven this shortage. However, 

recent literature as mentioned, draws the durability of these repairs deeply into 

question(108). The potential for a tissue engineered mitral valve is great. 

1.5.2 Scaffolds in Heart Valve Tissue Engineering: 

To achieve each of the above design criteria and produce a functional, durable valve 

tissue, choice of scaffold is critical. Scaffolds provide cells a microstructure that guide their 

growth, differentiation and synthesis of extracellular matrix(116). Therefore, knowledge of 

how the native valvular environment controls cell fate and function should serve as a guide. 

It is also important to note that these environments also play a large role in progression of 

mitral valve pathologies and therefore knowledge of the role this microstructure plays in 

mitral valve disease can be useful. The mechanical and biochemical makeup of the VIC 

extracellular matrix are developed and defined by the specific cells that populate it. VICs 

are very sensitive to this environment. Regulation of these cells is often determined by the 

mechanical properties or ECM elasticity which can regulate the pathological differentiation 

of these cells(117). For example, depending on the elasticity of the ECM, VICs can remain 

fibroblast-like on soft substrates or differentiate to osteoblasts or myofibroblasts on 

intermediate to stiff substrates(44,116,118). Aside from mechanotransductive cues provided by 

the microenvironment, scaffold choice is also influenced by protein interactions providing 

biochemical information and direction for the incorporated cells. Myofibroblast 

differentiation is generally promoted by adhesive proteins like fibronectin, fibrin, elastin 
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and adhesion peptides RGDS(119–121). Incorporation of growth factors like TGF-β1 can also 

be utilized within scaffolds to encourage the desired activation or differentiation of the 

VICs. Interest in the customization of scaffold properties has led to the development of 

synthetic scaffolds for heart valve tissue engineering. 

The popularity of synthetic scaffolds lies in their advantage of control over their 

material properties. These properties should encourage cell attachment, migration, 

proliferation, differentiation, and eventually matrix formation. Bioresorbable scaffolds 

serve as a temporary scaffold which cells can remodel and develop their own ECM. The 

chemical and physical properties determining how long this scaffold lasts are tailored to 

the cell types and applications of the finished tissue. Structurally, these scaffolds should 

have an extensive network of pores and channels not only for cellular attachment, but also 

for the delivery and diffusion of nutrients and oxygen. As mentioned these materials should 

all be biodegradable and biocompatible. Mechanically speaking, the properties of a 

synthetic scaffold should be prepared to handle the large and repeated loads experienced 

billions of times in one’s life. Synthetic materials are easily reproducible and well 

conceived which allows for a more customizable and easily translatable scaffold material. 

There are several common polymeric materials used to develop synthetic scaffolds for 

tissue engineered heart valves. These include polylactic acid (PLA), polyglycolic acid 

(PGA), polycaprolactone (PCL), Polyfumarates (PF), and polyglycerol sebacate (PGS). 

Each of these has been reported for use in cardiovascular uses and are all approved by the 

FDA as biocompatible polymeric materials(111). PLA and PGA are probably the most 

commonly used for tissue engineering purposes. PCL and PF are largely used for drug 
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delivery purposes and have a long degradation rate of about 3 years, while PLA has a 

degradation rate of 2 years. This is in comparison to the 2-3 months it takes for PGA 

scaffolds to degrade(111). Unfortunately, studies have shown that these common copolymers 

were thicker and less flexible than natural valves(122). This rigidity would not allow for 

proper coaptation. To solve this, application of P4HB (poly-4-hydroxybutyrate) was used 

to enhance the flexibility and plasticity of these polymers(123). This combination allows for 

much greater flexibility of these polymeric heart valves. Use of these synthetic materials 

for a tissue engineered valve however introduces several challenges. PGA and PLA for 

example are considered poor substrates for cell growth in-vitro(110). In addition, ECM 

proteins are not usually constituents in a synthetic environment. To combat these 

disadvantages, bioactive synthetic materials are being developed to mimic the natural ECM 

and its function(124). Recent advances show the incorporation of synthetic polymers that 

carry spatial and biochemical information affecting cellular function and remodeling(125). 

These scaffolds can also be used as a vehicle for drug delivery. Growth factors, known to 

influence cell growth, proliferation, and migration, can be incorporated into these synthetic 

scaffolds(114). Mostly synthetic hydrogels can also be used as an injectable scaffold. Despite 

some of their advances, there are some drawbacks to using these synthetic scaffolds. These 

scaffolds still have difficulty controlling cell adhesion and tissue reorganization, this is 

shown partly in the limited diffusion of cells into the scaffolds. If the polymers do not 

completely degrade, there is a risk of inflammation. After and during degradation, any 

space that was formerly occupied by the synthetic material is often replaced with scar 

tissue(110). 
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There are four common methods for fabricating synthetic scaffolds. One of the 

more common methods is solvent casting. In this method the polymer solution is cast with 

water soluble particulates into a mold(111). The evaporation of the solvent makes the pores. 

Extensive use of this solvent may affect cell attachment and proliferation. Electrospinning 

is also used as a versatile yet straightforward technique. With this approach, a high electric 

field is used for the ejection of the conductive polymer jet from a needle which is connected 

to the solution containing the polymer(111). Using this technique, electrospun scaffolds are 

highly porous with a high density. Diameter of the electrospun fibers can be tailored to the 

scaffolds requirements. Process factors include polymer and solvent, voltage, flow rate 

from the needle, and the distance from the needle and collector. Electrospinning is probably 

the preferred scaffold generating technique due to its customizability and porosity for 

VICs. The fourth most common approach for synthetic scaffold fabrication is solid free 

form. This translates computer data from drawings or MRI data for example and is 3D 

printed. 3D bioprinting has begun to rise in popularity due to the flexibility and tailoring it 

allows using the CAD programs on the computer. 

Issues surround biocompatibility; a low degradation rate and inflammation are 

major drawbacks of synthetic scaffolds. Therefore, utilization of natural materials present 

within the mitral valve ECM have been used for scaffold fabrication. These biologically 

derived materials are inherently recognizable by cells which are susceptible to the receptor 

binding ligands and cell-triggered proteolytic enzymes presented by biological 

scaffolds(124). Constructs composed of collagen for example have been used to generate 

tubular blood vessels, chordae tendinae, and of course heart valve leaflets(126). Scaffolds 
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made from natural materials give cells, in both their material properties and application 

type, a familiar environment. Valvular interstitial cells are very conscious to the chemical 

and mechanical environment surrounding them. Natural scaffolds utilize ECM components 

familiar to VICs to encourage a controlled, healthy proliferation, migration, and 

differentiation. 

One of the most commonly used natural scaffold materials collagen, comprises the 

largest percentage of material in the valvular ECM. It is therefore one of the most 

commonly used platforms for developing living tissue engineered constructs. Due to 

collagen’s less than ideal mechanical characteristics as well as antigenicity concerns, other 

materials are often used in conjunction. Elastin for example, one of the other major players 

in ECM makeup. Collagen and elastin scaffolds have elicited much improved mechanical 

properties(111). Fibrin gels are another commonly seen natural scaffold. Easily prepared 

from the patient’s blood, despite its poor mechanical properties, fibrin utilizes its bioactive 

nature to enhance cell growth and attachment(111,127). Fibrin and its common partner 

fibrinogen, play large roles in blood clotting, cellular matrix interactions, and wound 

healing(128). It is also useful as a sealant in a variety of clinical applications(127). 

Glycosaminoglycans (GAGs), a common element in the heart valve ECM, can also be used 

as a scaffold for tissue engineering. Hyaluronic acid, like other natural scaffolds, relies on 

its bioactivity and the familiarity seeded cells have with it as an ECM component. 

Hyaluronic acid (HA) is largely presented as a hydrogel and can bind to proteins and cells 

through cell receptors. It is a key component in the wound healing process, and can 

maintained in hydrated environments conducive to cell infiltration(129). As briefly 
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mentioned, hydrogels have often been used as a natural and as a synthetic 3D matrix in 

tissue engineering. Natural hydrogels like those composed of hyaluronic acid and fibrin, 

are inherently bioactive but also biocompatible(130). Due their cell-friendly characteristics, 

production of ECM and an increase in cell proliferation are seen when using natural 

hydrogels for scaffolds or used to fill the interstitial space of other scaffolds(111). VIC have 

also been incorporated in natural and cross-linked hydrogels facilitating good viability and 

providing a physiological representative environment to study VIC behavior(40). Fibrin 

hydrogels are also common scaffolds for heart valve tissue engineering. They are 

constructed from purified fibrinogen and thrombin. It is common to include other plasma 

proteins such as fibronectin and other growth factors in fibrin gels to assist cellular function 

and proliferation(127). One of the pitfalls of hydrogels however is their lack of mechanical 

stability(115). This is especially critical for heart valves due to their incessant opening and 

closing. They also lack the anisotropic mechanical properties and topographical cues that 

provide mechanotransductive direction to seeded cells.  

Another commonly utilized technique for scaffold fabrication is the 

decellularization of xenogeneic or allogenic heart valves. The goal of a decellularized 

scaffold is to take advantage of the ECM environment it can provide to seeded cells while 

also providing a collagen and elastin based scaffold that cells are inherently familiar with. 

The benefits of using the niche ECM for tissue engineering are great as this matrix provides 

the mechanical framework for the heart valve. The ECM acts as an inductive scaffold both 

mechanically and chemically. Mechanically speaking, this tissue was developed, repaired, 

and remodeled by the specific cells that inhabited it. Therefore structurally, it provides the 



69 

 

correct rigidity, porosity, insolubility and topography that heart valve tissues should 

possess(131). The ECM also contains many functional components within it including 

collagens, glycoproteins, proteoglycans, elastic fibers and growth factors(131). The 

specificity of this local microenvironment can also influence the maintenance of stem cell 

phenotype and differentiation. This ability allows decellularized matrices to be open for 

regenerative medicine applications. The process of decellularization is a technique that 

varies widely across the tissue engineering field. The overall goal of this technique is to 

eliminate the cellular content of a tissue while retaining the ECM structure and its proteins. 

To achieve this end, various methods of decellularization are used including physical, 

chemical and biological agents. Many researchers use a combination of detergents and 

biological agents including SDS, trypsin, EDTA, Triton X-100, sodium deoxycholate, 

sodium hydroxide, DNase/RNase(132,133). Criteria for a successful decellularization have 

been established by several researchers for tissues to contain: less than 50ng dsDNA/mg 

ECM, less than 200 bp DNA fragment lengths, and no nuclear material in histological 

samples(132,133). Any lack of confidence surrounding decellularized scaffolds centers on the 

danger of a residual cellular presence and lack of control over remaining ECM quality and 

defined components. However it is important to point out that there are at least 30 products 

currently on the market, including small intestinal submucosa (SIS), placed in thousands 

of patients that have gone successfully(134). Potential for recellularization for seeded cells 

is also a recent design criteria, especially for decellularized scaffolds(135). Overall, 

decellularized scaffolds have yielded the fasted method clinically through animal and 
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human studies and thus promises the most clinically translatable scaffold for tissue 

engineering(135–137).  

Scaffold durability is of prime importance when considering scaffold potential. The 

mitral valve opens and closes an estimated 3 billion times during the average lifetime. 

Constant and repeated loads from transvalvular pressures also act on the valve. As 

mentioned, the mitral valve is hit with 120mmhg during ventricular systole and 10mmhg 

during diastole requiring an unparalleled resistance to cyclic failure(115). Cardiac valves are 

also subject to large blood shear forces. The average peak systolic blood velocity usually 

averages about 1m/s through heart valves. These pressure and shear forces experience by 

the tissue engineered constructs must be a serious consideration. 

1.5.3 Choice of Cells in Heart Valve Tissue Engineering: 

In the traditional paradigm for tissue engineering, the incorporation of cells into 

scaffolds is critical for creating a vital construct. For a tissue, engineered mitral valve the 

obvious choice of cell type would be the VIC. This is the chief resident cell within the 

valvular matrix and therefore would be primed for utilization in a valvular scaffold. A 

similar sentiment would be made for VECs. However in no way could these cell types be 

used in a successful or clinically translatable fashion. To obtain these cells would require 

risky invasive surgery, and would damage the already diseased valve structure. Therefore, 

other sources of cells must be considered. Some researchers argue that there may not be a 

need to seed cells into or onto scaffolds prior to in-vivo transplantation. Long-term animal 

experiments have to clarify the need for pre-vitalization of the scaffolds is necessary to 

demonstrate growth and remodeling(135). Difficulties lie still however with the efficiency 
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of cell seeding. There have been many attempts at recellularization of heart valve leaflets, 

but due to inadequate penetration of the cells or the length of time this scaffold-infiltration 

took, researchers are still looking for a more optimized approach(138). Nevertheless, 

scaffolds recellularized with various cell types, to then be preconditioned in bioreactor 

systems is the current paradigm most researchers are following. 

Choice of cell type is relegated to the specific applications researchers choose. 

There are however, several commonly utilized cell types used often. Stem cells offer a 

unique avenue for scaffold revitalization due to their capabilities of self-renewal and ability 

to differentiate into a variety of cell types. Ideally, for a clinically translatable option, 

autologous stem cells are used to eliminate the risk of immunorejection. Several common 

stem cell types are used in heart valve tissue engineering. Because stem cell differentiation 

can be directed by mechanical and biochemical stimulation, there are few constraints as to 

which type of stem cell should be used. The more important question becomes which 

microenvironmental cues will be used to induce the desired cellular behavior. One is the 

mesenchymal stem cell, which has the ability to differentiate into chondrogenic, 

adipogenic, myogenic and osteogenic lineages(139). This lineage of cells has been used 

successfully in other cardiac tissue engineering applications(110). They have also shown to 

be able to differentiate into endothelial and cardiac myocytes. Mesenchymal stem cells 

have also been used for their VIC-like phenotype and their ability to overcome 

immunogenicity barriers associated with donor cells(115). Despite their ethical concerns, 

embryonic stem cells could allow for production of specific tissues in scaffolds(114). They 

have a well-known pluripotency and can be maintained for long periods of time and in 
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large quantities. Their differentiation methods are similar to those like bone-marrow 

derived stem cells. Bone-marrow derived stem cells (BMSCs) can be isolated from bone 

marrow and has been shown to have good differentiation potential. BMSCs have been 

shown to engraft into heart valves and synthesize collagen as part of normal valve 

homeostasis(140). Induced pluripotent stem cells (iPSCs) represent another cell source for 

tissue engineered mitral valves. It is important to note that while their ability to differentiate 

to the same lineage of as the somatic cells that they derive, more research needs to be 

conducted to evaluate whether these are trusted cell source. Human adipose derived stem 

cells (hADSCs) have also shown great promise and feasibility for mitral valve tissue 

engineering. These cells are easily and minimally-invasively obtained, can be 

cryogenically stored, and possess multipotent mesodermal, ectodermal and endodermal 

potentials(141–145). Such tri-germ layer potential makes this cell-type an excellent choice for 

translational applications. hADSC’s yield significantly large and clinically relevant cell 

numbers when isolated from adipose tissue. In fact, as a source for regenerative stem cells, 

adipose tissue may have no equal(146–149). A recent study found in fact that hADSC’s 

yielded tenfold more CFU-F units compared to bone-marrow derived stem cells, a 

characteristically similar stem cell(146). Current literature also supports hADSC use in 

organized ECM remodeling. Colazzo et al. stated that hADSCs have the ability to 

synthesize and process ECM components suitable for tissue engineering a heart valve(143). 

This was largely based on their ability to differentiate hADSCs into VIC-like cells, thus 

allowing for remodeling of heart valve ECM(150,151). Adipose-stem cells also possess a 
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unique secretome containing angiogenic cytokines such as VEGF, FGF-2, and HGF, which 

allow it to more fully integrate in vivo(141,152–154). 

One of the major drawbacks of both types of scaffolds are their inclusion of cells. 

Synthetic scaffolds have a greater chance of recellularization due to the ability to control 

their pore size. However even with this level of customization, efforts are still difficult. 

Natural scaffolds, despite their success and obvious biological advantage, lack the ability 

to alter their physical properties to the extent synthetic scaffolds can. Therefore, a myriad 

of different recellularization techniques exist in an effort to bring cells into the matrix either 

forcibly or through biochemical coaxing. There are various researchers attempting to coax 

migration of seeded cells using growth factors and other proteins like fibronectin(155–159). 

Vacuum seeding has also been utilized in vascular grafts successfully(160). Hydrogels are 

also used both as a chemical attractant and as a physical means to get cells into the matrix 

utilizing the gel’s space-filling capabilities(130,158,159,161,162). Despite various methods and 

attempts for recellularization of scaffolds, there does not exist a gold standard for seeding 

cells in valvular scaffolds. This is especially true for the mitral valve and its four 

components. Most research literature is solely focused on revitalization of the leaflets. 

Regardless, there are various ways to attempt cell seeding depending on the application of 

the construct. 

1.5.4 Bioreactor Conditioning in Heart Valve Tissue Engineering: 

Historically, mechanical conditioning of heart valve constructs has been considered 

an essential step for the maturation of the cells within the scaffold, thus promoting a 

structurally and mechanically competent construct. Maturation of the scaffolds can be 
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achieved in-vitro using a bioreactor which provides the necessary mechanical and 

biochemical cues these constructs would experience in the human body but in a controlled, 

sterile environment. Forces such as cyclic stretch and flexure, oscillating fluid shear stress, 

pressures and flexural deformations(115). Such indications for maturation directs cell 

proliferation, differentiation, attachment and alignment(115). By pointing these cells in the 

proper direction, researchers can develop constructs that eventually will mimic the mature 

ECM and overall properties of the tissue they are attempting to replace or regenerate. This 

in-vitro preparation allows for immediate implantation of a functional construct in the 

native hemodynamic environment. Through this in-vitro adaptation in a bioreactor system, 

scaffold material turnover will occur, thus circumventing this response and other adverse 

host-tissue reaction that would have occurred post-implantation. 

The primary goals of a bioreactor system are: offering uniform cell distribution, 

keeping concentrations of gas and cell-culture nutrients available to the construct, offering 

mass transport to and from the construct, and of course, being able to provide adequate and 

accurate mechanical cues to induce the seeded cells to differentiate and remodel the 

scaffold thus producing an adequate ECM(163). Dynamic seeding through use of a 

bioreactor has shown to greatly improve cell attachment to the scaffold(163). Depending on 

the purpose for the construct, different pressures and shear stresses may be applied. This 

of course would affect the needs and design of the bioreactor system. 
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Figure 1.24: Mitral valve bioreactor used in our laboratory. 

There are three main categories for bioreactor design, each depending on the 

amount and types of mechanical stimulation being applied. These include: flow-based 

whole valve conditioning bioreactors, strain-based whole valve conditioning bioreactors, 

and isolated cusp stimulation bioreactors(164). Flow-based whole valve conditioning 

bioreactors aim to mimic both diastolic and systolic phases in the bioreactor. This type of 

bioreactor, originally conceived by Hoerstrup et al., utilizes a pulsatile flow that exposes 

the developing construct to all of the mechanical cues that would be experience in the 

body(165). Sierad et al. have greatly improved upon this design and have achieved 

anatomical pressures in the aortic position(166). In-vitro findings for this type of bioreactor 

have shown cell migration into the scaffold, an increase in ECM deposition, and increase 

in construct stiffness, and lamellar tissue organization(115,164). The second type, the strain-

based whole valve bioreactor, mimics only one component experienced by native heart 
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valves, strain. This is done by periodically pressurizing the media around the valve 

constructs in line with transvalvular pressures a native valve would face. In-vitro findings 

are similar for this bioreactor. Cell migration was not increased, however ECM deposition 

and stiffness were increased. Lamellar tissue organized and the construct showed 

mechanical anisotropy(115,164). Bioreactors have also been made to isolate one cusp and 

stimulate this part of the construct; the third type is the isolated cusp stimulator. Bioreactors 

in this category expose their constructs to cyclic stretch flexure and oscillating shear 

stress(115). Within these three major categories are several popular designs utilized in the 

valvular tissue engineering space. These include spinner flasks, rocker platforms, rotating 

walls, compression, and perfusion systems. 

While there are many different designs for heart valve bioreactors, most are 

designed specifically for aortic valves. Very few flow-based bioreactors accommodate for 

each component of the mitral valve. However, for proper in-vitro preconditioning, the 

entire apparatus must be considered. One bioreactor from Barzilla’s group utilizes a 

“splashing bioreactor”(167). This is placed on a rotating wheel and uses gravity to open and 

close the leaflets. While this bioreactor did encourage improved cell density of the mitral 

valve leaflet, proper mechanical cues must be applied for an environment mimicking the 

native mitral valve. First, transvalvular pressures have to be achieved using a system that 

incorporates the entire valve, exposing it to these pressures along with shear forces. In 

addition, annular shape should be considered as a foundation for mounting the valve. This 

unique shape provides optimal force distribution throughout the valve. Lastly, tension must 

be applied to the chordae tendinae. These tensile forces are critical in developing mature 



77 

 

chordae tissue, as well as functional leaflet tissue. Overall, bioreactor development in this 

tissue engineering paradigm can resolve many of the issues and limitations of currently 

available options. Complexity in design, assurance of sterility and providing monitoring 

capabilities hinder the application of tissue-engineered heart valves. There is also a balance 

that must be achieved when using heart valve bioreactors that the in-vitro conditions used 

do not overstimulate the living constructs to then stimulate pathological over production of 

ECM and over-activation of seeded cells. 
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CHAPTER 2 – PROJECT MOTIVATION, SPECIFIC AIMS, SIGNIFICANCE 

2.1 Introduction and Clinical Relevance: 

In the United States alone, 2.5% of the population suffers from some form of 

valvular disease(1). Degenerative etiologies are largely responsible for these statistics(2). 

The most degenerative of the four heart valves is the mitral valve making it the most 

frequently diseased valve in the heart (2, 3). Approximately 41,000 hospitalizations per year 

are due to surgical corrections of mitral valve regurgitation (MR) in the United States, yet 

this number represents only 44% of persons with severe MR who would benefit from 

surgical correction(3). The prevalence of mitral valve disease increases substantially with 

age, from less than 2% before the age of 65 to 8.5% in those aged 65-75, and 13.2% after 

the age of 75(3). The lethality of mitral valve diseases stems from the three primary 

pathologies that affect the valve, i.e. stenosis, regurgitation, and prolapse. These three 

pathologies can result in atrial fibrillation, arterial thromboembolism, pulmonary edema, 

pulmonary hypertension, cardiac hypertrophy and heart failure(4–7). Prevalence of mitral 

valve insufficiencies is clear and thus verifies its significance as a crucial area for 

further research and development for translational solutions. 

2.2 Current Standards of Care and Limitations: 

Current clinical solutions available to patients with mitral valve pathologies are 

surgical repair or total valve replacement. Replacement strategies include mechanical 

valves and chemically-fixed xenogeneic valves. Each of these prosthetic devices however 

has often resulted in thromboembolic complications, calcification, and most require 

additional reoperations due to their limited functioning lifespans. Because the body 
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chronically reacts to the artificial valves, the lifespan of bioprosthetic and mechanical 

valves ranges from 15 to 20 years. This poses a difficult decision for surgeons if their 

patients are younger. Each additional replacement surgery causes an enormous increase 

(almost 20% in some cases) in mortality risk(8–12). Determination of reparative or 

replacement therapy is often based on the age of the patient and other health related factors. 

Women who are or are planning to become pregnant must weigh their safety and the child’s 

safety because they cannot undergo anticoagulation therapy during this time(13). Also, 

children with congenital heart defects have limited options for mitral valve replacement. 

Small diameter mechanical valve replacements are rare due to high mortality and morbidity 

rates. Mitral valve repair is the preferred solution due to its less invasive nature and higher 

success rates when compared to replacement(14,15). Anatomical complexity however is a 

limiting factor when repairing the mitral valve. There are four tissue types present in the 

valve’s entirety: the annulus, the leaflets, the chordae tendinae, and the papillary muscles. 

Reparative technologies center on band annuloplasty and artificial chordae made of PTFE. 

Both are used to reconstitute the correct physical anatomy of the valve, thus optimizing 

force distributions and overall coaptation(16,17). Despite the successes of mitral valve repair, 

recent studies have shown that the rate of reoccurrence in patients following repair (58.8%) 

was significantly larger than patients who underwent valve replacement (3.8%) after two 

years(18). Overall, mitral regurgitation recurred more frequently in patients receiving repair 

treatments, resulting in more heart failure-related events and cardiovascular admissions(18). 

A tissue engineered mitral valve could provide patients with a permanent regenerative 

solution. These could provide a living valve replacement using already existing surgical 



90 

 

techniques. With the advancement of stem cell capabilities, one can employ them along 

with growth factors and engineered matrices to eventually create an autologous implant 

that can not only grow with the patient but also create a superior alternative to repair and 

replacement therapies. There has been considerable research into heart valve tissue 

engineering, but limited clinical testing, especially with the mitral valve. This may be a 

result of the mitral valve’s complicated anatomy or the prevalence of other diseased valves 

like the aortic valve. A mitral valve tissue engineered solution is an exciting concept, yet 

very early in practice. 

The overall goal of this project is to develop a biocompatible and clinically 

translatable tissue engineered mitral valve. To realize this goal, the engineered construct 

must be mechanically robust, biologically compatible with future hosts, and should allow 

sufficient bioactivity for cellular seeding and signaling. The valve should allow for rapid 

opening and closure, no need for rigid support, and maintain correct physiological structure 

from annulus to papillary muscle. Because ECM and biochemical composition are crucial, 

our construct will be an acellular, non-immunogenic collagen and elastin-based scaffold. 

To impede degradation of the tissue, the decellularized xenogeneic scaffolds, will be 

treated with penta-galloyl glucose (PGG), an antioxidant polyphenol and matrix 

stabilizing agent, with high affinity for collagen and elastin, to slow down matrix 

degradation (19). 

We hypothesize, that this tissue engineered mitral valve consisting of a 

decellularized porcine mitral valve scaffold, treated with PGG, recellularized with relevant 

VIC-like cells, and finally pre-conditioned in a mitral valve bioreactor will immediately 
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provide a working and living valve construct. Pre-conditioning of the revitalized construct 

will allow for maturation of the seeded cells and allow for initial and essential remodeling 

of the mitral construct. In addition, due to PGG’s ability to stabilize collagen and elastin, 

and its antioxidant, anti-inflammatory, and anti-calcification activities, the polyphenol will 

protect the scaffold from degradation and prevent degradation of the valves structures. 

Translationally, this approach is patient specific and should immediately integrate and 

grow with the host. 

2.3 Specific Aims 

Three overlying and interrelated aims were established toward achieving the overall 

goal of this research, and they are directed at understanding: 1) How to develop a stable, 

acellular, cytocompatible scaffold capable of supporting cellular infiltration, limiting 

protease degradation, and maintaining adequate mechanical properties; 2) Achieving an 

effective and optimized recellularization approach, while determining PGG’s beneficial 

effects on limiting scaffold degradation and reducing over-activation of the seeded cells; 

3) Development and utilization of a mitral valve bioreactor that takes into account the 

mitral valve’s unique anatomy while providing physical cues and proper force distribution 

from the annulus, closure of the two leaflets, and adequate tension provided to the chordae 

tendinae. 

Aim 1 (Chapter 3): Develop an acellular scaffold with ECM and mechanical properties 

similar to the human mitral valve. 

Hypothesis: A detergent based decellularization method will remove all cellular 

materials from a porcine mitral valve while retaining sufficient extracellular matrix 
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content, including basal lamina proteins. Chemical treatment with PGG will stabilize the 

matrix scaffold and yield physiologically similar mechanical strength. 

Approach: Scaffolds will be generated using a decellularization protocol that 

employs Triton X-100, SDS, EDTA, Deoxycholic Acid, NaOH and a treatment of 

RNase/DNase. In doing so, the scaffolds should: 1) have all xenogeneic cellular and 

nuclear components removed; 2) retain ECM architecture and composition while also 

preserving all ECM proteins (e.g. collagen type I and IV, elastin, laminin, and fibronectin); 

and 3) Maintain necessary mechanical properties for leaflets and chordae tendinae while 

incorporating PGG. 

Innovation: We will develop a decellularized, non-immunogenic collagen and 

elastin scaffold for mitral valve tissue engineering. Through decellularization of porcine 

tissue, we will able to conserve the niche valvular microstructure of the ECM.  

Aim 2 (Chapter 4): To characterize host response and determine resistance to 

degradation of the scaffold treated with PGG. 

Hypothesis: The stabilizing, anti-inflammatory, anti-calcification function of PGG 

will limit scaffold degradation and mitigate immune rejection. 

Approach: As shown in previous studies and in current literature, treatment with 

PGG, a well-characterized matrix binding polyphenol, will protect scaffolds from 

calcification, discourage degeneration from proteases, and mitigate immune rejection. 

Decellularized scaffolds will be treated with PGG and degradation by collagenase and 

elastase will be evaluated and compared to fresh and untreated decellularized scaffolds. 

Also, PGG-treated scaffolds will be implanted subdermally in rats. At 4 and 8 weeks, 
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scaffolds will be explanted and immune response to these treated scaffolds characterized 

using immunohistochemistry. Host response as well as degradation will be evaluated and 

compared to non-treated scaffolds.  

Innovation: Utilization of scaffolds in tissue engineering, while a part of the 

classical paradigm, still are hindered by questions concerning their fate once implanted in 

patients. How long these scaffolds will last within the patient, should the scaffolds be 

remodeled, and will the patients’ body accept them are all common inquiries. Our approach 

aims to be some of the first to investigate the stabilizing and degeneration-inhibiting affects 

PGG has on a decellularized mitral valve scaffold. Our novel approach, incorporating PGG, 

aims to solve these questions, determining the degradation of the scaffold and evaluating 

the nature of the host response as being inflammatory or remodeling. 

Aim 3 (Chapter 5): Develop a mitral valve bioreactor able to provide physiological 

loading and biochemical environment characteristic to mitral valves. 

Hypothesis: Optimally seeded constructs will flourish under physiologic 

conditions provided by a bioreactor that provides correct anatomical positioning and force 

distribution from annulus to papillary muscles. 

Approach: Pre-differentiated fibroblasts will be manually injected utilizing a fibrin 

gel as the carrier of these cells. Valves will be first inflated with sterile air, then the fibrin 

and cell mixture injected into multiple areas of the tissue. Pre-differentiated endothelial 

cells will then be drop-seeded onto the scaffolds. Recellularized constructs will then be 

placed in the mitral valve bioreactor with flow, pressure and viscosity conditions gradually 

increased to allow maturation of cells until reaching physiological levels. 
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Innovation: Recellularization of any scaffolds into a living construct has been a 

crux in the paradigm of tissue engineering, especially in ECM-derived scaffolds. Our 

approach aims to achieve an acceptable level of cellular infiltration and migration initially, 

which then allows for full recellularization after pre-conditioning in a custom made mitral 

valve bioreactor. This novel bioreactor will recreate an appropriate force distribution 

throughout the entire construct. 

2.4 Project Significance: 

A central motivation for tissue engineering is the regeneration of diseased tissues. 

With the advancement of stem cell capabilities, one can employ them along with growth 

factors and engineered matrices to eventually create an autologous implant that can not 

only grow with the patient but also create a superior alternative to repair and replacement 

therapies. There has been considerable research into heart valve tissue engineering, but 

limited clinical testing, especially with the mitral valve. This may be a result of the mitral 

valve’s complicated anatomy or the prevalence of other diseased valves like the aortic 

valve. A mitral valve tissue engineered solution is an exciting concept, yet early in practice. 

However, we expect the results of this translational research to have a positive impact on 

patients suffering from the many forms of mitral valve insufficiency. Success in this project 

would also lead to a much deeper understanding in the realm of stem cell and ECM 

interactions, especially in valvular tissues. Overall, this research will greatly contribute to 

the field of cardiovascular tissue engineering and enable clinicians to provide permanent, 

living solutions for their patients. 
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CHAPTER 3: DEVELOPMENT AND CHARACTERIZATION OF A 

DECELLULARIZED MITRAL VALVE SCAFFOLD 

3.1 Introduction: 

At its core, the prevailing paradigm in heart valve tissue engineering has been the 

integration of scaffolds and specific cells to develop mature constructs with regenerative 

potential. As the foundation for these living constructs, scaffolds provide the framework 

for housing cells whether they are seeded onto the scaffolds or are repopulated in vivo. 

These cellular infrastructures can range in their originating materials, mechanical 

properties, and fabrication. While synthetic scaffolds provide easier customizability, 

support has risen for the use of naturally derived scaffolds using materials like fibrin and 

other degradable materials. Acellular tissue matrices derived from the heart valve 

extracellular matrix (ECM) are rising in popularity due to many of its advantages. Various 

tissues have been rendered acellular through the process of decellularization which 

employs chemical, physical, and enzymatic agents to remove any and all xenogeneic 

cellular and nuclear material from the tissue(1). In a successful decellularization, the ECM 

components are largely preserved including structural proteins like collagen type I and 

elastin, as well as basal lamina proteins collagen type IV and laminin. These are largely 

conserved across species and thus permits their compatibility as biological scaffolds 

derived from xenogeneic sources(2,3). After removal of these components, the remaining 

structure is a tailor-made structure specific to that tissue and the specific cells that built it. 

The ECM is a complex of both structural and functional biomolecules that are produced by 

the resident cells. As a custom built microstructure, the ECM can provide an enormous 
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amount of information in molecular and mechanical signals to their cellular inhabitants(3). 

Therefore, creating a “niche” microenvironment and an inductive scaffold for the 

repopulating cells, providing the architecture, mechanical properties and binding sites 

needed. 

Detractors of decellularization are the risk of an incomplete removal of cellular and 

nuclear material from the scaffolds. History has shown that the immunogenic response can 

be deadly for patients receiving improperly decellularized scaffolds(4). The host response 

of an incomplete decellularization will lead to a pro-inflammatory response, invasion of 

type M1 macrophages and eventual dense scar formation(5). These responses will disallow 

constructive remodeling of the scaffold and proper degradation of the scaffold and eventual 

replacement of anatomically appropriate and functional tissue will not occur. However, 

decellularized ECM scaffolds have been used in thousands of patients successfully without 

rejection from their hosts. Current literature has established criteria for a successful 

decellularization of tissue: 1) no visible nuclei per histological staining, 2) less than 50ng 

of DNA per mg of dry weight ECM, 3) any remaining DNA content should not exceed 200 

base pair in length(3). 

Of all the successfully decellularized scaffolds used today including lungs, skeletal 

muscle trachea and small intestinal submucosa (SIS), the heart valve proves to be uniquely 

challenging. This largely due to the complex anatomical requirements and the extreme 

environment for which it resides. The mitral valve resides in one of the most mechanically 

stressful environments in the body. Therefore, the mitral valve must endure the harsh and 

repetitive openings and closings during systole and diastole and the valvular ECM must 
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also withstand these extreme stresses for the lifetime of the patient. As a result, the average 

decellularization, constructive remodeling and eventual recellularization must be critically 

evaluated and optimized because this tissue will immediately be put to the test upon 

implantation. Currently, tissue engineering of the mitral valve utilizing a decellularized 

scaffold has just begun to scratch the surface with only a handful of groups reporting 

methods of decellularization(6,7). This gap is worrying despite the apparent prevalence of 

mitral valve diseases. 

An optimal decellularization for the mitral valve should fulfill the following 

criteria: 1) current literature standards for removal of xenogeneic cellular and nuclear 

material should be met as mentioned above, 2) mechanical testing should show 

preservation of mechanical characteristics, 3) Safeguarding of the ECM should be a top 

priority. Structurally, the collagen and elastin integrity within the scaffold should remain 

intact. Basal membrane proteins, which facilitates cellular attachment and migration, 

should also be present post-decellularization, 4) Degradation of the scaffold should be 

limited through treatment with PGG. 

To achieve this, we decellularized porcine mitral valves using an optimized 

approach. A hypotonic shock followed by treatment with NaOH assures basic hydrolytic 

degradation of biomolecules(1). Extraction of remaining cellular components, including the 

Gal-α(1,3) Gal epitope, are done with a 5-day immersion in a detergent-based 

decellularization solution. Additional enzymatic treatment with an RNase/DNase solution 

is used to remove all the remnant nuclear components. Histological analysis as well as gel 

electrophoresis and nanodrop techniques were used to evaluate complete removal of 
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cellular and nuclear material from the scaffolds. Biaxial mechanical testing was performed 

to evaluate the mechanical integrity of the scaffold. ECM preservation was evaluated using 

several histological techniques. Overall, we sought complete characterization of the 

decellularized mitral valve scaffold. 

3.2 Methods and Materials: 

3.2.1 Mitral Valve Decellularization: 

Porcine mitral valves were collected from a local abattoir and transported to the 

laboratory on ice. After cleaning and trimming extraneous heart muscle, the valves were 

immersed in ddH2O overnight at 4°C to induce hypotonic shock and cell lysis. The next 

day, the valves were treated with NaOH 0.05M for 2 hours, then incubated for 5 days under 

agitation, in a solution containing 0.2% SDS, 1% Triton X100, 1% deoxycholic acid, 0.4% 

EDTA, prepared in 20mM TRIS pH 7.4. To remove the detergents, the valves were rinsed 

10 times for 15 minutes with ddH2O, then treated with 70% ethanol for 20 minutes to 

reduce the bio-burden, and rinsed again 4 times for 15 minutes with ddH2O. Nucleic acid 

removal was completed by incubation in a 720 mU/mL deoxyribonuclease, 720 mU/mL 

ribonuclease mixture in PBS for 2 days at 37°C. Finally, scaffolds were rinsed in ddH2O 

(3 times for 15 minutes), and incubated in 70% ethanol overnight at room temperature. The 

mitral valve scaffolds were stored in sterile PBS with 1% protease inhibitors and 1% 

antibiotic/antimycotic (Pen-Strep) at 4°C. 

3.2.2 DNA Extraction: 

DNA was isolated from tissues following the instructions provided in the DNeasy® 

Blood & Tissue Kit from Qiagen (Germantown, MD). Concentration was measured using 
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a Nano Drop 2000, Spectrophotometer, UV-Vis; (Thermo Scientific) and by ethidium 

bromide agarose gel electrophoresis, using the Sub-Cell® GT electrophoresis instruments 

and instructions (170-4402) provided by BioRad. 

3.2.3 Histology and Immunohistochemistry: 

Rehydrated paraffin sections (5µm) were stained with Hematoxylin and Eosin 

(H&E), Movat’s Pentachrome, and Verhoeff-Van Gieson (VVG), according to the 

instructions in the kits purchased from Poly Scientific R&D Corp. (Bayshore, NY). 4',6-

diamidino-2-phenylindole (DAPI) was purchased from Sigma-Aldrich Corporation 

(Lakewood, NJ). 

Immunohistochemistry (IHC) was performed on formalin-fixed and paraffin-

embedded sections using heat-mediated antigen retrieval (10mM citric acid at pH of 6, for 

10 min at 90°C), followed by exposure to 0.025% Triton X-100 for 5 minutes. After 

incubation in normal blocking serum for 45 minutes, the primary antibodies diluted to 

2μg/mL were applied overnight at 4°C in a humidified chamber. The following antibodies 

were used: rabbit anti-Collagen IV (Abcam, Ab6586), rabbit anti-Laminin (Abcam, 

Ab11575), rabbit anti-Vimentin (Abcam, Ab92547). Negative controls were obtained by 

omitting the primary antibodies. The Vectastain Elite kit and the ABC diaminobenzidine 

tetrahydrochloride peroxidase substrate kit were purchased from Vector Laboratories 

(Burlingame, CA). Sections were counterstained with a diluted hematoxylin prior to 

mounting. Images were obtained at various magnifications on a Zeiss Axiovert 40CFL 

microscope using AxioVision Release 4.6.3 digital imaging software (Carl Zeiss 

MicroImaging, Inc. Thornwood, NY). 
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3.2.4 Penta-Galloyl Glucose (PGG) Treatment: 

High-purity 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG) was a generous gift 

from N.V. Ajinomoto OmniChem S.A., Wetteren, Belgium (www.omnichem.be). The 

acellular scaffolds were treated with sterile 0.3% PGG in 50mM Na2HPO4, 0.9% NaCl, pH 

5.5 containing 20% isopropanol overnight at room temperature under agitation and 

protected from light. Scaffolds were then rinsed with sterile PBS 3 times, and then stored 

in sterile PBS with 1% protease inhibitors and 1% antibiotic/antimycotic (Pen-Strep). 

3.2.5 Mechanical Testing: 

The evaluation of biaxial mechanical properties of valve tissues was described 

previously(8). Briefly, square tissue samples (~ 12 mm × 12 mm) were trimmed from the 

anterior leaflet with one edge of the sample aligned along leaflet circumferential direction 

and the other edge aligned along leaflet radial direction. Thickness of each sample was 

measured three times using a digital caliper. Four markers were placed in the center of the 

sample and were tracked with a CCD camera to obtain biaxial tissue deformation. Samples 

were attached to eight loops of 000 polyester suture of equal length via stainless steel hooks 

(two loops each edge) and mounted on the biaxial testing system. Membrane tension 

(force/unit length) was applied along each orthogonal axis (aligned with circumferential 

direction or radial direction of tissue sample), and was ramped slowly from a 0.5 N/m pre-

load to a peak tension of 60 N/m. For testing, tissue sample was preconditioned for ten 

continuous cycles and followed by a 60 N/m equibiaxial tension protocol. Maximum 

stretch ratios along the circumferential direction (λcirc) and radial direction (λrad) were used 

to assess the tissue extensibility. The biaxial testing was performed with samples immersed 
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in a PBS bath (pH 7.4). For tensile testing, 50 mm-long samples were cut and thickness 

was measured using digital calipers. Samples were analyzed at a constant uniaxial velocity 

of 0.1 mm/s until failure using a 10 Newton load cell on a Synergie 100 testing apparatus 

(MTS System Corporation, Eden Prairie, MN). 

3.2.6 Differential Scanning Calorimetry: 

Thermal denaturation temperature (Td), was determined by differential scanning 

calorimetry (DSC, model 131 Setaram Instrumentation, Caluire, France) at a heating rate 

of 10°C/min from 20°C to 110°C in a N2 gas environment. Td was defined as the 

temperature at the endothermic peak(9). 

3.2.7 Cell Seeding and Cytocompatibility: 

PGG-treated scaffolds were equilibrated overnight in DMEM with 50% FBS, 1% 

antibiotics and seeded with human adipose tissue-derived stem cells (ASCs) internally and 

externally. For internal seeding, the base and free edges of the leaflets were inflated with 

sterile compressed air using a 33GA x 1½-inch needle, and then injected with 0.5 mL of a 

1x106 cells/mL cell suspension. For external seeding, a 0.5 mL of 1x106 cells/mL cell 

suspension was added dropwise to scaffolds and cells allowed to adhere for one hour; then 

each scaffold was submerged in media (DMEM with 50% FBS, 1% antibiotics, sterile 

filtered) and statically incubated for days. The viability of the cells after incubation was 

tested using the Live/Dead Viability/Cytotoxicity Assay Kit (Invitrogen) was used. 

3.2.8 Resistance to Collagenase and Elastase: 

Tissue degradation by collagenase and elastase was described previously36. 

Briefly, approximately 15 mg scaffold fragments were lyophilized and the dried samples 
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weighed. The samples were then incubated with 1 ml of 6.25U/mL type 1 collagenase in 

100mM Tris, 1mM CaCl2, 0.02% NaN3, pH 7.8 at 37°C, for 24 and 48 hours with agitation 

(n=6 per group). Similarly, 10U/mL elastase was used to test elastin stabilization. After 

removing the enzymes by centrifugation and rinsing in ddH2O, the samples were 

lyophilized and weighed. Resistance to enzymes was calculated as percent weight loss. 

3.2.9 Statistical Analysis: 

Results are expressed as means ± standard deviation (SD). Statistical analysis was 

performed using one-way analysis of variance (ANOVA). Differences between means 

were determined using the least significant difference (LSD) with an alpha value of 0.05. 

3.3 Results: 

3.3.1 Scaffold Preparation: 

Scaffold color and appearance were indicative of an effective removal of cellular 

material from the dissected mitral valves. Initially, these valves showed a red and brown 

color in each of the four tissue types, but after the decellularization procedure they became 

progressively paler, eventually becoming white and translucent (Figure 3.1A, B). Porcine 

mitral valves were treated with alkali, detergents, and nucleases in order to remove the 

cells, but maintain the fibrous matrix composition of leaflets and chordae; the resulting 

scaffold preserved all the valve components. 

Histological analysis of the decellularized scaffolds (Figure 3.2C) illustrated the 

removal of cells from the valve. To visualize the elimination of cells, sections of scaffolds 

and fresh mitral valves (leaflets and chordae) were stained with H&E and DAPI, which 

confirmed the complete removal of cellular components. In addition to these nuclear stains, 
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an immunohistochemistry (IHC) for actin, a common cellular protein, was performed for 

both the acellular scaffolds and fresh tissue. Decellularized scaffolds did not show positive 

for this protein, while fresh tissue did display the positive brown stain. To further validate 

the completeness of the decellularization, DNA was extracted from scaffold tissues and 

compared to the DNA content of fresh mitral valve tissues by electrophoresis, followed by 

densitometry. This analysis showed more than 96% DNA elimination from leaflets and 

chordae (Figure 3.1D). Quantification of DNA in the decellularized scaffolds with 

additional solutions, including DNase/RNase as described, resulted in further reduction of 

DNA content. Nanodrop analysis showed a significantly higher DNA content in the fresh 

mitral leaflets and chordae, about 500ng/mg fresh leaflet and chordae, and less than 

50ng/mg of ECM for both decellularized the leaflet and chordae. 
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Figure 3.1: Mitral valve decellularization. A) An aspect image of a fresh mitral valve still embedded in the 

left atrium of a porcine heart. B) A macroscopic aspect of a decellularized porcine mitral valve. Lack of 

coloring in the valve is indicative of removal of cellular material. C) Histological images indicating removal 

of all cellular components in the mitral valve leaflets and chordae tendinae. Fresh (native) and decellularized 

cross-sections of each tissue type are shown for comparison. These sections were stained with hematoxylin 

and eosin (H&E), which shows cell nuclei and background. Nuclei are shown in dark purple while 

background is shown in pink. Next sections were stained with DAPI, which also reveals nuclei in fluorescent 

blue dots. Last, and IHC for actin, a common cellular protein, was performed. Brown is an indicator for a 

positive stain, nuclei are stained purple. D) Ethidium Bromide agarose gel electrophoresis analysis was used 

from DNA extracted from fresh and decellularized leaflets and chordae. A standard was also included. Fresh 

samples are indicated with a “FL” for fresh leaflet, and “FC” for fresh chordae. Decellularized samples are 

indicated with a “DL” for decellularized leaflet and “DC” for decellularized chordae. No bands were detected 

for decellularized tissue verifying removal of all nuclear material from scaffolds. E) To quantify DNA content 

in each tissue type and for fresh and decellularized samples, a Nanodrop was used. Quantities of DNA for 

decellularized samples were significantly lower than fresh samples. In addition, each decellularized tissue 

was below 50ng of DNA. 

3.3.2 Evaluation of Scaffold Structure and Matrix Integrity: 

For a scaffold primarily comprised of collagen and elastin, preservation of these 

ECM components is critical for success of the scaffold. Collagen and elastin fibers, both 

crucial for maintaining valve shape and function, maintained their integrity in both leaflets 

and chordae after decellularization, as observed in sections stained with Movat’s 

Pentachrome (Figure 3.2A, F). VVG, a specific stain for elastin, showed intact elastin 

fibers in the atrial and ventricular side, as well as in the structure of chordae (Figure 3.2B, 

E). Glycosaminoglycans were removed together with the cells, forming typical “pores” in 

the tissue, necessary for cell repopulation; this is illustrated in the Movat’s Pentachrome 
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images for each tissue type. Basal lamina components, collagen IV and laminin, essential 

for cell adhesion, were detected using specific antibodies (Figure 3.2C, D). 

 

Figure 3.2: Histology of Mitral Valve Scaffold. To illustrate preservation of the extracellular matrix in the 

decellularized scaffolds, histology of fresh and decellularized leaflets and chordae were stained with Movat’s 

pentachrome, which shows nuclei (dark red), collagen (yellow), elastin fibers (maroon), and cytoplasmic 

proteins (red). To further illustrate the conservation of elastin fibers, these sections were stained with 

Verhoeff-Van Gieson’s (VVG) stain for visualization of nuclei (grey/black), elastin fibers (black), and 

collagen (pink). Loss of nuclei is illustrated as shown before, but these cross-sections show conservation of 

elastin and collagen in the decellularized scaffolds. An immunohistochemistry (IHC) for basal membrane 

proteins collagen IV and laminin were also performed with a positive stain showing in brown and nuclei 

showing in purple. Decellularized scaffolds stained positive for both basal membrane proteins. 

3.3.3 Scaffold Stabilization and Crosslinking Evaluation: 

The acellular scaffolds were treated with 0.3% PGG in order to stabilize the tissues 

and increase their strengths and resistance to degradation. Biaxial testing showed that 

decellularization significantly decreased the tissue stiffness in both the radial and 

circumferential directions, compared to fresh tissues (Figure 3.3A, B). Treatment with 

PGG, a polyphenolic compound that binds to proline-rich regions and induces the 

formation of crosslinks within the collagen and elastin molecules, contributed to the 
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increase of tissue stiffness, showing a doubling in elastic modulus for the chordae tendinae 

(from 23.4+/-4 MPa to 49.7+/-7 MPa) (Figure 3.3C). Differential scanning calorimetry 

(DSC) showed a slightly lower but statistically significant denaturation temperature (Td) 

for decellularized scaffolds when compared to the fresh tissue (66.4+/-6oC vs. 70.7+/-8oC) 

due to tissue destabilization after removal of cells). PGG-treated scaffolds exhibited 

significantly higher Td (84.5+/-9oC) possibly due to the increase in number of crosslinks 

(Figure 3.3D). 

 

Figure 3.3: Matrix stabilization in acellular mitral valves. Fresh, decellularized, and PGG-treated 

scaffolds were compared. A, B) biaxial stress-strain analysis of leaflets from each treatment type, were tested 

in the radial (X) and circumferential (Y) directions. Avg., average values for n=5. C) The elastic moduli of 

fresh, decelled and PGG-treated chordae were also measured. PGG-treated chordae had a significantly higher 

moduli than the other two groups. D) Differential scanning calorimetry (DSC) evaluation of fresh, decelled, 

and PGG-treated acellular leaflets was conducted. This measure of cross-linking in the scaffolds showed 
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PGG-treated samples to be significantly higher than fresh and decellularized groups. Td is the thermal 

denaturation temperature. *p<0.05 compared to fresh. 

Stabilization of the acellular mitral valve leaflet and chordae scaffold with PGG 

was further evaluated on its resistance to degradation by proteases. PGG-treated scaffolds 

were treated in collagenase and elastase for 24hr and 48hr treatments. These results were 

compared to fresh and untreated decellularized leaflet and chordae scaffolds. Results 

indicate that PGG significantly increases the resistance to degradation. Untreated decelled 

scaffolds were more readily degradable by both collagenase and elastase even compared 

to fresh tissues (Figure 3.4A, B). Treatment with PGG significantly reduced the scaffolds’ 

susceptibility to enzymes: by 5-fold to collagenase and more than 2-fold to elastase. This 

trend was true for both the 24 and 48-hour time points, but more pronounced in the 48-

hour time point. 
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Figure 3.4: Resistance to Proteases. Fresh, decellularized, and PGG-treated acellular mitral valve leaflets 

and chordae were compared based on their resistance to proteases. There was a 24 hour and 48 hour exposure 

time and these were compared for each tissue type and group. Values are expressed as percent dry weight 

loss after exposure to enzyme. # p<0.05 compared to fresh. A) Resistance to collagenase was evaluated. 

PGG-treated tissues showed significantly lower percent weight loss from exposure compared to fresh tissues. 

Decellularized tissues showed the greatest capacity to degrade for both time points. B) Resistance to elastase 

was evaluated. PGG-treated tissues also showed significantly lower percent weight loss from exposure to the 

enzyme when compared to fresh. # p<0.05 compared to fresh. Fresh tissues showed the greatest capacity to 

degrade from elastase for both time points. 
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3.3.4 Cell Seeding and Cytocompatibility: 

To evaluate the capacity for cells to survive on the PGG-treated scaffold, cells were 

seeded into and on the exterior of the scaffold. The acellular mitral valve scaffolds 

exhibited excellent compatibility toward hADSCs as demonstrated by the presence of 

viable cells after 3 days of incubation under static conditions (Figure 3.5A). Injected cells 

spread between the fibers of leaflets, as seen in the DAPI, H&E, and the Movat’s 

Pentachrome stained sections (Figure 3.5B, C, E). An IHC for vimentin, a protein known 

to be secreted by mesenchymal cells also showed positive (Figure 3.5D). Cells seeded on 

the surface maintained their viability and attached to the valve. 

 

Figure 3.5: Cell Seeding and Cytocompatibility. Cytocompatibility of acellular scaffolds. Representative 

images of PGG-treated scaffolds seeded with cells and analyzed 3 days after seeding to show 

cytocompatibility. A) Live/Dead staining was performed with green fluorescence showing living cells and 

red showing dead cells. B) DAPI nuclear staining to show nuclei within the tissue. C) H&E staining. D) An 

IHC for vimentin was performed, brown showing a positive stain for the protein. E) A Movat’s Pentachrome 

was also performed. 
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3.4 Discussion: 

3.4.1 Evaluation of Decellularization Efficiency and Characterization: 

 In this study, we have taken a thorough and systematic approach to establish a 

method to develop a tissue engineered mitral valve scaffold using decellularized porcine 

mitral valves. While decellularization of organs and other heart valves, including and 

especially the aortic valve, is not uncommon, very few groups have sought to develop a 

decellularized scaffold for mitral valves(6,7). This is despite a serious need for an improved 

valvular replacement. Utilization of this niche microstructure as an inductive scaffold has 

well established potential, however as mentioned a decellularized scaffold must meet 

several criteria. As mentioned above, the scaffold must remove cellular and nuclear 

materials according to standards set in current literature, conserve the extracellular matrix 

and the corresponding mechanical characteristics of native valve, and stability of the 

scaffold must be ensured. 

 Our choice of chemical agents was predicated on an already existing aortic valve 

decellularization protocol(10). In several pilot studies, we used differing time points and 

eventually different concentrations of the components of the detergent solutions and 

increased the concentration of the DNase/RNase solutions described above. Unique to the 

mitral valve are the four tissue types that one must account for in search for an optimized 

decellularization that removes xenogeneic cellular and nuclear material while still 

preserving the ECM. While not definitive, macroscopically there is a marked difference 

when comparing fresh valves, which have red and brown color to them, with the white and 
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sometimes translucent coloring of a decellularized valve. In our histological analysis, we 

sought to show complete removal of the cellular components. Each histological image 

shows the cross-section of the leaflet or the chordae tendinae. This is to ensure complete 

view of the ECM, especially to view the three layers of the mitral valve ECM. Lacking in 

each of the decellularized samples are the cells from the native valves. Pores are now 

present where these cells used to reside, these pores could eventually be replaced with 

seeded cells. To further elucidate cellular removal, an IHC for actin, a common cellular 

protein was shown to have zero expression in the decellularized scaffolds. As part of the 

criteria established by our group as well as in literature, removal of nuclear material is also 

essential for a successful decellularization. The ethidium bromide agarose gel 

electrophoresis performed showed no presence of DNA in both the leaflets and the chordae 

(Figure 3.1D). Densitometry showed about a 96% removal of DNA when compared to 

fresh controls. To further meet the decellularization criteria, more quantitative analysis was 

required. Therefore, the Nanodrop was utilized to measure DNA quantities in ng/mg of 

ECM. From this, we showed significant differences between fresh and decellularized 

samples when comparing DNA quantities. Badylak and his group have established that 

complete removal of all DNA from a scaffold would be impossible, but that an amount less 

than 50ng/mg of ECM would be acceptable. Both of our samples for leaflets and chordae 

meet these criteria (Figure 3.1E).  

3.4.2 Preservation of ECM and Basal Lamina Components: 

 While the elimination of cellular and nuclear material from the scaffold is 

paramount for the success of the scaffold, preservation of the existing niche ECM is of 
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equal importance. The ECM as mentioned is an inductive microstructure that can direct 

cells to migrate, proliferate, differentiate, or encourage apoptosis and degradation of the 

scaffold. The mechanotransductive cues delivered to cells via an intact mitral valve 

microenvironment are extremely significant to the reasoning in choosing this as a scaffold. 

Simply providing an array of collagen and elastin to seeded cells would inevitably render 

the scaffold useless and undiscernible as a mitral valve scaffold. Therefore, post-

decellularization analysis must evaluate how this process affected the complex collagen 

and elastin matrix after cellular and nuclear materials were removed. This is true for each 

tissue type under consideration within the mitral valve apparatus. 

 Results from several histological stains performed show a preserved mitral valve 

ECM. Movat’s Pentachrome, which stains for many matrix components, showed a loss of 

GAGs; however, this is expected after using the detergent solution used in the 

decellularization protocol. The two main structural proteins, collagen and elastin however 

remained. As seen in the comparison between the fresh and decellularized leaflet and 

chordae, the structure of collagen and elastin remain. A VVG stain was done specifically 

to visualize the elastin in the scaffold. Overall, the quantity and quality of the elastin seems 

to have remained intact after decellularization. This is important because in degenerative 

valves, elastin, as well as collagen, are fragmented and could lead to mitral valve prolapse 

and insufficiency(11). Also pertinent to ECM conservation was retaining the basal lamina 

predominantly collagen type IV and laminin. Studies have shown that an intact basal 

lamina provides a scaffold along which cells can migrate, proliferate and regenerate 

damaged tissues(12–14). An IHC was performed for both of these basal lamina proteins for 
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each tissue type in fresh and decelled samples. As expected, the fresh samples stained 

positively for collagen type IV and laminin. This was also true for the decellularized 

samples. Therefore, our scaffolds after undergoing decellularization are not only acellular 

and lack nuclear material, but we were able to retain basal lamina proteins that are essential 

for a successful recellularization. Not only did we preserve these proteins, but the overall 

architecture of the heart valve ECM in both the leaflets and the chordae tendinae. 

3.4.3 Evaluation of the Scaffold’s Durability: 

 The mitral valve conducts a complex mechanical performance with the mitral valve 

structures and requires the integrity and durability of strong collagen and resilient elastin 

fibers(15,16). As mentioned, a tissue engineered mitral valve would be expected to operate 

in a harsh environment of continual and repetitive stresses brought on by the demands of 

the heart. Therefore, a decellularized scaffold must be able to withstand these forces 

immediately upon implantation. Translatability of this project depends on this immediate 

functionality for patients. Accordingly, after evaluating the preservation of the ECM, we 

tested the durability of the decelled scaffold and the effect PGG treatment had on them. 

PGG, used before for the stabilization of aortic valve scaffolds, was used here for the first 

time for the stabilization of the complex and heterogeneous structure of the mitral valve. 

Biaxial mechanical testing was performed on three groups, fresh, decell, and PGG-treated 

decelled scaffolds (Figure 3.3A, B). From this, we can see that the decellularization 

process does in fact decrease the strength of the tissue when compared to the fresh samples. 

Treatment with PGG increased the mechanical strength of the scaffolds in both the 

circumferential and radial direction slightly higher than native valves. PGG also increased 
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the modulus for the chordae tendinae in comparison to the untreated-decelled chordae. 

Weak and enlarged “floppy” leaflets are often associated with chordal elongation, thinning, 

and/or rupture. Therefore, chordal modulus is important for the valve’s overall coaptation. 

Differential scanning calorimetry (DSC) was used to evaluate crosslinking within the 

scaffolds when compared amongst fresh, decelled, and PGG-treated samples. PGG-treated 

samples yielded a significantly higher thermal denaturation temperature when compared 

to the decelled group. This is related to the preservation of the integrity of the collagen and 

elastin fibers. An evaluation of the scaffold’s durability must also consider withstanding a 

host response from the patient. Most of the natural and untreated tissues used in scaffolds 

elicit a host response and are prone to degradation post-implantation(17). Because the mitral 

must undergo large and repetitious forces during a patient’s lifetime, the scaffold must be 

able to withstand degradation, degenerative pathologies will ensue, or the construct will 

fail altogether. In either case, failure of valvular coaptation would persist and the multiple 

mechanisms in the mitral apparatus would fail to operate properly. Treatment with PGG 

has shown to circumvent these issues. We evaluated (Figure 3.4A, B) the effectiveness 

PGG would have on degradation of scaffolds treated with the proteases collagenase and 

elastase. Fresh, decelled, and PGG-treated acellular scaffolds were compared at both 24 

and 48-hour treatments. Remarkably, PGG-treatment significantly increased resistance to 

degeneration of the scaffolds at both time points. The untreated decelled scaffolds were the 

most prone to degeneration when exposed to collagenase, and the fresh tissues were the 

most prone to degeneration when treated with elastase. It appears the decellularization 

process does affect a scaffold’s degeneration potential and perhaps affects the structural 
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proteins collagen and elastin differently, as evidenced the differences in degradation. The 

increased resistance of PGG-treated scaffolds to the activity of proteases confirms the 

integrity of these macromolecules. These results may be significant as it was demonstrated 

that fragmented elastin is prone to calcify in cardiovascular tissues, such as the aortic 

wall(18). In fact, varying degrees of calcification are found in the mitral valve annulus of 

degenerating valves. PGG in previous studies has shown to significantly decrease 

calcification of implanted tissues, and while this was not tested with the present study, we 

anticipate that the tissue-engineered mitral valve would be protected from in vivo 

calcification(9). 

Besides optimal physical properties and durability, the collagen and elastin-based 

scaffolds proved to be cytocompatible. The paradigm with which our lab operates 

advocates for recellularization of the scaffold and construct pre-conditioning in a 

bioreactor. Therefore, human adipose derived stem cells were seeded into and on the PGG-

treated scaffold to assess their potential to survive (Figure 3.5). Live/Dead images as well 

and nuclear staining showed that not only can cells thrive on the scaffold, but we also have 

the capacity to seed the scaffold interstitially. This was imperative to the further aims 

presented. In addition to their survival, the cells appeared to synthesize a layer of GAGs, 

which we interpreted as constructive remodeling of the leaflets (Figure 3.5E). This cell-

matrix interaction is the key to the success of this scaffold. The positive remodeling 

observed by the initial cell seeding we believe is a result of the well-preserved biochemical 

composition of the scaffolds, as well as its architecture. 

3.5 Conclusions: 
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 An effort was made to develop an acellular scaffold that provided cells with a tailor-

made and inductive scaffold for regeneration of the mitral. To achieve this, porcine mitral 

valves were rid of cellular and nuclear materials successfully without damaging the 

existing extracellular matrix composition and structure. DNA levels remaining in the 

scaffold were well below values established in literature as acceptable. Basal lamina 

proteins collagen type IV and laminin were preserved which will provide a means for the 

eventual recellularization of the scaffolds. After the scaffolds were decellularized, they 

were stabilized with PGG. PGG, by virtue of tis collagen and elastin-stabilizing abilities 

preserved the composition and structure of the ECM of the acellular leaflets and chordae, 

required by the valve’s complex mechanical effort. In mechanical and DSC testing, PGG-

treated scaffolds provided acceptable mechanical and crosslinking characteristics similar 

to native tissues and statistically different when compared to decellularized scaffolds. Once 

implanted, these scaffolds would inevitably undergo a host response and exposure to 

proteases. Treatment with PGG provided significant protection from collagenase and 

elastase confirming their ability to protect against degradation from an expected host 

response. PGG-treated scaffolds also were able to support cell survival and remodeling 

thus confirming their potential as a great mitral valve scaffolds. 
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CHAPTER 4 – EVALUATION OF THE HOST RESPONSE TO IMPLANTED MITRAL 

VALVE SCAFFOLDS 

4.1 Introduction: 

Mammalian host response is an integral consideration and ultimate determinant of 

an implantable biomaterial’s success; this is especially true with tissue-engineered 

constructs. In discordance with the conventional goal for a biomaterial’s “inertness”, a 

tissue engineered construct instead aims to employ the immune response as a means to 

integrate these constructs with the patient for repair and ultimately regeneration of the 

damaged tissue. The advent of tissue engineering has modified the accepted principles for 

a host’s response to implanted materials. These constructs support cellular attachment, 

migration, viability, growth and encourage differentiation of a variety of cell types. 

Decellularized matrices, such as our mitral valve scaffold, need to modulate the innate 

immune response and thereby control the release of bioactive molecules and its own 

degradation to eventually support functional replacement of the tissue(1). The functional 

outcome of this scaffold is ultimately determined by the elicited host response and the 

subsequent effects on the scaffold(1,2). This is especially true for a tissue engineered mitral 

valve, as it undergoes demanding mechanical loading at the immediacy of its implantation. 

These arduous and repetitious mechanical forces, when considered in the realm of tissue 

engineering, are perhaps exclusive to the heart valve. Accordingly, degradation and 

remodeling of the heart valve scaffold must be evaluated within the innate immune 

response. Constructive remodeling, as defined by Badylak’s group, is the process by which 

a construct is completely degraded and eventually replaced by appropriate and newly 

native functional tissue(2). An implanted mitral valve construct must be able to facilitate 
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gradual constructive tissue remodeling within its environment. This outcome is dependent 

upon a favorable response from the host’s immune system, which is largely a function of 

macrophage polarization. 

Immediately following implantation, the process of tissue remodeling begins and a 

robust macrophage response ensues beginning with the infiltration of neutrophils and 

monocytes(2–5). These monocytes will then differentiate into two broad, polarized 

categories of macrophages. Differentiation leads to either the pro-inflammatory, M1 

macrophage, or the pro-healing, M2 macrophage(1,2,6–9). A successful functional outcome 

is conditional upon how these macrophages receive the microstructure they have invaded 

and their plans for degradation and remodeling. Polarization into either phenotype is 

context specific and is contingent upon the highly complex ECM scaffold in which the 

remodeling is taking place. M1 macrophages are the pro-inflammatory and cytotoxic 

macrophage phenotype and promote pathogen killing within the wound site. They also 

function to debride the implant site of dead cells and damaged tissues. This phenotype is 

induced by the well-known pro-inflammatory signals and cytokines IFN-γ and TNF-α.(1,6). 

They in turn produce additional pro-inflammatory cytokines IL-1β, IL-6, IL-12, IL-23, and 

TNF-α(1,8). These activated macrophages produce high levels of induced nitric oxide 

synthase (iNOS) and secrete toxic levels of reactive oxygen species (ROS), while also 

acting as inducer and effector cells for Th1 type inflammatory responses(2). The M2 

macrophage phenotype is characterized as the pro-healing macrophage and is typified by 

expressing IL-12, IL-23, and IL-10(1,8). It can be induced by several different factors the 

most common of which are the cytokines IL-4, IL-13, and IL-10(1,6,8). These “alternatively 
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active” macrophages express high levels of receptors that resolve inflammation such as 

scavenger, mannose, and galactose receptors(2). More specifically, there are three M2 sub-

phenotypes, M2a, M2b, and M2c each with their own inducers and markers(2,6,10,11). 

Despite these sub-phenotypes, macrophage polarization generally refers to the polar 

extremes of the pro-inflammatory M1 and the anti-inflammatory M2 macrophage(10,11). 

This polarization is driven by cues in the microenvironment from the ECM scaffold(12). 

While the directors of macrophage phenotype are not fully understood, enough is known 

about these populations that specific markers can identify them. M1 macrophages are 

distinguished by iNOS, CD80, and CCR7 while M2 macrophages are identified by CD163, 

CD206, and Fizz1/Ym(7–9). Macrophages are also a plastic cell population capable of 

changing their polarization based on the stimuli they receive during the process of wound 

healing(8). To date, most strategies that employ a more balanced polarization between M1 

and M2 macrophages or a predominantly M2 macrophage presence have shown to illicit 

the most successful functional outcomes(1). Therefore, it would greatly benefit a mitral 

valve construct to tip the scales of immune response to an anti-inflammatory, M2 

phenotype. Knowing too that the presence of an M1 phenotype is necessary and not fully 

discouraged. Therefore to encourage a more desirable and tunable constructive remodeling 

our group turned to Penta-galloyl glucose (PGG). 

PGG, is a well characterized polyphenol which exhibits high affinity for proline-

rich proteins like collagen and elastin(13). PGG has a high affinity towards these proteins 

due to its polyphenol shape(14). As mentioned previously, this gravitation towards collagen 

and elastin made PGG an ideal scaffold stabilizer and actually impeded degradation by a 
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factor of about 50(15). PGG has also has been reported to have many beneficial effects such 

as antioxidant, anti-diabetic, and anti-inflammatory activities(14,16–20). The protective 

effects of antioxidants for endothelial and vascular aspects are well known(21–24). Tannins, 

like PGG, are also good modulators of antioxidants and it can act as a radical scavenger 

and sink. Studies have shown that this free radical scavenging ability can inhibit lipid 

peroxidation induced by hydrogen peroxide(25). PGG has also been shown to debilitate pro-

inflammatory cytokines, TFN-α and IL-6, both of which are pertinent in macrophage 

polarization(26). In addition, the antioxidant properties of this multifaceted polyphenol also 

act as a means of regulating reactive oxygen species (ROS). 

Ultimately, the goal of this study was to evaluate our scaffold’s potential for a 

functional outcome, evaluate constructive remodeling of the construct and of course assess 

biocompatibility of the mitral valve scaffold. This was done by completing a 4 and 8 week 

rat subdermal implant study using PGG-treated and non-treated decellularized scaffolds. 

Our group evaluated cellular infiltration to see what types of cells inhabited the scaffolds, 

macrophage polarization and degradation of the scaffolds. Each of these were compared 

between the PGG and non-treated scaffolds. The host response in this study the key 

determinant of the functional outcome and translatability of this scaffold from bench to 

bedside. By successfully traversing the host response and attenuating a pro-inflammatory 

response in favor of a pro-healing and remodeling response, this mitral valve scaffold with 

the aid of PGG has a chance at a successful functional outcome. 

4.2 Methods and Materials: 

4.2.1 Histology and Immunohistochemistry: 
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Rehydrated paraffin sections (5µm) were stained with Hematoxylin and Eosin 

(H&E), and Movat’s Pentachrome according to the instructions in the kits purchased from 

Poly Scientific R&D Corp. (Bayshore, NY). 4',6-diamidino-2-phenylindole (DAPI) was 

purchased from Sigma-Aldrich Corporation (Lakewood, NJ). 

Immunohistochemistry (IHC) was performed on formalin-fixed and paraffin-

embedded sections using heat-mediated antigen retrieval (10mM citric acid at pH of 6, for 

10 min at 90°C), followed by exposure to 0.025% Triton X-100 for 5 minutes. After 

incubation in normal blocking serum for 45 minutes, the primary antibodies diluted to 

2μg/mL were applied overnight at 4°C in a humidified chamber. The following antibodies 

were used: mouse anti-α-Smooth Muscle Actin (Abcam, Ab7817), rabbit anti-SM22 

(Abcam, Ab14106), rabbit anti-Calponin (Abcam, Ab46794), rabbit anti-Vimentin 

(Abcam, Ab92547), rabbit anti-HSP-47 (Abcam, Ab77609), rabbit anti-P4HA3 (Abcam 

Ab101657). Negative controls were obtained by omitting the primary antibodies. The 

Vectastain Elite kit and the ABC diaminobenzidine tetrahydrochloride peroxidase 

substrate kit were purchased from Vector Laboratories (Burlingame, CA). Sections were 

counterstained with a diluted hematoxylin prior to mounting. Images were obtained at 

various magnifications on a Zeiss Axiovert 40CFL microscope using AxioVision Release 

4.6.3 digital imaging software (Carl Zeiss MicroImaging, Inc. Thornwood, NY). 

4.2.2 Penta-galloyl glucose (PGG) Treatment: 

High-purity 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG) was a generous gift 

from N.V. Ajinomoto OmniChem S.A., Wetteren, Belgium (www.omnichem.be). The 

acellular scaffolds were treated with sterile 0.3% PGG in 50mM Na2HPO4, 0.9% NaCl, pH 
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5.5 containing 20% isopropanol overnight at room temperature under agitation and 

protected from light. Scaffolds were then rinsed with sterile PBS 3 times, and then stored 

in sterile PBS with 1% protease inhibitors and 1% antibiotic/antimycotic (Pen-Strep). 

4.2.3 In vivo Biocompatibility: 

Acellular leaflet and chordae scaffold samples, treated with PGG and non-PGG 

treated, were prepared as described above. A 10mm diameter sterile biopsy punch was then 

used to cut equally, sized biopsy punch was then cut equally sized leaflet samples for 

implantation. Equally sized chordae samples were also chosen. Before implantation, the 

samples were sterilized in 0.1% (w/v) peracetic acid in PBS for 1h, followed by rinsing in 

four changes of sterile PBS. 

In accordance with an IACUC-approved animal use protocol, 52 juvenile Sprague-

Dawley rats were anesthetized with buprenorphine at 0.03-0.05 mg/kg and acepromazine 

at 0.5 mg/kg administered subcutaneously. A small incision was made in the center of the 

dorsal area of each rat about 2 cm inferior to the scapulae, and, using blunt dissection, two 

pockets were created between the dermis and fascia lateral to the incision (one pocket in 

each direction). A scaffold sample was placed into each pocket, and the incision was closed 

using staples. Thirteen rats received non-treated, decellularized scaffolds, and the 

remaining 13 received PGG-treated decellularized scaffolds. This was true for both tissue 

types, mitral valve leaflet and chordae tendinae. Rats were allowed to recover and were 

housed individually for the remainder of the study. At 4 weeks 24 rats were euthanized and 

at 8 weeks, the remaining 28 were euthanized, both via CO2 gas (Euthanex system) 

followed by pneumothorax. Scaffold samples and small amounts of their adjacent host 
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tissues were excised and fixed in 10% neutral buffered formalin and processed for 

histological examination. 

4.2.4 Gelatin Zymography: 

MMP activity was determined by gelatin zymography: 6µg proteins/lane were 

loaded in triplicated on ready to use BioRad gels, alongside pre-stained molecular weight 

standards. After development and staining with Coommassie Blue, the MMP clear bands 

on a dark blue background were evaluated by densitometry and expressed as relative 

density units. Electrophoresis apparatus and imager, chemicals, and molecular weight 

standards were all purchased from BioRad. 

4.2.5 IHC Quantification: 

Relative quantification for immunohistochemistry stains were performed on 

ImageJ (provided by NIH) using the ImmunoRatio plugin. This was developed by 

Touminen and Isoloa, University of Tampere, Finland. The quantities expressed here are a 

percentage of DAB expressed to the nuclear area or ECM area shown. This depends on the 

stain type used, i.e. a cellular or matrix stain. Each image was individually adjusted for the 

blue threshold (nuclei) and brown threshold (DAB) to fine-tune each component. 

Instructions for how to use this plugin were provided and followed. 

4.2.6 Statistical Analysis: 

Results are expressed as means ± standard deviation (SD). Statistical analysis was 

performed using one-way analysis of variance (ANOVA). Differences between means 

were determined using the least significant difference (LSD) with an alpha value of 0.05. 
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4.3 Results: 

4.3.1 Explantation and Histological Evaluation of the ECM: 

 Decellularized scaffolds, both untreated and PGG-treated, were explanted from the 

52 rats at 4 and 8-week time points. At explantation, there was a marked difference in 

degradation between the PGG-treated and untreated samples with the greatest visible 

difference at the 8-week time point. Macroscopic evaluation of the explanted tissue, as 

shown in Figure 4.1, displays this difference in degradation of the scaffolds. It is also 

apparent that PGG-treatment leaves a distinct coloration of the tissue. This was true at both 

the 4 and 8-week time points. 

 

Figure 4.1: Macroscopic Evaluation of Explants. Following explantation, non-treated and PGG-treated 

groups for each tissue type were examined. PGG-treated groups appeared less degraded and noticeably 

colored as compared to the non-treated samples. This coloration made the PGG-treated groups easier to find 

and retrieve at the end of the in vivo study. 
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Figure 4.2: MMP Activity of Implanted Scaffolds. To evaluate degradation of the non-treated and PGG-

treated acellular scaffolds, a gelatin zymography was performed. Quantities of band volume were determined 

and plotted. At 4 weeks, non-treated samples have a higher MMP activity than PGG-treated samples. 

Similarly, at 8 weeks, non-treated leaflets and chordae are significantly higher than PGG-treated tissues. It is 

apparent that at longer time points the difference in degradation increases as scaffolds are subject to a longer 

exposure to the host response. 

Figure 4.3 displays the zymography gels that were quantified in Figure 4.2. As 

evidence by the gel, non-treated samples expressed both MMP9 and MMP2. However, in 

the PGG-treated tissues, only bands for MMP9 were detected. This is in congruence with 

the quantified data presented above describing the MMP expression to be signifincalty 

higher in the non-treated samples when compared to the PGG-treated groups. 
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Figure 4.3: Gel Zymography for Non-treated and PGG-Treated Implanted Scaffolds. A gel zymography 

was done and quantified in Figure 4.2. The non-treated (NT) samples clearly show presence of both MMP9 

and MMP2 markers. PGG-treated samples display only the expression of MMP9 markers. 

Most scaffolds treated with PGG were easily recoverable, however some untreated 

scaffolds were difficult to find due to their reduced size. Although not shown here, PGG-

treated samples had a brown residue around it from the PGG, while untreated samples did 

not. Aside from this macroscopic evaluation of degradation, a gelatin zymography was 

performed to determine and quantify MMP activity within the scaffolds at each time point. 

As seen in Figure 4.2A, B, non-treated acellular scaffolds exhibit significantly higher 

MMP activity when compared to PGG-treated scaffolds. This was especially true for the 

8-week time points.  

Histological analysis using H&E and Movat’s Pentachrome staining was used to 

evaluate the integrity of the ECM after implantation. As seen in Figure 4.4, PGG-treated 

tissues were well preserved at both the 4 and 8-week time points. Movat’s Pentachrome 

shows good preservation of elastin bands and of the collagen. Similarly, non-treated 

samples largely showed a good preservation of both collagen and elastin.  
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Figure 4.4: Histological Evaluation of Scaffold ECM Post-Implantation. H&E and Movat’s Pentachrome 

were performed on explanted scaffolds. Leaflet and chordae sections are shown here. These scaffolds were 

implanted as either non-treated or PGG-treated acellular scaffolds. Both 4 and 8-week time points are also 

shown here. As evidence by these histological stains, ECM were largely preserved in both the non-treated 

and PGG-treated scaffolds for both tissue types and at both time points. Also, as these were originally 

acellular scaffolds, cellular invasion is apparent in these histological images. 

The presence of cells is clearly visible from each section in Figure 4.4. Since these 

scaffolds were implanted as acellular, it is apparent that invasion of host cells has taken 

place at each time point. Figure 4.5 shows a semi-quantitative measure of the amount of 

cells invading each scaffold, represented as a normalized percentage of the area of the 

section imaged.  
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Figure 4.5: Cellular Infiltration into Scaffolds. A semi-quantitative measure was taken to evaluate quantity 

of cells invading into the implanted scaffolds due to the normal host response. Values here are represented 

as a normalized percentage of the collective area of the cells as compared to the area of the tissue in each 

section imaged. Overall, there were no significant differences between PGG and non-treated groups for each 

tissue type. 

As evidenced by Figure 4.5 there is no significant difference between PGG and non-treated 

scaffolds. Therefore, PGG treatment of our acellular scaffolds did not hinder infiltration of 

cells from the host response. 

4.3.2 Histological Evaluation and Identification of Cellular Presence: 

 To garner a better understanding of how the host cells reacted to the implanted 

scaffolds and whether PGG treatment affects inflammatory cell infiltration, we analyzed 

the scaffolds and stained with CD8, a marker for T-cells, and CD68, a pan-macrophage 

marker. IHC for CD8 showed a presence of T-cells in each scaffold type and under each 

treatment type (Figure 4.6). Although there was a significant difference found between 

non-treated and PGG-treated groups. In both 4 and 8-week time points, CD8 expression 

was found to be significantly higher in non-treated scaffolds. This was especially apparent 
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during the 4-week time point because, while still statistically significant, at 8 weeks the 

contrasting levels of CD8 expression were not so wide. PGG treatment of scaffolds 

appeared to strongly discourage T-cell infiltration, but it did not completely inhibit it. CD68 

expression for macrophages was also found in all scaffolds and treatment types. There were 

not significant differences between groups (Figure 4.7). While not statistically significant, 

there was a lower overall expression of CD68 in PGG-treated tissues.  

 

Figure 4.6: Histological Evaluation and Semi-Quantitative Analysis of CD8 Expression. T-cell 

infiltration was determined using an IHC for CD8. Expression of CD8 at both the 4 and 8-week time points 

is shown as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) 

showed significant differences in CD8 expression. PGG-treated scaffolds showed significantly less 

expression of CD8 at both the 4 and 8-week time points. 
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Expression of smooth muscle cell marker, α-Smooth Muscle Actin (α-SMA), was 

evaluated to determine the infiltration of smooth muscle cells into the scaffolds and PGG’s 

effect on this infiltration. Overall, PGG-treated scaffolds showed a markedly lower 

expression of α-SMA at both time points in the leaflets and chordae when compared to 

treated samples (Figure 4.8). While not shown, similar results for other smooth muscle 

cell markers, SM22 and calponin were found, with PGG treatment significantly reducing 

their expression. Markers for fibroblasts such as vimentin (Figure 4.9), HSP-47, and prolyl 

4-hydroxylase were also shown to be expressed at significantly higher levels in PGG-

treated tissues as compared to their untreated counterparts at both time points. It is 

important to note that these differences in expression do not mean that expression of each 

of the aforementioned markers did not occur. In each of the histological figures presented 

in herein, expression of each marker is clearly present. 
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Figure 4.7: Histological Evaluation and Semi-Quantitative Analysis of CD68 Expression. Macrophage 

infiltration was determined using an IHC for CD68. Expression of CD68 at both the 4 and 8-week time points 

is shown as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) 

showed no significant differences in CD68 expression. PGG-treatment did not seem to hinder infiltration of 

macrophages into the scaffolds at either time point. 



136 

 

 

Figure 4.8: Histological Evaluation and Semi-Quantitative Analysis of α-SMA Expression. α-SMA 

expression was determined using an IHC. Expression of α-SMA at both the 4 and 8-week time points is 

shown as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) 

showed significant differences in α-SMA expression. PGG-treated scaffolds showed significantly less 

expression of α-SMA at both the 4 and 8-week time points. 
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Figure 4.9: Histological Evaluation and Semi-Quantitative Analysis of Vimentin Expression. Vimentin 

expression was determined using an IHC. Expression of vimentin at both the 4 and 8-week time points is 

shown as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) 

showed significant differences in vimentin expression. PGG-treated scaffolds showed significantly greater 

expression of vimentin at both the 4 and 8-week time points. 

4.3.3 Histological Evaluation of Macrophage Polarization: 

 As mentioned above, a statistically significant difference was not found between 

groups using the pan-macrophage marker, CD68. This however does not mean that the 

treatment groups experience the same inflammatory response. Therefore to illustrate the 

different macrophage phenotypes present within each treatment type, an IHC and semi-

quantitative analysis for iNOS (M1) and CD163 (M2) were performed. As seen in Figure 

4.10, expression of the M1 macrophage, with the iNOS marker, was significantly higher in 
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untreated groups at both the 4 and 8-week time points. PGG seems to discourage 

macrophage polarization towards the M1, or pro-inflammatory phenotype. In comparison, 

PGG-treated groups showed significantly higher expression of the M2 marker, CD163 at 

both time points (Figure 4.11). While discouraging the M1 macrophages, treatment with 

PGG seems to encourage the pro-healing M2 macrophages. 

 

Figure 4.10: Histological Evaluation and Semi-Quantitative Analysis of iNOS Expression. iNOS 

expression was determined using an IHC. Expression of iNOS at both the 4 and 8-week time points is shown 

as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) showed 

significant differences in iNOS expression. PGG-treated scaffolds showed significantly less expression of 

iNOS at both the 4 and 8-week time points. 
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Figure 4.11: Histological Evaluation and Semi-Quantitative Analysis of CD163 Expression. CD163 

expression was determined using an IHC. Expression of CD163 at both the 4 and 8-week time points is shown 

as well as each treatment type and tissue type. A semi-quantitative analysis of these images (n=6) showed 

significant differences in CD163 expression. PGG-treated scaffolds showed significantly greater expression 

of CD163 at both the 4 and 8-week time points. 

4.4 Discussion: 

4.4.1 General Observations and Integrity of the Scaffolds: 

 Biological scaffolds comprised of niche ECM proteins have been used in a wide 

variety of tissue engineering applications(2,27). The combination of natural components and 

specific microstructure assist in cell attachment and proliferation while promoting distinct 

functionalities relevant to that tissue type. Cellular residents in the ECM structure are 

depended upon to remodel the scaffold during development and wound repair. As such, 
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matrix composition and organization are a function of the adaptation of the cells and their 

reaction to the mechanical and chemical cues they are receiving from the 

microenvironment(28). This interaction between matrix and cells is crucial for the success 

of the construct due to their codependency(28). Investigating biocompatibility in an in vivo 

study, would allow for an evaluation on how infiltrating host cells respond to an ECM 

scaffold. As mentioned earlier, this reaction between host cells with the ECM scaffold is 

the predominant determinant for the scaffold’s success(2). Biocompatibility is a term that 

has evolved during the advancement of biomaterials from inert to bioactive implants. For 

regenerative medicine applications, biocompatibility could be defined as “the ability of a 

biomaterial to perform its desired function with respect to a medical therapy, without 

eliciting any undesirable local or systemic effects in the recipient or beneficiary of that 

therapy, but generating the most appropriate beneficial cellular or tissue response in that 

specific situation, and optimizing the clinically relevant performance of that therapy”(29). 

In our mitral valve scaffold specifically, a balance must be achieved between slight 

degradation and remodeling by cells. In the studies presented here, we show the critical 

relationship between our mitral valve scaffold and the host cellular response in an in vivo 

rat study.  

 Macroscopically, non-treated scaffolds were noticeably more difficult to retrieve 

upon explantation. This was in large part due to their degradation while subcutaneously 

implanted. PGG-treated samples in contrast, were easy to recover and were significantly 

less degraded at both the 4 and especially the 8-week time point. To obtain a finer 

understanding of the quality of the ECM scaffold after each time point, each sample was 
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examined microscopically. As evidenced in Figure 4.4, when examined histologically, 

overall the ECM quality did not appear to be significantly disturbed. H&E and Movat’s 

Pentachrome staining showed decent preservation of collagen microstructure. On the 

whole, PGG-treated leaflets and chordae did look the least degraded. Regardless of 

treatment, this is important for the scaffold and its influence on the incorporated cells. As 

mentioned ECM quality is crucial as it acts as an inductive scaffold(28). Upon further 

examination of the ECM in this figure, elastin quality seems to have diminished in the non-

treated samples. This is important to note because degradation of elastin in cardiovascular 

tissues, has shown to encourage calcification at these sites(15,30,31). While we did not find 

evidence of calcification (not shown), it is likely a different model, particularly one with 

mechanical stimulation, would have shown calcification in these non-treated groups. 

 Degradation of an ECM scaffold, such as our own, is an inevitable if not necessary 

outcome for the eventual success of the scaffold. Constructive remodeling, as defined 

earlier, is a process which must occur for our mitral valve scaffold to be successful(6). 

However, for heart valves, this process must be gradual. Upon implantation, tissue 

engineered valves would be expected to face the strong and repetitive forces experienced 

by this tissue. To survive this, degradation of the scaffold must be limited and gradual over 

time. Therefore, we incorporate PGG as a treatment to hinder degradation of the scaffold. 

Several papers from our group alone have shown the benefits of treating with PGG, 

especially its ability to significantly reduce degradation(20,30,32–34). Matrix degradation can 

lead to several compounding effects on the infiltrating host cells and of course the matrix 

itself. Circulating immune cells rely upon matrix degradation for access into the 
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microstructure to encourage an inflammatory response. As such, these cells release 

enzymes called matrix metalloproteases, or MMPs. There are several MMP phenotypes, 

but common types are secreted by T-cells(35–37). Inflammatory mediators like TNF-α also 

stimulate expression of MMP’s in macrophages(38,39). During degradation of the matrix by 

MMPs, many matrikines and cytokines are released upon ECM molecule degradation or 

conformation change. These matrikines have been shown to increase TGF-β1 expression, 

a known activator of fibroblasts, as well as further expression of MMPs(34,35). When 

examining our samples for degradation, a zymography gel was run with PGG and non-

treated samples (Figure 4.2) to examine MMP quantities. Overall, levels of MMP’s were 

significantly higher in untreated samples when compared to PGG-treated samples. PGG, 

while not able to completely inhibit MMP degradation, which we were not aiming to do, 

was able to decrease the amount of degradation by decreasing the expression of these 

matrix-degrading enzymes. A decreased level of MMP could also be indicative of 

decreased levels of T-cells and other inflammatory markers such as TNF-α. The 

stabilization effect of PGG also decreased the availability of degrading matrikines and 

cytokines, which as a result were not able to encourage further degradation of our ECM 

mitral valve scaffold. 

 As shown in Figure 4.4, host cells were in fact able to penetrate the scaffolds at 

each time point and for each treatment of the scaffold. Cellular infiltration is indicative of 

many things including cytocompatibility, porosity, and migration potential with the 

scaffold. Quantification of the infiltrating cells (Figure 4.5), showed no significant 

difference between treatment groups. This was true at both time points. Therefore, PGG-
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treatment of our scaffold does not hinder infiltration of host cells after implantation, thus 

allowing for a normal host response. In this subdermal study, repopulation of these 

acellular scaffolds with host cells is needed for remodeling. 

 While no significant difference was found between the PGG and non-treated 

samples regarding the infiltration of cells, there did seem to be a difference in cell quantity 

between the 4 and 8-week time points. The decrease found for the 8 week time points is 

most likely due to the shift in pro-healing phase of the macrophage polarization. At this 

later time point, most of the initial cellular infiltration and inflammatory response to the 

foreign scaffold had completed and the transition to a pro-healing, and the majority of 

macrophages displayed an M2 phenotype. 

4.4.2 Evaluation of Immune Response: 

 An immune response to an implanted device or material is a key component to 

evaluating biocompatibility. Immune responses can initiate or propagate inflammatory 

action from the host. Significant or prolonged inflammation for an ECM scaffold would 

undoubtedly yield failing results. In our study, macroscopically (Figure 4.4), cardinal signs 

of inflammation were not present. We did not see an extreme density of invading cells in 

the scaffolds, nor did we see the presence of foreign giant body cells (FGBCs). PGG-

treated samples did not see a significant increase in vascularity either. Decellularized ECM 

scaffolds can induce an inflammatory response due to improper or incomplete 

decellularization resulting in the presence of xenogeneic antigens like α-gal. Also, an 

incomplete removal of the treatments used for decellularization can lead to failure of the 

scaffold due to inflammation. Overall, however we did not see any indications of an 
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aggressive inflammatory response from the host. One measure we also looked at was the 

presence of T-cells in the scaffolds. These T-cells or lymphocytes are present in and play 

important roles in the inflammatory response. These T-cells increase MMP’s within the 

tissue they are invading, actively recruit macrophages to the site, and as a result, a cascade 

of reactions including degradation of the tissue ensues. To investigate whether PGG 

treatment had an effect on T-cell recruitment we looked for CD8 expression, a marker for 

T-cells. As seen in Figure 4.6, at both the 4 and 8-week time points, PGG consistently and 

significantly reduced CD8 expression in the scaffolds. Non-treated scaffolds on the other 

hand showed significantly higher expression of CD8. This correlates with the results 

previously which PGG-treatment decreased MMP expression. Since T-cells and MMPs 

can induce expression of, or recruit the other, these results agree. It is possible that due to 

the treatment with PGG and the resistance it provides scaffolds to degradation, the host 

was presented with less cytokine and matrikines that would invoke an inflammatory 

response. Because of the stability of our mitral valve scaffold, T-cell recruitment was 

discouraged, as were the compounding effects on inflammation and degradation that would 

have ensued. Also examined was the expression of CD68, a pan-macrophage marker 

(Figure 4.7). There were no significant differences between the treatment groups found. 

As discussed earlier, there are differing macrophage phenotypes; therefore, what is more 

important is the ratio of M1 to M2 macrophages. We still however wanted to identify what 

infiltrating cells were macrophages and this figure accomplishes this. Infiltration from 

macrophages was clear in all treatment groups. 

4.4.3 Histological Identification of Infiltrating Cells: 
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 Other than identify degradation and immune-related cells, many other cells did not 

stain positive for these markers, thus more cell types are present with the explanted 

scaffolds. As mentioned earlier, the complexity and specificity of the ECM scaffold is 

critical in cell proliferation, migration, differentiation, etc. Therefore, the types of cells that 

infiltrated our scaffolds in this subdermal study should be indicative of their potential to 

attract the appropriate cell types. These infiltrating cells are the ones that actively 

remodeling the scaffolds in vivo and play an important role in the scaffold’s long term 

success. They can affect matrix remodeling as well as degradation. We looked at several 

markers for smooth muscle cells and fibroblasts. Expression levels for α-SMA, SM22, and 

calponin were evaluated for our smooth muscle cells markers, while vimentin, HSP-47, 

and prolyl-4-hydrosylase were examined for our fibroblast markers. Only results for α-

SMA and vimentin are shown for each of the cell types investigated, however results for 

each are discussed due to the consistency across groups. Overall, expression of α-SMA 

was significantly increased in non-treated samples when compared to the PGG-treated 

groups (Figure 4.8). This was also true for SM22 and calponin expression at each time 

point. We also quantified expression of common fibroblast markers. Vimentin (Figure 

4.9), showed significantly higher expression in PGG-treated groups than non-treated at 

both time points. This fibroblast maker expression was also consistent with HSP-47 and 

prolyl-4-hydroxylase. Therefore, from these results, PGG-treated tissues encourage 

infiltration of fibroblasts over smooth muscle cells, and the opposite is true for non-treated 

groups. A possible explanation for this could be that non-treated samples have shown 

higher expression of CD8, a sign of inflammation and a higher expression of MMPs. This 
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in turn could be activating fibroblasts infiltrating the non-treated scaffolds into 

myofibroblasts. Myofibroblasts are known to cause fibrosis and overproduction of 

ECM(40). They can also increase TGF-β1 levels. Histological inspection revealed more 

vessel formation appearing in the non-treated samples post-explantation. This is not 

normally seen in mitral valve leaflets or chordae. Therefore, it is possible these vessels are 

attributing to some of the rise in inflammatory makers and myofibroblasts. A large 

expression of fibroblast markers in the PGG-treated leaflets we would consider normal and 

beneficial to the matrix remodeling in these scaffolds. Mitral valve leaflets and chordae are 

largely populated by VICs, which are fibroblast-like. Therefore infiltration of similar cell-

types may be an indication that PGG-treated ECM scaffold encourages appropriate cell 

type infiltration. 

4.4.4 Macrophage Polarization: 

 Macrophages play a critical role in the success of ECM scaffolds. Macrophages are 

classically known to play a central role in host defense and inflammatory response. 

However, beyond defense these cells orchestrate tissue remodeling and other crucial 

metabolic functions(41). M1 macrophages are characterized by the expression of high levels 

of pro-inflammatory cytokines such as TNF-α, IL-6, and iNOS(2,6,11,35,41). M1 macrophages 

are also responsible for generating large amounts of reactive oxygen species (ROS) which 

caused further oxidative stress on implants. In ECM scaffolds, this oxidative stress along 

with other factors affective degradation (MMPs, etc.) may induce the formation of oxidants 

since ECM fragments promote immune cell recruitment. Also ROS has been shown to 

recruit additional macrophages and leukocytes(42). M2 macrophages operate as the pro-
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healing phenotype and are characterized by expression of IL-10 and CD163(1,11,28,41). M2 

macrophages have poor antigen presenting potential and possess immunoregulatory 

functions such as actively scavenging debris, tissue remodeling, promoting wound healing, 

and suppression of Th1(41). Two commonly used markers for M1 and M2 macrophages 

were iNOS and CD163 respectively. Using these markers, it was observed that iNOS 

expression was significantly higher in untreated samples at both time points (Figure 4.10). 

Meaning there was a greater presence of M1 macrophages in the untreated samples. In 

contrast, CD163 was expressed in significantly higher quantities in PGG-treated samples 

as compared to non-treated groups (Figure 4.11). This was true at both the 4 and 8-week 

time points. Therefore, M2 macrophages appear in greater quantities in PGG-treated 

scaffolds. As mentioned before, the pan-macrophage expression (CD68) was not 

significantly different between groups, however it appears that the ratios of M1 and M2 

macrophages for the treatment groups was significantly different. PGG’s ability to 

encourage the M2 phenotype is critical for the success of this scaffold. By depressing the 

pro-inflammatory M1 macrophage, further degradation of the scaffold was prevented, 

oxidative stress reduced, significantly less pro-inflammatory cytokines were released and 

more M1 macrophages were not recruited. 

 PGG has shown to have anti-inflammatory qualities and therefore has some effect 

on macrophage polarization due the fact that PGG-treatment greatly encourages M2 

macrophages over M1(13). One possibility for this is due to the antioxidant properties of 

PGG. Antioxidants have been shown to scavenge ROS which are known to increase 

inflammation and oxidative stress in tissues(43). Antioxidants block oxidant-mediated 
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pathways by scavenging ROS. It has also been shown that PGG can significantly reduce 

the expression of TNF-α, which is a major determinant in macrophage polarization(20). It 

has also been seen that ROS production is a function of TNF-α expression(44). By 

decreasing the expression of this pro-inflammatory cytokine, PGG may reduce M1 

polarization. In accordance with our results, we also saw PGG’s effect on scaffold 

degradation and how this affected expression of CD8, smooth muscle cell markers, 

fibroblast markers, as well as vascularity and MMP expression. Combined, we have seen 

that ECM fragments and degradation can encourage inflammation of the scaffold and even 

fibrosis. Each of these factors seem to compliment and encourage the other in the untreated 

samples. M1, macrophages which are associated with increased vascularity, may coincide 

with the higher expression of CD8 and the delivery of these T-cells to non-treated 

samples(45).  

4.5 Conclusion: 

 The host response and biocompatibility of any biomaterial are the most crucial 

factors in determining the success or failure of an implant. As researchers have progressed 

past the use of “inert” biomaterials and into the realm of bioactive scaffolds made from 

natural substances like ECM, there are many questions not only on how a bioactive material 

will respond to the host, but more importantly how the implant will utilize the host response 

to its advantage. For tissue engineered applications, scaffolds derived from ECM have 

become popular due the familiar proteins that make up the scaffold and its ability to 

incorporate cells to eventually become a regenerated tissue. We must understand that the 

cells and their interaction with the ECM scaffold are the only way to remodel and integrate 
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the biomaterial into the host. Therefore, we must appreciate and discover the mechanisms 

by which the host’s cells mediate the immune response around our scaffold. By doing so, 

we will have a better understanding of the effectiveness and potential for our tissue 

engineered mitral valve scaffold. 

 The studies discussed above were all attributed to the scaffold developed in chapter 

3. Our aim was to better understand how our scaffold would affect the immune response 

of the rats and how this in turn affected our scaffolds. We examined our scaffolds at both 

4 and 8-weeks and had two treatment groups, PGG-treated and non-treated scaffolds. 

Results were shown for the leaflets and the chordae tendinae. We focused our results on 

the degradation of the scaffolds, the immune response, overall ECM quality, and 

identification and polarization of macrophages. 

 Our results led us to conclude that PGG-treatment of our scaffolds has many 

benefits to our scaffold. We knew PGG significantly decreased degradation with proteases 

in vitro, however the same was true in vivo. PGG also decreased expression of CD8 an 

immune cell marker and promotor of inflammation. Smooth muscle cell markers were also 

expressed at significantly lower levels in PGG-treated groups. These cells may have been 

fibroblasts that were activated and became myofibroblasts, which can lead to over-

production and mismanagement of ECM remodeling. Fibroblast markers were also 

significantly higher in PGG-treated tissues. Importantly, the M2 phenotype was highly 

encouraged and showed significantly more expression in the PGG-treated tissues. This 

predominance of the pro-healing phenotype of macrophages discourages further 

inflammation and allows for remodeling of the scaffold. 
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 Overall, it is evident that treatment with PGG has significant beneficiary effects on 

our mitral valve scaffold. Any tissue engineered ECM scaffold needs to undergo 

constructive remodeling to become a healthy and regenerated tissue. While the same is true 

for the heart valve scaffold, extra precautions must be taken due to the high stress 

environment the valve resides in. Because this valve is expected to function immediately 

and ideally for the life of the patient, PGG allows for a more gradual remodeling, while 

also discouraging inflammation and degradation of the scaffold. 
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CHAPTER 5 – DEVELOPMENT OF A MITRAL VALVE BIOREACTOR AND 

CHARACTERIZATION OF DYNAMIC CELL SEEDING IN MITRAL VAVLE 

CONSTRUCTS 

5.1 Introduction: 

 Scaffold characterization and evaluation of host response are two critical landmarks 

for a tissue engineered solution. In fact, they are literally the foundation for creating a living 

tissue construct capable of regenerating diseased tissue. However, despite their importance, 

the scaffold is only a part of the larger tissue engineering paradigm(1). To develop a living 

construct these scaffolds must be repopulated with relevant cell types capable of 

remodeling and sustaining the tissue during growth and would healing. The incorporation 

of cells and their process of remodeling the scaffold are important pillars in the world of 

tissue engineering. The scaffold provides the cells with specific biochemical and 

biomechanical signaling which directs cell growth, migration, proliferation and 

differentiation. Recellularization of the scaffold presents unique challenges towards the 

development of a tissue engineered valve. There are roughly two methods to repopulate 

the scaffolds with cells, in vitro cell seeding prior to implantation, or implanting an 

acellular scaffold and waiting for repopulation with endogenous cells. The latter option 

relies heavily on the fact that relevant cell types will infiltrate the scaffold, that the host 

response, which would occur during full operation of the scaffold, would not limit or 

degrade the scaffold, that the remodeling process would not hinder coaptation of the 

valvular apparatus, and that these repopulating cells would be able to function effectively 

and efficiently while under extreme repetitious forces. In fact it has been shown that placing 
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acellular constructs in human patients failed to result in success due to limited to no 

infiltration by host cells into the construct(2). Therefore, to exert more control over the 

recellularization process, in vitro cell seeding of the scaffolds prior to implantation should 

result in a more successful tissue engineered mitral valve. Cell seeding strategies should 

be optimized and the infiltrating cells should be characterized to understand the tissue 

remodeling response(3).  

Static cell culture methods are limited in their capacity to produce the complex 

three-dimensional cues required to develop functioning tissue. Two dimensional cell 

culture also cannot reproduce the physical demands placed on the tissues in vivo. The 

human body, especially the human heart is a harsh environment for healthy tissue to 

survive. In normal activity, the mitral valve experiences pressure changes from 10 to 

120mmHg in less than 0.1 seconds and continues to repeat this for an average of 3 billion 

times in one lifespan. It is important to remember these rigorous conditions as design 

criteria for creating functional tissue. In order to mimic the pressures and flow conditions 

present in vivo, bioreactors have been developed to “pre-condition” seeded constructs. 

Dynamic seeding in a bioreactor has also shown to produce significantly better seeding 

results when compared to statically seeded constructs(4). By exposing cells and scaffolds to 

these relevant forces, remodeling of the scaffold and maturation of the cells can take place 

before being implanted. Bioreactor design is critical for the success of the pre-conditioning 

process in which they must apply proper pH, oxygen concentration, nutrient supply, 

sustained sterility, and mechanical forces. 
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Before mechanical pre-conditioning can be delivered via a bioreactor, the cell type 

for scaffold seeding needs to be determined. The ideal choice of cell would be VICs, as 

they are prevailing cell type in the heart valves and are found within each fibrosa, 

spongiosa, and ventricularis layer of the valve (5–10). They are a dynamic population of 

valvular-specific cells and are the living component of heart valves. VICs are responsible 

for synthesizing and preserving the composition of the valve matrix, which largely 

determines the valve’s ability to function as well as its material behavior(5). The central role 

of the VIC is to maintain the structural integrity of the valve and to act when the valve is 

in need of repair. These responsibilities are extremely important as heart valves are the 

most mechanically stressed tissue found in the body. VICs also function as key role players 

in the body’s pathological response to heart valve disease as well as regulating processes 

following valve injury. Current literature supports five heterogeneous VIC phenotypes(5,11). 

Quiescent VICs, or qVICs, are the predominant VIC phenotype in healthy valves and are 

thought to maintain the valves overall structure and function(5,6,9,12–14). In this resting state 

of VICs they act similar to fibroblasts(15,16). It is from this phenotype that VIC plasticity 

stems. In response to injury or disease, qVICs become activated VICs (aVICs) and take on 

the features of myofibroblasts. This phenotype is characterized by increased α-smooth 

muscle actin (α-SMA) expression, contractility, stress fiber formation, secretion of matrix 

remodeling enzymes (MMP-1, MMP-2, MMP-9, MMP-13), cytokines (TGF-β), and 

cathepsins(5,13,17,18). aVICs also exhibit heterogeneity in their morphologies. Many 

pathologies result in high cellularity and abnormal changes in ECM content; these are often 
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caused by the dysregulation of aVICs. Activation of qVICs is brought on by changes in the 

mechanical environment or from several cytokines, often TGF-β.  

For a tissue engineered solution, adipose tissue derived stem cells (ADSCs) show 

excellent potential for use in heart valve tissue engineering. ADSCs have the ability to 

differentiate into endothelial cells, providing a non-thrombogenic blood tissue interface 

critical to regulating activity of interstitial cells, smooth muscle cells, and fibroblasts, 

which are involved in synthesis of collagen, elastin, and proteoglycans(19–21). ADSC’s also 

have immunomodulatory properties and are able to suppress T-cell proliferation, reduce 

inflammatory cytokines, and stimulate production of anti-inflammatory cytokines(22). They 

are also able to promote regeneration of tissue via expression of VEGF, IGF-1, TGF-β1, 

and hematopoietic factors(19,23,24). Additionally these stem cells are able to suppress M1 

type macrophages, which provide classic macrophage activity and alternatively activate 

M2 macrophages which promote wound healing(23). Due their ability to differentiate into 

smooth muscle cells (SMCs) and fibroblasts, which are both similar to VICs, 

differentiation of ADSC’s into these cell types would be critical for our construct(25,26). The 

niche, valvular microstructure provided from our scaffold should provide cues for 

differentiation along with physiological stresses provided by a bioreactor. However, it may 

also be prudent to pre-differentiate these stem cells using appropriate growth factors to 

encourage specific differentiation of the ADSCs. 

Recellularization of decellularized scaffolds of any tissue, but particularly heart 

valve scaffolds, has been difficult to say the least(4,27). To date, static seeding of scaffolds 

is the most frequent method used in the construction of tissue. However, efficiencies using 
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this technique range only between 10 -25%(28). Static seeding onto scaffolds leads to 

minimal cell infiltration into the scaffolds and has shown low cell seeding competence(28). 

To achieve better results, many groups have started directly placing cells interstitially using 

a variety of methods including perfusion, direct injection, vacuum and centrifugal 

seeding(29). In synthetic and hydrogel scaffolds where material properties such as pore size 

are more customizable, interstitial cell seeding strategies can be more efficient. However 

when using an ECM scaffold which is already customized for specific tissues, preservation 

of the native matrix is paramount. Some groups, such as ours, have found some success in 

direction injection of cells into the scaffolds(28–32). However, this often creates a bolus of 

cells which many times do not migrate into the ECM they were injected to. Therefore, 

many groups have employed growth factors and other cell-homing strategies to encourage 

migration and proliferation within the scaffolds with some success(28,30,31,33,34). One novel 

idea is the use of hydrogels as a means of delivering the cells. These hydrogels provide a 

customizable way to deliver cells and growth factors into a scaffold. Encapsulation of cells 

in a hydrogel also aids during injection due to the rheological properties of the gel. Due to 

their high viscosity, hydrogels exhibit stress-thinning and therefore can protect cells from 

high shear stress during injection(35,36). 

Fibrin hydrogels have been explored for use in cell seeding applications for tissue 

engineering. Fibrin is a natural product of the coagulation cascade and functions as 

temporary scaffold during wound healing. It is formed through the polymerization of 

fibrinogen, which is initiated by the protease thrombin(37). Due to its autologous derivation, 

fibrin gels possess excellent biocompatibility(38). In fact, it can be produced from a patient’s 
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own blood, thereby eliminating the risk of infection or foreign body reaction(39). Due to its 

natural origins and function as a cell-binding matrix, fibrin gels could be used as an 

injectable cell delivery system for interstitial seeding. Well known for its ability to attract 

cells, it is also known to encourage cell migration and adhesion(37,39,40). Fibrin can also bind 

several growth factors, through heparin. Growth factors and cytokines have been used in 

tissue applications to encourage cell migration into more uniform distributions within 

scaffolds(30,33,34,41–43). Therefore, the ability to bind growth factors, both directly and 

indirectly, is a great attribute for cell seeding. One noted disadvantage of fibrin is its rapid 

degradation profile. Fibrin gels, unless chemically inhibited, will undergo degradation 

within several days after implantation. However because fibrin would be used as an 

injectable hydrogel, the relevance of this rapid degradation is questioned. Cells have easily 

been encapsulated in fibrin gels and when incorporated in scaffolds, can rely on the 

mechanical properties of the matrix in which it was injected(40). Therefore, the fibrin gel 

serves only to provide a uniform cell distribution and more efficient seeding. Degradation 

of the fibrin allows for the accumulation of newly synthesized ECM components generated 

by the encapsulated cells. In addition, degradation of fibrin exhibits minimal inflammation. 

In fact, culturing macrophages in fibrin gels stimulates anti-inflammatory cytokines and 

encourages M2 polarization(44). Fibrin has shown to encourage more new collagen and 

elastin production from seeded cells than from other gels such as collagen(37,40,45,46). Fibrin 

has also been shown to be a potent recruiter of endothelial cells and also has potential as a 

means of encouraging endothelial to adhere to the scaffold surface(47). 
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In tissue engineering, the cell seeding of scaffolds is a very complicated process. 

Due to this complexity, static seeding still remains one of the most common methods to 

incorporate cells into scaffolds. As mentioned, dynamic seeding by use of a bioreactor, has 

shown to encourage significantly improved cellular distribution within scaffolds while also 

providing relevant mechanotransductive signals to the cells. Bioreactor design is centered 

upon providing a physiological environment in vitro for the cell-seeded construct. Heart 

valves are dynamic tissues composed of specialized cells and an extracellular matrix that 

responds to these mechanical demands. Beginning at implantation and continuing 

indefinitely after that, the tissue engineered valve must accommodate for these mechanical 

demands but also have ongoing strength, flexibility, and especially durability(1). Therefore, 

the goal to engineer a tissue engineered mitral valve presents unique hurdles to overcome. 

Immediately placing a recellularized construct into a patient would most likely fail due to 

these complex and harsh mechanical conditions. Therefore, pre-conditioning of the MV 

construct is essential preparation for eventual implantation. By providing a physiological-

like environment for the seeded constructs to develop, allows the cells to adhere to and 

remodel the scaffold so that the living construct can withstand the forces and pressures 

expected of it. Our laboratory has developed a pulse-duplicating heart valve bioreactor 

capable of subjecting heart valves to physiological pressures and flows. It consists of a 

three-chambered heart valve bioreactor (1), an optional pressurized compliance tank (2), a 

reservoir tank (3) with sterile filter (4) for gas exchange, one-way valves (5), resistance 

valves (6), pressure transducers (7), a flow meter, a webcam (8), and an air supply that 

cyclically pumps fluid through the heart valve(48). 
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Creation of a mitral valve bioreactor presents unique challenges due to the unique 

anatomy and multiple components of this valvular machine. Shape of the annulus, which 

establishes the form and function of the valve, must be taken into account as it provides 

optimal force distribution to the leaflets and chordae below. The geometric shape of the 

annulus approximates to that of a hyperbolic paraboloid(49–53). Although this nonplanar 

shape’s origins are not fully described in literature, it is understood that this shape is the 

determinant of optimal force distribution in the leaflets and chordae tendinae(50,53,54). 

Chordal attachment is also crucial to provide the necessary tension on the posterior side of 

the leaflets, as well as the chordae themselves. Few groups have been able to produce an 

anatomically correct mitral valve bioreactor, accounting for each of these four major 

components.  

5.2 Methods and Materials: 

5.2.1 Histology and Immunohistochemistry: 

Rehydrated paraffin sections (5µm) were stained with Hematoxylin and Eosin 

(H&E), Masson’s Trichrome and Movat’s Pentachrome according to the instructions in the 

kits purchased from Poly Scientific R&D Corp. (Bayshore, NY). 4',6-diamidino-2-

phenylindole (DAPI) was purchased from Sigma-Aldrich Corporation (Lakewood, NJ). 

Immunohistochemistry (IHC) was performed on formalin-fixed and paraffin-

embedded sections using heat-mediated antigen retrieval (10mM citric acid at pH of 6, for 

10 min at 90°C), followed by exposure to 0.025% Triton X-100 for 5 minutes. After 

incubation in normal blocking serum for 45 minutes, the primary antibodies diluted to 

2μg/mL were applied overnight at 4°C in a humidified chamber. The following antibodies 
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were used: mouse anti-αSMA (Abcam, Ab7817), rabbit anti-HSP-47 (Abcam, Ab77609), 

rabbit anti-von Willebrand Factor (vWF) (Abcam, Ab9378), rabbit anti-VE cadherin 

(Abcam, Ab33168), rabbit anti-P4HA3 (Abcam, Ab101657), rabbit anti-calponin (Abcam, 

Ab46794), rabbit anti-iNOS (Abcam, Ab15323) rabbit anti-Vimentin (Abcam, Ab92547). 

Negative controls were obtained by omitting the primary antibodies. The Vectastain Elite 

kit and the ABC diaminobenzidine tetrahydrochloride peroxidase substrate kit were 

purchased from Vector Laboratories (Burlingame, CA). Sections were counterstained with 

a diluted hematoxylin prior to mounting. Images were obtained at various magnifications 

on a Zeiss Axiovert 40CFL microscope using AxioVision Release 4.6.3 digital imaging 

software (Carl Zeiss MicroImaging, Inc. Thornwood, NY). 

5.2.2 Cell Culture and Pre-Differentiation of hADSCs: 

Human adipose derived stem cells (hADSCs) (#R7788-110, Fisher Scientific, Life 

Technologies, passage 0) were obtained and expanded in StemPro Human Adipose-

Derived Stem Cell Kit with 1% antibiotic solution (#30-004-CI, Corning – Cellgro). 

hADSC’s were maintained and subcultured at subconfluent conditions on tissue culture 

plastic with Trypsin-EDTA 1X (#25-053-CI, Corning - Cellgro). 

For differentiation of hADSCs to endothelial-like cells, ASCs were cultured for up 

to 4 weeks in EC differentiation media comprised of DMEM, 2% FBS, and 1% antibiotic 

solution supplemented with 0.5 ng/mL vascular endothelial growth factor (VEGF, #100-

20B, PeproTech Inc) and 20 ng/mL insulin-like growth factor-1 (IGF-1, #AF-100-11, 

PeproTech Inc). Growth factors were freshly added to the media at the time of each media 

change. 
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For differentiation of hADSC’s to fibroblast-like cells, hADSC’s were cultured for 

up to 4 weeks in fibroblast differentiation media comprised of DMEM, 5% FBS, and 1% 

antibiotic solution supplemented with 5ng/mL transforming growth factor beta-1 (TGF-β1, 

#100-21C, PeproTech Inc.). Growth factors were freshly added to the media at the time of 

each media change. 

5.2.3 Cell Seeding and Fibrin Fabrication: 

Pre-differentiated fibroblasts and endothelial cells were seeded into and on the 

scaffolds respectfully. Before seeding, PGG-treated valves underwent a neutralization step 

where the mitral valves were incubated in DMEM/10% FBS with 1% 

antibiotic/antimycotic and Stromal Derived Factor-1α (SDF-1α, #300-28A, PeproTech, 

Inc.) at 100ng/mL overnight. For seeding, pre-differentiated cells at a density of about 2 

million cells per mL were prepared. To facilitate seeding, about 1mL of sterile air was 

injected into each leaflet through a 33G X 0.5inch needle. The pre-differentiated fibroblasts 

were resuspended in 250µL thrombin (#T7009-250UM, Sigma) and CaCl2(#BP510-100, 

Fisher) and mixed with a sterile 250µL aliquot of fibrinogen (#F4129-1G, Sigma) to get 

final concentrations of 0.5U/mL thrombin, 4mg/mL fibrinogen, and 2mM CaCl2. Cells 

were injected into each leaflet (0.5mL per leaflet) before mixture could become a fibrin 

gel. Seeded valves were placed into mounting rings for the bioreactor with a static control. 

Interstitially seeded constructs were then drop-seeded with pre-differentiated endothelial 

cells, 200µL of thrombin/CaCl2/fibrinogen at the same concentrations, onto each leaflet 

and the chordae tendinae of each valve. Seeded constructs were placed in the incubator for 
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15minutes without media to allow fibrin to gel. After seeding, valves were left in 

DMEM/10% FBS with 1% antibiotic/antimycotic overnight. 

5.2.4 In Vitro Conditioning: 

For pulsatile bioreactor conditioning, valves (n=2) were mounted in the sterile 

mitral valve bioreactor systems in DMEM/10% FBS with 1% antibiotic/antimycotic and 

pressures progressively increased from 10mmHg to 120mmHg over 21 days to reach 

physiological conditions (120/10mmHg) at 70 mL ejection fraction and 65 bpm. Valves 

were kept at these conditions for 7 days and the study concluded after 28 total days in the 

bioreactor. Media was changed once a week, and 5mL of additional antibiotic/antimycotic 

was added in between media changes.  

5.2.5 Mechanical Testing: 

Rectangular 2.5 x 1 cm specimens of tissue from the bioreactor and the static 

control (n=2) were cut. Specimens were secured to a frame with a 10N load cell (MTS 

Systems), and preconditioned for 10 cycles between 0-15% strain at a rate of 3.0 mm/min. 

After 2 minutes rest, samples were pre-strained at 0.2N of load then brought to 10N of 

stress. The stress/strain curve was taken and the Young’s modulus was evaluated for each 

stress/strain curve between the 10-20% strain and were averaged (n=3).  

5.2.6 Penta-galloyl glucose (PGG) Treatment: 

High-purity 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG) was a generous gift 

from N.V. Ajinomoto OmniChem S.A., Wetteren, Belgium (www.omnichem.be). The 

acellular scaffolds were treated with sterile 0.3% PGG in 50mM Na2HPO4, 0.9% NaCl, pH 

5.5 containing 20% isopropanol overnight at room temperature under agitation and 
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protected from light. Scaffolds were then rinsed with sterile PBS 3 times, and then stored 

in sterile PBS with 1% protease inhibitors and 1% antibiotic/antimycotic (Pen-Strep). 

5.2.7 Development of Mitral Valve Mounting System: 

 The shape of the annular mounting ring was started using a combination of 

measurements reported in literature as well as a 3D-scan of a mitral annuloplasty ring. This 

scan was then imported into SolidWorks where it was modeled and fitted to existing 

parameters for the aortic valve bioreactor. After consulting with Aptus Bioreactors, chordal 

attachment was designed with the mounting system. These pieces were then 3D-printed 

and used in the bioreactor experiments. Several bioreactor chambers and other consumable 

materials were purchased from Aptus Bioreactors: Mitral valve clamping holder, lower 

(MA386), Mitral valve clamping holder, upper (MA396), Bioreactor membrane with 

installation kit (KT430), and the Mitral fittings consumables kit (KT485). 

5.2.8 Statistical Analysis: 

Results are expressed as means ± standard deviation (SD). Statistical analysis was 

performed using one-way analysis of variance (ANOVA). Differences between means 

were determined using the least significant difference (LSD) with an alpha value of 0.05. 

5.3 Results: 

5.3.1 Recellularization Studies Using Fibrin: 

 Recellularization of decellularized scaffolds is a difficult but necessary step 

producing a translatable tissue engineered mitral valve. Several pilot studies were 

implemented to gain insight into how to encourage migration of directly injected cells 

throughout the matrix. Fibrin was used as this vehicle to deliver cells more uniformly 
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interstitially. To aid in this migration, SDF-1, a cytokine well known to encourage 

migration of cells, was used in the scaffolds(55–57). After allowing two weeks for cells to 

spread, various histological stains were performed to evaluate this process. As seen in 

Figure 5.1, an H&E, Masson’s Trichrome, and IHC’s for vimentin and CXCR4 were 

conducted. From the H&E staining it is evident that cells spread from the injection site 

outward into the scaffold. It was also found that cells were spreading in areas away from 

the injection site. In addition, cells were drop-seeded on the scaffold, also using fibrin, and 

a nice monolayer of cells is shown here. Trichrome staining similarly displays the 

improved migration of cells, but more importantly displays remaining fibrin within the 

scaffolds. These pink areas, in a normally collagen (blue) dominated region, designate 

where fibrin spread in the scaffolds and remained during the seeding studies. A small 

monolayer of cells is also found externally as before. IHC’s for vimentin and CXCR4 were 

also conducted. Vimentin stain was positive for all seeded cells. Also identified positively 

was CXCR4, the receptor on the cell for SDF-1, which regulates the cells homing ability 

and affects their migration(33,55,57). 
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Figure 5.1: Cell Seeding Using Fibrin and SDF-1. Scaffolds immersed in SDF-1, a well-known cytokine, 

were injected with fibrin gel. This fibrin gel was used as a carrier to introduce cells into the acellular mitral 

valve scaffolds. Noticeable spreading of cells can be seen. Injection spots, while distinct, did not house a 

bolus of cells as in previous studies. Cells were also found apart from these injection spots indicating 

migration. Cells also readily attached externally after being statically seeded, also with fibrin. An IHC for 

vimentin was positive, as was the expression for CXCR4, an indication that the SDF-1 incorporated into the 

scaffolds had an effect on cell migration. 
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5.3.2 Pre-Differentiation of hADSCs to Fibroblasts and Endothelial Cells: 

After these positive results in encouraging cell migration after injection, we decided 

that instead of injecting hADSCs directly in to the scaffolds, that we would pre-

differentiate the hADSCs using specific growth factors. To verify their differentiation into 

endothelial cells and fibroblasts, an immunofluorescence was performed for various 

markers. Endothelial cells, which used IGF and VEGF, were stained for VE-cadherin and 

vWF. Fibroblasts, which used TGF-β for pre-differentiation, were stained for HSP-47, 

prolyl-4-hydroxylase, and vimentin. In Figure 5.2, these immunofluorescence stainings 

are shown. 

 

Figure 5.2: Pre-Differentiation of hADSCs into Endothelial Cells and Fibroblasts. hADSCs were pre-

differentiated into fibroblasts due to their similarity to VICs. To confirm their differentiation an 

immunofluorescence for fibroblast markers HSP-47, prolyl 4-hydroxylase, and vimentin all showed 
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positively. Likewise, pre-differentiated endothelial cells were confirmed by a positive stain for each VE-

cadherin and vWF. 

5.3.3 Design of a Mitral Valve Mounting Ring for Placement in Bioreactor: 

After approving of cell types and a recellularization protocol, design of the mitral 

valve bioreactor was completed. Our group has already designed an aortic valve bioreactor 

of which we made modifications to fit the mitral valve and its complex geometry(48). 

Developing a mounting system for the mitral valve was perhaps one of the most crucial 

design criteria. As seen in Figure 5.3, a two-piece mounting system was developed. The 

first criteria met for this design was the use of a hyperbolic paraboloid to mount the mitral 

annulus. As mentioned several times, this unique shape provides optimal force distribution 

throughout the valve. Dimensions for this shape were taken from literature and from 

existing annuloplasty rings which were 3D scanned. Also apparent in this design is the “D” 

shape. This allows proper placement of the anterior and posterior sides of the annulus and 

leaflets. Lastly in this design is the incorporation of several bars below the annular clamp 

which was used for chordal attachment. Springs were attached to the papillary muscles and 

then were hooked to these bars. This allowed for proper coaptation of the leaflets and 

provided tension on their ventricular surface. 
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Figure 5.3: Development of the Mitral Valve Mount for Bioreactor Testing. A mounting ring was 

developed for the mitral valve as a modification to the already existing aortic valve bioreactor. The natural 

shape of the annulus was incorporated in this design to provide optimal force distribution throughout the 

valve during in vitro bioreactor testing. Also included were bars used to attach springs to the papillary 

muscles. This spring system allows for coaptation of the mitral valve at physiological pressures, while also 

providing proper tensile forces on the leaflets. This tension is also important for proper force applications in 

the chordae as well. 

5.3.4 Cell Seeding Protocol, Mounting of Seeded Mitral Valve, and Placement in 

Bioreactor: 

 In Figure 5.4, the protocol for how recellularization takes place up until placement 

in the bioreactor is shown. After starting with an acelluar scaffold and neutralized overnight 
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in DMEM (10%FBS, and 1% AbAm) with SDF-1, valves were then taken out and directly 

injected with cells (Panel C). From here, the annulus is placed by properly aligning the 

posterior and anterior sides according to the mounting ring shape (Panel D). After locking 

the annulus in place, metal rings for eventual placement in the bioreactor are positioned 

around the mounting system (Panel E). Then papillary muscles and chordae tendinae are 

attached to springs, which are attached to the lower bars of the mitral mount (Panel F). 

Finally, this completely seeded and mounted mitral apparatus is placed within the 

bioreactor and media is added (Panel G). 

 

Figure 5.4: Mitral Valve Seeding and Mounting for Bioreactor Testing. Recellularization and mounting 

of the seeded scaffold is a several step process. Panel A shows our decellularized mitral valve scaffold. As 

described in panel B, these valves are then treated overnight in serum with 100ng/mL SDF-1. Cells were then 

directly injected into the scaffolds. Pre-differentiated endothelial cells were then seeded drop-wise on the 

scaffold. After allowing the fibrin and cell mixtures to gel in the incubator, the construct is mounted in the 

mounting rings and springs are attached to the papillary muscles (panels D-F). Finally, after allowing cells 

to attach to the scaffold overnight, the mounted mitral valve construct is placed within the bioreactor. 
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5.3.5 Design and Assembly of the Mitral Valve Bioreactor: 

 While the existence of the aortic valve bioreactor provided a foundation to work 

with, the mitral valve the physiological demands it undergoes are different. As a result, 

parts and assembly of the mitral valve bioreactor are unique. Figure 5.5 shows a complete 

mitral valve bioreactor system. In this system are several chambers which are essential for 

holding anatomical pressures. The atrial chamber, significantly shorter than the aortic atrial 

chamber, acts as the atrium for the heart valve. Due to the very low pressures in the atrium 

experienced by the mitral valve (about 10mmHg), this chamber is small to decrease 

pressure here. The valve rests between the atrial chamber and two chambers beneath which 

act as the ventricle. It is here that the high pressures are placed on the valve during systole 

(120mmHg). The extra ventricular chamber is needed here to ensure that the mounting 

system which holds the papillary muscles, is not hit by the silicone membrane below. This 

membrane caps off an air chamber. Air is pumped into this chamber, which forces the 

silicone membrane upwards into the ventricular chamber. This forces flow and pressures 

into the system. Figure 5.5 also shows proper closing of the mitral valve as well as the 

springs of the mounting ring in action. 
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Figure 5.5: Assembly of the Mitral Valve Bioreactor. The overall structure of the mitral valve bioreactor 

is a modification of an aortic valve bioreactor. There are four chambers, an atrial chamber, ventricular 

chamber, air chamber, and an additional ventricular chamber. Also, present in this set-up is a large glass 

reservoir chamber, flow meter and two pressure transducers, which measure pressures in the atrial and 

ventricular chambers. In the center of the bioreactor is the mounted and seeded mitral valve construct. 

Pressure and flow is originated in the air chamber where air is pumped in, thus moving a silicone membrane. 

This membrane creates the flows and pressures desired for experimentation. Gas exchange is allowed through 

a sterile filter. The incubator in which this mitral valve bioreactor is placed controls all temperature, CO2 

levels, and humidity. Flow rate is also measured and can be adjusted using clamps. 

5.3.6 Mechanical Testing of the Seeded Leaflets After Bioreactor Completion: 

 After 4 weeks of preconditioning in the bioreactor, the tissue underwent tensile 

testing to determine the young’s modulus. This was compared to the static control. As seen 
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in Figure 5.6, the static control had a higher modulus of elasticity when compared to the 

leaflets from the bioreactor. This difference was not statistically significant however. 

 

Figure 5.6: Uniaxial Tensile Testing of Static and Bioreactor Conditioned Tissues. Mechanical testing 

was performed on the leaflets and chordae for both static and bioreactor conditioned groups. From this data, 

modulus of elasticity was determined between the range of 10-20% strain. Young’s modulus was calculated 

for both the static control and the bioreactor tissue. Young’s modulus was higher for the static control, but 

not significantly. 

5.3.7 Live/Dead Staining of Static and Pre-Conditioned Tissue: 

 A Live/Dead stain was used to evaluate the amount of living and dead cells present 

within each treatment group. As evidenced by Figure 5.7, living cells (indicated with green 

fluorescence) were difficult to find. Dead cells were indicated using black arrows. Before 

these cells died, it is apparent that there are more cells spread in the pre-conditioned 

construct when compared to the static control. It is possible that more cells could be found 

from other tissue sections within each group. 
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Figure 5.7: Live/Dead Images of Tissue from Static Control and Bioreactor. Small sections of tissue 

from both the static control and the pre-conditioned tissue from the bioreactor were stained with Live/Dead 

solution to visualize dead and living cells. Dead cells are much more apparent within each tissue type, 

however more spreading of the cells is apparent in the tissue from the bioreactor. These cells are indicated 

with black arrows. 

5.3.8 Histological Evaluation of Recellularized Scaffolds Post-Bioreactor Conditioning: 

 After 4 weeks of preconditioning in the bioreactor, cell seeding and migration were 

evaluated histologically in the bioreactor tissue and the static control. As seen in Figure 

5.8, an H&E and DAPI stain were used to identify nuclei. As before, Masson’s Trichrome 

was used to show ECM content, but more importantly any remaining fibrin within the 

constructs. Movat’s Pentachrome was used to show ECM content, but especially GAG 

deposition. Overall, cells did not migrate as well as before. Both static and preconditioned 

tissue show boluses of cells. Bioreactor tissue does show more cells than the static control. 

Areas injected with fibrin are obvious due the contrasting colors in the trichrome stain. 

GAG deposition was found, which is an improvement from previous seeding attempts. Few 

endothelial cells remained after bioreactor conditioning, but this is still an improvement 
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over previous bioreactor studies. A clear dark monolayer is present on the H&E and some 

in the DAPI. Trichrome and pentachrome stains also show similar results here. 

 

Figure 5.8: Recellularization of Acellular Scaffolds. To show revitalization of our acellular mitral valve 

scaffolds, several histological stains were performed. Images shown are from both the static control and the 

tissue preconditioned in the bioreactor. Pre-differentiated fibroblasts and pre-differentiated endothelial cells 

were seeded interstitially and externally respectively. An H&E and DAPI stain were performed to highlight 

nuclei in the tissue. Leaflet tissue are represented in this image since no cells were injected in the chordae, 

only externally. A Masson’s Trichrome was performed to visualize remaining fibrin. Lastly, a Movat’s 

Pentachrome was performed to view ECM quality and deposition of GAGs. 
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5.3.9 Characterization of Cells in Bioreactor and Static Control Tissues: 

 Immunohistochemistry was used to determine expression of smooth muscle cell, 

fibroblast, and endothelial cell markers. In Figure 5.9, some expression is observed for α-

SMA and calponin. An overwhelming positive stain here would have been indicative of 

activation of our seeded cells into myofibroblasts. 

 

Figure 5.9: Characterization of Seeded Cells with Smooth Muscle Cell Markers. The static control and 

bioreactor tissues were stained to see if the seeded cells expressed smooth muscle markers. A positive stain 

here would be indicative of fibroblasts becoming activated within the tissue. Positive expression for markers 

α-SMA and calponin did appear, but were minimal in known injection spots within the tissue sections. 

Figure 5.10 shows an IHC for fibroblast markers vimentin, prolyl-4-hydroxylase 

(P4HA3), and HSP-47. Strong expression for each of these markers, especially vimentin, 

was observed in both the static and bioreactor-conditioned groups. Vimentin expression 

was more spread throughout the ECM in some sections possibly indicating an improved 

migration. 
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Figure 5.10: Characterization of Seeded Cells with Fibroblast Markers. Seeded constructs were 

evaluated on their expression of fibroblast markers vimentin, HSP-47, and prolyl-4-hydroxylase. Positive 

expression was observed in both the static control and bioreactor tissue sections. Expression was clearly 

higher than smooth muscle cell marker expression. 

Lastly, expression of endothelial cell markers vWF, VE-cadherin, and iNOS were 

evaluated. Although not much clear expression was observed, some cells on the construct’s 

exterior did survive and expressed positively for each marker. In Figure 5.11, you can see 

this expression as well as the expression of these markers on the chordae tendinae. This 

was the only cell type seeded on the chordae tendinae and thus they only appear in this 

figure. 
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Figure 5.11: Characterization of Seeded Cells with Endothelial Cell Markers. Scaffolds were seeded 

with pre-differentiated endothelial cells. Markers for von Willebrand Factor (vWF), VE cadherin, and iNOS 

were evaluated. A slight, but obvious staining was observed on both the leaflets and chordae tendinae. 

Chordae, shown here, were only seeded with endothelial cells. 

5.4 Discussion: 

5.4.1 Progress Towards Recellularization of the Mitral Valve Scaffold: 

 Recellularization of an acellular scaffold, perhaps especially ECM scaffolds, is 

difficult to achieve. Ideally, appropriate cells are introduced to the scaffold and they are 

able to repopulate and remodel the scaffold. It is important to note that many groups 

understand the importance of recellularization, but their statically seeded methods take 

many weeks to achieve an acceptable result, which is not translatable for clinical purposes. 

Therefore, we sought to improve this process by incorporating cells into the scaffolds and 

promoting migration throughout. In the past, our group has found that direct injection of 

the cells into the scaffold is a better method to introduce cells interstitially as opposed to 

drop seeding them on the scaffold and waiting for them to migrate throughout. Direct 
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injection however is by no means a successful for producing a revitalized construct flush 

with cells. While cells are inserted within the scaffold, a bolus of cells is created at the 

injection site and these cells do not migrate out either because they physically cannot or 

because there is no reason for them to alter their current dense state within the scaffold. 

 Fibrin, a well-known and natural hydrogel, has been used as cell carrier to seed 

stem cells for various cardiovascular applications(40,58). Also, as mentioned before utilizing 

the increased viscosity of a hydrogel like fibrin significantly improves the survivability of 

cells being injected into a matrix compared to just using cell culture media(35,36). Therefore, 

we decided to take advantage of these properties and the natural cell binding ability of 

fibrin as a means to better deliver cells to the scaffold. To enhance migration into the 

scaffold, we employed stromal cell derived factor-1 (SDF-1). SDF-1 is a well-known and 

powerful recruiter of cells in injury. As a pro-inflammatory cytokine, it is said to be the 

most potent chemoattractive signal for the CXCR4 receptor, which is considered a major 

stem cell homing factor(33). Translationally speaking, usage of an inflammatory cytokine 

sounds incongruous with typical biocompatibility doctrine. However, SDF-1 has a short 

half-life so as to limit over-recruitment of cells to the injury site in vivo(55). Therefore, we 

chose to incorporate this powerful cytokine in the matrix before seeding in hopes that the 

cells in the fibrin gel would be encouraged to venture into the remaining acellular scaffold. 

 Based on the results presented in Figure 5.1, overall cell seeding efficiency was 

significantly improved when compared to previous seeding studies. While an injection site 

was still clearly visible, for the first time we were able to observe a marked improvement 

in migration of these seeded cells into the scaffold. Also important to note is that many of 
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these cells spreading throughout the matrix were not necessarily close to the migration site, 

leaving us to conclude that they had migrated quite far from their original insertion into the 

scaffold. We believe that this success can be attributed to both the fibrin gel and the SDF-

1. 

After this two week seeding study, fibrin remained within the scaffold. The gel did not 

create a bolus of its own; it did seem to perfuse throughout some of the scaffold near the 

injection sites. This is evidence by the pink stain in the Masson’s Trichrome. Fibrin does 

degrade quickly, but it does appear to reside long enough in the scaffolds after two weeks. 

Vimentin stained positive for the seeded cells. Also important to note is there was a positive 

stain for CXCR4, indicating that the cell receptor was in fact engaged most likely due to 

the presence of SDF-1 within the scaffold. Migration of the cells from these injection sites 

is a huge step in the right direction towards complete recellularization. 

5.4.2 Pre-Differentiation of hADSCs into Appropriate Cell Types: 

 As described in our tissue engineering paradigm, an appropriate choice of cells 

should be incorporated into the tissue. Originally, we opted to use hADSCs due to their 

ease of obtainment, ability to harvest large quantities, and their large capacity for 

differentiation. However, recently we decided to alter this approach. By using specific 

growth factors, we can guide these hADSCs toward specific phenotypes. This pre-

differentiation allows one to ensure commitment towards the desired cell type. In our case, 

this ensures that differentiation will be not solely be determined by interactions with the 

ECM microstructure. Pre-differentiation provides more assurance that the desired cell 

types will be achieved. VICs and VECs are the most appropriate cell types for the mitral 
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valve. VECs are endothelial cells and VICs are fibroblast-like in their ability to remodel 

and produce matrix proteins. After treating hADSC’s with TGF-β for fibroblast 

differentiation and VEGF and IGF for endothelial differentiation, an immunofluorescence 

revealed positive expression for markers found in each of the desired cell types. 

5.4.3 Mitral Valve Bioreactor Design: 

 Designing of a mitral valve bioreactor provided many obstacles with the valve’s 

complex anatomy and many moving parts. Some groups have been able recreate some 

aspects of a functioning mitral valve in vitro, but they cannot use these devices sterilely or 

cannot provide anatomical pressures(59,60). Design criteria was also narrowed due to the 

existence of an already well-functioning aortic valve bioreactor from our group. The first, 

and possibly most crucial, design element for the mitral valve bioreactor was establishing 

an approach to mount the valve. As mentioned before, the unique shape of the annulus 

provides optimal force distribution to the other functioning parts of the mitral valve. 

Therefore, dimensions of the annulus were found in literature(61,62). Also, a mitral 

annuloplasty ring was 3D scanned and placed within a CAD program (Solidworks) where 

modifications could be made and other design criteria implemented. 

 One of these other design criteria designing a system for attachment of the chordae 

tendinae. To expect correct differentiation from the seeded valves, the proper forces must 

be observed in the bioreactor. To achieve this, tensile forces must be placed on the 

ventricular side of the leaflets and the chordae themselves. To achieve these tensile loads, 

as seen in Figure 5.3, bars were placed below the annulus mount. Springs were placed on 

the remaining papillary muscles and then attached to these bars. After the recellularization 
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process and placement within the bioreactor, the chordae in conjunction with the springs, 

provided a functioning mitral valve without prolapse into the atrial chamber. 

5.4.4 The Current Recellularization Process and Placement into the Bioreactor: 

 Figure 5.4 illustrates the general approach taken for seeding of the valve and the 

corresponding placement into the bioreactor. As seen, SDF-1 was again used to assist in 

migration of the seeded cells. It is important to note that during seeding, time was allowed 

for the fibrin gel and cell mixture to solidify. Once complete, cells, delivered using fibrin 

again, were drop-seeded on the outside of the interstitially-seeded mitral valve. Springs 

were attached onto the papillary muscles and secured to the bars below the mounting ring. 

After which the entire mounting element easily placed within the bioreactor. 

5.4.5 Overall Bioreactor Design and Testing: 

 Aside from the specific mounting system for the mitral apparatus, several other 

design criteria were used or modified from the aortic valve bioreactor. Readouts and raw 

data on flow rate, heart rate, atrial pressure and ventricular pressure are monitored using 

flow meters and pressure transducers. The pressure transducers are located next to 

chambers that mimic conditions in the atrium of the heart and the ventricle of the heart. 

Unique to the mitral valve bioreactor is an extra chamber attached to the ventricular 

chamber to add room for the chordal attachment on the valve mounting system. Also, as 

noted, the atrial chamber for the mitral valve bioreactor is shorter to allow for the very low 

pressures experience in the atrium. To ensure continued coaptation of the valve in case of 

a spring failure, a suture ring was wrapped around one bar of the mounting system and the 

papillary muscles. Enough slack was allowed in this suture ring so as not to interfere with 
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the movement of the papillary muscles or the corresponding chordae. The valve pressures 

overtime were slowly increased to allow time for adaptation and maturation of the seeded 

cells. During this pressure ramp-up, the leaflets open and closed properly throughout 

indicating that the chordae were providing enough pull-back on the leaflets for proper 

function. 

5.4.6 Mechanical Testing of the Bioreactor Treated Leaflets: 

 A comparison between seeded and preconditioned leaflets from the bioreactor and 

a seeded, static control was completed. From Figure 5.6, it is shown that the modulus of 

elasticity for the static control is higher than that for the preconditioned tissue. This 

difference however is not statistically significant. We believe the explanation for this 

difference however is due to the forces and repetitious extension this valve underwent in 

the bioreactor. These forces acted on the collagen and elastin matrix, most likely 

straightening out these fibers over time.  

5.4.7 Histological Characterization of the Seeded Mitral Valve Tissues: 

 After removal from the bioreactor, several histological stains were performed to 

gain insight into how the cells reacted to the physiological conditions in the bioreactor and 

compare these with the static control. As evidenced by Figure 5.8, an H&E, DAPI, 

Masson’s Trichrome, and Movat’s Pentachrome were performed. Unfortunately, cells 

spreading throughout the matrix was not nearly as successful as the pilot studies discussed 

earlier. While more cells were present and in larger areas in the preconditioned leaflets, 

boluses were still found in both groups. Each histological stain shows these boluses within 

the leaflets. The only condition that differed between the seeding results discussed 
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previously and these results from the bioreactor was the treatment with PGG. It is possible 

that while PGG possesses many properties that have provided significantly improved the 

quality of the mitral valve scaffold, that it may also be hindering migration of seeded cells. 

We have mentioned previously that PGG stabilized the scaffold by binding to the collagen 

and elastin. This increased the young’s modulus for all PGG-treated tissues. This increase 

could be making it physically impossible for the cells to spread from the injection sites. 

Perhaps in the future, steps should be taken to porate the scaffold before treatment with 

PGG to allow a stable scaffold, which also provides avenues for cellular infiltration. 

 Regardless of the lack of migration within the tissue, the pentachrome stain did 

indicate the deposition of GAGs within the scaffold, which is a marked improvement. Also 

of note are the possibility that some endothelial cells did survive the shear stresses from 

the bioreactor treatment. While it is apparent that most of these externally seeded cells did 

not attach or survive, here is some evidence here that certain areas of construct did retain 

the pre-differentiated endothelial cells. Future work should be placed in furthering the 

ability to keep these cells attached to the surface.  

 

5.4.8 Evaluation of Differentiation and Activation of Seeded Cells: 

 As mentioned, VICs and VECs are the ideal source of cells for mitral valve scaffold 

repopulation. Pre-differentiated fibroblasts and endothelial cells were seeded into and onto 

the scaffolds respectively. To evaluate their continued differentiation or activation several 

IHC’s were conducted looking at smooth muscle cell markers for activated fibroblasts, 

fibroblast markers, and of course endothelial cell markers. These can be seen in Figure 
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5.9-5.11. It is important to note that literature has not provided a sure means of identifying 

VICs. However, many papers insist that due to their similarity to fibroblasts, that these 

markers are suitable. Also, markers for smooth muscle cells are indicative of fibroblasts 

that are activated. In the mitral valve these cells, called aVICs, or activated VICS, are 

important players in several mitral valve pathologies as they can quickly deposit ECM, 

which easily disrupts normal valve function. At the injections sites, a slight positive stain 

was found for α-SMA and calponin as seen in Figure 5.9. In contrast to these faint stains, 

expression of fibroblast markers vimentin, HSP-47, and prolyl-4-hydroxylase were quite 

strong as shown in Figure 5.10. This would suggest that most of the interstitially seeded 

cells remained quiescent and non-active despite all of the forces they experienced. Lastly, 

for any remaining endothelial cells, expression of vWF, VE cadherin, and iNOS were 

evaluated. While few in number, Figure 5.11 clearly shows some expression of these 

endothelial markers on both the leaflets and the chordae. This is positive that some 

endothelial cells were able to resist detachment even at physiological pressures. 

 

5.5 Conclusion: 

 The paradigm of tissue engineering in which we model and operate under, describes 

the combination of scaffold, cells, and bioreactor to develop a living construct capable of 

regenerating diseased tissues. As scaffold characterization was described in great detail, it 

was then time to turn to the implementation of cells into the scaffolds and precondition 

these constructs in the bioreactor. Recellularization remains a difficult barrier to cross. As 

mentioned earlier, many criteria must be evaluated for a proper and translatable 
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recellularization strategy. Cells will eventually repopulate a scaffold if given time. 

However, as many papers have reported this process taking months, the time required for 

revitalization of the scaffold is not acceptable for patients in great need of a tissue 

engineered replacement. By directly injecting cells into the scaffold, cells can be 

incorporated immediately; however, these cells often do not migrate from these injection 

sites and create boluses of cells. To combat this, we incorporated a well-known hydrogel, 

fibrin, with great cell attachment properties as a carrier for the cells. We also utilized SDF-

1, a potent cytokine, to encourage migration into the scaffolds. Overall, this process greatly 

improved the recellularization effort in the mitral valve scaffold. 

 To disallow seeded cells time to adapt to a harsh heart valve environment before 

implantation invites sure failure of the construct. Therefore, a mitral valve bioreactor was 

developed and modified from an aortic valve bioreactor to provide physiologic conditions 

for the seeded construct. Shape and function of each distinct tissue type had to be 

considered, none more than the unique annular shape and the need for tension in the 

chordae tendinae. By recreating a mitral valve annulus for mounting of the valve, optimal 

force distribution could be achieved during bioreactor testing. In addition, by using a spring 

and attachment system for the chordae, tension could be felt through the chordae through 

to the leaflets, providing correct anatomical cues to seeded cells and the ECM. Evaluation 

of the constructs post-bioreactor showed limited migration of the cells throughout the 

tissue. This could be a result of PGG stabilization creating a scaffold too strong to allow 

cells to physically migrate into. Therefore, PGG’s role in this process should be evaluated. 

In addition, slight poration of the tissue may provide the necessary avenues for which cells 
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can travel. Despite this insufficiency, IHCs for various markers showed a significant 

expression for fibroblast markers and only a slight positive stain for smooth muscle cell 

markers indicating that these cells were not activated and remained mostly quiescent during 

the bioreactor process. Also important to note were the existence, while small in quantity, 

of endothelial cells along the leaflets and chordae. Positive stainings for several endothelial 

markers were found for preconditioned tissues. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

6.1 Summary of Project Development: 

 There is a clear and significant gap in our ability to care for patients with 

cardiovascular diseases. On the whole, cardiovascular disease is the largest consumer of 

human life in the country. Overall, cardiovascular disease cost the United States about 

$316.1 billion in 2013. By 2030, this cost is expected to rise to about $918 billion. By this 

time, almost half of the population of the United States is expected to have some form of 

cardiovascular disease(1). Diseases and deficiencies of the mitral valve affect a large 

percentage of those sufferers. In fact, of all patients with valvular diseases, 72% have a 

mitral valve disease(1). As is evident, mitral valve disease is a frequent cause of heart failure 

and death(2). The age of the patient is also a critical factor. Most mitral valve diseases are 

associated with some form of degeneration with leads to a malfunctioning heart valve. 

Therefore, older patients, those 75 and older, are especially affected. In fact, about 10% of 

the US population has mitral regurgitation(1,3). The elderly however are not the only patient 

group suffering from mitral valve diseases. Mitral stenosis, caused by acute rheumatic 

fever, is the leading cause of heart disease in children worldwide(4). Prosthetic heart valves 

have remained a constant in patient care, however their design and the issues that follow 

them have largely lasted unchanged since their conception in the 1960’s. Repair of the 

mitral valve has shown improved success, however results are palliative and revisional 

surgery is often required to re-repair the dysfunctional heart valve. 
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 The limitations of treatment and lack of permanent solutions available to patients 

represented an enormous opportunity to innovate. Within the paradigm of tissue 

engineering, we set to develop a novel yet translational approach to replace the diseased 

mitral valve with a living construct, thereby allowing patient-tailored tissue regeneration 

of the valve. Successful strategies as well as failed designs were reviewed and studied not 

only in heart valve tissue engineering but across the entire field to develop our unique 

approach. We sought to develop a stable, fully recellularized and mechanically 

preconditioned tissue engineered mitral valve construct. Our tissue engineered valve 

criteria demanded a design that allowed for repopulation with cells and remodeling of an 

ECM scaffold derived from porcine tissue. This scaffold had to withstand appropriate 

mechanical pressures and degradation from proteases. All of this of course using 

translational approaches that would allow an easy adaptation from the lab bench to the 

hospital bedside. 

6.2 Progress Toward Achievement of Specific Aims: 

 In an attempt to lessen this clear gap in patient care mentioned above, three 

overlaying and specific aims were established to direct our research towards a permanent 

tissue engineered solution. While these aims were discussed in more detail in Chapter Two, 

they are presented here in brief: 

Aim 1 (Chapter 3): Develop an acellular scaffold with ECM and mechanical properties 

similar to the human mitral valve. 

Hypothesis: A detergent based decellularization method will remove all cellular 

materials from a porcine mitral valve while retaining sufficient extracellular matrix 
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content, including basal lamina proteins. Chemical treatment with PGG will stabilize the 

matrix scaffold and yield physiologically similar mechanical strength. 

Aim 2 (Chapter 4): To characterize host response and determine resistance to 

degradation of the scaffold treated with PGG. 

Hypothesis: The stabilizing, anti-inflammatory, anti-calcification function of PGG 

will limit scaffold degradation and mitigate immune rejection. 

Aim 3 (Chapter 5): Develop a mitral valve bioreactor able to provide physiological 

loading and biochemical environment characteristic to mitral valves. 

Hypothesis: Optimally seeded constructs will flourish under physiologic 

conditions provided by a bioreactor that provides correct anatomical positioning and force 

distribution from annulus to papillary muscles. 

 Each of these aims add cohesively towards the development of a tissue engineered 

mitral valve. Each has been discussed at length in the above chapters, but a summary of 

the work and major takeaways from each chapter is as follows: 

6.2.1 Aim 1 (Chapter 3): Develop an acellular scaffold with ECM and mechanical 

properties similar to the human mitral valve: 

1. We developed and optimized a decellularization process that removed all cellular 

and nuclear material from the scaffold. Histological analysis showed complete 

removal of xenogeneic cells and gel electrophoresis and nanodrop show significant 

removal of nuclear material. We showed levels less than 50ng/dry tissue of nuclear 

material remaining in our scaffold, which is under the acceptable limit established 

in literature. 
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2. After development of an acellular mitral valve scaffold, we sought to characterize 

the scaffold and evaluate the effects the decellularization process had on the niche 

ECM. Overall, the ECM was well preserved, with all four layers of the heart valve 

visibly present and intact. We were not able to retain GAGs post decellularization. 

However, we were able to conserve basal lamina proteins collagen type IV and 

laminin which are essential for cell attachment and migration. 

3. Further characterization of the mitral valve scaffold showed that decellularization 

did have an effect on the mechanical properties of the scaffold when compared to 

fresh tissue. PGG, a well-known and well-characterized polyphenol, was used to 

shore up any lost mechanical strength during decellularization. As a result, 

mechanical properties returned significantly closer to fresh mechanical properties. 

4. PGG was also used as a treatment for the scaffold to evaluate the scaffolds potential 

for degradation when in the presence of proteases. If implanted in vivo, our scaffold 

would inevitably be encountered by similar proteases and therefore we evaluated 

our scaffolds at 24 and 48 hours in treatments of collagenase and elastase. PGG 

significantly improved the resistance of the scaffold to degradation. 

5. Lastly, the scaffold was evaluated on its potential for allowing cell growth and 

proliferation. Cytocompatibility results turned out positive in that cells were able 

to survive within and on the scaffold. It was also shown that cells could in fact be 

incorporated within the scaffold via direct injection. This proved vital for the other 

aims in the project. 



197 

 

6.2.2 Aim 2 (Chapter 4): To characterize host response and determine resistance to 

degradation of the scaffold treated with PGG: 

1. Host response to an implanted biomaterial is perhaps the most important 

determinant of success or failure of the implant. After conducting4 and 8 week time 

points with PGG-treated and non-treated groups we evaluated how these once 

acellular scaffolds degraded overtime. In looking at MMP levels within the tissue, 

there was a significant difference between the PGG and non-treated tissues. PGG-

treated scaffolds showed much less expression of MMPs, indicating a much lower 

rate of degradation. 

2. The microstructure of our ECM scaffold is perhaps its most important feature. 

Therefore, we sought to evaluate its preservation after implantation. Histological 

results indicate that the ECM was highly preserved at both time points. Clear fibers 

and layers of collagen and elastin were present.  

3. Infiltration with autologous cells from the host are inevitable. Therefore, we wanted 

to evaluate if PGG affected the ability of these cells to infiltrate the scaffolds and 

begin remodeling of the tissue. We found no significant difference between 

treatment groups at both time points. PGG did not have an effect on cells’ ability 

to infiltrate the scaffolds. 

4. An inflammatory response was investigated using CD8, a marker for T-cell 

lymphocytes. Non-treated scaffolds showed a significantly higher expression of 

CD8 than PGG-treated groups at both time points. This is not to say that CD8 

expression in PGG groups was eliminated but the expression of the pro-
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inflammatory marker was significantly lower. Accordingly, PGG is able to 

decrease infiltration of CD8-positive cells, hindering inflammation. 

5. Next, we wanted to identify the cell types that had infiltrated the scaffold. In PGG-

treated samples expression of fibroblast markers, vimentin, prolyl-4-hydroxylase, 

and HSP-47 all showed significantly higher expression when compared to non-

treated groups. In the non-treated groups, expression of smooth muscle cell markers 

α-SMA, calponin, and SM22 showed significantly higher expression compared to 

the PGG-treated groups. PGG seems to encourage fibroblast infiltration as opposed 

to smooth muscle cells. On the other hand, perhaps both scaffolds allow for 

fibroblast infiltration, but PGG is able to hinder their activation into myofibroblasts. 

6. Lastly, we wanted to understand PGG’s effect on macrophage polarization. M1, the 

pro-inflammatory macrophage, showed significantly higher expression in the non-

treated groups. The opposite was true for PGG-treated groups. M2, the pro-healing 

macrophage, showed significantly higher expression in PGG-treated groups. 

Therefore, PGG encourages M2 macrophage polarization as opposed to the pro-

inflammatory M1 macrophage. 

6.2.3 Aim 3 (Chapter 5): Develop a mitral valve bioreactor able to provide physiological 

loading and biochemical environment characteristic to mitral valves: 

1. In a cumulative effort to revitalize the acellular scaffold with cells, the reseeding 

strategy needed to be more effective. In an effort to avoid creation of boluses of 

cells within the scaffold, fibrin, a well-known hydrogel, was used to assist in the 

seeding efficiency as well as a means to aid in migration of the cells into the 
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scaffold. Also utilized to coax cell migration was the cytokine SDF-1. Efforts for a 

more efficient recellularization were largely successful. Cells noticeably migrated 

from the injection site into the tissue. 

2. Prior to this work, our group developed an aortic valve bioreactor, which provided 

a sterile environment for testing aortic valves at physiological conditions. The 

mitral apparatus having a unique structure required several design points that had 

to be addressed to produce a functioning bioreactor. A system to mount a 

recellularized mitral valve construct into a bioreactor was designed based on the 

particular shape of the mitral annulus. Using this as the foundation for optimal force 

distribution, attachment of the chordae tendinae was also addressed. Springs were 

chosen and wrapped around the papillary muscles to provide appropriate tension 

required for physiological testing. 

3. Overall, the bioreactor and the tissue inside of it ran well. The valve was able to 

properly open and close at physiological pressures. These pressures were slowly 

ramped up for several weeks to assure cell maturation, migration, and 

differentiation. Sterility of the bioreactor was maintained throughout as well as 

conditions such as temperature, CO2 levels and humidity. 

4. After histological analysis, cells were found within the constructs in both the 

bioreactor tissue as well as the static control. More cells were found within the 

bioreactor-seeded constructs. There is a possibility that some of the endothelial 

cells that were seeded on the outside of the scaffolds were able to survive the 
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physiological pressures that the valves endured. Seeding efficiency with the use of 

PGG as well the added forces in the bioreactor was significantly lessened. 

5. Several markers for fibroblasts and smooth muscle cells were used to evaluate the 

phenotypes of the cells after being placed in the bioreactor. While results showed 

positive markers for both, fibroblast markers showed significantly stronger than the 

smooth muscle cell markers. This implies that the majority of the seeded pre-

differentiated fibroblasts remained quiescent ever during bioreactor testing. 

6.2.4 Prospective on Progress Made and Comments on Potential Continued Research: 

 The studies and aims described here were modeled after the general tissue 

engineering paradigm in an attempt to successfully combine an ECM scaffold, appropriate 

cell types and a condition this living construct in a bioreactor. Three aims were established 

from this paradigm and significant progress was achieved if not completed with each aim. 

Aim 1 and 2, largely based on scaffold characterization both in vitro and in vivo, are mostly 

complete. The scaffold itself, along with PGG treatment, yielded successful results in 

creating a stable scaffold capable of supporting cellular proliferation. More studies 

continuing to analyze PGG’s role and longevity within the scaffold would prove to be 

useful information for Aim 1. In addition, the in vivo reaction towards the scaffold was 

successful in limiting an inflammatory response and as a result directing macrophage 

polarization towards a pro-healing phenotype. Continued studies of host response may lead 

to a better understanding of PGG’s biochemical role in direction macrophage polarization 

as well as its hindrance of inflammatory markers. Further studies may highlight PGG’s 

longevity in vivo as well. Information could also be extrapolated here in understanding cell 
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migration into the scaffold. This information could be used to optimize cell-seeding 

experiments in the future. 

 Development of the mitral valve bioreactor presented several difficulties due to the 

complexity of the mitral apparatus. With its hyperbolic paraboloid shape, the mitral 

annulus forms the foundation for force distribution. From this particular geometry, and 

fitting this to the other existing bioreactor system, originally fit for the aortic valve, was 

difficult. Despite these, coaptation of the valve was achieved and we believe optimal force 

distribution was as well. However, significant improvements could be made to optimize 

the process by which the mitral valve bioreactor is set up and run during experimentation. 

These could include an easier mechanism for mounting the valve in the mounting rings and 

attachment of the papillary muscles and chordae to this as well. Despite these challenges, 

this system, now equipped for the mitral valve, should become a valuable tool in working 

toward completion of Aim 3. Recellularization of the scaffolds to create a living valve also 

proved difficult despite the advances made using fibrin as a seeding conduit. More 

evaluation should be taken as to why migration out of the scaffold did not occur. And if it 

did in fact occur, why did these cells not survive the bioreactor process? Overall, as studies 

continue, avoidance of a bolus of cells within the constructs and encouragement of cell 

migration should be prioritized. 

Regardless of the directions this project will take, overall it is the belief of this author that 

the studies and progress herein have had a positive impact upon the development of a tissue 

engineered mitral valve. This valve, whose pathological prevalence is evident, needs a 

tissue engineered solution in the future to provide permanent and patient specific solution.  
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6.3 Recommendations for Future Work: 

6.3.1 Aim 1: 

 As previously mentioned the goals set in Aim 1 were largely completed. 

Characterization of the scaffold proved that we were able to sufficiently remove 

xenogeneic cellular and nuclear material while still preserving the ECM. Cells were also 

able to survive within on the exterior of the scaffold. Moving forward, quantifiable 

characterization of the scaffold should be acquired. Several methods can be used to 

quantify the amount of collagen and elastin in scaffolds. This should be done and compared 

to fresh vs. decellularized scaffolds for both leaflets and chordae tendinae. In addition, 

while not examined before, levels of fibronectin should be explored as well to confirm 

further existence of basal lamina proteins present after decellularization. Most of the IHC’s 

used to establish preservation of ECM quality, should be quantified as done in Chapter 2 

to compare fresh vs. decellularized scaffolds. Also worth evaluating would be to examine 

our current decellularization protocol and seek further optimization of this process. Some 

groups are able to completely decellularize their heart valve scaffolds without removing 

GAG content which would be of serious benefit moving forward(5). Therefore, we believe 

that the decellularization protocol, while it has proven successful by most current 

parameters, could always be improved. 

 The following is a suggested study to establish a better understanding of PGG’s 

staying power within the scaffolds. This information, which is regularly requested by other 

researchers, would provide some insight into how the scaffold retains PGG over time. 

6.3.1.1 In Vitro Longevity of PGG within Decellularized Scaffolds 
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6.3.1.1.1 Scaffold Preparation and Design 

 Decellularization of the scaffolds will utilize the protocol described in Chapter 3. 

After the decellularization process is complete, four groups will be established at differing 

concentrations of PGG. See Figure 6.1 for the study design. Concentrations of zero PGG 

(treated with sterile 1 x PBS), 0.15% PGG, 0.3% PGG, and 0.6% PGG will be used on four 

scaffolds (using an n=6 for each of these groups). Treated leaflets can be placed in 6-well 

plates and covered with basic cell culture media (DMEM, 10% FBS, and 1% AbAm). 

These treated scaffolds will be placed on a shaker at low speeds and allowed to shake for 

several weeks. Media will be changed regularly for each group and saved to evaluate 

leeching of PGG into the media. For each group we will collect samples at each week for 

4 weeks. At these time points, histological evaluation will be used to determine any loss of 

PGG within the scaffolds. Mechanical data could also be obtained from each of these time 

points. 

 

Figure 6.1: Design for Evaluation of PGG Retention in Scaffolds. Several concentrations of PGG as well 

as a negative control could be used to evaluate PGG’s staying power within the decellularized scaffolds. Each 

of these groups (n=6) will be evaluated at four different time points. 
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6.3.2 Aim 2: 

 Biocompatibility and host response are critical barriers that a biomaterial must pass 

to be successful. Overall, in Aim 2, it was shown that our PGG-treated scaffolds limited 

inflammatory responses, had decreased degradation, and polarized macrophages towards 

the M2 phenotype. While these benchmarks were considerable and overall successful, there 

are a number of IHC and IF stainings that could be done to look further at other areas of 

interest. In further studies, we would particularly like to look further into how PGG 

decreases expression of TNF-α in these constructs. This well-known, pro-inflammatory 

cytokine is expressed by M1 macrophages as well encouraging other macrophages to 

polarize towards the M1 phenotype. PGG, a well-characterized phenotype has shown 

antioxidant properties. Antioxidants have shown to decrease expression of TNF-α(6,7). Also 

important in macrophage polarization is the production of ROS. These reactive oxygen 

species can damage tissue if over expressed, but due to their presence in tissue play an 

important role in changing the macrophage phenotype from M1 to M2. However, 

antioxidants are known to cleave ROS production, leaving one to question how, if 

expression of ROS eventually leads to the M2 phenotype, how then would decreased levels 

of ROS due to treatment with PGG, lead to the M2 macrophage(7). This conundrum would 

be worth evaluating and would provide key details into how PGG biochemically affects 

inflammation and macrophage polarization. 

 It might also be interesting to evaluate what stems cells, if any, infiltrated the 

scaffold. An IHC for CD34 or CD29 could be used to identify mesenchymal stem cells 

infiltrating into the scaffold. Other signs of inflammation, other than CD8 and CD68 could 
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be evaluated. In Aim 3, fibrin was used as a cell-seeding conduit. Fibrin has also been 

shown to discourage the M1 phenotype. Seeded scaffolds with fibrin and autologous rat 

cells could provide an interesting insight into this study and its combined anti-

inflammatory effort with PGG(8). Knowing this, there are several different groups that 

could be tested using a similar biocompatibility study that was done in Aim 2. 

 The following is a suggested study to further evaluate PGG’s role in diminishing 

inflammation and encouraging M2 macrophages. This study would also be used to 

determine how fibrin, as a cell carrier for seeding, acts in vivo. We would also seed these 

scaffolds without fibrin to determine if any differences take place after the study. 

6.3.2.1 Study Design and Groups: 

 The design parameters will be similar to the subdermal rat study conducted 

and described in Aim 2. In accordance with an IACUC-approved animal use protocol, 

juvenile Sprague-Dawley rats will be anesthetized with buprenorphine at 0.03-0.05 mg/kg 

and acepromazine at 0.5 mg/kg administered subcutaneously. A small incision will be 

made in the center of the dorsal area of each rat about 2 cm inferior to the scapulae, and, 

using blunt dissection, two pockets created between the dermis and fascia lateral to the 

incision (one pocket in each direction). A scaffold sample will placed into each pocket, and 

the incision closed using staples. Rats will receive non-treated, decellularized scaffolds, 

and the remaining will receive PGG-treated decellularized scaffolds. This will be true for 

each overarching group of which there are four. The first group will comprise of acellular 

scaffolds, the second will be scaffolds seeded with autologous ADSC’s taken from the rats 

previously, the third group will have the same cell types seeded using fibrin, and the fourth 
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group will also utilize fibrin, but the cells will be pre-differentiated into fibroblasts and 

endothelial cells. This is true for both tissue types, mitral valve leaflet and chordae 

tendinae. Rats would be allowed to recover and housed individually for the remainder of 

the study. At 4 weeks rats will be euthanized and at 8 weeks, the remaining rats will be 

euthanized, both via CO2 gas (Euthanex system) followed by pneumothorax. Scaffold 

samples and small amounts of their adjacent host tissues will be excised and fixed in 10% 

neutral buffered formalin and processed for histological examination. 

 In Figure 6.2, the one group example is shown. This map would be the same for 

each of the four groups, which reiterated are: 

1. Decellularized scaffolds 

2. Scaffolds recellularized with autologous rat ADSCs 

3. Scaffolds recellularized with autologous rat ADSCs using fibrin as a carrier 

4. Scaffolds recellularized with pre-differentiated autologous rat ADSCs using fibrin 

as a carrier. 

From these four groups and time points, we will be able to evaluate further how our final 

scaffolds, seeded with cells would survive in vivo. 
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Figure 6.2: Schematic Design of Group Organization. Each of the identified groups would utilize this 

organizational map. Each group has PGG-treated and non-treated groups, time points at both 4 and 8 weeks, 

and each of these uses both leaflets and chordae scaffolds. 

6.3.2.1.1 Scaffold Preparation: 

 All scaffolds will be prepared using the decellularization protocol described in Aim 

1. Before implantation, the samples were sterilized in 0.1% (w/v) peracetic acid in PBS for 

1h, followed by rinsing in four changes of sterile PBS. Sterile PGG treatment will use a 

concentration of 0.3% as seen in each aim described. 

6.3.2.1.2 Cell Culture and Seeding: 

 To obtain autologous ADSCs, a small amount of belly fat would be harvested from 

each rat. The tissue would be minced, washed with ammonium chloride to remove red 

blood cells, incubated in collagenase, and centrifuged. The stromal vascular fraction pellet 

would be plated in tissue culture flasks and cultured for 2 weeks to propagate the cells. 

ADSCs would then be seeded into each scaffold at a concentration of 1x106 cells per 
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scaffold. According to the group, this may or may not include fibrin as a cell carrier. For 

group 4, cells will be pre-differentiated using several growth factors.  

For differentiation of ADSCs to endothelial-like cells, ADSCs would be cultured 

for 2 weeks in EC differentiation media comprised of DMEM, 2% FBS, and 1% antibiotic 

solution supplemented with 0.5 ng/mL vascular endothelial growth factor and 20 ng/mL 

insulin-like growth factor-1. Growth factors would be freshly added to the media at the 

time of each media change. 

For differentiation of ADSC’s to fibroblast-like cells, ADSC’s were cultured for 2 

weeks in fibroblast differentiation media comprised of DMEM, 5% FBS, and 1% antibiotic 

solution supplemented with 5ng/mL transforming growth factor beta-1. Growth factors 

would be freshly added to the media at the time of each media change. 

Fibrin would be made at a concentration of 0.5U/mL thrombin, 4mg/mL fibrinogen, 

and 2mM CaCl2. After seeding, these recellularized scaffolds would then be left overnight 

in media to allow for cellular adhesion. 

6.3.2.1.3 Characterization of Explanted Constructs: 

 After each respective time point has ended, histological evaluation will be utilized. 

H&E, Masson’s Trichrome, Movat’s Pentachrome, and DAPI staining will be used to 

evaluate cellular infiltration and ECM integrity. To evaluate inflammation, CD68 and CD8 

expression will be evaluated using IHC. To identify cell types, fibroblast makers HSP-47, 

prolyl-4-hydroxylase, and vimentin will be used. Smooth muscle markers to be used would 

be α-SMA, calponin, and SM22. To evaluate macrophage polarization, CD163 will be used 

as a marker for M2, and iNOS as a marker for M1 macrophages. Proteins will be isolated 



209 

 

from each scaffold and a zymography performed to determine MMP expression. 

Mechanical testing will also be performed. From the isolated proteins, an ELIZA will be 

performed to measure TNF-α expression within each group. ROS expression will also be 

determined for each treatment group to evaluate PGG’s role in scavenging it. 

 We will attempt to evaluate how infiltrating cells migrate into the tissue. A better 

understanding of this migration within the scaffolds could shed light on a more optimized 

cell seeding protocol. We would also be interested in seeing how the fibrin affected the 

cellular infiltration or if it encouraged a larger inflammatory response. How would the host 

respond to the seeded cells? Another graduate student in our lab found that seeded ADSC’s 

encouraged a lower inflammatory response. How would pre-differentiated cells affect this 

outcome? How will PGG affect ROS production and will this correlate with TNF-α 

expression? 

6.3.2.1.4 Outcome Success Measures: 

 A continued resistance to inflammation and a polarization towards the M2 

macrophage phenotype for the PGG-treated tissues would indicate success in this study. 

We are aware that PGG plays a significant role in diminishing inflammation; however, 

another successful output of this study would be to have a fuller understanding of how 

PGG acts to discourage these deleterious events. It would also be interesting to see how 

the ADSC’s reacted in vivo. These cells have shown to possess anti-inflammatory 

properties, to confirm this would also be a success. Another measure of success would be 

to see how the fibrin seeded constructs handled the host response. Fibrin, as mentioned, 
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has shown to encourage the pro-healing macrophage phenotype, it would be very positive 

if this was confirmed, especially with the pre-differentiated cells.  

6.3.2.2 Evaluation of Remodeling: 

 In future in vivo studies, whether sub-dermal or even large animal, remodeling of 

the implanted scaffold should be further evaluated. In our work, we examined the 

expression of MMPs to compare degradation between PGG and non-treated sample groups. 

Remodeling of the scaffold however is also imperative for the success of the scaffold. 

Revitalization of the scaffold with new collagen could be determined using 

immunochemistry. After implantation for 4 to 8 weeks, explants would be histologically 

processed and examined. Stainings could be done for HSP-47 and prolyl-4-hydroxylase as 

before. The difference for this experiment would be to choose antibodies that are species 

specific. These antibodies would of course be porcine and the species chosen for the 

implant group. Identification of new, remodeled collagen from the host’s infiltrated cells 

and original collagen present from the scaffold could be determined. This in vitro 

remodeling of the matrix is imperative for the success of the construct moving forward. 

6.3.3 Aim 3: 

 It is our continued belief that revitalization of the scaffold with appropriate cell 

types and then preconditioning these seeded scaffolds in a bioreactor is the best approach 

towards a tissue engineered mitral valve. The first barrier to this success is finding and 

optimizing a cell seeding process that allows uniform distribution throughout the scaffold. 

The niche microstructure that our scaffolds provide ideal conditions for cell differentiation, 

but are meaningless without a cellular presence. As discussed in Chapter 5, there was 
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marked improvement in our ability to seed scaffolds with cells, however this could be 

greatly improved. This lack of completion of cell seeding was evident in the bioreactor 

experiments when very few cells were found to have migrated into the scaffold. Therefore, 

future pilot studies should be conducted to see what alternative methods should be 

attempted to yield a more efficient and practical cell seeding. Practicality and translatability 

are of course key elements here. Many works in literature reference their uniform cell 

seeding, however many times the cells were statically seeded on the scaffolds and the cells 

allowed 6 to 8 weeks to migrate through the tissue. In a clinical setting, this timetable is 

too long for patients in need of a functioning heart valve. 

 The following are several suggested pilot studies for cell seeding experiments as 

well as some suggested studies using the newly design mitral valve bioreactor. From these 

experiments, hopefully future researchers will be able to efficiently seed our ECM scaffold 

and precondition the heart valve in the bioreactor. To complete these significant steps 

would undoubtedly complete the tissue engineering paradigm and provide a novel heart 

valve to all patients. 

6.3.3.1 Cell Seeding Pilot Studies: 

 As mentioned in Aim 5, significant progress was made in encouraging migration 

of cells into the scaffold. Our group has found that direct injection of cells into the scaffold 

provides the best means to force cells into the scaffold’s interior. Statically seeding cells 

onto the exterior has not proven an effective method for cell migration. We believe that the 

incorporation of the fibrin gel as a cell carrier has been beneficial to the cells. As mentioned 
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previously, the viscosity of the gel allows for a less stressful injection process for the cells 

and has been shown to facilitate spreading. 

 Further pilot studies should be used investigate increasing scaffold porosity to 

allow for greater ease of transport for cells. There are several ways to do this, however 

scaffold integrity, an accomplishment for Aim 1, must not be sacrificed too much. Our 

group has used low concentrations of acetic acid as well as various proteases to provide a 

less dense interstitial barrier for the cells to pass through. Another method for creating 

pores is through lyophilization. This process naturally creates pores when completed. This 

may also offer a clinical translatability benefit in that PGG-treated and lyophilized 

scaffolds would only need to be rehydrated and seeded. Storage and transportation of these 

“dry” scaffolds is much more feasible than storing and transporting “wet” sterile scaffolds. 

Taking advantage of this rehydration step may also allow for greater integration of growth 

factors and other mechanisms for coaxing cell migration. 

 Growth factors as well as cytokines should be used in further pilot studies to 

encourage cells to migrate. Fibrin has been shown to bind growth factors(9,10). We should 

use this property to attach growth factors and to evaluate their effects on cell seeding. 

Cytokines such as SDF-1 have also shown to have drastic effects on cell migration(11–13). 

We should use cytokines such as this to encourage movement outside of the injection site.  

 Pilot studies centering on utilization of fibrin, growth factors and cytokines, and 

slight alteration of the ECM scaffold could very well lead to an optimized cell seeding. 

This project’s design, and our tissue engineering paradigm rely heavily on complete 

recellularization of the scaffolds and eventually, preconditioning in a bioreactor. 
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 Also imperative would be the need to recellularize the chordae tendinae. As 

described above, only pre-differentiated endothelial cells were seeded onto the chordae. 

However as seen in fresh chordae sections, cells do reside in these collagenous chords. 

Therefore, an attempt to inject these chordae with cells, and an evaluation of this seeding 

should be completed. If direct injection of these this small, dense tissue proves difficult, 

recellularization utilizing chemotaxis may be the next best option. 

 In the seeding studies addressed above, it was apparent that non-treated scaffolds 

allowed for better cell seeding throughout the construct. Therefore a better understanding 

of why this would occur is important to understand. However, due the large amount of 

beneficial effects PGG provides to the scaffold, elimination of this stabilizing agent should 

be heavily discouraged. A pilot study can be conducted in which non-treated scaffolds are 

cell seeding using the methods described in Aim 3. PGG treatment can then be applied 

similarly to how Isenburg et al. treated their tissues with very low doses of PGG so as not 

to affect cytotoxicity(14). The efficiency of the seeding and the effects this low dosage of 

PGG would have on the construct would need to be heavily investigated as this protocol 

would greatly vary from the methods of stabilization and cell seeding used previously. 

6.3.3.2 Bioreactor Studies and Modifications: 

 One of the bigger accomplishments for this project was the development of a mitral 

valve bioreactor. As previously mentioned, an aortic valve bioreactor was already 

developed by our lab, however the complexity of the mitral apparatus left not only our 

group, but many other research groups without a proper means to test the mitral valve in 

sterile, physiological conditions. 
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 In the future, we should design a better mounting mechanism for the papillary 

muscles. During our bioreactor experiments, the springs, which were used to translate 

tension through the chordae tendinae to the leaflets, would often cut into the papillary 

muscles. We should develop a method of holding this papillary muscle and attaching this 

mounting device to the springs to allow for proper force distribution and valve coaptation. 

Testing should be done for better placement of these papillary muscles and the 

corresponding chordae to ensure function. 

6.3.3.3 The Mitral Valve Bioreactor as a Pathological Model: 

 After a more optimized cell seeding process is developed, use of the mitral valve 

bioreactor does not solely need to be defined as a preconditioner for seeded cells. This 

novel device could also serve as a means for modeling mitral valve pathologies in vitro. 

Conditions for mitral valve pathologies could readily be created. For example, after 

recellularization and endothelialization of the scaffold, the living construct could be placed 

in the bioreactor with a ruptured chordae tendinae. This common issue in degenerating 

valves could be easily recreated in vitro in the bioreactor. Histological evaluation of how 

the cells react to this misguided force distribution could provide some insight into the 

damage done interstitially during this pathology. Another example might be the altering 

the shape of the annulus. A rounded annulus, as opposed to its natural saddle shape, would 

disrupt optimal force distribution and could cause regurgitation. The effects of this on the 

valve could be evaluated. In addition, not many groups have studied the effects of diabetic 

conditions on mitral valves. By altering media conditions, calcification may build up in the 

valve, and development of advanced glycation end products (AGES) may occur. 
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6.3.3.4 Comparison of Non-Treated and PGG-Treated Preconditioned Constructs: 

 For a large portion of the studies discussed in this dissertation, PGG and non-treated 

scaffolds and seeded constructs were compared and contrasted. Therefore, recellularization 

of a non-treated scaffold and placement of into the bioreactor would present an intriguing 

comparison to our currently PGG-treated scaffold. Treatment with PGG would be the only 

aspect of the study design that would defer from previously described bioreactor 

experiments. Analysis of preconditioned, non-treated valves would provide interesting 

insight into activation of the seeded cells, matrix remodeling, and the mechanical integrity 

of the construct post-bioreactor. Comparing the activation of seeded fibroblasts with those 

of PGG-treated scaffolds would also produce interesting results. 

6.3.3.5 Evaluation of PGG’s Longevity in Scaffold 

 Treatment with PGG has had many beneficial effects on our decellularized scaffold 

and recellularized constructs. However, PGG-does not cross-link with the scaffold and will 

slowly leave the scaffold over time. Therefore it will be important to understand the 

longevity in which PGG resides in the scaffold and the effect this has on the scaffolds 

mechanical properties as well as the effect it has on seeded cells. A Phenol-Ferric Chloride 

stain can be performed on our paraffin sections at different time points post-bioreactor 

treatment. Time points of 4, 8 and 12 weeks can be completed in the bioreactor. At each of 

these points, the sections can be stained for PGG and mechanical properties of the construct 

and be determined. Activation of seeded cells and their behavior and the presence of PGG 

will be compared. Ideally, by the time that PGG leaves the construct, remodeling by the 
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seeded cells will be complete and the construct will no longer need the stabilizing effects 

of PGG. 

6.3.3.6 Considerations for Clinical and Commercial Translation: 

 Clinical collaborators have alluded that some repair methods may be more feasible 

for both the patient and the surgeon if a tissue engineered solution were available. 

Therefore, if a recellularization protocol was optimized for leaflets and even chordae 

tendinae, these parts of the valve could be used to repair damaged or diseased valves. 

Living and thus self-healing tissues would provide far more benefit than synthetic leaflets 

or chordae currently used. Also,, current reparative methods could be utilized for the 

deployment of these tissue engineered repairs.  
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APPENDICES 

 

Appendix A 

 

 
Figure 5.11: Read out for Aptus Bioreactor System. This is the computer read-out 

provided by the Aptus software. This system allows changing the parameters for pressures, 

both systolic and diastolic, heartrate, and flow in the settings tab. Pressure and flow outputs 

are displayed on the left in numerical and graphical format. 
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