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ABSTRACT 

 

 

This thesis presents a non-trivial candidate software component assembly that 

presents an opportunity and a challenge to the progress towards automated verification.  

It presents an opportunity because the data abstraction implementation can serve as a 

proof of concept of the idea that well-designed and well-annotated software components 

with mathematical specifications and well-engineered implementation(s) lead to 

generated verification conditions (VCs) of correctness that are “obvious” to prove. It 

presents a challenge because verification of the implementation involves multiple 

theories and the use of a tree concept that is based on a general tree theory for which 

there are no special-purpose solvers.  

The thesis contains a specification for a conceptualization of a tree with a position 

that makes it easy to explore and navigate a tree even as it avoids any explicit references 

to simplify reasoning. The thesis also contains concept enhancements for trees and an 

implementation layered using trees for a data abstraction for searching (a version of 

maps). A key contribution is the development of the implementation so that it is 

amenable for verification with internal assertions such as representation invariants and 

abstraction relations, operation specifications, loop invariants, and progress metrics, all of 

which involve the general tree theory. 
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CHAPTER ONE 

 

INTRODUCTION 

 

Automated Verification  

 

 

Automation of verification is the fundamental goal of many verification systems 

in existence today [8]. Among them are, Dafny [11], KeY [2]  and, RESOLVE [14]. 

When automation in verification is ultimately achieved, the only support that 

programmers need to provide towards verification are the internal assertions such as 

progress metrics, loop invariants, and other mathematical specifications which describe 

precisely what the code is required to do.  Among many components constituting a 

verifying compiler, the prover is a key one. The prover has a vital function of discharging 

verification conditions (VCs) proving which is equivalent to the correctness of a 

program. For practical reasons and to ensure the correctness of the prover itself, it is 

important that the prover to be as simple as possible and the VCs supplied to the prover 

as “obvious” as possible.   

Significant progress has been made in the area of decision procedures for different 

theories and fragments, and these specialized decision procedures have proven to show 

much promise for discharging VCs that arise in the process of reasoning about programs 

[3, 12, 16]. However, a major consideration for the decision procedures is that they are 

effective only when the VC’s are within the scope of the respective decision procedures, 

most of which restrict the assertions to be of first order.  However, to achieve automated 

verification in general, the challenge is to meet the task of proving VC’s that span 
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multiple theories often involving the use of higher order logic, situations for which it is 

unlikely that viable decision procedures exist.  

While the complexity arising from multiple theories including new ones is 

unavoidable, automated verification has any hope of becoming viable only if a software 

component specifications and corresponding implementations are well engineered and 

the VC’s arising from establishing their correctness are “obvious”. Being “obvious” 

implies the correctness of the resulting VCs can be established automatically in a few 

steps mechanically, without requirement of deep thinking [9]. Given suitable 

mathematical results and “obvious” VCs, verification can be done through simple 

deductions done even by humans and automated provers can establish correctness 

formally through the discovery of a short proof even without the use of special-purpose 

solvers.   

With that being said, how hopeful can we be regarding automated provers? The 

answer to this question is put forward in the experimentation with two provers, 

Minimalist Prover (MP) and Z3 done in [4, 7, 15]. A detailed technical description of 

these provers is out of the scope of this thesis; however, in summary MP design focuses 

on showing validity of VCs provided a set of previously proven theorems in reusable 

mathematical units. With well-engineered theories, it is sufficient for this prover to use 

only instances of reusable mathematical units to construct proofs under the assumption 

that the assertions lead to VCs that are obvious regardless of how complex the theories 

are. In their experimentation, Kabani et al employed theories describing mathematical 

strings and numbers. These theories were further used in component specifications with 
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no use of any decision procedures to tackle them. With this approach, as far as the 

provers are concerned, these created theories imitate the complex theories and so no 

special solvers are available. The experimentation is continuing with promising results 

and a suggestion of further exploration of the idea that will lead to automated verification 

of components specified using new theories.  

 

Thesis Focus and Contribution 

 

 

The non-trivial General Tree Theory used in this thesis was initially developed by 

Dr. Bill Ogden, and it contains an additional dimension of complexity compared to most 

of the theories since it does not already appear standardized in the world of mathematics. 

Sections of this theory used in this thesis are as shown on Appendix E. If a theory is well 

engineered, then the specifications and implementations based on that theory can lead to 

VCs that are relatively “obvious” for verification. While any verification system can be 

used, this thesis presents a candidate implementation in RESOLVE that can serve as a 

proof of concept for experimenting with the Minimalist Prover (MP) [4, 7, 15] which is 

built with an intent of verifying well-engineered programs accompanied with well-

designed supporting mathematical units even when the generated VC’s span theories 

where no suitable decision procedures available.  

The central contribution of this thesis is development of a verification-amenable 

implementation of a concept named Almost_Constant_Function_Template which 

specifies a map data abstraction.  The implementation uses Exploration_Tree_Template, 

a concept that captures a navigable tree structure while avoiding any explicit reference 
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behavior and need for aliasing.  Development of the balanced, binary search tree 

implementation of the map data abstraction involves specification and implementation of 

several local operations, along with a host of internal assertions for verification, as 

detailed in this thesis. The thesis builds on and refines earlier, incomplete versions of the 

concepts for Exploration_Tree_Template and Almost_Constant_Function_Template 

conceived by Dr. Joan Krone and Dr. Bill Ogden. An important contribution of this thesis 

is explanations of these non-trivial concepts with illustrations so that they are accessible 

to the larger computer science audience.  In addition to concept refinements two binary 

tree extensions for General Tree Theory were added, one to define balancing and another 

for binary search tree property. These two extensions are shown in Appendix F and 

Appendix G. Further, enhancements for exploration tree template have been developed 

and used.  

An overview of the artifacts relevant to this thesis are shown in Figure 1. The 

figure includes additional elements, such as a list-based implementation maps to give a 

broader overview. The concepts, and theories refined and extended to achieve the 

development of the balanced, binary search tree implementation of the map data 

abstraction are the focus of this thesis and they are highlighted. In the coming chapters, 

these artifacts will be explained in detail.  
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Figure 1: A General Overview of Thesis Focus and Contribution 
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Organization  

 

 

The organization of this thesis is in four sections. The first and second sections 

after the introduction provide detailed explanations on the refined 

Exploration_Tree_Template, followed by different enhancements of this concept. Next is 

a discussion of Almost_Constant_Function_Template with a tree-based implementation. 

The third section is a discussion of verification of a simple enhancement implementation 

for purposes of illustration.  The last section contains a summary and future directions.  
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CHAPTER TWO 

EXPLORATION TREE TEMPLATE AND ENHANCEMENTS 

 

To fulfill the challenge of providing a proof of concept that automated proof of 

correctness of a complex piece of software based on higher order logic is possible, it is 

necessary to choose a concept which is based on a non-standard mathematical theory 

which has been developed with automated proving in mind.  For this purpose, the 

Exploration_Tree_Template is ideal.  

The Exploration_Tree_Template is specified with no explicit reference behavior 

in contrast to how trees are presented in theory and practice in the literature [12]. Since 

the specification completely hides the underlying pointer-based tree structure, it 

simplifies reasoning of implementations which are based on these trees.  

In this chapter the Exploration_Tree_Template concept is described precisely.  To 

simplify the explanations, special diagrams are used to illustrate different aspects of the 

template and for brevity, figures used in support of the concept explanations will only 

show some snippets of the template. A detailed version of the entire template can be 

found in Appendix A. This chapter also includes some enhancements which contain 

extensions to the core concept. 
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An Informal Introduction to Exploration Tree Template 

 

 

A skeleton of the formal specification for Exploration_Tree_Template is shown in 

Figure 2. This template is a generic concept (specification) with three parameters that are 

provided during instantiation. The first parameter required is a node label 

(Node_label) which specifies the node type; the second one k is an integer value 

setting the maximum number of children each node can have in a defined tree, and third 

is Initial_Capacity which state the maximum number of nodes that an instantiated 

tree can have.  

An exploration tree is a tree with a position indicator.  Figure 2 also shows that, 

Exploration_Tree_Template is a family of tree positions (Tree_Posn) emphasizing the 

fact that because of the generic nature of this template, not only is one type exported, but 

a whole family of types, each with different contents.  
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Concept Exploration_Tree_Template( type Node_Label; evaluates k, 

           Initial_Capacity: Integer ); 
   uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory 

 

   Type Family Tree_Posn  U_Tr_Pos( k, Node_Label ); 

 

  Operation Advance( evaluates dir: Integer; updates P: Tree_Posn ); 

        

  Operation Reset( updates P: Tree_Posn ); 

    

  Operation At_an_End( restores P: Tree Posn ): Boolean; 

    

  Operation Add_Leaf( alters Labl: Node_Label; updates P: Tree_Posn ); 
    

  Operation Remove_Leaf( replaces Leaf_Lab: Node_Label;  

         updates P: Tree_Posn ); 

    

  Operation At_a_Leaf( restores P: Tree_Posn ): Boolean; 

    

  Operation Swap_Label( updates Labl: Node_Label; 

          updates P: Tree_Posn ); 

    

  Operation Swap_Rem_Trees( updates P, Q: Tree_Posn ); 

    

  Operation Swap_w_Rem( updates P, Q: Tree_Posn ); 

    

  Operation Retreat( updates P: Tree_Posn ); 

    

  Operation Path_Length( restores P: Tree_Posn ): Integer; 

    

  end Exploration_Tree_Template; 

 

 

Figure 2: A Skeleton Interface for Exploration Tree Template 

 

 

 The template includes several primary operations that are useful in creating, 

navigating and modifying trees as shown in Figure 2. The first operation Advance is used 

in navigation of trees; the movement can be in one of the k directions(dir)specified 

during operation call. Starting from one tree position operation Advance can navigate to 

the next tree position depending on the given direction.  Advance modifies the tree 

position and hence, the use of the parameter mode updates. Figure 3(a) below shows a 

tree position indicated by an arrow known as the position indicator.  
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Figure 3: (a) An example exploration tree: A tree with position indicator (b) Updated tree 

position after a call to Advance operation  

 

 

The tree in Figure 3(a) has the value of k equals to 3 giving three possible directions for 

advancing this tree. For example, if from this current position, Advance operation is 

called on direction 2. The position indicator will move into the tree and an updated tree 

position is shown in Figure 3(b). Retreat operation does the opposite of Advance, once 

Retreat is called, it updates the tree position by moving the indicator to the previous tree 

position. Using Figure 3(b), an operation Retreat on this tree position will result into a 

tree position in Figure 3(a). When a position indicator is advanced to the end of the tree 

as shown in Figure 4(a), we cannot advance the tree any further and the tree position is 

said to be at an end. A Boolean operation At_an_End can be used to test if a tree position 

is at an end, this operation does not make any changes to the tree position, therefore, 
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parameter mode restores is used. Figure 4(a) is also an example of a position were an 

operation Add_Leaf can be called and an extra node will be added into the tree as shown 

in Figure 4(b). Operation Add_Leaf updates the tree position to include the new node 

whose label is passed in as parameter during operation call. Because we only need this 

label to create the new node and nothing after that, parameter mode alters is used for this 

case.  

 

Figure 4: (a) Tree position indicator at an end (b) Updated Tree Position after adding a 

new leaf 

 An operation Reset will move the position indicator to the beginning (root node) 

of the tree from any tree position, this operation can be useful when we want to return a 

root node. At_a_Leaf is a Boolean operation and will return true when the tree position is 

at a leaf, at this position the pointer will be at any of the nodes with empty tree children 

represented by Ω. Figure 4(b) is an example of the tree position being at a leaf.   
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 The fact that Exploration_Tree_Template is a generic concept, its parameters can 

be of any type and in such case for a reasonable and efficient transfer of these arbitrary 

entries, swapping is used over copying of reference or values [5]. The efficiency in 

swapping is in the execution-time where compilers takes constant time exchanging 

references to even large objects, this implementation of swapping is different from 

copying where for large objects execution-time needs to account time for copying the 

objects. Swapping also allows reasoning without introducing aliasing, in contrary to 

copying which introduces aliasing and so compromising abstract reasoning. 

 Because of these advantages of swapping in generic components, Swap_Label 

operation is defined in Exploration_Tree_Template, this operation will be used to transfer 

arbitrary type label into the tree. The two-way transfer provided by swapping will update 

both the tree position and the parameter node label. To illustrate this operation, consider 

Figure 5(a) which shows a tree position and a node label, a call to Swap_Label will 

update both label and a tree position and the result is shown in Figure 5(b).  
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Figure 5: (a)Given tree position and node label (b) Updated tree position and node label 

after a call to Swap Label 

 

  At any tree position, the position indicator divides the tree into two parts, the part 

before the indicator which is a “Path” and the part after the indicator which is the 

“Remaining Tree” (Rem_Tr) both Path and Rem_Tr will be formally explained in the 

next section. 

Exploration_Tree_Template can be implemented in a straightforward fashion 

using classical k-link nodes.  To be verified formally, it can be implemented using an 

abstraction of linked locations [10].  All tree operations can be implemented to work in 

constant time. 
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A Formal Presentation of Exploration Tree Template 

 

This section explains a formal specification of the Exploration_Tree_Template 

shown in Figure 6. The specification of this concept uses two facilities Std_Boolean_Fac 

and Std_Integer_Fac (which bring in Booleans and Integers, since no types are assumed 

prebuilt in RESOLVE), as well as the General_Tree_Theory. Next is a concept level 

requires clause which state that the value k must be greater than or equal to 1 and 

Initial_Capacity is at least 1, these two requirements will guarantee no tree is 

created with zero children and zero capacity. A global conceptual variable 

Remaining_Cap is a natural number and get initialized to Initial_Capacity in the 

initialization ensures clause, Initial_Capacity is provided during instantiation of the 

template.  When nodes are added to the tree, or removed from the tree, Remaining_Cap 

is affected. 

The mathematical model for Exploration_Tree_Template is a family of tree 

positions (Tree_Posn). This family of types is modeled as a subset of all Uniform Tree 

Positions (U_Tr_Pos) defined by k children and Node_Label. As discussed earlier a 

Tree_Posn has two parts, a “Path” (Path)which is a string of “Sites” and a remaining 

tree (Rem_Tr) which is a k-tree.  The mathematical model is illustrated and explained 

using example in the upcoming paragraphs. 

In Figure 6, Exploration_Tree_Template uses P as an exemplar to specify the 

effects of initialization (constructor) and finalization (destructor).  The effect of 

initialization is that P.Path is Empty_String() and P.Rem_Tr is Empty_Tree(Ω). 
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The effect of finalization is that the count of the tree nodes that belonged to the tree 

object is added back to the existing Remaining_Cap. 

The following figures will illustrate what is meant by “Site”, Path and the 

Rem_Tr. As explained earlier a Path is a string of Sites and in every single Site there is a 

Label, Left Tree String (LTS) and Right Tree String (RTS), LTS and RTS are sometimes 

called Left Branch String and Right Branch String respectively. To illustrate this, we use 

Figure 7 which introduces another presentation of a Tree_Posn and this time with a 

detailed breakdown. This is an abstract way of showing a Path and Rem_Tr of the 

Tree_Posn, and it corresponds directly to the mathematical model in the concept shown 

in Figure 6. Figure 7 has two Sites, the first Site has a node label 17, a LTS which has 

two Trees (T1, T2) and an empty RTS. The second Site has a label of 20, one tree in the 

LTS (T3) and another Tree in RTS (T5).  
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Concept Exploration_Tree_Template( type Node_Label; evaluates k, 

           Initial_Capacity: Integer ); 
   uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory 
            with Relativization_Ext; 

   requires 1  k and 0  Initial_Capacity which_entails k: ℕ0 

                  and Initial_Capacity: ℕ; 

   Var Remaining_Cap: ℕ; 
    initialization  

     ensures Remaining_Cap  Initial_Capacity; 

 

   Family Tree_Posn  U_Tr_Pos( k, Node_Label ); 

    exemplar P;  

    initialization 

    ensures P.Path   and P.Rem_Tr  ; 

    finalization  

    ensures Remaining_Cap = #Remaining_Cap + N_C (P.Path  

            P.Rem_Tr); 

  
                             ⋮  
  end Exploration_Tree_Template; 

 

Figure 6: A formal specification of Exploration Tree Template 

 

 

Figure 7: A formalized version of a Tree Position  
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From a Path and a Rem_Tr of a given Tree_Posn we can form the entire tree. 

To achieve this, Zip operator () defined in the General Tree Theory is used. This 

operator is used in the specifications of several operations, so we begin with an 

explanation of this operator.  From a Tree_Posn Zip operator takes Sites in the Path 

and stitch them back to the tree in the Rem_Tr resulting to a tree whose root node will be 

the label of the last site extracted from the Path. To illustrate this operator, consider a 

Tree_Posn in Figure 8(a) which has two Sites in the Path and the remaining tree. Zip 

operator is inductively defined to extract the last added Site first and zip it to the 

remaining tree leaving one Site in the Path and a resulting tree is shown in Figure 8(b). 

Next the last Site will be extracted and zipped to the remaining resulting to a whole tree 

and leaving the Path empty, the result is shown in Figure 8(c) with the root node being 

the label of the last site.  
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Figure 8: An illustration of Zip Operator 
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 As discussed earlier, Exploration_Tree_Template includes specifications for 

several primary operations that are useful in creating, navigating and modifying trees. 

Now a formal version of these operations will be explained. The first primary operation 

Advance is specified in Figure 9.   

 Operation Advance (evaluates dir: Integer; updates P: Tree_Posn); 

  requires P.Rem_Tr    

  which_entails P.Rem_Tr: Tr(Node_Label)~{}and 1  dir  k; 

  ensures P.Rem_Tr  ≸( Prt_btwn(dir ∸ 1, dir, 
        Rt_Brhs(#P.Rem_Tr)) ) and 

  P.Path  #P.Path◦( Rt_Lab(#P.Rem_Tr), Prt_btwn(0, 

       dir ∸ 1,Rt_Brhs(#P.Rem_Tr)),  

Prt_btwn(dir, k, Rt_Brhs(#P.Rem_Tr)) );  

 

Figure 9: A formal Specification of Advance operation 

 

 

Advance operation updates an incoming Tree_Posn on a given dir if the 

Rem_Tr is not an Empty_Tree(Ω)and the given dir is a valid value of k (i.e. 1 ≤ 

dir ≤ k). The subordinate annotation which_entails is included in this specification 

following the requirement that P.Rem_Tr is not empty tree to explicitly alert the type 

checker that it is acceptable to use the incoming value of P.Rem_Tr, where a non-empty 

tree is expected. This annotation is the reason #P.Rem_Tr can be used in Rt_Lab and 

Rt_Brhs in the ensures clause without violating type checking. If these requirements 

specified in the requires clause are met, then the ensures clause of Advance operation 

states how Path and Rem_Tr of a given Tree_Posn are updated.  

Operation Advance is further described using Figure 10 and Figure 11. Figure 10 

is a current Tree_Posn and the named positions from 0 to 3 are for the sake of 

simplifying the formal explanations this operation. If dir = 3 on the parameter list and 
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the tree positions shown in Figure 10. The post condition in Advance shows that the 

Path will be updated to contain all Sites it had before (#P.Path), concatenated with a 

new Site defined by the root label of the remaining  tree(Rt_Lab(#P.Rem_Tr)) and the 

two branches separated by the provided direction (dir). The Left Tree Branch will start 

from position 0 to dir ∸ 1 (2), where ∸ is natural number subtraction. The Right Tree 

Branch is between dir which is 3 and k which is also 3, explaining why the Right 

Branch String is the empty string. The Rem_Tr will be updated as depicted in Figure 11. 

 

 

Figure 10: Current Tree Position before calling Advance 

 

 

3 

2 1 

0 

Ω Ω Ω 

  

  
    

      

18 

23 25 T6 

T7 T8 T9 

P.Rem_Tr 

{     ,                 }  , {                   } 

  
T1 

  T2 
  17 

LTS RTS Label  

  

LTS 

T3 
  20 

  

Label  

T5 

RTS 

P.Path 

Site 1 Site 2 



 21 

 
Figure 11: Tree Position after Advancing on direction 3 

As it can be observed from Figure 10 and Figure 11, one call to Advance added one site 

to the existing Path. In contrast, the operation Retreat will extract the last added Site and 

zip it with the Rem_Tr. Operation Retreat will be explained in detail later in the chapter.  

The Reset operation, specified in Figure 12, has an effect of moving the tree position to 

the top.  Reset updates the current Tree_Posn by ensuring the Path becomes an 

Empty_String() and the Rem_Tr to be the result of zipping together an incoming 

Path (#P.Path) with the incoming Rem_Tr(#Rem_Tr), there is no requires clause 

for this operation. To illustrate Reset operation Figure 13(a) shows a current 

Tree_Position using a position indicator, Figure 13(b) is the result of calling Reset 

operation, the position indicator will be at the root node where the Path is now 

Empty_String() and the Rem_Tr is an entire tree. 
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              ⁝ 
  Operation Reset( updates P: Tree_Posn ); 

   ensures P.Path   and P.Rem_Tr  #P.Path  #P.Rem_Tr; 

 

  Operation At_an_End( restores P: Tree Posn ): Boolean; 

   ensures At_an_End  ( P.Rem_Tr   ) 

                 ⁝ 

                 ⁝ 
 end Exploration_Tree_Template; 

 

Figure 12: Specifications for operations Reset and At an End 

 

 

 

 

          Figure 13: (a) Current Tree Position (b) Tree Position indicator at the root after 

calling Reset 

 

 

The next operation At_an_End specified in Figure 12 is a Boolean operation 

which returns true in case a Tree_Posn is at the end. A Tree_Posn is said to be at an 

end if and only if the Rem_Tr is an Empty_Tree(Ω).  
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From an Empty_Tree(Ω) one can create a tree by adding one node at a time, to 

achieve this, operation Add_Leaf is specified in Figure 15, the operation will have an 

effect of adding a new leaf and decreasing the value of the Remaining_Cap by one 

whenever it is called. The Remaining_Cap will be zero (0) when we have no room to 

add any more nodes. Add_Leaf can only be called when the Remaining_Cap is greater 

than zero, and the Rem_Tr is an Empty_Tree(Ω) as stated in the requires clause. At the 

end of the operation, Add_Leaf has no effect to the current Path and thus, P.Path = 

#P.Path and the Rem_Tr will be a result of joining (Using Join operator, Jn) a new 

leaf of an incoming Label with k branches of Empty_Tree(Ω)as stated in the ensures 

clause.  

Join operator (Jn) is defined in the General Tree Theory and take in a string of 

trees and a node label to give back a complete tree. The node label becomes the root node 

of the resulting tree and each individual tree within the string becomes a child to this root 

node. Figure 14 illustrate how Jn operator works using a string of trees in Figure 14(a), 

these trees have the same properties, in this example just empty trees are used. Figure 

14(b) is a node label. Join operator will connect all these trees to the node label and form 

a tree in Figure 14(c) which has the same properties as the individual trees before the 

join. 

A formal illustration of Add_Leaf is shown in Figure 16, in Figure 16(b) is a tree 

position with a new node added to the remaining tree. 
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Figure 14: An illustration of a Join operator 

 

 
         Operation Add_Leaf( alters Labl: Node_Label; updates P: Tree_Posn ); 
   affects Remaining_Cap; 

   requires P.Rem_Tr   and Remaining_Cap > 0; 

   ensures P.Path  #P.Path and  

      P.Rem_Tr  Jn( k, #Labl ) and  

Remaining_Cap  #Remaining_Cap ∸ 1; 
 

 

Figure 15: Specification of Add Leaf Operation 

 

 

 

Figure 16: (a) Current Tree Position (b) Updated Tree Position on calling Add Leaf 
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label of the removed leaf updates the value of Leaf_Lab. The specifications for 

Remove_Leaf are shown in Figure 17.  

 
        ⁝ 
  Operation Remove_Leaf( replace Leaf_Lab: Node_Label; 
          updates P:Tree_Posn ); 

   affects Remaining_Cap; 

   requires P.Rem_Tr    

   (which_entails P.Rem_Tr: Tr(Node_Label)~{}) and 
        Rt_Brhs(P.Rem_Tr)  k; 

   ensures P.Path  #P.Path and P.Rem_Tr   and 

     Leaf_Lab  Rt_Lab(#P.Rem_Tr)and 

      Remaining_Cap  #Remaining_Cap + 1; 

 

  Operation At_a_Leaf( restores P: Tree_Posn ): Boolean; 

   ensures At_a_Leaf  (P.Rem_Tr    

    (which_entails P.Rem_Tr: Tr(Node_Label)~{}) and  

         Rt_Brhs(#P.Rem_Tr)= k); 
                 ⁝ 

                 ⁝ 
  end Exploration_Tree_Template; 

 

Figure 17: Specifications for Operation Remove Leaf and At a Leaf 

 

 

At_a_Leaf is a Boolean operation with specifications shown in Figure 17, the 

operation return a Boolean value depending on whether a given Tree_Posn has a leaf as 

the Rem_Tr or not.  

When a specific node label needs to be updated within a given Tree_Posn, 

Exploration_Tree_Template specifies the Swap_Label operation as shown in Figure 18, 

in the previous section a reason why swapping is used instead of copying was explained. 

Swap_Label requires Rem_Tr not to be an Empty_Tree(Ω), this is stated in the 

requires clause. The ensures clause updates both label (Labl) and Tree_Posn, the 

outgoing Labl will equal the root label (Rt_Lab) of the incoming Rem_Tr and a new 

root label will be a join of all branches of the incoming Rem_Tr to (#Labl).  
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              ⁝ 
 

  Operation Swap_Label( updates Labl: Node_Label; updates P: Tree_Posn ); 

   requires P.Rem_Tr   

       (which_entails P.Rem_Tr: Tr(Node_Label)~{}); 

   ensures Labl  Rt_Lab(#P.Rem_Tr) and P.Path  #P.Path and 

     P.Rem_Tr  Jn( Rt_Brhs(#P.Rem_Tr), #Labl); 

 

  Operation Swap_Rem_Trees( updates P, Q: Tree_Posn ); 

   ensures P.Path  #P.Path and Q.Path  #Q.Path and  

        P.Rem_Tr  #Q.Rem_Tr and 

         Q.Rem_Tr  #P.Rem_Tr; 
  Operation Swap_w_Rem( updates P, Q: Tree_Posn ); 

   ensures P.Path   and P.Rem_Tr  #Q.Rem_Tr and  

       Q.Path  #Q.Path◦#P.Path and 

        Q.Rem_Tr  #P.Rem_Tr; 
  Operation Retreat( updates P: Tree_Posn ); 

   requires P.Path  ; 

   ensures P.Path  Prt_btwn(0, |#P.Path| ∸ 1, #P.Path) and 

  P.Rem_Tr =(Prt_Btwn (|#P.Path| ∸ 1, |#P.Path|, #P.Path) 

           P.Rem_Tr;  
 

  Operation Path_Length( restores P: Tree_Posn ): Integer; 

   ensures Path_Length  |P.Path|; 
 

  Operation Rmng_Capacity(): Integer; 

   ensures Rmng_Capacity  ( Remaining_Cap ); 

 

end Exploration_Tree_Template; 

 

Figure 18: The rest of Operations in Exploration Tree Template 

 

The operations Swap_Rem_Trees and Swap_w_Rem are two operations with 

very close effect, both operations takes in two known tree positions as parameters and 

swap their remaining trees. However, Swap_Rem_Trees will have no changes to the 

paths of both tree positions, while Swap_w_Rem will update both Tree_Posn and 

Rem_Tr. Figure 19 illustrate this using two colored tree positions P and Q, shown in 

Figure 19(a) are the tree positions before Swap_Rem_Trees is called. Figure 19(b) shows 

updated tree positions P and Q. Figure 20(b) illustrates the results of calling operation 
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Swap_w_Rem on tree positions in Figure 20(a). Notice in Figure 20 also Path is updated 

for both P and Q. 

 

Figure 19: (a) Tree positions P and Q (b) Resulting tree positions P and Q after Swapping 

the Remaining Trees 
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Figure 20 : (a) Tree positions P and Q (b) P and Q updated after Swap_w_Rem 

As stated earlier operation Retreat has an opposite effect to Advance. Retreat will 

remove the last added Site and zip it to the Rem_Tr of the Tree_Posn. Retreat can only 

be called when the Path of a given Tree_Posn is not an Empty_String () as stated 

in the requires clause. The ensures clause uses Prt_Btwn which is a string operator to 

extract the last added Site that will be zipped to the Rem_Tr. 

 The last two operations to be specified are Path_Length and Rmng_Capacity. 

Path_Length operation returns the length of the Path and the Rmng_Capacity operation 

will return the Remaining_Cap of the tree when called.  
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Enhancements to Exploration_Tree_Template 

 

 

In the discussion above, Exploration_Tree_Template was explained in detail and 

in it are several primary operations specified.  But a close observation will reveal that 

there may be other operations that can be useful in variety of applications but not 

specified in this template. Generally, to make the specifications task and realization of 

data abstraction reasonable only a few primary operations, typically orthogonal and 

implementable efficiently, are usually specified in the concept.  Any other operation that 

can be implemented using a combination of primary operations and may be useful can be 

specified as secondary operations. In RESOLVE language, a specification inheritance 

mechanism is provided to permit an easy extension of these primary operations available 

in the concept by writing enhancements to concepts.  

The enhancements discussed in this subsection are used in the tree-based 

implementation of the map concept in the next chapter. 

 The first enhancement to be discussed is Deletion_Capability which describes a 

Delete_Rem_Tree operation with specifications is shown in Figure 21.  

 
Enhancement Deletion_Capability for Exploration_Tree_Template;  

 Operation Delete_Rem_Tree (updates P: Tree_Posn) 

  affects Remaining_Cap; 

  ensures P.Path = # P.Path and P.Rem_Tr = Ω and 

 Remaining_Cap = #Remaining_Cap + N_C ( #P.Rem_Tr); 

end Deletion_Capability;  

 

Figure 21: Specification of Delete Remainder Operation 

 

 

The operation specifications in Figure 21 guarantees what is in the Path before 

the operation is called remain the same even after the operation call (P.Path = 
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#P.Path) and updates the Rem_Tr to be an empty tree after deleting the remaining tree. 

Figure 22 demonstrates this using a tree position in (a). After calling Delete_Rem_Tree, 

everything in the remaining tree will be deleted. The resulting tree position is shown in 

Figure 22(b).  

    

 
Figure 22: (a) Tree position before deleting the remaining tree (b) Tree position after 

deleting the remaining tree 

 

 

Realization obvious_Deletion_Realiz for Deletion_Capability  

       of Exploration_Tree_Template;  

 Procedure Delete_Remainder (updates P: Tree_Posn);  

 

  Var Q: Tree_Posn; 

  Swap_Rem_Trees (P, Q); 
 

 end Delete_Remainder; 

 end obvious_Deletion_Realiz; 

 

Figure 23: An Implementation of Delete Remainder Operation 
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The second enhancement achieves a node count and returns the number of nodes 

in the remaining tree of a given Tree_Posn. The operation Rem_Tr_Node_Count, 

shown in Figure 24, counts the nodes in the remainder part of the Tree_Posn. The total 

number of nodes for the tree position can be found by making the entire tree a Rem_Tr. 

 
Enhancement Rem_Tr_Node_Count_Capability for Exploration_Tree_Template; 

 

 Operation Rem_Tr_Node_Count( restores P: Tree_Posn ):Integer; 

  ensures Rem_Tr_Node_Count = ( N_C(P.Rem_Tr )); 

 

end Rem_Tr_Node_Count_Capability; 

 

Figure 24: Specification of Rem_Tr_Node_Count Operation 

 

 

Rem_Tr_Node_Count is implemented in Figure 25. The basic idea of this 

realization is to recursively count nodes starting from a root node of the remainder tree 

and all its children. To show termination in the recursion and loop, two proper ordinal 

valued progress metric expressions are defined in the decreasing clause. These two 

metrics will decrease in every recursive call or iteration of the loop. The maintaining 

clause provided must be adequate for verification.  
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Realization Recursive_Node_Count_Realiz for 

    Rem_Tr_Node_Code_Capability of Exploration_Tree_Template 

 Recursive Procedure Rem_Tr_Node_Count (restores P:Tree_Posn):Integer 

 

  decreasing ht(P.Rem_Tr); 

 

  Var dir,count : Integer; 

  If (At_an_End(P)) then 

   Rem_Tr_Node_Count := 0 ; 

    else 

   dir := 1; 

   count := 1;   

     while (dir <= k) 

    maintaining P.Path = #P.Path and P.Rem_Tr = #P.Rem_Tr 

     N_C(P.Rem_Tr) = count + 

        ∑ N_C(Split_at(dir∸1,P.Rem_Tr ) k
dir ; 

    decreasing ((k+1) - dir); 

   do 

    Advance(dir, P); 

    count := count + Rem_Tr_Node_Count(P); 
    Retreat(P); 

    Increment(dir); 

   end; 

   Rem_Tr_Node_Count := count; 

  end; 

 end Rem_Tr_Node_Count; 

end Recursive_Node_Count_Realiz; 

 

Figure 25: Rem_Tr_Node_Count Realization 

 

 

The third enhancement is the Tree_Reversal_Capability specified in Figure 26. 

Reversal of a tree about a given root node will swap nodes from outer children going 

inwards. Figure 27 illustrates tree reversal. The implementation of this enhancement is 

shown in Figure 28.  

 

Enhancement Tree_Reversal_Capability for Exploration_Tree_Template; 

 Operation Reverse_Rem_Tr (updates P: Tree_Posn ); 

  ensures P.Rem_Tr = #P.Rem_TrTRev and P.Path = #P.Path; 

end Tree_Reversal_Capability; 

 

Figure 26: Enhancement specification for Tree_Reversal_Capability 
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Figure 27: (a) A tree position before reversal (b) updated tree position after reversal 

 

 
Realization Obvious_Reversal_Realiz for Tree_Reversal_Capability 

of Exploration_Tree_Template; 

 Recursive Procedure Reverse_Rem_Tr (updates P: Tree_Posn); 

 

  decreasing ht(P.Rem_Tr) ; 

 

  Var Q: Tree_Posn;  

  Var dir, last: Integer; 

  dir := 1; 

  last := k; 

  If (not At_an_End(P)) then 

   While (dir < last) 

    maintaining P.Path = #P.Path and #P.Rem_Tr =  

    Jn((Prt_Btwn(0,dir – 1,Rt_Brhs(P.Rem_Tr))o  
     (Prt_Btwn(dir – 1, last, Rt_Brhs(P.Rem_Tr))Rev o 

     Prt_Btwn(last, k, Rt_Brhs(P.Rem_Tr)))Rev, 
          Rt_Lab(P.Rem_Tr)); 
    decreasing (last – dir) 

   do 

    Advance(dir, P); 

    Swap_w_Rem(P,Q); 

    Swap_Rem_Trees(P,Q); 

    Reverse(P); 

    Swap_w_Rem(Q,P); 

    Retreat(P); 
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    Retreat(P); 

    Decrement(last); 

 

    Advance(dir,P); 

    Swap_Rem_Trees(P,Q); 

    Retreat(P); 

    Increase(dir); 

   end; 

   If(dir = last) then 

    Advance(dir,P) 

    Reverse(P); 

   end; 

 end Reverse_Rem_Tr; 

end Obvious_Reversal_Realiz; 

 

Figure 28: Tree Reversal Realization 

 

 

The final enhancement to be discussed is Node_Height with specifications shown 

in Figure 29. Node_Height of a node x will return an integer representing the longest 

path from x to an Empty_Tree, in the specification, node x will always be the root node 

of the Rem_Tr as stated in the ensures clause. The realization of this enhancement is 

shown in Figure 30.  

 
Enhancement Node_Height_Capability for Exploration_Tree_Template; 

 

 Operation Node_Height( restores P: Tree_Posn ): Integer; 

  ensures Node_Height = ( ht(P.Rem_Tr ) ); 

 

end Node_Height_Capability; 

 

Figure 29: Enhancement specifications for Node Height operation 
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Realization Node_Height_Realiz for Node_Height_Capability 

         of Exploration_Tree_Template 

 Recursive Procedure Node_Height ( restores P: Tree_Posn ): Integer 
  decreasing ht(P.Rem_Tr) ; 

 

  Var MaxHeight, NextHeight, dir: Integer; 

  MaxHeight := 0; 

  NextHeight := 0; 

  dir := 1; 

 

  If (At_an_End(P)) then 

   Node_Height:= 0 ; 
  else 

   while ( dir < = k ) then  

    maintaining P.Path = #P.Path and  

      P.Rem_Tr = #P.Rem_Tr and  

      MaxHeight = 

       Max(
d=1 to dir-1

ht(Split_at(d∸1,P.Rem_Tr).RT); 

    decreasing (k - dir); 
   do 

    Advance(dir, P); 

    NextHeight := Node_Height(P); 

    If (MaxHeight < NextHeight) then  

      MaxHeight := NextHeight; 

    end; 

    Retreat(P);  

    Increment(dir); 

   end; 

   Node_Height:= 1 + MaxHeight; 
  end; 

 end Node_Height;  

end Node_Height_Realiz; 

 

Figure 30: Realization of the operation Node_Height 
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CHAPTER THREE 

A GENERAL, MAP CONCEPT SPECIFICATION AND A TREE-BASED 

REALIZATION 

 

Searching for information is one of the main topics of interest in computing and a 

map data abstraction encapsulates this idea.  The abstraction allows information to be 

associated with key values in such a way that it is possible to search, retrieve, delete, or 

modify information associated with a key value efficiently. This chapter first presents a 

detailed explanation of Almost_Constant_Function_Template that captures this data 

abstraction.  Later in the chapter, a balanced binary search tree based map 

implementation will be explained where an Almost_Constant_Function_Template is used 

as an interface. The concept includes operations to navigate through the keys in an 

orderly fashion. For brevity, most of the figures used to support the explanations will just 

use sections of the concept; A detailed version of the concept is found on Appendix B.  

 

An Informal Introduction to Almost Constant Function Template 

 

 

The Almost_Constant_Function_Template is the specification of a generic data 

abstraction for searching and Figure 31 shows an informal specification of this template.  

The generic nature of this template is defined by the type of both Index and 

Range_Value provided during instantiation. The type family A_C_Fn is modeled as a 

total function where indices are mapped to range values. In the template, a default value 

C is taken as a parameter so that the positions of the function with no explicit assigned 

value will be mapped to this default value. To illustrate this model, consider Figure 32 
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which shows a mapping of integers to real numbers. Initially all indices will be mapped 

to the default value C and as non-default range values (deviations) are associated with 

index values and added into the function they deviate from the default values.   

Currently the example function in Figure 32 has three deviations, 2.1, 1.2 and 2.3, 

and we can insert, remove or swap values in the function. To achieve this, an operation 

Swap_Value is defined. This operation uses its three parameters to achieve all three 

actions with the same operation. For example, to insert a new value, Swap_Value 

parameter V will have the new value to be inserted to the function at a specified index i 

which is currently mapped to a default value C. To remove an existing value, 

Swap_Value will have the default value C passed in as V to an index i which is currently 

mapped to a deviation. Swapping happens when a new value is to be inserted to an index 

that is not mapped to a default value. 

Navigating the function can be achieved in the order of indices that the client 

define (in Figure 31 the index i is defined to precede j) by three operations, 

First_Int_Index, Next_Int_Index and Would_Be_Last. Fist_Int_Index it gives the first 

interesting index in the function and that is the first index not mapped to a default value, 

in Figure 32 this would be 2. From 2 we can move to the next interesting index using 

Next_Int_Index operation, if we loop this operation by getting the next index the entire 

function can be navigated until the last index. To know if an index is the last one and all 

interesting key values have been navigated, a Boolean operation Would_Be_Last is used.  

The ability to navigate (in order) is necessary to copy a map or to print a map, for 

example.  
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Concept Almost_Constant_Function_Template( type Index, Range_Value; 

  def const C: Range_Value; evaluates Dev_Ct_Max: Integer; 

      def const (i: Index) ⊴ (j: Index): B ) 

 

  Family A_C_Fn  (IndexRange_Value);  

    

  Operation Swap_Value( updates V: Range_Value; updates F: A_C_Fn; 

            restores i: Index );  

  Operation First_Int_Index( replaces i: Index; restores F: A_C_Fn);  

    

  Operation Next_Int_Index( restores i: Index; restores F: A_C_Fn; 

         replaces r: Index ); 

  Operation Would_Be_Last( restores i: Index; restores F: A_C_Fn ): 

              Boolean;  

  Operation Max_Deviation_Ct(): Integer;     

    

  Operation Deviation_Count_of( restores F: A_C_Fn ): Integer; 

 

  Operation Make_Constant( clears F: A_C_Fn ); 

 

end Almost_Constant_Function_Template; 

 

Figure 31: A Skeleton Interface for Almost Constant Function Template 

 

 

Figure 32: An example “almost constant” map from Integer to Real 
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 To know how many deviations are currently in the function, operation 

Deviation_Count_of is used. Max_Deviation_Ct will provide the maximum number of 

deviations you can have in a function. 

 

A Formal Specification of Almost Constant Function Template 

 

 

  A formal specification of Almost_Constat_Function_Template is shown in 

Figure 33. To instantiate this concept a client should provide the type of both Index and 

Range_Value. Dev_Ct_Max which is an integer and provided during instantiation will 

set the maximum number of deviations the function can have; this value is constrained by 

the specified concept level requires clause which state that the Dev_Ct_Max is at least 1. 

The concept imports as a parameter an ordering of indices that will allow the client to use 

the operations provided in the concept to navigate per order of these indices. The concept 

level requires clause specifies this ordering of indices to be of total ordering using the 

mathematical predicate Is_Total_Ordering(⊴). 

The mathematical modeling of an A_C_Fn is a function from Index to 

Range_Value. Using F as an exemplar for A_C_Fn, a Deviation Count of 

F(Deviation_Count(F)) state how many indices in F are not mapped to the default 

value C; This count is constrained to be less than or equal to the Dev_Ct_Max as stated in 

the constraint clause. For every function F constructed, the initialization clause will 

map every index to a default value C.  
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Concept Almost_Constant_Function_Template(type Index,Range_Value;  

  def const C: Range_Value; evaluates Dev_Ct_Max: Integer; 

 def const (i: Index) ⊴ (j: Index): B ); 

        Deviation Count Maximum ) 
   uses Std_Integer_Fac, Std_Boolean_Fac,Basic_Ordering_Theory; 

   requires 1  Dev_Ct_Max and Is_Total_Ordering(⊴ ); 
 

  Family A_C_Fn  (IndexRange_Value);( Almost Constant Function ) 

   exemplar F; 

   Def Const Deviation_Count( F: A_C_Fn ): ℕ  

       ( ║{ i: Index  F(i)  C }║ ); 
   constraint 

    Deviation_Count( F )  Dev_Ct_Max; 
   initialization 

    ensures F   i: Index.( C ); 

  

  Oper Swap_Value( updates V: Range_Value; updates F: A_C_Fn;  

            restores i: Index ); 

   requires  Deviation_Count(F)  Dev_Ct_Max or F(i)  C or V  C; 

   ensures F(i)  #V and V  #F(i) and  

      j: Index, if j  i then F(j)  #F(j); 

  ⁝ 

  ⁝ 
 

end Almost_Constant_Function_Template; 

 

 

Figure 33: A Formal Specification of Almost Constant Function Template 

 

 

Formally, Swap_Value operation is specified as shown in Figure 33. Its 

specification includes several requires clauses which are disjunctions: The first one is 

Deviation_Count(F)  Dev_Ct_Max which requires a function to have space before 

inserting a new value. The second requirement is F(i)  C, and this requirement comes 

into picture when a new Range_Value is intended to replace existing Range_Value. 

The last one is V  C, this requirement covers a case when a default value C is passed in as 

an incoming Range_Value and is synonymous to resetting an existing value to a default 

value. The ensures clause for this operation essentially swaps whatever is in the function 
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at an index i (i.e. F(i)) to V and V to F(i) and everything else in the function is 

unchanged.  

The next four definitions shown in Figure 34 are helper definitions locally defined 

and intended to make the rest of the operations easier to specify. The first definition is for 

the predicate “less than” that is true if and only if when given two indices i and j, index 

i strictly precedes j i.e., when i ⊴ j and i  j. The second definition Are_Devs_after 

tells us if there are any deviations after the current index i. Is_1st_Dev_after it tells what 

is the next index after the given index i that is not mapped to default value C. The last 

definition Is_1st_Dev tells if everything before i are mapped to C, implying i is the first 

deviation.  

First_Int_Index is formally defined using Is_1st_Dev to give back the first index 

of the function whose value is not mapped to C.  The requires clause of First_Int_Index 

restrict this operation to be called when there are no deviations within the function. 

Operation Next_Int_Index uses the definition Are_Devs_after to specify the requires 

clause, Are_Devs_after has to be true to call the operation. If these requirements are met, 

Next_Int_Index uses Is_1st_Dev_after in ensures clause to give back the next index after 

i. As discussed in the previous section, with these two operations, a client can traverse 

the entire function, looking for the next interesting index until the last index. To know the 

last index a Boolean operation Would_Be_Last is available.  It specifies the last index to 

be the one where no more deviations will exist after that and when it is reached all key 

values associated with non-default range values have been navigated.  
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  ⁝ 

  ⁝  

  

  Def Const (i: Index)  (j: Index): B  ( i ⊴ j and i  j ); 

 

  Def Const Are_Devs_after( i: Index, F: A_C_Fn ): B   

      (  k: Index  i  k and F(k)  C );  
 

  Def Const Is_1st_Dev_after( i, k: Index, F: A_C_Fn ): B   

     ( i  k and F(k)  C and  j: Index, if i  j  k, then F(j)  C ); 

 

  Def Const Is_1st_Dev( k: Index, F: A_C_Fn ): B   

     ( F(k)  C and  j: Index, if j  k then F(j)  C ); 

 

  Operation First_Int_Index( replaces i: Index; restores F: A_C_Fn );  

   requires 1 ≤ Deviation_Count (F); 

   ensures Is_1st_Dev( i, F ); 

 

  Operation Next_Int_Index( restores i: Index; restores F: A_C_Fn; 

            replaces r: Index );  

   requires Are_Devs_after( i, F ); 

   ensures Is_1st_Dev_after( i, r, F); 

 

  Operation Would_Be_Last( restores i: Index; restores F: A_C_Fn ): 

              Boolean; 

   ensures Would_Be_Last  (  Are_Devs_after( i, F ) ); 

   

  Operation Max_Deviation_Ct(): Integer;       

   ensures Max_Deviation_Ct  ( Dev_Ct_Max ); 

 

  Operation Deviation_Count_of( restores F: A_C_Fn ): Integer; 

   ensures Deviation_Count_of  ( Deviation_Count(F) ); 

 

  Oper Make_Constant( clears F: A_C_Fn ); 

 

end Almost_Constant_Function_Template; 

 

 

Figure 34: A snippet showing specifications for Almost_Constant_Function_Template 
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AVL Balanced Binary Search Tree-Based Map Implementation 

 

 

This section presents a balanced binary search tree based map implementation. 

The idea is to use the generic Exploration_Tree_Template and instantiate it to be a binary 

tree by supplying the value k as 2. However, to exploit the natural ordering of Binary 

Search Tree (BST) additional constraints are provided in the realization, one that 

guarantees that the binary tree maintains binary search tree (BST) property and another 

that assures that the tree is balanced for fast performance.  

 

Realization Parameter Operations 

 

The BST_Realiz for Almost_Constant_Function_Template implements all the 

operations specified in the interface and to make the implementation both modular and 

efficient, the realization includes several imported and locally defined operations and 

definitions which are not part of the concept.  

Since the Index and Range_Value types are supplied by the user and may be non-

trivial, no operations on these types—not even assignment for copying and equality 

checking—may be assumed to exist automatically.  Users must provide suitable 

parameters depending on the actual Index and Range_Value types. These operations that 

need to be supplied by the users include ones needed for the ordering of indices, copying 

an index, assigning new default value and one to check if a given value is a default value.  

Since the type of Index and Range_Value are supplied as parameters when the 

template is instantiated, all these operations are also provided as arguments. The four 

operations are defined in the parenthesis as the realization parameters are In_Order, 
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Replica, New_Dflt_RV and Is_Dflt_RV as shown in Figure 35. For brevity, Figure 35 

and other figures used in this section will only show sections of BST_Realiz and a 

detailed version of it is given in Appendix C. 

 

Realization BST_Realiz (    ( Binary Search Tree ) 
      Operation In_Order (restores i, j: Index): Boolean; 

       ensures In_Order  ( i ⊴ j ); 
      Operation Replica(restores i: Index): Index; 

       ensures Replica  ( i ); 

      Operation New_Dflt_RV(): Range_Value;     

       ensures New_Dflt_RV  ( C ); 

           ( New Default Range Value ) 
      Operation Is_Dflt_RV(V:Range_Value): Boolean; 

       ensures Is_Dflt_RV  ( V  C ); 

           ( Is Default Range Value ) 
  ) for Almost_Constant_Function_Template; 

   uses Exploration_Tree_Template; 

 

 Operation Are_Equal(restores i, j: Index): Boolean; 

 ensures Are_Equal  ( i  j ); 

    procedure 

  Are_Equal : In_Order(i, j) and In_Order(j, i); 
 end Are_Equal; 

 

 Operation Precedes(restores i, j: Index): Boolean; 

 ensures Precedes  ( i   j ); 
    procedure 

  Precedes : In_Order(i, j) and not In_Order(j, i); 

 end Precedes; 

        ⋮ 

        ⋮ 

end BST_Realiz; 

 

Figure 35: Binary Search Tree Realization 
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Key Value Pair as a Record Structure 

 

 

 In Figure 36, a local Facility is described by instantiating an Exploration_Tree_ 

Template realized by Obv_Exploration_Tree_Realiz. The goal is to supply appropriate 

arguments to create a tree structure that will be useful in implementing maps. One of the 

parameters is Node_Label. Having maps being represented by a key and value pair, a 

record structure is created of Type IRV_Pair with two fields, id for the Index and V 

for Range_Value. Therefore, every single IRV_Pair will have both id and V which 

will serve as a Node_Label. The second parameter define the number of children needed 

for the tree created and for this case 2 is supplied for binary tree. Lastly, a Dev_Ct_Max 

is provided as the Initial_Capacity of the tree. This declaration also includes three 

enhancements to Exploration_Tree_Template that will be useful in several 

implementations of different operations. Following this Facility declaration are two local 

definitions, Is_Dflt_C_Free and a predicate represented by the symbol ◄ which will be 

explained later.  
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Realization BST_Realiz ( 

           ⋮ 
           ⋮ 
 

   Type IRV_Pair  Record  ( Index Range Value Pair ) 

       id : Index; 

       V: Range_Value; 

      end; 

 

 Facility Tree_Fac is Exploration_Tree_Template (IRV_Pair, 2, 

             Dev_Ct_Max) 

        realized by Obv_Exploration_Tree_Realiz 

    enhanced by Node_Count_Capability  

         realized by Obv_Node_Count_Realiz  

    enhanced by Deletion_Capability  

       realized by Obvious_Deletion_Realiz 

    enhanced by Node_Height  

       realized by Obv_Node_Height_Capability_Realiz; 

 

 Definition Is_Dflt_C_Free ( T: Tr(IRV_Pair) ): B   

        (  p: Occ_Set( T.Path  T.Rem_Tr ), 

 ( Is Default Constant Free )             p.V ≠ C); 

 

 Definition Is_Antitransitive( : (D: Set)⊠ DB )   

   (  x, y, z: D, if  x  y and  y  z, then  x  z ); 

 

 Definition (p: IRV_Pair) ◄ (q: IRV_Pair): B  ( p.id  q.id ); 

  ( Is Pair Less Than ) 
  Corollary 1: Is_Transitive(◄) and Is_Asymmetric(◄)and  

          Is_Antitransitive(◄); 

           ⋮ 
end BST_Realiz; 

 

Figure 36: Binary Search Tree Realization 

 

Conventions and Correspondence 

 

 

Figure 36 defines a record of Type A_C_Fn which has two fields, TP which is a 

Tree_Posn and a Last_Id which is an index in the tree that is the maximum of all the 

indices in the tree. The convention and correspondence are a part of this record.  The 

use of these assertions in verification of the implementation are discussed elsewhere [6]. 
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To simplify expressions of the convention and correspondence assertions in this 

realization, the mathematical definitions Fn_Sub_Gr (Function Subgraph), Dom_Set 

(Domain Set) and Rpd_Fn (Represented Function) are specified. Fn_Sub_Gr is a power 

set of power set of IRV_Pair, and it defines a unique existence of an index (id) and a 

value (V) for a given power set of IRV_Pair.From this definition, it follows that an 

occurrence set of a binary search tree which has IRV_Pair as nodes is a Fn_Sub_Gr as 

stated in the corollary. Dom_Set is a power set of indices and for an index i in IRV_Pair. 

The corollaries state that, there exists a unique IRV_Pair with i, and there will be only 

one mapping of that index to Range_Value, unless the index is not in the Dom_Set in 

which case it will be mapped to C. Definitions Fn_Sub_Gr and Dom_Set are used to 

define Rpd_Fn which is a function that takes indices and maps those which are in the tree 

to explicit values and those which are not to a default value C. Rpd_Fn captures the 

almost constant function that is represented in a tree structure.  

The convention assertion also known as representation invariant will keep the 

implementation of the operations consistent by providing conditions that may be assumed 

true at the beginning of every external operation, and must be shown to be at the end of 

each operation leaving the representation still satisfying the convention. In Figure 37, the 

convention contains a predicate Is Left Right Conformal with (Is_L_R_Cfml_w) which 

uses the predicate ◄ defined in Figure 36. ◄ is a Boolean predicate that returns true 

when the left index is less than the right index. Is_L_R_Cfml_w describes the BST 

property of the tree representation and it is formally defined in the extension 

Left_Right_Conformality_Ext for General Tree Theory illustrated on Appendix F. For 
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performance Is_Balanced predicate is used in the convention and will be explained in 

details at the end of this chapter. Another predicate is Is _Dflt_C_Free which is defined in 

Figure 36 and it guarantees that, every operation implemented will not leave a default 

value C stored within the structure. The other part of the convention describes an index 

Last_Id to be in the occurrence set and any other index the set will have is less than 

Last_Id. The subordinate annotation which_entails is included in this specification to 

explicitly assure the type checker that the Occ_Set is a Fn_Sb_Gr.  
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 

Def. Fn_Sub_Gr:((IRV_Pair))   ( Function SubGraph )  

   {S:(IRV_Pair) p, q: S, if p.id  q.id, 

         then p.V  q.V }; 

 Corollary 1:  T: U_Tr_Pos(2, IRV_Pair), if Is_L_R_Cfml_w (◄, T ),  

   then Occ_Set(T): Fn_Sub_Gr; 

 

Def. Dom_Set( S:(IRV_Pair) ):(Index)  

    { i: Index p: S  i  p.id };  ( Domain Set ) 

  Corollary 1:  S: Fn_Sub_Gr,  i: Dom_Set(S), ! p: S  i  p.id; 

  Corollary 2:  S: Fn_Sub_Gr, ! F: IndexRange_Value   

    p: S, F(p.id)  p.V and  i: (Index~Dom_Set(S)), F(i)  C; 

 

Implicit Def. Rpd_Fn( S: Fn_Sub_Gr ): IndexRange_Value  is 

         p: S, Rpd_Fn(S)(p.id)  p.V and 

      i: (Index~Dom_Set(S)), Rpd_Fn(S)(i)  C; 

        ( Represented Function ) 

 

Type A_C_Fn  Record  

    TP: Tree_Fac.Tree_Posn; ( Tree Position ) 

    Last_Id : Index;  ( Last Index ) 
       end; 

 

      convention Is_L_R_Cfml_w(◄, F.TP.Path  F.TP.Rem_Tr ) 

      which_entails 

      Occ_Set( F.TP.Path  F.TP.Rem Tr ): Fn_Sub_Gr and 

      Is_Balanced (F.TP) and Is_Dflt_C_Free (F.TP) and 

       p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), 

          p.id ⊴ F.Last_Id and  

      if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,  

     then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  

          q.id  F.Last_Id;  

  correspondence Conc.F   

     Rpd_Fn( Occ_Set(F.TP.Path  F.TP.Rem_Tr) );  

 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 37: Binary Search Tree Realization 
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The correspondence is an abstraction function between the realization 

representation view and the specification abstract view. The correspondence provides a 

mapping between all values in the realization representation that satisfy the convention 

to the values in the concept.  This mapping must be well founded and this fact is 

established by the proof on the obligations generated by the VC generator for the 

correspondence. In Figure 37, the correspondence defines a value in the conceptual 

function F (Conc.F) to correspond a Rpd_Fn of all indices and values in the occurrence 

set. Occurrence set is a set of all nodes in the realization representation (tree) and is 

defined in the General Tree Theory to accept a tree and return a set of all nodes within the 

tree.  

Figure 38 summarizes the relationship between the conceptual space and the 

representation space through correspondence using an example function. In the 

conceptual space an Almost Constant Function example is used within the constraints in 

this space. On the other hand, is the same function in the tree representation space and 

satisfy the convention which has all the constraints in this space. The two spaces are 

related through an abstraction function which maps every concrete value that satisfies the 

convention in the implementation to an abstract value that satisfies the constraints 

specified in the concept. 
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Figure 38: Map implementation 

 

Implementation of Almost Constant Function Operations  

Using Locally defined operations. 

 

 

The implementation contains a variety of local operations to modularize the code 

further.  

The first two local operations Are_Equal and Precedes in Figure 35 use the 

operation In_Order to define equality and “less than” for the two given indices passed in 

as parameters to these operations. 

Figure 39 shows a local operation Current_Id which returns an index for the root 

node of the Rem_Tr in a Tree_Posn. To copy the generic index value, the imported 

operation Replica is used in the realization of Current_Id.  
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In Figure 40, a local operation Shift_to_Index_in_Rem_of is specified and 

implemented. This operation serves as a helper function for operation Shift_to_Index in 

Figure 43. A Boolean parameter Is_Present is used in the specification and set to true 

when an index i is at some node in the tree and false otherwise.  The subordinate 

annotation which_entails is also included in this specification to explicitly assure the 

type checker that the part of the tree stated is not empty and therefore, it is a legitimate 

argument in the subsequent use in Rt_Lab (Root Label). 

  

Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 Operation Current_Id(restores F: A_C_Fn ): Index;  (*Current Index*) 

  requires F.TP.Rem_Tr ≠ ; 

  ensures Current_Id  (Rt_Lab (F.TP.Rem_Tr).id ); 

   procedure 

  Var P: IRV_Pair; 

  Swap_Label (P, F.TP); 

  Current_Id : Replica (P.id ); 

  Swap_Label (P, F.TP); 

 end Current_Id; 

 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 39: Operation Current_Id to return an Index of the root node of Rem_Tr 
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 

Operation Shift_to_Index_in_Rem_of( updates F: A_C_Fn;  

       restores i: Index; replaces Is_Present: Boolean ); 

  requires Is_L_R_Cfml_w( ◄, F.TP.Rem_Tr ); 

  ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and  

  #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and  

  if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ), then Is_Present and  

   F.TP.Rem_Tr   ( which_entails F.TP.Rem_Tr:(Tr(IRV_Pair)~{}) ) 

         and Rt_Lab(F.TP.Rem_Tr).id  i and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ),  

    then  Is_Present and F.TP.Rem_Tr   and 

Is_L_R_Cfml_w( ◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  

Jn(2, (i, C)) ); 

 

recursive procedure Shift_to_Index_in_Rem_of( updates F: A_C_Fn;  

        restores i: Index; replaces Is_Present: Boolean ); 

 

  decreasing ht(F.TP.Rem_Tr); 

 

  If (Are_Equal(i, Current_Id(F))) then  

       Is_Present : True(); 
  else 

   If (not At_an_End(F.TP)) then 

          If (Precedes(i, Current_Id(F)) then  

              Advance (1, F.TP); 

          else 

              Advance (2, F.TP); 

          end;  

          Shift_to_Index_in_Rem_of(F, i, present); 

   else  

    Is_Present : False(); 
      end; 

  end;  

 end Shift_to_Index_in_Rem_of; 

 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 40: Binary Search Tree Realization  

 

In the specifications for Shift_to_Index_in_Rem_of, the ensures clause of the operations 

assures that no changes are made to the tree contents, A conjunction F.Last_Id = 



 54 

#F.Last_Id guarantees that F.Last_Id is unchanged. The ensures clause also 

addresses a case when an index i is present in the tree and in this case a Tree_Posn will 

be updated in such a way the root node of the Rem_Tr will have an id equal to the index 

i specified as input parameter. The last part of the ensures clause is the case when an 

index i is not present in the tree, and in this situation, we expect after the entire search 

for an index i, the search will stop with Rem_Tr of the Tree_Posn being Empty_Tree 

and at the same time to stop at a position that in case we were to add that non-existing 

index i then it will still satisfy the BST property. 

 The operation Shift_to_Index uses Shift_to_Index_in_Rem_of. In the 

implementation, a local check before resetting a tree is performed, this will help in the 

cases where resetting is unnecessary and so improving efficiency. To illustrate the effect 

of this operation, consider a Tree_Posn in Figure 41(a) which is currently at an index 

20. If we shift to an index 17, the resulting Tree_Posn is shown in Figure 41(b). Figure 42 

shows a case when we shift to an index not present, for example, if we shift to index 18.  
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Figure 41: (a) Tree position at index 20 (b) the resulting tree position at index 17 

 

 

Figure 42: Tree position at index 20 (b) Resulting tree position at index 18 which is not 

present in the tree 
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Realization BST_Realiz ( 

             ⋮ 
             ⋮ 
 

Operation Shift_to_Index ( updates F: A_C_Fn;  

       restores i: Index; replaces Is_Present: Boolean ); 

  requires Is_L_R_Cfml_w( ◄, F.TP.Rem_Tr ); 

  ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and  

  #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and  

  if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ), then Is_Present and  

   F.TP.Rem_Tr   ( which_entails F.TP.Rem_Tr:(Tr(IRV_Pair)~{}) ) 

         and Rt_Lab(F.TP.Rem_Tr).id  i and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ),  

    then  Is_Present and F.TP.Rem_Tr   and 

Is_L_R_Cfml_w( ◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  

Jn(2, (i, C)) ); 

 

procedure Shift_to_Index ( updates F: A_C_Fn; restores i: Index;  

     replaces Is_Present: Boolean ); 

 

 If (Path_Length(F.TP) ≥ 1 and Precedes(i, Current_Id(F)) then  

  Reset(F.TP); 

 end; 

 Shift_to_Index_in_Rem_of (F, i, Is_Present); 
 

end Shift_to_Index; 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 43: Binary Search Tree Realization 

 

 

Shift_to_Index_in_Rem_of uses recursion in binary search to find an index i of 

the desired value. The base cases are when the search ends up with a root node id on the 

Rem_Tr equal to i as a case in Figure 41(b) or end up with an Empty_Tree(Ω)at the exact 

position i was to be in if it were present as is the case in Figure 42(b).  

 Figure 44 specifies another local operation Shift_to_First. This operation walks 

through the left spine of the binary search tree and stops at the first index; this will be the 

first node in the in-order traversal of the tree. To make sure this operation walks in the 
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correct spine that leads to the first node, a requirement is set that the Path should be 

Empty_String()and the Rem_Tr not an Empty_Tree(Ω). The ensures clause 

guarantees that the contents of the tree and the last index (Last_Id) are unchanged after 

the operation and that the root node id of the outgoing Rem_Tr is the first deviation of 

the given tree. The recursive implementation of this operation just Advances to the left of 

the tree until it finds the first node.  
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 

Operation Shift_to_First (updates F: A_C_Fn ) 

     requires F.TP.Path =  and F.TP.Rem_Tr ≠ Ω; 

     ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and 

    F.Last_Id = #F.Last_Id and  

    F.TP.Rem_Tr ≠ Ω 

(which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}) 

and (Rt_Lab( F.TP.Rem_Tr )).id = i and 

     Is_1st_Dev ( Rt_Lab( F.TP.Rem_Tr ).id, F.TP ); 

 

Recursive Procedure Shift_to_First ( updates F:A_C_Fn ); 

 decreasing ht(F.TP.Rem_Tr ); 

 

 If (At_an_End (F.TP)) then 

  Retreat (F.TP); 

 else 

  Advance (1, F.TP); 

  Shift_to_First (F); 

 end; 

end Shift_to_First; 

 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 44: Shift to First operation in BST Realization  

 

 

The next operation Delete_Rt_Node specified in Figure 45 is a local operation 

and it is used in procedure Swap_Value. Delete_Rt_Node will remove a node from a tree 

and its specifications shows that the operation will affect the Remaining_Cap any time 

it is called. The pre-condition to this operation requires that the Rem_Tr not be 

Empty_Tree(Ω). The other requirements are that the tree must be a search tree and 

balanced. The ensures clause guarantees no modification to the Path, and because in the 

end, the operation gets rid the root of the incoming Rem_Tr, then the root node of the 

incoming Rem_Tr will no longer be a member of the occurrence set. The operation also 
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must ensure that the resulting tree is still a search tree and in case of imbalance that may 

be caused by deletion that it will not lead to a difference in height being greater than 2. 

Lastly, the value of Last_Id will still be the last index of the updated Tree_Posn.  

 

 

 
Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 

 

Operation Delete_Rt_Node ( updates F: A_C_Fn); 

 affects Remaining_Cap; 

  requires F.TP.Rem_Tr ≠ Ω and  

     Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and  

       Is_Balanced (F.TP.Path  F.TP. Rem_Tr); 
 ensures F.TP.Path = #F.TP.Path and  

   Occ_Set (F.TP. Rem_Tr) = Occ_Set (#F.TP.Rem_Tr) – 

        {Rt_Lab(#F.TP.Rem_Tr)} and 

   Is_L_R_Cfml_w (◄, F.TP.Rem_Tr  F.TP.Path ) and 

   Remaining_Cap = #Remaining_Cap +1 and  

   If (F.TP.Rem_Tr ≠ Ω  

    (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}))then  

   0 ≤ |ht(Split_at(0, F.TP.Rem_Tr).RT) –  
       ht(Split_at(1, F.TP.Rem_Tr).RT)| ≤ 2 and 

    (p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id 

   and if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ , then 

    q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  q.id  F.Last_Id; 
Procedure Delete_Rt_Node (updates F: A_C_Fn); 

 Var L, R : A_C_Fn; 

 Var P : IRV_Pair; 

 Var Is_Last_Id: Boolean; 

 Is_Last_Id := False(); 

 

 If (Are_Equal((Rt_Lab(F.TP.Rem_Tr)).id, F.Last_Id)) then  

  Is_Last_Id := True(); 

 end; 

 

 If (At_a_Leaf(F)) then  

  Remove_Leaf(P, F.TP);  

 else 

  Advance(1, F.TP); 

  If(At_an_End(F.TP)) then  

   Retreat(F.TP); 
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   Advance(2, F.TP); 

   Swap_Rem_Trees(R.TP, F.TP); 

   Retreat(F.TP); 

   Remove_Leaf(P, F.TP); 

   Swap_Rem_Trees(R.TP, F.TP); 

  else 

   Retreat(F.TP); 

   Advance(2, F.TP); 

   If(At_an_End(F.TP)) then 

    Retreat(F.TP); 

    Advance(1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

    Retreat(F.TP); 

    Remove_Leaf(P, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

   else 

    Retreat(F.TP); 

    Advance(1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

    Retreat (F.TP); 

    Advance(2, F.TP); 

    Swap_Rem_Trees(R.TP, F.TP); 

    Retreat(F.TP); 

    Remove_Leaf(P, F.TP); 

    Shift_to_First(R); 

    Swap_Rem_Trees(R.TP, F.TP); 

    Reset (R.TP); 

    Advance (1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP) 

    Retreat (F.TP); 

    Advance(2. F.TP); 

    If (At_an_End(F.TP)) then 

     Swap_Rem_Trees(R.TP, F.TP); 

    else 

     Advance(2, F.TP); 

     Swap_Rem_Trees(R.TP, F.TP); 

     Retreat(F.TP); 

    end;     

    Retreat(F.TP);     

   end; 

  end; 

  If (Is_Last_Id and At_an_End(F)) then  

   Retreat(F.TP); 

   F.Last_Id := Current_Id(F); 

   Advance(2, F.TP); 

  else 

   If (Is_Last_Id) then  

    F.Last_Id := Current_Id(F); 

   end; 

  end; 
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 end; 

end Delete_Rt_Node; 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 45: Procedure Delete Root Node in BST Realization 
 

 

The implementation of Delete_Rt_Node operation considers three cases that a 

node to be deleted x can be in before it gets deleted. The first case is when x is a leaf, this 

is a trivial case where Remove_Leaf will just be called on x. The second case is when x 

has either no right or no left child. In this case the implementation takes two steps to 

delete x and reconstruct the tree, first removing the existing child of x which includes 

everything rooted at this child, making node x a leaf and so reverting back to the first 

case. At this point Remove_Leaf can be called on x and the only remaining task will be 

to reconnect what used to be a child of x to be the parent of x. It is easy to observe that 

whichever scenario in the second case is true, reconstruction of the tree will still maintain 

the BST property. The third case is a non-trivial one where a node x has both children. 

This is a case illustrated in Figure 46. For this case, several steps are now involved in 

making sure the respective node is deleted and BST property is maintained. First it is 

necessary to make the node x a leaf. In the implementation, two tree positions (left, L and 

right, R) are created for this task. By swapping the right tree branch with R and left tree 

branch with L node x becomes a leaf which can now be deleted by just calling 

Remove_Leaf. However, the tricky part falls into the reconstruction part of the tree after 

getting rid of the intended node. A helpful note on this case is to observe that in L we 

have every node that was less than x and on the R, we have all nodes that were greater x, 
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this provides two possible ways to reconstruct the tree that still maintain the BST 

property, first by finding the maximum node in L to takes place of the deleted node x or 

by finding the minimum node in R to take place of the deleted node x. In the 

implementation shown in Figure 45 the latter case is used.  

 

Figure 46: (a) Node to be deleted with both children (b) The result after deletion  

 

The Swap_Value operation can be used to insert a new Range_Value into a map, 

remove an existing Range_Value or swap the existing Range_Value with a new one at 

a given index. Figure 47 gives an implementation of this operation. The implementation 

starts off by shifting to the specified node using a local operation Shift_to_Index. The 

two results of a Boolean valued variable present will branch the implementation in two 

cases. The first case is when present is true and the incoming value is not a default 

Range_Value, this leads to a swap between the incoming Range_Value and the one 
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existing at index i. If present is true but the incoming Range_Value is a default value, 

then the existing Range_Value will have to be deleted and Delete_Rt_Node operation is 

called at this point. When present is false and the incoming Range_Value is not a 

default range value, Swap_Value inserts that new value into the map at the specified 

index i.  
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Realization BST_Realiz ( 

 

             ⋮ 
 

Procedure Swap_Value(updates V: Range_Value;  

updates F: A_C_Fn; restores i: Index); 

 Var P: IRV_Pair; 

 Var present: Boolean; 

  

 P.id := Replica( i ); 

 

 Shift_to_Index ( F, i, present ); 

  

 If present then 

  If not Is_Dflt_RV( V ) then 

   P.V :=: V; 

   Swap_Label( P, F.TP ); 

   V :=: P.V; 

  else 

   Delete_Rt_Node(F); 

   V :=: P.V; 

   Adjust(F); 

  end; 

 else 

  If not Is_Dflt_RV( V ) then 

   P.V :=: V; 

   If (Node_Count(F.TP) = 0) then 

    F.Last_Id := Replica(P.id); 

   else  

    If (not In_Order (F.Last_Id, P.id) then  

     F.Last_Id := Replica(P.id); 

    end; 

   end; 

   Add_Leaf ( P, F.TP ); 

   V := New_Dflt_RV (); 

   Adjust(F); 

  end; 

 end;  

end Swap_Value; 

 

        ⋮ 

end BST_Realiz; 

 

 

Figure 47: An implementation of operation Swap Value  

 

The operation First_Int_Index will provide the first interesting index of the tree by 

updating a given Tree_Posn to have the first index as the root node of the Rem_Tr. The 
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implementation of this operation is shown in Figure 48 and uses a locally defined 

operation Shift_to_First, in the end the parameter i is replaced by the first index. 

 
Realization BST_Realiz ( 

             ⋮ 
Procedure First_Int_Index ( replaces i: Index; restores F: A_C_Fn );  

 

   Reset(F.TP ) 

 Shift_to_First( F ); 

 i := Current_Id( F ); 

 

end First_Int_Index; 

        ⋮ 

end BST_Realiz; 

 

Figure 48: An implementation of operation First Interesting Index 

 

 

 Figure 49 shows an implementation of the operation Next_Int_Index which on a 

given index i will provide the next index after i in an in-order traversal of the tree. This 

implementation considers the fact that the next index after i in the in-order traversal of 

the tree may lie in the right tree branch of the node i. Therefore, starting on a 

Tree_Posn with root node id of the Rem_Tr equals to i, Advance (2, F.TP) will 

navigate the tree to the right tree branch of the node i. If the right tree branch is 

Empty_Tree(Ω), the next index should be in the ancestors of node i. Otherwise, next 

index is expected to be the minimum node on the left tree branch of Rem_Tr root node. 

However, if the left tree branch is Empty_Tree(Ω), then the root node of the Rem_Tr is 

the next index after i.  
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 

Procedure Next_Int_Index (restores i: Index;  

restores F: A_C_Fn; replace r: Index ); 

 Var P: IRV_Pair; 

 Var present: Boolean; 

 

 Shift_to_Index (i, F, present); 

 

 Advance (2, F.TP); 

 If (At_an_End (F.TP)) then 

  Retreat(F.TP); 

  While (Precedes (Current_Id(F), i) or Are_Equal(Current_Id(F),i))  

   maintaining F.Path  F.Rem_Tr =  

   ((Prt_btwn(0, |#F.Path| ∸ 1, #F.Path)) o 

   Prt_Btwn (|#F.Path| ∸ 1, |#F.Path|, #F.Path) )  #F.Rem_Tr ; 
   decreasing | F.TP.Path |; 

  do 

   Retreat(F.TP); 

  end; 

  r := Current_Id(F) 

 else 

  Advance(1, F.TP); 

  If (At_an_End (F.TP)) then 

   Retreat (F.TP); 

   r := Current_Id(F) 

  else 

   Shift_To_First(F); 

   r := Current_Id(F);    

  end; 

 end; 

end Next_Int_Index; 

 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

 

Figure 49: Specification and implementation of operation Next_Int_Index in BST_Realiz 
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Realization BST_Realiz ( 

             ⋮ 
             ⋮ 

 

Procedure Would_Be_Last (restores i: Index; restores F: A_C_Fn): 

          Boolean; 

  

 If ( Are_Equal (F.Last_Id , i) ) then 

  Would_Be_Last := True();   

 else  

  Would_Be_Last := False(); 

 end; 

 

end Would_Be_Last; 

 

Procedure Max_Deviation_Ct(): Integer; 

 

 Max_Deviation_Ct := Dev_Ct_Max; 

 

end Max_Deviation_Ct; 

 

Procedure Deviation_Count_of ( restores F: A_C_Fn ): Integer; 

  

 Deviation_Count_of := Node_Count ( F.TP ); 

 

end Deviation_Count_of; 

 

Procedure Make_Constant ( clears F: A_C_Fn ); 

 

 Reset( F.TP ); 

 Delete_Remainder( F.TP ); 

 

end Make_Constant; 

 

end BST_Realiz; 

 

Figure 50: A snippet showing BST_Realiz 

 

The Boolean operation Would_Be_Last is implemented as shown in Figure 50, 

for a specified index i, Would_Be_Last will return true if i is the last index in the in-

order traversal of the tree. The implementation compares the incoming provided index 

with the Last_Id.  

 The last three operations in Figure 50 are somewhat easy and direct to understand, 

Max_Deviation_Ct() will return the maximum number of deviations in a given map, this 
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is implemented by just equating Max_Deviation_Ct to Dev_Ct_Max provided during 

instantiation of the template. The second operation, Deviation_Count_of is implemented 

by a Node_Count of the given Tree_Posn. Make_Constant is implemented by use of 

Delete_Remainder enhancement where the entire is deleted. 

 

AVL Binary Search Tree Balancing 

 

 Using a BST in this implementation makes it possible to achieve an worst-case 

complexity of O(log Dev_Count_of(F)) or better for the map operations. However, in the 

worst case the performance can be as poor as on a linked list if the BST is not well 

maintained during insertion and deletion of a nodes. Consider a case when a sorted 

sequence of keys is inserted into a BST.  If there is no mechanism to readjust the tree 

height as the elements are inserted, the final structure will be a linked list and searching 

can have a linear worst-case performance O(Dev_Count_of (F)). To solve this problem 

balancing is necessary in BST which will promise a logarithmic worst-case performance 

in all operations. In this implementation, a predicate Is_Balanced is added to the 

convention to guarantee that the external operations keep the representation balanced.  

Balancing will achieve proper branching of the BST and it does this by re-

balancing every time there is a change in the tree whether by inserting or deleting a node. 

There are several balancing techniques that exists in theory and practice. For this 

implementation, a worst-case mechanism AVL trees is used. AVL trees are height-

balanced trees and named after two inventors Adel’son-Vel’skii G and E.M. Landis [1]. 

The basic idea of AVL tree balancing mechanism is to guarantee that for every node in 
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the tree, the difference in height for the left sub-tree and right sub-tree is at most 1. To 

maintain this balance factor, special operations called rotations will be required to re-

adjust the tree nodes whenever a balance factor is violated at a node. Two types of 

rotations used: Right rotation which is specified and implemented in Figure 52 and left 

rotation which is specified and implemented in Figure 54. The operation 

Right_Rotate_Rem_Tr requires the Rem_Tr to be left-heavy as stated in the requires 

clause.  

This specification also uses a Split_at function which is defined in the General 

Tree Theory. Split_at will produce a Site and a Remaining Tree from a tree depending on 

the splitting position provided. Figure 51 illustrates this function. On an example tree (T) 

in Figure 51(a), Split_at (0, T) will result into a Site and Rem_Tr shown in Figure 51(b). 

Therefore, Split_at(0, F.TP.Rem_Tr).RT    simply states that the left subtree of 

the root node is not empty tree.  

At the end of rotation, the ensures clause first guarantees that no changes are 

made to the Last_Id and Path, however, the Rem_Tr will be updated and the 

specifications in the ensures clause uses Jn operator and Split_at function to define the 

resulting Rem_Tr after rotation. Left_Rotate_Rem_Tr is the mirror image of 

Right_Rotate_Rem_Tr and requires the Rem_Tr to be right heavy, after left rotation the 

remaining tree is either left heavy or with subtrees which have same height.  
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Figure 51: (a) Given 2-Tree T (b) Resulting Site and Remaining Tree after Split_at (0, T) 

 

Realization BST_Realiz ( 

                ⋮ 
 Operation Right_Rotate_Rem_Tr(updates F: A_C_Fn); 

  requires F.TP.Rem_Tr    

    (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and 

     Split_at(0, F.TP.Rem_Tr).RT   
     (which_entails Split_at(0, F.TP.Rem_Tr).RT:  

          U_Tr(2, IRV_Pair)~{}); 

  ensures F.Last_Id  #F.Last_Id and  

    F.TP.Path  #F.TP.Path and F.TP.Rem_Tr   

    Jn(  Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,  

         Jn(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT,  

       Split_at(1, #F.TP.Rem_Tr).RT, Rt_Lab(#F.TP.Rem_Tr)) ,  

       Rt_Lab(Split_at(0, #F.TP.Rem_Tr).RT) ); 

   Procedure 

  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (1, F.TP); 

   Swap_Rem_Trees (New_Rem_Tr, F.TP); 

   Advance (2, New_Rem_Tr); 

   Swap_Rem_Trees (New_Rem_Tr, F.TP); 

   Retreat (F.TP); 

   Swap_Rem_Trees(New_Rem_Tr, F.TP); 

   Retreat (New_Rem_Tr); 

   Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 end Right_Rotate_Rem_Tr ; 

 

        ⋮ 

end BST_Realiz; 

 

Figure 52: A snippet showing operation Right_Rotate_Rem_Tr in BST_Realiz 
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Both rotations in general are achieved by deterministic number of steps as demonstrated 

in Figure 53. In this figure, (a) is a tree position with left heavy Rem_Tr, A right rotation 

at this tree position will result into a right heavy Rem_Tr shown in Figure 53(b). 

Alternatively, if we left rotate a tree position in Figure 53(b), it will result into a tree 

position shown in Figure 53(a). The implementation of these operations uses operation 

Advance to get to right section of the tree, a temporary variable T to hold that section, and 

a Swap_Rem_Trees operation for movement.  

 

Figure 53: An illustration of Right Rotation and Left Rotation: (a) left heavy (b) Right 

heavy  
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 

Operation Left_Rotate_Rem_Tr (updates F : A_C_Fn); 

 requires F.TP.Rem   

   (which_entails F.TP.Rem: U_Tr(2, IRV_Pair)~{}) and  

   Split_at(1, F.TP.Rem_Tr).RT    
   (which_entails Split_at(1, F.TP.Rem_Tr).RT:  

          U_Tr(2, IRV_Pair)~{}); 

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and 

   F.TP.Rem_Tr   

   Jn(Jn(Split_at(0, #F.TP.Rem_Tr ).RT,  

    Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT, 
     Rt_Lab(#F.TP.Rem_Tr)), 

      Split_at(1, Split_at(1, #F.TP.Rem_Tr).RT).RT,  

       Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT)); 

           

procedure  

  

 Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

 Advance (2, F.TP); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Advance (1, New_Rem_Tr); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Retreat (F.TP); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Retreat (New_Rem_Tr); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 

end Left_Rotate_Rem_Tr; 

        ⋮ 
        ⋮ 

end BST_Realiz; 

 

Figure 54: Specification and implementation of operation Left Rotate in BST Realization 

 

 

To restore balance of an AVL tree there are several cases to be considered 

depending on whether the balance violating node is Left-Left heavy, Left-Right heavy, 

Right-Right heavy or Right-Left heavy. These four cases will also determine the type and 

number of rotations needed to re-balance the tree.  Shown in Figure 59 is operation 

Adjust which considers the above four cases to reestablish balance of an AVL tree. To 
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simplify implementation of Adjust operation, local operations LT _Height and 

RT_Height are defined and used with a sole purpose of finding heights of left subtree and 

right subtree respectively.   

Operation LT_Height (restores F: A_C_Fn): Integer 

 ensures LT_Height = ht (Split_at(1, F.TP.Rem_Tr).RT); 

Procedure  

  

 If(At_an_end(F.TP)) then  

  LT_Height := 0; 

 else 

  Advance (1, F.TP); 

  LT_Height := Node_Height (F.TP); 

  Retreat (F.TP) 

 end;  

end; 

 

Operation RT_Height (restores F: A_C_Fn) : Integer 

 ensures RT_Height = ht(Split_at(2, F.TP.Rem_Tr).RT); 

Procedure  

 

 If(At_an_end(F.TP)) then  

  RT_Height := 0; 

 else 

  Advance (2, F.TP); 

  RT_Height := Node_Height (F.TP); 

  Retreat (F.TP); 

 end; 

end; 

 

Figure 55: Operations LT_Height and RT_Height used in Adjust operation 

 

 

The implementation of Adjust operation in Figure 59 use the result of the 

difference between height of the left subtree (LTHeight) and height of the right subtree 

(RTHeight) to determine if the respective node maintains the AVL tree balancing. If 

this difference is less than −1 or greater than 1 re-balancing is required. The entire 

process of re-balancing needs to identify which case from among the four cases discussed 

earlier does the balance violation fall into. This classification will require the two values 

LTHeight and RTHeight. The two heights are compared and whichever is greater than 
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the other determines which side of the tree is heavier. The implementation is set to 

eliminate one case after the other. Once the exact case is identified, it will govern the type 

and number rotations needed to restore the balance.  

Two cases LR-Heavy and RL-Heavy mentioned above will require double 

rotation to achieve balance. The map implementation defines local operation 

Elevate_Right_Middle and Elevate_Left_Middle to achieve balance in those cases 

without double rotation. The specification and implementation of Elevate_Right_Middle 

and Elevate_Left_Middle are shown in Figure 57 and Figure 58, respectively. These 

specifications are the mirror image of each other. 

In Figure 57, the specifications show that operation Elevate_Right_Middle 

requires the remaining tree not to be empty tree. Split_at function is used to explicitly 

define which case of a tree this operation can be called. The case identified with the 

Split_at function is Left – Right Heavy (Split_at(1, Split_at(0, 

F.TP.Rem_Tr).RT).RT  ).  

The ensures clause of this operation will guarantee no changes made to the 

Last_Id and Path, however, the Rem_Tr will be updated as specified using Jn operator 

and Split_at function to represent the updated Rem_Tr after Elevate_Right_Middle.  As 

shown in Figure 59, the specification of the operation Adjust requires that the tree 

satisfies the BST property even before the operation is called and that Rem_Tr is 

Empty_Tree(Ω). After the operation Adjust is called, the ensures clause guarantees that 

the content of the tree and the Last_Id are not changed, and that the tree is balanced and 

still maintains the BST property. 
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To illustrate the operation Adjust, consider an imbalanced BST tree with a tree 

position in Figure 56(a). Based on the cases discussion above, this is a Left-Left heavy 

which will need a single right rotation to restore balance. The resulting tree position is 

shown in Figure 56(b). The next case shown in Figure 60 is a Left-Right heavy balance 

violation which would require double rotations in case Right and Left rotations were to 

be used, in this implementation Elevate_Left_Middle is used and Figure 60(a) shows a 

balanced case. 

 

 

Figure 56: Demonstration of operation Adjust, left-left heavy case: (a) Imbalance tree 

position (b) balanced tree position after right rotation 
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 
 

Operation Elevate_Right_Middle(updates F: A_C_Fn); 

   requires F.TP.Rem    

    (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and 

     Split_at(1, F.TP.Rem_Tr).RT    
    (which_entails 

      Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and  

     Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT   
    which_entails  

 Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{}; 

 

  ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and 

    F.TP.Rem_Tr  

    Jn(Jn( Split_at(0, #F.TP.Rem).RT), 

      Split_at(1,Split_at(0,Split_at(0,#F.TP.Rem) 

       .RT).RT).RT ,Rt_Lab(#F.TP.Rem_Tr)), 

     Jn(Split_at(1, Split_at(0, Split_at(1,#F.TP.Rem_Tr) 
       .RT).RT).RT, Split_at(1, (Split_at(1, 

          #F.TP.Rem_Tr).RT).RT, 

         Rt_Lab(Split_at(1,#F.TP.Rem_Tr).RT ) , 
      Rt_Lab(Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT)); 

 

 procedure  

  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (2, F.TP); 

  Advance (1, F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr);  

  Advance (2, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP);  

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Advance (1, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 end Elevate_Left_Middle; 

        ⋮ 

end BST_Realiz; 

 

Figure 57: Operation Elevate Right Middle for balancing 
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Realization BST_Realiz ( 

 

             ⋮ 
             ⋮ 

 

Operation Elevate_Left_Middle(updates F: A_C_Fn); 

   requires F.TP.Rem    

    (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and 

     Split_at(0, F.TP.Rem_Tr).RT    
    (which_entails  

     Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and 

     Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT   
    which_entails  

 Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{}; 

 

  ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and 

    F.TP.Rem_Tr  

    Jn(Jn( Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,  
         Split_at(0, Split_at(1,Split_at(0,#F.TP.Rem_Tr) 

      .RT).RT).RT ,Rt_Lab(Split_at(0, #F.TP.Rem_Tr))), 

          Jn(  Split_at(1, Split_at(1, Split_at(0,#F.TP.Rem_Tr) 

          .RT).RT).RT, Split_at(1, #F.TP.Rem_Tr).RT , 

          Rt_Lab(#F.TP.Rem_Tr)),  

    Rt_Lab(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT) ); 

 

Procedure 

  

  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (1, F.TP); 

  Advance (2, F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr);  

  Advance (1, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP);  

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Advance (2, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 

 end Elevate_Left_Middle; 

 

        ⋮ 

end BST_Realiz; 

 

Figure 58: Operation Elevate Left Middle for balancing 



 78 

Operation Adjust (updates F: A_C_Fn) 

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and 

    F.TP.Rem_Tr ≠ Ω      

 ensures F.TP.Path  F.TP. Rem_Tr = #F.TP.Path  #F.TP.Rem_Tr and 
        F.Last_Id = #F.Last_Id and  

      Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and 

       Is_Balanced (F.TP.Path  F.TP. Rem_Tr); 
 

Recursive Procedure Adjust (updates F: A_C_Fn); 

 decreasing ht(F.TP.Rem_Tr); 

 

 Var balance: Integer 

 balance := LT_Height (F) – RT_Height (F); 

 

 If (balance > 1) then  

  Advance (1, F.TP); 

   

  If (LT_Height (F) >= RT_Height (F)) then 

   Retreat(F.TP); 

   Right_Rotate_Rem_Tr (F); 

  else 

   Retreat (F.TP); 

   Elevate_Left_Middle(F); 

  end; 

 else 

  If (balance < − 1) then  
   Advance (2, F.TP); 

    

   If (RT_Height (F) >= LT_Height (F)) then 

    Retreat(F.TP); 

    Left_Rotate_Rem_Tr (F); 

   else     

    Retreat (F.TP); 

    Elevate_Right_Middle(F); 

   end; 

  end; 

 end; 

 If (Path_Length(F.TP) /= 0) then  

  Retreat (F.TP); 

  Adjust (F); 

 end; 

end Adjust; 

        ⋮ 

end BST_Realiz; 

 

Figure 59: Implementation of operation Adjust 
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Figure 60: Demonstration on Left-Right Heavy imbalance: (a) Left-Right Heavy Rem_Tr 

(b) Balanced result after Elevate Left Middle 
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CHAPTER FOUR 

VERIFICATION  

 

As stated earlier, a thesis objective is to present a challenge verification problem 

of an implementation involving multiple theories and the use of the tree concept which is 

based on the non-trivial general tree theory for which there are no special-purpose 

solvers. This chapter presents the work that is in progress concerning verification of the 

enhancements and map implementation developed under this research.  

Generation of Verification Conditions (VCs) 

 

 

The purpose of this section is merely to illustrate the verification process using 

the simplest possible example. VCs for the Delete_Remainder enhancement are discussed 

here. As a part of the verifying compiler, the VC Generator will accept the 

implementation together with specifications and apply respective proof rules to 

mechanically form VCs, proving all of which is equivalent to the correctness of the 

program [6].  

For the generation of VCs for Delete_Remainder, a minimal set of the 

specifications and theories just needed for this enhancement were input and three VCs 

were generated for correctness of Delete_Remainder. The first one is shown in Figure 61. 

Each VC has a goal and given(s). In the first VC, the goal is to prove P'.Path = P.Path 

and with the givens it can be observed that the proof is “obvious”. In this case given 1 is 

sufficient to prove the goal.  
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VC 0_1 

Ensures Clause of Delete_Remainder: 

Obvious_Deletion_Realiz.rb(4:11) 

 

Goal(s): 

 

(P'.Path = P.Path) 

 

Given(s): 

 

1. (P'.Path = P.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (Q'.Path = Q.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree) 

 

Figure 61: Fist VC for ensures clause of Delete Remainder 

 

The second VC is shown next in Figure 62. This VC has a goal of P'.Rem_Tr = 

Empty_Tree and it is provable using givens 2 and 6.  

VC 0_2 

Ensures Clause of Delete_Remainder: 

Obvious_Deletion_Realiz.rb(4:11) 

 
Goal(s): 

 
(P'.Rem_Tr = Empty_Tree) 

 
Given(s): 

 
1. (P'.Path = P.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (Q'.Path = Q.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree)  

 

Figure 62: Second VC for ensures clause of Delete Remainder 
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The third and final VC concerns Remaining_Cap and it is shown in Figure 63. 

The goal and givens are straightforward. As it can be observed for all the VCs generated 

for this simplest example, correctness can be established by a simple automated prover 

without deep thinking [9].  While it is difficult to claim this would be the case for all VCs 

generated for the non-trivial map implementation, that is the opportunity and challenge 

presented by this thesis. A more detailed output of the VC generation process is shown in 

Appendix D.  

 
VC 0_3 

 

Ensures Clause of Delete_Remainder: 

Obvious_Deletion_Realiz.rb(4:11) 

 

Goal(s): 

 

((Remaining_Cap + N_C(Zip_Op(Q'.Path, Q'.Rem_Tr))) = 

(Remaining_Cap + N_C(P.Rem_Tr))) 

 

Given(s): 

 

1. (Q'.Path = Q.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (P'.Path = P.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree)  

 

Figure 63: Third VC for ensures clause of Delete Remainder  
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CHAPTER FIVE 

SUMMARY AND FUTURE DIRECTIONS 

 

 The primary goal of this thesis is to present an opportunity and a challenge for 

automated verification. Using a non-trivial tree theory, exploration tree template and 

almost constant function concepts, several enhancements to the tree concept and a map 

implementation based on trees have been developed. The implementation is annotated to 

make it amenable to verification, in the process illustrating what is necessary for software 

engineers to learn to develop verified components.  While the effort is considerable, once 

developed and verified, the cost will be amortized over the lifetime uses of the 

component. 

 

While this thesis has led to different enhancements and implementations that can 

test the progress we have towards automated verification, it is also the beginning phase of 

a host of directions that are worthy of exploration and improvement. First and foremost 

are the improvements that can be made to map implementation which is currently too 

long because few operation enhancements are currently available for exploration tree. An 

immediate direction is the creation of suitable enhancements for various tree operations 

that are currently locally defined within the implementation. This improvement will 

simplify the code and verification process. 

Another future work that can improve this thesis is more mathematical 

development that would make the assertions simpler for automated systems to manipulate 

(e.g., avoidance of quantifiers in the few places where they are used). 
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A direction that is worthy of exploration is the type of balancing mechanism that 

can be used.  This thesis has presented AVL trees which is a worst-case balancing 

mechanism. But for research and experimentation, efficient implementations based on 

other ideas such as splay trees (amortized mechanism) and randomly-balanced BSTs 

(randomized mechanism) can be developed with suitable annotations.  Performance 

annotations of all implementations is another useful direction. 

The general tree theory being one of the complex theories presents a challenge in 

coming up with an effective way to describe it. In this thesis, a lot of work has been done 

to use illustrations to make these theories useable in classrooms. It may be instructive to 

teach the concepts presented here at varying levels of formality to various audiences and 

evaluate their suitability. 
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Appendix A 

Exploration Tree Template 

 

 

 

Concept Exploration_Tree_Template( type Node_Label; eval k, Initial_Capacity: Integer ); 

  uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory with Relativization_Ext; 

  requires 1  k and 0  Initial_Capacity which_entails k: ℕ0 and Initial_Capacity: ℕ; 

  Var Remaining_Cap: ℕ; 

   initialization  

     ensures Remaining_Cap  Initial_Capacity; 

 

  Family Tree_Posn  U_Tr_Pos( k, Node_Label ); 

   exemplar P;  

   initialization 

    ensures P.Path   and P.Rem_Tr  ; 

   finalization  

    ensures Remaining_Cap = #Remaining_Cap + N_C (P.Path  P.Rem_Tr); 

 

  Oper Advance( eval dir: Integer; upd P: Tree_Posn ); 

   requires P.Rem_Tr    

   which_entails P.Rem_Tr: Tr(Node_Label)~{}and 1  dir  k; 

   ensures P.Rem_Tr  ≸( Prt_btwn(dir ∸ 1, dir, Rt_Brhs(#P.Rem_Tr)) ) and  

    P.Path  #P.Path◦( Rt_Lab(#P.Rem_Tr), Prt_btwn(0, dir ∸ 1,  

   Rt_Brhs(#P.Rem_Tr)),Prt_btwn(dir, k, Rt_Brhs(#P.Rem_Tr)) );  

 

  Oper Reset( upd P: Tree_Posn ); 

   ensures P.Path   and P.Rem_Tr  #P.Path  #P.Rem_Tr; 
 

  Oper At_an_End( rest P: Tree Posn ): Boolean; 

   ensures At_an_End  ( P.Rem_Tr   ); 

 

  Oper Add_Leaf( alt Labl: Node_Label; upd P: Tree_Posn ); 

   affects Remaining_Cap; 

   requires P.Rem_Tr   and Remaining_Cap > 0; 

   ensures P.Path  #P.Path and P.Rem_Tr  Jn( k, #Labl ) and 

       Remaining_Cap  #Remaining_Cap ∸1; 

 

  Oper Remove_Leaf( rpl Leaf_Lab: Node_Label; upd P: Tree_Posn ); 

   affects Remaining_Cap; 

   requires P.Rem_Tr   (which_entails P.Rem_Tr: Tr(Node_Label)~{})  
        and Rt_Brhs(P.Rem_Tr)  k; 

   ensures P.Path  #P.Path and P.Rem_Tr   and Leaf_Lab  Rt_Lab(#P.Rem_Tr)  

and Remaining_Cap  #Remaining_Cap + 1; 
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  Oper At_a_Leaf( rest P: Tree_Posn ): Boolean; 

   ensures At_a_Leaf  ((which_entails P.Rem_Tr: Tr(Node_Label)~{}) 

              and Rt_Brhs(#P.Rem_Tr)= k); 

 

  Oper Swap_Label( upd Labl: Node_Label; upd P: Tree_Posn ); 

   requires P.Rem_Tr   (which_entails P.Rem_Tr: Tr(Node_Label)~{}); 

   ensures Labl  Rt_Lab(#P.Rem_Tr) and P.Path  #P.Path and  

    P.Rem_Tr  Jn( Rt_Brhs(#P.Rem_Tr), #Labl ); 

 

  Oper Swap_Rem_Trees( upd P, Q: Tree_Posn ); 

   ensures P.Path  #P.Path and Q.Path  #Q.Path and P.Rem_Tr  #Q.Rem_Tr and 

    Q.Rem_Tr  #P.Rem_Tr; 

 

  Oper Swap_w_Rem( upd P, Q: Tree_Posn ); 

   ensures P.Path   and P.Rem_Tr  #Q.Rem_Tr  

     and Q.Path  #Q.Path◦#P.Path and Q.Rem_Tr  #P.Rem_Tr; 

 

  Oper Retreat( upd P: Tree_Posn ); 

   requires P.Path  ; 

   ensures P.Path  Prt_btwn(0, |#P.Path| ∸ 1, #P.Path) and P.Rem_Tr =( 

     Prt_Btwn (|#P.Path| ∸ 1, |#P.Path|, #P.Path)  #P.Rem_Tr;  

 

  Oper Path_Length( rest P: Tree_Posn ): Integer; 

   ensures Path_Length  |P.Path|; 

 

  Oper Rmng_Capacity(): Integer; 

   ensures Rmng_Capacity  ( Remaining_Cap ); 

 

end Exploration_Tree_Template; 
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Appendix B 

Almost Constant Function Template 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concept Almost_Constant_Function_Template( type Index, Range_Value;  

  def const C: Range_Value; eval Dev_Ct_Max: Integer; def const (i: Index) ⊴ (j: Index): B ); 

       (Deviation Count Maximum ) 

  uses Std_Integer_Fac, Std_Boolean_Fac, Basic_Ordering_Theory; 

   requires 1  Dev_Ct_Max and Is_Total_Ordering(⊴ ); 

 

  Family A_C_Fn  (IndexRange_Value);  ( Almost Constant Function ) 

   exemplar F; 

   Def Const Deviation_Count( F: A_C_Fn ): ℕ  ( ║{ i: Index  F(i)  C }║ ); 

   constraint 

    Deviation_Count( F )  Dev_Ct_Max; 

   initialization 

    ensures F   i: Index.( C ); 

  

  Oper Swap_Value( upd V: Range_Value; upd F: A_C_Fn; rest i: Index ); 

   requires  Deviation_Count(F)  Dev_Ct_Max or F(i)  C or V  C; 

   ensures F(i)  #V and V  #F(i) and  j: Index, if j  i then F(j)  #F(j); 

 

  Def Const (i: Index)  (j: Index): B  ( i ⊴ j and i  j ); 

 

  Def Const Are_Devs_after( i: Index, F: A_C_Fn ): B  (  k: Index  i  k and F(k)  C );  

   (Are Deviations after ) 

 

  Def Const Is_1st_Dev_after( i, k: Index, F: A_C_Fn ): B  ( i  k and F(k)  C and  

( Is 1st Deviation after )     j: Index, if i  j  k, then F(j)  C ); 

 

  Def Const Is_1st_Dev( k: Index, F: A_C_Fn ): B  ( F(k)  C and  j: Index, if j  k,  

 ( Is 1st Deviation )                                                                      then F(j)  C ); 

   

  Oper First_Int_Index( rpl i: Index; rest F: A_C_Fn );           ( First Interesting Index ) 

   requires 1 ≤ Deviation_Count (F); 

   ensures Is_1st_Dev( i, F ); 
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 Oper Next_Int_Index( rest i: Index; rest F: A_C_Fn; rpl r: Index );  

       ( Next Interesting Index ) 

   requires Are_Devs_after( i, F ); 

   ensures Is_1st_Dev_after( i, r, F);   

Oper Would_Be_Last( rest i: Index; rest F: A_C_Fn ): Boolean; 

   ensures Would_Be_Last  (  Are_Devs_after( i, F ) ); 

 

 Oper Max_Deviation_Ct(): Integer;  ( Maximum Deviation Count ) 

   ensures Max_Deviation_Ct  ( Dev_Ct_Max ); 

 

 Oper Deviation_Count_of( rest F: A_C_Fn ): Integer; 

   ensures Deviation_Count_of  ( Deviation_Count(F) ); 

 

 Oper Make_Constant( clr F: A_C_Fn ); 

 

end Almost_Constant_Function_Template; 
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Appendix C 

Map Implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Realization BST_Realiz (                 ( Binary Search Tree ) 

      Operation In_Order (restores i, j: Index): Boolean; 

       ensures In_Order  ( i ⊴ j ); 

      Operation Replica(restores i: Index): Index; 

       ensures Replica  ( i ); 

      Operation New_Dflt_RV(): Range_Value;     

       ensures New_Dflt_RV  ( C ); ( New Default Range Value ) 

      Operation Is_Dflt_RV(V:Range_Value): Boolean; 

       ensures Is_Dflt_RV  ( V  C ); ( Is Default Range Value ) 

  ) for Almost_Constant_Function_Template; 

   uses Exploration_Tree_Template; 

 

 Operation Are_Equal(restores i, j: Index): Boolean; 

 ensures Are_Equal  ( i  j ); 

    procedure 

  Are_Equal : In_Order(i, j) and In_Order(j, i); 

 end Are_Equal; 

 

 Operation Precedes(restores i, j: Index): Boolean; 

 ensures Precedes  ( i   j ); 

    procedure 

  Precedes : In_Order(i, j) and not In_Order(j, i); 

 end Precedes; 

 

     Type IRV_Pair  Record     ( Index Range Value Pair ) 

                            id : Index; 

                            V: Range_Value; 

                  end; 

 

     Facility Tree_Fac is Exploration_Tree_Template (IRV_Pair, 2, Dev_Ct_Max) 

        realized by Obv_Exploration_Tree_Realiz 

    enhanced by Node_Count_Capability  

         realized by Obv_Node_Count_Realiz  

    enhanced by Deletion_Capability  

       realized by Obvious_Deletion_Realiz 

    enhanced by Node_Height  

       realized by Obv_Node_Height_Capability_Realiz; 

 

 Definition Is_Dflt_C_Free ( T: Tr(IRV_Pair) ): B  (  p: Occ_Set( T.Path  T.Rem_Tr ),  

( Is Default Constant Free )   

 Definition Is_Antitransitive( : (D: Set)⊠DB )  (  x, y, z: D, if  x  y and  y  z,  

then  x  z ); 
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 Definition (p: IRV_Pair) ◄ (q: IRV_Pair): B  ( p.id  q.id );          ( Is Pair Less Than ) 

  Corollary 1: Is_Transitive(◄) and Is_Asymmetric(◄) and Is_Antitransitive(◄); 

 

 Def. Fn_Sub_Gr:((IRV_Pair))  { S:(IRV_Pair) p, q: S, if p.id  q.id,  

( Function SubGraph )      then p.V  q.V }; 

  Corollary 1:  T: U_Tr_Pos(2, IRV_Pair), if Is_L_R_Cfml_w (◄, T ),  

   then Occ_Set(T): Fn_Sub_Gr; 

 

 Def. Dom_Set( S:(IRV_Pair) ):(Index)  { i: Index p: S  i  p.id };  ( Domain Set ) 

  Corollary 1:  S: Fn_Sub_Gr,  i: Dom_Set(S), ! p: S  i  p.id; 

  Corollary 2:  S: Fn_Sub_Gr, ! F: IndexRange_Value   

    p: S, F(p.id)  p.V and  i: (Index~Dom_Set(S)), F(i)  C; 

 

 Implicit Def. Rpd_Fn( S: Fn_Sub_Gr ): IndexRange_Value  is  

    p: S, Rpd_Fn(S)(p.id)  p.V and  i: (Index~Dom_Set(S)), Rpd_Fn(S)(i)  C; 

         ( Represented Function ) 

 

 Type A_C_Fn  Record  

           TP: Tree_Fac.Tree_Posn; ( Tree Position ) 

           Last_Id : Index;  ( Last Index ) 

            end; 

       convention Is_L_R_Cfml_w(◄, F.TP.Path  F.TP.Rem_Tr ) 

        which_entails 

        Occ_Set( F.TP.Path  F.TP.Rem Tr ): Fn_Sub_Gr and 

        Is_Balanced (F.TP) and Is_Dflt_C_Free (F.TP) and 

               p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id and  

    if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,  

         then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)   q.id  F.Last_Id;  

  correspondence Conc.F  Rpd_Fn( Occ_Set(F.TP.Path  F.TP.Rem_Tr) );  

 

 Operation Current_Id(restores F: A_C_Fn ): Index;   ( Current Index ) 

  requires F.TP.Rem_Tr ≠ ; 

  ensures Current_Id  ( Rt_Lab (F.TP.Rem_Tr).id ); 

   procedure 

  Var P: IRV_Pair; 

  Swap_Label (P, F.TP); 

  Current_Id : Replica (P.id ); 

  Swap_Label (P, F.TP); 

 end Current_Id; 
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Operation Shift_to_Index_in_Rem_of( updates F: A_C_Fn; restores i: Index;  

     replaces Is_Present: Boolean ); 

  requires Is_L_R_Cfml_w( ◄, F.TP.Rem_Tr ); 

  ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and  

   #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ), then Is_Present and  

    F.TP.Rem_Tr   ( which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}) ) and  

    Rt_Lab(F.TP.Rem_Tr).id  i and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ),  

    then  Is_Present and F.TP.Rem_Tr   and  

Is_L_R_Cfml_w( ◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  Jn(2, (i, C)) ); 

 

 recursive procedure  
  decreasing ht(F.TP.Rem_Tr); 

 

  If (Are_Equal(i, Current_Id(F))) then  

              Is_Present : True(); 

    else 

   If (not At_an_End(F.TP)) then 

              If (Precedes(i, Current_Id(F)) then  

                        Advance (1, F.TP); 

                else 

                        Advance (2, F.TP); 

              end;  

                   Shift_to_Index_in_Rem_of(F, i, Is_Present); 

     else  

    Is_Present : False(); 

        end; 

  end;  

 end Shift_to_Index_in_Rem_of;

 

Operation Shift_to_Index ( updates F: A_C_Fn; restores i: Index;  

     replaces Is_Present: Boolean ); 

 requires Is_L_R_Cfml_w( ◄, F.TP.Rem_Tr ); 

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and  

   #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ), then Is_Present and  

    F.TP.Rem_Tr   ( which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}) ) and  

    Rt_Lab(F.TP.Rem_Tr).id  i and  

   if i  Dom_Set( Occ_Set(#F.TP.Rem_Tr) ),  

    then  Is_Present and F.TP.Rem_Tr   and  

Is_L_R_Cfml_w( ◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  Jn(2, (i, C)) ); 
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procedure Shift_to_Index ( updates F: A_C_Fn; restores i: Index;  

     replaces Is_Present: Boolean ); 

   

 If (Path_Length(F.TP) ≥ 1 and Precedes(i, Current_Id(F)) then  

  Reset(F.TP); 

 end; 

 Shift_to_Index_in_Rem_of (F, i, Is_Present); 

 

end Shift_to_Index; 

 

Operation Shift_to_First (updates F: A_C_Fn ) 

     requires F.TP.Path =  and F.TP.Rem_Tr ≠ Ω; 

     ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and 

    F.TP.Rem_Tr ≠ Ω (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}) and  

    (Rt_Lab( F.TP.Rem_Tr )).id = i and 

     Is_1st_Dev ( Rt_Lab( F.TP.Rem_Tr ).id, F.TP ); 

 

 

Recursive Procedure Shift_to_First ( updates F:A_C_Fn ); 

 decreasing ht(F.TP.Rem_Tr ); 

 

 If (At_an_End (F.TP)) then 

  Retreat (F.TP); 

 else 

  Advance (1, F.TP); 

  Shift_to_First (F); 

 end; 

end Shift_to_First; 

          

 

Operation Right_Rotate_Rem_Tr(updates F: A_C_Fn); 

 requires F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) 

     and Split_at(0, F.TP.Rem_Tr).RT    

(which_entails Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}); 

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr   

   Jn(  Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,  

              Jn(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT,  

                         Split_at(1, #F.TP.Rem_Tr).RT, Rt_Lab(#F.TP.Rem_Tr)) ,  

       Rt_Lab(Split_at(0, #F.TP.Rem_Tr).RT) ); 
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     procedure  
  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (1, F.TP); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Advance (2, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Retreat (F.TP); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

  Retreat (New_Rem_Tr); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 end Right_Rotate_Rem_Tr ; 

 

Operation Left_Rotate_Rem_Tr (updates F : A_C_Fn); 

 requires F.TP.Rem   (which_entails F.TP.Rem: U_Tr(2, IRV_Pair)~{}) and  

   Split_at(1, F.TP.Rem_Tr).RT    

(which_entails Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}); 

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr   

   Jn(Jn(Split_at(0, #F.TP.Rem_Tr ).RT,  

      Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT, Rt_Lab(#F.TP.Rem_Tr)), 

         Split_at(1, Split_at(1, #F.TP.Rem_Tr).RT).RT,  

       Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT)); 

           

procedure  
  

 Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

 Advance (2, F.TP); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Advance (1, New_Rem_Tr); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Retreat (F.TP); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 Retreat (New_Rem_Tr); 

 Swap_Rem_Trees (New_Rem_Tr, F.TP); 

 

end Left_Rotate_Rem_Tr; 
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 Operation Elevate_Left_Middle(updates F: A_C_Fn); 

  requires F.TP.Rem   

     (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and  

     Split_at(0, F.TP.Rem_Tr).RT    

    (which_entails Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and  

     Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT   which_entails  

    Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{}; 

 

  ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr   

   Jn(  Jn(  Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,  

                Split_at(0, Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT).RT ,  

                     Rt_Lab(Split_at(0, #F.TP.Rem_Tr)) ), 

              Jn(  Split_at(1, Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT).RT,  

              Split_at(1, #F.TP.Rem_Tr).RT , Rt_Lab(#F.TP.Rem_Tr) ) ,  

       Rt_Lab(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT) ); 

   procedure  
  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (1, F.TP); 

  Advance (2, F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr);  

  Advance (1, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP);  

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Advance (2, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 end Elevate_Left_Middle; 
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Operation Elevate_Right_Middle(updates F: A_C_Fn); 

 requires F.TP.Rem   (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and  

   Split_at(1, F.TP.Rem_Tr).RT    

    (which_entails Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and  

   Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT   which_entails  

   Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{}; 

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr   

   Jn(  Jn(  Split_at(0, #F.TP.Rem).RT),  

    Split_at(1, Split_at(0, Split_at(0, #F.TP.Rem).RT).RT).RT ,   

              Rt_Lab(#F.TP.Rem_Tr) ), 

              Jn(  Split_at(1, Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT).RT,  

         Split_at(1, (Split_at(1, #F.TP.Rem_Tr).RT).RT , 

          Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT ) , 

       Rt_Lab(Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT) ); 

   procedure  
  Var New_Rem_Tr: Tree_Fac.Tree_Posn; 

  Advance (2, F.TP); 

  Advance (1, F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr);  

  Advance (2, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP);  

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Advance (1, New_Rem_Tr); 

  Swap_Rem_Trees (New_Rem_Tr, F.TP); 

  Retreat (F.TP); 

  Swap_Rem_Trees (F.TP, New_Rem_Tr); 

  Retreat (New_Rem_Tr); 

  Swap_Rem_Trees(New_Rem_Tr, F.TP); 

 end Elevate_Left_Middle; 
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Operation LT_Height (restores F: A_C_Fn): Integer 

 ensures LT_Height = ht (Split_at(0, F.TP.Rem_Tr).RT); 

procedure  

  

 If(At_an_end(F.TP)) then  

  LT_Height := 0; 

 else 

  Advance (1, F.TP); 

  LT_Height := Node_Height (F.TP); 

  Retreat (F.TP) 

 end;  

end; 

 

Operation RT_Height (restores F: A_C_Fn): Integer 

 ensures RT_Height = ht(Split_at(1, F.TP.Rem_Tr).RT); 

procedure  

 

 If(At_an_end(F.TP)) then  

  RT_Height := 0; 

 else 

  Advance (2, F.TP); 

  RT_Height := Node_Height (F.TP); 

  Retreat (F.TP); 

 end; 

end; 

 

Operation Adjust (updates F: A_C_Fn) 

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and F.TP.Rem_Tr ≠ Ω; 

 ensures F.TP.Path  F.TP.Rem_Tr = #F.TP.Path  #F.TP. Rem_Tr and 

        F.Last_Id = #F.Last_Id and  

      Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and 

         Is_Balanced (F.TP.Path  F.TP. Rem_Tr); 

 

Recursive Procedure Adjust (updates F: A_C_Fn); 

 decreasing ht(F.TP.Rem_Tr); 

 

 Var balance: Integer 

 

 balance := LT_Height (F) – RT_Height (F); 

 

  

 If (balance > 1) then  

  Advance (1, F.TP); 

   

  If (LT_Height (F) >= RT_Height (F)) then 

   Retreat(F.TP); 
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   Right_Rotate (F); 

  else 

   Retreat (F.TP); 

   Elevate_Left_Middle(F); 

  end; 

 else 

  If (balance < − 1) then  

   Advance (2, F.TP); 

    

   If (RT_Height (F) >= LT_Height (F)) then 

    Retreat(F.TP); 

    Left_Rotate (F); 

   else 

    Retreat (F.TP); 

    Elevate_Right_Middle(F); 

   end; 

  end; 

 end; 

 If (Path_Length(F.TP) /= 0) then  

  Retreat (F.TP); 

  Adjust (F); 

 end; 

end Adjust; 

Operation Delete_Rt_Node ( updates F: A_C_Fn); 

 affects Remaining_Cap; 

 requires F.TP.Rem_Tr ≠ Ω)   

      Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path ) and  

        Is_Balanced (F.TP.Path  F.TP. Rem_Tr); 

 ensures F.TP.Path = #F.TP.Path and  

  Occ_Set (F.TP. Rem_Tr) = Occ_Set (#F.TP.Rem_Tr) ~ {Rt_Lab(#F.TP.Rem_Tr)} and 

  Is_L_R_Cfml_w (◄, F.TP.Rem_Tr  F.TP.Path ) and  

     Remaining_Cap = #Remaining_Cap +1 and If (F.TP.Rem_Tr /= Ω) then  

   0 ≤ |ht(Split_at(0, F.TP.Rem_Tr).RT) − ht(Split_at(1, F.TP.Rem_Tr).RT)| ≤ 2 and 

     p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id and  

     if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,  

     then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  q.id  F.Last_Id; 

 

Procedure Delete_Rt_Node (updates F: A_C_Fn); 

 Var L, R : A_C_Fn; 

 Var P : IRV_Pair; 

 Var Is_Last_Id: Boolean; 

 Is_Last_Id := False(); 

 

 If (Are_Equal((Rt_Lab(F.TP.Rem_Tr)).id, F.Last_Id)) then  

  Is_Last_Id := True(); 

 end; 
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 If (At_a_Leaf(F)) then  

  Remove_Leaf(P, F.TP);  

 else 

  Advance(1, F.TP); 

  If(At_an_End(F.TP)) then  

   Retreat(F.TP); 

   Advance(2, F.TP); 

   Swap_Rem_Trees(R.TP, F.TP); 

   Retreat(F.TP); 

   Remove_Leaf(P, F.TP); 

   Swap_Rem_Trees(R.TP, F.TP); 

  else 

   Retreat(F.TP); 

   Advance(2, F.TP); 

   If(At_an_End(F.TP)) then 

    Retreat(F.TP); 

    Advance(1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

    Retreat(F.TP); 

    Remove_Leaf(P, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

   else 

    Retreat(F.TP); 

    Advance(1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP); 

    Retreat (F.TP); 

    Advance(2, F.TP); 

    Swap_Rem_Trees(R.TP, F.TP); 

    Retreat(F.TP); 

    Remove_Leaf(P, F.TP); 

    Shift_to_First(R); 

    Swap_Rem_Trees(R.TP, F.TP); 

    Reset (R.TP); 

    Advance (1, F.TP); 

    Swap_Rem_Trees(L.TP, F.TP) 

    Retreat (F.TP); 

    Advance(2. F.TP); 

    If (At_an_End(F.TP)) then 

     Swap_Rem_Trees(R.TP, F.TP); 

    else 

     Advance(2, F.TP); 

     Swap_Rem_Trees(R.TP, F.TP); 

     Retreat(F.TP); 

    end;     

    Retreat(F.TP);     

   end; 

  end; 
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   If (Is_Last_Id and At_an_End(F)) then  

   Retreat(F.TP); 

   F.Last_Id := Current_Id(F); 

   Advance(2, F.TP); 

  else 

   If (Is_Last_Id) then  

    F.Last_Id := Current_Id(F); 

   end; 

  end; 

 end; 

end Delete_Rt_Node;

 

Procedure Swap_Value(updates V: Range_Value; updates F: A_C_Fn; restores i: Index); 

 Var P: IRV_Pair; 

 Var present: Boolean; 

  

 P.id := Replica( i ); 

 

 Shift_to_Index ( i, F, present ); 

  

 If present then 

  If not Is_Dflt_RV( V ) then 

   P.V :=: V; 

   Swap_Label( P, F.TP ); 

   V :=: P.V; 

  else 

   Delete_Rt_Node(F); 

   V :=: P.V; 

   Adjust(F); 

  end; 

 else 

  If not Is_Dflt_RV( V ) then 

   P.V :=: V; 

   If (Node_Count(F.TP) = 0) then 

    F.Last_Id := Replica(P.id); 

   else  

    If (not In_Order (F.Last_Id, P.id) then  

     F.Last_Id := Replica(P.id); 

    end; 

   end; 

   Add_Leaf ( P, F.TP ); 

   V := New_Dflt_RV (); 

   Adjust(F); 

  end; 

 end;  

end Swap_Value; 
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  Procedure First_Int_Index ( replaces i: Index; restores F: A_C_Fn );  

 

    Reset(F.TP ) 

 Shift_to_First( F ); 

 i := Current_Id( F ); 

 

end First_Int_Index;

 

Procedure Next_Int_Index (restores i: Index; restores F: A_C_Fn; replace r: Index ); 

 Var P: IRV_Pair; 

 Var present: Boolean; 

 

 Shift_to_Index (i, F, present); 

 

 Advance (2, F.TP); 

 If (At_an_End (F.TP)) then 

  Retreat(F.TP); 

  While (Precedes (Current_Id(F), i) or Are_Equal(Current_Id(F), i))  

   maintaining F.Path  F.Rem_Tr =  

   ((Prt_btwn(0, |#F.Path| ∸ 1, #F.Path)) o  

     Prt_Btwn (|#F.Path| ∸ 1, |#F.Path|, #F.Path) )  #F.Rem_Tr ; 

   decreasing | F.TP.Path |; 

  do 

   Retreat(F.TP); 

  end; 

  r := Current_Id(F) 

 else 

  Advance(1, F.TP); 

  If (At_an_End (F.TP)) then 

   Retreat (F.TP); 

   r := Current_Id(F) 

  else 
   Shift_To_First(F); 

   r := Current_Id(F);    

  end; 

 end; 

end Next_Int_Index; 

 

Procedure Would_Be_Last (restores i: Index; restores F: A_C_Fn): Boolean; 

  

 If ( Are_Equal (F.Last_Id , i) ) then 

  Would_Be_Last := True();   

 else  
  Would_Be_Last := False(); 

 end; 

 

end Would_Be_Last; 
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  Procedure Max_Deviation_Ct(): Integer; 

 

 Max_Deviation_Ct := Dev_Ct_Max; 

 

end Max_Deviation_Ct; 

 

Procedure Deviation_Count_of ( restores F: A_C_Fn ): Integer; 

  

 Deviation_Count_of := Node_Count ( F.TP ); 

 

end Deviation_Count_of; 

 

Procedure Make_Constant ( clears F: A_C_Fn ); 

 

 Reset( F.TP ); 

 Delete_Remainder( F.TP ); 

 

end Make_Constant; 

 

end BST_Realiz; 
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Appendix D 

VC Generation for Delete Remainder 

 

  
VCs for Obvious_Deletion_Realiz.rb generated Tue Apr 11 13:50:55 EDT 2017 

 

================================= VC(s): ================================= 

 

VC 0_1 

 

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11) 

 

Goal(s): 

 

(P'.Path = P.Path) 

 

Given(s): 

 

1. (P'.Path = P.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (Q'.Path = Q.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree) 

 

VC 0_2 

 

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11) 

 

Goal(s): 

 

(P'.Rem_Tr = Empty_Tree) 

 

Given(s): 

 

1. (P'.Path = P.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (Q'.Path = Q.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree) 
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  VC 0_3 

 

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11) 

 

Goal(s): 

 

((Remaining_Cap + N_C(Zip_Op(Q'.Path, Q'.Rem_Tr))) = (Remaining_Cap + N_C(P.Rem_Tr))) 

 

Given(s): 

 

1. (Q'.Path = Q.Path) 

2. (P'.Rem_Tr = Q.Rem_Tr) 

3. (Q'.Rem_Tr = P.Rem_Tr) 

4. (P'.Path = P.Path) 

5. (Q.Path = Empty_String) 

6. (Q.Rem_Tr = Empty_Tree) 

 

========================VC Generation Details  ========================= 

 

    Enhancement Realization Name: Obvious_Deletion_Realiz 

    Enhancement Name: Deletion_Capability 

    Concept Name: Exploration_Tree_Template 

 

==================================================================== 
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Appendix E 

General Tree Theory Developed by Dr. Bill Ogden 

Note: Because of the size of this theory, only few sections referred in thesis are included.  

 

  
Precis General_Tree_Theory; 

    uses General_String_Theory with Relativization_Ext, Basic_Multiset_Theory; 

 

  Definition Is_Tree_Former( Tr⦂ Cls, : Tr, Jn: Str(Tr)El(Tr ~ {}) )⦂ B  (  

    Pty 1:   , : Str(Tr),  x, y: El, if Jn(, x)  Jn(, y), then    and x  y; 

   Pty 2:   C⦂ P(Tr), 

               if (i)   C and  

      (ii)  : Str(C),  x: El, Jn(, x)  C,  

               then C  Tr        

                     );  

       ( Tree, Empty Tree, Join, Is_Tree_Former: ) 

   Corollary 1:   Tr⦂ Cls,  : Tr,  Jn: Str(Tr)El(Tr ~ {}), 

     if Is_Tree_Former( Tr, , Jn ), then  U, V⦂ Cls,  p: UStr(Tr)ElU,  

         b: UV,  s: UStr(V)Str(Tr)ElV, ! f: UTrV   : Str(Tr),  

 u: U,  x: El, f( u,  )  b(u) and f( u, Jn(, x) )  s(u, f[p(u, , x, [], , x); 

    ( Inductive definability, permutation, basis, successor, function) 

    Corollary 2:   Tr1, Tr2⦂ Cls,  1: Tr1,  2: Tr2,  Jn1: Str(Tr1)El(Tr1 ~ {1}),   

     Jn2: Str(Tr2)ElD(Tr2~ {2}), if Is_Tree_Former( Tr1, 1, Jn1 ) and  

      Is_Tree_Former( Tr2, 2, Jn2 ), then ! h: Tr1Tr2  h(1)  2 and  

    : Str(Tr1),  x: El, h(Jn1(, x))  Jn2(h(), x) and Is_Bijective( h );  

    ( Isomorphism of instances ) 

   Corollary 3:   Tr⦂ Cls,  : Tr,  Jn: Str(Tr)El(Tr ~ {})   

Is_Tree_Former( Tr, , Jn ); 

    ( Satisfiability ) 

 Categorical Definition for ( Tr⦂ Cls, : Tr, Jn: Str(Tr)El(Tr ~ {}) ) is  

Is_Tree_Former( Tr, , Jn ); 

  Corollary 1: Is_Surjective( Jn );  

 

 Implicit Definition Indcd_Fn( U, V⦂ Cls, b: UV, s: UStr(V)Str(Tr)ElV,  

       p: UStr(Tr)ElU ): UTrV  is  

   u: U, Indcd_Fn(U, V, b, s, p) (u, )  b(u) and  : Str(Tr),  x: El, 

  Indcd_Fn(U, V, b, s, p)(u, Jn(, x))  s(u, Indcd_Fn(U, V, b, s, p)[p(u, , x, []], , x); 

 

  Inductive Def. on T: Tr of N_C( T ): ℕ  is   ( Node Count ) 

    (i)  N_C()  0; 

   (ii)  N_C (Jn(, x))  suc( Ag(, 0)(N_C[[]]) ); 

  Corollary 1:   T: Tr, N_C(T)  0 iff T  ; 
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  Inductive Def. on T: Tr of ht( T ): ℕ  is   ( height ) 

    (i) ht()  0; 

   (ii) ht(Jn(, x))  suc( Ag(Max, 0)(ht[[]]) ); 

  Corollary 1:   T: Tr, ht(T)  0 iff T  ; 

  Corollary 2:   T: Tr, ht(T)  N_C(T); 

 

Def. Is_Leaf( T: Tr ): B = (  x: El,  : Str({})  T  Jn(, x) ); 

    Corollary 1:   T: Tr, if Is_Leaf(T), then N_C(T)  ht(T)  1; 

 

 

Inductive Def. on T: Tr of Occ_Set( T: Tr ): Set  is    ( Occurrence Set ) 

   (i) Occ_Set()  ; 

  (ii) Occ_Set(Jn(, x))  Ag(,)(Occ_Set[[]])  {x}; 

    Corollary 1:   T: Tr, ||Occ_Set(T)||: ℕ; 

    Corollary 2:   T: Tr, ||Occ_Set(T)||  N_C(T); 

 

Inductive Def. on T: Tr of (T)TRev: Tr()  is        ( Tree Reversal ) 

    (i) TRev  ; 

   (ii) Jn(, x)TRev  Jn( ([[]]TRev)Rev, x ); 

    Corollary 1:   T: Tr, (TTRev)TRev  T;  

    Corollary 2:   T: Tr, N_C(TTRev)  N_C(T);  

    Corollary 3:   T: Tr, ht(TTRev)  ht(T);  

    Corollary 4:   T: Tr, L_C(TTRev)  L_C(T);  

    Corollary 5:   T: Tr, Occ_Tly(TTRev)  Occ_Tly(T);  

 

Implicit Defs. Rt_Lab( T: Tr~{} ): El and  

           Rt_Brhs( T: Tr~{} ): Str(Tr)  is    ( Root Label and Branches ) 

     Jn( Rt_Brhs(T), Rt_Lab(T) ) = T;  

    Corollary 1:   x: El,  : Str(Tr), Rt_Lab(Jn(, x))  x and Rt_Brhs(Jn(, x))  ; 

 

 Def. Site  Cart_Prod 

     Lab: El; 

     LTS, RTS: Str(Tr)       ( Left Tree String, Right Tree String ) 

   end; 

 

  Implicit Def. (S: Site)SRev: Site  is    ( Site Reversal ) 

   SSRev.Lab  S.Lab and SSRev.LTS  ([[S.RTS]]TRev)Rev and SSRev.RTS  ([[S.LTS]]TRev)Rev; 

   Corollary 1:   S: Site, (SSRev)SRev  S; 

 Def. Tr_Pos = Cart_Prod        ( Tree Position ) 

           Path: Str(Site); 

           Rem_Tr: Tr   ( Remainder Tree )  

  end; 

 

Implicit Def. (P: Tr_Pos)PRev: Tr_Pos  is  ( Position Reversal ) 

    PPRev.Path  [[P.Path]]SRev and PPRev.Rem_TR  P.Rem_TRTRev; 

   Corollary 1:   P: Tr_Pos, (PPRev)PRev  P; 
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  Inductive Def. on : Str(Site) of (  )(T: Tr): Tr  is      ( zip operator ) 

    (i)   T = T; 

   (ii) ext(, S)  T =   Jn( S.LTS◦T◦S.RTS, S.Lab ); 

   Corollary 1:   , : Str(Site),  T: Tr, (◦)T = (T); 

    Corollary 2:   P: Tr_Pos, (P.Path  P.Rem_Tr)TRev  PPRev.Path  PPRev.Rem_Tr; 

    Corollary 3:   P: Tr_Pos, |P.Path|  ht(P.Rem_Tr)  ht(P.Path  P.Rem_Tr); 

   Corollary 4:   R, S: Site,  T, U: Tr, if R  T = S  U and  

    (|R.LTS| = |S.LTS| or |R.RTS| = |S.RTS|), then R = S and T = U; 

 

 Def. (T: Tr) Is_Subtree (U: Tr): B = (  : Str(Site)  T = U ); 

    Corollary 1:  Is_Partial_Ordering( Is_Subtree );  

   Corollary 2:   T, U: Tr, if T Is_Subtree U, then N_C(T)  N_C(U); 

   Corollary 3:   T, U: Tr, if T Is_Subtree U, then ht(T)  ht(U); 

   Corollary 4:   T, U: Tr, if T Is_Subtree U, then L_C(T)  L_C(U); 

   Corollary 5:   T, U: Tr, if T Is_Subtree U, then Occ_Set(T)  Occ_Set(U); 

   Corollary 6:   T, U: Tr, if T Is_Subtree U, then Occ_Tly(T)  Occ_Tly(U); 

   Corollary 7:   T, U: Tr, if T Is_Subtree U, then TTRev Is_Subtree UTRev; 

 

Implicit Def. Split_at( i: ℕ, T: Tr~{} ): Cart_Prod St: Site, RT: Tr end  is     

        ( produces a Site and a Remainder Tree ) 

    Split_at(i, T).St  Split_at(i, T).RT = T and  

|Split_at(i, T).St.LTS|  min(i, |Split_at(i, T).St.LTS|  |Split_at(i, T).St.RTS|); 

   Corollary 1:   S: Site,  T: Tr, Split_at( |S.LTS|, S  T ).St = S and  i: ℕ, 

Split_at( i, S  T ).RT = T; 

   Corollary 2:   i: ℕ,  T: Tr~{}, Split_at(i, T).RT Is_Subtree T; 

   Corollary 3:   i: ℕ,  T: Tr~{}, ht(Split_at(i, T).RT)  ht(T); 

 

 Def. (P: Tr_Pos) T (Q: Tr_Pos): B = ( P.Path  P.Rem_Tr  Q.Path  Q.Rem_Tr ); ( are tree equivalent ) 

   Corollary 1: Is_Equivalence( T ); 

   Corollary 2:  T: Tr, ;1|P.Path|ht(T)|P.Path| )Max()Max(
T)(ΛP

:P
T)(ΛP

:P

TT









,,
Tr_PosTr_Pos

 

 

  Inductive Def. on T: Tr of Yld( T ): Str  is        ( Yield ) 

    (i) Yld(  )  ; 

   (ii) Yld( Jn(, x) )  



 

otherwise

if

]])α[[Yld(Ag

})({Strαx

Λ),(

; 

   Corollary 1:   T: Tr, Yld(T)   iff T  ; 

   Corollary 2:   T: Tr, |Yld(T)|  L_C(T); 

  Corollary 3:   T, U: Tr, if T  U, then |Yld( T )|  |Yld( U )|; 

   Corollary 4:   T: Tr, Yld(TTRev)  Yld(T)Rev; 

   Corollary 5:   T: Tr, Yld(T)  Occ_Set(T); 

   Corollary 6:   T, U: Tr, if T Is_Subtree U, then Yld(T) Is_Substring Yld(U); 

 

  
end General_Tree_Theory; 
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Appendix F 

Left_Right_Conformality_Ext 

 

 

 

 

 

 

 

 

  

Extension Left_Right_Conformality_Ext for General_Tree_Theory with Relativization_Ext; 

Def. Is_L_R_Cfml_w(⋌: (: Set)⊠B, T: U_Tr(2, ) ) : B  (  : Str(U_Site(2, )),  

         LT, RT: U_Tr(2, ),  y: , if   Jn( LT, RT, y )  T,  

then  x: Occ_Set(LT),  z: Occ_Set(RT), x ⋌ y and y ⋌ z ); 

      ( Is Left Right Conformal with ) 

 Corollary 1:  : Set,  ⋌: ⊠B, Is_L_R_Cfml_w(⋌,  );  

 Corollary 2:  : Set,  ⋌: ⊠B,  LT, RT: U_Tr(2, ),  y: ,  

        if Is_L_R_Cfml_w(⋌, LT ) and Is_L_R_Cfml_w(⋌, RT ) and   x: Occ_Set(LT), x ⋌ y  

  and  z: Occ_Set(RT), y ⋌ z, then Is_L_R_Cfml_w(⋌, Jn(LT, RT, y) ); 

   
end Left_Right_Conformality_Ext; 
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Appendix G 

Search_Tree_Balancing_Ext 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Extension Search_Tree_Balancing_Ext for General_Tree_Theory with Relativization_Ext; 

 Def. Is_Balanced (T: U_Tr (2, : Set)) : B  (  : Str (U_Site (2, )),  

     LT, RT: U_Tr (2, ),  y: , if   Jn( LT, RT, y)  T, 

then 0 ≤ ht(LT) - ht(RT)| ≤ 1 

 Corollary 1:  : Set, Is_Balanced ( );  

 Corollary 2:  : Set,  LT, RT: U_Tr (2, ),  y: ,  

  if Is_Balanced (LT) and Is_Balanced (RT) then Is_Balanced (Jn (LT, RT, y)); 

     
end Search_Tree_Balancing_Ext; 
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