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ABSTRACT 

 Detection of carbohydrates has always been a big challenge in the world, which is still 

attracting numerous researchers to develop different methods to overcome various 

difficulties. Reducing sugars, a special group of carbohydrates containing a reducing end, 

have provided a possibility to combine one or more chromophores to facilitate the 

carbohydrate detection in spite of the lack of chromophoric group in original carbohydrates. 

After such kind of chemical derivatizations, the sugar derivatives can be analyzed by high 

performance liquid chromatography (HPLC) with ultraviolet detector (UV) and diode array 

detector (DAD), which have been the most common methods for the carbohydrate 

detection. 

  In order to optimize the sugar detection via the HPLC-UV and/or DAD, this study 

applied the chemical derivatization to add an extra luminophore into carbohydrates 

molecules, for which 1-phenyl-3-methyl-5-pyrazolone (PMP) was used in this experiment. 

The optimal conditions for derivatizations of glucose and glucosamine with PMP were 

obtained through the response surface methodology (RSM) experimental design, which 

suggested the optimal conditions, under a fixed value at pH 13 of the buffer solution, for 

the glucose-PMP and glucosamine-PMP derivatizations at 71 °C for 134 minutes and 73 °C 

for 96 minutes, respectively. The delicate difference among the optimal conditions might 

result from the difference of the inner-structure and inner environmental pH values of the 

carbohydrates. Nevertheless, this method has been proven to be a feasible and practical 

method with high sensitivity to determine the most monosaccharides except fructose, and 

disaccharides such as lactose and maltose, as well as oligosaccharides which contain the 
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reducing end. In addition to the effect of inner pH environment, multiple sugar rings and 

optical isomerism of carbohydrates might also play important roles in the yield of sugar-

PMP derivatives.  

  Furthermore, this research involved the study of the detective power in terms of the 

detective sensitivity, accuracy and linearity of two common detectors, i.e., DAD and 

evaporative light scattering detector (ELSD), on the sugar-PMP derivatives, and the 

efficiency in terms of the separation capability of two common HPLC columns, i.e., C18 

column and amide column.  Because of different principles of DAD and ELSD in chemical 

detection, both popular detectors have different sensitivities and selectivities for 

carbohydrates. DAD is able to analyze the sugar-PMP derivatives, while ELSD is good at 

detecting both the PMP free sugars, sugar PMP derivatives and other sugar derivatives such 

as sugar alcohols, etc. Moreover, the results have demonstrated that the amide column 

could efficiently separate the PMP free carbohydrates rather than the sugar-PMP 

derivatives, and on the contrary, the C18 column was able to separate the sugar-PMP 

derivatives rather than the sugar themselves.    
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CHAPTER ONE  

LITERATURE REVIEW 

Introduction 

Carbohydrates, one of the most ubiquitous biomolecules in the world, for example, in 

all organism bodies and even in lake sediments (Whittaker & Vallentyne, 1957), are mainly 

composed by carbon (C), oxygen (O), and hydrogen (H). Normally, because of the atom 

ratio between oxygen and hydrogen, these substances have one common structure formula 

which shows as Cx(H2O)y.   

The most well known function of carbohydrates is described as an energy provider to 

all organism bodies, for instance, through the glycolysis which provides numerous ATP in 

bodies. Additionally, carbohydrates play important roles in health regulation of organisms. 

For example, high-carbohydrate diet helps improve the insulin sensitivity (Bessesen, 2001; 

Daly, Vale, Walker, Alberti, & Mathers, 1997). Fukagawa et al (Fukagawa, Anderson, 

Hageman, Young, & Minaker, 1990) investigated the influence of high-carbohydrate and 

high-fiber (HCF) diets on peripheral insulin sensitivity in healthy young adults versus 

healthy old adults. The researchers found that the HCF diets had significantly improved 

the peripheral tissues’ sensitivity and physiologic concentration of insulin in both healthy 

young and old adults. In addition, carbohydrates have been found to be associated with 

some risk factors of health, which indicate a series of diseases or some certain unhealthy 

conditions resulted from wealth in the society, including obesity, cardiovascular disease 
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and diabetes (Drewnowski, Kurth, Holden-Wiltse, & Saari, 1992; Ezzati et al., 2005; 

Meyer et al., 2000; Sacks & Katan, 2002).  

Moreover, carbohydrates are also regarded as necessary bio-synthesis materials in live 

organisms. Briefly speaking, they usually combine with lipids or proteins after chemical 

reactions or biological process, yielding the glycoproteins and glycolipids, respectively. P-

glycoproteins, for example, are able to block the uptake of xenobiotics and enhance their 

metabolisms in the bile and urine (Ambudkar, Kimchi-Sarfaty, Sauna, & Gottesman, 2003; 

Breedveld et al., 2005), while glycolipids are usually embedded into the biomembranes 

acting as molecular receptors and cell-surface markers (Yamakawa & Nagai, 1978). 

Besides those biofunctions, carbohydrates play other important roles in food 

processings. Glucose, or carbohydrates composed only by glucose, such as sucrose and 

starch, under the Sn-Mon catalyst, are able to be converted into 5-hydroxymethylfurfural 

(HMF) which is a crucial intermediate in the fine chemical industry (Wang et al., 2012). 

Furthermore, according to previous papers (Matero, Mattsson, & Svensson, 1998; von 

Rybinski & Hill, 1998), a new nonionic surfactants called alkyl polyglycosides can be 

made from carbohydrates as raw materials. These surfactants have functions on either 

eliminating cloud point or destroying the stability of liquid crystalline phases in the water-

contained system, though it depends on the length of alkyl group chain. Moreover, Gupta 

et al (Gupta & Kumar, 2007) reported that polylactide consisting of lactic acid resulted 

from carbohydrate fermentation had multiple potential applications in orthopedic sutures 

or drug delivery. Moreover, carbohydrates as a renewable source have potential as energy 

providers in transportation sector (Román-Leshkov, Barrett, Liu, & Dumesic, 2007).  
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Huge consumption and a wide range of applications of carbohydrates have prompted 

human beings to make its efforts on more scientific researches for deep understanding of 

carbohydrates, which is still a big challenge for researchers.  

Reducing sugar analysis 

Reducing sugars that contain an aldehyde group or carbonyl group on their molecules 

can act as reducing agents. In spite of many ways for analyzing reducing sugars, there is 

not a “perfect” method existing. Due to lack of chromophores which show electronic 

transition under ultraviolet or visible light, reducing sugars can not be detected by 

ultraviolet (UV) detector or diode-array detector (DAD) which are the two most commonly 

used analytical detectors connected with high performance liquid chromatograph (HPLC). 

This has limited the detection of reducing sugars. Although multiple detective methods for 

reducing sugar have been developed in recent years, none of these methods is considered 

“perfect” to possess all of these characteristics: more convenience, less cost, higher 

effectiveness, better reproducibility, higher accuracy and universality. 

As one of the most famous analytical methods for chemical structure analysis, nuclear 

magnetic resonance (NMR) has been used on reducing sugar determination. Zhu et al (Zhu, 

Zajicek, & Serianni, 2001) investigated configurations, tautomeric equilibria and hydrates 

of eight aldohexoses in aqueous solution via 13C NMR. The authors found that all of these 

eight sugars had aldehyde and hydrate signals in solution, though their ratios varied 

depending on the sugar configuration. Based on the results, authors concluded that the 

configuration at the second C position had an important effect on H magnitude of the first 

position C. Additionally, Barclay et al (Barclay, Ginic-Markovic, Johnston, Cooper, & 
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Petrovsky, 2012) have searched the tautomeric equilibria of D-fructose in D2O via 1H NMR. 

The authors observed the equilibrium of tautomeric composition of fructose under 5-50°C 

and also studied its mutarotation at 5-25°C, and suggested that temperature and acidic pH 

had no significant influence on the fructose’s tautomeric composition, notwithstanding, the 

concentration change had a linear relationship with the environmental temperature among 

all forms which also matched the previous work (Goux, 1985). Moreover, a lot of 

experiments focused on the transformation from fructose into 5-hydroxymethylfurfural 

under a variety of conditions, like temperature change, catalyst existence or solvent 

difference, which were analyzed by NMR (Amarasekara, Williams, & Ebede, 2008; Bicker, 

Hirth, & Vogel, 2003; Chinnappan, Jadhav, Kim, & Chung, 2014; Moreau, Finiels, & 

Vanoye, 2006; Zhang, Das, Assary, Curtiss, & Weitz, 2016).  

Another characteristic method, Fourier Transform Infrared Spectroscopy (FTIR), has 

been used as an alternative detective method for sugar analysis. However, it was usually 

equipped with chemometrics to search the reducing sugar in food, particularly, in liquid 

food. The most commonly used FTIR technique is the attenuated total reflection (ATR), 

which is one of the most important methods for direct sampling detection (Wilson & Tapp, 

1999). Kemsley et al (Kemsley, Holland, Defernez, & Wilson, 1996) applied the FTIR-

ATR technique for quantitative determination of sugars in raspberry purees, while Duarte 

et al (Duarte, Barros, Delgadillo, Almeida, & Gil, 2002) measured the concentration of 

reducing sugars in mango juice via the FTIR-ATR. Additionally, other FTIR-ATR 

applications have been reported, such as detection of reducing sugars in raw potato tubers 
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(Ayvaz, Santos, Moyseenko, Kleinhenz, & Rodriguez-Saona, 2015), in honey (Nayik, Dar, 

& Nanda, 2015), and in apricot fruit (Bureau et al., 2009).  

Nevertheless, high performance liquid chromatograph (HPLC) system is the most 

desirable equipment for chemical determination in the world. HPLC equipped with a 

refractive-index (RI) detector is a traditional means to detect reducing sugars. Vaz et al 

(Vaz et al., 2011) investigated the chemical compositions of  free sugars of four different 

wild edible mushrooms species. As a result, the authors indicated that trehalose was the 

main sugar in the edible mushrooms. The C. comatus sample contained the highest 

concentration of trehalose, which was 42.82 gram per 100 gram of dry weight (DW), while 

the arabinose (0.78g/100g DW) was only found in A. mellea sample. In addition, according 

to the glucose analysis by the HPLC-RI, it was found that, after germination, the starch in 

rice will be degraded into glucose, which means glucose increased along with the rice 

germination process (Kim et al., 2012; Moongngarm, 2011). In addition, HPLC-RI has 

been applied for determining sugars in the adulterated milks by dairy industry (Sharma, 

Rajput, Dogra, & Tomar, 2009), detecting sugar composition in milk and cheese, and even 

predicting sugar formulae of milk (Chávez-Servı́n, Castellote, & López-Sabater, 2004; 

Zeppa, Conterno, & Gerbi, 2001) 

However, RI detector has its insurmountable drawbacks. Particularly, it is not 

compatible with the gradient elution more favorable for separation of reducing sugars 

(Cunha & Oliveira, 2006). Therefore, evaporative lighting scattering detection (ELSD) has 

attracted more and more attention in sugar analysis. The mechanism of ELSD is shown on 

Figure 1.1 (Megoulas & Koupparis, 2005), which involves the following consecutive steps: 
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(1) nebulization of effluent; (2) mobile phase vaporization under high pressure and 

temperature; and (3) scattered light passing through the clear chamber in order to analyze 

the specific analyte particles. Muir et al (Muir et al., 2009) used HPLC-ELSD to search 

sugars and sugar alcohols in 45 vegetables and 41 fruits. The authors reported that 

concentrations of sorbitol and mannitol were found only in 18 vegetables, ranging from 

0.09 to 2.96 gram per 100 gram of fresh weight (FW), while 7 vegetables contained 

raffinose and stachyose between 0.08-0.68g / 100g FW. Additionally, 19 vegetables had 

nystose and kestose, of which their concentrations were within 0.02-0.71g / 100g. As for 

fruits, the most impressive phenomenon was that five common fruits, including apple, 

watermelon, clingstone peach, mango and pear, had higher concentration of fructose than 

that of glucose. Although sorbitol can be detected in 15 fruits (0.53-5.99g/100g, FW), 

mannitol was only found in 2 fruits, including clingstone peach and watermelon. Another 

publication reported that HPLC-ELSD had high ability to detect sugar in fruit juice. For 

example, the sugar profile of orange juice after several weeks of storage, which mainly 

contains sucrose, glucose and fructose, was studied by HPLC-ELSD (Wibowo et al., 2015). 

The authors indicated that the percentage of sucrose hydrolysis rose from 8% to 70% along 

with the temperature increase from 20°C to 42°C within 8 weeks of storage. In addition, 

Peng et al (Pang et al., 2006) used HPLC-ELSD for sugar analysis in tobaccos, found 

several short-chain carbohydrates, including fructose (2 µg/ml), glucose (3 µg/ml), sucrose 

(2 µg/ml), maltose (4 µg/ml), xylose (2 µg/ml) and raffinose (4 µg/ml), in extracted 

solutions of tobacco leaves. Besides, major sugars in soybean have been analyzed by ELSD 

(Valliyodan, Shi, & Nguyen, 2015). 
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Although the ELSD has higher sensitivity and selectivity than RI, and is compatible to 

LC gradient elution, its efficiency and stability still can not be comparable to the UV 

detector or DAD. 

Selection of HPLC columns for sugar analysis 

Before being eluted into the HPLC detector, analytes such as sugars should pass 

through a LC column for chemical separation. In view of the reverse phase (RP)-HPLC, 

two major theories have been proposed: solvophobic and partitioning theories which are 

two models for chemical retention time. According to previous published papers (Knox & 

Parcher, 1969; Scott, 1985), due to the solvophobic effects from the mobile phase and 

attraction by the stationary phase on chemical particles, small chemicals would be excluded 

by the mobile phase and then bind on the surface of the particles of column. The principle 

of this phenomenon is called the solvophobic theory. As for the partitioning theory, it 

described that all analytes were absolutely embedded into and caught by the stationary 

phase, and then brought out by continuous mobile phase (Brown & Weston, 1997). 

Therefore, whether substances can be separated or not, the retention time of each substance 

depends on the chemical materials in column. In other words, column characteristics 

decides the retention times of analytes. In fact, there are hundreds of columns which are 

usually classified into five major categories, such as reversed phase (RP) HPLC column, 

Bio LC column, normal phase (NP) HPLC column, HILIC HPLC column, and ion 

exchange (IE) HPLC column. Each category includes several subcategories which are 

based on main functional groups of particles in column.  
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C18 column, one of the most commonly used columns in all labs, is usually regarded as 

a RP HPLC column. C18 column is loaded with 1-8 µm porous octadecyl-bonded silica gel 

which is a non-polar material. Based on characteristics of its particles, C18 column is able 

to separate non-polar eluents. It is good for separation of phenolic acids and flavonoids 

(Avula et al., 2010; Dai & Mumper, 2010; L. Peng, Song, Shi, Li, & Ye, 2008; Pyrzynska 

& Biesaga, 2009; Wei, Xie, Dong, & Ito, 2009). Moreover, this kind of column has a high 

efficiency on isolation of specific nitrosamines in tobacco. Kim et al (Kim & Shin, 2013) 

successfully quantified N’-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK), N’-nitrosoanabasine (NAB) and also N’-nitrosoanatabine 

(NAT) via LC-MS/MS coupled with C18 column. The authors measured the concentration 

of NNN in 105 electronic cigarettes from 11 shops, which ranged from 0.34 to 60.08 µg/L. 

Besides, the concentration of NNK was from 0.22 to 9.84 µg/L, while the concentration of 

NNB and NAT ranged from 0.11-11.11 µg/L and 0.09-62.19 µg/L, respectively. In 

addition, this particular column is also applied in other areas, for instance, for detection of 

disperse dyes in water sample (Carneiro, Umbuzeiro, Oliveira, & Zanoni, 2010), pesticides 

in environmental water (Gervais, Brosillon, Laplanche, & Helen, 2008) and 

polybrominated diphenyl ethers at lower level (Li et al., 2008). Due to the properties of C18 

column, it has no ability to separate reducing sugar. However, it can be used for separation 

of sugar-derivatives, which will be described in more details in the next section. 

Another column, specific for sugar separation, is the amide column which belongs to 

the HILIC column. Amide column is loaded with the silica-amino derivative materials as 

the stationary phase (Peng, Hou, Zhang, Shen, & Yang, 2016). One research has employed 
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the HPLC-RI equipped with the amide column to explore the sugar contents in the wild 

and commercial mushrooms (Barros, Cruz, Baptista, Estevinho, & Ferreira, 2008). The 

reducing sugars had the least concentrations among all carbohydrates in mushrooms, and 

maltose could only be detected in two types of edible mushrooms, i.e., agaricus silvaticus 

(0.44g per 100g dry powder weight) and agaricus silvicola (0.57g per 100g dry powder 

weight). Besides the sugar detection, the amide column has been used in analyses of 

protein- and lipid- derived oligosaccharides (Neville, Dwek, & Butters, 2008), though the 

authors pointed out that amide column was not as competitive as the HIAX column. Apart 

from the determinations of sugars and their derivatives, amide columns have been applied 

for amino acids and phosphoproteome separation (Albuquerque et al., 2008; Langrock, 

Czihal, & Hoffmann, 2006; Yoshida, 1997, 2004). Moreover, according to Malic et al 

(Malik & Rai, 2009), a combination of solid phase microextraction (SPME) and RP-HPLC-

UV system coupled with an amide column was applied to analyze the nitroaromatic 

components in water.  

In some specific cases, chirality, one of geometric properties in molecules and ions, is 

described as that the chiral atom or ion is nonsuperimposable, which means they can not 

be identical with their mirror image (Ouellette & Rawn, 2014b). Carbohydrates are usually 

associated with this characteristics, so this special property is usually applied on stationary 

phases. Polysaccharides, like cellulose and amylose, have been used as stationary phases 

of chiral column called polysaccharides-based chiral column. Polysaccharides-based chiral 

columns have solved some analytical problems, especially enantioseparation of 

underivatized amino acids (Yun, Lord, Yin, & Stringham, 2002), 20 asymmetric sulfoxides 



10 
 

(Cass & Batigalhia, 2003), fungicida trazolyl alcohols (Spitzer, Yashima, & Okamoto, 

1999), propafenone in plasma (de Gaitani, Lanchote, & Bonato, 1998), benzazoles and 

benzanilides (Kubota, Sawada, Zhou, & Welch, 2010). The polysaccharides-based chiral 

column is also prepared for enantioselectivity of chemical derivatives: aptazepine 

derivatives (Cirilli et al., 2006), chiral arylpropionic acid derivatives (Matarashvili, 

Chankvetadze, Fanali, Farkas, & Chankvetadze, 2013), fluoxetine derivatives (Guo, 

Fukushima, Li, & Imai, 2002; Yu, Li, &Guo, 2006), homocamptothecin derivatives 

(Goossens et al., 2004), phenylcarbamate derivatives (Enomoto et al., 1996) and hydantoin 

derivatives (Kartozia et al., 2002). The performance of cellulose, amylose and their 

derivatives toward to drug separation was also evaluated (Aboul-Enein & Ali, 2002; 

Bonato et al., 2002; Chankvetadze, Kartozia, Yamamoto, & Okamoto, 2002;Zhang, 

Schaeffer, & Franco, 2005). 

Detection of reducing sugar derivatives by HPLC-UV 

DAD and UV detectors are two ubiquitous detectors in analytical chemistry because 

they have higher efficiency and selectivity than RI and ELSD, though the latter two 

detectors are also useful for reducing sugar analysis. DAD and UV have very similar 

chromatographic principles, nonetheless, DAD, the principle of which is shown in Figure 

1.2, is less sensitive than UV because DAD usually loses more light energy when more 

than one variable wavelengths are working at the same time (Brown & Weston, 1997). 

Based on their mechanisms, both detectors have been practiced in many areas (listed in 

Table 1.1), including: (1) food analysis, (2) biological detection, (3) drug determination 

and (4) environment control. In food analysis, phenolic acids, vitamins, carotenoids and 



11 
 

flavonoids from vegetables or fruits are usually performed under UV detector or DAD 

(Table 1.1). UV and DAD are also employed in meloxicam analysis. Bae et al (Bae, Kim, 

Jang, & Lee, 2007) reported that the maximum peak of meloxicam was shown under 355 

nm and its recovery ranged between 77.2%-86.7%.  

HPLC-UV and HPLC-DAD are not able to measure sugar directly, whereas they have 

higher sensitivity and resolution on sugar derivatives, thus, several methods for sugar 

derivatives have been developed. Schiff base (shown on Scheme 1.1), one of intermediates 

of Millard reaction, plays an important role on reducing sugar determination by HPLC-

UV-DAD. The labeling reaction begins at the carbonyl groups of reducing sugars where 

they become a weak target for lone pair of amino groups of protein or other amines to 

attack and at last produces the imine derivatives. Numerous reagents containing amino 

groups have been applied to label reducing sugar. Hase et al (Hase, Hara, & Matsushima, 

1979) first reported 2-aminopytidine as a reagent to yield the Schiff base of reducing sugar, 

which can be found under UV at 235 nm. Furthermore, a variety of aminonaphthalene 

sulfonic acid isomers were found suitable for carbohydrates analysis since they have the 

abilities on the following two aspects: charge of the saccharides and UV absorbance 

(Lamari, Kuhn, & Karamanos, 2003). For instance, 8-aminonaphythalene-1,3,6-

trisulphonic acid (ANTS) has been used in mono-, di- and oligosaccharides derivatizations, 

of which the products exhibited the maximum peaks under 220 nm (Chiesa & Horváth, 

1993). Additionally, many other reagents for yielding the Schiff base have been reported, 

such as 4-aminobenzoic butyl ester (Dahlman, Jacobs, Liljenberg, & Olsson, 2000; Mo, 

Takao, Sakamoto, & Shimonishi, 1998), 6-amino-quinoline (Greenaway, Okafo, Camilleri, 
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& Dhanak, 1994) and 1-aminopyrene-3,6,8-trisulfonate with its derivatives (Laroy, 

Contreras, & Callewaert, 2006; Mechref & Novotny, 2009). 

Besides the Schiff base, 1-phenyl-3-methyl-5-pyrazolone (PMP), which was at first 

applied for derivatizing reducing sugar (Honda et al., 1989), can also react with reducing 

sugars without any other side reactions such as desialylation or desulfation (shown on 

Scheme 1.2). Reducing sugar-PMP derivatives has a strong absorbance under UV light at 

245 nm. Derivatization of monosaccharides in fucoidans has been investigated (Zhang, 

Zhang, Wang, Shi, & Zhang, 2009). Wan et al (Wan, Yang, Song, Liu, & Liu, 2013) studied 

the disaccharide isomers via an ion electrospray ionization multi-stage tandem mass 

spectrometry (ESI-MS). Derivatizations for mono-, maltooligo- and oligosaccharides with 

PMP were performed under matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF-MS) (Pitt & Gorman, 1997). Polysaccharides from Dunaliella 

salina has been hydrolyzed into several monosaccharides, which were converted into the 

PMP derivatives and analyzed by HPLC-UV and LC-MS (Dai et al., 2010). Furthermore, 

derivatives from 4-(-3-methyl-5-oxo-2-pyrazolin-1-yl) benzoic acid (PMPA) that was used 

to derivatize di-, tri- and oligosaccharides were detected by UV and DAD (Arias, Castells, 

Malacalza, Lupano, & Castells, 2003; Tapie, Malhiac, Hucher, & Grisel, 2008). 

Objective of this project 

This research aims to study the production of the PMP derivatives of the selected 

reducing sugars under different chemical conditions in light of the temperature and reaction 

time, of which the products are detected by HPLC-UV-ELSD. Glucose, one of the 

representative monosaccharides, was selected to explore its optimal reaction condition for 
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derivatization, which was compared with optimal condition for glucosamine that shows 

alkalinity itself. In regards to the effects of carbon numbers, sugar ring and optical 

isomerism on the yields of PMP-sugar derivatives, multiple neutral sugars, including 

monosacchairdes like mannose, galactose, xylose and ribose, disacchairdes like maltose 

and lactose, were also derivatized and analyzed.  

Since the sugar separation and detection are subject to columns and detectors, 

respectively, two HPLC detectors, i.e., DAD and ELSD, have been compared for detective 

sensitivity and selectivity. At the same time, two different separation columns, i.e., C18 

and amide column, have been adopted to separate sugars before and after the derivatization 

with PMP, in order to get more insight of the sugar derivatizaiton. 
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(b) 

Figure 1.1 Two types of ELSD and their mechanisms [Adapted from Twenty Years of Evaporative Light Scattering, N. C. 

Megoulas et al, copyright of Taylor and Francis LLC (Megoulas & Koupparis, 2005)] 
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Figure 1.2 The principle of UV detector  
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Table 1.1 HPLC UV and DAD applications 

Analytes Matrix Separation Detection LOD Reference 

Food analysis  

Flavonoids Rooibos Tea No mention 
DAD (200-

400 nm) 
50 ng/ml 

(Bramati, Aquilano, & Pietta, 

2003) 

Vitamin C, 

carotenoids and 

phenol 

Papaya 
C30 reverse 

phase column 

DAD at 430 

450, 470 nm 
No mention 

(Leal, Figueira, Tornisielo, & 

Regitano, 2012) 

Phenolic acid Wild mushroom C18 column 
DAD at 280 

nm 
No mention 

(Barros, Dueñas, Ferreira, 

Baptista, & Santos-Buelga, 2009) 

Phenolic acid Sunflower  

C18 column 

with C18 

secure column 

DAD at 280 

and 320 nm 
No mention 

(Weisz, Kammerer, & Carle, 

2009) 

Phytoalexin 

resveratrol (3,5,4’-

Trihydroxystilbene) 

Pistachios and 

peanuts 

Hypersil -

ODS column 

DAD at 308 

nm 
No mention 

(Tokuşoǧlu, Ünal, & Yemiş, 

2005) 

Biology detection  

Cystenine (Cys) and 

its related aminothios 

Plasma, urine and 

cerebrospinal fluid 

C8 column 

with ODS2 

column  

UV at 240 nm 
0.2 pmol per 

injection 

(Amarnath, Amarnath, Amarnath, 

Valentine, & Valentine, 2003; 

Bald, Kaniowska, Chwatko, & 

Glowacki, 2000) 

Ascorbic acid and free 

malondialdehyde 
Serum  C18 column UV at 250 nm 

1.3*10-8 and 

1.02*10-8 mol/L 
(Karatepe, 2004) 

Drug determination  

Meloxicam Plasma  C18 column UV at 355 nm No mention (Bae et al., 2007) 

Metformin with 

derivatives 
Plasma 

ODS-2 

column 

DAD at 250 

nm 
10 ppb 

(Tache, David, Farca, & 

Medvedovici, 2001) 

Environment control      

Sulfonamide  
Environmental 

water 
C18 column UV at 270 nm 0.024-0.033 µg/L (Sun et al., 2009) 

Quinolone and 

fluoroquinolone  
Soil  C18 column 

UV at 260 nm 

and 280nm 
0.04 -0.08 µg/g  

(Leal et al., 2012; Turiel, Martín-

Esteban, & Tadeo, 2006) 
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Scheme 1.1 Schiff base route 
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Scheme 1.2 Reducing sugar-PMP full route  
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CHAPTER TWO  

 OPTIMIZATION OF REACTIONS BETWEEN REDUCING SUGARS AND PMP 

Abstract: 

Reducing sugars, especially aldoses, have strong reactivity with 1-phenyl-3-methyl-5-

pyrazolone (PMP) to result in the sugar-PMP derivatives, which can be more accurately 

analyzed by high performance liquid chromatography (HPLC) with diode array detector 

(DAD). This chemical derivation was optimized by response surface methodology (RSM) 

in order to achieve the best yield. Glucose and glucosamine were incubated in a water bath 

to react with PMP under the RSM design within a temperature range of between 60°C to 

80°C, and a time range of 60 to 150 minutes. The chemical derivatives were determined 

by the HPLC-DAD at 248 nm. Subsequently, other monosaccharides, including pentoses 

(xylose and ribose), hexoses (galactose, fructose, and mannose), disaccharides (lactose, 

maltose, and sucrose), as well as some sugar alcohols (sorbitol, mannitol and xylitol), were 

investigated under the optimized condition for glucose. As a result, the optimal condition 

of the glucose-PMP reaction was obtained at 71°C for 133 minutes, while the optimized 

condition of glucosamine was obtained at 73°C for 93 minutes. However, fructose, sucrose, 

sorbitol, xylitol and mannitol had no chemical derivatizations, which could not be detected 

by the HPLC-DAD. Adding luminophore group of PMP on reducing sugars could 

significantly improve the sugar analyses in light of increased sensitivity and accuracy. In 

addition, this study demonstrated that different chemical structures of sugars and their 

derivatives could significantly influence the rate and yield of the PMP derivatization.  
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Introduction: 

Carbohydrates play an irreplaceable role in biological activities where they are 

regarded as the basic energy substances, nutraceuticals, or source for proteins and lipids. 

They also serve as natural adhesives, fine chemicals and certain acid stabilizers in food 

technology (Becker et al., 2013). However, carbohydrate analysis still remain a big 

challenge in the world, though several direct analytical methods, such as uncommon NMR 

(Vliegenthart, Dorland, & Halbeek, 1983) and Fourier Infrared spectrometer (Tong et al., 

2013), or less accurate HPLC-RI (Barreira, Pereira, Oliveira, & Ferreira, 2010; Zielinski 

et al., 2014) and HPLC-ELSD (Ma, Sun, Chen, Zhang, & Zhu, 2014; Shanmugavelan et 

al., 2013), are available. In addition, other analytical methods, such as capillary 

electrophoresis (CE) and gas chromatography mass spectrum (GC-MS) (Becker et al., 2013; 

Račaitytė, Kiessig, & Kálmán, 2005), have been developed. 

In regard to the chemical structures of carbohydrates that lack of luminophore groups, 

carbohydrates can not to be detected by UV and fluorescence detectors that are both widely 

used in academic and industrial labs. In order to explore more analytical techniques for the 

carbohydrates’ analysis, particularly to meet the huge demand in industry, the derivatives 

of carbohydrates that have higher detective sensitivity have attracted more attentions in 

recent years. Among the carbohydrate derivatives, the 1-phenyl-3-methyl-5-pyrazolone 

(PMP) derivative that was first proposed by Honda et al (Honda et al., 1989) is considered 

to be one of the most sensitive substances, which has a strong absorbance under UV light 

at 245 nm. In addition, the author’s group has drawn the mechanism of PMP methods (See 

Scheme 2.1). Although there are many studies reporting the PMP labeling for analysis of 
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reducing sugars, such as those extracted from shark fins and Hakka rice wine (Bai et al., 

2015; Xian et al., 2015), a few research papers have reported the optimization of the 

reaction conditions (Rühmann, Schmid, & Sieber, 2014), let alone comparison of optimal 

conditions for different sugars. Therefore, this research focuses on studies of efficiency and 

yields of the chemical derivatization of different reducing sugar reacted with PMP. 

In the case of the derivatization process, several factors, such as the reaction time, 

reaction temperature and solvent pH, could remarkably influence the yields of reducing 

sugar-PMP derivatives. However, if just a single variable of the aforementioned factors is 

analyzed, cross-impact of the variables would usually be neglected. On the other hand, a 

complete experimental design to explore the relationships of the exploratory variables is 

time consuming. In this context, the response surface methodology (RSM) has been 

suggested to find the most valuable point, or called optimization to simplify the 

experimental design and, simultaneously, maximize the production, or minimize the cost, 

side reactions, etc,. RSM has been applied in many fields, such as extraction process, 

enzymatic clarification, degradation and many other chemical reactions (Dong, Pan, Zou, 

He & Wang, 2015; Lee, Yusof, Hamid, & Baharin, 2006; Ren, He, Wang & Cheng, 2016). 

In regard of the RSM, central composite design (CCD) is often used to support the 

optimization of no more than two-level factorial or fraction factorial design, which are 

usually coded as -1 and 1, containing three important parts: (1) integrated factorial or 

fraction design; (2) axial points (also called star points) with α distance between 

experimental points and center; (3) a central point (Bezerra, Santelli, Oliveira, Villar & 

Escaleira, 2008).  
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Additionally, this study initially used two different aldehyde hexoses, i.e, glucose and 

glucosamine, as the models for the RSM optimization of sugar-PMP derivatizations. 

Although these two monosaccharides consist of different parts in their second carbon of 

their ring structures, their reactions with PMP still follow the same chemical principle 

(shown in Scheme 2.1). Moreover, this study has investigated other aldehyde hexoses, 

pentoses, ketoses, alditols, disaccharides and oligosaccharides, and compared their 

efficiencies of reaction with PMP. 

Experimental Design 

Chemicals and reagents 

The following chemical standards were purchased from Sigma-Aldrich (America), 

including D (+)-glucose, D-(-)-ribose, D-(+)-xylose, D (+)-glucosamine, D-(+)-lactose, D-

(-)-fructose, D-(+)-mannose, D-(+)-maltose monohydrate, D-sorbitol, D-mannitol, α-, β- 

and γ-cyclodextrin, 1-phenyl-3-methyl-5pyrazolone (PMP) and ammonium acetate. 

Galactose was purchased from Fisher Scientific (New Jersey). Hydrochloric acid, 37% 

(analysis), was obtained from ACROS ORGANICS (part of Thermo Fisher Scientific). 

HPLC-grade chloroform with 0.75% ethanol, as well as HPLC-grade acetonitrile, acetic 

acid (glacial) and sodium hydroxide, were provided by Fisher scientific. 

Pretreatment of sugar standard 

Approximate 5 mg of glucose was weighed using a XS-200D analytical balance, and 

transferred into a glass tube, followed by an addition of 10 mL of distilled water. The 

glucose was dissolved in water facilitated by Fisher vortex mixer until no observable 
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particles were observed. The aqueous solution was then filtered with 0.45 µm Nylon filter 

(MACHEREY-NAGEL Co.). Other sugar standards were pretreated as glucose.  

Preparation of reactants and buffer solutions 

An amount of 87 mg of PMP powder was weighed accurately and transferred into a 

clean glass tube, which was mixed with 1 mL of methanol to prepare 0.5 M PMP-methanol 

solution. Meanwhile, in order to prepare a fresh 0.3 M NaOH solution, 6 grams of sodium 

hydroxide (NaOH) was dissolved in a glass bottle that contained 500 mL of distilled water, 

while 0.3M hydrochloric acid (HCl) solution was prepared from the concentrated 37% HCl 

solution diluted by distilled water. A buffer solution composed of ammonium acetate (7.7 

g/L) was adjusted to pH 5.51 by acetic acid, which was used as the mobile phase A of the 

reverse-HPLC.  

Preparation of reducing sugar derivatives  

The preparation of reducing sugar derivatives with PMP was achieved based on the 

experimental modification of a previous report (Dai et al., 2010). In detail, an aliquot of 

100 µL of sugar standard solution (500 ppm) was mixed with 100 µL of 0.3 M NaOH 

solution in a 1.5 mL micro-centrifuge tube (VW, North American Co), adjusted to pH 13 

with 0.3 M NaOH. Then, this mixture, i.e., 200 µL of sugar-NaOH solution, was added 

with 100 µL of 0.5 M PMP-methanol solution, mixed by 1 minute via vortex at the fourth 

level-shaking rate, followed by incubation in the water bath at 70 °C for 120 minutes. After 

the reaction was completed, the sample was neutralized with 100 µL of 0.3 M HCl solution. 

Then, HPLC-grade chloroform was added into the tube as an extraction agent for clearance 

of PMP residues. The mixture was shaken vigorously for 1 minute before the upper layer, 
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i.e., the water-methanol layer, was separated. This extraction procedure was repeated three 

times. Finally, the supernatant was filtered through a 0.45 µm filter into a HPLC auto-

sampler vial (12×32 mm, Sigma-Aldrich Co) for chemical determination.  

Experimental design 

There are some variables in regard to the chemical derivatization, including solution 

temperature, pH and reaction time. According to a previous report (Strydom, 1994), high 

pH value (pH=13) is a necessary for the sugar-PMP derivatization as proposed by Honda 

et al (Honda et al., 1989). In this context, the reaction time and temperature of RSM were 

selected as the primary factors in the first step of RSM design, for which a two-factor 

central composite design (CCD) coded with three levels (i.e., -1, 0, 1) was performed in 

order to fulfil an accurate analysis. Two independent variables were depicted as time (X1) 

and temperature (X2), respectively, which were also coded from -1 to 1. The experimental 

design of RSM for glucose and glucosamine are shown in Table 2.1 and 2.2, where the 

experimental response (ER) means the area of each peak shown in reverse HPLC-DAD. 

The function of Y was used for predicting the optimal condition, expressed as the following 

equation (1)  

𝑌 = ∑𝑏𝑖𝑋𝑖 + ∑𝑏𝑗𝑋𝑗 + ∑𝑏𝑖𝑖𝑋𝑖
2 + ∑𝑏𝑗𝑗𝑋𝑗

2 + ∑𝑏𝑖𝑗𝑋𝑖𝑋𝑗 +𝑏0             (1) 

where the Y represents the predicted response or dependent variable. The aforementioned 

coefficients in the equation indicate the effects of linear (bi and bj), quadratic (bii and bjj) 

and interaction (bij) and the constant coefficient (b0). Xi and Xj are the independent 

variables. 

Reverse HPLC-UV Condition 
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The HPLC-DAD system consists of a CBM-20A controller, a DGU-20A degasser, a 

LC-20AT pump, a SIL-20A HT auto-sampler, a FRC-10 collector, a SPD-M10A UV 

detector and a CTO-20A column oven, which was purchased from Shimadzu Corporation 

(Shimadzu Co, North America). Reducing sugar-PMP derivatives were separated by an 

Eclipse Plus C18 column (4.6 * 250 mm, 5 µm particle, Agilent, North America), of which 

the mobile phase was constituted by ammonium acetate buffer (A) and acetonitrile (B). 

The solvent B runs from 20% to 30% during the first 45 minutes and decreases to 20% in 

the subsequent 10 minutes. Other settings were as following: flow rate at 0.3 mL/min, 

column oven at 30°C. 

Relative response 

Since the reducing sugars, such as pentose, hexose, di- and oligosaccharides, have 

similar physio-chemical characteristics but different molecular weights, their relative 

responses (RR) in comparison with that of glucose were determined, based on the reactant 

molarity, for the sugar derivatives that were all prepared in 500 ppm (μg/mL) of sugars. 

The RR herein is defined as the ratio of HPLC peak area of each sugar derivative and the 

glucose derivative under the same optimal condition of glucose-PMP derivatization, which 

was presented as following equation. 

𝑅𝑅 =
𝐴𝑌𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑌𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝛸

𝑀𝑊𝑠𝑎𝑚𝑝𝑙𝑒

𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒
                    (2) 

where the RR is the relative response. AY represents the average of chromatographic area 

of each peak shown on the HPLC-DAD. MW is the abbreviation of molecular weight of 

each sugar 

Statistical analysis 
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All measurements were conducted in triplicate to obtain the mean + standard deviation 

(SD). Data of the sugar-PMP experimental design (shown in Table 2.1 and 2.2), the yields 

of sugar derivatives (Y number see equation 1) and analysis of variance (ANOVA) were 

calculated via JMP Pro 12.2.0 (SAS Institute Inc). P<0.05 indicates the statistically 

significant difference. 

Data and discussion 

Optimization of glucose-PMP derivatization  

The yield of glucose-PMP derivative could be influenced by the reaction time (X1) and 

temperature (X2) of the derivatization, which was performed under the response surface 

methodology (RSM). In addition, four star points and two replicates at the central point 

were employed to construct a quadratic model of the reaction, which is shown in Table 

2.1. As a consequence, the yield (or experimental response, Y) of glucose-PMP was 

obtained within a range from 1.51*107 to 3.74*107 (Table 2.1), which fits to a second-

order polynomial equation after excluding the interaction effect, expressed as following: 

Y = 37.21*106+3.56*106X1+3.00*106X2-6.08*106X1
2-10.74*106X2

2     (3) 

where Y means the dependent variable of the yield of glucose-PMP derivative, while X1 

and X2 refer to the variables for the reaction time and reaction temperature, respectively 

(see Table 2.1 and 2.3).  

Analysis of variance (ANOVA) that was fulfilled by the Fisher’s statistical test is 

shown in Table 2.4. Based on the ANOVA of the yields of the glucose-PMP derivatives 

obtained from the RSM model in 2 factors with 3-levels (see Table 2.1), its F-value that is 

expressed as the ratio of the mean square of regression and error is 80.16 (Table 2.4), 
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resulting in its P-value at 0.0004 that is less the 0.05, which means that at least one of 

factors have impacted significant influence on the yields of glucose derivatives (Muralidhar, 

Chirumamila, Marchant, & Nigam, 2001).  

Based on the differences of the predicted and actual values of the glucose-PMP 

derivatization from the RSM model, the statistical analysis showed that the experimental 

Pro>F=0.2063 for the lack of fit is larger than 0.05, implying that there is no significant 

lack of model fit, or the current model (or equation 3) can provide an expected prediction 

to match the true value of glucose-PMP derivatives (see Table 2.4). In other words, a 

significant lack of fit assumes that there may be some other variances or factors 

unaccounted for the hypothesis of the RSM model and the induced equation, which will 

result in the rejection of the hypothesis or the model to find an alternative one (Bashir, Aziz, 

Yusoff, & Adlan, 2010; Muhamad, Abdullah, Mohamad, Rahman, & Kadhum, 2013).  

P-values (see Table 2.3) were used to estimate the significance of each coefficient of 

the dependent variables at a certain level α and also shows the influence of a single factor 

or interacted impact of several factors (Wang et al., 2014). When the α level is selected as 

0.05, the coefficient is significant when its P-value is less than 0.05. However, there is an 

agreement in statistics that, if the P-value is more than 0.1, it should be eliminated (Aghaie, 

Pazouki, Hosseini, Ranjbar, & Ghavipanjeh, 2009; Körbahti & Rauf, 2008). Herein, the 

coefficients of the second-order polynomial equation (shown in Table 2.3) profile the 

effects of reaction time and reaction temperature, of which the linear effects (X1 and X2) 

and quadratic effects (X1
2 and X2

2) are significant since their P-values are less than 0.05. 
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However, the interaction effect (X1X2) is not significant due to its P-value at 0.5825, more 

than 0.05.  

Moreover, t-test is another frequently used model in statistics, which usually tests if 

each coefficient of effect equals to zero, namely, whether this effect is significant to 

influence the yields of glucose derivatives. In regards of the t-values (Table 2.3), all the 

coefficients, except that of the interaction effect of reaction time and temperature, have 

significant influence on the yields of the glucose-PMP derivative (Li & Fu, 2005). 

In addition, to check whether the predicted values fit the actual values (Figure 2.1), 

their correlation coefficient (R-square) was also analyzed. Based on a previous report, a 

good fit model usually requires a minimum R2 at 0.8 (Joglekar, May, Graf, & Saguy, 1987). 

In this context, the value of R2 between the predicted values and the actual values was 

0.9901 (Table 2.3), meaning it is a good model of fit within the range of experimental 

values.  

Analyses of glucosamine-PMP derivatives  

Like the study of the glucose-PMP derivatives, the second-order polynomial model, as 

well as its linear, interaction and quadratic effects, for predicting the yields of the 

glucosamine-PMP derivatives, are listed in Table 2.5, and shown as following: 

Y = 38.1*106+1.49*106X1+1.65*106X2+3.58*106X1X2-6.20*106X1
2-4.58*106X2

2        (4) 

where Y represents the predicted yields of the glucosamine-PMP derivatives, X1 and X2 

represent the independent variables of the reaction time and reaction temperature, 

respectively. In addition, the R-square of the equation (4) is 0.9963 (see Table 2.5), 

suggesting that the predicted values highly fit the actual data (shown in Figure 2.2). 
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ANOVA data is listed in Table 2.6. A low probability of F-value (Pro>F<0.0001), 

which is less than the setting α value at 0.05, means the rejection of the null hypothesis 

which assumes that all factors have no significant influences on the yields of glucosamine-

PMP derivatives. From the same Table 2.6, the significance of lack of fit is 0.0907, which 

is larger than 0.05, indicating the current model for the prediction of the yields of 

glucosamine-PMP derivatives is sufficiently enough. 

As described previously, P-value can be used to estimate the significance of each 

factors in the experimental design. Since all the P-values in Table 2.5 are less than 0.05, 

all the factors have significant influences on the glucosamine-PMP derivatization. In detail, 

all effects, including the linear effects (X1 and X2), quadratic effects (X1
2 and X2

2) and 

interaction effect (X1X2), have significantly influenced the yields of the glucosamine-PMP 

derivatives, which is slightly different from the effects on the optimization of glucose-PMP 

derivatization, for which the interaction effect is not significant. This slight difference 

might result from the following factors: (1) experimental error during the process of the 

chemical derivatization; and (2) different structures of the studied monosaccharides that 

resulted in different chemical reactivities.  

Comparison of glucose- and glucosamine-PMP derivatizations 

In light of the RSM for optimization of the sugar-PMP derivatizations, two profiled 3D 

response surfaces have clearly exhibited the trends of interactions of two independent 

variables, which are shown in Figure 2.3 and Figure 2.4 that are representative of the 

glucose-PMP and glucosamine-PMP derivatives, respectively. Elliptical response plot are 

accomplished when there is an ideal relationship between the two factors, including the 
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reaction time and temperature, for the yields of derivatives. The main function of 

constructing the response surface is to explore the optimal condition of an experiment, 

namely, reaction time and reaction temperature in this experiment, in order to maximize 

the response (Tanyildizi, Özer, & Elibol, 2005). Compared with the curvature of curves of 

the reaction time in Figure 2.3, temperature curves produce steeper curvature, which 

supports our observation that the reaction temperature has influenced the yields of glucose 

derivative more significantly (see Figure 2.3), while the reaction time is a more important 

factor for glucosamine derivative yields (see Figure 2.4). 

In addition, the contour map below the 3D response surface serves as another function 

for analyzing the variables, i.e., the reaction time and temperature, at the same time, while 

fixing all other factors (pH, for instance) at a constant level (for example, coded value at 

zero), which are beneficial for the understanding of both main and interaction effects of 

these two given factors (Adinarayana, Ellaiah, Srinivasulu, Devi, & Adinarayana, 2003; 

Lee, Yusof, Hamid, & Baharin, 2006). Two contour maps are perfectly elliptical (see 

Figure 2.3 and Figure 2.4), which suggest that the interaction of both time and temperature 

existed in accordance with the response surface. Based on these results, it was concluded 

that the optimal condition for the glucose-PMP derivatization is under 70-73°C for 120-

140 minutes, while the optimal condition for glucosamine-PMP derivatization is between 

70-73°C for 90-96 minutes. Based on the 3D response surface with the elliptical contour 

of Figure 2.3, the maximum yield of the glucose-PMP derivative is produced when the 

reaction condition is under 71°C for 134 minutes, while the optimal condition of the 

glucosamine-PMP derivative is under 73°C for 96 minutes (see Figure 2.4). Although the 
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average of the recorded highest responses of glucose-PMP derivative is 3.74*107 (n=3) 

obtained under the condition at 70°C for 120 minutes, its predicted maximum value is 3.4% 

greater than the actual value at the same condition. However, it is suggested to use the 

condition at 70°C and 120 minutes as the optimal condition for the glucose-PMP 

derivatization because the longer reaction time and higher temperature will cost much more. 

Similarly, the best condition for the glucosamine-PMP derivatization is suggested at 70°C 

for 90 minutes because the predicted value at the optimized condition at 73°C for 96 

minutes is only 2.3% higher than the actual yield at 3.81*107. 

Compared with the glucose-PMP derivatization, the glucosamine-PMP derivatization 

costs less energy, needs shorter reaction time, but has higher synthetic yields, which might 

be due to the different structures of glucose and glucosamine. There are two possible 

assumptions: (1) breaking the bond energy of the aldehyde group of glucosamine is lower 

than that of glucose, which was due to the higher oxidation state of the first carbon of 

glucosamine; (2) the amino group on the second carbon functions as a catalyst due to its 

alkalinity in aqueous solution, though in nature it is a common formation for the 

glucosamine with one molecule hydrochloride having an acidic pH (Santhosh & Mathew, 

2008), thus accelerating the reaction completion. 

Different reducing sugar-PMP derivatives 

As shown in Table 2.7, several sugars and sugar alcohols were observed with no 

chemical response (or detective signals), which signifies that they did not react with the 

PMP reagent. For example, cyclodextrins that have a torus-like macro ring shape have 

three types known as Schardinger’s α-, β- and γ- cyclodextrin, which do not contain the 
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reducing end, thus failed to be oxidized by PMP (Szejtli, 2013). Moreover, sugar alcohol, 

such as sorbitol and mannitol, are not able to react with PMP due to the lack of an aldehyde 

group that can not form alcohol-PMP derivatives.  

Though fructose is a very reactive reducing sugar, it can not produce the fructose-PMP 

derivative either because of the following two reasons. On one hand, its carbonyl group 

can not be reduced enough to react with PMP. In other word, its carbonyl group is more 

stable than the aldehyde group in reducing sugars (Ouellette & Rawn, 2014a). On the other 

hand, reversible and non-reversible transfiguration usually occur simultaneously when 

monosaccharides suffer the heated alkaline condition. There are four possible pathways for 

monosaccharide transformation under an alkaline condition: (1). ionization; (2). 

mutarotation; (3). enolization and (4). degradation (Bamford, Bamford, & Collins, 1950; 

Brands & van Boekel, 2001). In the second step, in spite of “the complex system of fructose” 

which actually contains higher amount of pyranose and furanose after a certain time, 

fructose is still mainly composed of about 66% of β-pyranose (Angyal & Bethell, 1976; 

Sinnott, 2007), which is stable enough to reject the reaction with PMP. Enolization, also 

known as the “Lobry de Bruyn -Alberda van Ekenstein transformation”, begins in 

equilibrium by the same 1,2- and 2,3-enediol anion species during the constant pH 

environment (Eggleston & Vercellotti, 2000). Furthermore, enediol intermediate of 

fructose also undertakes irreversible degeneration action in the methanol, which at last 

converts into a few racemic methyl lactates without catalyst in the alkaline-methanol 

solution at lower temperature 80°C (Holm, Saravanamurugan, & Taarning, 2010; Taarning 

et al., 2009). Compared with the aforementioned aldoses, the other part of fructose would 
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be degraded due to more than 33% furanose in the equilibrium converted into glucose or 

mannose (Bharose & Verma, 2016; MacLaurin & Green, 1969). However, due to improper 

condition for fructose transformation and stability of its carbonyl group, few fructose 

molecules and even no fructose molecule can be isomerized to glucose or mannose thus 

reacting with the PMP. As a consequence, no fructose-PMP derivative was observed in the 

chemical reaction and/or detected by HPLC-UV. 

The relative responses (RRs) of mannose and galactose are larger than that of glucose 

that was set at a base value of 1, while the RRs of xylose and ribose are less than 1 (Table 

2.7). In an agreement to previous reports (Bamford et al., 1950; Brands & van Boekel, 

2001), monosaccharides usually experience four same stages in an alkaline solution, 

though various pathways for different monosaccharides could happen. In this study, under 

the same optimal condition as that for glucose, the ribose-PMP derivative has a lower RR 

at 0.730. One hypothesis is that higher energy or longer reaction time has raised higher 

probability to destroy the ribose-PMP derivatives. Ribose is the furanose which is less 

stable than pyranose, for example, glucose. Based on this explanation, the ribose 

derivatives only need less energy or shorter reaction time than those needed by the glucose 

derivatives to reach the maximum yields. However, the optimal condition for the glucose 

derivatization at 70°C for 120 minutes might not be the optimal experimental condition for 

the ribose derivatization, or even expedite the degradation of the ribose derivatives. As a 

result, its response of HPLC-DAD was smaller. In comparison, xylose is considered 

“simple” in the mutarotation stage, but its PMP derivative has a lower response, which 

needs more investigation. Although glucose, mannose and galactose are also “simple” in 
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mutarotation stage, they are difficult to be enolized than fructose (Gao, Kobayashi, & 

Adachi, 2015), thus reacting with PMP easier. Additionally, the disaccharides, such as 

maltose and lactose, have lower RR than mono-aldose. This phenomenon was attributed to 

the additional unit of monosaccharide conjugated to another monosaccharide, which has a 

negative stereo impact on their chemical reactivity.  

Conclusion 

Application of PMP derivatization of sugars have provided many analytical benefits. 

The PMP method has shown to be highly reproducible, more sensitive and better accurate 

for sugar analysis in light of the conjugation of two molecular chromophoric groups on 

sugars (see Scheme 2.1), which allows the sugar derivatives to be detected by UV and 

DAD detectors. The RSM method can offer a 3D visual graph highlighting the effect of 

the interactions of factors on the yields of sugar-PMP derivatives with high reliability. The 

RSM optimization of glucose-PMP and glucosamine-PMP revealed that their optimal 

conditions were at the 70°C for 120 minutes and at 70°C for 90 minutes, respectively. From 

these two RSM optimizations, other reducing sugars were derivatized to investigate the 

effect of chemical structure on the effectiveness of the derivation reaction. 

Monosaccharides, especially hexose, have higher chemical reactivity, as well as detective 

responses than the studied pentoses (such as ribose and xylose) and disaccharides (such as 

maltose and lactose). However, there was no sign that fructose could react with the PMP 

effectively under the studied condition.  

In summary, this research has not only been useful for finding the optimal condition of 

reducing sugar derivatization with PMP, but also beneficial for possible determination and 
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investigation of the chemical reactivity of different sugars. In order to figure out the effect 

of molecular inner environmental pH on the PMP derivatization, glucuronic acid and 

galacturonic acid have been suggested for further investigation. Meanwhile, more work for 

reducing sugar analysis should be conducted, such as kinetics of sugar-PMP process. 
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Scheme 2.1 Principle of glucose-PMP derivatization  
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Table 2.1 Experimental design of glucose-PMP derivatization 

 

 

Run 

Actual and coded levels of variables 
 

ER (*107)* 

 

(Y) 
Time (mins) 

(X1) 

Temp (°C) 

(X2) 

1 90 (-1) 60 (-1) 1.51 

2 90 (-1) 80 (1) 1.93 

3 150 (1) 60 (-1) 2.07 

4 150 (1) 80 (1) 2.63 

5 90 (-1) 70 (0) 2.69 

6 150 (1) 70 (0) 3.55 

7 120 (0) 60 (-1) 2.24 

8 120 (0) 80 (1) 3.06 

9 120 (0) 70 (0) 3.74 

10 120 (0) 70 (0) 3.68 

*Experimental response: the results are representative for yields 
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Table 2.2 Experimental design of glucosamine-PMP derivatization 

 

Run 

Actual and coded levels of variables  

ER(*107)* 

(Y) 

Time (mins) 

(X1) 

Temp (°C) 

(X2) 

1 60 (-1) 60 (-1) 2.73 

2 60 (-1) 80 (1) 2.38 

3 120 (1) 60 (-1) 2.36 

4 120 (1) 80 (1) 3.43 

5 60 (-1) 70 (0) 3.08 

6 120 (1) 70 (0) 3.29 

7 90 (0) 60 (-1) 3.22 

8 90 (0) 80 (1) 3.48 

9 90 (0) 70 (0) 3.81 

10 90 (0) 70 (0) 3.79 

*Experiment response: the results are shown as yields  
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Figure 2.1 Predicted yield vs actual yield of the glucose-PMP derivative  



52 
 

 

Table 2.3 Second order response contents and the regression analysis of glucose derivatives yield 

 Term Coefficient* Glucose 

(*106)  

Standard error 

(*105) 

T-value P-value**  

 

Effects of linear 

Intercept b0 37.21 6.99 53.23 <0.0001 Significant 

X1 b1 3.56 4.77 7.44 0.0017 Significant 

X2 b2 3.00 4.77 6.29 0.0033 Significant 

Effects of interaction X1X2 b12 0.35 5.85 0.60 0.5825  

Effects of quadratic 
X1

2 b11 -6.08 7.66 -7.94 0.0014 Significant 

X2
2 b22 -10.74 7.66 -14.03 0.0001 Significant 

 R-square 0.9901      

 Adjusted R-square 0.9778      

*Y=b1X1+b2X2+b12X1X2+b11X1X1+b22X2X2+b0 

**Significant at 0.05  
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Table 2.4 ANOVA of glucose derivatization 

Source* DF Sum of squares (*1013) Mean square (*1013) F Ratio P-value 

Model 5 54.82 10.96 80.16 0.0004 

Residual 4 0.55 0.14   

Lack of fit 3 0.53 0.17 12.25 0.2063 

Pure error 1 0.01 0.01   

Total 13 55.91    

*Significant at 0.05 
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Figure 2.2 Predicted yield vs actual yield of the glucosamine-PMP derivative  
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Table 2.5 Second order response contents and the regression analysis for glucosamine derivatives yield 

 Term Coefficient* Estimated 

(*106) 

Standard Error 

(*105) 

T-value P-value**  

 Intercept b0 38.10 2.83 134.56 <0.0001 Significant 

Effects of linear X1 b1 1.49 1.93 7.69 0.0015 Significant 

X2 b2 1.65 1.93 8.53 0.0010 Significant 

Effects of interaction X1X2 b12 3.58 2.37 15.12 0.0001 Significant 

Effects of quadratic 
X1

2 b11 -6.20 3.10 -20.00 <0.0001 Significant 

X2
2 b22 -4.58 3.10 -14.79 0.0001 Significant 

R-square R-square 0.9963      

Adjusted R-square Adjusted R-square 0.9918      

 

*Y=b1X1+b2X2+b12X1X2+b11X1X1+b22X2X2+b0 

**Significant at 0.05 
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Table 2.6 ANOVA of glucosamine derivatization 

Source* DF Sum of squares (*1013) Mean square (*1013) F Ratio P-value 

Model 5 24.60 4.20 219.68 <0.0001 

Residual 4 0.09 0.02   

Lack of fit 3 0.08 0.02 65.26 0.0907 

Pure error 1 0.0005 0.0005   

C. Total 13 24.78    

*Significant at 0.05 
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Figure 2.3 RSM plot of the glucose-PMP derivatization  
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Figure 2.4 RSM plot of the glucosamine-PMP derivatization  
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Table 2.7 Comparison of responses of different reducing sugar-PMP derivatives  

Units# of sugar Sugars’ name MWa 
PPMb 

(µg/µL) 

M (mmol/mL)c 

*10-3 
AYd*107 RRe 

 

Monosaccharide- 

Aldose 

Glucose 180 500 2.78 3.739+0.396 1 

Galactose 180 500 2.78 4.865+0.507 1.301 

Mannose 180 500 2.78 4.145+0.414 1.109 

Glucosamine 179 500 2.79 3.295+2.051 0.876 

Monosaccharide- 

Ketose 
Fructose 180 500 2.78 0 0 

Monosaccharide-

Pentose 

Ribose 150 500 3.33 3.277+0.484 0.730 

Xylose 150 500 3.33 2.861+0.198 0.638 

 

Disaccharide 

Maltose 342 500 1.46 1.710+0.294 0.869 

Lactose 342 500 1.46 1.799+0.118 0.914 

Sucrose 342 500 1.46 0 0 

Sugar alcohol 
Sorbitol 182 500 2.75 0 0 

Mannitol 182 500 2.75 0 0 

Cyclodextrin 

α 973 500 0.514 0 0 

β 1135 500 0.441 0 0 

Ƴ 1297 500 0.386 0 0 

Note:  

a:Molecule weight; b:Parts per million; c:Molarity; d:Average yield-represented by the average of the area of peak show on HPLC-

DAD chromatograph;  

e: Relative response=
𝐴𝑌𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑌𝑔𝑙𝑢𝑐𝑜𝑠𝑒
𝛸

𝑀𝑊𝑠𝑎𝑚𝑝𝑙𝑒

𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒
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CHAPTER THREE  

DETERMINATION OF REDUCING SUGAR-PMP DERIVATIVES VIA HPLC WITH 

DIFFERENT COLUMNS AND DETECTORS  

Abstract 

Qualification and quantification of carbohydrates remain a big challenge in the world. 

Fortunately, reducing sugars, especially aldoses in their open-ring structures, have strong 

reducibility with 1-phenyl-3-methyl-5-pyrazolone (PMP), resulting in the sugar-PMP 

derivatives that can be detected by reverse phase high performance liquid chromatography 

(RP-HPLC) with UV detector at 248 nm. With aid of two HPLC columns, i.e., Eclipse Plus 

C18 and X-bridge amide columns, and two HPLC detectors, diode array detector (DAD) 

and evaporative light scattering detector (ELSD), this study compared the separation and 

detection of some sugars, including monosaccharides such as glucose, mannose, galactose, 

glucosamine, fructose, ribose and xylose, disaccharides such as sucrose, lactose and 

maltose, and oligosaccharides like oligochitosan, with their possible PMP derivatives, as 

well as some other sugar derivatives including sugar alcohols and cyclodextrins, which 

were separated by the aforementioned two columns, and simultaneously detected by the 

HPLC-DAD-ELSD system. The results showed that the C18 column had a strong capacity 

to separate the aforementioned reducing sugar-PMP derivatives rather than the sugar 

themselves. On the contrary, the amide column could effectively separate the original 

sugars instead of the sugar-PMP derivatives. This phenomena demonstrated that the 

polarity of reducing sugars decreased after their PMP derivatization. In addition, both DAD 
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and ELSD were able to monitor the reducing sugar-PMP derivatives, but the DAD had a 

higher sensitivity than the ELSD. Moreover, eight linear regressions for the detection of 

aforementioned mono- and disaccharides were constructed with satisfactory R2. 

Additionally, adding PMP into chitosan degraded oligomer molecules could significantly 

improve the oligochitosan analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

Introduction 

Carbohydrates are the most ubiquitous biomolecules in nature, which occur within all 

living organisms, and even in certain marine or underground sediments. One unambiguous 

agreement in the scientific society is that carbohydrates play vital roles in biological 

systems. For example, the most well-known role of carbohydrates is to supply energy. 

However, carbohydrate detection still remains a big challenge due to their complex 

structures. So far, numerous analytical methods for sugar analysis have been proposed, 

including RP-HPLC with refractive index (RI) detector (Barreira, Pereira, Oliveira, & 

Ferreira, 2010), RP-HPLC with evaporated light scattering detector (ELSD) 

(Shanmugavelan et al., 2013), pulsed amperometric detector (PAD) coupled with high-

performance anion exchange chromatography (HPAEC) (Hou, Chen, Shi, Zhang, & Wang, 

2008; Ouchemoukh, Schweitzer, Bey, Djoudad-Kadji, & Louaileche, 2010), 1H nuclear 

magnetic resonance spectroscopy (NMR) (Hohmann et al., 2015) and Fourier-transform 

infrared spectroscopy (FTIR) (Wolkers, Oliver, Tablin, & Crowe, 2004). Though these 

methods have very convincing results in regards of their detections, the expensive prices 

of some of the aforementioned instruments and their maintenance costs have restricted their 

practical applications in academy and industry.  

Without chromophoric groups in their structures, carbohydrates are difficult to be 

detected by some common sensitive detectors, such as UV, DAD and fluorescence 

detectors. Recently, chemical derivatization of sugars has been comprehensively advocated 

in order to improve the sugar determination. Among all the sugar derivative agents, 1-

phenyl-3-methyl-5-pyrazolone (PMP) was the first to be applied for sugar analysis (Honda 
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et al., 1989), which was sensitive under the UV detection at 248 nm. Later, the mechanism 

of sugar-PMP synthesis was further studied (Saba, Shen, Jamieson, & Perreault, 1999) (see 

Scheme 3.1). In general, many previous studies have reported the PMP derivatization as a 

successful method for sugar detection, for instance, the sugars extracted from maple and 

crop rhizospheres, and the reducing sugar involved in mechanism of biological reactions 

(McRae & Monreal, 2011; Nakamura et al., 2011; Taga & Kodama, 2012; van Straaten et 

al., 2013). Nevertheless, few studies have compared the efficiency of different HPLC 

columns and detectors on the sugar-PMP detection, let alone the exploration of chemical 

properties of sugar-PMP derivatives.  

The function of HPLC column is to separate a variety of analytes. For example, C18 

column, which is composed of silica-based reversed-phase materials, is the most popular 

reverse phase chromatography (REC) column since it can provide highly efficient 

separation power with desirable mechanical strength (Majors, 2009). Therefore, C18 

column is suitable and often adopted for isolation of weak and/or nonpolar organic 

compounds, for example, capsaicin and its derivatives, anthocyanins, phenolic compounds 

and other compounds (Daood et al., 2014; Gómez-Caravaca, Verardo, Berardinelli, 

Marconi, & Caboni, 2014; Törrönen, Hellström, Mattila, & Kilpi, 2017). In contrast to the 

C18 column, the separation mode of an amide column belongs to the hydrophilic 

interaction chromatography (HILIC) since the column is fully filled by silica-amino 

derivative materials as the stationary phase that was firstly proposed about 30 years ago 

(Alpert, 1990). Amide column has strong efficiency on separation of polar compounds, 
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like xanthine, hypoxanthine, sugar and phenolic acid (Kotoni, Ciogli, Villani, Bell, & 

Gasparrini, 2014; Laiakis et al., 2014; Restivo, Degano, Ribechini, & Colombini, 2014). 

This study focuses on the comparison of two different columns, named C18 and amide 

columns, for their efficiency on separation of sugars and sugar-PMP derivatives, both of 

which were under the same HPLC condition coupled with diode array detector (DAD) and 

ELSD system for detection of the eluted sugars and their PMP derivatives. In addition, the 

current research is to investigate the detective parameters, such as precision and relative 

standard deviation (RSD), of the detection for the aforementioned sugars and their PMP 

derivatives. 

Experiment 

Chemicals and reagents 

The following sugar standards and chemicals were obtained from Sigma-Aldrich 

(USA): D-(+)-mannose, D (+)-glucose D-(+)-xylose, D (+)-glucosamine, D-(-)-ribose, D-

(+)-lactose, D-(+)-maltose monohydrate, 1-phenyl-3-methyl-5-pyrazolone (PMP) and 

ammonium acetate. Galactose was purchased from Fisher Scientific (New Jersey, USA). 

Chitosan oligomer mixture with degree of polymerization ranged from 2 to 10 was bought 

from Dalian Glycobio Co, People’s Republic of China. 37% Hydrochloric acid (analytical 

grade), and 99% formic acid (analytical grade) were purchased from ACROS ORGANICS 

(part of Thermo Fisher Scientific, USA). All other chemicals and reagents, including 3 mL 

of C18 solid-phase extraction columns (SPE cartridge) and chloroform with 0.75% ethanol 

(HPLC-grade), as well as HPLC-grade acetonitrile, acetic acid (glacial), methanol (HPLC-

grade) and sodium hydroxide were provided by the Thermo Fisher scientific (USA). 
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Pretreatment of sugar standards 

All of the reducing sugar standards (see Table 3.1) were divided into two groups to 

prepare the mixture A including glucose, xylose, glucosamine, and maltose, and mixture 

B including galactose, mannose, ribose and lactose. They were weighed (see Table 3.1) by 

an XS-200D analytical balance, and respectively moved into two of 15 ml clean glass tubes. 

Moreover, 10 ml of distilled water was added into each tube. The two mixture solutions 

were shaken vigorously by a Fisher vortex mixer until the chemicals were completely 

dissolved in the solution to be used as the stock solution, which were immediately filtered 

by 0.45 µm nylon filters (MACHEREY-NAGEL Cor.). Then, the stock solution were 

diluted by 2, 4 and 10 times (Table 3.1) for HPLC analyses for construction of linear 

regressions. 

Preparation of reactants and buffer solutions  

As described in Chapter 2, 87 mg of PMP was mixed with 1 ml of methanol in a clean 

glass tube to make 0.5 M PMP-methanol solution. Meanwhile, 6 grams of sodium 

hydroxide (NaOH) was dissolved in 500 mL of distilled water to prepare 0.3 M NaOH 

solution, while the concentrated 37% hydrochloric acid (HCl) solution was diluted by 

distilled water to 0.3 M solution. Ammonium acetate (7.7 g/L) was adjusted to pH 5.51 by 

acetic acid to make the mobile phase A of RP-HPLC, while the mobile phase B was 

composed by 100% acetonitrile. In addition, 500 mL of acetonitrile (HPLC-grade) was 

mixed with 500 mL of distilled water with addition of 0.25 mL of 99% formic acid 

(analytical grade) to form another mobile phase for the C18 SPE elution. 

The procedure of reducing sugar derivatization 
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As mentioned in the second chapter, the reducing sugar derivatives were prepared 

based on the previous report with some modifications (Dai et al., 2010). Briefly speaking, 

100 µL of the sugar standard solution and 100 µL of 0.3 M NaOH solution were at first 

mixed in a 1.5 mL micro-centrifuge tube (VW, North American Co), which was added 

with 100 µL of the 0.5 M PMP-methanol solution. The solutions were mixed vigorously 

by a vortex mixer for about 1 minute. Then, the mixture was incubated in a water bath at 

70 °C for 120 minutes. Once the incubation ended, the aqueous liquid was neutralized by 

adding 100 µL of the HCl solution, followed by addition of 1 mL chloroform (HPLC-grade) 

to extract the remaining PMP. The chloroform layer was discarded and the upper layer was 

kept in the micro-centrifuge tubes for further treatment. This extraction process was 

repeated three times.  

Solution cleanup by SPE column 

The supernatant was then cleaned up by the SPE cartridge based on the previous report 

(Rozaklis et al., 2002). A C18 SPE cartridge was at first conditioned with 1 mL of 

acetonitrile, followed by adding 1 mL of the eluent which consisted of 500 mL/L 

acetonitrile containing 0.25 mL/L formic acid in water. Finally, 1 mL of distilled water was 

added to pass through the column before the sugar-PMP solution was added. After the 

sugar-PMP solution was added, the C18 cartridge was washed by 1 mL distilled water twice. 

Moreover, the column was loaded with 1 mL HPLC-grade chloroform in order to remove 

the remaining excess PMP reagent. Then, the absorbed sugar-PMP derivative was eluted 

out by the aforementioned mobile phase consisting of acetonitrile-formic acid in water, and 
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collected in new tubes. The collected eluent was filtered through a 0.45 µm nylon filter 

before the HPLC analysis. 

RP-HPLC-DAD-ELSD analysis of sugar-PMP derivatives 

The RP-HPLC-DAD-ELSD system was consisted of a CTO-20A column oven, a SPD-

M10A DAD detector, a ELSD-LYII detector, a FRC-10 collector, a SIL-20A auto-sampler, 

a LC-20AT pump, a DGU-20A degasser, a CBM-20A controller and HPLC solution 

software (Class-VP 7.4), which was purchased from Shimadzu Corporation (Shimadzu Co, 

North America). The RP-HPLC-DAD-ELSD system was also connected with one Eclipse 

Plus C18 column (4.6*250 mm, 5 µm particle, Agilent, North America) or an X-bridge 

amide column (4.6*250 mm, 3.5 µm particle, Waters, North America). The mobile phase 

was composed by ammonium acetate buffer solution (A) and acetonitrile (B). The solvent 

B was programmed from 20% to 30% during the first 45 minutes and then declined to 20% 

in another 10 minutes. Other general settings were as follows: the flow rate of the mobile 

phase was 0.3 mL/min, column oven was at 30 °C; temperature of drift tube and gain value 

of ELSD were set at 80 °C and 9, respectively; the chamber pressure was settled as 355 

kPa and the pressure of the nebulizer gas (N2) was controlled at 100 psi.  

Method optimization 

The sugars were prepared in three concentrations (Table 3.1) in order to construct 

calibration curves. Each concentration was measured three times. Linear regressions were 

constructed by the concentration vs. the corresponding peak area.  

Recovery and precision of method 
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Recovery should be considered during the sample preparation. The average recovery 

of each reducing sugar-PMP derivatives was calculated by the following formula:  

Recovery % =observed amount / true value*100% 

where observed amount was calculated from the linear regression, and true value was the 

actual concentration of the injection. 

Precision was presented as RSD% which was calculated by an average number of 

triplicate of the measurements at the concentration of the second dilution. Result was 

defined as the following:  

RSD% = (SD/Mean)*100% 

where SD means the standard deviation and Mean presents the mean value.  

Chitosan analysis 

Chitosan oligomers, which have a degree of polymerization from 2 to 10, were initially 

weighed by 5 mg to prepare a 500 ppm chitosan oligomer solution. All of its measurements 

adopted the same procedures as those mentioned above, and were repeated three times. 

However, the current preliminary study was lack of pure mono-, di- and oligochitosan 

standards, so the qualification of these oligochitosan will be further studied.  

Data and discussion 

Identification of multiple sugars via HPLC-DAD-ELSD 

According to Figure 3.1 and 3.2, the reducing sugar-PMP derivatives of 

monosaccharides and disaccharides can be effectively separated by the C18 column and 

detected unambiguously by DAD. The separation chromatogram demonstrated that 

different sugar structures caused retention time of derivatives in the C18 column varying 
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from each other. In addition, a separation chromatogram of a combined mixture of mixture 

A and mixture B is shown in Figure 3.3, which exhibits seven peaks instead of eight peaks 

because of the overlap of two peaks of two sugars, i.e., lactose and maltose, which could 

not be separated under the setting condition of the RP-HPLC. In regards of maltose and 

lactose, which are composed by glucose and galactose via α-(1-4) glycosidic bond to 

connect another glucose, respectively. These two disaccharides have similar structures, 

particularly the same reducing end of glucose to form the sugar-PMP derivatives. Such 

kind of structural similarity has made them difficult to be separated herein, and needs 

further investigation. 

Results of ELSD detection are shown in Figure 3.4, 3.5 and 3.6, which present the 

separation of eight reducing sugar-PMP derivatives. Two detectors connected in tandem 

resulted in slightly different retention times of the same sugar-PMP derivative, which was 

ascribed to the required time for effluent to travel through connected tubes. For example, 

the retention time of glucosamine was between 31.2 ̶ 33.0 minutes detected by the DAD, 

and between 32.0 ̶ 33.5 minutes by the ELSD. 

HPLC-DAD-ELSD method validation 

In development of a new HPLC method, the system should be optimized for assurance 

of reliability of its detective characteristics, including the analytical linearity, accuracy and 

precision. All of the linear regressions for the eight reducing sugar-PMP derivatives 

exhibited an excellent linearity, based on the DAD measurements of three points in the 

range of concentrations (as shown in Table 3.3). As a result, each R2 of the detection 

linearity was more than 0.9940 (close to 1), indicating that the instrument has shown a 



75 
 

reliable linear regression for its detection of the analyte within the range of the test 

concentrations (Muralidhar, Chirumamila, Marchant, & Nigam, 2001). Although all R2 

values of the linear regressions obtained from the ELSD were also more than 0.9630, 

exhibiting a certain degree of linearity within the range of the test concentrations, it was 

reported that ELSD usually exhibited an non-linear relationship between the signal 

intensity and its sample concentration within a wide range of concentrations (Amaral et al., 

2004; Stolyhwo, Colin, & Guiochon, 1985). Therefore, previous work has suggested to 

make a modification of data processing, by which each signal intensity and its 

corresponding sample concentration was generated through the loge conversion and plotted 

so as to improve the regression linearity (Kimball, Arjo, & Johnston, 2004; Taylor, Pennell, 

Abriola, & Dane, 2001). As a result, the linearity of the regressions obtained from the 

ELSD was all higher than 0.96 within the range of 120 ppm to 570 ppm, after the data 

conversion (shown in Table 3.4). 

In addition, the detection precision and recovery of the sugar-PMP were compared 

between the HPLC-DAD and HPLC-ELSD, which is summarized in Table 3.5. It is 

observed that there is a great fluctuation of the ELSD precision, which is reflected by its 

RSD% data ranging from 2.0%-23.0%. This phenomenon was attributed to the response of 

ELSD that might be subject to be positively affected by the diameter of the effluent 

particles (Vervoort, Daemen, & Török, 2008). In contrast, the RSD% values of DAD for 

the eight reducing sugar derivatives were lower than those of ELSD, which are in a range 

of 3.3%-8.2%. Although the ELSD seems to have better analytical precisions than DAD 

for the derivatives of four sugars including mannose (5.8 vs 7.1), glucosamine (2.0 vs 3.4),  
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maltose (2.5 vs 3.8), and glucose (2.7 vs 3.3), the DAD has exhibited much better 

precisions in other three reducing sugar derivatives, including ribose (7.0 vs 10.4), lactose 

(8.2 vs 23.0), and galactose (6.4 vs 18.9). Moreover, the recoveries of DAD are in the range 

of 94.5%-101.8% versus the range of 100.0%-100.6% for the ELSD (Table 3.5).  

Comparison of separation effectiveness of different columns  

The Eclipse Plus C18 column and X-bridge amide column are two common columns 

for chemical separation. Theoretically, a stationary phase with smaller particles will 

improve the effectiveness of chemical separation in the same length column, which 

depends on the following equation strictly: N=L/H, where N presents the high plate number, 

L means the column length and H is the height equivalent to a theoretical plat (HETP) 

(Hanai, 2007). As a result, higher column performance and resolution would be achieved 

by means of decreasing particle size and size diffusion, although smaller particle size will 

concurrently induce the higher back pressure of the HPLC column (Motokawa et al., 2002; 

Nguyen, Guillarme, Rudaz, & Veuthey, 2006). Additionally, in order to separate the 

analytes more efficiently, the ratio between the adsorbent particle and the hydrodynamic 

diameter of the sample particle should be more than four, thus minimizing the possibility 

of block force and increasing the mass transfer kinetics (Unger, Skudas, & Schulte, 2008). 

There are two theories, i.e., solvophobic and partitioning theories, which are often used to 

explain the models for calculation of retention time. The former explains the solvophobic 

effect on isolation of analytes from solvent and binding to the surface of the stationary 

phase (Knox & Parcher, 1969; Scott, 1985), while the latter represented that all solutes 
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were fully embedded into the stationary phase (Brown & Weston, 1997). Nevertheless, in 

most cases, these two theories are often used together for explanation of retention time.  

The C18 column has shown a higher efficiency on separating the reducing sugar-PMP 

derivatives than the amide column since the former was packed with 5 µm porous 

octadecyl-bonded silica based, non-polar materials. As shown in Figure 3.3, the order of 

the separated peaks of the sugar-PMP derivatives is shown as the follows: mannose, 

glucosamine, ribose, maltose and lactose, glucose, galactose, and xylose. This result was 

consistent to the previously reported papers, except the appearance of xylose derivative 

(Guan & Li, 2010; Kuang et al., 2011; Shen & Perreault, 1998). Because mobile phases A 

and B were both polar, the order of non-polarity of sugar derivatives can be concluded from 

the retention time according to the mechanism of C18 column separation. The order of sugar 

derivatives’ non-polarity was following (from lower to higher): mannose derivative< 

glucosamine derivative< ribose derivative< glucose derivative< galactose derivative. The 

xylose-PMP derivative may be more influenced by its particle diameter. However, other 

natures of the C18 stationary phase and other external factors might have also affected the 

retention time of xylose-PMP derivative, too.  

As shown in Table 3.6, it is found that the XBridge amide column has no ability to 

separate the reducing sugar-PMP derivatives, though the column has a higher selectivity 

on series of peptides compared to the TSK gel Amide-80 column (Kalíková, Kozlík, Gilar, 

& Tesařová, 2013). In fact, the XBridge amide column has a great capability for the 

separation of common reducing sugar themselves. Though there are still some debates of 

retention time prediction in HILIC mode, due to the type of loaded substances, polarity of 
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analytes and mobile phase, partitioning model has been accepted highly for endorsement 

among the HILIC modes, especially in the amide column of HPLC systems (Guo & Shah, 

2016; Xiong & Liu, 2016). In the case, all analytes are kept in the stationary phase at first, 

and then flushed by the carrier liquid later. Nevertheless, the XBridge amide column will 

lose its power to separate the sugar-PMPs since the polarity of reducing sugars decreases 

after reacting with the PMP, although the change depends on the nature of reducing sugars. 

However, this should be further investigated. 

In addition, the original partially hydrolyzed chitosan oligomers could neither be 

separated by the C18 column nor the X-bridge amide column in my experiment. In contrast, 

the chitosan oligomer PMP derivatives could be efficiently separated from each other after 

passing through the C18 column (shown in Table 3.6), and also accurately detected by both 

the DAD and the ELSD, which is in accordance with several published reports (Han, Zeng, 

Lu, & Zhang, 2015; Tsigos, Zydowicz, Martinou, Domard, & Bouriotis, 1999; Xiong et al., 

2009).  

Comparing of DAD and ELSD 

DAD, a common powerful chromatography detector, is classified as a first-order 

instrument which can receive a series of ordered array involving in a vector of data (Booksh 

& Kowalski, 1994). Though the DAD and UV detectors use the similar chromatographic 

principles, the former is less sensitive than the latter since the former is subject to lose more 

light while more variable wavelengths are working at one time, typically in a range of the 

wavelengths between 190-700 mm  (Weston & Brown, 1997).  
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Table 3.7 compares the columns and detectors from another perspective. It is clear that 

the DAD detector can not detect the reducing sugars at all, since they are lack of UV 

chromophores. Though some common chromophores, such as hydroxyl (-OH), amine (-

NH2) and even aldehyde (-CHO), can be excited at low UV value (180 to 210 nm), the 

determination below 210 nm is much harder and inconvenient (Asher, 1988; Snyder, 

Kirkland, & Glajch, 1997). However, once these sugars are bound with the benzene and 

penta cyclic rings, they will possess the absorptivity within the near ultraviolet value, which 

will facilitate the DAD detection. 

The principle of ELSD operation has been described in detail by Megoulas (Megoulas 

& Koupparis, 2005). Briefly speaking, ELSD detection mainly follows three successive 

steps: (1) nebulization of effluent; (2) vaporization of the mobile phase under high pressure 

and temperature; (3) scattered light passing through the clear chamber in order to analyze 

the uniform analyte particles. Because of the universality and higher accuracy of the ELSD, 

it is considered to be one popular detector, functioning as a complementary and alternative 

detector to UV detector. Based on the ELSD principle, any form of sugars could be detected 

by ELSD, which is supported by the result shown in Table 3.7, regardless of the separation. 

Additionally, some non-reducing sugars, sugar alcohols such as sorbitol and mannitol, and 

ketoses like fructose, can not be analyzed by DAD since they do not react with PMP, 

although they can be separated by the amide column and detected by the ELSD. 

Furthermore, chitosan oligomers derivatives are measured under both DAD and ELSD 

effectively, however, these oligomers should be further characterized. 

. 
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Conclusion 

In this study, two detectors (i.e., DAD and ELSD) equipped with two different columns 

(i.e., Eclipse Plus C18 column and X-bridge amide columns) were tested for their 

efficiency and applicability on determination of reducing sugars and sugar-PMP 

derivatives. The results showed that different stationary phase materials packed in the two 

columns had resulted in significant different properties in terms of the anlaytical resolution 

and effectiveness on chemical separation. On the other hand, DAD and ELSD employ 

completely different principles in chemical detection which allow them to show 

significantly different sensitivities and selectivities of analytes. In summary, carbohydrates 

themselves are more likely to be separated and detected competently by an amide column 

equipped with ELSD, while DAD combined with C18 column promises to solve the 

determination of carbohydrates derivatives. Finally, regarding the efficient separation and 

confirmation of degree of polymerization of carbohydrate oligomers, such as chitosan 

oligomers, more research work is needed. 
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Scheme 3.1 Principle of glucose-PMP derivative 
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Table 3.1 Initial weight and each gradient dilution concentration of reducing sugar 

Group  

Reducing sugar 

name 

Initial weight 

(mg) 

Initial concentration 

(ppm)a 

First dilution 

X 2 (ppm) 

Second dilution 

X 4 (ppm) 

Third dilution 

X 10 (ppm) 

Mixture A 

Glucose 5.7 570 285 142.5 45.6 

Xylose 5.2 520 260 130 41.6 

Glucosamine 4.9 490 245 122.5 39.2 

Maltose 4.9 490 245 122.5 39.2 

Mixture B 

Galactose 4.9 490 245 122.5 49 

Mannose  5.1 510 255 127.5 51 

Ribose 5.3 530 265 132.5 53 

Lactose 4.8 480 240 120 48 

Note: a: parts per million 
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Figure 3.1 HPLC chromatogram of mixture A composed of the PMP derivatives of the following sugars with their peak 

numbers: 2. glucosamine, 5. maltose, 6. glucose, and 8. xylose. They are separated by the C18 column and detected by DAD. 
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Figure 3.2 HPLC chromatogram of mixture B composed of the PMP derivatives of the following sugars with their peak 

numbers: 1. mannose, 3. ribose, 4. lactose, and 7. galactose. They are separated by the C18 column and detected by DAD 
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Figure 3.3 HPLC chromatogram of mixture C composed of the PMP derivatives of the following sugars with their peak 

numbers: 1. mannose, 2. glucosamine, 3. ribose, 4+5. lactose + maltose, 6. glucose, 7. galactose, and 8. xylose. They are 

separated by the C18 column and detected by DAD 
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Figure 3.4 HPLC chromatogram of mixture A composed of the PMP derivatives of the following sugars with their peak 

numbers: 2. glucosamine, 5. maltose, 6. glucose, and 8. xylose. They are separated by the C18 column and detected by ELSD  
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Figure 3.5 HPLC chromatogram of mixture B composed of the PMP derivatives of the following sugars with their peak 

numbers: 1. mannose, 3. ribose, 4. lactose, and 7. galactose. They are separated by the C18 column and detected by ELSD  

1 

3 

4 

7 



88 
 

 

Figure 3.6 HPLC chromatogram of mixture C composed of the PMP derivatives of the following sugars with their peak 

numbers: 1. mannose, 2. glucosamine, 3. ribose, 4+5. lactose + maltose, 6. glucose, 7. galactose, and 8. xylose. They are 

separated by the C18 column and detected by ELSD  
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Table 3.2 Retention time of each sugar PMP-derivatives detected by HPLC-DAD 

# Compound Compounds name DAD retention time ELSD retention time 

1 Mannose  28.8-31.0 29.5-30.5 

2 Glucosamine 31.2-33.0 32-33.5 

3 Ribose 34.7-36.6 35.5-36.2 

4 Lactose 40-41.5 40.7-41.4 

5 Maltose 40.1-41.4 40.5-41.9 

6 Glucose  44.2-46.1 44.8-46.2 

7 Galactose  45.9-47.5 46.3-47.1 

8 Xylose 48.5-50.6 49.1-50.7 
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Table 3.3 Analytical linearity of HPLC-DAD of different reducing sugars-PMP derivatives detected at 248 nm 

Carbohydrates 

Linear regression y=ax+b 

R2 Linear range (PPM) 

a (*106) b (*106) 

Mannose 0.1023 -2.6548 0.9957 51-225 

Glucosamine 0.087 -2.0508  0.996 39.2-245 

Ribose 0.0587 -1.4179 0.9997 53-265 

Maltose 0.0513 -1.2263 0.9969 39.2-245 

Lactose 0.0587 -1.5462 0.9941 48-240 

Glucose 0.0895 -2.6413 0.9973 45.6-285 

Galactose 0.1187 -2.5121 0.9968 49-245 

Xylose 0.0539 -0.8045 0.9748 41.6-260 

Note: a: Co-efficient of the linear regression, expressed as number *106; b: intercepts of the linear regression, expressed as number *106; y means 

chromatographic response area,; x represents the concentration, show as PPM which is particle per million. 
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Table 3.4 Analytical linearity of HPLC-ELSD of different reducing sugars-PMP derivatives 

Carbohydrates 

Linear regression y=ax+b 

R2 Linear range (PPM) 

a (*105) b (*105) 

Mannose 1.9703 -6.562 0.9854 127.5-510.0 

Glucosamine 1.9626 -6.4731  0.9916 122.5-490.0 

Ribose 1.6324 -4.8048 0.995 132.5-530.0 

Maltose 1.9013 -6.484 0.9953 122.5-490.0 

Lactose 2.411 -9.6297 0.9874 120.0-480.0 

Glucose 1.7867 -5.4867 0.9949 142.5-570.0 

Galactose 2.4068 -8.9856 0.9927 122.5-490.0 

Xylose 1.7959 -6.1654 0.9637 130.0-520.0 

Note: a: Co-efficient of the linear regression, expressed as number *106; b: intercepts of the linear regression, expressed as number *106; y=In(response 

area), unit of which is 105, x=In(concentration) which was shown as particle per million (PPM). 
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Table 3.5 Comparison of HPLS-DAD-ELSD method 

Carbohydratesa 

%RSDb Recovery (%) c 

DAD ELSD DAD ELSD 

Mannose 7.1 5.8 101.5 100.2 

Glucosamine 3.4 2.0 97.8 100.1 

Ribose 7.0 10.4 99.6 100.0 

Maltose 3.8 2.5 98.1 100.1 

Lactose 8.2 23.0 101.8 100.8 

Glucose 3.3 2.7 98.2 100.1 

Galactose 6.4 18.9 101.3 100.3 

Xylose 3.4 5.2 94.5 100.6 

Note: a: detected at 248 nm; b: RSD %=(SD /Mean)*100; c: Recovery=measure value/ true value *100 
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Table 3.6 Detection and separation of different sugar and sugar-PMP derivatives by two detectors and two columns 

Sugar Name 

C18 Amide 

DAD ELSD DAD ELSD 

Original PMPa Original PMP Original PMP Original PMP 

Monosaccharides 

Xylose Χ √ D √ S D √ D 

Ribose Χ √ D √ S D √ D 

Glucose Χ √ D √ S D √ D 

Galactose Χ √ D √ S D √ D 

Glucosamine Χ √ D √ S D √ D 

Mannose Χ √ D √ S D √ D 

Fructose Χ Χ D Χ S Χ √ Χ 

Sugar alcohol 
Sorbitol Χ Χ D Χ S Χ √ Χ 

Mannitol Χ Χ D Χ S Χ √ Χ 

Disaccharides 

Lactose Χ √ D √ S D √ D 

Maltose Χ √ D √ S D √ D 

Sucrose Χ Χ D Χ S Χ √ Χ 

Oligosaccharides 

αb Χ Χ D Χ S Χ √ Χ 

βc Χ Χ D Χ S Χ √ Χ 

γd Χ Χ D Χ S Χ √ Χ 

Chitosane Χ √ D √ Χ D D D 

Note: √: both detection and separation are good; Χ: neither detection nor separation is good; D: Detection is good, cannot separate; S: separation is 

good, cannot detect; a: PMP-derivatives; b: α-cyclodextrin; c: β-cyclodextrin; d: γ-cyclodextrin e: chitosan oligomer 
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Table 3.7 Detection and separation of different sugar and sugar-PMP derivatives by two detectors and two columns 

Sugar Name 

DAD ELSD 

C18 Amide C18 Amide 

Original PMPa Original PMP Original PMP Original PMP 

Monosaccharides 

Xylose Χ √ S D D √ √ D 

Ribose Χ √ S D D √ √ D 

Glucose Χ √ S D D √ √ D 

Galactose Χ √ S D D √ √ D 

Glucosamine Χ √ S D D √ √ D 

Mannose Χ √ S D D √ √ D 

Fructose Χ Χ S Χ D Χ √ Χ 

Sugar alcohol 
Sorbitol Χ Χ S Χ D Χ √ Χ 

Mannitol Χ Χ S Χ D Χ √ Χ 

Disaccharides 

Lactose Χ √ S D D √ √ D 

Maltose Χ √ S D D √ √ D 

Sucrose Χ Χ S Χ D Χ √ Χ 

Oligosaccharides 

αb Χ Χ S Χ D Χ √ Χ 

βc Χ Χ S Χ D Χ √ Χ 

γd Χ Χ S Χ D Χ √ Χ 

Chitosane Χ √ Χ D D √ D D 

Note: √: both detection and separation are good; Χ: neither detection nor separation is good; D: Detection is good, cannot separate; S: separation is 

good, cannot detect; a: PMP- derivatives; b: α-cyclodextrin; c: β-cyclodextrin; d: γ-cyclodextrin e: chitosan oligomer 
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