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ABSTRACT 

 Simulations are believed to support learning outcomes by increasing student 

engagement and providing a more immersive and interactive learning environment.   

Research into the effectiveness of simulations as learning tools has found tangible 

benefits, including increased learner engagement and conceptual gains. Simulations also 

offer the benefits of a safer and more accessible learning environment, where students 

can practice until the point of proficiency. While simulations have been used extensively 

in workforce education, there is limited research that compares learning outcomes – 

affective, skill-based, and cognitive - when learning in the physical environment is 

substituted with learning in a simulated environment, particularly for technical skills. 

Educators and researchers have questioned whether simulations provide learners with the 

same quality of education as learning in a physical environment. Simulations lack the 

nuances that exist in the real world and may also oversimplify a complex system. Its ideal 

representation of a system may create issues for learners when they encounter issues in 

the real world environment that they never experienced in the simulation. Consequently, 

learners may doubt that the principles demonstrated in a simulation are applicable in the 

real world. Proponents of physical laboratories argue that simulations limit students from 

experiencing hands-on manipulation of real materials and that they lack the necessary 

detail and realism to effectively teach proper laboratory technique.  

This research works to fill this gap by investigating how individuals transfer 

learning in simulated environments to the real world. Affective, cognitive and skill-based 

learning outcomes were used to evaluate acquisition, transfer and retention. There are 
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three primary aims of this research. The first aim was to identify how the physical fidelity 

of the learning environment impacted learning outcomes, including transfer, and whether 

the goal orientation and cognitive ability of the learner influenced the relationship 

between the physical fidelity of the learning environment and learning outcomes. The 

second aim of this research was to understand the mechanisms through which the 

physical fidelity of the learning environment impacted proficiency outcomes. The third 

aim of the study was to understand how the physical fidelity of the learning environment 

impacted retention. The findings from these aims offer substantive contributions about 

how simulations affect learning, transfer, and retention outcomes. This research has 

implications for the design and implementation of simulated environments in engineering 

and technical disciplines, specifically courses delivered in an online setting. Whether 

positive or negative, these results can help identify potential issues and provide insight on 

what aspects of the transition from learning in simulations to working in the real world 

create the greatest stumbling blocks for students.  
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CHAPTER ONE 

 INTRODUCTION 

The use of technology has led to unprecedented changes in secondary, higher, and 

workforce education.  For example, virtual schools enable high school students to earn 

their diplomas online, and, similarly, online degree programs have become increasingly 

more commonplace in higher education.  In the professional world, organizations 

leverage online courses and webinars to provide their employees with continuing and 

just-in-time educational opportunities. This learning environment,  which  has historically 

been defined as having a delivery mechanism with at least 80% of the course content 

delivered online,  has evolved significantly over the past decade (Kentor, 2015).  Early 

platforms were primarily asynchronous, utilizing chatrooms and discussion boards. Now 

it is common to see synchronous online education with instructors holding lectures and 

discussion in virtual classrooms.  

Online education has also been highly effective in increasing educational 

opportunities for students, particularly nontraditional students who, for example, are 

older, attend school part-time, or are financially independent (Allen & Seaman, 2007). In 

addition, it has frequently focused on such conceptual programs as MBAs, public 

administration, and education programs (Allen & Seaman, 2006). On the other hand, 

engineering and other technical fields have lagged behind other disciplines in using 

online delivery for course and laboratory instruction (Bourne, Harris, & Mayadas, 2005). 

Because presenting such technical course material in an online setting necessitates 

adaptation, it is important to develop and subsequently evaluate online education 
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technologies and pedagogies to ensure they are effective in imparting technical skills 

(Bernard et al., 2004). Identifying whether these technical and hands-on tasks can be 

effectively learned in simulated environments is an important first question that needs to 

be addressed before expanding course offerings in online education.   

More specifically, designing effective simulated laboratories is instrumental in 

supporting the development of a robust online engineering, science and technical 

curriculum as such instruction is a key educational component in these disciplines. 

Laboratories were initially developed with the belief that understanding how to apply 

science to solve real world problems requires both theory and practice (Auer, Pester, 

Ursutiu, & Samoila, 2003). As a result,  their instructional space focuses on  

demonstrating  laboratory techniques, developing  analytical thinking and connecting  

theory to practice for students (Woodfield et al., 2005);  thus,  using the physical 

equipment and components during instruction represents the highest level of physical 

fidelity with the actual working world as physical laboratories provide  students with the 

opportunity to experience the sensory characteristics of the tools and components and, in 

some instances, learn in an environment  closely corresponding to that in which they will 

be used (Zacharia, 2007; Zacharia & Olympiou, 2011).  Additionally, such physicality, i. 

e. the actual manipulation of physical material, is believed to be important for learning

(Zacharia & Olympiou, 2011). 

Although simulated laboratories are increasingly used in science and engineering 

education (Gillet, De Jong, Sotiriou, & Salzmann, 2013), they have been primarily 

employed to supplement classroom education (Finkelstein et al., 2005), not as stand-
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alone educational delivery systems. These laboratories provide several advantages over 

physical ones, including creating a safe environment that allows learners to practice at 

their own pace and on their own schedule until they reach the point of proficiency 

(Krueger, 1991; Zacharia, 2007).  Just as important, simulated laboratories can also be 

delivered in an online setting that allows increased diversity and access to higher 

education, increased efficiency of delivery, and improved personalization of the learning 

process (Henderson, Selwyn, and& Aston, 2015). In addition, simulations can support 

learning outcomes by increasing student engagement and providing a more immersive 

and interactive learning environment (Adams et al., 2005). However, one issue with the 

use of these labs, especially for technical tasks, is whether they provide the same quality 

of education.  Although simulations have had a long history of use in workforce 

education, the nature of those industries does not allow direct comparison between 

learning in real-world and simulated environments (Stone, 2001), in part because they  

have primarily been   used in industries where  engaging in real-world training would be 

dangerous, expensive, or potentially unethical.  

The research comparing learning outcomes between the physical and simulated 

environment is limited, particularly for technical skills. The majority of the studies 

investigating learning in 2D and 3D simulations have focused on conceptual gains, with 

none specifically evaluating transfer and retention outcomes (Campbell et al., 2002; 

Finkelstein et al., 2005; Zacharia, 2007; Zacharia & Olympiou, 2011; Jaakola, Nurmi, 

and Veermans, 2011). In this context, learning is defined as the acquisition of knowledge 

following a period of instruction, while retention refers to the length of time it is 
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remembered and transfer indicates the ability of students to apply their knowledge 

outside of the learning environment (Baldwin & Ford, 1988). The research reported here 

seeks to understand whether individuals who learn a technical task in a 2D or 3D 

simulated environment achieve comparable learning, transfer, and retention outcomes as 

those who learn in a physical environment. The comparison of 2D and 3D simulations is 

particularly novel as the studies evaluating the influence of increasing fidelity on learning 

outcomes is limited.  Fidelity in this context refers to the degree which a virtual or 

simulated environment corresponds to the real world (Alexander, Brunye, Sidman, and 

Weil 2005).  

As the effectiveness of technology in relation to learning outcomes is also 

influenced by learner characteristics such as cognitive ability and prior knowledge, this 

research investigates these attributes on learning, retention and transfer.  In particular, 

learner characteristics impact learning strategies, effort, and perseverance (De Raad & 

Schouwenburg, 1996), attributes that can subsequently influence the effectiveness of an 

instructional program as well as its learning outcomes (Anderson, 1982; Noe, 1986; 

Snow, 1989). While there are many characteristics which can potentially influence 

learning and transfer outcomes, this study focused on goal orientation, engagement, and 

cognitive ability.  Currently, there is limited research investigating the possible 

moderation effects of these characteristics on the relationship between fidelity and the 

various outcomes.  

Both simulations and physical instruction have benefits and disadvantages. The 

impetus for exploring whether a technical curriculum can be effectively learned in 
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simulated environments stems from both the increasing use of technology in education 

and the educational opportunities it can create.  The overall goal of this research is to 

provide insight in terms of what design characteristics are important for developing 

effective simulations for lab instruction and how institutions can support this form of 

instruction.  

Research Aims 

More specifically, this research investigating  learning, transfer, and retention outcomes 

for participants learning at different levels of physical fidelity involves the following 

three primary aims: 

• Aim 1: Identify how the physical fidelity of the learning environment impacted 

skill acquisition and transfer and determine whether the goal orientation and 

cognitive ability of the learner moderated these relationships. This aim was 

assessed using an experimental study that compared learning outcomes among 

participants learning to construct a circuit on a breadboard under three different 

levels of physical fidelity: a 2D simulation, a 3D simulation, and physical 

components.  

• Aim 2: Identify how the physical fidelity of the learning environment and the 

transition from the simulated environment to the physical environment 

contributed to differences in the learning outcomes achieved by the participants.  

This aim was evaluated by interviewing a representative sample of participants 

from the first study about their experiences learning under different levels of 
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fidelity and their transition from the simulated environments to the physical 

environment.  

• Aim 3: Evaluate how the physical fidelity of the learning environment impacts

retention.  This aim was examined using an experimental study that compared

retention outcomes at the 2-week and 4-week intervals among participants

learning to construct a circuit on a breadboard using a 2D simulation, a 3D

simulation, or physical components.

These research aims will provide insights about the effects of physical fidelity on 

learning, transfer, and retention outcomes. Prior to developing the studies to evaluate 

these aims, a comprehensive literature review was conducted to gain the context and 

information needed to thoroughly understand the research area. Chapter 2 discusses the 

relevant literature concerning laboratory instruction and the use of 2D and 3D simulations 

in laboratory instruction, specifically in science and engineering.  Goal orientation and 

cognitive ability and their influence on these outcomes were also reviewed. The third 

chapter discusses the initial dissertation experiment evaluating  the influence of physical 

fidelity on learning and transfer outcomes, while  the fourth chapter describes the 

qualitative analysis conducted to determine how the transition from the simulated 

environments to the physical environment contributed to the learning outcomes achieved 

by participants, and the fifth chapter discusses the last study which evaluated the effect of 

the physical fidelity of the learning environment on retention. The final chapter discusses 

conclusions, broader impacts, and potential areas for future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

This literature review focuses on research on the impact of the physical fidelity of 

the learning environment on learning, retention and transfer outcomes within the larger 

instructional model and how this relationship may be influenced by specific learner 

characteristics.  It is organized into two sections: (a) the impact of physical fidelity on 

instructional (learning and retention) and transfer outcomes and (b) the impact of learner 

characteristics on instructional and transfer outcomes. Baldwin and Ford’s model of 

training transfer is introduced first as it was the primary conceptual model used in this 

research and because it served as a means to organize the research analysis and to discuss 

the study findings. 

Conceptual Model of Transfer 

The most commonly cited model of transfer, the one developed by Baldwin and 

Ford (1988), describes its goals in terms of the instructional and transfer outcomes as 

seen in Figure 2.1.  Its instructional outcomes include the learning and retention of 

knowledge or a skill, while transfer outcomes include generalization, defined as the 

application of a skill outside of the learning environment, and maintenance, which is the 

continued use of a skill following instruction (Baldwin & Ford, 1988).  Transfer is further 

impacted by the external conditions requiring it.  Both instructional and transfer 

outcomes are a function of the two inputs of instructional design and learner 

characteristics. Instructional design involves the learning principles, the instruction and 

the delivery method that are selected and combined to create an instructional program.     
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The characteristics of the learner include the individual differences in cognitive 

ability, motivation, and personality that influence the effectiveness of an instructional 

program directly or moderate the relationship between the instructional design 

characteristics and the outcomes. Baldwin and Ford’s model provides a useful framework 

for discussing how various factors interact to facilitate learning, retention, and transfer.  

Figure 2.1.Training Transfer Model (adapted from Baldwin & Ford, 1988) 

Instructional Design Characteristics 

Physical Fidelity 

Fidelity, which is  the degree to which a virtual or simulated environment 

corresponds to the real world (Alexander, Brunye, Sidman & Weil 2005), includes 

numerous subcategories, the most common ones being physical, cognitive, operational 

and psychological fidelity. Physical fidelity refers to the extent to which simulated and 

virtual environments physically correspond to the physical environment, while cognitive 

fidelity is the degree to which the learning environment produces the cognitive responses 

required in the real world (Hochmitz & Yuviler-Gavish, 2011). Operational fidelity is the 
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extent to which the simulated environment requires the execution of tasks necessary for 

performance, and psychological fidelity is the extent to which learners perceive similar 

meanings in the two environments (Baldwin & Ford, 1988). The relative importance of 

these types of fidelity in any given situation depends on the nature of the task (Stone, 

2001). For example, a high level of physical fidelity is of important for technical skills, 

while psychological fidelity is more important for tasks that require decisions to made 

under stress.  

While previous research has established the efficacy of using both low and high 

fidelity simulations for instruction, those studies were conducted primarily in such 

industries as aviation, the military, and healthcare (specifically surgery) where learning in 

a real-world environment is less viable due to cost, safety, and ethical concerns. As a 

result, there is limited research comparing outcomes when learning in the physical 

environment is substituted with learning in a simulated environment for skill-based 

outcomes (Triona & Klahr, 2003).  Further, the majority of the studies investigating 

learning in 2D and 3D environments has focused on conceptual learning, with few 

evaluating transfer and none evaluating retention outcomes (Campbell et al., 2002: 

Finkelstein et al., 2005; Jaakkola, Nurmi, & Veermans, 2011), perhaps explaining why 

engineering and technical education has been slow to employ online delivery for course 

and laboratory instruction (Bourne, Harris, & Mayadas, 2005). Further research is need to 

explore such questions  as how and which skillsets can be effectively learned in simulated 

environments and whether specialized  pedagogies need to be developed to support an 

online technical curriculum including simulated lab experiences (Bernard et al., 2004). 
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Lab-based instruction. Lab-based instruction is a key educational feature in the  

science, engineering, and technical disciplines (Jaakkola & Nurmi, 2008) as it provides 

the opportunity for students to test and apply the theories they have learned during 

lectures (Auer, Pester, Ursutiu, & Samoila, 2003). During laboratory-based activities, 

students engage in active learning, conduct experiments, and apply problem-solving skills 

that facilitate the application of theory in practical situations (Auer et al., 2003; Feisel & 

Rosa, 2005). This use of physical equipment and materials during instruction represents 

the highest level of fidelity. In addition, physical laboratories also allow students to 

experience the sensory characteristics of the equipment and experiments and gain 

familiarity with the environment in which they will be used (Zacharia, 2007; Zacharia & 

Olympiou, 2011).   

Despite being widely used in science education, researchers have questioned the 

effectiveness of laboratory instruction (Jaakkola & Nurmi, 2008). Working with physical 

components and learning through physical manipulation can lead students to develop 

inaccurate mental models, specifically for complex phenomena, because they can only 

view processes on the surface without understanding the invisible ones in the system that 

support theoretical understanding. This weakness in physical instruction represents one of 

the most commonly acknowledged strengths of simulated instruction.  

Simulation-based instruction. Simulated labs, which are being increasingly used 

effectively in education (Finkelstein et al, 2005; Gillet et al., 2013), allow students to 

conduct  their lab activity online using a simulation, a computer-based representation of a 

process, system or phenomenon that can be executed and then analyzed (Brey, 2008). 
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Although a simulation can be developed in a virtual environment, its purpose is to model 

a process, not physically imitate the system it represents. As a result, simulations and 

simulated labs can vary significantly in their level of physical fidelity. Such simulations 

can include 2D, 3D, and virtual laboratories that provide instructional support to students 

primarily in the science, engineering, medical, and technical fields. Past research has 

found that these environments can foster attention and engagement in students more 

readily than some of the more traditional methods (Stone, 2001; Adams, Reid, LeMaster, 

McKagan, Perkins, Dubson, & Weiman, 2008), suggesting that when simulations 

incorporate interactivity, animation, and a meaningful context, they can create a 

“powerful learning environment” (Adams et al., 2008, pg. 418).  

One of the primary advantages of simulations is that they can “make the invisible 

visible” (for example showing the current flow of an electric circuit), helping students 

learn complex relationships (Finkelstein et al., 2005; Jaakkola, Nurmi, & Veermans, 

2011).  Simulations also help students to learn in an ideal environment where they can 

focus on exploring concepts without the complications associated with malfunctioning 

laboratory equipment (Finkelstein et al., 2005), and they can also provide a safe, more 

accessible environment in which learners can explore and practice at their own pace 

(Jaakkola & Nurmi, 2008).  

One criticism of simulated labs, however, is that they necessitate students learning 

in an environment that is fundamentally different from the one in which they may 

ultimately work (Jaakkola & Nurmi, 208).  Furthermore, simulations lack the nuances 

that exist in the real world and may also oversimplify a complex system. Their ideal 
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representation of a system, while potentially beneficial for learning, may create issues for 

students when they encounter problems in the real-world environment that they never 

experienced in the simulation. Additionally, Couture (2004) found that learners may 

doubt that the principles demonstrated in a simulation are applicable to the real world.  

The Effect of Fidelity on Learning Outcomes 

Proponents of physical laboratories argue that the use of computer-based 

interactive simulations limits students from experiencing the hands-on manipulation of 

real materials, thus distorting reality (Scheckler, 2003).  This physicality, which is “the 

actual and active touch of concrete material,” is believed to be important for learning 

(Zacharia & Olympiou, 2011, p. 318). Woodfield et al. (2005) also argued that 

simulations lack the necessary detail and realism to effectively teach proper laboratory 

technique. However, proponents of computer simulations suggest that it is the active 

manipulation, rather than the physicality, that is the most important element of laboratory 

instruction (Resnick, 1998). In addition, Triona and Klahr (2003) suggested that only for 

perceptual-motor skills are physical practice necessary. For other skills, however, 

physically manipulating components is not necessary for the information processing and 

practice needed to acquire them.     

Several studies have evaluated using simulated environments in laboratory 

instruction as a supplement, a substitute, or in some combination with a physical 

laboratory.  For example, Martinez-Jimenez et al. (2003) found that educational software, 

including virtual laboratories, was a beneficial supplemental tool for helping students 

prepare for laboratory work,  results supported by  Dalgarno et al. (2009), who  found 
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that a simulated chemistry laboratory could act as an effective tool for helping students 

become familiar with the laboratory environment prior to attending class. The study 

conducted by Finkelstein et al. (2005) using Physics Education Technology (PhET) 

simulations, on the other hand, found that contextually appropriate simulations may be 

more effective than real lab equipment in terms of educational outcomes. Their study 

compared students who learned to build circuits using a computer simulation with those 

who learned to build circuits using physical components, finding that the former on 

average needed less time to build an electrical circuit than those who had learned in a 

physical laboratory setting. In addition, they also demonstrated better competence when 

writing about phenomena associated with electrical circuits.  

Campbell et al. (2002) also compared learning outcomes associated with electric 

circuits in a simulation versus a physical laboratory, finding that a combination of 

simulation and physical experiences resulted in better performance on a written 

evaluation than a physical laboratory alone but there were no significant differences in 

task completion. Other research has also found that students who learned about electricity 

concepts using a combination of simulation and physical laboratory experiences achieve 

superior learning outcomes (declarative knowledge gains) compared to those students 

learning solely in a physical environment or in a simulated environment (Campbell et al., 

2002; Zacharia, 2007; Jaakola, Nurmi, & Veermans, 2011).  

Though not specifically discussing simulation in relation to physical laboratory 

instruction, Clark argued that media does not influence learning outcomes as long as the 

instructional method is controlled (1994); however, several studies comparing learning in 
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simulated and physical environments have not controlled the methods used. For example 

in Finkelstein’s study, students learning about circuits using the PhET simulations were 

able to learn about current flow as  the simulations made the invisible visible but no 

comparable alternative, such as a video animation, was mentioned as being provided  for 

students learning circuits in the physical condition. As a result, students using the former 

may have learned more, contributing to the conceptual gains found in this study. The 

research reported here focuses on the ability of the student to learn the hands-on and 

technical aspects of the lab activity versus the conceptual benefits that can be provided by 

2D and 3D simulations.   

Prior research in workforce education has demonstrated that higher levels of 

fidelity are not necessary, and sometimes even detrimental, to learning and transfer 

(Alexander et al., 2005). In fact, Alexander et al. (2005) cautioned against the assumption 

that increasing fidelity will lead to improved outcomes. According to  Richards and 

Taylor (2015),  additional studies are needed to compare the educational benefits of 2D 

versus 3D environments, research that is important because the differences in fidelity 

between these two represent differences in software maintenance and development costs 

as well as technological requirements for the system on which the simulation operates. If 

comparable learning outcomes could be achieved using a 2D simulation, this option may 

be a better alternative.  

However, early research conducted by Regian et al. (1992) concluded that 

instruction using 2D simulation might be less effective than 3D as translating the 

representation from the former to the latter may result in additional cognitive load for 
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learners. In some cases 2D representations will be inherently deficient if the data it must 

imitate are three-dimensional (Richards & Taylor, 2015). Sampaio et al. (2010) suggested 

that for technical fields like engineering, the use of 3D representations may lead to better 

learning outcomes than 2D representations. However, while 3D representations provide 

more flexibility and realism, their increased complexity makes it harder for students to 

interact with them and can degrade performance (Stuerzlinger & Wingrave, 2011). 

Novices, in particular, may struggle to grasp all of the information being conveyed in 

higher levels of fidelity (Gillet et al., 2013). Further, technical issues like poor resolution 

and lag in the 3D environment can lead to performance deficiencies (Kenyon & Afenya, 

1995). As this analysis suggests, additional research is needed to determine what aspects 

of 2D and 3D representations of tasks are beneficial for learning as well as the contexts 

and domains best suited for these types of technologies (Richards & Taylor, 2015).  

The Impact of Physical Fidelity on Retention Outcomes  

There is no extant literature that specifically investigates the effects of the 

physical fidelity of the learning environment on retention outcomes. However, Ricci et al. 

(1996) offers insights on the retention in computer-based environments, their study 

finding that participants who studied a task using a computer game saw more significant 

improvement between the pretest and the retention assessment than those who used 

textbooks (Ricci, Salas, & Canon-Bowers, 1996). Of the six attributes the researchers 

identified as potentially contributing to the effectiveness of games for retention, three – 

immediate feedback, novelty, and dynamic interaction – could also apply to simulated 

learning environments. 
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Farr (1986) and Arthur et al. (1998) also identified different factors and task 

characteristics that influence retention or, conversely, decay, the loss of knowledge or a 

skill following a period of nonuse (Arthur, Bennett, Stanush, & McNelly, 1998). The 

most influential factors for decay are periods of nonuse and overlearning, with this 

attribute having a positive relationship with degree of nonuse and a negative relationship 

with degree of overlearning (O’Hara, 1990; Arthur et al., 1998). Decay can be evaluated 

in terms of the amount and the rate of loss  (Farr, 1986), with a  typical decay curve 

demonstrating rapid loss immediately after acquisition and a slowing as the retention 

period increases until it reaches an asymptote near the pre-instruction level (O’Hara, 

1990).  

Other factors found to influence decay include the task characteristics and the 

retention assessment (Arthur et al., 1998). Task characteristics include closed-loop vs 

open-loop and cognitive vs physical tasks. Closed-loop tasks involve discrete responses 

and, thus, have a defined beginning and end, while open-loop ones involve continuous 

responses without a defined beginning or ending. Arthur et al. (1998) found that open- 

loops tasks were more susceptible to decay, while Farr (1986) found the opposite, that 

closed-loop tasks were more susceptible.   Cognitive tasks require mental operations, and 

physical tasks require mental exertion and coordination, meaning the latter exhibit   less 

decay than the former (Arthur et al., 1998). Procedural skills, which are particularly 

susceptible to rapid and expansive loss, decay faster than psychomotor skills (O’Hara, 

1990; Ginzburg & Dar-El, 2000). In terms of retention assessment, tasks involving 
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recognition are less susceptible to decay than tasks involving recall. In addition, tasks 

evaluated behaviorally exhibited less decay than those evaluated cognitively.  

The Impact of Physical Fidelity on Transfer  

Ricci et al., (1996) suggested that the evaluations completed immediately 

following instruction alone do not present a clear assessment of learning as measures that 

include transfer. In addition to learning outcomes, this research seeks to explore how 

learning in a simulation affects transfer, the ability of students to apply their learning in 

the real-world. Some researchers support low physical fidelity, suggesting that it helps 

reduce cognitive load by omitting potentially over-simulating details, meaning students 

can concentrate solely on what needs to be learned (Zacharia & Olympiou, 2011; Pass & 

Sweller, 2014). Proponents of high fidelity, however, suggest it supports transfer as the 

correspondence between the 3D simulation and the real world facilitates recognition, 

helping to activate the requisite schemas developed using the simulation (Zacharia & 

Olympiou, 2011).  

 Few of these studies, however, have evaluated transfer outcomes. Finkelstein et 

al. (2005) found that students who learned using simulations achieved better transfer 

outcomes (lower construction times) while Campbell et al. (2002) did not find significant 

differences in the construction time among those who learned in the physical 

environment and those who learned in a combined setting (both simulated and physical 

instruction). More important to the research reported here, both studies evaluated the 

outcomes using teams rather than individual learners. 
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  Several theories offer insight into how the physical fidelity of the learning 

environment may impact transfer.  Thorndike’s identical elements theory posits that there 

will be a high positive transfer when identical stimulus and response elements are used in 

the learning and transfer environments (Goldstein & Ford, 2002) because learners are 

essentially practicing the task which they will have to execute (Yamnill & McLean, 

2001).  If the stimuli differ, which may be due to the fidelity, but the response is the 

same, learners may be able to generalize what they have learned and apply it to the 

transfer environment. This identical elements theory supports utilizing a high level of 

physical fidelity but only for the tasks or its aspects that need to be transferred. This 

conclusion is also supported by Farr (1986), who suggested that for relationships among 

complex abstract phenomena, the physical fidelity of the system only needs to be 

sufficient to encourage accurate mental representations of the relationships.  

According to the general principles theory, transfer is facilitated when students 

are taught the rules and theories underlying the skills they are learning (Baldwin & Ford, 

1988). Simulations, depending on the design of the software, may provide an advantage 

by helping students to develop a better conceptual understanding of the task under study 

in addition to fostering more in-depth exploration of a phenomenon (Adams et al., 2008). 

While the identical elements theory has been regarded as explaining near transfer, the 

application of learning to similar problems, the general principles theory is more 

applicable to far transfer, the ability to apply learning to new problems (Yamnill & 

McLean, 2001).   
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Cognitive load theory (CLT) also provides relevant insight on how different 

learning environments can impact transfer, positing that the acquisition of a skill is 

constrained by an individual’s limited information processing resources. Environments or 

instructional techniques that impose an additional cognitive burden on students, referred 

to as extraneous cognitive load, are detrimental to learning (Paas & Sweller, 2014). While 

the effects of this extraneous load may vary based on individual characteristics such as 

cognitive ability or prior experience, there is currently not enough evidence to suggest 

whether there is an inherent increase in load due to the physical fidelity of the learning 

environment. Conversely, environments that increase the germane cognitive load, i. e. 

those resources devoted to learning, can facilitate skill acquisition and transfer (van 

Merriënboera, Schuurmanb, de Croock, & Paas, 2002). 

Influence of Learner Characteristics on Instructional and Transfer Outcomes 

Past research has found that learner characteristics, both dispositional attributes 

such as cognitive ability and fluid characteristics like level of engagement, have been 

found to impact the effectiveness of an instructional program and its instructional 

objectives (Anderson, 1982; Noe, 1986; Snow, 1989). Specifically, learner characteristics 

have been found to impact learning strategies, effort, and perseverance (De Raad & 

Schouwenburg, 1996), with more recent research finding that these individual 

characteristics include cognitive abilities, personality traits, and prior knowledge (Shute 

& Towle, 2003).  

The relationship between the learning environment and learner characteristics on 

outcomes is referred to as aptitude-treatment interaction (ATIs). Aptitude is a construct 
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explaining the learner’s cognitive ability, prior knowledge and personality traits, and 

treatment describes the condition or environment that fosters learning (Cronbach & 

Snow, 1977). With the increasing use of technology in education, there is a renewed 

interest in ATIs as researchers seek to understand which learner characteristics are most 

important for designing adaptive learning systems (Shute & Towle, 2003). Currently, the 

research investigating the interaction of learner characteristics and physical fidelity (e.g., 

2D simulation, 3D simulation, or physical labs) on learning, transfer, and retention 

outcomes is limited. To address this limitation, this study focused on two learner 

characteristics – cognitive ability and goal orientation.  Goal orientation was selected as 

the personality trait explored here because it has demonstrated positive effects on 

learning and performance (Kozlowski, Gully, Brown, Salas, Smith & Nason, 2001); 

similarly, cognitive ability has consistently been found to have a major influence on 

learning outcomes (Clarke & Voogel, 1985; Kozlowski et al., 2001).  

Cognitive Ability   

Cognitive ability is an individual’s capacity to perform higher-order mental 

processes such as critical thinking, problem-solving, and self-monitoring (Clark & 

Voogel, 1985). Individuals with higher cognitive ability learn and retain more 

information and are also better able to generalize and apply their knowledge in the real 

world (Busato, Prins, Elshout, & Hamaker, 2000; Clark & Voogel, 1985). Some research 

suggests that learners with lower cognitive ability experience more decay for abstract, 

theoretical concepts than higher ability learners (Farr, 1986), findings suggesting that the 

latter students should achieve better learning, retention, and transfer outcomes.   
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In addition, prior research has  also suggested that individuals with lower 

cognitive abilities may need a more structured learning environment while individuals 

with a higher cognitive ability can perform as well in an less structured one  (Snow, 

1989). Thus, physical, classroom based-instruction may be more beneficial for learners 

with lower cognitive ability than the less structured and more autonomous nature of a 2D 

or 3D simulated environment, particularly when they are used in an online setting. 

Furthermore, the cognitive load theory suggests that the extraneous cognitive load created 

by instructional design elements may be detrimental to learning, especially for lower 

cognitive ability learners who may already have reduced information processing 

capabilities (Clark & Voogel, 1985; Paas & Sweller, 2014). For example, the increased 

complexity of the 3D environment may negatively influence an individuals’ ability to 

learn a task an well as negatively impacting transfer as it increases their extraneous 

cognitive load as well.    

Goal Orientation   

Goal orientation is used to explain how an individual approaches an achievement 

task (Elliot & Dweck, 1988). A relatively stable dispositional trait that can be influenced 

by situational variables,  it is commonly conceptualized as performance goal orientation 

(PGO) and learning or mastery goal orientation (LGO) (Button et al., 1996), with  PGO 

being further subdivided into performance-approach and performance-avoid (Brett & 

VandeWalle, 1999). The goal orientation of individuals learning a new task or working in 

an unfamiliar environment influences both their willingness to work through challenges 

and their performance expectations (Elliott & Dweck, 1988). An orientation towards 
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performance goals can impede the learning of more involved task relationships as these 

students focus on a narrow set of concepts. As a result, they may perform well initially or 

during instruction but are unable to generalize or apply the skills in other contexts 

(Kozlowski et al., 2001). An orientation towards learning goals leads learners to acquire 

the knowledge and skills required for competency. In addition, it also fosters a desire to 

explore relationships in greater depth, thus alleviating the fear of making mistakes while 

building task-specific self-efficacy (Kozlowski et al., 2001). Evaluating how goal 

orientation affects the ability to learn can provide insights on what type of learning 

environment, physical, 2D, or 3D, will lead to the best learning outcomes.  

Goal orientation has also been linked to skill transfer. According to  Stevens and 

Gist (1997), mastery-oriented learners demonstrated greater skill maintenance in transfer, 

while more recently Kozlowski et al. (2001) found that although LGO had a stronger 

correlation in performance (r = 0.14 versus r = 0.098), both orientations had a similar 

correlation (r= 0.243 versus r= 0.253) for performance generalization.  As this body of 

research suggests, individuals with stronger LGOs typically attain better outcomes.  

Addressing the Gaps in the Literature Through the Research Aims 

As this analysis of the literature  suggests, there is a need for additional research 

identifying how simulated environments of varying levels of physical fidelity influence 

instructional outcomes; what roles, if any, physicality plays;  how learner characteristics 

influence these relationships; and what happens as learners transition from working in a 

simulated environment to a physical environment. The research reported here can offer 

substantive contributions in those areas by addressing its aims of 1) identifying  how the 
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physical fidelity of the learning environment impacts instructional (learning and 

retention) and transfer outcomes, 2) identifying  any moderating effects of learner 

characteristics and 3) identifying  how the physical fidelity of the learning environment 

and the transition from the simulated environment to the physical environment contribute 

to differences in the learning outcomes achieved by participants.  Based on the literature 

review and the aims of this research, the model seen below in Figure 2.2 was 

operationalized and applied to the studies reported here.  

Figure 2.2 Operationalization of Training Transfer model employed for this research 
(Adapted from Baldwin & Ford, 1988) 

Chapter Summary 

This literature review, organized using the model of transfer developed by 

Baldwin and Ford (1988), first covered the extant literature on the impact of physical 

fidelity on instructional and transfer outcomes. The efficacy of 2D and 3D simulated 
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environments were explored along with several theories of transfer. Next, the chapter 

examined several important learner characteristics, cognitive ability and goal orientation, 

that may impact these outcomes and moderate the relationship between physical fidelity 

and the outcomes. Finally, this review discussed how the three research aims address the 

gaps in the literature, providing the operationalized model that served as the framework 

for the research studies presented here.  
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CHAPTER THREE 

 DISSERTATION STUDY ONE 

Purpose 

The purpose of this first study was to address aim one by exploring how 

individual performance of a task differed depending on the physical fidelity (referred to 

here simply as fidelity) of the instructional environment and how this relationship was 

influenced by cognitive ability and goal orientation. Specifically, this study investigated 

how learning to construct an electrical circuit using a 2D breadboard simulation, a 3D 

breadboard, or a physical breadboard impacted instructional objectives. These objectives 

were assessed using affective, cognitive and skill-based outcomes.  

Although previous research has identified value in using simulations as a 

supplement or in combination with laboratory education, little research has specifically 

investigated the differences in outcomes between 2D and 3D simulations or the influence 

of learner characteristics (Kim et al., 2013; Richards & Taylor, 2015).  The study 

reported here aimed to explore the role of the fidelity of the learning environment by 

comparing learning outcomes associated with learning in a 2D, 3D, and a physical 

environment. This research also aimed to investigate the impact of goal orientation and 

cognitive ability on learning outcomes for participants learning in those three 

environments. The work of this chapter was submitted to the International Journal of 

Industrial Ergonomics. 
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Methods 

Participants 

Participants for this study included 48 undergraduate and graduate students from a 

public mid-sized Southeastern University, recruited using word of mouth, flyers, and 

email blasts. To be eligible, participants could not have been currently enrolled in or have 

taken a circuits-based class during the previous academic year. Additionally, each 

participant must have been able to self-report an ACT or SAT score. Of the participants, 

engineering students represented approximately 33%, while undergraduates accounted 

for 50% and females comprised 62.5% of the participants. Approximately 79% of the 

participants reported that they were in the 18-27 year-old category, while the remaining 

21% were 28 years old or older. The majority of the participants (92%) reported having 

little to no prior experience working with circuits. Although 33% of the participants were 

engineering majors, depending on their specific major and year, they may not have taken 

a circuits or physics course. This study was approved by Clemson University IRB (# 

IRB2015-001).  

Experimental design 

This study utilized a pretest-posttest between subjects design. The fidelity of the 

learning environment (with three levels, physical, 2D simulation, and 3D) was the 

between subjects variable. While the primary independent variable (IV) of interest was 

the fidelity, the covariates included pretest scores, cognitive ability, and goal orientation. 

The pretest scores were used to control for individual differences in baseline knowledge 

and any exposure to electrical circuits that was not restricted by the study design. In order 
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to facilitate a holistic evaluation of learning, the dependent measures included affective 

outcomes, cognitive outcomes, and skill-based outcomes (Kraiger et. al, 1993). The 

affective measure was self-efficacy (measure using a Likert scale), which is the 

participant’s belief in his/her ability to perform a task (Guthrie & Schwoerer, 1994). The 

cognitive outcomes were gain scores (posttest score – pretest score) and circuit design 

(measured as a grade). Gain scores indicate the improvement from the pretest score to the 

posttest score, and the skill-based outcomes were construction time (minutes) and circuit 

construction (grade).  

Participants’ SAT scores were used as a proxy for cognitive abilities. Those who 

did not take the SAT were allowed to use their composite ACT score. Past research has 

demonstrated that both the SAT (r = 0.82) and the ACT (r=0.77) have a strong correlation 

with cognitive ability (Noftle & Robins, 2007; Koenig, Frey, & Detterman, 2008). A 

strong correlation (r=0.87) has also been demonstrated between composite ACT and total 

SAT scores (Dorans, 1999). For consistency, ACT composite scores were converted to 

total SAT scores for the analysis using the conversion chart developed by Dorans (1999). 

This conversion was used for only six participants.  Both learning and performance goal 

orientations were assessed using an eight- question instrument developed by Button et al. 

(1996). The reliability of these questionnaires, indexed by Cronbach’s alpha, was 0.72 for 

PGO and 0.78 for LGO. Self-efficacy was measured using a six-question instrument with 

a reliability of α = .82 (Guthrie & Schwoerer, 1994). All questions used five-point Likert 

scales anchored by strongly disagree and strongly agree.  
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Procedures 

After completing the consent form, participants completed a 5-question multiple 

choice, paper-based pretest examining their knowledge of basic electrical concepts 

(Appendix A). The pretest included questions on defining electrical concepts (e.g., 

voltage, resistance, and current), identifying circuit diagram symbols (e.g., switches, 

resistors, battery, and LEDs), designing a circuit diagram, demonstrating an 

understanding of breadboard functionality, and applying Ohm’s law. Each question had 

four answer options. Next, they completed a demographic survey, where they reported 

their SAT/ACT score, and the goal orientation instruments (Appendices B and C). 

Students subsequently watched a 28-minute video lecture on circuit analysis and basic 

circuit construction. This video included three sections, each with individual learning 

objectives and practice exercises.  

Following this instruction, students watched two videos demonstrating how to 

construct a circuit. The construction video participants watched depended on the 

condition to which they were randomly assigned. That is, participants in the physical 

condition watched a video of a researcher using the physical components, and similar 

demonstrations were used for the 2D and 3D conditions involving their respective 

technology. Participants in the physical condition practiced constructing circuits using an 

800-point solderless breadboard (Figure 3.1), while participants in the 2D condition

practiced using a 2D breadboard simulation (123D Circuits Arduino 2D Breadboard) 

(Figure 3.2) and participants in the 3D condition practiced using a 3D breadboard 

(National Instrument Multisim Educational Edition Version 13) (Figure 3.3).  
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During these videos, participants were shown how to use Ohm’s law to calculate 

the resistor values needed for their circuit, how to design their circuit diagram and how to 

construct their circuit. Because students in the 2D and 3D conditions also had to learn to 

use the software, the instructional videos for each of the conditions varied in length. In 

total, they ranged from 7 to 17 minutes. The study set-up included a computer 

workstation with two monitors so that participants could watch the video on one screen 

while constructing their practice circuits on the second.  Participants navigated the 2D 

simulation and 3D environments using a mouse and keyboard.  Students in all conditions 

used comparable circuit components – LEDs, switch, resistors, and batteries - and had 

access to the instructional videos during their practice sessions. 

Participants were given three practice activities to complete. One of these practice 

activities instructed participants to complete a series circuit using a three-prong switch, 

while the second had participants construct a parallel circuit and the last activity 

demonstrated how to construct a parallel circuit with the switch at one connection. 

During these practice sessions, they were provided with feedback concerning the 

accuracy of their calculations and the construction of the circuit and were referred to the 

appropriate video for review for any errors they made.  The participants were not allowed 

to continue the experiment until they had successfully completed the practice activities. 

Although this requirement led to varying practice times, it was essential that participants 

demonstrated a minimum level of proficiency before continuing.  

Following these practice sessions, the participants completed a post-survey 

assessing their self-efficacy and a 5-question multiple choice, paper-based posttest 



30 

(Appendices D and E). The posttest was of the same structure and length, and used the 

same types of questions as the pretest. Finally, the participants from all conditions 

constructed a simple circuit including a switch and 3 LEDs on a physical breadboard 

without access to the video lectures (Appendix F). Students had to first design the circuit 

and use Ohm’s law to determine the correct amount of resistance needed based on the 

voltage source they selected (a 9 volt battery or a 1.5 volt AA battery) The circuit needed 

to be constructed such that the two LEDs were connected in series and powered by a 

switch and the third LED was connected in parallel. While completing this construction 

task, they were video recorded using a GoPro Hero4 Black camera positioned above them 

to record an aerial view of their work surface without being intrusive.  

Figure 3.1. A screen shot of the Arduino 2D Breadboard (123d.circuits.io) 

Figure 3.2. A screen shot of the NI Multisim Breadboard (http://www.ni.com/multisim/) 
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Figure 3.3. 800 Point Solderless Breadboard 

Results 

Analysis 

The data were analyzed using SPSS 22, and ANOVAs were used to analyze the 

effects of the predictor variables on self-efficacy, gain scores, and construction time. In 

addition, an ordered logistic regression was used to analyze the effects of the predictor 

variables on circuit design grade and circuit construction grade. The circuit design and 

circuit construction were graded for accuracy on a three-level scale, no errors (correct), 

minor errors, and major errors. All of the models were evaluated at the alpha = .05 level. 

Prior to analysis, the data were evaluated to ensure they met the assumptions – 

independence, normality, and homogeneity of variance – needed for an ANOVA as well 

as the assumptions, including proportional odds, of an ordered logistic regression. These 

assumptions were met, and, therefore, the analysis methods were deemed appropriate. 

While this study involved 48 total participants, the data for one participant, who was in 

the physical condition, were removed because he failed to report his SAT or ACT score 

as required by the study. Furthermore, three additional participants withdrew from the 

study, resulting in a different sample size for the circuit design and the construction 
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activities. The total number of participants in each condition for all dependent measures 

was 15 in the physical condition, 16 in the 2D condition, and 13 in the 3D condition.  

Results 

Participants were given a pretest to assess their knowledge of circuit theory and 

construction. A one-way ANOVA found no significant differences, F(2,44) =.123, p = 

.884, in the pretest scores of participants in the three conditions, suggesting  no detectable 

differences in their pre-existing knowledge.    

The first research question focused on the impact of the fidelity of the learning 

environment on affective, learning, and skill-based learning outcomes. The first 

dependent variable assessed was self-efficacy, an affective outcome. The predictor 

variables included in this model were fidelity, LGO, and PGO. Four participants did not 

complete the self-efficacy survey, resulting in a total of 43 observations analyzed. Based 

on the ANOVA results, fidelity (F(2,39)=3.809 (p=.031)), was a significant predictor 

(Table 3.1). The mean self-efficacy was 4.36 (SD= .58) for participants in the physical 

condition, 3.76 (SD=.67) for participants in the 2D condition, and 3.93 (SD=.75) for 

participants in the 3D condition (Figure 3.4). Subsequent post hoc analysis completed 

using the least significant differences (LSD) test revealed significant differences in self-

efficacy between participants in the physical condition and participants in the 2D 

condition, (p=.014), and between participants in the physical condition and the 3D 

condition, (p=.038). LGO and PGO were not significant predictors of self-efficacy. 

Fidelity had a unique effect size of sr2 = .378. 
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Learning outcomes were assessed using gain scores and circuit design. The 

average gain score for all conditions was 0.24 (SD = .21), based on a maximum score of 

one. The pretest scores ranged from 0.10 to 0.80, and the posttest scores ranged from 0.45 

to 1.00. This model included the predictor variables of LGO, PGO, cognitive ability, and 

pretest scores. Based on ANOVA results, LGO (F(1,40) = 5.02 (p = .031)), cognitive 

ability (F(1,40) =6.49 (p=.015)), and pretest scores (F(1,40) = 31.09 (p<.001)) were 

significant predictors of gain score. Pretest scores had the highest unique effect size (sr2 = 

.378). Cognitive ability and LGO had unique effect sizes of sr2 = 0.06 and sr2= 0.057, 

respectively. Fidelity and PGO were not significant predictors of gain score (Table 3.2). 

Table 3.1. ANOVA for participants’ self-efficacy following instruction and practice 

Sum of 
Squares df 

Mean 
Square F P-value

Fidelity 3.16 2 1.58 3.81 0.031 
PGO 1.35 1 1.35 3.26 0.079 
LGO 0.666 1 0.666 1.61 0.212 
Error 16.16 39 0.414 
Total 21.2 43 
R Squared = 0.237 (Adjusted R Squared = 0.159) 

Figure 3.4. Mean SE with standard errors for each condition 
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Table 3.2. ANOVA for participants’ gain score from the pretest to the posttest 

Sum of Squares df Mean Square F P-value
Fidelity 0.07 2 0.034 1.52 0.232 
LGO 0.11 1 0.113 4.86 0.031 
PGO 0.00 1 0.005 0.23 0.886 
Cognitive ability 0.15 1 0.118 5.10 0.015 
Pretest score 0.70 1 0.741 32.0 <0.001 
Error 0.90 40 0.023 
Total 1.98 46 
R Squared = 0.544 (Adjusted R Squared = 0.476) 

Circuit design was graded on a scale ranging from major errors to no errors (Table 

3.3). Major errors included such mistakes as designing a series circuit instead of a parallel 

circuit, while minor errors included using incorrect symbols. As one participant 

completed the diagram prior to withdrawing from the study, there were a total of 45 

observations for this model. The majority of participants (51%) were able to correctly 

design the circuit (Table 3.3). An ordered logistic regression was used to analyze the 

effects of fidelity, cognitive ability, LGO and PGO on circuit design grades (no errors, 

minor errors, and major errors). The test of parallel lines for the ordered logistic model 

was found to be insignificant, suggesting the proportional odds assumption was met 

(p=0.161). 

Table 3.3. Frequency of errors in participants’ circuit design task 
Condition No errors Minor Errors Major Errors Total 
Physical 9 5 1 15
2D 7 6 3 16
3D 7 5 2 14
Total 23 16 6 45

To make the interpretation of the results more meaningful, the continuous 

variables were dichotomized into high and low values based on a median split. For circuit 
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design, only cognitive ability was found to be a significant predictor, χ2 (1, N=45) = 5.51 

(p=0.019). The odds of designing the circuit correctly were 4.57 times higher [95% CI: 

1.32, 17.15] for participants with high cognitive ability compared to participants with low 

cognitive ability. Fidelity, PGO, and LGO were not significant predictors. 

Skill- based outcomes were measured using the total construction time and circuit 

construction grade. As mentioned earlier, three participants withdrew from the 

experiment prior to completing the construction activity, resulting in 44 observations. 

Construction time began once participants received the directions and ended when 

participants submitted their final circuits. The predictor variables included in this model 

were fidelity, goal orientation, and cognitive ability. Fidelity was a significant predictor 

of construction time, F(2,33) = 4.87 (p =0.014) (see Table 3.4). The mean construction 

time differed among conditions, with participants in the physical condition taking 15.47 

minutes (SD=12.39), participants in the 2D simulation condition taking 29.88 minutes 

(SD=14.76), and participants in the 3D condition taking 30.43 minutes (SD=16.91). 

Subsequent post hoc analysis using LSD found significant differences between the 

physical condition and the 2D condition (p=0.018) as well as between the physical 

condition and the 3D condition (p=0.019). However, there were no significant differences 

in mean construction times between the 2D and 3D conditions (p=0.620). The effect size 

for fidelity was sr2 = 0.19. LGO, PGO, and cognitive ability was not a significant 

predictor of construction time. However, LGO was found to moderate the relationship 

between fidelity and construction time. The unique effect size for this moderating 

variable was sr2 = 0.134 
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Circuit construction grades, like the circuit design grades, were scored on a scale 

ranging from major errors to no errors (Table 3.5). For the construction activity, all 

participants constructed their circuits using the physical breadboard. With respect to 

circuit construction grades, major errors included mistakes such as the inability to close 

the circuit properly, while minor errors included incorrect placement of the switch. Of the 

44 participants who attempted construction, 52% were able to correctly construct the 

circuit. An ordered logistic regression was used to analyze the effects of all the IVs –

fidelity, cognitive ability, LGO and PGO – as well as the circuit design grades on circuit 

construction. Similar to circuit design, the continuous variables in the analysis were 

dichotomized using median splits to facilitate interpretation. The proportional odds 

assumption for this model was also met as the test of parallel lines was found to be 

insignificant (p=0.77). 

Table 3.4. ANOVA for participants’ construction time on the physical breadboard 

For circuit construction, circuit design (χ2 (1, N=44) = 5.32, p=0.024) and fidelity 

(χ2 (2, N=44) = 2.93, p=0.021) were found to be significant predictors. The odds of 

constructing the circuit correctly were 0.04 times [95% CI: 0.003, 0.617] lower for 

Sum of 
Squares Df 

Mean 
Square F 

P- 
value 

PGO 12.35 1 12.35 0.056 0.815 
LGO 1.06 1 1.06 0.005 0.945 
Cognitive ability 254.46 1 254.46 1.15 0.292 
Fidelity 2161.65 2 1080.83 4.87 0.014 
Fidelity*Cognitive ability 103.67 2 51.84 0.233 0.793 
Fidelity*LGO 1513.34 2 756.67 3.41 0.045 
Fidelity*PGO 322.13 2 161.07 0.725 0.492 
Error 7328.61 33 222.08 
Total 11288.31 44 
R Squared = .351 (Adjusted R Squared = .134) 
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participants who made major errors in their circuit designs than for participants who 

made no errors. In addition, the odds for participants in the 3D condition were 0.064 

times lower [95% CI: 0.003, 0.617] than the odds for participants in the physical 

condition.  

Table 3.5. Frequency of Errors in Participants’ Circuit Construction Grades 
Condition No errors Minor errors Major Errors Total 
Physical 11 2 2 15 
2D 8 2 6 16 
3D 4 2 7 13 
Total 23 6 15 44 

The second research question focused on the moderation effects of learner 

characteristics on the relationship between fidelity and the learning outcomes. As 

previously mentioned, there was a moderation effect of learning goal orientation on the 

fidelity for construction time, F(2, 33) = 3.41 (p=0.045) (Table 3.4). In the 3D condition, 

participants who had a higher than average LGO constructed their circuits faster (24.11 

minutes, SD=9.61) than those with a lower than average LGO (41.8 minutes, SD =22.21). 

In the 2D condition, participants with a higher than average LGO took longer to construct 

their circuits (33.86 minutes, SD = 17.32) than participants with a lower than average 

LGO (26.78 minutes, SD = 12.61) (Figure 3.5). In the physical condition, participants 

with a higher than average LGO also constructed their circuits more slowly (18.22 

minutes, SD = 15.24) than those with a lower than average LGO (11.43 minutes, SD 

4.89). Further analysis found that this pattern was consistent even after removing the 

participants who gave up or were ultimately unsuccessful in their construction attempt. 
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Figure 3.5. Interaction between LGO and Physical Fidelity on Construction Time 

Discussion 

The aim of this study was to investigate how learning in different levels of fidelity 

influenced affective, cognitive, and skill-based learning outcomes. This breakdown of 

learning outcomes is distinct from the existing literature evaluating the impact of 

simulated learning environment in that the results of these previous studies have focused 

predominantly on cognitive outcomes using gain or posttest scores (Zacharia, 2007; 

Jaakola & Nurmi, 2008; Jaakola, Nurmi, & Veermans, 2011). The results of this study 

demonstrated that the fidelity of the learning environment did impact the affective and 

skill-based learning outcomes but not the cognitive outcomes (i.e., gain scores and circuit 

design grades). Participants in the physical condition had higher self-efficacy, constructed 

the circuit faster and had higher odds of successful construction than participants in both 

the 2D and 3D conditions. However, fidelity was not a significant predictor of cognitive 

outcomes – gain score and circuit design. With, the exception of self-efficacy, which has 

not been previously studied, these findings were consistent with previous research. 
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There is no literature that specifically evaluates the impact of fidelity on self-

efficacy; however, previous research has suggested that self-efficacy may be influenced 

by instructional interventions (Zimmerman, 2000). Fidelity exhibited a sizable unique 

effect size on participants’ self-efficacy. Participants in the physical condition had a 

higher self-efficacy than the participants in both the 2D and 3D conditions. While 

individuals in the physical condition had the advantage of fidelity for the circuit 

construction task as it was completed on a physical breadboard, the participants did not 

know this beforehand. Because participants recognized that constructing a circuit is a 

hands-on task, it is possible that those in the 2D and 3D conditions realized that what 

they learned would inherently be different from how the task would be performed in the 

real world and, as a result, had a lower self-efficacy. This lower self-efficacy potentially 

impacted participants’ effort and persistence on the circuit design and construction task 

(Zimmerman, 2000). Additionally, participants with lower self-efficacy are more 

susceptible to adverse emotional reactions if they encounter challenges (Zimmerman, 

2000).  

Fidelity was also a significant predictor of construction time and circuit 

construction. Participants in the physical condition were able to construct the circuit 

twice as fast as participants in either the 2D or 3D condition and were more likely to 

construct the circuit correctly. While many studies have investigated conceptual gains 

associated with learning in 2D and 3D environments, few have looked at skill-based 

outcomes. Campbell et al., (2002) found no significant differences in the ability of 

students to complete the laboratory assignment between participants learning under 
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different levels of fidelity. Finkelstein et al., (2005) found that participants who had 

learned to construct circuits in a 2D simulation were able to complete their laboratory 

assignment faster than those who learned using physical components.  One major 

difference between the present study and the two prior studies is that participants in those 

studies worked in teams whereas participants in this study worked individually. 

Additionally, participants in the prior studies had to complete a full laboratory 

assignment, including a construction task and report, whereas participants in this study 

just completed a circuit construction task as a measure of skill-based outcomes.  

The identical elements theory may explain this difference in construction time 

between participants in the three conditions as it posits that there will be a higher positive 

transfer when the instruction environment is identical to the performance environment 

(Goldstein & Ford, 2002). Participants who practiced in the physical condition had the 

benefit of a higher level of fidelity, a situation which likely contributed to their ability to 

construct the circuit much faster than participants in the other two conditions. Participants 

in the 2D and 3D conditions likely needed additional time to acclimate to working with 

physical components. Additionally, some tasks that participants had to perform in the 

physical environment were not required in the 2D and 3D environments. For example, in 

the simulated environments, participants did not have to read resistors bands to identify 

the resister’s resistance but were able to input the resistance values needed for a specific 

resistor. Although students were shown how to read resistors during the video lecture, 

those in the 2D and 3D environments did not receive additional practice with that aspect 

of the task. As a result, some participants transitioning from the simulated environments 
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may have struggled reading the resistors and this contributed to a higher construction 

time.  

Results showed that fidelity did not significantly predict gain scores or circuit 

design grades. This finding is in line with prior research that has found that are no 

differences in cognitive outcomes between physical and simulated environments when 

the instructional method is controlled (Jaakola & Nurmi, 2008; Triona & Klahr, 2003; 

Zacharia & Olympiou, 2011). Clark (1994) has also previously suggested media will not 

influence learning outcomes if the instructional method were identical. However, 

improvements in cognitive outcomes have been found when learning in a combined 

simulated environment and a physical environment (Campbell et al., 2002; Zacharia, 

2007; Jaakola, Nurmi, & Veermans, 2011).  

There were few differences detected in the learning outcomes between the 2D 

simulation and the 3D simulation. There were no significant differences in self-efficacy 

and construction time for participants in the 2D and 3D conditions. However, participants 

in the 2D condition did have higher odds of constructing the circuit correctly than those 

in the 3D condition. This suggests that the 2D condition may be the better alternative. 

Existing literature has found that increasing the level of fidelity does not necessarily 

improve learning outcomes (Alexander et al., 2005).  Higher levels of fidelity may 

present too much information, particularly for novices, and this may increase cognitive 

load (Gillet et al., 2013; Paas & Sweller, 2014). Additionally, the increased complexity of 

operating in a 3D environment can make it more difficult for students to learn in the 
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environment and this can also result in poorer performance (Stuerzlinger & Wingrave, 

2011).  

A second aim of the study was to investigate the effect of learner characteristics 

on learning outcome as well as any moderating effects of learner characteristics on the 

relationship between fidelity and learning outcomes. Unlike fidelity, learner 

characteristics did impact the cognitive outcomes - gain scores and circuit design. These 

findings were consistent with prior research. LGO was a significant predictor of gain 

score. Research also suggests that individuals with higher LGOs perform better as they 

devote more effort in developing an understanding of the content so those with a higher 

LGO were also expected to achieve higher gains (Button et al., 1996). Cognitive ability 

was a significant predictor of both gain score and circuit design. This was anticipated as 

higher cognitive ability is associated with increased learning, retention and de-

contextualization of learning (Clark & Voogel, 1985). Specifically for circuit design, 

while most participants knew how to construct a diagram, those with a higher cognitive 

ability were better able to design a circuit that was different than what had been designed 

during practice.  

The study also found that the effect of fidelity on construction time was 

moderated by LGO. For participants in the 3D condition, having a high LGO resulted in a 

lower construction time. However, for participants in the 2D and physical condition, 

having a higher LGO resulted in a higher mean construction time. Currently there is no 

existing literature, the researcher is aware of, on how goal orientation interacts with 

fidelity to influence learning outcomes. Participants with higher than average LGO in the 
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2D and physical conditions were perhaps more meticulous and as a result, spent more 

time ensuring their circuit was constructed correctly. These participants may have also 

been more willing to explore during the construction process. One possible explanation 

why participants in the 3D condition did not exhibit the same pattern related to 

construction time concerns a specific feature of the 3D software. The 3D software 

provided participants with feedback about their connections when they were constructing 

their circuit; participants with a low LGO may have depended more heavily on this 

feedback than those with a high LGO and as a result took longer to construct their circuit 

with the physical components. Prior research has found that providing a high level of 

feedback during instruction can hinder independent performance (Goodman & Wood, 

2004).  

Limitations 

There are several limitations associated with this study. First, the sample size was 

relatively low (16 per condition) and was reduced further due to the withdrawal of several 

participants. As a result, the power of the analysis was not ideal. Although both 

undergraduate and graduate students were used to create a more diverse group of 

participants, a more representative sample would have included non-traditional students 

and students in associate’s and certification programs. Non-traditional students are more 

likely to enroll in online courses than traditional students (Allen & Seaman, 2007) and 

represent a prime target for computer-based hands-on laboratories. Furthermore, there 

were characteristics of the software design, rather than an innate characteristic of 2D 

simulations and 3D learning environments, that may have been detrimental to 
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participants’ performance when they transitioned from the simulated environment to the 

physical environment. For example, both the 2D and 3D software allowed participants to 

type in the resistance value needed for the circuit. Although using a resistor color code 

sheet was introduced in the video lecture and participants were shown a demonstration of 

how to read the resistor color codes, participants in the 2D and 3D conditions did not 

have to practice selecting a resistor using a resistor color code sheet. This potentially 

made it more difficult for them when they transitioned to working on the physical 

breadboard. These issues do, however, provide insights regarding how the design of 

simulated environments can be improved to support learning and transfer. The software 

packages used in this study were off the shelf and thus there were differences between the 

2D and 3D environments that could not be resolved. The major difference was that the 

3D environment used a dual view with a circuit schematic and the breadboard that 

provided participants with feedback concerning which circuit components were 

connected correctly. There may have also been small differences in how a user would 

interact with the system in the 2D and 3D environments. Lastly, constructing a circuit is a 

very specific task that few students are required to perform as part of a course or on the 

job. Even the majority of the participants who were engineering majors, many of whom 

are required to complete a survey circuits course, expressed doubt in their ability to work 

with circuits. While this task was chosen, in part, to build on the findings of previous 

research, this limits the generalizability of the results. While it may be compared to other 

cognitive procedural tasks, future research should evaluate the extent to which the results 
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from this study are generalizable across tasks and other types of laboratory-based 

instruction. 

Conclusions 

This study found that fidelity impacted the affective and skill-based learning 

outcomes for participants learning to construct a circuit on a breadboard. Individuals who 

learned to construct a circuit using a physical breadboard had higher self-efficacy and 

performed better on skill-based learning outcomes than individuals who learned in the 2D 

or 3D conditions. While these findings suggest that instruction using physical 

components was superior, there is evidence of transfer for those who learned to construct 

a circuit in a simulated environment. Of the 29 participants in the simulated conditions 

who attempted construction, 12 were able to effectively transition into the physical 

workspace despite needing to identify differences between the two environments and 

adjust their processes based on these differences. Some acclimation to the physical 

environment will be necessary; enhancements in both the 2D and 3D software could help 

address some of the issues participants faced when they transitioned.  

Simulated laboratories do have some practical benefits over physical laboratories. 

Simulated laboratories can be offered in an online setting and do not require the 

equipment and facilities needed for physical laboratories. The maintenance costs for these 

environments may also be lower than physical laboratories. Learners have increased 

access as instructors and/or teaching assistants do not need to be present. Safety can be a 

major concern as well as cost, two factors which may limit the students’ ability to 

experiment and explore using the physical tools and equipment. This study also found 
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that the 3D condition offered no significant advantages over a 2D simulation for teaching 

students how to construct a circuit on a breadboard. Participants in these two conditions 

were comparable in terms of affective (self-efficacy) and skill-based outcomes 

(construction time). However, participants in the 2D environment had higher odds of 

constructing their circuit correctly than those using the 3D. Therefore, it may not be 

necessary to devote the time and resources to develop, implement, and maintain 3D 

environments when comparable results can be achieved in 2D environments.  

While the fidelity of the learning environment influenced the affective and skill-

based outcomes, learner characteristics impacted the cognitive-based outcomes. An 

interaction effect was also found between fidelity and LGO for construction time. These 

results suggest that identifying and evaluating learner characteristics may help achieve 

better results when selecting the learning environment. However, there are additional 

learner characteristics, such as spatial ability, that may also influence performance when 

using different levels of fidelity. Future research should continue to identify which 

learner characteristics are most important and how they impact various learning 

outcomes. 

Identifying whether more technical and hands-on tasks can be effectively learned 

in simulated environments is an important question for expanding course offerings in 

online education and subsequently increasing access and educational equity. Online 

education has been highly effective in increasing educational opportunities for students, 

particularly nontraditional students (such as those who are older, attend school part-time, 

or are financially independent) (Allen & Seaman, 2007). However, at the postsecondary 
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level, many of the online courses offered by traditional universities focus primarily on 

conceptual learning (e.g., business, education, and health programs) (Allen & Seaman, 

2006). Non-traditional students wanting a technical degree may be constrained to course 

offerings at their nearest educational institution because few institutions currently offer 

technical curricula in online settings. The results of this study provide insights about 

whether, and potentially how, hands-on tasks can be effectively taught in online 

laboratory settings.  

Chapter Summary 

This chapter addressed the first aim of this research by identifying how the 

physical fidelity of the instructional environment impacted learning outcomes for 

participants learning to construct a circuit on a breadboard. This study also investigated 

how that relationship was influenced by cognitive ability and goal orientation. Although 

there was evidence of transfer, participants learning in the physical condition, on average, 

made fewer errors in the circuit design and construction, and constructed the circuit faster 

than participants in the 2D and 3D conditions. Participants in the physical condition also 

reported a higher self-efficacy than participants in the simulated conditions. These 

findings, however, provide little insight about what specific characteristics of the 

simulated and physical environments influenced these outcomes (affective and skill-

based). In the next study, semi-structured interviews were conducted with a subset of the 

participants from this first study to understand how the fidelity of the learning 

environment influenced their perceived proficiency and transition during the construction 

task. 
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CHAPTER FOUR 

 DISSERTATION STUDY TWO 

Purpose 

This study explored how the physical fidelity of the learning environment and the 

transition from the simulated to the physical environment contributed to differences in the 

outcomes achieved by the participants. This study addressed the second aim of the 

research conducted for this dissertation. The work reported in this chapter was published 

in the 2016 Conference Proceedings of the American Society for Engineering Education 

(Alfred, Morris, Neyens, Gramopadhye, 2016). 

Methods 

Participants 

This study, approved by the Institutional Review Board of Clemson University (IRB 

# 2015-001), used a purposeful sample of 20 participants who had participated in the 

original study (Table 4.1). The participants were selected to ensure that the study 

included:  

• Representatives of those in the physical, 2D, and 3D conditions
• Undergraduates and graduate students
• Males and females
• Students of color and white students
• Engineering and non-engineering majors
• Successful and unsuccessful in completing the construction task

Table 4.1. Representative Sample of Participants 
Level of physical fidelity Class Gender Race Major Construction 

Physical 2D 3D Grad F Students 
of Color 

Engineering Successful 

6 (30%) 8 (40%) 6 (30%) 13 (65%) 10 (50%) 12 (60%) 7 (35%) 12 (60%) 
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Procedures 
 

Once participants signed the consent form, they were given a short overview 

explaining the purpose of the study. They were then informed of its structure and were 

provided with an opportunity to ask questions. After this brief summary, a semi-

structured interview was conducted with each of the participants on their understanding 

of the circuit construction task, their process for constructing the circuit, and their 

troubleshooting strategy. The participants were also asked about their emotional state 

during the study as well as their motivation for taking part in it. This interview was audio 

recorded and then transcribed by a transcription service blind to the objectives of the 

study. Each transcript was verified, and any mistakes or inconsistencies in the 

transcription were corrected by the research team.   

Following each interview, the researcher wrote memos about some of the key 

ideas from the interview as outlined by the qualitative research process (Strauss & 

Corbin, 1990). After several interviews the researcher revisited the notes from the 

individual interviews and then compared the notes to identify trends (Rubin & Rubin, 

1995). This process was repeated with every four sets of interviews and again at the end 

of the interview process. In the research memos, the lead researcher also reflected on 

these interpretations, noting her own thoughts, feelings, and preconceptions about the 

phenomena being studied.    

After all 20 interviews were completed, the researcher defined an initial set of 

concepts using the memos as well as the transcriptions.  Thoughts, quotes and 

paraphrased excerpts from the various interviews were grouped based on similarity using 
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an affinity diagram.  These groups of concepts were then used to define categories to 

represent higher level abstract concepts that are similar in nature but can be contrasted 

based their properties (Strauss & Corbin, 1990).  

The categories generated from this process were then used to code the 

transcriptions using Dedoose, a qualitative and mixed methods research software. 

Sentence fragments, sentences, and entire sections of interview data were coded based on 

the main idea being conveyed by the participant. This open coding process was 

completed by two members of the research team. Following individual coding, the two 

coders reviewed several of the coded transcriptions to compare results. Interrater 

agreement was not calculated as the coders sought consensus on the codes selected for 

each transcribed interview. The research team then identified the properties and 

dimensions of the categories. Properties that were redundant or could not be analyzed 

across dimensions were eliminated. Finally, themes were developed from the data based 

on similarities in the categories as well as their properties.    

Results 

Analysis 

The initial concepts were derived from both participant quotes and the 

researcher’s memos by focusing on key aspects of the interviews, the memos written for 

each, and the trends identified from revisiting these memos. Below is an example of a 

direct quote from a participant discussing his affect after successfully constructing the 

circuit. The bolded statement in the bracket represents the concepts identified. 
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 “When it finally ... like we had a part where it lit up, something had to light up. 

And it felt good when it lit up [“joy”], you know, like, "I did it. I kilt it." In my 

head, you know? Like, "I'm the best at this. [“confidence”] 

Here is another statement from a participant describing how her learning style helped 

shaped her approach to the circuit construction task. 

“I mean I'm a much more sort of like, visual conceptual thinker and learner 

[“learning style”]. So it always helps me if I have a pen and I draw either where 

I'm, where I think I'm at or where I want to go. So, sometimes I would draw like, 

you know um, if we learned, here's how you set up a ser- a simple series circuit. I 

might draw that before like, I started [“strategy”]. So then I could be like, "Okay, 

if it's a series, and I need like, three bolts, then I need to put like, a thing here, a 

thing here and a thing here." 

The researcher’s memos also provided a source of data as it summarized some of the 

major points of an interview as shown in the examples below.  

Spoke about the simplicity of working in the 3D environment [“simplicity”]. 

Performing well in the 3D environment and struggling in the physical 

environment led him to believe “there’s something wrong with the breadboard” 

[“attribution”]. Also discussed a downward slope of confidence [“confidence”]. 

Better understanding of circuit concepts then most participants [“circuit 

knowledge”]. Well in-tuned with differences between 2D simulation and physical 

environment. Mentioned the need for “mental rotation” because orientation of 

breadboard in 2D simulation differed from orientation of breadboard in training 
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[“differences in learning environment”]. Prior experience with circuits shaped 

view of 2D simulation [“past experience”].  

Once these concepts were identified, they were grouped based on similarity.  For 

example, participants’ discussion of their confidence, anxiety or frustration was placed 

into a one group. Participants’ discussion of their major, learning preference or 

personality was placed into another group.  

The groupings were then analyzed to determine a broad category that best fit all 

of the concepts in the group.  In the first example listed above, confidence, anxiety, and 

frustration were categorized under affect. In the second example, major, learning 

preference, and personality were categorized as self-descriptions. After developing and 

revising the categories, a final list of nine categories were selected to code the interviews 

and are shown in Table 4.2.  

The 20 interviews were then coded individually by two members of the research 

team using Dedoose. Once all interviews were coded, the properties and dimensions of 

the categories were defined. Properties describe the general characteristics of a category, 

while dimensions describe the location of the property along a range or continuum 

(Strauss & Corbin, 1990).  For two categories, motivation and emotional state, the 

researchers used well-defined properties from the extant literature. Motivation was 

analyzed base on the orientation – extrinsic to intrinsic – and level – low to high (Ryan 

& Deci, 2000).  Emotional state was evaluated in terms of valence – negative to positive 

– and arousal – low to high (Kensinger, 2004). The researchers defined the properties and 

dimensions for the remaining seven categories as shown in Table 4.3.  
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The research team then began searching for the trends among the categories and 

the properties within them that were most influenced by the physical fidelity of the 

learning environment. Some of the categories, such as past experience with circuits and 

general circuit knowledge, although varying widely among participants, appeared 

unrelated to the physical fidelity as the students described prior courses and informal 

settings where they learned about circuits at various levels of breadth and depth. 

Motivation was less varied but was also unrelated to the different levels of fidelity, with 

participants discussing their relationship with the researcher, general interests in research, 

financial incentives, and “research karma,” which is participating in the research studies 

of others so that others will participant in your own research study, as their reasons for 

participating. For the self-description category, participants tended to relate their major, 

their learning preference and/or their personality to their performance. Some also used 

these descriptions to explain their preferences for one learning environment (such as the 

physical) over the other (such at the 2D or 3D environments).  

The categories most affected by physical fidelity were the ones that described 

characteristics of the learning environment, attributions, affect, strategies and tactics, with 

the first three having the highest level of co-occurrence. Strategies and tactics, while not 

having a high level of co-occurrence, were the categories that were difficult for the 

coders to distinguish. Based on reviewing these categories, their properties and their 

dimensions as well as their relationship, the researchers identified three primary themes 

of support, physical transition, and emotional transition for explaining how the physical 

fidelity of the learning environments impacted performance.  
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Table 4.2. High Level Categories Generated from Memos and Transcripts 

Category Description Example concepts 

Past experience with circuits 
Past experience working with or 
learning about circuits 

Electrical engineering 
course, physics lab, circuits 
kit 

General circuit knowledge 

General description of concepts 
related to circuit construction and 
analysis 

Ohm’s law, parallel circuit, 
series circuit, forward 
voltage 

Characteristics of the 
learning environment 

Attributes of the physical, 2D or 
3D environments that participants 
like/dislike or influenced their 
performance in any way 

Simplicity, feedback, 
exploration 

Attributions 

Description of a reason for their 
struggles and successes during 
the construction task 

Self, training, environment, 
equipment 

Self-descriptions 

Description of personality, field 
of study, learning style, physical 
characteristics, interests etc. 

Major/program, career 
field, learning style, 
personality 

Affect 

Description of a particular 
emotion experienced during the 
study 

Confidence, frustration, 
joy, anxiety 

Strategies 

Description of a primary overall 
approach for constructing circuits 
on the physical breadboard 

Methodical, trial and error, 
memorization, 
visualization 

Tactics 

Description of the breakdown of 
the process by step when 
constructing the circuit on the 
physical breadboard 

Collect all resources first, 
check one connection at a 
time, double-check the 
circuit before energizing 

Motivation 

When the participant mentions 
his/her motivation for taking part 
in the study and persevering 
through the study 

Relationship with 
researcher, intrinsic, 
incentive 
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Table 4.3. Properties and Dimensions for each of the Categories 
Category Properties Dimension 

Past experience with 
circuits 

• Experience
• Date of experience
• Type of experience

• Limited to extensive
• Long ago to recent
• Informal to formal

General circuit knowledge 

• Understanding
• Type

• Rudimentary to
advanced

• Theoretical to practical
Characteristics of the 
learning environment 

• Support
• Engagement

• Low to high
• Weak to strong

Attributions 

• Attribution
• Knowledge
• Direction

• Internal to external
• Declarative to

procedural
• Negative to positive

Self-descriptions • Origin • Innate to learned

Affect 
• Valence
• Arousal

• Negative to positive
• Low to high

Strategies • Process • Unplanned to planned
Tactics • State • Mental to physical

Motivation 
• Orientation
• Level

• Extrinsic to intrinsic
• Low to high

Results 

Theme 1: Level of support 

Participants in the simulated environments, specifically the 3D environment, often 

referred to higher levels of support in these environments compared to the physical 

environment. Participants who practiced in the 3D condition spoke of its specific 

attributes that benefitted them during practice such as the different views of the 

breadboard as well as the ability to zoom in and out. They specifically referred to this, 

saying:  

 “I liked the, the virtual environment cuz you couldn't kind of, um, you didn't have 

a ... You could kinda flip it and view however you wanted. You didn't have this 
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pure kind of, I guess, isometric view. You could look at it on the side. You could 

look at it in all sorts of, um, visual angles so it was easier to visualize the circuits 

in the virtual angle vers- er, in the virtual environment versus in the real world 

where you had to kinda ... Well, you can't, like, turn a circuit upside down, 

obviously, otherwise all the components would fall out and you have to start over 

again and you'd probably break some components.” 

“Um, and I think that was much more difficult to discern from the physical 

breadboard than from the computer model. Um, again just that aerial view that 

you only have from the physical model was, I guess slightly uncomfortable. 

Whereas in the digital one you could manipulate and look at it from the side and 

zoom in.” 

Participants in the 2D and 3D conditions also referred to the simplicity of working in 

those environments. As one put it:  

“But, um, I was a lot faster on the computer than I was in real life, because I was 

trying to recall in my brain, like, "Okay, this was on the fifth hole," or whatever, 

and I had to, like, count it, and just, like, physically it was hard for me to, like, 

connect the pieces. Um, whereas, like, on the computer, it was easier, just, like, 

select where I wanted the wires to go, instead of having, like, make sure the wires 

would stretch to this hole, and make sure that they were in the holes all the way. 

Um, so the transition wasn't bad. Um, but I definitely preferred the CAD [3D] one 

to the physical one.” 
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However, the primary difference in the level of support between the physical 

environment and simulated environment concerned the level of feedback. Participants in 

both the simulated environments, but more so in the 3D environment, benefitted greatly 

from the positive feedback they received while they were practicing.  

“I felt, again, that, um, that that positive reinforcement of knowing that like, okay 

I'm getting the answers right, I'm, you know, getting all these green lights in my 

drawing, my sketch or whatever and then it's like working in the simulation 

[3D].” 

“And that was one of my issues was – you know- making sure it was connected 

well enough in the physical environment so that that light could come on and that 

could -that sometimes made me second guess myself and wonder if I was actually 

putting it on correctly and wondering, "What did I do wrong?" Whereas, like I 

said, in the computer environment, you click go and if it's set up correctly, that 

light's going to come on. So, I really liked the feedback that I got from the 

computer environment [2D]” 

However, participants also reflected on not having this feedback in the physical 

environment and how it influenced their performance. One participant summed up the 

issue well stating: 

“I think having the instant feedback that you get in the simulation [3D] when it 

turned red or green like when you’re doing it that you know that it's hooked up 

right. Not having that in an actual like physical breadboard was tricky because 

like, oh, I don't know why this isn't working because you can't figure out where 
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the problem is. So I think that was, I don't know, like the benefit in it may be like 

handicapped to like transitioning from the computer to the physical breadboard 

was that, that instant feedback of like not knowing, not knowing how to figure out 

where the problem was, if there was a problem.” 

Theme 2: Physical transition 

Physical transition related to the strategies and tactics the participants used during 

the construction process on the physical breadboard as well as the participants’ 

assessments of their struggles during this transition. In terms of strategy, in general 

participants described having some idea of how they wanted to approach to the task, but 

many switched to a trial and error approach at some point during construction, 

specifically if they encountered errors. 

 “I didn't start with like, no clue. I started with like a base idea of what I wanted. 

Or like, what I could build off of it. But I also didn't start with like, "I know 

exactly what I'm gonna do.” 

“Um, the only trial and error, I guess ... Part of the thought process that came in 

was when I had that one light bulb that didn't work, um, and I needed to make 

sure that, uh, it could; but everything other than that was very step by step, and 

very methodical. Um, I didn't really do a lot of trial and error until I came up with 

an error, and then I had to try to fix it.” 

Participants in the physical condition, however, described a more structured 

approach using phrases such as “being organized,” “following instructions,” and 

“planning.” Participants in the simulated environments, on the other hand, appeared more 
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comfortable with a less structured approach making statements such as “and then if I 

didn't, then, you know if it didn't work then I would just have to play around with it and 

just keep playing around with it and just rethink it until I got it,” and “'Um, but I kind of 

just tried things until it worked.” Participants from each condition also spoke about using 

memory of the circuits constructed during practice to guide their construction, with some 

even mentioning trying to recreate the circuit directly from memory.  

In speaking of the step-by-step process followed during construction, participants 

described attempting to follow the process used during practice. One major difference 

between the tactics taken by participants in the physical condition compared to the 

participants in the 2D condition concerned visualization and mental rehearsal. 

Participants in the 2D simulation described trying to mentally construct the circuit they 

learned in that condition prior to attempting construction on the physical breadboard. 

 “I actually constructed it in my mind through the simulator software and then 

took the simulator software and tried to implement it and copy it that same way. 

So, that was my process, more so, in my head, and then see if I could make my 

hands actually do that. So, yeah.” 

“Um, I just really tried to imagine it, um, and I think that what I did was I tried to 

set the things up in front of me the way that they were on the screen. And then 

just try to do everything the way that I did there.” 

Participants in the physical environment made fewer but more positive 

attributions than participants in the simulated environments, and they made more positive 

ones. They spoke about how recent the practice was and of the helpfulness of the videos. 
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When discussing some of the reasons for their struggles, participants in the simulated 

environments spoke primarily of gaps in their procedural knowledge. 

 “But I always felt that I can get it. Because I had the knowledge of doing it. Um, 

but there's something that either, I may have missed that. I, I felt that there was 

something more wrong with the breadboard or something that I was doing wrong, 

procedurally rather than what I had learned to do.” 

“Um, so I think the most frequent obstacle at least that I perceived was that I 

wasn't using the correct wires to complete the circuit. Or for whatever reason my 

arrangement of the different components on the breadboard were, were not right. 

Um, so I would try and go back to what I had learned the digital model” 

Participants in the simulated environments also spoke of some difficulty related to 

manipulating components in the physical condition. 

“I think the, the, the main difference I think between the so the, you know, 

clicking and the 2-dimensional environment was easier because the components 

in the physical environment was, were so much smaller.” 

“I just found it, in this case, I found it harder because the components were small. 

If the components had the same sort of values, and they were just enlarged, um, 

by a scale of ... A factor of 5 or 10 say, it'd be a lot, a lot easier for me to work 

with.”  

Another issue that impacted participants’ transition from the simulated 

environments to the physical environment was the orientation of the breadboard and the 
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components. Below two participants note how the change in orientation impacted their 

affect and performance.  

“I do know that it annoyed me that the orientation was different but I don't, I 

guess I'm not a 100% sure whether or not it was the fact that the module and the 

simulation were flipped or the, or the simulation and the physical board were 

flipped…” 

“Um, I think just the orientation of some components like the switch uh, I don't 

recall precisely. But I think there is some ... I had trouble with the orientation of 

something.” 

Theme 3: Emotional transition 

Participants transitioning from the simulated environments to the physical 

environment described a wide range of emotions related to this transition. Some  spoke of 

the downward shift of confidence that resulted from performing without obstacles in the 

simulated environment and then struggling to construct the circuit in the physical 

environment.  

 “It took me a really long time. Be- uh, there was something related to ... I felt that 

I was very close every time I had it. Because I felt uh, uh, throughout the um, 

computerized part of that experiment, I got everything right away. And everything 

always worked right away.” 

“So, just after trying several times, it was like okay, probably I missed something. 

Probably I just don't get it, even though I'm supposed to get it. So, it was more 
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like moving from, okay, excitement it's like, I can do this to like why? Why is this 

not working? It was more like a downward slope.” 

Participants also spoke of increased pressure and isolation in the physical environment 

stating:  

“I felt more pressure when it was actually in front of me.” 

“So then in switching to the physical environment, like, all of that kinda like was 

chipped away so it's like I didn't have my notes, I didn't have any kind of 

feedback, it's really just me and these wires.” 

Participants, specifically in the 2D condition, spoke of “higher stakes” in the 

physical environment that lead to increased frustration during their struggles but also of 

greater satisfaction for those who were able to correctly construct the circuit. 

 “I think that the physical environment was more intimidating, ah, because it 

seemed as though um, even with relative success in the 2D environment, um, to 

touch the physical objects seemed to be um, a little, yeah, intimidating is the 

word. It, it just seemed to be, there seemed to be more pressure with ah, using the 

real objects.” 

“Uh, the other thing I said was that when you go, when you do it physically, like 

the stakes feel a lot high, the emotional stakes felt a lot higher like you were more 

like down when something didn't work and you were more like excited when it 

did work and part of that might have been the fact that it was like physical so 

you're like hands on with it and some of it also might have been because it is more 

annoying, it takes longer to actually change something physically.” 
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“Well I think that ah, one of the things that I liked in the, in the more, in the, sort 

of in the tactile, in the physical environment is that um, you know, right or wrong, 

whatever the, whatever the process um, I think there's a way of seeing, like of 

actually experiencing success or failure. So, seeing the light comes on, um, while 

there may be more risk, more seeming risk, or you know, like um presumed risk, 

the, the reward is greater to actually physically make a light come on seems to be 

um, a better payoff than ah, a program you know in the 2 dimensional 

environment telling you that you've successfully completed it as opposed to, you 

know, sort of seeing the, the product of that.” 

Discussion 

Three themes emerged from the analysis, level of support, physical transition and 

emotional transition. The level of support focused on attributes of both simulated 

environments that helped the participants successfully complete the practice activities, 

specifically, positive feedback, zooming capabilities, alternate viewpoints and simple 

manipulation of components. The attribute of the learning environment seen as having 

the most influence on performance was feedback. In the 3D environment, participants 

were able to switch views between the circuit diagram and the breadboard to ensure that 

they were constructing the circuit correctly. The diagram used green lines for the correct 

connections and red for the incorrect ones (Figure 4.1). This feedback provided by the 

simulated environments appears to have both beneficial and detrimental effects.  

Participants found it helpful to have feedback during the practice session, 

particularly in the 3D environment, as it provided visual information concerning the 
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location of an error made while they were constructing a circuit on the virtual 

breadboard.  However, the lack of feedback in the physical seemed to create two issues 

for participants: it hindered their ability to identify the source of the error when the circuit 

was not functioning and it reduced their willingness to troubleshoot.  Extant literature has 

already  identified this dual effect of feedback specificity,  i.e. the amount of information 

provided to learners in feedback messages (Goodman & Wood, 2004), with previous 

studies suggesting that high feedback specificity is beneficial for immediate performance 

but reduces the  learning opportunities needed for independent performance (Kensinger, 

2004).   

A. 
Breadboard view 

B. 
Diagram view 

Figure 4.1. Feedback Provided to Participants Working in 3D Breadboard Environment 

The theme of physical transition focused on the approach participants used during 

the construction process on the physical breadboard and its effectiveness, rated on a scale 

ranging from methodical to trial and error. Most participants used an approach that fell 

somewhere in the middle; however, participants in the simulated environments appeared 

more comfortable using a trial and error approach than those using the physical 

breadboard.  One possible explanation for this difference involves the adaptations 
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required for the participants who transitioned from the simulated environments. Unlike 

the participants in the physical condition who did not have to adapt their performance, 

participants in the simulated environments were forced to deal with differences in the 

construction procedures, such as reading the resistor versus typing in the resistance value, 

making it difficult to follow the exact steps they used in the simulation. As a result, it was 

necessary for them to engage in trial and error during the process.  

Participants in the 2D simulation spoke of visualization and mental rehearsal prior 

to actually constructing the circuit on the physical breadboard. They described trying to 

visualize the circuit they created in the simulation as well as trying to construct the circuit 

mentally in the simulation before attempting physical construction. These two additional 

steps in the construction process appeared to be a mechanism these participants used to 

recall the procedures they learned. The statements below describe more fully how these 

participants used visualization or mental rehearsal to help them build the circuit on the 

physical breadboard. 

 “I actually constructed it in my mind through the simulator software and then 

took the simulator software and tried to implement it and copy it that same way. 

So, that was my process, more so, in my head, and then see if I could make my 

hands actually do that. So, yeah.” 

“Um, I just really tried to imagine it, um, and I think that what I did was I tried to 

set the things up in front of me the way that they were on the screen. And then 

just try to do everything the way that I did there.” 



66 

While working with and manipulating the small physical components created 

some issues, the orientation of the breadboard appeared to be particularly problematic. 

The orientation of the breadboard in the 2D simulation, which was horizontal, could not 

be changed, while the default orientation of the breadboard in the 3D environment, also 

horizontal, could be changed. For the physical construction, the breadboard was arranged 

vertically, but participants could, and several did, change the orientation.  Participants 

who did not immediately change the orientation of the breadboard potentially 

experienced an unnecessary increase in cognitive load (Paas & Sweller, 2003).  This 

increase in cognitive load may have been exacerbated for participants in the 2D 

conditions as they already had the additional task of translating “the representation from 

2-D to 3-D” (Regian et al., 1992).

Another theme that emerged related to the affect of participants in the 2D 

simulation describes the affect of participants when they transitioned from the simulated 

environment to the physical one. Participants described two predominant emotional states 

related to this transition, a decrease in confidence and a heightened emotional divergence. 

Participants who performed successfully in the simulated environments during practice 

and then struggled in the physical condition described experiencing a “downward slope” 

of confidence. This drop in confidence was not simply the result of encountering 

obstacles but the feeling of being ill-prepared and unable to overcome these difficulties.  

Previous research has suggested that information processing capabilities are reduced 

when dealing with negative emotions (Heimbeck et al., 2003). More germane to this 

study, previous research in training has also found that learners who completed an 
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instructional program without obstacles struggle when faced with challenges in the 

performance environment (Heimbeck et al., 2003). Goodman and Wood (2004) suggest 

that in order to generalize performance, learners have to be able to adjust to different 

performance conditions, including making errors and resolving them without assistance.  

Participants in the 2D simulation also described a heightened emotional 

divergence when they transitioned from the simulated environment to the physical 

breadboard, indicating they became frustrated when they could not get the circuit to work 

in the physical condition, describing this feeling as increased “pressure.”  They also 

described increased satisfaction and a “greater reward” when they were able to solve the 

circuit in the physical condition. For these participants, the perceived “stakes were 

higher” when they were working in the physical environment. Part of the reason for this 

feeling is summed up by one participant who described the 2D simulation as feeling 

“simulated.” Another participant, who also learned in the 2D environment, described the 

physical environment as “real.” As a result, the emotional intensity for these participants 

was lower in the simulated environments.  

A second explanation deals with the task itself. Constructing a circuit on a 

breadboard is a hands-on task. Having to do this “hands-on” task in a simulated 

environment potentially detracted from both the emotional engagement in the 

environment as well as the participants’ perceptions of their ability to complete the task. 

This conclusion is supported by the previous study as participants in the simulated 

environments had statistically significantly lower self-efficacy than those in the physical 

environment (Alfred et al., 2016).  
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Limitations 

Several months passed between the initial study and the follow-up study, and as a 

result, participants struggled to articulate the specific details related to their circuit 

construction process. Several of the participants knew the lead researcher outside of the 

study, situation that potentially affected the interview data.  While a representative 

sample of 20 participants was interviewed, it may have been beneficial to conduct more 

interviews. In addition, the interviews were conducted by only one researcher.   

Conclusions 

The physical fidelity of the learning environment impacted the participants’ 

attributions, affect, and strategies and tactics. Although most participants in the 2D 

simulation and 3D breadboard environments enjoyed working in those conditions, 

learning how to construct a circuit in either of those conditions contributed to procedural 

knowledge gaps, decreased ability to identify errors, and heightened levels of frustration 

that were detrimental to performance.  Some participants noted these limitations, 

suggesting that the computer conditions might be best used to help students develop a 

conceptual understanding. However, those limitations may be resolved with 

improvements in the design of the software. Specifically, the design of 2D and 3D 

environments need to reduce the level of support provided to participants. For example, 

the 3D breadboard software could progressively decrease the feedback provided so that 

learners have the help they need early in practice but are not hindered as they prepare for 

the transition to the real world.  
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Both the 2D simulation and the 3D breadboard software could also facilitate the 

transition by requiring similar procedures to those in the physical environment. For 

example, allowing participants to choose the correct resistor by reading a resistance sheet 

is a more difficult task, than having to type in the resistance value. In addition, the 

simulated environments can make the participants aware of differences they may 

encounter when they transition. Transitions from these environments can be made more 

smoothly if participants are aware of such issues  in the physical environment as blown 

LEDs, dead batteries, and burnt connections on the breadboard that do not occur in the 

simulated environments. If participants are knowledgeable of these potential issues, they 

can better troubleshoot issues in their construction. 

However, some differences remain that require students to acclimate to the 

physical properties of the breadboard. One example is physically manipulating the 

components and inserting them properly into the breadboard as this process simply does 

not translate from the simulated environment. The other physical difference involves the 

orientation of the breadboard. A simple fix in the 2D simulation would be to allow 

participants’ to orient the breadboard vertically or horizontally based on their preference. 

However, participants were able to overcome most of these differences as demonstrated 

in the initial study.   

The other difference between the 2D and 3D environments and the physical one 

concerned the participants’ affect while working in the simulated environments. 

Participants described feeling “intimidated,” “more pressure,” and having “higher 

stakes,” when transitioning from the simulated environments to the physical one. While 
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the 2D and 3D simulations cannot necessarily change these emotions, they can help build 

confidence and self-efficacy by providing learners with the knowledge needed for both 

constructing a circuit in that environment and for transitioning to a physical breadboard. 

Based on the experiences described by the participants as well as results from the initial 

study, both the 2D and 3D environments had strengths and weaknesses that shaped 

participants’ performance. Improvements in the design along with the advantages of the 

software – specifically, ease-of-use, multiple views, zooming capabilities, positive 

feedback – can offer a superior learning experience for students while also supporting 

high transfer.  

Chapter Summary 

The second aim of the research for this dissertation was to explore how the 

physical fidelity of the learning environment contributed to the differences in proficiency 

found in the previous study. The analysis found that the physical fidelity of the learning 

environment impacted the participants’ attributions related to their performance, their 

affect during the construction task, and the strategies and tactics they used when 

constructing the circuit on the physical breadboard.  Although most of the participants 

using the 2D and 3D simulations enjoyed practicing in those environments, learning to 

construct a circuit in those environments contributed to procedural knowledge gaps, 

decreased ability to identify errors, and heightened levels of frustration, all of which  

were detrimental to their performance.  
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CHAPTER FIVE 

DISSERTATION STUDY THREE 

Purpose 

The purpose of the study was to evaluate the retention of individuals learning in 

different levels of physical fidelity as defined in research aim three. To address this goal, 

a 4-week longitudinal study was conducted.   

Methods 

Leveraging the results of Study 1 

Improvements in the instructional design of the video lecture, practice exercises, 

and activities were made based on issues discovered in the first study. These changes 

included breaking the 28 minute video lecture into three shorter videos with 2-3 practice 

exercises after each section. These changes also included providing opportunities for 

participants in all conditions to become comfortable determining the resistance value of 

through-hole resistors and providing participants in the simulated environments with 

transition notes to help them understand differences they may encounter when working 

with physical circuits (Appendix K).  

Participants 

This study included a total of 70 participants, both undergraduates and graduate 

students. However, students who completed an electrical circuits course in the past 

academic year were not eligible to participate. In addition, participants had to be able to 

self-report their SAT or ACT scores. Participation was voluntary, and the participants 

received a $20 gift card for each session they participated in.  A majority of the 
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participants (n=64, 91.4%) were undergraduates, with a mean age of 20.27 (SD=2.28).  

Females accounted for 61.4% of the participants, and 60 participants (85.7%) reported 

having very little to no experience prior experience working with circuits. This study was 

approved Clemson University IRB (IRB2016-041).  

Experimental design 

This study used a 3 x 3 repeated measures design with the level of physical fidelity 

(2D, 3D, and physical) as the between-subjects factor and the measurement occasion (T0, 

T1, T2) as the within-subjects factor.  Pretest scores, cognitive ability, and goal 

orientation were used as covariates in the analysis. The dependent measures for this study 

included self-efficacy, gain scores (score), circuit design (grade), circuit time and 

construction (grade), which was scored as “no errors,” “minor errors,” and “major 

errors.” 

Participants’ SAT or ACT scores were used as measures of cognitive ability, with 

the ACT composite scores being converted to total SAT scores for these 10 participants 

using the equivalence chart developed by Dorans (1999). Both goal orientations, LGO 

and PGO, were assessed using an eight-question instrument developed by Button et al. 

(1996). The reliability for these questionnaires was α = 0.72 for PGO and α = 0.78 for 

LGO. Post instruction self-efficacy was assessed using a six-question instrument with a 

Cronbach’s alpha of α = .82 (Guthrie & Schwoerer, 1994). The questions for all of these 

instruments used a five-point Likert scale ranging from strongly disagree to strongly 

agree. 
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Procedures 

Upon arrival to the study location, participants first completed the consent form, 

after which the researcher explained the study procedure and gave the participants their 

user IDs for logging into the learning management system, Educate Workforce, which 

housed the course material for the study (Figure 5.1). Once the participants were logged 

in, they completed a survey that included demographic questions and goal orientation 

questions (Appendices B and C). Participants also reported their SATs or ACT scores on 

the demographic survey instrument. Next, the participants completed a five-question 

online pretest (Appendix A) that included questions related to electrical circuit concepts 

(e.g., voltage, resistance, and current), circuit diagrams and symbols, breadboard 

functionality, and Ohm’s law. Each question had four answer options.  

After the pretest students watched a 3 brief video lectures, totaling 28 minutes, 

which covered basic circuit analysis. Participants also completed 2-3 practice questions 

related to the topics covered in each lecture.   These practice questions were graded 

immediately by the system and feedback, including the correct answer, was provided. 

Following the presentations, the participants were given the opportunity to practice 

constructing a circuit on a breadboard based on their assigned condition. Those assigned 

to the 2D simulation condition used an Arduino 2D breadboard from 123D Circuits 

(123d.circuits.io), while those assigned to the 3D condition practiced constructing a 

circuit using National Instrument Multisim Educational Edition version 13, and 

participants in the physical condition practiced using a 800 point solderless breadboard. 

These were the same breadboards used in first study.  
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Through videos, participants were shown how to use Ohm’s law to calculate the 

resistance values needed for series and parallel connections, how to translate a specified 

circuit into a diagram, and how to construct a circuit using the physical or simulated 

breadboards. Because students in the 2D and 3D conditions also had to learn to use the 

software, the instructional videos for each of the conditions varied in length. In total, this 

study involved six videos, 2 for each condition, ranging from 7 to 17 minutes.  

The equipment for this study included a computer workstation with dual monitors 

to allow participants to construct their circuits as they watched the demonstrations 

(Figure 5.2). In the 2D and 3D environments, participants navigated using the mouse and 

keyboard.  Participants in the all three conditions had comparable components LEDS, 

resistors, batteries, and switches for constructing their circuits during the practice 

sessions.   

Participants were given three practice activities to complete.  During these 

practice sessions, they were provided with feedback on the accuracy of their calculations 

and the construction of the circuit and were referred to the appropriate video for review 

for any errors they made.   The participants were not allowed to continue the experiment 

until they successfully completed the practice activities. Although this requirement led to 

varying practice times, it was essential that participants demonstrate a minimum level of 

proficiency before continuing to the construction task. Following these practice sessions, 

the participants completed a survey assessing their post instruction self-efficacy and a 5-

question multiple choice, online posttest (Appendices D and E). The posttest was of the 

same structure and length as the pretest and used similar questions.  
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Figure 5.1. Educate Workforce Student Dashboard 

Figure 5.2. Setup of study for 2D and 3D participants 
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Participants in all conditions then constructed a circuit on a physical breadboard 

(Appendix F). During this task, they did not have access to their notes or the instructional 

videos.   During the construction, participants were video recorded using a GoPro Hero4 

Black camera, which was positioned above the construction area. Once the students 

completed this activity, they were thanked for their participation and given a gift card.  

At the two-week (T1) and four-week (T2) intervals following the initial training, 

participants returned to complete an additional posttest and construction task (Figure 5.3). 

The circuit constructed for T1 was a circuit with two LEDs and one switch such that the 

it alternated power between the LEDs (Appendix G). For T2, the circuit involved three 

LEDs and one switch such that two LEDs were connected in series and the third was 

powered by the switch (Appendix H). The test format for T1 and T2 were the same as for 

T0 – five questions with four answer choices (Appendices I and J). Four of the questions 

for both posttests were comparable to the questions in the initial posttest. The new 

question for the T1 posttest asked participants to identify the circuit diagram for a 

described circuit, while the new question for T2 asked participants to identify the issue 

with a constructed circuit using two images. In addition for both T1 and T2, participants 

completed a brief survey asking whether they had practiced building circuits or learned 

more about circuits after T0 and T1, respectively. The T1 times for participants ranged 

between 12 and 15 days. For the T2 participants they ranged from 26 to 29 days. 
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Figure 5.3. Timeline of Procedures for Dissertation Study 

Results 

Analysis 

The data analysis was conducted using SPSS 22. Prior to analysis, the data was 

evaluated to verify that it met the assumptions for an ANOVA. All analysis was 

conducted at the alpha =.05 level. Outliers were identified using residuals, leverage 

values and Cook’s Distance.  

T0. ANOVAs were used to determine the main effects of the IVs (physical 

fidelity) and covariates (cognitive ability, pretest scores, and goal orientation) on self-

efficacy, gain score, circuit design, circuit construction, and construction time. To 

facilitate interpretation, continuous variables were categorized using median splits.  

T1 – T2. Mixed model ANOVAs were used to determine the main effects of the 

IVs (physical fidelity and time) and covariates (cognitive ability, pretest scores, goal 

orientation, and engagement) on posttest scores, circuit design, circuit construction, and 

construction time. Mixed models were used because the analysis included both between 

subject and within subject variables.  
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For the retention analysis, only participants who were able to construct the circuit 

correctly were invited to return for T1 and T2. Of the 70 participants in the study, 50 

participants (71.4%) met the minimum proficiency requirements. However, only 40 

participants continued for the retention analysis --14 participants in the physical 

condition, 14 in the 2D condition and 12 in the 3D condition. Each participant completed 

three sessions except for one who missed the second session and one who missed the 

third session. Before T1 and T2, participants completed a two question retention survey 

to determine whether they continued to learn about circuit concepts or practice 

constructing circuits during the retention periods. The majority of these participants 37 

(92.5%) were undergraduates, with a mean age of 20.18 years old (SD=2.15).  Females 

accounted for 50% of the participants. Approximately 83% (n=33) reported having very 

little to no experience prior experience working with circuits.  

T0 Results 

A one-way ANOVA found no significant differences in the pretest scores of 

participants in the three conditions, F(2, 69) = .945 p =.394. The one participant who 

failed to report her SAT/ACT score was not included in this and subsequent analysis. 

Self-efficacy (SE). One outlier was found and removed from the analysis, and one 

participant did not complete the SE instrument for a total of 67 data points. The analysis 

found no significant differences in the mean SE of the participants in the three conditions, 

F(2, 66) = 2.53, p =.084. 

Gain score. The mean pretest scores for all participants was .43 (SD = .22), and 

the mean posttest score was .71 (SD =.25) for an average gain of .29 (SD =.26).  Only the 
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pretest score was a significant predictor of gain score, F (1, 63) = 19.72, p =.003, (Table 

5.1). Participants with a low pretest score (.40 or less) achieved higher gains than 

participants with a high pretest score (above .40) (Table 5.2). The unique effective size 

for pretest scores was sr2 = .115. 

Design score. Four participants did not complete the design task. Two of these 

participants withdrew from the study, and the other two could not complete the practice 

activities and were withdrawn by the researcher. Two outliers were also removed from 

the analysis. The mean design score for T0 was 87.31 (SD = 12.73).  Only cognitive 

ability, F(1,59) = 9.42, p =.012, was a significant predictor of design score (Table 5.3). 

Participants with high cognitive ability scored 8.74 points higher than participants with 

low cognitive ability (Table 5.4). The effect size for cognitive ability was sr2 = .083. 

Table 5.1. ANOVA for Gain Score 

Parameter 
Sum of 
Squares df 

Mean 
Square F P-value

Intercept 1.609 1 1.609 29.097 .000 
Fidelity .290 2 .145 2.620 .081 
Pretest scores .525 1 .525 9.493 .003 
LGO .060 1 .060 1.078 .303 
Cognitive ability .168 1 .168 3.041 .086 
Error 3.485 63 .055 
Total 4.577 68 
R Squared = .239 (Adjusted R Squared = .178) 

Table 5.2. Comparison of Pretest Scores for Gain Scores 

Mean 
Std. 

Error 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Low pretest score .354 .036 .282 .426 
High pretest score .172 .047 .078 .265 
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Table 5.3. ANOVA for Design Score 

Parameter Sum of Squares df 
Mean 
Square F P-value

Intercept 479524.76 1 479524.76 2331.019 .000 
Cognitive ability 1194.23 1 1194.23 5.805 .019 
LGO 143.46 1 143.45 .697 .407 
Condition 794.99 2 397.50 1.932 .154 
Error 12137.16 59 205.71 
Corrected Total 14430.98 63 
R Squared = .159 (Adjusted R Squared = .102) 

Table 5.4.Comparison of Cognitive Ability for Design Score 

Mean 
Std. 

Error 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Low cognitive ability 82.20 2.55 77.09 87.31 
High cognitive ability 90.94 2.54 85.84 96.03 

Construction time. Four participants did not complete the construction activity, 

meaning a total of 65 observations were analyzed for construction time. The mean 

construction time was 19.60 minutes (SD =10.16) (Table 5.5). The ANOVA conducted 

found significant differences in construction time among participants based on fidelity, 

F(2, 58) = 4.70, p =.013, and cognitive ability, F(2, 58) = 7.06, p =.010 (Table 5.6). Post 

hoc analysis conducted using LSD found significant differences in construction time 

between participants in the physical condition and those in the 2D condition (p=.007). 

Participants with high cognitive ability constructed their circuits 6.54 minutes faster than 

participants with low cognitive ability (Table 5.7). The effect size for fidelity was sr2 = 

.214, and the effect size for the cognitive ability was sr2=.093. 



81 

Table 5.6. ANOVA for Construction Time 

Parameter 
Sum of 
Squares df 

Mean 
Square F P-value

Intercept 24583.93 1 24583.93 283.17 .000 
Fidelity 816.43 2 408.22 4.70 .013 
Cognitive Ability 613.05 1 613.05 7.06 .010 
LGO 86.57 1 86.57 .997 .322 
Condition * LGO 133.41 2 66.71 .768 .468 
Error 5035.44 58 86.82 
Total 6609.60 64 
R Squared = .238 (Adjusted R Squared = .159) 

Table 5.7. Contrast for Cognitive Ability for Construction Time 
Mean Std. Deviation N 

Low cognitive ability 22.82 11.37 33 
High cognitive ability 16.28 7.57 32 

Construction. A multinomial logistic regression model found that design score (χ2 

(2, N = 63) = 8.35, p=.005) and fidelity (χ2 (2, N = 63) = 7.33, p=.026) were significant 

predictors of correct circuit construction (Table 5.8). The odds of constructing a circuit 

without errors were 6.93 times higher [95% CI: .1.64, 35.41] for participants in the 2D 

condition. The odds of constructing a circuit with no errors for participants with high 

design scores were 5.21 times higher [95% CI: .1.63, 18.65] than for participants with 

low design scores (Table 5.9). 

Table 5.5. Mean Construction Time per Condition 
Condition Mean Std. Deviation N 
Physical 15.18 6.51 22 
2D 23.19 9.98 21 
3D 20.59 11.97 22 
Total 19.60 10.16 65 



82 

Table 5.8. Tests of Model Effects for Design Score 

Parameter 
Likelihood 

Ratio χ2 df P-value
Fidelity 7.33 2 .026 
Cognitive ability 3.19 1 .074 
Design score 7.87 1 .005 
Construction time 2.17 1 .141 

Table 5.9. Parameter Estimates for Design Score 

Parameter B 
Std. 

Error 
Hypothesis Test 

Exp(B) 

95% Profile 
Likelihood 

Confidence Interval 
for Exp(B) 

Wald χ2 df P-value Lower Upper 
Threshold Major errors .347 .707 .241 1 .623 1.42 .357 5.94 

Minor errors 2.09 .754 7.67 1 .006 8.07 1.92 38.05 
2D 1.94 .775 6.24 1 .012 6.93 1.64 35.41 
3D .775 .669 1.34 1 .247 2.17 .600 8.48 
High cognitive ability .916 .517 3.14 1 .076 2.50 .915 7.03 
High design score 1.65 .616 7.20 1 .007 5.21 1.63 18.65 
High construction time -.782 .539 2.12 1 .145 .458 .155 1.29 

T0 – T2 Results 

Posttest scores. The first learning outcome assessed over time was the posttest 

scores. Two participants were removed from this analysis as a result of their responses on 

the retention survey. A baseline model was run to calculate the overall mean of 

participants’ posttest scores and the intraclass correlation (ICC), which measures the 

percentage of the total variance between persons (intercept) and within persons (residual). 

This model found that 30% of the variation occurred between subjects. Multilevel 

analysis found that cognitive ability, F(1,40) =4.14, p=.048, and measurement occasion, 
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F(2, 34) =9.12, p=.001, were significant predictors of posttest scores (Table 5.10). 

Participants with high cognitive ability scored an average of 10.40 points higher than 

participants with low cognitive ability (Table 5.11). At T1, participants scored 17.37 

points lower than participants at T0. Participants decreased by an additional 0.52 points at 

T2 (Figure 5.4). Post hoc analysis conducted using LSD found that the differences in 

means were significant between T0 and T1 (p=.001) and between T0 and T2 (p=.001). 

Table 5.10. Test of Model Effects for Posttest Scores 

Parameter 
Numerator 

df 
Denominator 

df F P-value
Intercept 1 56.34 532.39 .000 
Cognitive ability 1 40.44 4.14 .048 
LGO 1 40.44 .247 .622 
Fidelity 2 40.44 .505 .607 
Measurement occasion 2 32.58 9.12 .001 

Table 5.11. Parameter Estimates for Posttest Scores 

Parameter Estimate 
Std. 

Error df T P-value
95% Confidence Interval 

Lower Bound Upper Bound 
Intercept 81.50 5.29 39.46 15.42 0.00 70.81 92.19 
Cognitive ability -10.40 5.11 40.44 -2.04 0.05 -20.72 -0.08
LGO -2.78 5.60 40.44 -0.50 0.62 -14.10 8.53
2D -0.26 6.60 40.44 -0.04 0.97 -13.60 13.07 
3D 5.31 6.07 40.44 0.88 0.39 -6.95 17.57 
T1 -17.37 4.81 33.78 -3.61 0.00 -27.15 -7.58
T2 -17.89 4.72 33.04 -3.79 0.00 -27.50 -8.29
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Figure 5.4. Posttest scores based on measurement occasion 

Design score. For the analysis of the design score, one outlier was removed and 

two additional participants were removed based on the retention survey (the same two  

removed  from the previous analysis). The ICC for design scores was 4.6%. Measurement 

occasion was a significant predictor of this score, F(2, 33) = 20.604), p<.001 (Table 

5.12). The mean score at T0 was 90.09, and participants lost 11.06 points at T1 and 

another 8.27 points at T2 (Table 5.13). Post hoc analysis conducted using LSD found 

significant differences between the design scores at T0 and T1 (p<.001), T0 and T2 

(p<.001), and T1 and T2 (p<.007). 

The interaction between measurement occasion and fidelity, F(4, 43) = 4.77, p 

=.003, was also a significant predictor of design score (Table 5.12).  In the physical 

condition, participants had the highest mean design score (96.79, SD = 2.08) initially, but 

this score declined steeply after two weeks (72.25, SD = 14.65) and again after 4-weeks 

(65.92, SD = 21.74) so that these participants had the lowest scores at the end of the 
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retention period (Figure 5.5). The design scores for participants in the 2D condition 

decreased more steadily from 88.15 (SD = 11.13) at T0 to 78.08 (SD = 17.22) at T2. In 

the 3D conditions participants’ scores were fairly consistent after two weeks, 84.46 

(SD=9.85) to 83.13 (12.50) but declined significantly after four weeks to 69.92 

(SD=16.69).    

Table 5.12. Tests of Fixed Effects for Design Score 

Parameter 
Numerator 

df 
Denominator 

df F P-value
Intercept 1 38.161 2502.771 .000 
Measurement occasion 2 41.789 24.239 .000 
LGO 1 31.507 .047 .830 
Cognitive ability 1 31.567 2.664 .113 
Fidelity 2 39.094 .252 .779 
Fidelity * Measurement occasion 4 54.182 5.899 .001 

Table 5.13. Mean Design Score Based on Measurement Occasion 

Measurement occasion Mean 
Std. 

Deviation N 
T0 89.76 9.96 37 
T1 78.31 13.73 36 
T2 71.10 18.92 36 
Total 79.81 16.43 109 

Figure 5.5. Interaction between fidelity and measurement occasion for design score 
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Table 5.14. Parameter Estimates for Design Score 

Parameter Estimate 
Std. 

Error df t P-value

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept 98.81 2.91 31.76 33.99 0.00 92.89 104.74 
T1 -24.54 3.75 39.55 -6.55 0.00 -32.11 -16.97
T2 -31.50 5.15 43.39 -6.11 0.00 -41.89 -21.11
Low LGO 0.65 2.99 31.51 0.22 0.83 -5.44 6.73
Low Cognitive ability -4.48 2.74 31.57 -1.63 0.11 -10.07 1.11 
2D -9.44 3.76 30.91 -2.51 0.02 -17.10 -1.77
3D -12.33 3.55 29.64 -3.48 0.00 -19.58 -5.08
2D * T1 15.62 5.19 39.55 3.01 0.01 5.12 26.12
3D * T1 23.52 5.39 40.14 4.36 0.00 12.63 34.41
2D * T2 21.42 7.26 44.08 2.95 0.01 6.79 36.04
3D * T2 16.96 7.29 43.39 2.33 0.03 2.27 31.65

Construction time. The overall mean for construction time was 26.29 minutes 

(SD =16.9), and the ICC for construction time was 26.5%. Only cognitive ability, F(1, 

35) = 8.96, p =.005, was a significant predictor of construction time over the

measurement occasions (Table 5.15). Participants with lower cognitive ability took an 

average of 9.8 minutes longer to construct their circuits than participants with high 

cognitive ability (Table 5.16). 

Table 5.15. Fixed Effects for Construction Time 

Source 
Numerator 

df 
Denominator 

df F P-value
Intercept 1 40.97 230.55 .000 
Measurement occasion 2 30.27 1.41 .260 
Cognitive ability 1 35.08 8.96 .005 
LGO 1 35.12 .000 .983 
Fidelity 2 40.63 .995 .379 
Fidelity * Measurement occasion 4 30.90 .949 .449 
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Table 5.16. Parameter Estimates for Construction Time 

Parameter Estimate 
Std. 

Error df t P-value

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Intercept 14.14 3.74 28.19 3.78 0.00 6.48 21.80 
T2 6.14 4.38 27.67 1.40 0.17 -2.84 15.13 
T1 8.71 4.67 32.73 1.87 0.07 -0.78 18.21 
Low Cognitive ability 9.80 3.28 35.09 2.99 0.01 3.15 16.45 
Low LGO 0.08 3.47 35.12 0.02 0.98 -6.98 7.13 
3D 8.69 4.81 23.46 1.81 0.08 -1.25 18.63 
2D 7.06 4.67 23.84 1.51 0.14 -2.58 16.69 
2D * T1 -9.43 6.60 32.73 -1.43 0.16 -22.86 4.01 
2D * T2 -10.87 6.20 27.69 -1.75 0.09 -23.57 1.83 
3D * T1 -3.49 6.99 33.84 -0.50 0.62 -17.70 10.72 
3D * T2 -6.56 6.36 27.11 -1.03 0.31 -19.61 6.48 

Construction. At T0, 24 participants made no errors, and 16 made minor errors. 

None of the 20 participants who made major errors at T0 participated in T1 or T2. From 

T0 to T1, 78% of the participants who made no errors at T0 also made no errors at T1 

(Figure 5.6). One participant who made no errors in T0 did not participant in T1. Of the 

participants who minor errors at T0, 69% made no errors at T1. Four participants (25%) 

who made minor errors at T0 made major errors at T1. Only 9% of participants made 

major errors at T1 after making no errors at T0. 

At T1, 28 participants made no errors, 4 participants made minor errors, and 6 

participants made major errors. From T1 – T2, 68% of the participants who made no 

errors at T1 did not make errors in T2 (Figure 5.7). All four participants who made minor 

errors at T1 made no errors at T2. None of the participants who made no errors at T1  



88 

Figure 5.6. Transitions Between Error Categories from T0 (post) – T1 (2-week) 

Figure 5.7. Transitions Between Error Categories from T1 (2-week) – T2 (4-week) 
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major errors at T2. Half of the participants who made majors errors at T1 also made 

major errors at T2, 33% made no errors and 17% made minor errors. A multilevel 

multinomial logistic regression for construction found that only LGO, F(2, 100) =3.532, 

p =.033, was a significant predictor of construction over time (Table 5.17).  Participants 

with a lower than average LGO had 0.058 lower odds [95% CI : 0.004, 0.785]  of 

constructing their circuit without errors during the retention period.  

Table 5.17. Fixed Effects for Circuit Construction 

Source 
Numerator 

df 
Denominator 

df F P-value
Model 12 104 1.28 .240 
Measurement occasion 4 104 1.20 .315 
Cognitive ability 1 88 0.71 .496 
LGO 2 104 3.53 .033 
Fidelity 4 92 1.93 .112 

Discussion 

T0 

This study investigated how learning in different levels of fidelity influenced 

retention outcomes, an area that has seen little to no previous research.  To explore this 

issue, it first evaluated learning outcomes post-instruction before looking at the learning 

outcomes again after 2-week and 4-week intervals.  

Self-efficacy is an important learning outcome as it affects an individual’s effort 

and persistence concerning a particular task (Zimmerman, 2000). Fidelity was not found 

to be a significant predictor of this outcome, perhaps because of improvements in 
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instructional design. For example, in this study, all participants had the opportunity to 

practice determining the value of the resistors and learned about differences between 

working in the simulated and physical environments. These changes may have helped 

participants feel more prepared to work in the physical environment.  

In this study, only pretest scores were significant predictors of gain scores. In 

general, posttest scores were higher than pretest scores for the participants, with 

participants with lower pretest scores achieving higher gains across all conditions (Table 

5.2). Similar to SE, these differences were potentially the result of improvements in the 

design of the instruction.  In the study, the practice questions the participants responded 

to were in a separate section.  If they answered incorrectly, the correct answer was 

provided along with an explanation and a note about where to find the information in the 

video lecture.  This change allowed participants to become more active in their learning, 

potentially helping them learn the material better and reducing the impact of cognitive 

ability (Prince, 2004).    

Only cognitive ability was a significant predictor of design score. The circuit 

participants were required to design was a bit more complex than the ones used during 

practice. As a result, although most participants probably understood how to draw a 

circuit diagram in general, those with higher cognitive ability were able to draw the 

required diagram with minor or no errors. This finding supports research on far transfer 

which found that participants with higher intellect are better able to apply principles and 

concepts they have learned to novel situations (Clark & Voogel, 1985).  
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Participants in the physical condition constructed their circuits faster than 

participants in the 2D conditions. Participants who practiced with physical components 

had the benefit of a higher level of fidelity, which facilitated the transition from practice 

(Goldstein & Ford, 2002). The identical elements theory posits high positive transfer 

when the instruction environment is identical to the performance environment as learners 

are basically practicing the task which they will need to perform (Yamnill & McLean, 

2001). Participants in the 2D and 3D conditions probably needed time to acclimate to the 

nuances of working with physical components.  Some of these nuances, which were 

specifically described in the second study, included working with the smaller 

components, having to physically manipulate components and insert them properly in the 

breadboard, and adjusting to the breadboard orientation (Alfred, Lee, Neyens, & 

Gramopadhye, 2016).  

In terms of circuit construction, participants in the 2D condition in this study 

exhibited higher odds of constructing their circuits without errors than the participants in 

the other two conditions.  This finding was not expected as identical elements theory 

suggests that, similar to construction time, participants in the physical condition should 

have the advantage because they practiced using a physical breadboard. Based on the 

construction time, however, it is possible that participants in the 2D condition spent more 

time working to submit their circuit without errors. So it appears that while 2D 

participants took more time to construct their circuits, they constructed them correctly at 

a rate comparable to, if not higher, than participants learning in the physical environment. 
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Overall, this study found significant improvements in learning outcomes for the 

participants in the simulated environments. Revisions in the instructional design that 

included making participants active learners and using scaffolding techniques potentially 

contributed to increased self-efficacy, reduced construction time, and a higher success 

rate for participants learning in the simulated environments.  

T0 – T2 

Of the 50 participants who completed their circuits with no or minor errors who 

were invited to participant in the second part of the study, 40 participants completed the 

4-week retention analysis. The non-qualification rate (20 out of 70) was highest in the 3D

condition (12) and it was also higher for women (15) than for men (5). One possible 

cause for this is that the complexity of working in the 3D environment may have 

increased the cognitive load for participants with limited experiences working in that type 

of environment and the majority of women (60%) reported having little to no experience 

working in the 3D environment. Differences in attrition could be related to the lower 

spatial abilities of women (Feng, Spence, & Pratt, 2007). Women also exhibit lower self-

efficacy for engineering tasks (Marra et al., 2009). This may have also influenced their 

perseverance and effort (Zimmerman, 2000). There were 10 additional participants who 

qualified but elected not to return for the retention analysis. This resulted in a dropout 

ratio of 20% which is not uncommon in longitudinal analysis. 

The results found that the posttest scores exhibited a steep decline in retention 

during the first two weeks, with the decay leveling off at the 4-week period. Design 

scores decreased overall, but the rate of decline was different across the three conditions. 
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Construction time was not significantly different across measurement occasions, and 

circuit construction was fairly consistent.  

The posttest scores indicated that measurement occasion and cognitive ability 

were significant predictors. Participants’ scores decreased by 16.5 points in 2-weeks and 

by another point two weeks later as most participants incorrectly answered questions 

related to the application of Ohm’s law and breadboard functionality. The trend in the 

decrease of posttest scores was consistent with a typical decay curve which exhibits rapid 

loss immediately after acquisition but a slower loss as the retention period increases 

(O’Hara, 1990). Participants with high cognitive ability scored an average of 10 points 

higher than participants with low cognitive ability, a finding consistent with past research 

which has shown that cognitive ability is related to both learning and retention (Clark & 

Voogel, 1985). Participants with high cognitive ability learn more and retain more than 

participants with lower cognitive ability regardless of the learning environment. 

The second cognitive outcome assessed was design score. Measurement occasion 

and the interaction between measurement occasion and fidelity were significant 

predictors. Overall, participants’ design scores decreased during the 4-week retention 

period and there was greater variation in the scores than at T0. Like the posttest, 

participants scores decreased because they were not applying Ohm’s law correctly and 

also because they did not draw the diagram as specified.  This result is consistent with 

research that has found decay in cognitive learning outcomes (Arthur et al., 1998). 

However, this decay curve did not follow the same pattern exhibited by the posttest 

scores due to a moderation effect. The decrease in design scores at T1 and T2 were not 
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consistent across conditions (Figure 5.5). Participants in the physical condition had the 

highest initial mean scores, but their scores dropped dramatically after two weeks and 

dropped again after 4-weeks such that participants in this condition had the lowest mean 

design score (65.02) of the three conditions at the end of the retention period. The design 

scores for the participants in the 2D condition dropped from T0-T1 and then again less 

steeply from T1-T2. These participants had the highest mean design score (78.08) at the 

end of the four weeks. Participants in the 3D condition had the lowest mean design score 

at T0, but their mean score did not decrease significantly from T0-T1. However, their 

scores then dropped by 13 points to an average of 69.92 at the end of the four weeks. This 

is an interesting moderation effect as it was not anticipated that the fidelity would 

influence any of the cognitive outcomes because the instruction content was controlled 

(Clark, 1994).    

If learning in the simulated environments indeed helped participants with their 

conceptual understanding, it seems that these effects should have also impacted their 

initial design score, but this was not the case. One potential explanation for why the 2D 

and 3D environments supported retention is that participants in these environments 

engaged in additional practice that helped them retain the information. In the second 

study, participants described using visualization and mental rehearsal prior to 

constructing their circuits (Alfred et al., 2016). Research has found that mental practice is 

an effective way to improve performance, particularly for cognitive tasks (Driskell & 

Moran, 1994).  These beneficial effects also include retention, although they decline over 

time as well.  



95 

While participants in the physical condition constructed their circuit faster at T0, 

the influence of fidelity on construction time declined.  Fidelity was not a significant 

predictor of construction time across measurement occasions; only cognitive ability. This 

result may be related to both retention and far transfer. To be able to construct the circuit 

correctly, participants needed to remember the basics of circuit construction – how the 

breadboard and components work and how to choose the appropriate resistor. Participants 

also needed to be able to apply Ohm’s law to different types of circuit connections – 

series, parallel, and combination. Participants with high cognitive ability were able to do 

this faster because they retained more of the information related to circuit construction or 

were better able to apply what they had learned to build a new circuit while participants 

with low cognitive ability may have had to remind themselves of this information 

through trial and error.  

In general, once participants understood how to construct the circuit they were 

able to continue to do so with minimal errors in spite of the condition in which they 

originally learned. Following T0, only six participants made major errors in their 

construction during T1. Of the six participants, three were in the 3D condition, two were 

in the 2D condition, and one was in the physical condition. Only three of those 

participants again made major errors in their circuits in T2, one participant from each 

condition, and only learning goal orientation was a significant predictor of constructing 

circuits without errors over the retention period.  In this study, LGO was not a significant 

predictor of any of the other learning outcomes. Prior research has found, however, that 

an orientation towards learning goals helps with construction because it encourages 
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learners to acquire the knowledge and skills required for competency. An LGO also 

fosters a desire to explore relationships in greater depth and helps participants build their 

self-efficacy (Kozlowski et al., 2001).  

Limitations 

There are several limitations associated with this study. First, because participants 

had to achieve a minimum level of proficiency for the retention analysis, the sample size 

was reduced from 70 to 40, and as a result, the power of the analysis was not ideal. The 

number of participants in each condition was unequal, meaning the design was also 

unbalanced. Due to a higher dropout rate in the 3D environment, the last 10 participants 

had a higher probability of being in the 3D condition as more participants were needed 

for the retention analysis. The proficiency requirement reduced the variation in the 

sample to include participants who performed higher; thus, the data for the retention 

analysis at T0 were positively skewed. In addition, the majority of the participants were 

freshmen and sophomores so this potentially limits the generalizability of the results.  

Although efforts were made to address various issues with the simulation 

software through revisions to the instructional design, there were still characteristics of 

both the 2D and 3D simulations that may have been detrimental to participants’ 

performance. For example, neither the 2D nor 3D environment incorporated a battery 

holster; as a result, participants had to figure out how to connect the holster during the 

construction task, a situation that probably increased their construction time and may 

have resulted in issues with their circuit if they did not align the positive and negative 

terminals of the holster correctly. Additionally, the 3D environment had a dual view with 
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the completed schematic on one tab and the breadboard on the other tab and it allowed 

participants to verify that their circuit components were connected correctly using 

feedback provided on the schematic view. This feature was not present in the 2D 

environment as both the 3D and the 2D software were purchased off the shelf.  

At T1, 13 participants did not complete the retention survey, and 10 did not 

complete the retention survey at T2. As a result, the researcher was unaware if they 

continued to study circuits outside of the research environment, potentially impacting the 

retention results. However, the overall trends and findings from the retention analysis are 

consistent with the existing literature on retention and skill decay. 

Conclusions 

Supporting the findings of Arthur et al. (1998), this study found a greater level of 

decay in the outcomes evaluated cognitively than  those evaluated behaviorally. Although 

the majority of participants could construct the circuit correctly, they exhibited less 

proficiency in designing their circuit and performing the requisite calculations for their 

circuit diagram at T2.  This conclusion was reflected in the learning outcomes assessed. 

Participants’ posttest scores and design scores decreased over time while their 

construction time and circuit construction remained relatively stable. Learner 

characteristics seemed to have more influence when in the evaluation of the retention 

outcomes while the effects of the fidelity, as a main effect, became insignificant for most 

of the learning outcomes. The interaction between fidelity and measurement occasion for 

the design scores suggests that fidelity may also influence participants’ conceptual 
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understanding. Participants in the simulated environments had higher design scores at the 

end of the retention period.  

Chapter Summary 

This chapter addressed the third aim of this research by exploring how the 

physical fidelity of the instructional environment impacted retention outcomes and how 

this relationship was influenced by cognitive ability and learning goal orientation. First, 

the analysis focused on the cross-sectional outcomes to understand the effects of the IVs 

immediately after instruction; subsequently, it focused on changes in these outcomes over 

a 4-week period. The analysis found the fidelity of the learning environment affected 

circuit construction and construction time post instruction (T0) but not during the 

retention period. Cognitive ability significantly predicted construction time post 

instruction and during the retention period while LGO only influenced circuit 

construction over time. Posttest scores and design scores both decreased significantly 

during the retention period. This analysis also provided evidence that improvements in 

the instructional design can yield significant improvements in the learning outcomes for 

participants learning in simulated environments.  
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CHAPTER SIX 

CONCLUSIONS, BROADER IMPACTS, AND FUTURE RESEARCH 

The three primary aims of this research were to identify how the physical fidelity 

of the learning environment impacted instructional (learning and retention) and transfer 

outcomes and whether these relationships were influenced by learner characteristics. This 

research also explored how the transition from the simulated environment to the physical 

one affected participants’ construction process for an electrical circuit and the learning 

outcomes they achieved.  The first study addressed Aim 1, the second Aim 2, and the 

third Aim 3 as seen in Figure 6.1 below.  

Figure 6.1. Research aims 

Overall discussion 

The analysis of the results from the first study found that the physical fidelity of 

the learning environment impacted the affective (self-efficacy) and skill-based learning 

outcomes (construction and construction time) for participants learning to construct a 
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simple circuit on a breadboard. More specifically, participants learning in the physical 

environment had a higher self-efficacy and shorter construction time, and were more 

likely to construct their circuit without errors than participants in the simulated 

environments. Although these findings suggest learning using the physical components 

was superior, the study also found evidence of transfer for participants who learned using 

the 2D and 3D simulations. Approximately 41% of participants (12 of 29) in the 

simulated environments who attempted construction were able to effectively transition 

into the physical workspace despite differences in the environments and issues with the 

instructional design. While the fidelity influenced the affective and skill-based outcomes, 

learner characteristics impacted the cognitive outcomes (gain score and design score). 

Cognitive ability was a significant factor for both outcomes, and an interaction effect was 

also found between fidelity and LGO for construction time, suggesting that evaluating 

learner characteristics may help improve results when selecting the learning environment. 

The analysis of the results from the second study found that the physical fidelity 

of the learning environment impacted the participants’ affect, strategies, and tactics 

concerning the circuit construction process. Participants experienced some level of 

isolation, intimidation or pressure when they transitioned from the 2D and 3D conditions 

to the physical environment.  Although most participants using the simulations enjoyed 

practicing in those conditions, learning to construct a circuit in those conditions was 

associated with knowledge gaps, inability to identify and troubleshoot issues, and 

increased levels of negative affect that hurt performance.  Some participants suggested 

that simulations are best used as a supplement to help conceptual understanding. 
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However, the limitations of the environment were created by the software, not innate 

features of simulated learning, meaning that both the 2D and 3D simulations can facilitate 

the transition with minor changes in the design. In addition, these environments can also 

facilitate transfer by helping participants understand differences they may encounter in 

the physical environment. However, the transition to the physical environment should not 

be in a test environment as it can create unnecessary stress and anxiety as found in the 

second study. These negative emotions, in turn, incurred cognitive resources that 

potentially detracted from performance (Valiente et al., 2012).   

The analysis of the results from the third study demonstrated that while the 

fidelity of the learning environment impacted construction and construction time initially, 

the differences decreased over time.  The retention analysis indicated no significant main 

effects for fidelity only an interaction effect with measurement occasion for the design 

score, suggesting that once the participants became proficient at constructing the circuit, 

the original learning environment was no longer relevant. However, the interaction effect 

suggests that the learning environment may continue to influence cognitive outcomes.

Learner characteristics, specifically cognitive ability, were found to be a significant 

predictor of both learning (design score) and retention (posttest score, construction time) 

outcomes.  More specifically, learning goal orientation (LGO) predicted circuit 

construction, and the measurement occasion was a significant factor in the participants’ 

posttest scores and design scores. Although the majority of participants could construct 

the circuit correctly, they exhibited less proficiency in designing their circuits and 

performing the requisite calculations for their circuit diagram.  Posttest scores exhibited 
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the behavior of a typical decay curve, a rapid decline initially followed by a less steep 

one over time (Arthur et al., 1998). 

 Design scores decreased overall, but the rate of decline was different across the 

three conditions. The interaction between fidelity and measurement occasion for design 

score suggested that fidelity may also influence participants’ conceptual understanding. 

Early research on computer-based learning environments found evidence supporting that 

these environments can be used as “cognitive tools for learning” (Lajoie 1993, p. 285). 

Because the simulations used in the study did not offer some of the typical advantages of 

simulations such as displaying invisible phenomena and increased interactivity, it was 

hypothesized that the mental rehearsal and visualization used by participants who learned 

in this environment supported retention of the concepts related to circuit design (Alfred et 

al., 2016). Construction time was not significantly different across measurement 

occasions, and circuit construction was also fairly consistent, these findings from the 

retention analysis supporting Arthur et al. (1998), who found that cognitive outcomes 

decay more rapidly than physical ones and that outcomes assessed cognitively will 

demonstrate more decay than those assessed behaviorally.  

The analysis of the first experiment found in Chapter 3 and the second in Chapter 

5 found both consistent and conflicting results. Unlike in the first experiment, fidelity 

was not found a significant predictor of self-efficacy (SE) in experiment two. While 

participants in the physical and 3D conditions had similar SE in the studies, participants 

in the 2D condition had a much higher post instruction SE (Figure 6.2) in the second 

study. These differences were potentially attributable to improvements in the 
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instructional design - specifically providing the 2D participants with transition notes and 

allowing them to practice reading resistors – that helped them to feel more confident in 

their ability to work with circuits. These differences in SE may also be attributable to 

differences in the participant profiles.  Although the gender ratio was comparable and 

most participants in both studies had little to no prior experience working with circuits, 

the second experiment involved a younger predominantly undergraduate participant 

population, their age potentially influencing their experience and comfort working in 

simulated environments.  

In the first study, both cognitive ability and pretest scores impacted gain scores, 

with the latter having the higher unique effect size. In the second experiment, only pretest 

scores were a significant predictor of gain score (Table 5.1). Another change made in the 

second experiment was to include 2-3 practice exercises after each video lecture.  Having 

participants complete these activities helped make them active learners (Prince, 2004).  

This change may also have offset the gains attributable to cognitive ability. For both 

studies, cognitive ability was also the only significant predictor of design score, a result 

that was expected as both studies used the same construction activity. In both participants 

with a high cognitive ability were better able to design the specified circuit than those 

with a lower one.   
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Figure 6.2. Comparison of mean SE by condition between experiment 1 and 2 

Table 6.1. Comparison of mean construction time per condition 
Experiment 1 Experiment 2 

Condition Mean N 
Std. 

Deviation Mean N 
Std. 

Deviation 
Physical 15.47 15 12.39 15.18 22 6.51 
2D 29.88 16 14.76 23.19 21 9.98 
3D 30.43 13 16.91 20.59 22 11.97 

In addition, consistent with the first study, the second experiment also found that 

fidelity was a significant predictor of construction time and correct circuit construction.  

In the first experiment, the participants in the physical condition constructed their circuits 

in half the time as those in the 2D and 3D environments (Table 6.1). In experiment two, 

the construction time among the participants was closer in range, with only participants in 
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the 2D condition constructing their circuit significantly slower than those in the physical 

condition.  However, overall, the participants in experiment two constructed their circuits 

faster than those in the first study.   These differences in construction time were, in part, 

due to the fact that participants in the simulated environment in experiment one spent 

several minutes trying to determine the resistance of the through-hole resistors (Alfred, 

Lee, Neyens, & Gramopadhye, under review).  Video data analysis also found that 

participants in the physical condition took a more methodical approach to circuit 

construction while participants in the 2D and 3D conditions employed a trial-and-error 

approach, which resulted in a higher mean construction time for these participants.   

The video lecture for the first study showed participants how to read a resistor and 

included an embedded practice activity.  In experiment two, all participants saw this 

demonstration and took part in a practice activity in which they were required to find the 

value of physical through-hole resistors. This was one form of scaffolding that was 

incorporated into the experiment two to facilitate transfer for participants learning in the 

simulated environments. This change probably reduced the construction time for 

participants in the simulated environments. In the first study, LGO also moderated the 

relationship between fidelity and construction time. This effect, however, was not found 

in experiment two. 

The two experiments also found differences in circuit construction among the 

participants in the three conditions. As previously mentioned, the initial construction task 

was the same for both experiments. In experiment two, participants in the 2D condition 

had higher odds of constructing their circuit without errors. This finding may be related 
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to their longer construction time. They may have simply spent more time working to 

ensure their circuit was correct. The first experiment did not find significant differences 

in the odds of constructing a circuit without error for participants in the physical (11) and 

2D conditions (8). Participants in the 3D condition, however, had lower odds, .064 times 

[95% CI: .003, .617], than participants in the physical condition.  In the second 

experiment, these participants constructed their circuits without error at a comparable rate 

to participants in the physical condition and at a time that was not significantly different. 

However, in both experiments, only participants in the 3D condition dropped out or were 

withdrawn because they could not complete the practice activities – 3 in experiment one 

and 4 in experiment two. Some participants struggled to work in the 3D environment. 

The environment may have added an extraneous load, explaining why it would have been 

detrimental to learning and why some participants could not establish proficiency (Paas 

& Sweller, 2014). In the first experiment, the participants who dropped had very little 

experience working with circuits but at least a little experience working in 3D 

environments. In the second experiment, all the participants who dropped had no 

experience working with circuits, and three reported having no experience working in 3D 

environments, with the fourth having very little. Prior research has found that the 

increased complexity of 3D environments may make it difficult for students to interact 

with it and beginners in particular may struggle to comprehend all the information being 

conveyed (Stuerzlinger & Wingrave, 2011; Gillet et al., 2013).  
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Conclusions 

This research found that fidelity impacted skill-based learning outcomes while the 

learner characteristics, particularly cognitive ability, impacted both cognitive and skill-

based learning outcomes. The improvements in the performance of participants in the 

second study demonstrated that instructional design is particularly important for 

participants learning in simulated learning environments.  In addition to good 

instructional design, simulated learning environments should account for individual 

differences and try to minimize the cognitive load for learners when they transition to the 

real-world environment. This may be particularly important for participants who do not 

have as much experience or exposure to simulated environments. Over time, the effect of 

fidelity faded, but cognitive ability remained a significant predictor. This finding 

suggested that once participants understood how to construct a circuit, the condition they 

originally learned in was no longer a factor in their circuit construction and time. 

However, learning in the 2D or 3D simulations potentially helped students develop a 

stronger conceptual understanding that supported retention.  

Another finding from this analysis was that learning to construct a circuit in a 3D 

environment offered no advantage over the 2D simulation. Constructing a circuit is 

primarily a 2D task, so working in a 3D environment may add no value and this may be 

the case for 2D tasks in general. Participants in these two conditions were comparable in 

terms of affective (self-efficacy) and skill-based outcomes (construction time). However, 

participants in the 2D environment had higher odds of constructing their circuit correctly 

in both experiments than those who learned in the 3D environment. Also, 2D 
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environments are typically less expensive to develop and maintain and can operate on 

less powerful computers.  

Based on the results, some acclimation to the physical environment would be 

beneficial for learners using a simulated environment. The second experiment found that 

improvements in the instructional design led to improved learning and transfer outcomes 

for participants who learned in these environments. However, further enhancements in 

both the 2D and 3D simulations could further facilitate the transition. In general, because 

simulated environments represent an abstraction of reality, designers have to decide 

which simplifications a simulation should employ to support learning outcomes without 

negatively impacting transfer and retention. For example, both the 2D and 3D 

environments should force learners to practice reading resistors from a resistance 

calculation sheet as opposed to typing in the value and the 2D condition could allow 

learners to orient the breadboard horizontally or vertically depending on their preference. 

Additionally, learners should be allowed to operate in the physical environment without 

the immediate pressure of performance as doing so could potentially ease the anxiety and 

pressure participants described in the second study. 

Despite learners’ having to make some adjustments, simulated laboratories have 

several practical benefits over physical laboratories. Simulated laboratories can be 

offered in an online setting and do not require the equipment and facilities needed for 

physical laboratories. The maintenance costs for these environments may also be lower 

than physical laboratories.  Further, learners have increased access as instructors and/or 

teaching assistants do not need to be present. Finally, simulated environments can address 
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the safety concern as well as cost, two factors which may limit the students’ ability to 

experiment and explore using the physical tools and equipment.  

Broader Impacts and Research Contributions 

Non-traditional students wanting a technical degree may be constrained to course 

offerings at their nearest educational institution because few institutions currently offer 

technical curricula in online settings. The results of this research have implications for the 

design and implementation of simulations in instructional settings, particularly for 

technical tasks. The findings provide insights about how tasks can be taught effectively in 

simulated environments as well as information about how the physical fidelity of the 

learning environment impacts learning outcomes. In the first study, participants who 

learned to construct the circuit using the physical components achieved better results than 

those who learned in either the 2D or 3D simulation. With a few minor modifications in 

the instructional content, the third study found comparable results between participants in 

the 2D simulation and the physical conditions, while participants in the 3D simulation, 

although improved, still demonstrated the lowest level of proficiency. These findings 

have important implications for access to educational opportunities. In addition to 

increasing the number and range of courses that can be taught in an online setting, it can 

potentially attract and retain student populations – older, minority, full-time workers- 

with high dropout rates (Hirschy et al., 2011). These students are likely to enroll in online 

courses. This setting can also help provide educational opportunities to students, such as 

those living in rural areas, who also have limited access to different programs due to their 

geographic locations. With the push for free community college gaining traction around 
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the country and with states such as Tennessee and Oregon already offering this option, 

well-designed simulated learning environments represent an opportunity to support 

engineering and technical education in this climate. Additionally, simulated labs can 

provide learning opportunities to students in impoverished school districts that cannot 

fund the labs and required materials or offer online courses for their students.  

This research also has implications for personalized education. Advanced 

personalized education has been identified as one of the grand engineering challenges 

developed by the National Academy of Engineering (“NAE Grand Challenges for 

Engineering,” 2016). In addition to identifying the impact of physical fidelity on learning 

outcomes, this research also sought to understand how specific learner characteristics 

interacted with the relationship between physical fidelity and learning outcomes. As 

technology continues to become more prominent in education, it will become 

increasingly more important to understand not just whether it is effective but for what 

tasks and for which individuals it is most effective. This research begins to answer these 

questions by providing evidence about how the cognitive ability and goal orientation of 

the learner impacted the effectiveness of the learning in simulated environments.  

Directions for future work 

While most previous research conducted on simulated learning environments has 

concentrated on conceptual learning, this research focused on the use of simulated 

environments to develop technical skills. However, it is just a first step, with several key 

areas requiring future study.  First, future research should continue to investigate the use 

of simulated environments for technical tasks, evaluating whether the findings from this 
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study are consistent across different tasks. The nature of the task probably influences its 

ability to be learned effectively in an online environment.  For example, hands-on tasks, 

such as welding, with a strong motor component could result in different transfer 

outcomes. Secondly, because the relationship between the physical fidelity of the 

learning environment and transfer may be dependent on the specific characteristics of the 

learner, such as current skill level (Alexander et al., 2005), it is also important to continue 

to investigate the relative importance of these characteristics.   In addition, because the 

appropriate level of fidelity may change depending on specific task characteristics or the 

learner’s progress, researchers should investigate varying the level of fidelity to 

determine its influences on instructional and transfer outcomes at different stages in the 

learning process.   

One of the unanticipated findings from the analysis concerned the emotional 

transition participants faced when moving from the simulated environments to the real- 

world environment. The research found that participants learning in the simulated 

environments experienced feelings of isolation and anxiety when they transitioned to 

working with physical components.  Although self-efficacy was measured following 

instruction, it appeared that self-efficacy evolved during the construction process with 

some learners losing confidence in their ability to construct the circuit. In addition to 

identifying the appropriate level of fidelity required to achieve the desired level of 

proficiency and skill transfer in learners, instructors and designers also have to consider 

the emotional transition learners must manage as they transition from the simulated 

environments to the physical environment. For the research task, how they managed these 
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emotions was less crucial for their success, but for critical tasks it will be very important 

to help learners manage their emotions and maintain their self-efficacy through this 

transition. Future work should examine the affect of students as they learn a skill in a 

simulated environment and how their emotions evolve as they attempt to transfer skills 

learned in simulated environments to real-world applications.  
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Appendix A  

Pretest for experiment one and experiment two 
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Appendix B 

Demographic survey 
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Appendix C 

Goal Orientation Survey 
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Appendix D 

Post instruction self-efficacy instrument 
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Appendix E 

Posttest for experiment one and experiment two (T0) 
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Appendix F 

Construction task for experiment one and experiment three (T0) 
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Appendix G 

Construction task (T1) 
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Appendix H 

Construction task (T2) 
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Appendix I 

Posttest (T1) 
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Appendix J 

Posttest (T2) 
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Appendix K 

Transition notes for participants in the 2D and 3D simulations 
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