
Clemson University
TigerPrints

All Theses Theses

5-2017

An Analysis of Variation Between Cores For Intel
Xeon Phi Knights Corner And Xeon Phi Knights
Landing
Jamar Robinson
Clemson University, robinsr@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Robinson, Jamar, "An Analysis of Variation Between Cores For Intel Xeon Phi Knights Corner And Xeon Phi Knights Landing"
(2017). All Theses. 2668.
https://tigerprints.clemson.edu/all_theses/2668

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2668?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

An Analysis of Variation Between Cores For
Intel Xeon Phi Knights Corner And Xeon Phi

Knights Landing

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Jamar Robinson

May 2017

Accepted by:

Dr. Melissa Smith, Committee Chair

Dr. Richard Brooks

Dr. Adam Hoover

Dr. Daniel Noneaker

Abstract

As we move towards exascale computing, the efficiency of application perfor-

mance and energy utilization, must be optimized by redefining architectural features

and application performance analysis. This research analyzes the performance per

core of 8 applications on Intel Xeon Phi Knights Corner (KNC) and Knights Landing

(KNL) to determine if performance variation within cores can lead to performance

and energy improvements. Our results showed that KNC architecture’s core vary in

performance, leading to faster inner core performance as a result of memory char-

acteristics and core utilization. It also shows that cores 17, 34, and 51 on the KNL

architectures performs consistently slower than other cores, with core 0 performing

either faster, slower or within the average performance time all the cores. A power

performance study was then done utilizing different core configurations on the KNC.

The results show that by targeting inner cores for applications that exhibit better

inner core performance, a maximum energy reduction of 16.4% compared to a con-

figuration using all cores was possible with its optimal thread configuration. Energy

reduction was achieved with along with a 2% reduction in the fastest execution time

of the same application. Our results also show how application characteristics lead

to different core variation performances on KNC and KNL Xeon Phi architectures.

ii

Dedication

I dedicate this thesis to my family, my academic advisor and department chair

whose belief in and support in me has lead to this milestone achievement for me

and my family. I also dedicate this to my research group members of the Future

Computing Technology Laboratory whose friendships and insights are integrated into

this body of work.

iii

Acknowledgments

This Body of work was made possible due to the help and support of the

following persons.

I would first like to thank my academic advisor Dr. Melissa Smith, whom not

only introduced my to the area of High Performance Computing, but also guided me

in accomplishing this masters thesis. Both her an Dr. Noneaker’s support has helped

me navigate through my academic requirements successfully.

I would next like to thank the faculty and staff of Clemson University’s Elec-

trical and Computer Engineering Department. Special thanks goes out to Dr. Adam

Hoover and Dr. Richard Brooks whom have helped developed my research acumen

and necessary skills to document and present my research findings.

I would also like to thank Dr. Barry Rountree of Lawrence Livermore National

Laboratory whom this core variation investigation started with and whom has helped

me along the way in completing this body of work.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1

2 Related Work . 5
2.1 Core Variation . 5
2.2 Xeon Phi . 6
2.3 Summary . 8

3 Intel Xeon Phi Platform . 9
3.1 Stampede . 9
3.2 Xeon Phi Knights Corner (KNC) . 11
3.3 Xeon Phi Knights Landing (KNL) . 13
3.4 Summary . 18

4 OpenMP Benchmark Applications 20
4.1 OpenMP . 20
4.2 Rodinia . 21
4.3 Summary . 26

5 Experimental Setup And Analytical Tools 27
5.1 Initial Core Variation Study on Xeon Phi Platforms 27
5.2 OpenMP Configuration . 28
5.3 Application Benchmark Configuration 29
5.4 Configuration of Intel Vtune Profiler 30

v

5.5 System Management and Configuration Utility (MICSMC) 33
5.6 Summary . 33

6 Results . 34
6.1 Streamcluster . 34
6.2 Needleman-Wunsch . 38
6.3 Myocyte . 41
6.4 Matrix Multiplication . 45
6.5 Speckle Reducing Anisotropic Diffusion 49
6.6 LavaMD . 53
6.7 Particle Filter . 57
6.8 Breadth First Search . 61
6.9 KNC Multi Core Xeon Phi Power and Performance 63
6.10 Summary . 65

7 Conclusions and Future Work . 67
7.1 Conclusions . 67
7.2 Future Work . 69

Bibliography . 71

vi

List of Tables

3.1 Stampede Hardware Configuration for Sandy Bridge Cluster [8] . . . 10
3.2 Stampede Hardware Configuration for KNL Cluster[8] 11

4.1 Rodnia Applications Analyzed and Their Domains 22

5.1 Hardware Components measured on Xeon Phis Using Vtune 31

6.1 Performance and Power consumption for Applications on KNC 65

vii

List of Figures

3.1 Xeon Phi KNC Architecture Overview 12
3.2 Xeon Phi KNL Tile Mesh Interconnect 14
3.3 Xeon Phi KNL Tile Configuration . 14
3.4 Xeon Phi KNL Instruction Set Support 15
3.5 Xeon Phi KNL Memory Modes . 17

6.1 Streamcluster KNC Performance . 35
6.2 Streamcluster KNL Performance . 36
6.3 Streamcluster KNC Performance With Multiple Inputs 37
6.4 Streamcluster KNL Performance With Multiple Inputs 37
6.5 Streamcluster Bandwidth Performance on KNC For a trial 38
6.6 NW KNC Performance . 39
6.7 NW KNL Performance . 40
6.8 NW KNC Performance With Multiple Inputs 40
6.9 NW KNL Performance With Multiple Inputs 41
6.10 NW KNC Bandwidth Performance 42
6.11 NW KNC CPI Performance . 42
6.12 Myocyte KNC Performance . 43
6.13 Myocyte KNL Performance . 43
6.14 Myocyte KNL Performance With Multiple Inputs 44
6.15 Myocyte KNC Execution Performance 45
6.16 Myocyte KNC Clocktick Performance 45
6.17 Matrix Multiplication KNC Performance 46
6.18 Matrix Multiplication KNL Performance 46
6.19 Matrix Multiplication KNC Performance With Multiple Inputs 47
6.20 Matrix Multiplication KNL Performance With Multiple Inputs 48
6.21 Matrix Multiplication KNC Execution Performance 48
6.22 Myocyte KNC CPI Performance . 49
6.23 SRAD KNC Performance . 50
6.24 SRAD KNL Performance . 50
6.25 SRAD KNC Performance With Multiple Input 51
6.26 SRAD KNL Performance With Multiple Input 52
6.27 SRAD KNC L1 Cache Performance 52
6.28 SRAD KNC L2 Cache Performance 53

viii

6.29 Lavamd KNC Performance . 54
6.30 Lavamd KNL Performance . 54
6.31 LavaMD KNC Performance With Multiple Inputs 55
6.32 LavaMD KNL Performance With Multiple Inputs 56
6.33 LavaMD KNC Execution Performance 56
6.34 LavaMD KNC CPI Performance . 57
6.35 Particle Filter KNC Performance . 58
6.36 Particle Filter KNL Performance . 58
6.37 Particle Filter KNC Performance With Multiple Inputs 59
6.38 Particle Filter KNL Performance With Multiple Inputs 60
6.39 Particle Filter KNC Execution Performance 60
6.40 Particle Filter KNC CPI Performance 61
6.41 Breadth first Search KNC Performance 62
6.42 Breadth First Search KNL Performance 62
6.43 BFS KNC Execution Performance . 63
6.44 BFS KNC CPI Performance . 63

ix

Chapter 1

Introduction

As we move toward exascale computing, the efficiency in performance and

power consumption of accelerators is becoming increasingly important, due to reduc-

tion in performance leaps with silicon advancement. This new computing challenge

has resulted in accelerators being developed by redefining the architectural features

and structure to increase computing performance, while minimizing energy consump-

tion. The software model used for application development is also influenced by these

hardware changes to further optimize computing in performance and energy con-

sumption. The two major accelerator architectures currently leading the charge to

exascale computing are the Many Integrated Core Architecture (MIC) by Intel and

the General Purpose Graphics Processing Unit (GPGPU) by Nvidia.

This research will explore the Many Integrated Core platform by Intel,in par-

ticular how it can be used to possibly increase performance and power efficiency. The

Intel MIC architecture is in essence the packaging of a large amount of cores on a chip

to form a energy efficient, highly parallel processor architecture. This architecture,

which now also features a high bandwidth on package memory and wide vector reg-

isters, achieves extremely high performance due to its high degree of parallelism and

1

ease of programming. The Intel product name for this architecture is the Xeon Phi.

There are currently two generations: the Knights Corner (first generation introduced

in 2013) and Knights Landing (second generation introduced in 2016).

Few studies over the past few years on Intel CPU cores has however shown

that the manufacturing process has lead to variation in power and temperature of

Intel chips such as Haswell and Sandybridge. These differences also manifest itself

into variation with processor frequency especially when these processors are under

turbo boost dynamic overclocking. Research looking at these observations such as

chun [12] shows how this can impact performance significantly on supercomputers

using multiple nodes of CPU’s with cores under performing compared to others. This

is due to the fact that high performance computing workloads, such as homogeneous

synchronous applications which are running on multiple cores or processors are limited

by the slowest ranks [12]. Their research has shown that per core performance can

be affected by about 18% with dynamic overclocking with Xeon processors running

jobs across multiple nodes. There has however been no research at this time focusing

on analyzing performance variations on Intel Xeon Phi cores and its effects. This

is an important research area as based on the level of variation between cores; their

may be significant performance or efficiency gains obtained by MIC architecture as

it contains upwards of 50 cores. As a result if cores are under performing there may

be performance impacts across homogeneous applications across multiple nodes.

This research will focus on analyzing the performance variations of cores using

different applications on Intel Xeon Phi KNC and KNL. Analysis of the per core vari-

ation on these chips will lead to classification of algorithmic properties that influence

performance and energy consumption on the Xeon Phi platform. This research will

also identify faster performing cores which can be utilized to improve performance

and energy consumption for particular applications.

2

The analysis of per core performance of applications on the Xeon Phi platform

for different applications will also provide more information on how these applica-

tions work on a per core level. This body of research utilizes different benchmark

applications either with large amounts of memory accesses (memory bound) and/or

significant computations, i.e. high degree of floating-point operations compared to

non floating-point operations. The existence of core variations due to differences in

algorithmic features of these applications can be very useful to developers. If results

show that particular types of applications lead to more or less core variation which

impacts on performance, developers may decide to use a different architecture which

may have improve application performance and energy consumption due to consistent

core performance.

In analyzing application to architecture mapping for these cores, the intent

is to have a finer granularity of results on a hardware and algorithm level. This

is needed as If we only utilize elements showing whether or not a memory bound

or compute bound application match well to the cores, this may lead to inconclusive

application analysis. In analyzing the mapping of application to per core performance

it should also be noted that the performance of one core will not necessarily indicate

how an application will perform when all cores are being utilized. There are other

architectural elements and system features that may also influence this collective

performance.

The contributions made by this research are:

1. Prove that core variation with respect to performance exist in Intel Xeon Phi

KNC and KNL

2. Identification of application characteristics that influence core variation perfor-

mance in Intel Xeon Phi KNC and KNL

3

3. Identification of application characteristics that can be utilize to save energy on

Intel Xeon Phi KNC

4

Chapter 2

Related Work

2.1 Core Variation

There are a few research studies in the current literature that analyze the vari-

ability of cores within processors. These papers are mostly focused on Intel multicore

processors and their turbo-boost features as this is were the phenomena was widely

discovered. The most comprehensive investigation is done in the paper by Acun, et

al. [12]. Here the authors ran compute intensive kernels on four supercomputers:

Edison [3], Cab [2], Stampede [8] and Blue Waters[1] to observe variation among pro-

cessors with applications Naive-DGEMM, MKL-DGEMM, LEANMD, JACOBI2D.

The results show that with turbo boost enabled, core performance varied up to 16%

on the Edison cluster. The lowest core variation performance was on the Blue Water

Cluster, which uses AMD chips. These authors also propose a dynamic load balancing

solution that achieved performance improvement of up to 16% with each individual

core operating on approximately the same frequency in a multi-node execution.

Rountree, et. al from Lawrence Livermore National Laboratory also reports

a variation among processor cores with a power bound in an experiment with Sandy

5

Bridge processors [20]. His experiment showed that with different power caps on the

processors there is a performance degradation as the power level decreases. Acun,

et al. [11] investigates the correlation between using turbo boost and these power

differences. They also analyze possible impacts of core temperature on the behavior of

turbo boost. Results show how the frequency of a processor is affected by temperature

and the resulting impacts on multi-node applications. From a design perspective the

authors Hebert et. al [17] shows that the design process of processors using frequency

island and globally clocked techniques leads to variability. The results show how

the tolerance used in the design of processors using these techniques impact on core

performance. The authors also showed the impact of larger and smaller core design

on performance variability within processors. .

2.2 Xeon Phi

The previously mentioned research papers focus on Intel Xeon processors with

Sandy Bridge, Ivy Bridge and Haswell architectures. Most of the research involving

the Xeon Phi focuses on energy and performance utilizing all cores with different

thread configurations [23]. Research has also been conducted in analyzing perfor-

mance trade offs for this architecture with different types of applications in single

[16] and multi-node instances [22]. Currently, there is ongoing research with the new

Knights Landing architecture that has similar focus to that done for KNC and aims

to differentiate how the new hardware architecture features changes performance.

There has been less research however in relation to the performance and power

consumption per core of these Intel MIC chips. This is due to lack of studies of per

core variation as they are believed to be equally manufactured and hence, even if

there were differences it would have minimal impact on the performance. The Xeon

6

phi hardware also has no reliable method of obtaining per core power or temperature

data for a reliable power study.

At the time of writing, no published study existed in the literature on core

performance variation of Xeon Phi Knights Corner or Knights Landing. The majority

of published literture on the Xeon phi is based on performance modelling of all cores

with a few articles on modelling energy on the Xeon phis [18]. Other research focuses

on analyzing how applications perform with and without being optimization for Xeon

Phis using parallel programming paradigms such as OpenMP and MPI. A study by

Schmidl et al.[23] highlights the discrepancy between the theoretical memory band-

width of the Xeon Phi (352 GB/s) and that the measured in performance testing

with micro-benchmarks(150GB/s). Another performance paper [25] shows how opti-

mization’s for the Parsec micro-benchmarks improves performance over Sandy Bridge

Xeon chips on the effects of the VPU and pipeline stages of the KNC. These works

provided great insights into the architecture of the Xeon Phi and the possible causes

of performance variations.

The Knights Landing Xeon Phis were released last year in fall 2016 and as a

result a limited amount of work has been published analyzing the performance of this

platform. Research papers thus far are focused on the new elements added to the

KNL (compared to the KNC) and not necessarily on the per core performance. These

research provides valuable information regarding execution of diiferent applications

and how the new hardware additions will possibly impact on application performance.

The authors in [19] have detailed how the new memory architecture helps increase

memory bandwidth and reduce latency.The authors also provide insights for taking

advantage of the new memory architecture, with a sample case study using the Black-

Scholes benchmark. In [21], Rucci et al. analyze the optimization of the Smith

Waterman bio-informatics algorithm on the KNL architecture and the performance

7

effects with different thread configurations and memory bandwidth. This Information

lead to choosing the cluster and memory mode used for the KNL architecture in this

research.

A comprehensive energy performance studied by the authors in [24] also pro-

vided vital information relating to the KNL architecture. The research conducted by

these authors involved the optimization of a modelling system for nested air quality.

The optimized model implemented on the KNL architecture showed improvements

of 26% reduction in energy compared to an Intel Xeon e5-2697v4 processors. Their

results also showed a total efficiency (performance + energy improvements) of 47%

over the previously mentioned processors. This body of work was instrumental in

understanding application performance and energy performance of the KNL archi-

tecture compared to KNC, and how optimization’s of KNL applications influence

performance over KNC Xeon phi.

2.3 Summary

This chapter details the research studies in the area of core variation and

performance studies on Xeon phi KNC and KNL. In the area of core variation there

has only been a few research studies but they show insightful discoveries on Intel

processors. This research will be the first to explore this phenomena of core variation

on Xeon Phi KNC and KNL. This research will also be the first utilizing the Rodinia

benchmark to explore this phenomena. The results of the application performance on

both these architectures, will then be used to perform an application to architecture

analysis for performance and power consumption on the Xeon Phis. This methodology

of doing a performance based study utilizing per core characteristics will be a first in

this area of computer engineering.

8

Chapter 3

Intel Xeon Phi Platform

In this chapter we introduce the super computing cluster Stampede and the two

architectures hardware features used in this research: Knights Corner and Knights

Landing. We talk about the hardware features and their effects and how the two

architectures are different. The different types of usage modes are also explained for

the architectures and attention is drawn to the mode(s) used in this research.

3.1 Stampede

The Stampede Cluster is located at the Texas Advanced Computing Center

and is ranked 17th in the top 500 supercomputing list with a total of 462,462 cores

and peak teraflops of 8520.10 as of Spring 2017. The Stampede Cluster can be viewed

as having two different hardware clusters: the original Sandy Bridge cluster and the

Stampede KNL cluster. The system uses slurm to schedule jobs on the cluster and

uses the Lustre shared file system across all nodes with three files systems: Home,

Work and Scratch.

The Sandy Bridge Cluster contains 6400 Sandy Bridge nodes with either one

9

Table 3.1: Stampede Hardware Configuration for Sandy Bridge Cluster [8]
Component Technology
Sockets per Node/Cores per Socket
Coprocessors/Cores

2/8 Xeon E5-2680 2.7GHz (turbo, 3.5)
1/61 Xeon Phi SE10P 1.1GHz

Motherboard Dell C8220, Intel PQI, C610 Chipset
Memory Per Host
Memory per Coprocessor

32GB 8x4G 4 channels DDR3-1600MHz
8GB GDDR5

Interconnect Processor-Processor
Processor-Coprocessor

QPI 8.0 GT/s
PCI-e

PCI Express Processor
PCI Express Coprocessor

x40 lanes, Gen 3
x16 lanes, Gen 2 (extended)

250GB Disk 7.5K RPM SATA

or two Xeon Phi KNC processors connected to each node. The Sandy Bridge nodes

contains two Xeon E5-2680. This Sandy bridge Xeon has a clock frequency of 2.7GHz,

turbo boosted up to 3.5 GHz with 8 cores. The Xeon Phi devices are the first

generation SE10P model. There are memory capacity configurations on the nodes

but our experiments were done with the 8GB GDDR5 KNC memory configuration.

The network configuration used in this section of the cluster is the Mellanox FDR

infiniband with fat-tree topology. An overview of the cluster is provided in Table 3.1.

The KNL Stampede Cluster is constructed differently since the KNL proces-

sors are not traditional coprocessor cards like the first generation KNC; the KNL

processors can form stand-alone nodes. There are a total of 508 nodes with each

node being a self hosted KNL card with 68 cores, 4 threads per core. Each node runs

Centos 7 and consists of 96GB of DDR4 Random Access memory, and 16GB high

bandwidth Multi Channel Dynamic Random Access Memory. The network config-

uration used on this part of the cluster is the Omni-Path network fat tree topology

with 100GB/sec. An overview of the cluster is provided in Table 3.2.

10

Table 3.2: Stampede Hardware Configuration for KNL Cluster[8]
Component Technology
Sockets per Node/Cores per Socket 1/68 Intel Xeon Phi 7250 KNL 1.4GHz

Memory Per Host
96GB channels DDR4-1600MHz
16GB MCDRAM

InterconnectProcessor-processor 100Gbsec Omnipath
112GB Disk SSD

3.2 Xeon Phi Knights Corner (KNC)

The Intel xeon Phi KNC coprocessor contains 61 scalar unit processor cores.

Each core can execute 2 instructions per cycle and contains a L1 cache and D cache.

The L2 cache is located on the core ring interface, with each core having two connec-

tions with the core ring interface. The core ring interconnect is a high performance

bidrectional bus. An overview of the architecture is shown in Figure 3.1. The Xeon

Phi has data and instruction L1 caches of 8-way set associative 32KB with a cache

line size of 64 byte. The L2 cache is also 8-way associative with each core contributing

512KB to the L2 cache for a total of 31MB. The cache latency for L1 is approximately

3 cycles and 14-15 cycles for the L2 cache. There is also a TLB for L1 Data and a L2

TLB that behaves like a second level TLB.

Instructions can be pipelined at a throughput rate of one vector instruction per

cycle. The Xeon Phi core is able to fetch and decode instructions from four hardware

threads, with each instruction set able to utilize a dedicated 512-bit wide vector

floating-point unit (VPU). The VPU is able to perform 16 single-precision floating-

point, 16 32-bit integer operations or 8 double precision-floating-point operations per

cycle. The vector register file contains 32 512-bit wide registers per thread context

with the ability to hold 16 singles or 8 doubles[10].

The cores are able to execute 2 instructions per cycle because it has a 2-wide

processor with an operation executing on the U-pipe and another on the V-pipe. The

11

Figure 3.1: Xeon Phi KNC Architecture Overview [4]

vector unit is able to communicate with the core and executes allocated instructions

on the U or V pipe. The multi-threaded nature of the cores with 4 each, reduces

the effect of vector pipeline latency and memory access latency through concurrent

execution of up to 4 threads per process. The Xeon phi has 8 memory controllers

supporting up to 16 GDDR5 channels, which facilitates a transfer speed of 5.5 GT/s

and a theoretical aggregated bandwidth of 352 GB/s.

There are three ways to execute applications on KNC: Native, Heterogeneous

Offload and Cilk Offload. The main models used in high performance computing

due to ease of use is the Native and Heterogeneous Offload model. Native Execution

allows your application to run entirely on the Xeon Phi coprocessor and is the easiest

and most used mode as it only requires programmers to add a compilation flag of

-mmic and requires very little to no code changes from the original implementation

in MPI or OpenMP. Applications parallelized in MPI and OpenMP paradigms will

achieve good performance benefits if there are few serial segments, small number of

I/O operations and low memory utilization. The application used in this research are

compiled an executed in this mode.

12

In the Heterogeneous Offload model, the main processor connected to the

KNC executes the application and the programmer designates parts of the code to

be offloaded and executed on the KNC. This mode is most representative of the

heterogeneous computing model in high- performance computing. Portions of the

application that are embarrassingly parallel are identified for execution on the KNC

using pragmas and compiler directives. More changes are needed to get applications

operating in this mode. Applications with few instances of embarrassingly parallel

regions will spend significant time transferring data back and forth between the main

processor and KNC coprocessor, which may negatively impact performance times.

The native execution model is selected for our experiments in this research to focus

on the full performance of cores with no additional external factors that may add

variations to the results.

3.3 Xeon Phi Knights Landing (KNL)

The Intel Xeon Phi KNL processor contains 72 Silvermount-based cores run-

ning at 1.3 - 1.4 GHz connected in an out-of-order configuration. 36 compute tiles

are connected in a 2d mesh with each tile composing 2 cores as can be seen in Figure

3.2 with each tile configuration shown in Figure 3.3. The core is based on the Intel

Atom Silvermount micro architecture core with each containing two AVX-512 vector

processing units and 4 SMT threads. The core is able to execute up to six operations

per cycle. The cores also support all legacy x86 instructions making it backward

compatible with previous Intel processor targeted binaries. Figure 3.4 shows the bi-

naries supported from the Sandy Bridge, Haswell and KNL instruction set. The cores

are divided into five units: the front-end unit (FEU), the allocation unit, the integer

execution unit (IEU), the memory execution unit (MEU), and the VPU.

13

Figure 3.2: Xeon Phi KNL Mesh Architecture Overview [9]

Figure 3.3: Xeon Phi KNL Tile Configuration[9]

14

Figure 3.4: Xeon Phi KNL Instruction Set Support[9]

15

Multiple core architecture improvements have been implemented to improve

performance over the KNC generation. The core now supports out of order execution

with increased buffer support that helps with instruction level parallelism. Each core

has 2-wide decode/rename/retire stage, 72 entry ROB and rename buffers, 6-wide

execution and 72 in-flight core out of order buffers. There are two main versions of

the KNL processors: PCIe-card based and Self Boot Socket with the latter eliminating

the bottleneck that occurs with use of a PCIe connection to a host/support processor.

The interconnect of the KNL is a 2D cache coherent mesh architecture con-

necting I/O controllers, memory controllers, and other elements. It uses the MESIF

(modified, exclusive, shared, invalid, forward) cache coherent protocol. It consiss of

a 16GB high-speed stacked memory accessible by high speed memory controllers, as

well as a maximum capacity of 384GB of 2,400 MHz DDR4. The Xeon Phi has a data

and instruction L1 cache of 32KB and cache line size of 64 bytes similar to the Xeon

Phi KNC first generation. It now also contains L1/L2 prefetchers and fast unaligned,

cache-line split support for fast gather/scatter operations.

3.3.1 Memory Modes

The new generation Xeon Phi also contains three different memory modes:

Cache, Flat and Hybrid mode as shown in Figure 3.5, which are determined at boot

time. The KNL now contains a multi-channel dynamic random access memory (MC-

DRAM), which is a form of on-package memory and is a high-bandwidth memory on

the CPU chip next to the cores. This type of memory is capable of performing 5 times

as fast as traditional DRAM memory with theoretical bandwidth up to 400+ GB/s,

resulting in improve performance for applications that are limited by memory band-

width. Applications such as vector dot-product and matrix vector multiplications

16

Figure 3.5: Xeon Phi KNL Memory Modes

with low arithmetic density will experience better performance with MCDRAM.

The maximum amount of MCDRAM per KNL chips is 16GB and it can be

used in three different modes. The MCDRAM can be used as addressable memory

in flat mod, where the MCDRAM is viewed as another portion of DRAM but may

may require modifications to the application code for maximum performance. From

a system perspective, the MCDRAM is allocated as another NUMA (Non uniform

memory access) node without cores.

MCDRAM can also be used in cache mode where it is allocated as system

cache. When the KNL is configured in this mode, the MCDRAM is a last level

cache in between the L2 and the DDR4 memory. No work is required on part of the

programmer as the operating system allocates the MCDRAM as cache. This mode

may however lead to an increased latency due to cache misses in both L1, L2 and

MCDRAM. When a miss occurs in the MCDRAM this leads to increased latency in

retrieving data from the DRAM.

There is also a hybrid mode in which the MCDRAM is used as both addressable

DRAM and cache and will gain benefits of each scenario. This mode will not be

explored in this research as the Stampede Cluster used in this research does not

support this mode.

17

3.3.2 KNL Cluster Modes

The KNL cluster has several modes that enable cache coherency. Coherence on

the KNL tile architecture requires both tile-to-tile and tile-to-memory communication

with cores that manage and utilize the data. There are three modes on the KNL

cluster:

• All-to-all - This mode is the easiest and most flexible mode but does have higher

latencies compared to other modes because the processor does not attempt to

optimize coherency-related communication paths.

• Quadrant (hemisphere) - In this mode communication is localized by grouping

tiles into four logical quadrants. It then requires each quadrant to perform local

memory management for addresses on the MCDRAM and DDR. As a result the

average number of hops for tile-to-memory request is reduced compared to that

for all-to-all.

• Sub-NUMA 4 - This mode divides the chip into four NUMA nodes like a four

socket processor to optimize coherency-related on chip communication. To get

performance benefits from this mode it requires manual memory management

and more programming effort compared to the other modes.

3.4 Summary

This chapter presents an in depth look at the Stampede cluster which contains

the KNC and KNL accelerators used in this research. The different architectural com-

ponents across the two generations are discussed and components that may influence

application behaviors presented. Both architectures can be utilized in a variety of

18

ways in running applications on different clusters. The framework work of the Intel

MIC framework is the foundation of these two architectures but the hardware com-

ponents and the utilization of the different modes make the two Xeon Phis are vastly

different. This chapter also discusses the modes of both generations of Xeon Phis

that will be used in this performance study and mentions the reason these modes are

chosen.

19

Chapter 4

OpenMP Benchmark Applications

In this chapter the programming API OpenMP, which is used in this research,

is introduced along with the various applications used for core performance analysis.

The application characteristics are discussed and the configuration of inputs used for

each application analysis is presented.

4.1 OpenMP

OpenMP (Open Multi Processing) implements different compiler directives

and libraries that enables C, C++ and FORTRAN code to exploit/implement paral-

lelization on CPU’s via shared memory multiprocessing. Parallelization is focused on

sequential loops by specifying pragmas around these instructions. The execution of

these codes will continue sequentially until it reaches the pragma directives; where it

will initialize parallelism execution and when finished, it will continue with sequential

execution. The OpenMP methodology allows for straighforward parallelism of code

with minimal restructuring.

The overall implementation of parallelism in OpenMP is based on the multi-

20

threading model, whereby a master thread forks other threads called slave threads

and the system assigns different tasks to them for execution. This model is especially

suitable for this investigation since it allows the Xeon Phi cores to be targeted in-

dividually and enables the best possible performance for these algorithms with their

parallel implementation. In this research, seven OpenMP applications from the Ro-

dinia Benchmark were used in addition to a sparse matrix multiplication application.

4.2 Rodinia

The Rodinia benchmark was developed/organized by the university of Virginia

to create a diverse collection of applications/benchmark for supercomputing acceler-

ators [15]. The suite includes implementations in OpenMP, CUDA and OpenCL

parallel programming paradigms. This research utilizes the OpenMP implementa-

tion of the following applications: Needleman-Wunsch, Breadth-First Search, Speckle

Reducing Anisotropic Diffusion (SRAD), Streamcluster, Particle Filter, LavaMD, and

Myocyte. The benchmark version used was 2.2 and the application’s OpenMP ver-

sions were optimized for multicore CPU processors. No additional optimizations were

done to the benchmark codes other than compiler optimizations used to enable them

to work on the KNC and KNL Xeon Phis. Table 4.1 lists the Rodinia applications

and their respective domains.

4.2.1 Breadth-First Search (BFS)

Breadth-First Search is an algorithm for searching or traversing a tree or graph

data structure. The data is stored in an adjacent matrix that is represented by a 2-

dimensional array in the Rodinia BFS implementation. The algorithm works by first

searching neighbouring nodes on each level, and then moving on to the next lower level

21

Table 4.1: Rodnia Applications Analyzed and Their Domains
Applications Dwarves Domains
Needleman-Wunsch Dynamic Programming Bioinformatics
Breadth-First Search1 Graph Traversal Graph Algorithms
SRAD Structured Grid Image Processing
Streamcluster1 Dense Linear Algebra Data Mining
Particle Filter Structured Grid Medical Imaging
LavaMD2 N-Body Molecular Dynamics
Myocyte Structured Grid Biological Simulation

and repeating this procedure. Each level of neighbouring nodes that is discovered is

added to a queue at each level. The Rodinia implementation reads in a file with the

data to be traversed and implements the BFS algorithm by parallelizing the for-loop

using the OpenMP pragma. Analysis in this research uses four threads and an input

file with eight million data points.

4.2.2 Needleman-Wunsch (NW)

Needleman-Wunsch is a dynamic programming algorithm used in the domain

of DNA sequencing. It is a nonlinear global optimization method with potential pairs

of sequences organized in a 2D matrix. It is one of the first applications of dynamic

programming to compare biological sequences. The algorithm works by first filling

the matrix from top left to bottom right, step by step. A score is assigned based

on the value of the maximum weighted path ending at that particular cell. The

optimum alignment is then found to be the pathway through the matrix array with

the maximum score. Hence the value of each data element depends on values of

its northwest-, north- and west-adjacent elements [14]. The maximum path is then

traced backward to deduce the optimal alignment. The OpenMP implementation in

this research uses OpenMP pragmas to parallelize the for-loops used to compute the

alignment of the top left and bottom right matrix. The application requires three

22

inputs: the x- and y-dimensions which was set to 16384, a penalty value that was

set to 10 and the number of threads which was set to 4 for the experiments in this

research.

4.2.3 Streamcluster

Streamcluster is a dense linear algebra algorithm that takes a stream of input

points, and finds a predetermined number of medians so that each point is assigned

to its nearest center. The quality of the clustering is measured by the sum of the

squared distance (SSQ) metric [13]. This algorithm is used in the field of data min-

ing. Because the algorithm is based on the stream benchmark which is used to test

memory bandwidth, it serves as a good benchmark in the performance analysis. This

application requires 8 inputs: Minimum number of centers allowed (set to 10), Max-

imum number of centers allowed (set to 15), Dimension of each data point (set to

256), Number of data points (set to 65536), Number of data points to handle per step

(set to 65536), Maximum number of intermediate centers (set to 1000), Input file =

none, Output file, and Number of threads (set to 4).

4.2.4 Particle Filter

The Particle Filter is a structured grid type application used to track objects

in noisy environments with a statistical estimator. The Particle Filter works by mak-

ing a series of guesses or estimates on the current position based on data from the

previous position. The model then determines the confidence of each estimation us-

ing a likelihood model. Estimates are then normalized and accumulated to estimate

the position. The Particle Filter is used for numerous tracking solutions from object

detection in vehicle tracking to tracking blood cells in the body. The Particle Filter

23

implemented from the Rodinia benchmark takes in a video of a moving object that

is circular in shape with known background and foreground intensity. This image is

corrupted with a zero mean Gaussian noise implemented in the application. The im-

plementation in Rodinia uses an optimized OpenMP of the particle filter to estimate

the location of the objects compared to the center. OpenMP pragmas are defined

to parallelize the for-loops for weight initialization, weight sharing, model motion,

likelihood computation for the particle filter, weight update and normalization, and

location estimation of calculated values. This application requires 8 inputs which are

configured as follows in this research analysis: x-dimension = 256, y-dimension =

256, number of frames = 100, and number of particles = 20000.

4.2.5 Speckle Reducing Anisotropic Diffusion

Speckle Reducing Anisotropic Diffusion (SRAD) is a structured grid algorithm

used to remove locally correlated noise in images without affecting the image features.

This application performs image extraction, continuous iterations over the image

(preparation, reduction, statistics, and computations) and image compression. The

stages must be performed sequentially and hence requires synchronization between

each stage. The image used in the Rodinia OpenMP suite is generated by expanding

the original image called image.pgm. This application uses OpenMP pragmas for all

of the for-loops that handle image manipulations and calculations such as directional

derivatives, instantaneous coefficient of variation (ICOV), diffusion coefficient, diver-

gence and updating image. This application requires 5 inputs which are configured

as follows: number of iterations = 1000, saturation of coefficient = 0.5, number of

rows = 2048, number of columns = 2048, and number of threads = 4.

24

4.2.6 LavaMD

LavaMD is a N-body algorithm that calculates particle potential and reloca-

tion due to mutual forces between particles within a large 3D space. The space is

divided into cubes which are further subdivided into cubes. In each box there are

particles that interact with each other in the inner box and then other particles in the

outer box. The calculations on these particles is a single stage calculation in a loop

and these were parallelized to enable calculation with adjacent memory locations.

LavaMD is a memory bound application and comparison of the single core CPU ver-

sus GPU implementaiton shows that the GPU had a speed up that saturates at 16x.

The calculation for estimating the neighbouring distance, charge and force between

particles, was optimized in parallel using OpenMP pragmas on the for-loops. This

application requires 2 inputs configured as follows: cores = 1, boxes1d = 15.

4.2.7 Myocyte

The Myocyte application simulates cardiac myocyte (heart muscle cell) by

modeling 91 ordinary differential equations. These equations are related to biochemi-

cal reactions, ion transport and electrical activity, determined by more than 200 exper-

imentally validated parameters. The solution of these ordinary differential equations

is mostly a sequential staged solution. At each time step the result is checked with a

particular tolerance and if it is not met, another calculation is done. The original ap-

plication code was implemented in MATLAB ode45 but that implementation did not

leave enough room for parallel optimizations so a simpler math solver was used from

mathematics source library. There was still not massive gains with this however as

parallelism for the application is on a fined-grained level and thread creation/launches

incur significant overhead compared to the achievable performance. To get the most

25

performance utilizing OpenMP, the algorithm was implemented with concurrent sim-

ulations turning it into an embarrassingly parallel algorithm. Within each simulation

the ordinary differential equations solution was calculated with OpenMP pragmas

parallelizing the for-loops. The application requires 4 inputs configured as follows for

this research:Simulation Time interval = 0, Number of Instances = 30000, Method of

Parallelization = 1, Number of threads = 4.

4.2.8 Matrix Multiplication

The Matrix Multiplication algorithm is a standard sparse implementation that

multiplies two square matrices. OpenMP pragmas are used to parallelize the for-loops

in the implementation. This application only requires one input which represents the

size of the matrices to be multiplied. The application also implements a function

to ensure that the output is correct and does not produced undefined outputs. The

analysis configuration used in this research was a matrix size of 3300.

4.3 Summary

This chapter explores the Programming API OpenMP and applications used

in deriving the core variation of the different architectures. A high level description of

the applications and their algorithmic properties are explained in this chapter. The

different configurations used in executing these applications are also mentioned in

this chapter.

26

Chapter 5

Experimental Setup And

Analytical Tools

In this chapter we first highlight how each application is configured for the

Xeon Phi platform on the Stampede Cluster. Next, the application parameters are

discussed along with details regarding results collection and analysis including the

tools used.

5.1 Initial Core Variation Study on Xeon Phi Plat-

forms

The first steps in this research were conducted at the Lawrence Livermore

National Laboratory (LLNL) on 2 KNC Xeon Phi processors set up in two different

server-based clusters. Initial experiments that inspired this research were conducted

on Xeon e5 at this laboratory where core variations were observed in these Intel

devices with OpenMP.

To see if this variation was also evident in the Xeon Phi processor family (KNC

27

generation), a matrix multiplication OpenMP application was written and executed

12 times on each individual core with 4 threads and a constant input size. The

resulting execution times were then plotted on a graph of core versus time, which

revealed that cores in the ”middle” of the ring performed faster than cores at the

end.

To further verify these results, the Streamcluster OpenMP program was exe-

cuted on Xeon Phi KNC processors at the TACC Stampede cluster to obtain a larger

sample size and confirm these results. The KNC processors at TACC verified the

previous findings and lead to a full investigation into the core performance variability

in the Xeon Phi family of coprocessors.

5.2 OpenMP Configuration

In researching the core variability we chose to use the OpenMP programming

model based on its ability to specifically target cores and maximise/utilize all of the

core threads in parallel execution. A collection of benchmarks were investigated to

determine which set provided the best domain coverage and variability to test the

core performance across application characteristics and functionality. The Rodinia

benchmark suite was selected as it incorporated a multitude of real-world application

implementations with varying characteristics.

In configuring the thread and core configuration for KNC and KNL pro-

cessors, there were slight differences in environment commands. The export com-

mand was first used to explicitly show that the KNC processor would be active

and not the Sandy Bridge CPUs on Stampede. This command was followed by

export MIC KMP AFFINITY=compact and export OMP NUM THREADS=4 to

configure the KNC Xeon Phi for compact thread placement of 4 threads. The com-

28

mand export MIC KMP PLACE THREADS was then used to specify the core where

the application will execute. For the KNL Xeon Phi processors, only the export

OMP NUM THREADS=4 and the export OMP PLACES = core number are needed

to select and run the application on the desired core. It should be noted that the

number placed in OMP PLACES is based on the virtual core which is then mapped

to the physical core.

5.3 Application Benchmark Configuration

The Rodinia benchmark was installed on the Stampede Cluster and executed

on both the Xeon Phi KNC and KNL platforms to determine the best suited appli-

cations from the benchmark suite for this research. ”Best suited” means applications

whose execution time are long enough so as to represent the majority execution time

and not noise such as start up time, or executing faster than the sensitivity of our

timing program. In choosing these applications, multiple input sizes were used for

multiple runs for the applications on both the KNC and KNL platforms. After these

tests, the applications Myocyte, Breadth-First Search, Particle Filter, Streamcluster,

SRAD, Needleman-Wunsch, LavaMD, and Matrix Multiplication were identified.

A variety of trials were conducted to ensure accurate values and determine

the appropriate input sizes for each application. During the initial runs, constant

execution times were observed in interactive mode with the job script. However,

when multiple jobs each selecting a full node were submitted, it was noticed that

after a job was finished executing, another job may be scheduled on the same core.

This behavior affected the initial core’s performance of the next job, which may be due

to forced full utilization of the Xeon Phi core. Further, when the job completes and

the next application is immediately scheduled, the heat resulting from the previous

29

job may lead to suboptimal performance. Hence jobs are submitted with 5 trials per

core for all cores and after that job is finished the next job is inserted into the queue.

After collecting these initial results, the input size is varied incrementally for

each application on the different architectures to see how input size affects perfor-

mance and how performance variations between cores scale. These experiments were

scheduled such that jobs were inserted in the queue after the previous one had finished.

Results for the KNL platform was gathered from the normal, flat all-to-all, and quad-

rant all-to-all as observations confirmed that these queue configurations performed

relatively the same.

5.4 Configuration of Intel Vtune Profiler

Hardware-level details was collected using the Intel VTune compiler, while the

applications were executed on the KNC and KNL processors. VTune Version 14.1

was installed on the Sandy Bridge KNC cluster and 17.0 on the KNL cluster. VTune

is a application profiler developed by Intel for their CPU products. It is able to

give you information on a variety of parameters based on how your code performs

on the specific hardware with extremely low overhead so as not to interfere with the

overall performance. To collect information, the user specifies the type of collection

needed and then uses the report function to view the collected data. The Stampede

implementation of VTune allows the collection of bandwidth, general-exploration,

and data hotspots. For the KNL VTune tool we are able to use advanced hotspots,

general exploration and hotspots, however with certain data sizes the information bus

could not accurately collect information. So after doing a multitude of testing with

both Xeon Phis and the VTune software, the best option to obtain information on

performance was general explorations and KNC-bandwidth on the KNC architecture.

30

Table 5.1: Hardware Components measured on Xeon Phis Using Vtune
Xeon Phi Version Hardware Component Measured
KNL Instructions Retired

Frequency Ratio
CPI

KNC Instructions Retired
L1 hit ratio
Clockticks
CPI Rate
Estimated latency Impact
Bandwidth

The metrics collected are shown in Table 5.1, with a summary of the data collected

after the table.

• Frequency - Shows the frequency at which the core is operating during the

execution of the application [5].

• Estimated Latency Impact - Represents the amount of clock cycles that are

used for a L1 cache miss; a representation and an indication of L2 performance.

The threshold for this value is 145 and any value above this means that the

application is performing badly in relation to L2 memory misses [5].

• L1 Hit Ratio - Represents the percentage of memory accesses satisfied by the

L1 cache [5].

• CPU Frequency Ratio - The ratio between actual and the nominal CPU fre-

quencies. Values above 1 indicate that the CPU is operating in turbo boost

mode [5].

• Instructions Retired - When an application is being executed, the CPU executes

more instructions than what is in the flow of the program. The instructions

31

retired variable only counts the instructions that are used by the program and

not the other unneeded or unexecuted instructions [5].

• Bandwidth - Represents the bandwidth for the memory writes and reads for

the application. It can reach a maximum bandwidth of around 140 GB/sec and

memory usage should be investigated if its below 80 GB/s. It should however

be noted that for the VTune software, when streaming stores are being used,

the bandwidth will be underestimated [5].

• Clockticks - There are moments when the CPU is active and when the CPU

is asleep, but the CPU will have a time measurement for both of these events.

The clockticks indicator collected by the VTune profiler will only measure the

unhalted thread events of the CPU clock, which gives a more accurate measure-

ment of how the application is performing on the hardware and not actions of

the system events [5].

• CPI - Clockticks per Instructions Retired (CPI) event ratio, also known as

Cycles per Instructions, is one of the basic performance metrics for the hardware

event-based sampling collection. This ratio is calculated by dividing the number

of unhalted processor cycles (Clockticks) by the number of instructions retired.

If The CPI is a high number, it indicates that this code section is taking a high

number of processor clock times to execute. A high value for this ratio is 5 and

a low value is 1 [5].

An interactive node was used to analyze the applications on KNC with the gen-

eral exploration option. For the KNL platform, the option with the most promising

results was the advanced hotspot selection. The other options produced several errors

in compiling the final metrics. As a result, parameters were collected for Instructions

32

Retired, CPI Rate, Frequency Ratio, and Frequency. KNL results were collected for

only two applications as the VTune software running on Stampede began to experi-

ence some errors and results could not be validated. As a result, the KNL analysis will

be solely based on application performance characteristics, complete VTune analysis

will be left for future work.

5.5 System Management and Configuration Util-

ity (MICSMC)

The System Management and Configuration (SMC) Utility MICSMC is a util-

ity provided by Intel that is able to monitor characteristics of the KNC such as tem-

perature, core utilization, memory usage, power consumption, etc [7]. It can used

graphically or from the command line. This research utilizes it in a command line

script that collects the power consumption of the core every second when the appli-

cation is being executed. The core utilization information provided by the MICSMC

was also vital in analyzing the application performance, as this factor impacts how a

particular type of application performance varies between cores.

5.6 Summary

This chapter details the application, programming paradigm (OpenMP) and

hardware analysis configuration used in obtaining the data collected for this research.

The reasons for the different configurations are discussed as well as problems faced

while collecting the data on the different platforms. The following chapter will present

the results of all these experiments and different reason for these findings.

33

Chapter 6

Results

In this Chapter we will analyze how applications perform per core on the Xeon

Phi KNC and KNL platforms. We also present hardware information to denote the

possible trends that correlates the application performance on the KNC architecture

with the per core performance and how both are influenced as input sizes are scaled.

6.1 Streamcluster

6.1.1 Streamcluster Performance On KNC and KNL

Figure 6.1 shows the execution time performance of the Streamcluster appli-

cation with the analysis configuration mentioned in chapter 4. The average execution

time was found to be 55.54 seconds. We noticed execution time faster than 55.5

seconds for 44.67% of the total runs with 97% of the cores with execution time being

between cores 10 and 40. The performance of cores 0 - 9 and 41 to 60 had majority

of its execution times below 56.4% with only 5% of trials on these core having an

execution time above 56.5 seconds.The standard deviation found for 5 trials was 0.43.

The execution times for the five trials on the KNL showed an average perfor-

34

54.5

55

55.5

56

56.5

57

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.1: Streamcluster Application Performance Per Core on KNC

mance of 26.5 seconds for the streamcluster application. The standard deviation of

the trials was found to be 0.52. We however noticed that the performance on cores 17,

34 and 51 consistently performed slower compared to the other cores as can be seen in

Figure 6.2 with times of 28.21 seconds, 28.27 seconds and 28.33 seconds respectively.

6.1.2 Streamcluster Core Variation Scale

Figure 6.3 shows the results of the streamcluster application as we scale the

input sizes from a dimension of 32768 to 131072 on the KNC. The graph shows that

the execution times for cores performing in the middle is still lower as we scale the

input sizes. The Percentage difference between the fastest executing core and the

other cores increases from the middle core outward up to 4%. Figure 6.4 shows the

results of scaling input sizes to a dimension of 114688 on the KNL. Most of the cores

have a constant difference between the fastest execution time except for cores 17, 34

and 51. These cores were consistently slower with the same percentage difference.

At the highest input sizes of 114688 we however notice that the performance on the

35

54.5

55

55.5

56

56.5

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

25

25.5

26

26.5

27

27.5

28

28.5

29

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.2: Streamcluster Application Performance Per Core on KNL

cores were sporadic. This shows the the performance of this applications scales up

to a certain execution point, unlike on the KNC in which the performance scales

consistently.

6.1.3 Streamcluster KNC Hardware performance

The Streamcluster is a real world application used in the analysis of memory

performance in high performance computing. Its performance is directly influenced

by the memory bandwidth of an architecture as it streams in inputs during its exe-

cution. Figure 6.5 shows the bandwidth performance of this application and we can

notice that the cores in the middle have a higher bandwidth than those at the edge.

This gives us some insights on why this particular application performs better in the

middle compared to the cores numbered at the edge. From a hardware viewpoint,

the bandwidths gradual decrease from inner to outer cores is caused by the ring bus

interconnect in the KNC. The cache coherence is set up on the ring bus with cache

to cache transfer using Distributed Tag Directories. As a result based on what core

the data is located, the latency will increase; decreasing bandwidth.

36

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

0 10 20 30 40 50 60P
e

rc
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
 i
n

im
u

m
 E

xe
cu

ti
o

n
 T

i
m

e

Core Number

Dimension 32768 Dimensions 49152 Dimension 65536

Dimensions 81920 Dimension 98304 Dimensions 114688

Dimensions 131072

Figure 6.3: Streamcluster KNC Performance With Multiple Inputs

0.00%

20.00%

40.00%

60.00%

80.00%

0 20 40 60

P
e
rc

e
n
ta

ge
 D

if
fe

re
n
ce

 F
ro

m

M
in

im
u
m

 E
xe

cu
ti
o
n
 T

im
e

Core Number

Dimension 32768 Dimension 49152 Dimension 65536

Dimension 81920 Dimension 98304 Dimension 114688

Figure 6.4: Streamcluster KNL Performance With Multiple Inputs

37

2.9

2.92

2.94

2.96

2.98

3

3.02

0 10 20 30 40 50 60

B
a

n
d

w
id

th
 (

G
B

\s
)

Core Number

Figure 6.5: Streamcluster Application Bandwidth Per Core on KNC For a Trial

6.2 Needleman-Wunsch

6.2.1 Needleman-Wunsch Performance On KNC and KNL

Figure 6.6 shows the execution of the Needle Wunsch performance with five

trials on KNC with the main analysis configuration mentioned in chapter 4. The graph

shows a similar shape to the results of the streamcluster graph with the cores in the

middle performing faster compared the cores at the edges. The average execution

time was found to be 224.94 seconds and the standard deviation for the trials 1.61.

We have 30% of the data having execution times under 223 seconds between cores 9

- 38, and 60% of the execution times above 223 seconds of which 73% of these runs

came from cores 0 to 8 and 40 to 58.

The execution times for the five trials on the KNL showed and average perfor-

mance of 44.54 seconds. The standard deviation for the trials was found to be 0.78.

We however noticed that cores 17, 34 and 51 consistently performed slower compared

to the other cores as can be seen in Figure 6.7 with times of 45.84 seconds, 47.87

seconds and 45.83 seconds respectively (average 2.96%). However the performance

38

221

223

225

227

229

231

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.6: NW Application Performance Per Core on KNC

on Core 0 is faster compared to all the other cores with an execution time average of

42.67 seconds or 4.2% faster.

6.2.2 Needleman-Wunsch Core Variation Scale

Figure 6.8 and 6.9 shows the results of the NW application on KNC and KNL

respectively, as we scale the input sizes from a dimension of 12288 to 28672. KNC

graph shows that the execution times for cores performing in the middle is still lower

as we scale the input sizes. The peercentage difference between the fastest executing

core and the other cores increases from the middle core outward up to 5%. The

graph for KNL shows that as we scale input sizes the core variation observed with

our smaller input size also scales with cores 17, 34, 51 performing about 10% slower

than other cores on the different input sizes.

6.2.3 Needleman-Wunsch KNC Hardware performance

NW is a dynamic programming algorithm which organize values in a 2d matrix

and searches through it to find the optimal alignment. The execution time perfor-

39

42

42.5

43

43.5

44

44.5

45

45.5

46

46.5

47

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.7: NW Application Performance Per Core on KNL

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

0 10 20 30 40 50 60

P
e

rc
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

im
u

m
 E

xe
cu

ti
o

n
 T

im
e

Core Number

Dimensions 12288 Dimension 16384 Dimension 20480

Dimension 24576 Dimension 28672

Figure 6.8: NW KNC Performance With Multiple Inputs

40

0.00%

10.00%

20.00%

30.00%

0 10 20 30 40 50 60 70
P

e
rc

e
n

ta
g

e
 D

if
fe

re
n

ce
 F

ro
m

M
in

i
m

u
m

 E
xe

cu
ti

o
 n

 T
im

e
Core Number

Dimension 16384 Dimension 20480 Dimension 24576

Dimension 28672 Dimension 32768 Dimension 36864

Figure 6.9: NW KNL Performance With Multiple Inputs

mance showed that the application works better in the middle cores and not good

at the end. Figure 6.11 shows the CPI performance of the application on all cores

of the KNC on a sample trial. This is a high CPI value which shows that there is

high latency when this application is being executed. Figure 6.10 shows the mem-

ory bandwidth of the application on each core. This graph is shaped identical to

the observed performance graph for the five trials. This increased bandwidth in the

middle cores directly contribute to the performance of inner cores being better as

this dynamic programming algorithm have large recursive memory accesses. Hence

the cache coherence architecture of the KNC leads to the same effect of inner cores

performing faster, as was shown with the streamcluster application.

6.3 Myocyte

6.3.1 Myocyte Performance On KNC and KNL

Figure 6.12 shows the execution time performance of the Myocyte application

on the KNC’s. The average execution time was found to be 41.2 seconds and the

standard deviation found to be 1.54. there were no notable observations from this

41

70

0.772

0.774

0.776

0.778

0.78

0.782

0.784

0.786

0.788

0 10 20 30 40 50 60

B
a

n
d

w
id

th
 G

B
\s

Core Number

Figure 6.10: NW bandwidth Performance Per Core on a sample trial run on KNC

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

0 10 20 30 40 50 60

C
P

I
R

a
ti

o

Core Number

Figure 6.11: NW CPI Performance Per Core on KNC

42

37.6

38.6

39.6

40.6

41.6

42.6

43.6

44.6

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.12: Myocyte Application Performance Per Core on KNC

69

79

89

99

109

119

129

139

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.13: Myocyte Application Performance Per Core on KNL

Figure. Performance per trial was randomly distributed between 37 and 45 seconds.

In this particular application, the average execution times for KNL was 50%

slower at 82.79 seconds than the execution time on KNC. The standard deviation

was found to be 16.49. Figure 6.13 represents the execution time performance of the

application which shows cores 0, 17, 34, 51 performing slower compared to the others

with an average performance difference of 5%. A constant performance outlier with

an average execution time of 126 seconds can also be seen for 8% of our total results.

43

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

0 10 20 30 40 50 60 70P
e

rc
 e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

i
m

u
m

 E
xe

cu
ti

o
n

 T
im

e

Core Number

25000 Instances 30000 Instances 35000 Instances

40000 Instances 45000 Instances

Figure 6.14: Percentage Execution time Difference From Minimum Execution Time
for Myocyte on KNL

6.3.2 Myocyte Core Variation Scale

Figure 6.14 shows how scaling the input sizes on KNL affect the variation

between the cores. We scale the input sizes from 25000 to 45000 instances and the

variation was constant over all the sizes. We noticed cores 0, 17, 34 and 51 performed

around 20% slower than the minimum execution time. We also noticed the same

random occurrence of cores performing drastically slower than average execution time;

which we saw to be around 40% slower than the fastest execution time.

6.3.3 Myocyte KNC Hardware performance

This application is used to model numerous differential equations in a sequen-

tial staged solution. Most of the execution of this program is spent in reading in

inputs and the bandwidth observe was fairly constant around 0.3 GB/s. Other hard-

ware factors such as number of instructions and clockticks taken to execute these

instructions were directly proportional. Figure 6.15 shows a sample trial execution

with Figure 6.16 showing its CPI for each core. This shows that ratio of instructions

being retired and amount of clockticks is performing fairly constant. As a result of

44

37

37.5

38

38.5

39

39.5

40

40.5

41

41.5

42

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.15: Myocyte Execution Performance Per Core on KNC

9E+10

9.5E+10

1E+11

1.05E+11

1.1E+11

1.15E+11

0 10 20 30 40 50 60

C
lo

ck
ti

ck
s

(s
)

Core Number

Figure 6.16: Myocyte Clocktick Performance Per Core on KNC

no other hardware factors having a substantial variation; this leads to a somewhat

consistent performance.

6.4 Matrix Multiplication

6.4.1 Matrix Multiplication Performance On KNC and KNL

Figure 6.17 shows the performance of Matrix multiplication on KNC. We can

see a constant threshold of performance for the cores between 50 and 63 seconds.

45

49

51

53

55

57

59

61

63

0 10 20 30 40 50 60

E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.17: Matrix Multiplication Application Performance Per Core on KNC

34

35

36

37

38

39

40

41

42

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.18: Matrix Multiplication KNL Application Performance Per Core on KNL

The average execution time was found to be 56.9 seconds with standard deviation of

2.276.

Figure 6.18 shows the performance of the application on the cores of the KNL.

The average execution time on the KNL was 33.5% faster than KNC with an average

execution time of 38.07 seconds. We observed than on this application only cores 17,

34 and 51 had a notable performance difference with their average execution times

being 4.67% 3.98% and 3.94% slower than the average performance time of 38.07

seconds. The standard deviation found for the results on KNL was 0.57.

46

0.00%

5.00%

10.00%

15.00%

20.00%

0 10 20 30 40 50 60P
e
rc

e
n
ta

ge
 D

if
fe

re
n
ce

 f
ro

m

m
in

im
u
m

 E
xe

cu
ti
o
n
 T

im
e

Core Number

Size 3000 Size 4500 Size 6000 Size 7500 Size 9000

Figure 6.19: Matrix Multiplication KNC Performance With Multiple Inputs

6.4.2 Matrix Multiplication Core Variation Scale

Figure 6.19 shows the variability among KNC cores as we increased the input

size for the matrix multiplication. For each input size the performance difference from

the fastest executing core was within a constant threshold for all cores. It was however

notice that as we increase the input size the performance difference decreased. The

average performance difference was 9.80%, 8.11%, 6.40%, 3.35% and 3.28% for input

sizes 3000, 4500, 6000 and 9000 respectively.

The results for the sparse matrix to matrix multiplication on KNL scaled

with input sizes between 3000 and 9000 as can be seen in Figure 6.20. Performance

difference on cores 17, 34 and 51 were observed with all input sizes with the execution

time being around 6% slower. The percentage difference was constant at an average

of 1.21% unlike the decreasing trend observed in the KNC.

6.4.3 Matrix Multiplication KNC Hardware performance

Figure 6.21 and Figure 6.22 shows the CPI and execution time of a trial of

the matrix multiplication application. The implementation will have some latency

47

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 10 20 30 40 50 60 70P
e

rc
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

im
u

m
 E

xe
cu

ti
o

n
 T

im
e

Core Number

Size 3000 Size 4500 Size 6000 Size 7500 Size 9000

Figure 6.20: Matrix Multiplication KNL Performance With Multiple Inputs

58

59

60

61

62

63

64

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.21: Matrix Multiplication Execution Performance Per Core of a Trial Run
on KNC

factors as is suggested by the high CPI Rate between 6.5 and 7. We however notice

that the CPI rate trend on the cores correlates with the trend of the execution time

performance. This highlights that when number of instructions is directly related to

frequency at which the core is performing; the core performance is more consistent.

This leads to other architectural elements such as the bus interconnect; having a

reduced impact on performance.

48

10 20 30 40 50 60 70

clockticks

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

0 10 20 30 40 50 60

C
P

I
R

a
ti

o

Core Number

Figure 6.22: Matrix Multiplication CPI Performance Per Core of a Trial run on KNC

6.5 Speckle Reducing Anisotropic Diffusion

6.5.1 Speckle Reducing Anisotropic Diffusion Performance

On KNC and KNL

Figure 6.23 shows that the execution time performance of the SRAD on the

Xeon phi was relatively constant between 120 seconds and 128 seconds. The standard

deviation of the execution times was found to be 1.64. The average execution time

for the performance on this application was found to be 123 seconds.

Similar results can also be see in Figure 6.24 showing the execution times of

SRAD on the KNL. The standard deviation of SRAD performance was found to be

0.54 and has an average execution time of 70.88 seconds. Unlike the other applications

with variation on cores 0, 17, 34 and 51; this application only exhibits performance

variation on core 0. Core 0 performed 3.2% faster than the average performance of

the other cores.

49

118

120

122

124

126

128

130

132

134

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

T
im

e
(s

)

Core Number

Figure 6.23: SRAD Application Performance Per Core on KNC

67.5

68

68.5

69

69.5

70

70.5

71

71.5

72

72.5

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.24: SRAD Application Performance Per Core on KNL

50

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 10 20 30 40 50 60
P
e
rc

e
n
ta

ge
 D

if
fe

re
n
ce

 F
ro

m

M
in

im
u
m

 E
xe

cu
ti
o
n
 T

im
e

Core Number

1000 Iterations 1500 Iterations 2000 Iterations

2500 Iterations 3000 Iterations

Figure 6.25: SRAD KNC Performance With Multiple Input

6.5.2 Speckle Reducing Anisotropic Diffusion Core Variation

Scale

As we scaled the input sizes for the SRAD on the KNC, the performance

difference remained under 4% slower than the fastest trial. This can be seen in

Figure 6.25 an it shows that the constant performance observed in 5 trials holds for

any input sizes.

Figure 6.26 shows that the performance of the SRAD application is constant

among all cores except 0 as we scale the input sizes. We scaled the input from 1000

iterations to 3000 and core 0 performed between 2% and 4% faster than the other

cores in executing the application.

6.5.3 Speckle Reducing Anisotropic Diffusion KNC Hard-

ware performance

SRAD is structured grid algorithm that a wider array of image manipulations

in sequential stages. Based on the nature of image processing, memory affects the

execution of the SRAD algorithm out of all the application. This application had

51

0.00%

2.00%

4.00%

6.00%

8.00%

0 10 20 30 40 50 60 70
P

e
 r

c
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

i
m

u
m

 E
xe

cu
ti

o
n

 T
im

e
Core Number

1000 Iterations 1500 Iterations 2000 Iterations

2500 Iterations 3000 Iterations

Figure 6.26: Percentage Execution time Difference From Minimum Execution Time
For SRAD

0 10 20 30 40 50 60 70

instructions

0.89

0.892

0.894

0.896

0.898

0.9

0.902

0 10 20 30 40 50 60

L
1

 H
it

 R
a

ti
o

Axis Title

Figure 6.27: SRAD L1 Cache Performance Per Core on KNC

the most variation and lowest L1 hit rates among all the applications as can be seen

in Figure 6.27. It also had the lowest latency impact with an average of 190 as can

be seen in Figure 6.28. There where no observable trends regarding the Bandwidth.

The combination of memory access to cache and synchronization lead to a constant

bottleneck on performance leading to the cores performing relatively the same.

52

180

185

190

195

200

205

0 10 20 30 40 50 60

La
te

n
cy

 I
m

p
a

ct

Axis Title

Figure 6.28: SRAD L2 Cache Performance Per Core on KNC

6.6 LavaMD

6.6.1 LavaMD Performance On KNC and KNL

Figure 6.29 shows the execution time of the LavaMD application on the dif-

ferent cores on the KNC. We found the average execution time to be 56.95 seconds

for the cores with a standard deviation of 0.783. The Figure also shows than there

are random outliers throughout the trials within the same performance range of 58.5

seconds.

Figure 6.30 shows the execution time performance of the lavamd application

on the KNL. This application has an average performance of 44.5 seconds however

core 0 performs 4% faster than this average. Cores 17, 34, 51 are also distinctively

with them performing 2.91%, 2.97% and 2.94% slower than the other cores. The

standard deviation for the execution of this application on the KNL’s was found to

be 0.783.

53

55.5

56

56.5

57

57.5

58

58.5

59

59.5

60

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

T
im

e
(s

)

Core Number

Figure 6.29: Lavamd Application Performance Per Core on KNC

42

43

44

45

46

47

48

0 10 20 30 40 50 60 70

E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.30: Lavamd Application Performance Per Core on KNL

54

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 10 20 30 40 50 60P
e

 r
c

e
n

ta
g

e
 D

if
fe

re
n

ce
 F

ro
m

M
in

i
m

u
m

 E
xe

cu
ti

o
 n

 T
im

e

Core Number

Boxes 15 Boxes 20 Boxes 25 Boxes 30 Boxes 35

Figure 6.31: Percentage Execution time Difference From Minimum Execution Time
on KNC

6.6.2 LavaMD Core Variation Scale

Figure 6.31 and Figure 6.32 shows the performance of the Lavamd application

as we scaled the input size from 15 boxes to 30 on the KNC and KNL respectively.

The performance difference between cores scaled proportional on both KNC and

KNL. The kNC showed performance variation below 8% with majority of the cores

performing close to the fastest execution time. The KNL showed performance varia-

tion below 11%. Majority of the cores had a performance time difference of 4% from

best execution times which were on core 0. Cores 17, 34 and 51 were approximately

6% slower than the fastest execution time.

6.6.3 LavaMD KNC Hardware performance

Lavamd is a nbody application which is a high flops computational algorithm.

Figure ?? shows the execution time and Figure 6.34 shows the CPI rate of a sample

execution of the application on each core. This correlation between CPI and execution

leads to more consistent performance as the instructions executed directly relates to

55

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 10 20 30 40 50 60 70P
e

rc
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

im
u

m
 E

xe
cu

ti
o

n
 T

im
e

Core Number

Box 15 Box 20 Box 25 Box 30

Figure 6.32: Percentage Execution time Difference From Minimum Execution Time
For Lavamd on KNL

56

56.5

57

57.5

58

58.5

59

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.33: Lavamd Execution Performance Per of a trial Core on KNC

operating frequency of the core. Other architectural features such as bandwith, cache

access were relatively constant.

56

3.58

3.6

3.62

3.64

3.66

3.68

3.7

3.72

3.74

3.76

3.78

0 10 20 30 40 50 60

C
P

I
R

a
ti

o

Core Number

Figure 6.34: Lavamd CPI Performance Per Core of a trial on KNC

6.7 Particle Filter

6.7.1 Particle Filter Performance On KNC and KNL

Figure 6.35 shows the execution time performance of the particle filter on the

KNC. This application performed very constant over all the cores with a standard

deviation of 0.268. The average execution time for this application was 58.63 seconds

which was 20.45% slower than the average execution time performance on the KNL’s.

The performance per core on the KNL’s had a similar trend as the Lavamd and

NW application as cane be seen in Figure 6.36. The first core performs 1.8% faster

than all the cores. Cores 17, 34 and 51 performed 3.4%, 1.78%, 1.82% slower than

all the cores. The standard deviation of the execution time performance on the KNL

was 1.22 which was higher than KNC due to the previously noted cores performance

variability.

57

57.5

58

58.5

59

59.5

60

60.5

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

T
im

e
(s

)

Core Number

Figure 6.35: Particle Filter Application Performance Per Core on KNC

47

48

49

50

51

52

53

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.36: Particle Filter Application Performance Per Core on KNL

58

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0 10 20 30 40 50 60
P
e
rc

e
n
ta

ge
 D

if
fe

re
n
ce

 f
ro

m

M
in

im
u
m

 E
xe

cu
ti
o
n
 T

im
e

Core Number

Particles 15000 Particles 20000

Particles 25000 Particles 30000

Figure 6.37: Particle Filter KNC Performance With Multiple Inputs

6.7.2 Particle Filter Core Variation Scale

Figure 6.37 shows the performance of the particler filter application as we

scale the input sizes. In our 5 trials that we used we noticed that the execution time

performance was fairly constant with no distinctive performance variations. This is

also seen per input size as the percentage difference from the fastest time is within a

particular threshold. We however notice that as the input sizes increase the percentage

difference from the fastest executing core is gradually decreasing. As the input sizes

increases the percentage difference were 0.81%, 0.65%, 0.57% and 0.57%.

We also notice a similar trend with decreasing percentage difference as we

scale our input on the KNL. Figure 6.38 shows the results when we scale the input

on KNL’s. We can observe the same trend with core) performing fastest and cores

17, 34, 51 consistently slow at all the input sizes. From taking the averages of the

performance difference from minimum execution time we saw the reduction in this

percentage as we scaled up. The average performance difference were 4.41%, 2.85%,

1.93% and 1.77% for input sizes of 15000, 2000, 25000 and 30000 respectively.

59

0.00%

5.00%

10.00%

15.00%

0 10 20 30 40 50 60 70
P

e
 r

c
e

n
ta

g
e

 D
if

fe
re

n
ce

 F
ro

m

M
in

i
m

u
m

 E
xe

cu
ti

o
 n

 T
im

e

Core Number

Particles 15000 Particles 20000

Particles 25000 Particles 30000

Figure 6.38: Particle Filter KNL Performance With Multiple Inputs

58.8

59

59.2

59.4

59.6

59.8

60

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.39: Particle Filter Execution Time Performance Per Core on KNC

6.7.3 Particle Filter KNC Hardware performance

Particle filter is a dynamic programming algorithm which does a lot of com-

putation in comparison to the NW application. Figure 6.39 and Figure 6.40 shows

the execution time and CPI performance respectively of a sample trial. The cores

performance is randomly distributed within a time range and the CPI correlates with

these performance. This means that the operating frequency is proportional to the

rate at which instructions are being retired.

60

4.96

4.98

5

5.02

5.04

5.06

5.08

5.1

0 10 20 30 40 50 60

C
P

I
R

a
te

Core Number

Figure 6.40: Particle Filter CPI Performance Per Core on KNC

6.8 Breadth First Search

6.8.1 Breadth First Search Performance On KNC and KNL

Figure 6.41 shows the performance execution time of Breadth First Search

application on KNC. The execution time performance is constant over all the cores in

the KNC with an average execution time of 186.71 seconds and a standard deviation

of 3.30.

The performance was similar for the BFS application on the KNL as can be

seen in Figure 6.42. It had an execution average time of 55.94 seconds with an average

standard deviation of 4.85.

6.8.2 Breadth First Search KNC Hardware performance

Figure 6.43 and Figure 6.44 shows the execution time and CPI performance of

a trial run on the KNC. This application has a direct correlation between operating

frequency and the number of instructions to be retired. This leads to a constant

execution time range and other hardware components such as L1 and L2 hit ratio,

61

175

180

185

190

195

200

205

0 10 20 30 40 50 60

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.41: Breadth First Search Application Performance Per Core on KNC

54.5

55

55.5

56

56.5

57

57.5

58

0 10 20 30 40 50 60 70

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.42: Breadth First Search Application Performance Per Core on KNL

62

178

180

182

184

186

188

190

192

194

196

0 10 20 30 40 50 60

E
x
e

cu
ti

o
n

 T
im

e
 (

s)

Core Number

Figure 6.43: BFS Execution Performance Per Core on KNC

10 20 30 40 50 60 70

instructions

3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

0 10 20 30 40 50 60

C
P

I
R

a
te

Core Number

Figure 6.44: BFS CPI Performance Per Core on KNC

bandwidth remaining constant.

6.9 KNC Multi Core Xeon Phi Power and Perfor-

mance

After analyzing all the application performance on the Xeon phi KNC; we

noticed that majority of the application had a somewhat constant performance with

only two application distinctively exhibiting performance degradation going out ward

63

from cores 10 to 40. Utilizing this knowledge we executed a series of power and

performance trials on the applications utilizing various core combinations. We choose

core combinations of 1 - 60 (base configuration), 10 - 40 (middle cores) and 1 - 9 +

41 - 60(outer cores). We compared our latter two trials execution time and power

consumed to our core combination of 1 - 60. In each core configuration we choose the

optimal thread configuration to give us the best execution time and the results are

shown in table 6.1. The applications BFS, NMyocyte and Needle were not included

in the results because the core utilization was under 5 percent for these applications.

This low core utilization lead to the power consumed being constant with the system

power consumption due to lack of core usage.

Our results showed we had a 16.4% and 15.6% energy reduction while using

middle cores, 14.9% and 11.6% energy reduction while using outer cores for the appli-

cation streamcluster and particle filter respectively. The energy performance savings

was expected for the streamcluster application based on the KNC trial results results.

For the Particle filter application this was however not expected as the results showed

constant performance when we did our trials. This result may due to the fact that the

particle filter is a dynamic programming algorithm like the NW application. The NW

application did show similar trial results to streamcluster. The difference between the

NW and particle filter application is that there is a higher amount of computation

and core utilization with particle filter than with NW. As a result of this the per core

trial did not show the performance variation due to the high computation. However

When the application is however ran on many cores it exhibits the energy saving

characteristics but not the performance improvement due computation intensity.

The applications Matrix multiplication, LavaMD and SRAD performed within

a 2% energy consumption difference for the outer and middle core configurations. The

application performance for Streamcluster, Matrix Multiplication, and SRAD were

64

Table 6.1: Performance and Power consumption for Applications on KNC

Application Cores Thread
Power
(Watts)

Execution
Time (s)

Percent Energy
Efficiency

Percentage
Performance
Difference

LavaMD 1 - 60 244 55485 160.937607 0% 0%
10 - 40 120 55516 284.913 0% 44%
1 - 9,
41 - 60

120 56220 287.424 1% 44%

Matrix
Multiplication

1 - 60 244 139612 271.630308 0% 0%

10 - 40 120 138586 285.145608 -1% 5%
1 - 9,
41 - 60

120 140313 286.716225 0% 5%

Particle Filter 1 - 60 120 21781 111.21714 0% 0%
10 - 40 120 18836 212.6887 -16% 48%
1 - 9,
41 - 60

120 18958 217.253967 -15% 49%

StreamCluster 1 - 60 240 56069 224.76294 0% 0%
10 - 40 120 48179 220.173186 -16% -2%
1 - 9,
41 - 60

120 50255 224.15 -12% 0%

SRAD 1 - 60 240 52111 194.96469 0% 0%
10 - 40 120 51999 195.03065 0% 0%
1 - 9,
41 - 60

120 53081 196.141647 2% 1%

within 5% of the optimal execution time of our base configuration. The applications

Lavamd and particle filter had bad performance results with execution times 44% and

48.5% slower respectively, than our base configuration.

6.10 Summary

This chapter details the results collected after running all the application

benchmarks on the Xeon Phi architectures. The architecture features which influ-

enced the performance of the applications in single core and multicore executions are

65

discussed. The information obtained from the KNC results were used to improve

energy performance on this architecture and information provided on the influence of

applications performance.

66

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this research we explore the per core performance of the Xeon Phi Knights

Corner (first generation MIC) and the Xeon Phi Knights Landing (second generation

MIC). Eight applications from the Rodinia Benchmark were implemented and tested

to derive insights into how the MIC cores individually perform on these architectures.

The results indicate that application characteristics impact or affect how they per-

form on a given core; some applications perform fairly consistently across all cores

while others exhibit varying results. Lastly, there were some unique characteristics

consistently exhibited by certain cores.

On the KNC architecture, the applications Needleman-Wunsch and Stream-

Cluster performed better on the middle cores (10 - 40) with the performance gradually

decreasing outwards to core 0 and core 60 on either side of the ring. This phenomon

was seen throughout our trials and across various input sizes. The performance differ-

ence between cores extend to about 5% from the fastest execution time. The cause of

this performance was due to the ring architecture of the KNC using Distributed Tag

67

Directories for cache-to-cache transfer, which enharently leads to reduced bandwidth

at the outermost cores.

The applications BFS, Myocyte, LavaMD and Matrix Multiplication all per-

formed fairly consistantly within a given time range. This performance was due to

a direct correlation between the retired instructions and the operating frequency at

which the core is retiring them. As a result other architectural features of the hard-

ware has a reduced impact, which is observed as the latency impact: l1 hit ratio and

bandwidth are fairly constant during the execution of the application.

The Particle Filter and SRAD applications also had a constant execution time

within constant time period. Their performance was correlated to the programming

implementation on the hardware. The L1 and L2 cache variation performance with

and high core utilization flops calculation lead to constant performance. The Particle

Filter is also a dynamic programming algorithm as is NW, but the high core utiliza-

tion and flops calculation lead to the memory not being the determining factor for

performance. These results show that there are variations within the KNC cores that

are dependent on how the application utilizes the architecture of the KNC.

Utilizing this knowledge we implemented a performance and power execution

analysis on the KNC processors using configurations of the middle cores (cores 10 -

40), outer cores (cores 0 - 9, 41 - 59) and base cores (0 - 59). We used all applications

except the BFS, Myocyte and NW applications as those had low core utilization

leading to very little affects on the power consumed during their execution on many

cores. Our results showed about 16% reduction in the energy consumed while having

a small impact on the execution time for the Streamcluster application. There was

also a similar reduction in the energy consumed for the Particle Filter application but

a major performance degrade of about 48%.

On the KNL architecture, three trends in application performance were noted.

68

The applications BFS and SRAD had core execution times that were constant over

the application time; similar to the results from the KNC generation. The only

exception being core 0 on the SRAD application performing faster than the other

cores. For applications LavaMD, Particle Filter, and NW, core 0 also performed

faster than the other cores; however cores 17, 34 and 51 were all consistently slower

than the other cores. The applications Matrix Multiplication and Streamcluster had

core 0 performing relatively consistant with the other cores while cores 17, 34 and 51

performed significantly slower.

Myocyte however had core 0 performing just as slow as 17, 34 and 51 com-

pared to the other cores. With the above applications on the KNL architecture, the

behavior or trends for Myocyte, BFS and NW are interesting based on their algo-

rithmic properties and features observed from the KNC architecture execution. This

bahavior may be no coincidence since these applications had extremely low utilization

on the KNC architecture.

These results show that cores 0, 17, 34 and 51 on the KNL Xeon Phi has some

characteristics or features that lead to interesting variation in performance. Investi-

gation is beyond this research, but may be a result of some additional instructions

or features added to these particular nodes to make the KNL architecture capable of

the different memory modes in the ring mesh interconnect.

7.2 Future Work

This research uncovered many interesting characteristics and features regard-

ing how the Xeon Phi KNC and KNL processors perform on a per core level. However,

much work remains to further understand these architectures in general, and the per

core performance power relation and its affect on full core application runs.

69

During this research, hardware information was collected using VTune but

information for the KNL generation was limited due to the inconsistancy of VTune

on Stampede. In the future, more hardware results for these architectures are needed

to understand why cores 0, 17, 34 and 51 have such performance variations. Other

analysis should include details of the applications, to quantify how flops, non-flops

and other application characteristics influence the Xeon Phi performance. These pa-

rameters can be collected using the PAPI performance API on Stampede and utilized

to predict best suited applications using the Tesseract modeling framework [6].

Currently there are only 8 applications evaluated in this research. To better

understand the performance across domains, the number of applications should be

increased to obtain more variety and more accurate information of how aspects of

different applications map to these architectures.

An analysis of power and performance behaviours utilizing all cores except 0,

17, 34 and 51 on the KNL generation compared to utilizing all cores on the KNL

would also shed light on the different behaviour of these cores, providing insight

onto whether the results from the KNC power performance study was mainly due to

architecture or with application affects on hardware. More detailed analysis should

also reveal how core variations impact performance on the different memory modes

and cluster modes of the KNL architecture.

70

Bibliography

[1] Blue waters user portal — #welcome. https://bluewaters.ncsa.illinois.
edu/. (Accessed on 05/02/2017).

https://hpc.llnl.gov/hardware/

http://www.nersc.gov/users/computational-systems/edison/.

[2] Cab — high performance computing.
platforms/cab. (Accessed on 05/02/2017).

[3] Edison.
(Accessed on 05/02/2017).

[4] Intel xeon phi x100 family coprocessor - the architecture — in-
tel software. https://software.intel.com/en-us/articles/

intel-xeon-phi-coprocessor-codename-knights-corner. (Accessed on
05/02/2017).

[5] Optimization and performance tuning for intel xeon phi coproces-
part 2:sors, Understanding and using hardware events — in-

tel https://software.intel.com/en-us/articles/

software. optimization-and-performance-tuning-for-intel-xeon-phi-
coprocessors-part-2-understanding.(Accessed on 05/03/2017).

[6] sc15.supercomputing.org/sites/all/themes/sc15images/doctoral showcase/doc files/
drs117s2-file6.pdf. http://sc15.supercomputing.org/sites/all/themes/
SC15images/doctoral_showcase/doc_files/drs117s2-file6.pdf. (Ac-
cessed on 05/04/2017).

[7] system-administration-for-the-intel-xeon-phi-coprocessor.pdf. https:

//software.intel.com/sites/default/files/article/373934/

system-administration-for-the-intel-xeon-phi-coprocessor.pdf.
(Accessed on 05/03/2017).

[8] Tacc stampede user guide - tacc user portal. https://portal.tacc.utexas.
edu/user-guides/stampede. (Accessed on 05/02/2017).

[9] title. http://www.hotchips.org/wp-content/uploads/hc_archives/

hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.
710-Knights-Landing-Sodani-Intel.pdf. (Accessed on 05/03/2017).

71

https://bluewaters.ncsa.illinois.edu/
https://bluewaters.ncsa.illinois.edu/
https://hpc.llnl.gov/hardware/platforms/cab
https://hpc.llnl.gov/hardware/platforms/cab
http://www.nersc.gov/users/computational-systems/edison/
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://sc15.supercomputing.org/sites/all/themes/SC15images/doctoral_showcase/doc_files/drs117s2-file6.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/doctoral_showcase/doc_files/drs117s2-file6.pdf
https://software.intel.com/sites/default/files/article/373934/system-administration-for-the-intel-xeon-phi-coprocessor.pdf
https://software.intel.com/sites/default/files/article/373934/system-administration-for-the-intel-xeon-phi-coprocessor.pdf
https://software.intel.com/sites/default/files/article/373934/system-administration-for-the-intel-xeon-phi-coprocessor.pdf
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf

[10] xeon-phi-coprocessor-system-software-developers-guide.pdf. http://www.

intel.la/content/dam/www/public/us/en/documents/product-briefs/

xeon-phi-coprocessor-system-software-developers-guide.pdf. (Ac-
cessed on 05/03/2017).

[11] B. Acun and L. V. Kale. Mitigating processor variation through dynamic load
balancing. In 2016 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 1073–1076, May 2016.

[12] Bilge Acun, Phil Miller, and Laxmikant V. Kale. Variation among processors
under turbo boost in hpc systems. In Proceedings of the 2016 International
Conference on Supercomputing, ICS ’16, pages 6:1–6:12, New York, NY, USA,
2016. ACM.

[13] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), IISWC ’09, pages 44–54, Washington, DC,
USA, 2009. IEEE Computer Society.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
and Kevin Skadron. A performance study of general-purpose applications on
graphics processors using {CUDA}. Journal of Parallel and Distributed Com-
puting, 68(10):1370 – 1380, 2008. General-Purpose Processing using Graphics
Processing Units.

[15] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang,
and Kevin Skadron. A characterization of the rodinia benchmark suite with com-
parison to contemporary cmp workloads. In Proceedings of the IEEE Interna-
tional Symposium on Workload Characterization (IISWC’10), IISWC ’10, pages
1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[16] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,
G. Henry, A. G. Shet, G. Chrysos, and P. Dubey. Design and implementa-
tion of the linpack benchmark for single and multi-node systems based on intel
x00ae; xeon phi coprocessor. In 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, pages 126–137, May 2013.

[17] Sebastian Herbert and Diana Marculescu. Characterizing chip-multiprocessor
variability-tolerance. In Proceedings of the 45th Annual Design Automation Con-
ference, DAC ’08, pages 313–318, New York, NY, USA, 2008. ACM.

[18] Gary Lawson, Vaibhav Sundriyal, Masha Sosonkina, and Yuzhong Shen. Model-
ing performance and energy for applications offloaded to intel xeon phi. In Pro-
ceedings of the 2Nd International Workshop on Hardware-Software Co-Design

72

http://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-coprocessor-system-software-developers-guide.pdf
http://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-coprocessor-system-software-developers-guide.pdf
http://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-coprocessor-system-software-developers-guide.pdf

for High Performance Computing, Co-HPC ’15, pages 7:1–7:8, New York, NY,
USA, 2015. ACM.

[19] S. Li, K. Raman, and R. Sasanka. Enhancing application performance using
heterogeneous memory architectures on a many-core platform. In 2016 Interna-
tional Conference on High Performance Computing Simulation (HPCS), pages
1035–1042, July 2016.

[20] Barry Rountree, Dong H. Ahn, Bronis R. de Supinski, David K. Lowenthal, and
Martin Schulz. Beyond DVFS: A first look at performance under a hardware-
enforced power bound. In 26th IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China,
May 21-25, 2012, pages 947–953, 2012.

[21] Enzo Rucci, Carlos Garćıa, Guillermo Botella, Armando De Giusti, Marcelo R.
Naiouf, and Manuel Prieto-Mat́ıas. First experiences optimizing smith-waterman
on intel’s knights landing processor. CoRR, abs/1702.07195, 2017.

[22] Subhash Saini, Haoqiang Jin, Dennis Jespersen, Samson Cheung, Jahed
Djomehri, Johnny Chang, and Robert Hood. Early multi-node performance
evaluation of a knights corner (knc) based nasa supercomputer. In Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop, IPDPSW ’15, pages 57–67, Washington, DC, USA, 2015. IEEE Com-
puter Society.

[23] Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S.
Müller. Assessing the Performance of OpenMP Programs on the Intel Xeon Phi,
pages 547–558. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[24] H. Wang, H. Chen, Q. Wu, J. Lin, X. Chen, X. Xie, R. Wang, X. Tang, and
Z. Wang. Accelerating the global nested air quality prediction modeling system
(gnaqpms) model on intel xeon phi processors. Geoscientific Model Development
Discussions, 2017:1–18, 2017.

[25] Cheng Zhang, Li Liu, Ruizhe Li, and Guangwen Yang. Performance Character-
ization and Optimization for Intel Xeon Phi Coprocessor, pages 16–33. Springer
International Publishing, Cham, 2015.

73

	Clemson University
	TigerPrints
	5-2017

	An Analysis of Variation Between Cores For Intel Xeon Phi Knights Corner And Xeon Phi Knights Landing
	Jamar Robinson
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Related Work
	Core Variation
	Xeon Phi
	Summary

	Intel Xeon Phi Platform
	Stampede
	Xeon Phi Knights Corner (KNC)
	Xeon Phi Knights Landing (KNL)
	Summary

	OpenMP Benchmark Applications
	OpenMP
	Rodinia
	Summary

	Experimental Setup And Analytical Tools
	Initial Core Variation Study on Xeon Phi Platforms
	OpenMP Configuration
	Application Benchmark Configuration
	Configuration of Intel Vtune Profiler
	System Management and Configuration Utility (MICSMC)
	Summary

	Results
	Streamcluster
	Needleman-Wunsch
	Myocyte
	Matrix Multiplication
	Speckle Reducing Anisotropic Diffusion
	LavaMD
	Particle Filter
	Breadth First Search
	KNC Multi Core Xeon Phi Power and Performance
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

