
Clemson University
TigerPrints

All Theses Theses

5-2017

A Well-Designed, Tree-Based, Generic Map
Component to Challenge the Progress towards
Automated Verification
Nicodemus M.J. Mbwambo
Clemson University, nmbwamb@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Mbwambo, Nicodemus M.J., "A Well-Designed, Tree-Based, Generic Map Component to Challenge the Progress towards Automated
Verification" (2017). All Theses. 2657.
https://tigerprints.clemson.edu/all_theses/2657

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2657?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A WELL-DESIGNED, TREE-BASED, GENERIC MAP COMPONENT TO

CHALLENGE THE PROGRESS TOWARDS AUTOMATED VERIFICATION

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Science

by

Nicodemus M. J Mbwambo

May 2017

Accepted by:

Dr. Murali Sitaraman, Committee Chair

Dr. Brian Dean

Dr. Feng Luo

 ii

ABSTRACT

This thesis presents a non-trivial candidate software component assembly that

presents an opportunity and a challenge to the progress towards automated verification.

It presents an opportunity because the data abstraction implementation can serve as a

proof of concept of the idea that well-designed and well-annotated software components

with mathematical specifications and well-engineered implementation(s) lead to

generated verification conditions (VCs) of correctness that are “obvious” to prove. It

presents a challenge because verification of the implementation involves multiple

theories and the use of a tree concept that is based on a general tree theory for which

there are no special-purpose solvers.

The thesis contains a specification for a conceptualization of a tree with a position

that makes it easy to explore and navigate a tree even as it avoids any explicit references

to simplify reasoning. The thesis also contains concept enhancements for trees and an

implementation layered using trees for a data abstraction for searching (a version of

maps). A key contribution is the development of the implementation so that it is

amenable for verification with internal assertions such as representation invariants and

abstraction relations, operation specifications, loop invariants, and progress metrics, all of

which involve the general tree theory.

 iii

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to Dr. Murali Sitaraman

for his advice and guidance throughout the research and writing of this thesis. My

appreciations also goes to the rest of my committee members, Dr. Brian Dean and Dr.

Feng Luo for their comments and encouragement.

I would like to thank other members of Clemson and The Ohio State University

RESOLVE Software Research Groups, in particular, Dr. Joan Krone, Dr. Bill Ogden,

Mathew Pfister and Yu-Shan Sun. The general tree theory and the concepts (that have

been refined and) used in this thesis are due to Dr. Joan Krone and Dr. Bill Ogden, who

also provided me with feedback on various points of this thesis.

I would like to acknowledge Arusha Technical College (ATC) for providing me a

chance to pursue my Master’s degree at Clemson University.

And finally, I would like to thank my wife Josephine and my daughter Caitlyn for

their encouragement and never ending support for the time I was away.

This research has benefitted in part by a US FFSP and a US NSF grant CCF-

1161916.

 iv

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. vi

CHAPTER

 I. INTRODUCTION ... 1

 Automated Verification ... 1

 Thesis Focus and Contribution .. 3

 Organization ... 6

 II. EXPLORATION TREE TEMPLATE AND ENHANCEMENTS 7

 An Informal Introduction to Exploration Tree Template 8

 A Formal Presentation of Exploration Tree Template 14

 Enhancements to Exploration Tree Template 29

 III. A GENERAL, MAP CONCEPT SPECIFICATION AND A

 TREE-BASED REALIZATION ... 36

 An Informal Introduction to Almost Constant Function Template 36

 A Formal Specification of Almost Constant Function Template 39

 AVL Balanced Binary Search Tree-Base Map Implementation 43

 AVL Binary Search Tree Balancing .. 68

 IV. VERIFICATION.. 80

 Generation of Verification Conditions(VCs) ... 80

 V. SUMMARY AND FUTURE DIRECTIONS .. 83

 v

Table of Contents (Continued)

Page

APPENDICES ... 85

 A: Exploration Tree Template .. 86

 B: Almost Constant Function Template ... 88

 C: Map Implementation ... 90

 D: VC Generation for Delete Remainder ... 103

 E: General Tree Theory Developed by Dr. Bill Ogden 105

 F: Left Right Conformality Ext .. 108

 G: Search Tree Balancing Ext... 109

REFERENCES .. 110

 vi

LIST OF FIGURES

Figure Page

 1 A General Overview of Thesis Focus and Contribution 5

 2 A Skeleton Interface for Exploration Tree Template 9

 3 (a) An example exploration tree: A tree with position indicator

 (b) Updated tree position after a call to Advance operation 10

 4 (a) Tree position indicator at an end

 (b) Updated Tree Position after adding a new leaf 11

 5 (a)Given tree position and node label

 (b) Updated tree position and node label after a call to Swap Label 13

 6 A formal specification of Exploration Tree Template 16

 7 A formalized version of a Tree Position .. 16

 8 An illustration of Zip Operator .. 18

 9 A formal Specification of Advance operation ... 19

 10 Current Tree Position before calling Advance ... 20

 11 Tree Position after Advancing on direction 3 .. 21

 12 Specifications for operations Reset and At an End 22

 13 (a) Current Tree Position

 (b) Tree Position indicator at the root after calling Reset 22

 14 An illustration of a Join operator ... 24

 15 Specification of Add Leaf Operation ... 24

 16 (a) Current Tree Position (b) Updated Tree Position on calling Add Leaf .. 24

 17 Specifications for Operation Remove Leaf and At a Leaf 25

 18 The rest of Operations in Exploration Tree Template 26

 vii

List of Figures (Continued)

Figure Page

 19 (a) Tree positions P and Q (b) Resulting tree positions

 P and Q after Swapping the Remaining Trees 27

 20 (a) Tree positions P and Q (b) P and Q updated after Swap_w_Rem 28

 21 Specification of Delete Remainder Operation ... 29

 22 (a) Tree position before deleting the remaining tree

 (b) Tree position after deleting the remaining tree 30

 23 An Implementation of Delete Remainder Operation 30

 24 Specification of Rem_Tr_Node_Count Operation 31

 25 Rem_Tr_Node_Count Realization... 32

 26 Enhancement specification for Tree_Reversal_Capability 32

 27 (a) A tree position before reversal (b) updated tree position after reversal . 33

 28 Tree Reversal Realization .. 34

 29 Enhancement specifications for Node Height operation 34

 30 Realization of the operation Node_Height .. 35

 31 A Skeleton Interface for Almost Constant Function Template 38

 32 An example “almost constant” map from Integer to Real 38

 33 A Formal Specification of Almost Constant Function Template 40

 34 A snippet showing specifications for

 Almost_Constant_Function_Template .. 42

 35 Binary Search Tree Realization ... 44

 36 Binary Search Tree Realization ... 46

 viii

List of Figures (Continued)

Figure Page

 37 Binary Search Tree Realization ... 49

 38 Map implementation .. 51

 39 Operation Current_Id to return an Index of the root node of Rem_Tr 52

 40 Binary Search Tree Realization ... 53

 41 (a) Tree position at index 20 (b) the resulting tree position at index 17 55

 42 Tree position at index 20 (b) Resulting tree position

 at index 18 which is not present in the tree .. 55

 43 Binary Search Tree Realization ... 56

 44 Shift to First operation in BST Realization.. 58

 45 Procedure Delete Root Node in BST Realization .. 61

 46 (a) Node to be deleted with both children (b) The result after deletion 62

 47 An implementation of operation Swap Value .. 64

 48 An implementation of operation First Interesting Index 65

 49 Specification and implementation of operation

 Next_Int_Index in BST_Realiz .. 66

 50 A snippet showing BST_Realiz ... 67

 51 (a)Given 2-Tree T

 (b) Resulting Site and Remaining Tree after Split_at(0, T) 70

 52 A snippet showing operation Right_Rotate_Rem_Tr in BST_Realiz 70

 53 An illustration of Right Rotation and Left Rotation:

 (a) left heavy (b) Right heavy .. 71

 54 Specification and implementation of operation

 Left Rotate in BST Realization .. 72

 ix

List of Figures (Continued)

Figure Page

 55 Operations LT_Height and RT_Height used in Adjust operation 73

 56 Demonstration of operation Adjust, Left-Left heavy case: (a) Imbalance

 tree position (b) Balanced tree position after right rotation 75

 57 Operation Elevate Right Middle for balancing .. 76

 58 Operation Elevate Left Middle for balancing .. 77

 59 Implementation of operation Adjust .. 78

 60 Demonstration on Left-Right Heavy imbalance: (a) Left-Right Heavy

 Rem_Tr (b) Balanced result after Elevate Left Middle 79

 61 First VC for ensures clause of Delete Remainder .. 81

 62 Second VC for ensures clause of Delete Remainder 81

 63 Third VC for ensures clause of Delete Remainder 82

 1

CHAPTER ONE

INTRODUCTION

Automated Verification

Automation of verification is the fundamental goal of many verification systems

in existence today [8]. Among them are, Dafny [11], KeY [2] and, RESOLVE [14].

When automation in verification is ultimately achieved, the only support that

programmers need to provide towards verification are the internal assertions such as

progress metrics, loop invariants, and other mathematical specifications which describe

precisely what the code is required to do. Among many components constituting a

verifying compiler, the prover is a key one. The prover has a vital function of discharging

verification conditions (VCs) proving which is equivalent to the correctness of a

program. For practical reasons and to ensure the correctness of the prover itself, it is

important that the prover to be as simple as possible and the VCs supplied to the prover

as “obvious” as possible.

Significant progress has been made in the area of decision procedures for different

theories and fragments, and these specialized decision procedures have proven to show

much promise for discharging VCs that arise in the process of reasoning about programs

[3, 12, 16]. However, a major consideration for the decision procedures is that they are

effective only when the VC’s are within the scope of the respective decision procedures,

most of which restrict the assertions to be of first order. However, to achieve automated

verification in general, the challenge is to meet the task of proving VC’s that span

 2

multiple theories often involving the use of higher order logic, situations for which it is

unlikely that viable decision procedures exist.

While the complexity arising from multiple theories including new ones is

unavoidable, automated verification has any hope of becoming viable only if a software

component specifications and corresponding implementations are well engineered and

the VC’s arising from establishing their correctness are “obvious”. Being “obvious”

implies the correctness of the resulting VCs can be established automatically in a few

steps mechanically, without requirement of deep thinking [9]. Given suitable

mathematical results and “obvious” VCs, verification can be done through simple

deductions done even by humans and automated provers can establish correctness

formally through the discovery of a short proof even without the use of special-purpose

solvers.

With that being said, how hopeful can we be regarding automated provers? The

answer to this question is put forward in the experimentation with two provers,

Minimalist Prover (MP) and Z3 done in [4, 7, 15]. A detailed technical description of

these provers is out of the scope of this thesis; however, in summary MP design focuses

on showing validity of VCs provided a set of previously proven theorems in reusable

mathematical units. With well-engineered theories, it is sufficient for this prover to use

only instances of reusable mathematical units to construct proofs under the assumption

that the assertions lead to VCs that are obvious regardless of how complex the theories

are. In their experimentation, Kabani et al employed theories describing mathematical

strings and numbers. These theories were further used in component specifications with

 3

no use of any decision procedures to tackle them. With this approach, as far as the

provers are concerned, these created theories imitate the complex theories and so no

special solvers are available. The experimentation is continuing with promising results

and a suggestion of further exploration of the idea that will lead to automated verification

of components specified using new theories.

Thesis Focus and Contribution

The non-trivial General Tree Theory used in this thesis was initially developed by

Dr. Bill Ogden, and it contains an additional dimension of complexity compared to most

of the theories since it does not already appear standardized in the world of mathematics.

Sections of this theory used in this thesis are as shown on Appendix E. If a theory is well

engineered, then the specifications and implementations based on that theory can lead to

VCs that are relatively “obvious” for verification. While any verification system can be

used, this thesis presents a candidate implementation in RESOLVE that can serve as a

proof of concept for experimenting with the Minimalist Prover (MP) [4, 7, 15] which is

built with an intent of verifying well-engineered programs accompanied with well-

designed supporting mathematical units even when the generated VC’s span theories

where no suitable decision procedures available.

The central contribution of this thesis is development of a verification-amenable

implementation of a concept named Almost_Constant_Function_Template which

specifies a map data abstraction. The implementation uses Exploration_Tree_Template,

a concept that captures a navigable tree structure while avoiding any explicit reference

 4

behavior and need for aliasing. Development of the balanced, binary search tree

implementation of the map data abstraction involves specification and implementation of

several local operations, along with a host of internal assertions for verification, as

detailed in this thesis. The thesis builds on and refines earlier, incomplete versions of the

concepts for Exploration_Tree_Template and Almost_Constant_Function_Template

conceived by Dr. Joan Krone and Dr. Bill Ogden. An important contribution of this thesis

is explanations of these non-trivial concepts with illustrations so that they are accessible

to the larger computer science audience. In addition to concept refinements two binary

tree extensions for General Tree Theory were added, one to define balancing and another

for binary search tree property. These two extensions are shown in Appendix F and

Appendix G. Further, enhancements for exploration tree template have been developed

and used.

An overview of the artifacts relevant to this thesis are shown in Figure 1. The

figure includes additional elements, such as a list-based implementation maps to give a

broader overview. The concepts, and theories refined and extended to achieve the

development of the balanced, binary search tree implementation of the map data

abstraction are the focus of this thesis and they are highlighted. In the coming chapters,

these artifacts will be explained in detail.

 5

Figure 1: A General Overview of Thesis Focus and Contribution

A_C_Fn Template

<<implements>>

<<implements>>

<<implements>>

BST

Implementation

Exploration Tree

Template

<<implements>>

<<implements>>

List

Implementation

AVL BST

Implementation

Pointer Based

Implementation

General

Tree

Theory

<<uses>>

<<uses>>

Basic

Ordering

Theory <<uses>>

Node Height

Delete Remainder

Node Height

Realization

<<implements>>

<<extends>>

<<extends>>

Obvious Deletion

Realization

<<implements>>

Obvious Exploration

Tree Realization

Theory

Concept Implementation uses implements extends

KEY

Enhancement

⁝

 6

Organization

The organization of this thesis is in four sections. The first and second sections

after the introduction provide detailed explanations on the refined

Exploration_Tree_Template, followed by different enhancements of this concept. Next is

a discussion of Almost_Constant_Function_Template with a tree-based implementation.

The third section is a discussion of verification of a simple enhancement implementation

for purposes of illustration. The last section contains a summary and future directions.

 7

CHAPTER TWO

EXPLORATION TREE TEMPLATE AND ENHANCEMENTS

To fulfill the challenge of providing a proof of concept that automated proof of

correctness of a complex piece of software based on higher order logic is possible, it is

necessary to choose a concept which is based on a non-standard mathematical theory

which has been developed with automated proving in mind. For this purpose, the

Exploration_Tree_Template is ideal.

The Exploration_Tree_Template is specified with no explicit reference behavior

in contrast to how trees are presented in theory and practice in the literature [12]. Since

the specification completely hides the underlying pointer-based tree structure, it

simplifies reasoning of implementations which are based on these trees.

In this chapter the Exploration_Tree_Template concept is described precisely. To

simplify the explanations, special diagrams are used to illustrate different aspects of the

template and for brevity, figures used in support of the concept explanations will only

show some snippets of the template. A detailed version of the entire template can be

found in Appendix A. This chapter also includes some enhancements which contain

extensions to the core concept.

 8

An Informal Introduction to Exploration Tree Template

A skeleton of the formal specification for Exploration_Tree_Template is shown in

Figure 2. This template is a generic concept (specification) with three parameters that are

provided during instantiation. The first parameter required is a node label

(Node_label) which specifies the node type; the second one k is an integer value

setting the maximum number of children each node can have in a defined tree, and third

is Initial_Capacity which state the maximum number of nodes that an instantiated

tree can have.

An exploration tree is a tree with a position indicator. Figure 2 also shows that,

Exploration_Tree_Template is a family of tree positions (Tree_Posn) emphasizing the

fact that because of the generic nature of this template, not only is one type exported, but

a whole family of types, each with different contents.

 9

Concept Exploration_Tree_Template(type Node_Label; evaluates k,

 Initial_Capacity: Integer);
 uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory

 Type Family Tree_Posn  U_Tr_Pos(k, Node_Label);

 Operation Advance(evaluates dir: Integer; updates P: Tree_Posn);

 Operation Reset(updates P: Tree_Posn);

 Operation At_an_End(restores P: Tree Posn): Boolean;

 Operation Add_Leaf(alters Labl: Node_Label; updates P: Tree_Posn);

 Operation Remove_Leaf(replaces Leaf_Lab: Node_Label;

 updates P: Tree_Posn);

 Operation At_a_Leaf(restores P: Tree_Posn): Boolean;

 Operation Swap_Label(updates Labl: Node_Label;

 updates P: Tree_Posn);

 Operation Swap_Rem_Trees(updates P, Q: Tree_Posn);

 Operation Swap_w_Rem(updates P, Q: Tree_Posn);

 Operation Retreat(updates P: Tree_Posn);

 Operation Path_Length(restores P: Tree_Posn): Integer;

 end Exploration_Tree_Template;

Figure 2: A Skeleton Interface for Exploration Tree Template

 The template includes several primary operations that are useful in creating,

navigating and modifying trees as shown in Figure 2. The first operation Advance is used

in navigation of trees; the movement can be in one of the k directions(dir)specified

during operation call. Starting from one tree position operation Advance can navigate to

the next tree position depending on the given direction. Advance modifies the tree

position and hence, the use of the parameter mode updates. Figure 3(a) below shows a

tree position indicated by an arrow known as the position indicator.

 10

Figure 3: (a) An example exploration tree: A tree with position indicator (b) Updated tree

position after a call to Advance operation

The tree in Figure 3(a) has the value of k equals to 3 giving three possible directions for

advancing this tree. For example, if from this current position, Advance operation is

called on direction 2. The position indicator will move into the tree and an updated tree

position is shown in Figure 3(b). Retreat operation does the opposite of Advance, once

Retreat is called, it updates the tree position by moving the indicator to the previous tree

position. Using Figure 3(b), an operation Retreat on this tree position will result into a

tree position in Figure 3(a). When a position indicator is advanced to the end of the tree

as shown in Figure 4(a), we cannot advance the tree any further and the tree position is

said to be at an end. A Boolean operation At_an_End can be used to test if a tree position

is at an end, this operation does not make any changes to the tree position, therefore,

Ω Ω Ω

#P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

Ω Ω Ω

P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

(a) (b)

 11

parameter mode restores is used. Figure 4(a) is also an example of a position were an

operation Add_Leaf can be called and an extra node will be added into the tree as shown

in Figure 4(b). Operation Add_Leaf updates the tree position to include the new node

whose label is passed in as parameter during operation call. Because we only need this

label to create the new node and nothing after that, parameter mode alters is used for this

case.

Figure 4: (a) Tree position indicator at an end (b) Updated Tree Position after adding a

new leaf

 An operation Reset will move the position indicator to the beginning (root node)

of the tree from any tree position, this operation can be useful when we want to return a

root node. At_a_Leaf is a Boolean operation and will return true when the tree position is

at a leaf, at this position the pointer will be at any of the nodes with empty tree children

represented by Ω. Figure 4(b) is an example of the tree position being at a leaf.

Ω

Ω Ω Ω

#P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

Ω Ω

Ω

P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

(a) (b)

 28

Ω

 12

 The fact that Exploration_Tree_Template is a generic concept, its parameters can

be of any type and in such case for a reasonable and efficient transfer of these arbitrary

entries, swapping is used over copying of reference or values [5]. The efficiency in

swapping is in the execution-time where compilers takes constant time exchanging

references to even large objects, this implementation of swapping is different from

copying where for large objects execution-time needs to account time for copying the

objects. Swapping also allows reasoning without introducing aliasing, in contrary to

copying which introduces aliasing and so compromising abstract reasoning.

 Because of these advantages of swapping in generic components, Swap_Label

operation is defined in Exploration_Tree_Template, this operation will be used to transfer

arbitrary type label into the tree. The two-way transfer provided by swapping will update

both the tree position and the parameter node label. To illustrate this operation, consider

Figure 5(a) which shows a tree position and a node label, a call to Swap_Label will

update both label and a tree position and the result is shown in Figure 5(b).

 13

Figure 5: (a)Given tree position and node label (b) Updated tree position and node label

after a call to Swap Label

 At any tree position, the position indicator divides the tree into two parts, the part

before the indicator which is a “Path” and the part after the indicator which is the

“Remaining Tree” (Rem_Tr) both Path and Rem_Tr will be formally explained in the

next section.

Exploration_Tree_Template can be implemented in a straightforward fashion

using classical k-link nodes. To be verified formally, it can be implemented using an

abstraction of linked locations [10]. All tree operations can be implemented to work in

constant time.

labl labl

Ω

Ω Ω Ω

#P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

Ω Ω

Ω

P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

30 25

(a)
(b)

 28

Ω

 30 23

 14

A Formal Presentation of Exploration Tree Template

This section explains a formal specification of the Exploration_Tree_Template

shown in Figure 6. The specification of this concept uses two facilities Std_Boolean_Fac

and Std_Integer_Fac (which bring in Booleans and Integers, since no types are assumed

prebuilt in RESOLVE), as well as the General_Tree_Theory. Next is a concept level

requires clause which state that the value k must be greater than or equal to 1 and

Initial_Capacity is at least 1, these two requirements will guarantee no tree is

created with zero children and zero capacity. A global conceptual variable

Remaining_Cap is a natural number and get initialized to Initial_Capacity in the

initialization ensures clause, Initial_Capacity is provided during instantiation of the

template. When nodes are added to the tree, or removed from the tree, Remaining_Cap

is affected.

The mathematical model for Exploration_Tree_Template is a family of tree

positions (Tree_Posn). This family of types is modeled as a subset of all Uniform Tree

Positions (U_Tr_Pos) defined by k children and Node_Label. As discussed earlier a

Tree_Posn has two parts, a “Path” (Path)which is a string of “Sites” and a remaining

tree (Rem_Tr) which is a k-tree. The mathematical model is illustrated and explained

using example in the upcoming paragraphs.

In Figure 6, Exploration_Tree_Template uses P as an exemplar to specify the

effects of initialization (constructor) and finalization (destructor). The effect of

initialization is that P.Path is Empty_String() and P.Rem_Tr is Empty_Tree(Ω).

 15

The effect of finalization is that the count of the tree nodes that belonged to the tree

object is added back to the existing Remaining_Cap.

The following figures will illustrate what is meant by “Site”, Path and the

Rem_Tr. As explained earlier a Path is a string of Sites and in every single Site there is a

Label, Left Tree String (LTS) and Right Tree String (RTS), LTS and RTS are sometimes

called Left Branch String and Right Branch String respectively. To illustrate this, we use

Figure 7 which introduces another presentation of a Tree_Posn and this time with a

detailed breakdown. This is an abstract way of showing a Path and Rem_Tr of the

Tree_Posn, and it corresponds directly to the mathematical model in the concept shown

in Figure 6. Figure 7 has two Sites, the first Site has a node label 17, a LTS which has

two Trees (T1, T2) and an empty RTS. The second Site has a label of 20, one tree in the

LTS (T3) and another Tree in RTS (T5).

 16

Concept Exploration_Tree_Template(type Node_Label; evaluates k,

 Initial_Capacity: Integer);
 uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory
 with Relativization_Ext;

 requires 1  k and 0  Initial_Capacity which_entails k: ℕ0

 and Initial_Capacity: ℕ;

 Var Remaining_Cap: ℕ;
 initialization

 ensures Remaining_Cap  Initial_Capacity;

 Family Tree_Posn  U_Tr_Pos(k, Node_Label);

 exemplar P;

 initialization

 ensures P.Path   and P.Rem_Tr  ;

 finalization

 ensures Remaining_Cap = #Remaining_Cap + N_C (P.Path 

 P.Rem_Tr);

 ⋮
 end Exploration_Tree_Template;

Figure 6: A formal specification of Exploration Tree Template

Figure 7: A formalized version of a Tree Position

P.Rem_Tr

Ω Ω Ω

18

23 25 T6

T7 T8 T9

{ ,    } , {   }

 T1 T2
 17

LTS RTS Label

LTS

T3
 20

Label

T5

RTS

P.Path

Site 1 Site 2

 17

From a Path and a Rem_Tr of a given Tree_Posn we can form the entire tree.

To achieve this, Zip operator () defined in the General Tree Theory is used. This

operator is used in the specifications of several operations, so we begin with an

explanation of this operator. From a Tree_Posn Zip operator takes Sites in the Path

and stitch them back to the tree in the Rem_Tr resulting to a tree whose root node will be

the label of the last site extracted from the Path. To illustrate this operator, consider a

Tree_Posn in Figure 8(a) which has two Sites in the Path and the remaining tree. Zip

operator is inductively defined to extract the last added Site first and zip it to the

remaining tree leaving one Site in the Path and a resulting tree is shown in Figure 8(b).

Next the last Site will be extracted and zipped to the remaining resulting to a whole tree

and leaving the Path empty, the result is shown in Figure 8(c) with the root node being

the label of the last site.

 18

Figure 8: An illustration of Zip Operator

{ ,    } , {   }

 T1 T2
 17

LTS RTS Label

LTS

T3
 20

Label

T5

RTS

P.Path

Site 1 Site 2

Ω Ω Ω

 25

P.Rem_Tr

{ ,    }
 T1 T2

 17

LTS RTS Label

T3

 20

 T5 Site 1

Ω Ω Ω

 25

P.Rem_Tr P.Path

Ω Ω Ω

 25

 

T1

T2

 17

T3

 20

 T5

P.Path P.Rem_Tr

(a)

(b)

(c)

 19

 As discussed earlier, Exploration_Tree_Template includes specifications for

several primary operations that are useful in creating, navigating and modifying trees.

Now a formal version of these operations will be explained. The first primary operation

Advance is specified in Figure 9.

 Operation Advance (evaluates dir: Integer; updates P: Tree_Posn);

 requires P.Rem_Tr  

 which_entails P.Rem_Tr: Tr(Node_Label)~{}and 1  dir  k;

 ensures P.Rem_Tr  ≸(Prt_btwn(dir ∸ 1, dir,
 Rt_Brhs(#P.Rem_Tr))) and

 P.Path  #P.Path◦(Rt_Lab(#P.Rem_Tr), Prt_btwn(0,

 dir ∸ 1,Rt_Brhs(#P.Rem_Tr)),

Prt_btwn(dir, k, Rt_Brhs(#P.Rem_Tr)));

Figure 9: A formal Specification of Advance operation

Advance operation updates an incoming Tree_Posn on a given dir if the

Rem_Tr is not an Empty_Tree(Ω)and the given dir is a valid value of k (i.e. 1 ≤

dir ≤ k). The subordinate annotation which_entails is included in this specification

following the requirement that P.Rem_Tr is not empty tree to explicitly alert the type

checker that it is acceptable to use the incoming value of P.Rem_Tr, where a non-empty

tree is expected. This annotation is the reason #P.Rem_Tr can be used in Rt_Lab and

Rt_Brhs in the ensures clause without violating type checking. If these requirements

specified in the requires clause are met, then the ensures clause of Advance operation

states how Path and Rem_Tr of a given Tree_Posn are updated.

Operation Advance is further described using Figure 10 and Figure 11. Figure 10

is a current Tree_Posn and the named positions from 0 to 3 are for the sake of

simplifying the formal explanations this operation. If dir = 3 on the parameter list and

 20

the tree positions shown in Figure 10. The post condition in Advance shows that the

Path will be updated to contain all Sites it had before (#P.Path), concatenated with a

new Site defined by the root label of the remaining tree(Rt_Lab(#P.Rem_Tr)) and the

two branches separated by the provided direction (dir). The Left Tree Branch will start

from position 0 to dir ∸ 1 (2), where ∸ is natural number subtraction. The Right Tree

Branch is between dir which is 3 and k which is also 3, explaining why the Right

Branch String is the empty string. The Rem_Tr will be updated as depicted in Figure 11.

Figure 10: Current Tree Position before calling Advance

3

2 1

0

Ω Ω Ω

18

23 25 T6

T7 T8 T9

P.Rem_Tr

{ ,    } , {   }

T1

 T2
 17

LTS RTS Label

LTS

T3
 20

Label

T5

RTS

P.Path

Site 1 Site 2

 21

Figure 11: Tree Position after Advancing on direction 3

As it can be observed from Figure 10 and Figure 11, one call to Advance added one site

to the existing Path. In contrast, the operation Retreat will extract the last added Site and

zip it with the Rem_Tr. Operation Retreat will be explained in detail later in the chapter.

The Reset operation, specified in Figure 12, has an effect of moving the tree position to

the top. Reset updates the current Tree_Posn by ensuring the Path becomes an

Empty_String() and the Rem_Tr to be the result of zipping together an incoming

Path (#P.Path) with the incoming Rem_Tr(#Rem_Tr), there is no requires clause

for this operation. To illustrate Reset operation Figure 13(a) shows a current

Tree_Position using a position indicator, Figure 13(b) is the result of calling Reset

operation, the position indicator will be at the root node where the Path is now

Empty_String() and the Rem_Tr is an entire tree.

Ω Ω Ω

 25

P.Rem_Tr

{ ,   } , {   }, { ,   
 T1 T2

 17

LT RTLabe

LT

T3
 20

Labe

T5

RT

P.Path

T6

T7 T8 T9

 23 18

LT RTLabe

 22

 ⁝
 Operation Reset(updates P: Tree_Posn);

 ensures P.Path   and P.Rem_Tr  #P.Path  #P.Rem_Tr;

 Operation At_an_End(restores P: Tree Posn): Boolean;

 ensures At_an_End  (P.Rem_Tr  )

 ⁝

 ⁝
 end Exploration_Tree_Template;

Figure 12: Specifications for operations Reset and At an End

 Figure 13: (a) Current Tree Position (b) Tree Position indicator at the root after

calling Reset

The next operation At_an_End specified in Figure 12 is a Boolean operation

which returns true in case a Tree_Posn is at the end. A Tree_Posn is said to be at an

end if and only if the Rem_Tr is an Empty_Tree(Ω).

Ω Ω Ω

#P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

Ω Ω Ω

P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

(a) (b)

 23

From an Empty_Tree(Ω) one can create a tree by adding one node at a time, to

achieve this, operation Add_Leaf is specified in Figure 15, the operation will have an

effect of adding a new leaf and decreasing the value of the Remaining_Cap by one

whenever it is called. The Remaining_Cap will be zero (0) when we have no room to

add any more nodes. Add_Leaf can only be called when the Remaining_Cap is greater

than zero, and the Rem_Tr is an Empty_Tree(Ω) as stated in the requires clause. At the

end of the operation, Add_Leaf has no effect to the current Path and thus, P.Path =

#P.Path and the Rem_Tr will be a result of joining (Using Join operator, Jn) a new

leaf of an incoming Label with k branches of Empty_Tree(Ω)as stated in the ensures

clause.

Join operator (Jn) is defined in the General Tree Theory and take in a string of

trees and a node label to give back a complete tree. The node label becomes the root node

of the resulting tree and each individual tree within the string becomes a child to this root

node. Figure 14 illustrate how Jn operator works using a string of trees in Figure 14(a),

these trees have the same properties, in this example just empty trees are used. Figure

14(b) is a node label. Join operator will connect all these trees to the node label and form

a tree in Figure 14(c) which has the same properties as the individual trees before the

join.

A formal illustration of Add_Leaf is shown in Figure 16, in Figure 16(b) is a tree

position with a new node added to the remaining tree.

 24

Figure 14: An illustration of a Join operator

 Operation Add_Leaf(alters Labl: Node_Label; updates P: Tree_Posn);
 affects Remaining_Cap;

 requires P.Rem_Tr   and Remaining_Cap > 0;

 ensures P.Path  #P.Path and

 P.Rem_Tr  Jn(k, #Labl) and

Remaining_Cap  #Remaining_Cap ∸ 1;

Figure 15: Specification of Add Leaf Operation

Figure 16: (a) Current Tree Position (b) Updated Tree Position on calling Add Leaf

Operation Remove_Leaf does the opposite of Add_Leaf. This operation will

update the given Tree_Posn to having a Rem_Tr equal to Empty_Tree(Ω) and the root

 Ω, Ω, Ω 

Ω Ω Ω

 25 25

(a) (b) (c)

Ω

P.Path

(a) (b)

{   

Ω Ω Ω

 15 17

Ω Ω Ω

 19

P.Rem_Tr

P.Path

{   

Ω Ω Ω

 15 17

Ω Ω Ω

 19

P.Rem_Tr

Ω Ω Ω

 16

 25

label of the removed leaf updates the value of Leaf_Lab. The specifications for

Remove_Leaf are shown in Figure 17.

 ⁝
 Operation Remove_Leaf(replace Leaf_Lab: Node_Label;
 updates P:Tree_Posn);

 affects Remaining_Cap;

 requires P.Rem_Tr  

 (which_entails P.Rem_Tr: Tr(Node_Label)~{}) and
 Rt_Brhs(P.Rem_Tr)  k;

 ensures P.Path  #P.Path and P.Rem_Tr   and

 Leaf_Lab  Rt_Lab(#P.Rem_Tr)and

 Remaining_Cap  #Remaining_Cap + 1;

 Operation At_a_Leaf(restores P: Tree_Posn): Boolean;

 ensures At_a_Leaf  (P.Rem_Tr  

 (which_entails P.Rem_Tr: Tr(Node_Label)~{}) and

 Rt_Brhs(#P.Rem_Tr)= k);
 ⁝

 ⁝
 end Exploration_Tree_Template;

Figure 17: Specifications for Operation Remove Leaf and At a Leaf

At_a_Leaf is a Boolean operation with specifications shown in Figure 17, the

operation return a Boolean value depending on whether a given Tree_Posn has a leaf as

the Rem_Tr or not.

When a specific node label needs to be updated within a given Tree_Posn,

Exploration_Tree_Template specifies the Swap_Label operation as shown in Figure 18,

in the previous section a reason why swapping is used instead of copying was explained.

Swap_Label requires Rem_Tr not to be an Empty_Tree(Ω), this is stated in the

requires clause. The ensures clause updates both label (Labl) and Tree_Posn, the

outgoing Labl will equal the root label (Rt_Lab) of the incoming Rem_Tr and a new

root label will be a join of all branches of the incoming Rem_Tr to (#Labl).

 26

 ⁝

 Operation Swap_Label(updates Labl: Node_Label; updates P: Tree_Posn);

 requires P.Rem_Tr  

 (which_entails P.Rem_Tr: Tr(Node_Label)~{});

 ensures Labl  Rt_Lab(#P.Rem_Tr) and P.Path  #P.Path and

 P.Rem_Tr  Jn(Rt_Brhs(#P.Rem_Tr), #Labl);

 Operation Swap_Rem_Trees(updates P, Q: Tree_Posn);

 ensures P.Path  #P.Path and Q.Path  #Q.Path and

 P.Rem_Tr  #Q.Rem_Tr and

 Q.Rem_Tr  #P.Rem_Tr;
 Operation Swap_w_Rem(updates P, Q: Tree_Posn);

 ensures P.Path   and P.Rem_Tr  #Q.Rem_Tr and

 Q.Path  #Q.Path◦#P.Path and

 Q.Rem_Tr  #P.Rem_Tr;
 Operation Retreat(updates P: Tree_Posn);

 requires P.Path  ;

 ensures P.Path  Prt_btwn(0, |#P.Path| ∸ 1, #P.Path) and

 P.Rem_Tr =(Prt_Btwn (|#P.Path| ∸ 1, |#P.Path|, #P.Path)

  P.Rem_Tr;

 Operation Path_Length(restores P: Tree_Posn): Integer;

 ensures Path_Length  |P.Path|;

 Operation Rmng_Capacity(): Integer;

 ensures Rmng_Capacity  (Remaining_Cap);

end Exploration_Tree_Template;

Figure 18: The rest of Operations in Exploration Tree Template

The operations Swap_Rem_Trees and Swap_w_Rem are two operations with

very close effect, both operations takes in two known tree positions as parameters and

swap their remaining trees. However, Swap_Rem_Trees will have no changes to the

paths of both tree positions, while Swap_w_Rem will update both Tree_Posn and

Rem_Tr. Figure 19 illustrate this using two colored tree positions P and Q, shown in

Figure 19(a) are the tree positions before Swap_Rem_Trees is called. Figure 19(b) shows

updated tree positions P and Q. Figure 20(b) illustrates the results of calling operation

 27

Swap_w_Rem on tree positions in Figure 20(a). Notice in Figure 20 also Path is updated

for both P and Q.

Figure 19: (a) Tree positions P and Q (b) Resulting tree positions P and Q after Swapping

the Remaining Trees

Ω

Ω

#P 

(a)

10

(b)

20

T3

T1

T2

#Q 

17

T4

P 

10

20

T3

T1

T2

Q 

17

T4

 28

Figure 20 : (a) Tree positions P and Q (b) P and Q updated after Swap_w_Rem

As stated earlier operation Retreat has an opposite effect to Advance. Retreat will

remove the last added Site and zip it to the Rem_Tr of the Tree_Posn. Retreat can only

be called when the Path of a given Tree_Posn is not an Empty_String () as stated

in the requires clause. The ensures clause uses Prt_Btwn which is a string operator to

extract the last added Site that will be zipped to the Rem_Tr.

 The last two operations to be specified are Path_Length and Rmng_Capacity.

Path_Length operation returns the length of the Path and the Rmng_Capacity operation

will return the Remaining_Cap of the tree when called.

Ω

Ω

#P 

(a)

10

(b)

20

T3

T1

T2

#Q 

17

T4

P 

10

20

T3

T1

T2

Q 

17

T4

 29

Enhancements to Exploration_Tree_Template

In the discussion above, Exploration_Tree_Template was explained in detail and

in it are several primary operations specified. But a close observation will reveal that

there may be other operations that can be useful in variety of applications but not

specified in this template. Generally, to make the specifications task and realization of

data abstraction reasonable only a few primary operations, typically orthogonal and

implementable efficiently, are usually specified in the concept. Any other operation that

can be implemented using a combination of primary operations and may be useful can be

specified as secondary operations. In RESOLVE language, a specification inheritance

mechanism is provided to permit an easy extension of these primary operations available

in the concept by writing enhancements to concepts.

The enhancements discussed in this subsection are used in the tree-based

implementation of the map concept in the next chapter.

 The first enhancement to be discussed is Deletion_Capability which describes a

Delete_Rem_Tree operation with specifications is shown in Figure 21.

Enhancement Deletion_Capability for Exploration_Tree_Template;

 Operation Delete_Rem_Tree (updates P: Tree_Posn)

 affects Remaining_Cap;

 ensures P.Path = # P.Path and P.Rem_Tr = Ω and

 Remaining_Cap = #Remaining_Cap + N_C (#P.Rem_Tr);

end Deletion_Capability;

Figure 21: Specification of Delete Remainder Operation

The operation specifications in Figure 21 guarantees what is in the Path before

the operation is called remain the same even after the operation call (P.Path =

 30

#P.Path) and updates the Rem_Tr to be an empty tree after deleting the remaining tree.

Figure 22 demonstrates this using a tree position in (a). After calling Delete_Rem_Tree,

everything in the remaining tree will be deleted. The resulting tree position is shown in

Figure 22(b).

Figure 22: (a) Tree position before deleting the remaining tree (b) Tree position after

deleting the remaining tree

Realization obvious_Deletion_Realiz for Deletion_Capability

 of Exploration_Tree_Template;

 Procedure Delete_Remainder (updates P: Tree_Posn);

 Var Q: Tree_Posn;

 Swap_Rem_Trees (P, Q);

 end Delete_Remainder;

 end obvious_Deletion_Realiz;

Figure 23: An Implementation of Delete Remainder Operation

Ω Ω Ω

#P 

 17

T1 T2 20

18 T3

T6

T7 T8 T9

T5

23 25

Ω Ω Ω

P 

 17

T1 T2 20

18 T3

T6

T5

25

(a) (b)

Ω

 31

The second enhancement achieves a node count and returns the number of nodes

in the remaining tree of a given Tree_Posn. The operation Rem_Tr_Node_Count,

shown in Figure 24, counts the nodes in the remainder part of the Tree_Posn. The total

number of nodes for the tree position can be found by making the entire tree a Rem_Tr.

Enhancement Rem_Tr_Node_Count_Capability for Exploration_Tree_Template;

 Operation Rem_Tr_Node_Count(restores P: Tree_Posn):Integer;

 ensures Rem_Tr_Node_Count = (N_C(P.Rem_Tr));

end Rem_Tr_Node_Count_Capability;

Figure 24: Specification of Rem_Tr_Node_Count Operation

Rem_Tr_Node_Count is implemented in Figure 25. The basic idea of this

realization is to recursively count nodes starting from a root node of the remainder tree

and all its children. To show termination in the recursion and loop, two proper ordinal

valued progress metric expressions are defined in the decreasing clause. These two

metrics will decrease in every recursive call or iteration of the loop. The maintaining

clause provided must be adequate for verification.

 32

Realization Recursive_Node_Count_Realiz for

 Rem_Tr_Node_Code_Capability of Exploration_Tree_Template

 Recursive Procedure Rem_Tr_Node_Count (restores P:Tree_Posn):Integer

 decreasing ht(P.Rem_Tr);

 Var dir,count : Integer;

 If (At_an_End(P)) then

 Rem_Tr_Node_Count := 0 ;

 else

 dir := 1;

 count := 1;

 while (dir <= k)

 maintaining P.Path = #P.Path and P.Rem_Tr = #P.Rem_Tr

 N_C(P.Rem_Tr) = count +

 ∑ N_C(Split_at(dir∸1,P.Rem_Tr) k
dir ;

 decreasing ((k+1) - dir);

 do

 Advance(dir, P);

 count := count + Rem_Tr_Node_Count(P);
 Retreat(P);

 Increment(dir);

 end;

 Rem_Tr_Node_Count := count;

 end;

 end Rem_Tr_Node_Count;

end Recursive_Node_Count_Realiz;

Figure 25: Rem_Tr_Node_Count Realization

The third enhancement is the Tree_Reversal_Capability specified in Figure 26.

Reversal of a tree about a given root node will swap nodes from outer children going

inwards. Figure 27 illustrates tree reversal. The implementation of this enhancement is

shown in Figure 28.

Enhancement Tree_Reversal_Capability for Exploration_Tree_Template;

 Operation Reverse_Rem_Tr (updates P: Tree_Posn);

 ensures P.Rem_Tr = #P.Rem_TrTRev and P.Path = #P.Path;

end Tree_Reversal_Capability;

Figure 26: Enhancement specification for Tree_Reversal_Capability

 33

Figure 27: (a) A tree position before reversal (b) updated tree position after reversal

Realization Obvious_Reversal_Realiz for Tree_Reversal_Capability

of Exploration_Tree_Template;

 Recursive Procedure Reverse_Rem_Tr (updates P: Tree_Posn);

 decreasing ht(P.Rem_Tr) ;

 Var Q: Tree_Posn;

 Var dir, last: Integer;

 dir := 1;

 last := k;

 If (not At_an_End(P)) then

 While (dir < last)

 maintaining P.Path = #P.Path and #P.Rem_Tr =

 Jn((Prt_Btwn(0,dir – 1,Rt_Brhs(P.Rem_Tr))o
 (Prt_Btwn(dir – 1, last, Rt_Brhs(P.Rem_Tr))Rev o

 Prt_Btwn(last, k, Rt_Brhs(P.Rem_Tr)))Rev,
 Rt_Lab(P.Rem_Tr));
 decreasing (last – dir)

 do

 Advance(dir, P);

 Swap_w_Rem(P,Q);

 Swap_Rem_Trees(P,Q);

 Reverse(P);

 Swap_w_Rem(Q,P);

 Retreat(P);

 Advance(last,P);

 Swap_w_Rem(P,Q);

 Swap_Rem_Trees(P,Q);

 Reverse(P);

 Swap_w_Rem(Q,P);

Ω Ω Ω #P 

 17

 20

P 

(a)

 21

 23

18 15

19 22

Ω

 17

 21

18 15

19 22

20

23

(b)

 34

 Retreat(P);

 Decrement(last);

 Advance(dir,P);

 Swap_Rem_Trees(P,Q);

 Retreat(P);

 Increase(dir);

 end;

 If(dir = last) then

 Advance(dir,P)

 Reverse(P);

 end;

 end Reverse_Rem_Tr;

end Obvious_Reversal_Realiz;

Figure 28: Tree Reversal Realization

The final enhancement to be discussed is Node_Height with specifications shown

in Figure 29. Node_Height of a node x will return an integer representing the longest

path from x to an Empty_Tree, in the specification, node x will always be the root node

of the Rem_Tr as stated in the ensures clause. The realization of this enhancement is

shown in Figure 30.

Enhancement Node_Height_Capability for Exploration_Tree_Template;

 Operation Node_Height(restores P: Tree_Posn): Integer;

 ensures Node_Height = (ht(P.Rem_Tr));

end Node_Height_Capability;

Figure 29: Enhancement specifications for Node Height operation

 35

Realization Node_Height_Realiz for Node_Height_Capability

 of Exploration_Tree_Template

 Recursive Procedure Node_Height (restores P: Tree_Posn): Integer
 decreasing ht(P.Rem_Tr) ;

 Var MaxHeight, NextHeight, dir: Integer;

 MaxHeight := 0;

 NextHeight := 0;

 dir := 1;

 If (At_an_End(P)) then

 Node_Height:= 0 ;
 else

 while (dir < = k) then

 maintaining P.Path = #P.Path and

 P.Rem_Tr = #P.Rem_Tr and

 MaxHeight =

 Max(
d=1 to dir-1

ht(Split_at(d∸1,P.Rem_Tr).RT);

 decreasing (k - dir);
 do

 Advance(dir, P);

 NextHeight := Node_Height(P);

 If (MaxHeight < NextHeight) then

 MaxHeight := NextHeight;

 end;

 Retreat(P);

 Increment(dir);

 end;

 Node_Height:= 1 + MaxHeight;
 end;

 end Node_Height;

end Node_Height_Realiz;

Figure 30: Realization of the operation Node_Height

 36

CHAPTER THREE

A GENERAL, MAP CONCEPT SPECIFICATION AND A TREE-BASED

REALIZATION

Searching for information is one of the main topics of interest in computing and a

map data abstraction encapsulates this idea. The abstraction allows information to be

associated with key values in such a way that it is possible to search, retrieve, delete, or

modify information associated with a key value efficiently. This chapter first presents a

detailed explanation of Almost_Constant_Function_Template that captures this data

abstraction. Later in the chapter, a balanced binary search tree based map

implementation will be explained where an Almost_Constant_Function_Template is used

as an interface. The concept includes operations to navigate through the keys in an

orderly fashion. For brevity, most of the figures used to support the explanations will just

use sections of the concept; A detailed version of the concept is found on Appendix B.

An Informal Introduction to Almost Constant Function Template

The Almost_Constant_Function_Template is the specification of a generic data

abstraction for searching and Figure 31 shows an informal specification of this template.

The generic nature of this template is defined by the type of both Index and

Range_Value provided during instantiation. The type family A_C_Fn is modeled as a

total function where indices are mapped to range values. In the template, a default value

C is taken as a parameter so that the positions of the function with no explicit assigned

value will be mapped to this default value. To illustrate this model, consider Figure 32

 37

which shows a mapping of integers to real numbers. Initially all indices will be mapped

to the default value C and as non-default range values (deviations) are associated with

index values and added into the function they deviate from the default values.

Currently the example function in Figure 32 has three deviations, 2.1, 1.2 and 2.3,

and we can insert, remove or swap values in the function. To achieve this, an operation

Swap_Value is defined. This operation uses its three parameters to achieve all three

actions with the same operation. For example, to insert a new value, Swap_Value

parameter V will have the new value to be inserted to the function at a specified index i

which is currently mapped to a default value C. To remove an existing value,

Swap_Value will have the default value C passed in as V to an index i which is currently

mapped to a deviation. Swapping happens when a new value is to be inserted to an index

that is not mapped to a default value.

Navigating the function can be achieved in the order of indices that the client

define (in Figure 31 the index i is defined to precede j) by three operations,

First_Int_Index, Next_Int_Index and Would_Be_Last. Fist_Int_Index it gives the first

interesting index in the function and that is the first index not mapped to a default value,

in Figure 32 this would be 2. From 2 we can move to the next interesting index using

Next_Int_Index operation, if we loop this operation by getting the next index the entire

function can be navigated until the last index. To know if an index is the last one and all

interesting key values have been navigated, a Boolean operation Would_Be_Last is used.

The ability to navigate (in order) is necessary to copy a map or to print a map, for

example.

 38

Concept Almost_Constant_Function_Template(type Index, Range_Value;

 def const C: Range_Value; evaluates Dev_Ct_Max: Integer;

 def const (i: Index) ⊴ (j: Index): B)

 Family A_C_Fn  (IndexRange_Value);

 Operation Swap_Value(updates V: Range_Value; updates F: A_C_Fn;

 restores i: Index);

 Operation First_Int_Index(replaces i: Index; restores F: A_C_Fn);

 Operation Next_Int_Index(restores i: Index; restores F: A_C_Fn;

 replaces r: Index);

 Operation Would_Be_Last(restores i: Index; restores F: A_C_Fn):

 Boolean;

 Operation Max_Deviation_Ct(): Integer;

 Operation Deviation_Count_of(restores F: A_C_Fn): Integer;

 Operation Make_Constant(clears F: A_C_Fn);

end Almost_Constant_Function_Template;

Figure 31: A Skeleton Interface for Almost Constant Function Template

Figure 32: An example “almost constant” map from Integer to Real

2

17

243

All

Other

Integers

2.1

2.3

1.2

C

Index Range_Value

 39

 To know how many deviations are currently in the function, operation

Deviation_Count_of is used. Max_Deviation_Ct will provide the maximum number of

deviations you can have in a function.

A Formal Specification of Almost Constant Function Template

 A formal specification of Almost_Constat_Function_Template is shown in

Figure 33. To instantiate this concept a client should provide the type of both Index and

Range_Value. Dev_Ct_Max which is an integer and provided during instantiation will

set the maximum number of deviations the function can have; this value is constrained by

the specified concept level requires clause which state that the Dev_Ct_Max is at least 1.

The concept imports as a parameter an ordering of indices that will allow the client to use

the operations provided in the concept to navigate per order of these indices. The concept

level requires clause specifies this ordering of indices to be of total ordering using the

mathematical predicate Is_Total_Ordering(⊴).

The mathematical modeling of an A_C_Fn is a function from Index to

Range_Value. Using F as an exemplar for A_C_Fn, a Deviation Count of

F(Deviation_Count(F)) state how many indices in F are not mapped to the default

value C; This count is constrained to be less than or equal to the Dev_Ct_Max as stated in

the constraint clause. For every function F constructed, the initialization clause will

map every index to a default value C.

 40

Concept Almost_Constant_Function_Template(type Index,Range_Value;

 def const C: Range_Value; evaluates Dev_Ct_Max: Integer;

 def const (i: Index) ⊴ (j: Index): B);

 Deviation Count Maximum )
 uses Std_Integer_Fac, Std_Boolean_Fac,Basic_Ordering_Theory;

 requires 1  Dev_Ct_Max and Is_Total_Ordering(⊴);

 Family A_C_Fn  (IndexRange_Value);( Almost Constant Function )

 exemplar F;

 Def Const Deviation_Count(F: A_C_Fn): ℕ 

 (║{ i: Index  F(i)  C }║);
 constraint

 Deviation_Count(F)  Dev_Ct_Max;
 initialization

 ensures F   i: Index.(C);

 Oper Swap_Value(updates V: Range_Value; updates F: A_C_Fn;

 restores i: Index);

 requires Deviation_Count(F)  Dev_Ct_Max or F(i)  C or V  C;

 ensures F(i)  #V and V  #F(i) and

  j: Index, if j  i then F(j)  #F(j);

 ⁝

 ⁝

end Almost_Constant_Function_Template;

Figure 33: A Formal Specification of Almost Constant Function Template

Formally, Swap_Value operation is specified as shown in Figure 33. Its

specification includes several requires clauses which are disjunctions: The first one is

Deviation_Count(F)  Dev_Ct_Max which requires a function to have space before

inserting a new value. The second requirement is F(i)  C, and this requirement comes

into picture when a new Range_Value is intended to replace existing Range_Value.

The last one is V  C, this requirement covers a case when a default value C is passed in as

an incoming Range_Value and is synonymous to resetting an existing value to a default

value. The ensures clause for this operation essentially swaps whatever is in the function

 41

at an index i (i.e. F(i)) to V and V to F(i) and everything else in the function is

unchanged.

The next four definitions shown in Figure 34 are helper definitions locally defined

and intended to make the rest of the operations easier to specify. The first definition is for

the predicate “less than” that is true if and only if when given two indices i and j, index

i strictly precedes j i.e., when i ⊴ j and i  j. The second definition Are_Devs_after

tells us if there are any deviations after the current index i. Is_1st_Dev_after it tells what

is the next index after the given index i that is not mapped to default value C. The last

definition Is_1st_Dev tells if everything before i are mapped to C, implying i is the first

deviation.

First_Int_Index is formally defined using Is_1st_Dev to give back the first index

of the function whose value is not mapped to C. The requires clause of First_Int_Index

restrict this operation to be called when there are no deviations within the function.

Operation Next_Int_Index uses the definition Are_Devs_after to specify the requires

clause, Are_Devs_after has to be true to call the operation. If these requirements are met,

Next_Int_Index uses Is_1st_Dev_after in ensures clause to give back the next index after

i. As discussed in the previous section, with these two operations, a client can traverse

the entire function, looking for the next interesting index until the last index. To know the

last index a Boolean operation Would_Be_Last is available. It specifies the last index to

be the one where no more deviations will exist after that and when it is reached all key

values associated with non-default range values have been navigated.

 42

 ⁝

 ⁝

 Def Const (i: Index)  (j: Index): B  (i ⊴ j and i  j);

 Def Const Are_Devs_after(i: Index, F: A_C_Fn): B 

 ( k: Index  i  k and F(k)  C);

 Def Const Is_1st_Dev_after(i, k: Index, F: A_C_Fn): B 

 (i  k and F(k)  C and  j: Index, if i  j  k, then F(j)  C);

 Def Const Is_1st_Dev(k: Index, F: A_C_Fn): B 

 (F(k)  C and  j: Index, if j  k then F(j)  C);

 Operation First_Int_Index(replaces i: Index; restores F: A_C_Fn);

 requires 1 ≤ Deviation_Count (F);

 ensures Is_1st_Dev(i, F);

 Operation Next_Int_Index(restores i: Index; restores F: A_C_Fn;

 replaces r: Index);

 requires Are_Devs_after(i, F);

 ensures Is_1st_Dev_after(i, r, F);

 Operation Would_Be_Last(restores i: Index; restores F: A_C_Fn):

 Boolean;

 ensures Would_Be_Last  ( Are_Devs_after(i, F));

 Operation Max_Deviation_Ct(): Integer;

 ensures Max_Deviation_Ct  (Dev_Ct_Max);

 Operation Deviation_Count_of(restores F: A_C_Fn): Integer;

 ensures Deviation_Count_of  (Deviation_Count(F));

 Oper Make_Constant(clears F: A_C_Fn);

end Almost_Constant_Function_Template;

Figure 34: A snippet showing specifications for Almost_Constant_Function_Template

 43

AVL Balanced Binary Search Tree-Based Map Implementation

This section presents a balanced binary search tree based map implementation.

The idea is to use the generic Exploration_Tree_Template and instantiate it to be a binary

tree by supplying the value k as 2. However, to exploit the natural ordering of Binary

Search Tree (BST) additional constraints are provided in the realization, one that

guarantees that the binary tree maintains binary search tree (BST) property and another

that assures that the tree is balanced for fast performance.

Realization Parameter Operations

The BST_Realiz for Almost_Constant_Function_Template implements all the

operations specified in the interface and to make the implementation both modular and

efficient, the realization includes several imported and locally defined operations and

definitions which are not part of the concept.

Since the Index and Range_Value types are supplied by the user and may be non-

trivial, no operations on these types—not even assignment for copying and equality

checking—may be assumed to exist automatically. Users must provide suitable

parameters depending on the actual Index and Range_Value types. These operations that

need to be supplied by the users include ones needed for the ordering of indices, copying

an index, assigning new default value and one to check if a given value is a default value.

Since the type of Index and Range_Value are supplied as parameters when the

template is instantiated, all these operations are also provided as arguments. The four

operations are defined in the parenthesis as the realization parameters are In_Order,

 44

Replica, New_Dflt_RV and Is_Dflt_RV as shown in Figure 35. For brevity, Figure 35

and other figures used in this section will only show sections of BST_Realiz and a

detailed version of it is given in Appendix C.

Realization BST_Realiz (( Binary Search Tree )
 Operation In_Order (restores i, j: Index): Boolean;

 ensures In_Order  (i ⊴ j);
 Operation Replica(restores i: Index): Index;

 ensures Replica  (i);

 Operation New_Dflt_RV(): Range_Value;

 ensures New_Dflt_RV  (C);

 ( New Default Range Value )
 Operation Is_Dflt_RV(V:Range_Value): Boolean;

 ensures Is_Dflt_RV  (V  C);

 ( Is Default Range Value )
) for Almost_Constant_Function_Template;

 uses Exploration_Tree_Template;

 Operation Are_Equal(restores i, j: Index): Boolean;

 ensures Are_Equal  (i  j);

 procedure

 Are_Equal : In_Order(i, j) and In_Order(j, i);
 end Are_Equal;

 Operation Precedes(restores i, j: Index): Boolean;

 ensures Precedes  (i  j);
 procedure

 Precedes : In_Order(i, j) and not In_Order(j, i);

 end Precedes;

 ⋮

 ⋮

end BST_Realiz;

Figure 35: Binary Search Tree Realization

 45

Key Value Pair as a Record Structure

 In Figure 36, a local Facility is described by instantiating an Exploration_Tree_

Template realized by Obv_Exploration_Tree_Realiz. The goal is to supply appropriate

arguments to create a tree structure that will be useful in implementing maps. One of the

parameters is Node_Label. Having maps being represented by a key and value pair, a

record structure is created of Type IRV_Pair with two fields, id for the Index and V

for Range_Value. Therefore, every single IRV_Pair will have both id and V which

will serve as a Node_Label. The second parameter define the number of children needed

for the tree created and for this case 2 is supplied for binary tree. Lastly, a Dev_Ct_Max

is provided as the Initial_Capacity of the tree. This declaration also includes three

enhancements to Exploration_Tree_Template that will be useful in several

implementations of different operations. Following this Facility declaration are two local

definitions, Is_Dflt_C_Free and a predicate represented by the symbol ◄ which will be

explained later.

 46

Realization BST_Realiz (

 ⋮
 ⋮

 Type IRV_Pair  Record ( Index Range Value Pair )

 id : Index;

 V: Range_Value;

 end;

 Facility Tree_Fac is Exploration_Tree_Template (IRV_Pair, 2,

 Dev_Ct_Max)

 realized by Obv_Exploration_Tree_Realiz

 enhanced by Node_Count_Capability

 realized by Obv_Node_Count_Realiz

 enhanced by Deletion_Capability

 realized by Obvious_Deletion_Realiz

 enhanced by Node_Height

 realized by Obv_Node_Height_Capability_Realiz;

 Definition Is_Dflt_C_Free (T: Tr(IRV_Pair)): B 

 ( p: Occ_Set(T.Path  T.Rem_Tr),

 ( Is Default Constant Free ) p.V ≠ C);

 Definition Is_Antitransitive(: (D: Set)⊠ DB) 

 ( x, y, z: D, if  x  y and  y  z, then  x  z);

 Definition (p: IRV_Pair) ◄ (q: IRV_Pair): B  (p.id  q.id);

 ( Is Pair Less Than )
 Corollary 1: Is_Transitive(◄) and Is_Asymmetric(◄)and

 Is_Antitransitive(◄);

 ⋮
end BST_Realiz;

Figure 36: Binary Search Tree Realization

Conventions and Correspondence

Figure 36 defines a record of Type A_C_Fn which has two fields, TP which is a

Tree_Posn and a Last_Id which is an index in the tree that is the maximum of all the

indices in the tree. The convention and correspondence are a part of this record. The

use of these assertions in verification of the implementation are discussed elsewhere [6].

 47

To simplify expressions of the convention and correspondence assertions in this

realization, the mathematical definitions Fn_Sub_Gr (Function Subgraph), Dom_Set

(Domain Set) and Rpd_Fn (Represented Function) are specified. Fn_Sub_Gr is a power

set of power set of IRV_Pair, and it defines a unique existence of an index (id) and a

value (V) for a given power set of IRV_Pair.From this definition, it follows that an

occurrence set of a binary search tree which has IRV_Pair as nodes is a Fn_Sub_Gr as

stated in the corollary. Dom_Set is a power set of indices and for an index i in IRV_Pair.

The corollaries state that, there exists a unique IRV_Pair with i, and there will be only

one mapping of that index to Range_Value, unless the index is not in the Dom_Set in

which case it will be mapped to C. Definitions Fn_Sub_Gr and Dom_Set are used to

define Rpd_Fn which is a function that takes indices and maps those which are in the tree

to explicit values and those which are not to a default value C. Rpd_Fn captures the

almost constant function that is represented in a tree structure.

The convention assertion also known as representation invariant will keep the

implementation of the operations consistent by providing conditions that may be assumed

true at the beginning of every external operation, and must be shown to be at the end of

each operation leaving the representation still satisfying the convention. In Figure 37, the

convention contains a predicate Is Left Right Conformal with (Is_L_R_Cfml_w) which

uses the predicate ◄ defined in Figure 36. ◄ is a Boolean predicate that returns true

when the left index is less than the right index. Is_L_R_Cfml_w describes the BST

property of the tree representation and it is formally defined in the extension

Left_Right_Conformality_Ext for General Tree Theory illustrated on Appendix F. For

 48

performance Is_Balanced predicate is used in the convention and will be explained in

details at the end of this chapter. Another predicate is Is _Dflt_C_Free which is defined in

Figure 36 and it guarantees that, every operation implemented will not leave a default

value C stored within the structure. The other part of the convention describes an index

Last_Id to be in the occurrence set and any other index the set will have is less than

Last_Id. The subordinate annotation which_entails is included in this specification to

explicitly assure the type checker that the Occ_Set is a Fn_Sb_Gr.

 49

Realization BST_Realiz (

 ⋮
 ⋮

Def. Fn_Sub_Gr:((IRV_Pair))  ( Function SubGraph )

 {S:(IRV_Pair) p, q: S, if p.id  q.id,

 then p.V  q.V };

 Corollary 1:  T: U_Tr_Pos(2, IRV_Pair), if Is_L_R_Cfml_w (◄, T),

 then Occ_Set(T): Fn_Sub_Gr;

Def. Dom_Set(S:(IRV_Pair)):(Index) 

 { i: Index p: S  i  p.id }; ( Domain Set )

 Corollary 1:  S: Fn_Sub_Gr,  i: Dom_Set(S), ! p: S  i  p.id;

 Corollary 2:  S: Fn_Sub_Gr, ! F: IndexRange_Value 

  p: S, F(p.id)  p.V and  i: (Index~Dom_Set(S)), F(i)  C;

Implicit Def. Rpd_Fn(S: Fn_Sub_Gr): IndexRange_Value is

  p: S, Rpd_Fn(S)(p.id)  p.V and

  i: (Index~Dom_Set(S)), Rpd_Fn(S)(i)  C;

 ( Represented Function )

Type A_C_Fn  Record

 TP: Tree_Fac.Tree_Posn; ( Tree Position )

 Last_Id : Index; ( Last Index )
 end;

 convention Is_L_R_Cfml_w(◄, F.TP.Path  F.TP.Rem_Tr)

 which_entails

 Occ_Set(F.TP.Path  F.TP.Rem Tr): Fn_Sub_Gr and

 Is_Balanced (F.TP) and Is_Dflt_C_Free (F.TP) and

  p: Occ_Set(F.TP.Path  F.TP.Rem_Tr),

 p.id ⊴ F.Last_Id and

 if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,

 then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr) 

 q.id  F.Last_Id;

 correspondence Conc.F 

 Rpd_Fn(Occ_Set(F.TP.Path  F.TP.Rem_Tr));

 ⋮
 ⋮

end BST_Realiz;

Figure 37: Binary Search Tree Realization

 50

The correspondence is an abstraction function between the realization

representation view and the specification abstract view. The correspondence provides a

mapping between all values in the realization representation that satisfy the convention

to the values in the concept. This mapping must be well founded and this fact is

established by the proof on the obligations generated by the VC generator for the

correspondence. In Figure 37, the correspondence defines a value in the conceptual

function F (Conc.F) to correspond a Rpd_Fn of all indices and values in the occurrence

set. Occurrence set is a set of all nodes in the realization representation (tree) and is

defined in the General Tree Theory to accept a tree and return a set of all nodes within the

tree.

Figure 38 summarizes the relationship between the conceptual space and the

representation space through correspondence using an example function. In the

conceptual space an Almost Constant Function example is used within the constraints in

this space. On the other hand, is the same function in the tree representation space and

satisfy the convention which has all the constraints in this space. The two spaces are

related through an abstraction function which maps every concrete value that satisfies the

convention in the implementation to an abstract value that satisfies the constraints

specified in the concept.

 51

Figure 38: Map implementation

Implementation of Almost Constant Function Operations

Using Locally defined operations.

The implementation contains a variety of local operations to modularize the code

further.

The first two local operations Are_Equal and Precedes in Figure 35 use the

operation In_Order to define equality and “less than” for the two given indices passed in

as parameters to these operations.

Figure 39 shows a local operation Current_Id which returns an index for the root

node of the Rem_Tr in a Tree_Posn. To copy the generic index value, the imported

operation Replica is used in the realization of Current_Id.

Correspondence

2

17
243

All

Other

Integers

2.1

2.3
1.2

C

(17, 1.2)

(2, 2.1) (243, 2.3)

Conceptual Space Representation Space

Convention Constraints

F.Last_Id= 243

 52

In Figure 40, a local operation Shift_to_Index_in_Rem_of is specified and

implemented. This operation serves as a helper function for operation Shift_to_Index in

Figure 43. A Boolean parameter Is_Present is used in the specification and set to true

when an index i is at some node in the tree and false otherwise. The subordinate

annotation which_entails is also included in this specification to explicitly assure the

type checker that the part of the tree stated is not empty and therefore, it is a legitimate

argument in the subsequent use in Rt_Lab (Root Label).

Realization BST_Realiz (

 ⋮
 ⋮
 Operation Current_Id(restores F: A_C_Fn): Index; (*Current Index*)

 requires F.TP.Rem_Tr ≠ ;

 ensures Current_Id  (Rt_Lab (F.TP.Rem_Tr).id);

 procedure

 Var P: IRV_Pair;

 Swap_Label (P, F.TP);

 Current_Id : Replica (P.id);

 Swap_Label (P, F.TP);

 end Current_Id;

 ⋮
 ⋮

end BST_Realiz;

Figure 39: Operation Current_Id to return an Index of the root node of Rem_Tr

 53

Realization BST_Realiz (

 ⋮
 ⋮

Operation Shift_to_Index_in_Rem_of(updates F: A_C_Fn;

 restores i: Index; replaces Is_Present: Boolean);

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr);

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)), then Is_Present and

 F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr:(Tr(IRV_Pair)~{}))

 and Rt_Lab(F.TP.Rem_Tr).id  i and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)),

 then  Is_Present and F.TP.Rem_Tr   and

Is_L_R_Cfml_w(◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path) 

Jn(2, (i, C)));

recursive procedure Shift_to_Index_in_Rem_of(updates F: A_C_Fn;

 restores i: Index; replaces Is_Present: Boolean);

 decreasing ht(F.TP.Rem_Tr);

 If (Are_Equal(i, Current_Id(F))) then

 Is_Present : True();
 else

 If (not At_an_End(F.TP)) then

 If (Precedes(i, Current_Id(F)) then

 Advance (1, F.TP);

 else

 Advance (2, F.TP);

 end;

 Shift_to_Index_in_Rem_of(F, i, present);

 else

 Is_Present : False();
 end;

 end;

 end Shift_to_Index_in_Rem_of;

 ⋮
 ⋮

end BST_Realiz;

Figure 40: Binary Search Tree Realization

In the specifications for Shift_to_Index_in_Rem_of, the ensures clause of the operations

assures that no changes are made to the tree contents, A conjunction F.Last_Id =

 54

#F.Last_Id guarantees that F.Last_Id is unchanged. The ensures clause also

addresses a case when an index i is present in the tree and in this case a Tree_Posn will

be updated in such a way the root node of the Rem_Tr will have an id equal to the index

i specified as input parameter. The last part of the ensures clause is the case when an

index i is not present in the tree, and in this situation, we expect after the entire search

for an index i, the search will stop with Rem_Tr of the Tree_Posn being Empty_Tree

and at the same time to stop at a position that in case we were to add that non-existing

index i then it will still satisfy the BST property.

 The operation Shift_to_Index uses Shift_to_Index_in_Rem_of. In the

implementation, a local check before resetting a tree is performed, this will help in the

cases where resetting is unnecessary and so improving efficiency. To illustrate the effect

of this operation, consider a Tree_Posn in Figure 41(a) which is currently at an index

20. If we shift to an index 17, the resulting Tree_Posn is shown in Figure 41(b). Figure 42

shows a case when we shift to an index not present, for example, if we shift to index 18.

 55

Figure 41: (a) Tree position at index 20 (b) the resulting tree position at index 17

Figure 42: Tree position at index 20 (b) Resulting tree position at index 18 which is not

present in the tree

P 

Ω

Ω Ω Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω

Ω Ω

 23
5

15

12 17

Ω

Ω Ω Ω Ω

Ω

 20

10

7

Ω

Ω Ω

23

5
15

12 17

P 

Ω

Ω Ω Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω

Ω Ω

 23
5

15

12 17

Ω

Ω Ω Ω Ω

Ω

 20

10

7

Ω

Ω Ω

23

5
15

12 17

 56

Realization BST_Realiz (

 ⋮
 ⋮

Operation Shift_to_Index (updates F: A_C_Fn;

 restores i: Index; replaces Is_Present: Boolean);

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr);

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)), then Is_Present and

 F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr:(Tr(IRV_Pair)~{}))

 and Rt_Lab(F.TP.Rem_Tr).id  i and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)),

 then  Is_Present and F.TP.Rem_Tr   and

Is_L_R_Cfml_w(◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path) 

Jn(2, (i, C)));

procedure Shift_to_Index (updates F: A_C_Fn; restores i: Index;

 replaces Is_Present: Boolean);

 If (Path_Length(F.TP) ≥ 1 and Precedes(i, Current_Id(F)) then

 Reset(F.TP);

 end;

 Shift_to_Index_in_Rem_of (F, i, Is_Present);

end Shift_to_Index;

 ⋮
 ⋮

end BST_Realiz;

Figure 43: Binary Search Tree Realization

Shift_to_Index_in_Rem_of uses recursion in binary search to find an index i of

the desired value. The base cases are when the search ends up with a root node id on the

Rem_Tr equal to i as a case in Figure 41(b) or end up with an Empty_Tree(Ω)at the exact

position i was to be in if it were present as is the case in Figure 42(b).

 Figure 44 specifies another local operation Shift_to_First. This operation walks

through the left spine of the binary search tree and stops at the first index; this will be the

first node in the in-order traversal of the tree. To make sure this operation walks in the

 57

correct spine that leads to the first node, a requirement is set that the Path should be

Empty_String()and the Rem_Tr not an Empty_Tree(Ω). The ensures clause

guarantees that the contents of the tree and the last index (Last_Id) are unchanged after

the operation and that the root node id of the outgoing Rem_Tr is the first deviation of

the given tree. The recursive implementation of this operation just Advances to the left of

the tree until it finds the first node.

 58

Realization BST_Realiz (

 ⋮
 ⋮

Operation Shift_to_First (updates F: A_C_Fn)

 requires F.TP.Path =  and F.TP.Rem_Tr ≠ Ω;

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 F.Last_Id = #F.Last_Id and

 F.TP.Rem_Tr ≠ Ω

(which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{})

and (Rt_Lab(F.TP.Rem_Tr)).id = i and

 Is_1st_Dev (Rt_Lab(F.TP.Rem_Tr).id, F.TP);

Recursive Procedure Shift_to_First (updates F:A_C_Fn);

 decreasing ht(F.TP.Rem_Tr);

 If (At_an_End (F.TP)) then

 Retreat (F.TP);

 else

 Advance (1, F.TP);

 Shift_to_First (F);

 end;

end Shift_to_First;

 ⋮
 ⋮

end BST_Realiz;

Figure 44: Shift to First operation in BST Realization

The next operation Delete_Rt_Node specified in Figure 45 is a local operation

and it is used in procedure Swap_Value. Delete_Rt_Node will remove a node from a tree

and its specifications shows that the operation will affect the Remaining_Cap any time

it is called. The pre-condition to this operation requires that the Rem_Tr not be

Empty_Tree(Ω). The other requirements are that the tree must be a search tree and

balanced. The ensures clause guarantees no modification to the Path, and because in the

end, the operation gets rid the root of the incoming Rem_Tr, then the root node of the

incoming Rem_Tr will no longer be a member of the occurrence set. The operation also

 59

must ensure that the resulting tree is still a search tree and in case of imbalance that may

be caused by deletion that it will not lead to a difference in height being greater than 2.

Lastly, the value of Last_Id will still be the last index of the updated Tree_Posn.

Realization BST_Realiz (

 ⋮
 ⋮

Operation Delete_Rt_Node (updates F: A_C_Fn);

 affects Remaining_Cap;

 requires F.TP.Rem_Tr ≠ Ω and

 Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and

 Is_Balanced (F.TP.Path  F.TP. Rem_Tr);
 ensures F.TP.Path = #F.TP.Path and

 Occ_Set (F.TP. Rem_Tr) = Occ_Set (#F.TP.Rem_Tr) –

 {Rt_Lab(#F.TP.Rem_Tr)} and

 Is_L_R_Cfml_w (◄, F.TP.Rem_Tr  F.TP.Path) and

 Remaining_Cap = #Remaining_Cap +1 and

 If (F.TP.Rem_Tr ≠ Ω

 (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}))then

 0 ≤ |ht(Split_at(0, F.TP.Rem_Tr).RT) –
 ht(Split_at(1, F.TP.Rem_Tr).RT)| ≤ 2 and

 (p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id

 and if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ , then

 q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  q.id  F.Last_Id;
Procedure Delete_Rt_Node (updates F: A_C_Fn);

 Var L, R : A_C_Fn;

 Var P : IRV_Pair;

 Var Is_Last_Id: Boolean;

 Is_Last_Id := False();

 If (Are_Equal((Rt_Lab(F.TP.Rem_Tr)).id, F.Last_Id)) then

 Is_Last_Id := True();

 end;

 If (At_a_Leaf(F)) then

 Remove_Leaf(P, F.TP);

 else

 Advance(1, F.TP);

 If(At_an_End(F.TP)) then

 Retreat(F.TP);

 60

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 else

 Retreat(F.TP);

 Advance(2, F.TP);

 If(At_an_End(F.TP)) then

 Retreat(F.TP);

 Advance(1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 else

 Retreat(F.TP);

 Advance(1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 Retreat (F.TP);

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Shift_to_First(R);

 Swap_Rem_Trees(R.TP, F.TP);

 Reset (R.TP);

 Advance (1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP)

 Retreat (F.TP);

 Advance(2. F.TP);

 If (At_an_End(F.TP)) then

 Swap_Rem_Trees(R.TP, F.TP);

 else

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 end;

 Retreat(F.TP);

 end;

 end;

 If (Is_Last_Id and At_an_End(F)) then

 Retreat(F.TP);

 F.Last_Id := Current_Id(F);

 Advance(2, F.TP);

 else

 If (Is_Last_Id) then

 F.Last_Id := Current_Id(F);

 end;

 end;

 61

 end;

end Delete_Rt_Node;

 ⋮
 ⋮

end BST_Realiz;

Figure 45: Procedure Delete Root Node in BST Realization

The implementation of Delete_Rt_Node operation considers three cases that a

node to be deleted x can be in before it gets deleted. The first case is when x is a leaf, this

is a trivial case where Remove_Leaf will just be called on x. The second case is when x

has either no right or no left child. In this case the implementation takes two steps to

delete x and reconstruct the tree, first removing the existing child of x which includes

everything rooted at this child, making node x a leaf and so reverting back to the first

case. At this point Remove_Leaf can be called on x and the only remaining task will be

to reconnect what used to be a child of x to be the parent of x. It is easy to observe that

whichever scenario in the second case is true, reconstruction of the tree will still maintain

the BST property. The third case is a non-trivial one where a node x has both children.

This is a case illustrated in Figure 46. For this case, several steps are now involved in

making sure the respective node is deleted and BST property is maintained. First it is

necessary to make the node x a leaf. In the implementation, two tree positions (left, L and

right, R) are created for this task. By swapping the right tree branch with R and left tree

branch with L node x becomes a leaf which can now be deleted by just calling

Remove_Leaf. However, the tricky part falls into the reconstruction part of the tree after

getting rid of the intended node. A helpful note on this case is to observe that in L we

have every node that was less than x and on the R, we have all nodes that were greater x,

 62

this provides two possible ways to reconstruct the tree that still maintain the BST

property, first by finding the maximum node in L to takes place of the deleted node x or

by finding the minimum node in R to take place of the deleted node x. In the

implementation shown in Figure 45 the latter case is used.

Figure 46: (a) Node to be deleted with both children (b) The result after deletion

The Swap_Value operation can be used to insert a new Range_Value into a map,

remove an existing Range_Value or swap the existing Range_Value with a new one at

a given index. Figure 47 gives an implementation of this operation. The implementation

starts off by shifting to the specified node using a local operation Shift_to_Index. The

two results of a Boolean valued variable present will branch the implementation in two

cases. The first case is when present is true and the incoming value is not a default

Range_Value, this leads to a swap between the incoming Range_Value and the one

P 

Ω

Ω Ω Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω

Ω Ω

 23
5

15

12 17

Ω

Ω Ω

Ω

Ω

 12

10

7

Ω

Ω Ω

23

5
15

17

 63

existing at index i. If present is true but the incoming Range_Value is a default value,

then the existing Range_Value will have to be deleted and Delete_Rt_Node operation is

called at this point. When present is false and the incoming Range_Value is not a

default range value, Swap_Value inserts that new value into the map at the specified

index i.

 64

Realization BST_Realiz (

 ⋮

Procedure Swap_Value(updates V: Range_Value;

updates F: A_C_Fn; restores i: Index);

 Var P: IRV_Pair;

 Var present: Boolean;

 P.id := Replica(i);

 Shift_to_Index (F, i, present);

 If present then

 If not Is_Dflt_RV(V) then

 P.V :=: V;

 Swap_Label(P, F.TP);

 V :=: P.V;

 else

 Delete_Rt_Node(F);

 V :=: P.V;

 Adjust(F);

 end;

 else

 If not Is_Dflt_RV(V) then

 P.V :=: V;

 If (Node_Count(F.TP) = 0) then

 F.Last_Id := Replica(P.id);

 else

 If (not In_Order (F.Last_Id, P.id) then

 F.Last_Id := Replica(P.id);

 end;

 end;

 Add_Leaf (P, F.TP);

 V := New_Dflt_RV ();

 Adjust(F);

 end;

 end;

end Swap_Value;

 ⋮

end BST_Realiz;

Figure 47: An implementation of operation Swap Value

The operation First_Int_Index will provide the first interesting index of the tree by

updating a given Tree_Posn to have the first index as the root node of the Rem_Tr. The

 65

implementation of this operation is shown in Figure 48 and uses a locally defined

operation Shift_to_First, in the end the parameter i is replaced by the first index.

Realization BST_Realiz (

 ⋮
Procedure First_Int_Index (replaces i: Index; restores F: A_C_Fn);

 Reset(F.TP)

 Shift_to_First(F);

 i := Current_Id(F);

end First_Int_Index;

 ⋮

end BST_Realiz;

Figure 48: An implementation of operation First Interesting Index

 Figure 49 shows an implementation of the operation Next_Int_Index which on a

given index i will provide the next index after i in an in-order traversal of the tree. This

implementation considers the fact that the next index after i in the in-order traversal of

the tree may lie in the right tree branch of the node i. Therefore, starting on a

Tree_Posn with root node id of the Rem_Tr equals to i, Advance (2, F.TP) will

navigate the tree to the right tree branch of the node i. If the right tree branch is

Empty_Tree(Ω), the next index should be in the ancestors of node i. Otherwise, next

index is expected to be the minimum node on the left tree branch of Rem_Tr root node.

However, if the left tree branch is Empty_Tree(Ω), then the root node of the Rem_Tr is

the next index after i.

 66

Realization BST_Realiz (

 ⋮
 ⋮

Procedure Next_Int_Index (restores i: Index;

restores F: A_C_Fn; replace r: Index);

 Var P: IRV_Pair;

 Var present: Boolean;

 Shift_to_Index (i, F, present);

 Advance (2, F.TP);

 If (At_an_End (F.TP)) then

 Retreat(F.TP);

 While (Precedes (Current_Id(F), i) or Are_Equal(Current_Id(F),i))

 maintaining F.Path  F.Rem_Tr =

 ((Prt_btwn(0, |#F.Path| ∸ 1, #F.Path)) o

 Prt_Btwn (|#F.Path| ∸ 1, |#F.Path|, #F.Path))  #F.Rem_Tr ;
 decreasing | F.TP.Path |;

 do

 Retreat(F.TP);

 end;

 r := Current_Id(F)

 else

 Advance(1, F.TP);

 If (At_an_End (F.TP)) then

 Retreat (F.TP);

 r := Current_Id(F)

 else

 Shift_To_First(F);

 r := Current_Id(F);

 end;

 end;

end Next_Int_Index;

 ⋮
 ⋮

end BST_Realiz;

Figure 49: Specification and implementation of operation Next_Int_Index in BST_Realiz

 67

Realization BST_Realiz (

 ⋮
 ⋮

Procedure Would_Be_Last (restores i: Index; restores F: A_C_Fn):

 Boolean;

 If (Are_Equal (F.Last_Id , i)) then

 Would_Be_Last := True();

 else

 Would_Be_Last := False();

 end;

end Would_Be_Last;

Procedure Max_Deviation_Ct(): Integer;

 Max_Deviation_Ct := Dev_Ct_Max;

end Max_Deviation_Ct;

Procedure Deviation_Count_of (restores F: A_C_Fn): Integer;

 Deviation_Count_of := Node_Count (F.TP);

end Deviation_Count_of;

Procedure Make_Constant (clears F: A_C_Fn);

 Reset(F.TP);

 Delete_Remainder(F.TP);

end Make_Constant;

end BST_Realiz;

Figure 50: A snippet showing BST_Realiz

The Boolean operation Would_Be_Last is implemented as shown in Figure 50,

for a specified index i, Would_Be_Last will return true if i is the last index in the in-

order traversal of the tree. The implementation compares the incoming provided index

with the Last_Id.

 The last three operations in Figure 50 are somewhat easy and direct to understand,

Max_Deviation_Ct() will return the maximum number of deviations in a given map, this

 68

is implemented by just equating Max_Deviation_Ct to Dev_Ct_Max provided during

instantiation of the template. The second operation, Deviation_Count_of is implemented

by a Node_Count of the given Tree_Posn. Make_Constant is implemented by use of

Delete_Remainder enhancement where the entire is deleted.

AVL Binary Search Tree Balancing

 Using a BST in this implementation makes it possible to achieve an worst-case

complexity of O(log Dev_Count_of(F)) or better for the map operations. However, in the

worst case the performance can be as poor as on a linked list if the BST is not well

maintained during insertion and deletion of a nodes. Consider a case when a sorted

sequence of keys is inserted into a BST. If there is no mechanism to readjust the tree

height as the elements are inserted, the final structure will be a linked list and searching

can have a linear worst-case performance O(Dev_Count_of (F)). To solve this problem

balancing is necessary in BST which will promise a logarithmic worst-case performance

in all operations. In this implementation, a predicate Is_Balanced is added to the

convention to guarantee that the external operations keep the representation balanced.

Balancing will achieve proper branching of the BST and it does this by re-

balancing every time there is a change in the tree whether by inserting or deleting a node.

There are several balancing techniques that exists in theory and practice. For this

implementation, a worst-case mechanism AVL trees is used. AVL trees are height-

balanced trees and named after two inventors Adel’son-Vel’skii G and E.M. Landis [1].

The basic idea of AVL tree balancing mechanism is to guarantee that for every node in

 69

the tree, the difference in height for the left sub-tree and right sub-tree is at most 1. To

maintain this balance factor, special operations called rotations will be required to re-

adjust the tree nodes whenever a balance factor is violated at a node. Two types of

rotations used: Right rotation which is specified and implemented in Figure 52 and left

rotation which is specified and implemented in Figure 54. The operation

Right_Rotate_Rem_Tr requires the Rem_Tr to be left-heavy as stated in the requires

clause.

This specification also uses a Split_at function which is defined in the General

Tree Theory. Split_at will produce a Site and a Remaining Tree from a tree depending on

the splitting position provided. Figure 51 illustrates this function. On an example tree (T)

in Figure 51(a), Split_at (0, T) will result into a Site and Rem_Tr shown in Figure 51(b).

Therefore, Split_at(0, F.TP.Rem_Tr).RT   simply states that the left subtree of

the root node is not empty tree.

At the end of rotation, the ensures clause first guarantees that no changes are

made to the Last_Id and Path, however, the Rem_Tr will be updated and the

specifications in the ensures clause uses Jn operator and Split_at function to define the

resulting Rem_Tr after rotation. Left_Rotate_Rem_Tr is the mirror image of

Right_Rotate_Rem_Tr and requires the Rem_Tr to be right heavy, after left rotation the

remaining tree is either left heavy or with subtrees which have same height.

 70

Figure 51: (a) Given 2-Tree T (b) Resulting Site and Remaining Tree after Split_at (0, T)

Realization BST_Realiz (

 ⋮
 Operation Right_Rotate_Rem_Tr(updates F: A_C_Fn);

 requires F.TP.Rem_Tr  

 (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and

 Split_at(0, F.TP.Rem_Tr).RT  
 (which_entails Split_at(0, F.TP.Rem_Tr).RT:

 U_Tr(2, IRV_Pair)~{});

 ensures F.Last_Id  #F.Last_Id and

 F.TP.Path  #F.TP.Path and F.TP.Rem_Tr 

 Jn( Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,

 Jn(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT,

 Split_at(1, #F.TP.Rem_Tr).RT, Rt_Lab(#F.TP.Rem_Tr)) ,

 Rt_Lab(Split_at(0, #F.TP.Rem_Tr).RT));

 Procedure

 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (1, F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Right_Rotate_Rem_Tr ;

 ⋮

end BST_Realiz;

Figure 52: A snippet showing operation Right_Rotate_Rem_Tr in BST_Realiz

Ω

 20

P 

(a)

 12

 15 10

(b)

Ω

 20

 12

 15 10

 71

Both rotations in general are achieved by deterministic number of steps as demonstrated

in Figure 53. In this figure, (a) is a tree position with left heavy Rem_Tr, A right rotation

at this tree position will result into a right heavy Rem_Tr shown in Figure 53(b).

Alternatively, if we left rotate a tree position in Figure 53(b), it will result into a tree

position shown in Figure 53(a). The implementation of these operations uses operation

Advance to get to right section of the tree, a temporary variable T to hold that section, and

a Swap_Rem_Trees operation for movement.

Figure 53: An illustration of Right Rotation and Left Rotation: (a) left heavy (b) Right

heavy

Ω

Ω
P 

Ω Ω Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω Ω

 5
15

12 17

Ω Ω

Ω Ω

Ω

 15

10

7

Ω Ω

 5
12

17

 20

 72

Realization BST_Realiz (

 ⋮
 ⋮

Operation Left_Rotate_Rem_Tr (updates F : A_C_Fn);

 requires F.TP.Rem  

 (which_entails F.TP.Rem: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, F.TP.Rem_Tr).RT  
 (which_entails Split_at(1, F.TP.Rem_Tr).RT:

 U_Tr(2, IRV_Pair)~{});

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and

 F.TP.Rem_Tr 

 Jn(Jn(Split_at(0, #F.TP.Rem_Tr).RT,

 Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT,
 Rt_Lab(#F.TP.Rem_Tr)),

 Split_at(1, Split_at(1, #F.TP.Rem_Tr).RT).RT,

 Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT));

procedure

 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (2, F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

end Left_Rotate_Rem_Tr;

 ⋮
 ⋮

end BST_Realiz;

Figure 54: Specification and implementation of operation Left Rotate in BST Realization

To restore balance of an AVL tree there are several cases to be considered

depending on whether the balance violating node is Left-Left heavy, Left-Right heavy,

Right-Right heavy or Right-Left heavy. These four cases will also determine the type and

number of rotations needed to re-balance the tree. Shown in Figure 59 is operation

Adjust which considers the above four cases to reestablish balance of an AVL tree. To

 73

simplify implementation of Adjust operation, local operations LT _Height and

RT_Height are defined and used with a sole purpose of finding heights of left subtree and

right subtree respectively.

Operation LT_Height (restores F: A_C_Fn): Integer

 ensures LT_Height = ht (Split_at(1, F.TP.Rem_Tr).RT);

Procedure

 If(At_an_end(F.TP)) then

 LT_Height := 0;

 else

 Advance (1, F.TP);

 LT_Height := Node_Height (F.TP);

 Retreat (F.TP)

 end;

end;

Operation RT_Height (restores F: A_C_Fn) : Integer

 ensures RT_Height = ht(Split_at(2, F.TP.Rem_Tr).RT);

Procedure

 If(At_an_end(F.TP)) then

 RT_Height := 0;

 else

 Advance (2, F.TP);

 RT_Height := Node_Height (F.TP);

 Retreat (F.TP);

 end;

end;

Figure 55: Operations LT_Height and RT_Height used in Adjust operation

The implementation of Adjust operation in Figure 59 use the result of the

difference between height of the left subtree (LTHeight) and height of the right subtree

(RTHeight) to determine if the respective node maintains the AVL tree balancing. If

this difference is less than −1 or greater than 1 re-balancing is required. The entire

process of re-balancing needs to identify which case from among the four cases discussed

earlier does the balance violation fall into. This classification will require the two values

LTHeight and RTHeight. The two heights are compared and whichever is greater than

 74

the other determines which side of the tree is heavier. The implementation is set to

eliminate one case after the other. Once the exact case is identified, it will govern the type

and number rotations needed to restore the balance.

Two cases LR-Heavy and RL-Heavy mentioned above will require double

rotation to achieve balance. The map implementation defines local operation

Elevate_Right_Middle and Elevate_Left_Middle to achieve balance in those cases

without double rotation. The specification and implementation of Elevate_Right_Middle

and Elevate_Left_Middle are shown in Figure 57 and Figure 58, respectively. These

specifications are the mirror image of each other.

In Figure 57, the specifications show that operation Elevate_Right_Middle

requires the remaining tree not to be empty tree. Split_at function is used to explicitly

define which case of a tree this operation can be called. The case identified with the

Split_at function is Left – Right Heavy (Split_at(1, Split_at(0,

F.TP.Rem_Tr).RT).RT  ).

The ensures clause of this operation will guarantee no changes made to the

Last_Id and Path, however, the Rem_Tr will be updated as specified using Jn operator

and Split_at function to represent the updated Rem_Tr after Elevate_Right_Middle. As

shown in Figure 59, the specification of the operation Adjust requires that the tree

satisfies the BST property even before the operation is called and that Rem_Tr is

Empty_Tree(Ω). After the operation Adjust is called, the ensures clause guarantees that

the content of the tree and the Last_Id are not changed, and that the tree is balanced and

still maintains the BST property.

 75

To illustrate the operation Adjust, consider an imbalanced BST tree with a tree

position in Figure 56(a). Based on the cases discussion above, this is a Left-Left heavy

which will need a single right rotation to restore balance. The resulting tree position is

shown in Figure 56(b). The next case shown in Figure 60 is a Left-Right heavy balance

violation which would require double rotations in case Right and Left rotations were to

be used, in this implementation Elevate_Left_Middle is used and Figure 60(a) shows a

balanced case.

Figure 56: Demonstration of operation Adjust, left-left heavy case: (a) Imbalance tree

position (b) balanced tree position after right rotation

Ω

Ω
P 

Ω Ω Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω Ω

 5
15

12 17

Ω Ω

Ω Ω

Ω

 15

10

7

Ω Ω

 5
12

17

 20

 76

Realization BST_Realiz (

 ⋮
 ⋮

Operation Elevate_Right_Middle(updates F: A_C_Fn);

 requires F.TP.Rem  

 (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, F.TP.Rem_Tr).RT  
 (which_entails

 Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and

 Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT  
 which_entails

 Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{};

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and

 F.TP.Rem_Tr 

 Jn(Jn( Split_at(0, #F.TP.Rem).RT),

 Split_at(1,Split_at(0,Split_at(0,#F.TP.Rem)

 .RT).RT).RT ,Rt_Lab(#F.TP.Rem_Tr)),

 Jn(Split_at(1, Split_at(0, Split_at(1,#F.TP.Rem_Tr)
 .RT).RT).RT, Split_at(1, (Split_at(1,

 #F.TP.Rem_Tr).RT).RT,

 Rt_Lab(Split_at(1,#F.TP.Rem_Tr).RT) ,
 Rt_Lab(Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT));

 procedure

 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (2, F.TP);

 Advance (1, F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Elevate_Left_Middle;

 ⋮

end BST_Realiz;

Figure 57: Operation Elevate Right Middle for balancing

 77

Realization BST_Realiz (

 ⋮
 ⋮

Operation Elevate_Left_Middle(updates F: A_C_Fn);

 requires F.TP.Rem  

 (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and

 Split_at(0, F.TP.Rem_Tr).RT  
 (which_entails

 Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT  
 which_entails

 Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{};

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and

 F.TP.Rem_Tr 

 Jn(Jn( Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,
 Split_at(0, Split_at(1,Split_at(0,#F.TP.Rem_Tr)

 .RT).RT).RT ,Rt_Lab(Split_at(0, #F.TP.Rem_Tr))),

 Jn( Split_at(1, Split_at(1, Split_at(0,#F.TP.Rem_Tr)

 .RT).RT).RT, Split_at(1, #F.TP.Rem_Tr).RT ,

 Rt_Lab(#F.TP.Rem_Tr)),

 Rt_Lab(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT));

Procedure

 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (1, F.TP);

 Advance (2, F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Elevate_Left_Middle;

 ⋮

end BST_Realiz;

Figure 58: Operation Elevate Left Middle for balancing

 78

Operation Adjust (updates F: A_C_Fn)

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and

 F.TP.Rem_Tr ≠ Ω

 ensures F.TP.Path  F.TP. Rem_Tr = #F.TP.Path  #F.TP.Rem_Tr and
 F.Last_Id = #F.Last_Id and

 Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and

 Is_Balanced (F.TP.Path  F.TP. Rem_Tr);

Recursive Procedure Adjust (updates F: A_C_Fn);

 decreasing ht(F.TP.Rem_Tr);

 Var balance: Integer

 balance := LT_Height (F) – RT_Height (F);

 If (balance > 1) then

 Advance (1, F.TP);

 If (LT_Height (F) >= RT_Height (F)) then

 Retreat(F.TP);

 Right_Rotate_Rem_Tr (F);

 else

 Retreat (F.TP);

 Elevate_Left_Middle(F);

 end;

 else

 If (balance < − 1) then
 Advance (2, F.TP);

 If (RT_Height (F) >= LT_Height (F)) then

 Retreat(F.TP);

 Left_Rotate_Rem_Tr (F);

 else

 Retreat (F.TP);

 Elevate_Right_Middle(F);

 end;

 end;

 end;

 If (Path_Length(F.TP) /= 0) then

 Retreat (F.TP);

 Adjust (F);

 end;

end Adjust;

 ⋮

end BST_Realiz;

Figure 59: Implementation of operation Adjust

 79

Figure 60: Demonstration on Left-Right Heavy imbalance: (a) Left-Right Heavy Rem_Tr

(b) Balanced result after Elevate Left Middle

Ω

Ω Ω

Ω

 20

#P 

(a)

10

7

(b)

Ω Ω

 5
15

17 Ω

P 

Ω Ω Ω

Ω

10

7

Ω Ω

 5
15

17

Ω

20

 80

CHAPTER FOUR

VERIFICATION

As stated earlier, a thesis objective is to present a challenge verification problem

of an implementation involving multiple theories and the use of the tree concept which is

based on the non-trivial general tree theory for which there are no special-purpose

solvers. This chapter presents the work that is in progress concerning verification of the

enhancements and map implementation developed under this research.

Generation of Verification Conditions (VCs)

The purpose of this section is merely to illustrate the verification process using

the simplest possible example. VCs for the Delete_Remainder enhancement are discussed

here. As a part of the verifying compiler, the VC Generator will accept the

implementation together with specifications and apply respective proof rules to

mechanically form VCs, proving all of which is equivalent to the correctness of the

program [6].

For the generation of VCs for Delete_Remainder, a minimal set of the

specifications and theories just needed for this enhancement were input and three VCs

were generated for correctness of Delete_Remainder. The first one is shown in Figure 61.

Each VC has a goal and given(s). In the first VC, the goal is to prove P'.Path = P.Path

and with the givens it can be observed that the proof is “obvious”. In this case given 1 is

sufficient to prove the goal.

 81

VC 0_1

Ensures Clause of Delete_Remainder:

Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

(P'.Path = P.Path)

Given(s):

1. (P'.Path = P.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (Q'.Path = Q.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

Figure 61: Fist VC for ensures clause of Delete Remainder

The second VC is shown next in Figure 62. This VC has a goal of P'.Rem_Tr =

Empty_Tree and it is provable using givens 2 and 6.

VC 0_2

Ensures Clause of Delete_Remainder:

Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

(P'.Rem_Tr = Empty_Tree)

Given(s):

1. (P'.Path = P.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (Q'.Path = Q.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

Figure 62: Second VC for ensures clause of Delete Remainder

 82

The third and final VC concerns Remaining_Cap and it is shown in Figure 63.

The goal and givens are straightforward. As it can be observed for all the VCs generated

for this simplest example, correctness can be established by a simple automated prover

without deep thinking [9]. While it is difficult to claim this would be the case for all VCs

generated for the non-trivial map implementation, that is the opportunity and challenge

presented by this thesis. A more detailed output of the VC generation process is shown in

Appendix D.

VC 0_3

Ensures Clause of Delete_Remainder:

Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

((Remaining_Cap + N_C(Zip_Op(Q'.Path, Q'.Rem_Tr))) =

(Remaining_Cap + N_C(P.Rem_Tr)))

Given(s):

1. (Q'.Path = Q.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (P'.Path = P.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

Figure 63: Third VC for ensures clause of Delete Remainder

 83

CHAPTER FIVE

SUMMARY AND FUTURE DIRECTIONS

 The primary goal of this thesis is to present an opportunity and a challenge for

automated verification. Using a non-trivial tree theory, exploration tree template and

almost constant function concepts, several enhancements to the tree concept and a map

implementation based on trees have been developed. The implementation is annotated to

make it amenable to verification, in the process illustrating what is necessary for software

engineers to learn to develop verified components. While the effort is considerable, once

developed and verified, the cost will be amortized over the lifetime uses of the

component.

While this thesis has led to different enhancements and implementations that can

test the progress we have towards automated verification, it is also the beginning phase of

a host of directions that are worthy of exploration and improvement. First and foremost

are the improvements that can be made to map implementation which is currently too

long because few operation enhancements are currently available for exploration tree. An

immediate direction is the creation of suitable enhancements for various tree operations

that are currently locally defined within the implementation. This improvement will

simplify the code and verification process.

Another future work that can improve this thesis is more mathematical

development that would make the assertions simpler for automated systems to manipulate

(e.g., avoidance of quantifiers in the few places where they are used).

 84

A direction that is worthy of exploration is the type of balancing mechanism that

can be used. This thesis has presented AVL trees which is a worst-case balancing

mechanism. But for research and experimentation, efficient implementations based on

other ideas such as splay trees (amortized mechanism) and randomly-balanced BSTs

(randomized mechanism) can be developed with suitable annotations. Performance

annotations of all implementations is another useful direction.

The general tree theory being one of the complex theories presents a challenge in

coming up with an effective way to describe it. In this thesis, a lot of work has been done

to use illustrations to make these theories useable in classrooms. It may be instructive to

teach the concepts presented here at varying levels of formality to various audiences and

evaluate their suitability.

 85

APPENDICES

 86

Appendix A

Exploration Tree Template

Concept Exploration_Tree_Template(type Node_Label; eval k, Initial_Capacity: Integer);

 uses Std_Integer_Fac, Std_Boolean_Fac, General_Tree_Theory with Relativization_Ext;

 requires 1  k and 0  Initial_Capacity which_entails k: ℕ0 and Initial_Capacity: ℕ;

 Var Remaining_Cap: ℕ;

 initialization

 ensures Remaining_Cap  Initial_Capacity;

 Family Tree_Posn  U_Tr_Pos(k, Node_Label);

 exemplar P;

 initialization

 ensures P.Path   and P.Rem_Tr  ;

 finalization

 ensures Remaining_Cap = #Remaining_Cap + N_C (P.Path  P.Rem_Tr);

 Oper Advance(eval dir: Integer; upd P: Tree_Posn);

 requires P.Rem_Tr  

 which_entails P.Rem_Tr: Tr(Node_Label)~{}and 1  dir  k;

 ensures P.Rem_Tr  ≸(Prt_btwn(dir ∸ 1, dir, Rt_Brhs(#P.Rem_Tr))) and

 P.Path  #P.Path◦(Rt_Lab(#P.Rem_Tr), Prt_btwn(0, dir ∸ 1,

 Rt_Brhs(#P.Rem_Tr)),Prt_btwn(dir, k, Rt_Brhs(#P.Rem_Tr)));

 Oper Reset(upd P: Tree_Posn);

 ensures P.Path   and P.Rem_Tr  #P.Path  #P.Rem_Tr;

 Oper At_an_End(rest P: Tree Posn): Boolean;

 ensures At_an_End  (P.Rem_Tr  );

 Oper Add_Leaf(alt Labl: Node_Label; upd P: Tree_Posn);

 affects Remaining_Cap;

 requires P.Rem_Tr   and Remaining_Cap > 0;

 ensures P.Path  #P.Path and P.Rem_Tr  Jn(k, #Labl) and

 Remaining_Cap  #Remaining_Cap ∸1;

 Oper Remove_Leaf(rpl Leaf_Lab: Node_Label; upd P: Tree_Posn);

 affects Remaining_Cap;

 requires P.Rem_Tr   (which_entails P.Rem_Tr: Tr(Node_Label)~{})
 and Rt_Brhs(P.Rem_Tr)  k;

 ensures P.Path  #P.Path and P.Rem_Tr   and Leaf_Lab  Rt_Lab(#P.Rem_Tr)

and Remaining_Cap  #Remaining_Cap + 1;

 87

 Oper At_a_Leaf(rest P: Tree_Posn): Boolean;

 ensures At_a_Leaf  ((which_entails P.Rem_Tr: Tr(Node_Label)~{})

 and Rt_Brhs(#P.Rem_Tr)= k);

 Oper Swap_Label(upd Labl: Node_Label; upd P: Tree_Posn);

 requires P.Rem_Tr   (which_entails P.Rem_Tr: Tr(Node_Label)~{});

 ensures Labl  Rt_Lab(#P.Rem_Tr) and P.Path  #P.Path and

 P.Rem_Tr  Jn(Rt_Brhs(#P.Rem_Tr), #Labl);

 Oper Swap_Rem_Trees(upd P, Q: Tree_Posn);

 ensures P.Path  #P.Path and Q.Path  #Q.Path and P.Rem_Tr  #Q.Rem_Tr and

 Q.Rem_Tr  #P.Rem_Tr;

 Oper Swap_w_Rem(upd P, Q: Tree_Posn);

 ensures P.Path   and P.Rem_Tr  #Q.Rem_Tr

 and Q.Path  #Q.Path◦#P.Path and Q.Rem_Tr  #P.Rem_Tr;

 Oper Retreat(upd P: Tree_Posn);

 requires P.Path  ;

 ensures P.Path  Prt_btwn(0, |#P.Path| ∸ 1, #P.Path) and P.Rem_Tr =(

 Prt_Btwn (|#P.Path| ∸ 1, |#P.Path|, #P.Path)  #P.Rem_Tr;

 Oper Path_Length(rest P: Tree_Posn): Integer;

 ensures Path_Length  |P.Path|;

 Oper Rmng_Capacity(): Integer;

 ensures Rmng_Capacity  (Remaining_Cap);

end Exploration_Tree_Template;

 88

Appendix B

Almost Constant Function Template

Concept Almost_Constant_Function_Template(type Index, Range_Value;

 def const C: Range_Value; eval Dev_Ct_Max: Integer; def const (i: Index) ⊴ (j: Index): B);

 (Deviation Count Maximum )

 uses Std_Integer_Fac, Std_Boolean_Fac, Basic_Ordering_Theory;

 requires 1  Dev_Ct_Max and Is_Total_Ordering(⊴);

 Family A_C_Fn  (IndexRange_Value); ( Almost Constant Function )

 exemplar F;

 Def Const Deviation_Count(F: A_C_Fn): ℕ  (║{ i: Index  F(i)  C }║);

 constraint

 Deviation_Count(F)  Dev_Ct_Max;

 initialization

 ensures F   i: Index.(C);

 Oper Swap_Value(upd V: Range_Value; upd F: A_C_Fn; rest i: Index);

 requires Deviation_Count(F)  Dev_Ct_Max or F(i)  C or V  C;

 ensures F(i)  #V and V  #F(i) and  j: Index, if j  i then F(j)  #F(j);

 Def Const (i: Index)  (j: Index): B  (i ⊴ j and i  j);

 Def Const Are_Devs_after(i: Index, F: A_C_Fn): B  ( k: Index  i  k and F(k)  C);

 (Are Deviations after )

 Def Const Is_1st_Dev_after(i, k: Index, F: A_C_Fn): B  (i  k and F(k)  C and

( Is 1st Deviation after )  j: Index, if i  j  k, then F(j)  C);

 Def Const Is_1st_Dev(k: Index, F: A_C_Fn): B  (F(k)  C and  j: Index, if j  k,

 ( Is 1st Deviation ) then F(j)  C);

 Oper First_Int_Index(rpl i: Index; rest F: A_C_Fn); ( First Interesting Index )

 requires 1 ≤ Deviation_Count (F);

 ensures Is_1st_Dev(i, F);

 89

 Oper Next_Int_Index(rest i: Index; rest F: A_C_Fn; rpl r: Index);

 ( Next Interesting Index )

 requires Are_Devs_after(i, F);

 ensures Is_1st_Dev_after(i, r, F);

Oper Would_Be_Last(rest i: Index; rest F: A_C_Fn): Boolean;

 ensures Would_Be_Last  ( Are_Devs_after(i, F));

 Oper Max_Deviation_Ct(): Integer; ( Maximum Deviation Count )

 ensures Max_Deviation_Ct  (Dev_Ct_Max);

 Oper Deviation_Count_of(rest F: A_C_Fn): Integer;

 ensures Deviation_Count_of  (Deviation_Count(F));

 Oper Make_Constant(clr F: A_C_Fn);

end Almost_Constant_Function_Template;

 90

Appendix C

Map Implementation

Realization BST_Realiz (( Binary Search Tree )

 Operation In_Order (restores i, j: Index): Boolean;

 ensures In_Order  (i ⊴ j);

 Operation Replica(restores i: Index): Index;

 ensures Replica  (i);

 Operation New_Dflt_RV(): Range_Value;

 ensures New_Dflt_RV  (C); ( New Default Range Value )

 Operation Is_Dflt_RV(V:Range_Value): Boolean;

 ensures Is_Dflt_RV  (V  C); ( Is Default Range Value )

) for Almost_Constant_Function_Template;

 uses Exploration_Tree_Template;

 Operation Are_Equal(restores i, j: Index): Boolean;

 ensures Are_Equal  (i  j);

 procedure

 Are_Equal : In_Order(i, j) and In_Order(j, i);

 end Are_Equal;

 Operation Precedes(restores i, j: Index): Boolean;

 ensures Precedes  (i  j);

 procedure

 Precedes : In_Order(i, j) and not In_Order(j, i);

 end Precedes;

 Type IRV_Pair  Record ( Index Range Value Pair )

 id : Index;

 V: Range_Value;

 end;

 Facility Tree_Fac is Exploration_Tree_Template (IRV_Pair, 2, Dev_Ct_Max)

 realized by Obv_Exploration_Tree_Realiz

 enhanced by Node_Count_Capability

 realized by Obv_Node_Count_Realiz

 enhanced by Deletion_Capability

 realized by Obvious_Deletion_Realiz

 enhanced by Node_Height

 realized by Obv_Node_Height_Capability_Realiz;

 Definition Is_Dflt_C_Free (T: Tr(IRV_Pair)): B  ( p: Occ_Set(T.Path  T.Rem_Tr),

( Is Default Constant Free )

 Definition Is_Antitransitive(: (D: Set)⊠DB)  ( x, y, z: D, if  x  y and  y  z,

then  x  z);

 91

 Definition (p: IRV_Pair) ◄ (q: IRV_Pair): B  (p.id  q.id); ( Is Pair Less Than )

 Corollary 1: Is_Transitive(◄) and Is_Asymmetric(◄) and Is_Antitransitive(◄);

 Def. Fn_Sub_Gr:((IRV_Pair))  { S:(IRV_Pair) p, q: S, if p.id  q.id,

( Function SubGraph ) then p.V  q.V };

 Corollary 1:  T: U_Tr_Pos(2, IRV_Pair), if Is_L_R_Cfml_w (◄, T),

 then Occ_Set(T): Fn_Sub_Gr;

 Def. Dom_Set(S:(IRV_Pair)):(Index)  { i: Index p: S  i  p.id }; ( Domain Set )

 Corollary 1:  S: Fn_Sub_Gr,  i: Dom_Set(S), ! p: S  i  p.id;

 Corollary 2:  S: Fn_Sub_Gr, ! F: IndexRange_Value 

  p: S, F(p.id)  p.V and  i: (Index~Dom_Set(S)), F(i)  C;

 Implicit Def. Rpd_Fn(S: Fn_Sub_Gr): IndexRange_Value is

  p: S, Rpd_Fn(S)(p.id)  p.V and  i: (Index~Dom_Set(S)), Rpd_Fn(S)(i)  C;

 ( Represented Function )

 Type A_C_Fn  Record

 TP: Tree_Fac.Tree_Posn; ( Tree Position )

 Last_Id : Index; ( Last Index )

 end;

 convention Is_L_R_Cfml_w(◄, F.TP.Path  F.TP.Rem_Tr)

 which_entails

 Occ_Set(F.TP.Path  F.TP.Rem Tr): Fn_Sub_Gr and

 Is_Balanced (F.TP) and Is_Dflt_C_Free (F.TP) and

  p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id and

 if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,

 then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  q.id  F.Last_Id;

 correspondence Conc.F  Rpd_Fn(Occ_Set(F.TP.Path  F.TP.Rem_Tr));

 Operation Current_Id(restores F: A_C_Fn): Index; ( Current Index )

 requires F.TP.Rem_Tr ≠ ;

 ensures Current_Id  (Rt_Lab (F.TP.Rem_Tr).id);

 procedure

 Var P: IRV_Pair;

 Swap_Label (P, F.TP);

 Current_Id : Replica (P.id);

 Swap_Label (P, F.TP);

 end Current_Id;

 92

Operation Shift_to_Index_in_Rem_of(updates F: A_C_Fn; restores i: Index;

 replaces Is_Present: Boolean);

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr);

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)), then Is_Present and

 F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{})) and

 Rt_Lab(F.TP.Rem_Tr).id  i and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)),

 then  Is_Present and F.TP.Rem_Tr   and

Is_L_R_Cfml_w(◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  Jn(2, (i, C)));

 recursive procedure
 decreasing ht(F.TP.Rem_Tr);

 If (Are_Equal(i, Current_Id(F))) then

 Is_Present : True();

 else

 If (not At_an_End(F.TP)) then

 If (Precedes(i, Current_Id(F)) then

 Advance (1, F.TP);

 else

 Advance (2, F.TP);

 end;

 Shift_to_Index_in_Rem_of(F, i, Is_Present);

 else

 Is_Present : False();

 end;

 end;

 end Shift_to_Index_in_Rem_of;

Operation Shift_to_Index (updates F: A_C_Fn; restores i: Index;

 replaces Is_Present: Boolean);

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr);

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 #F.TP.Path Is_Prefix F.TP.Path and F.Last_Id = #F.Last_Id and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)), then Is_Present and

 F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{})) and

 Rt_Lab(F.TP.Rem_Tr).id  i and

 if i  Dom_Set(Occ_Set(#F.TP.Rem_Tr)),

 then  Is_Present and F.TP.Rem_Tr   and

Is_L_R_Cfml_w(◄, prt_btwn(|#F.TP.Path|, |F.TP.Path|, F.TP.Path)  Jn(2, (i, C)));

 93

procedure Shift_to_Index (updates F: A_C_Fn; restores i: Index;

 replaces Is_Present: Boolean);

 If (Path_Length(F.TP) ≥ 1 and Precedes(i, Current_Id(F)) then

 Reset(F.TP);

 end;

 Shift_to_Index_in_Rem_of (F, i, Is_Present);

end Shift_to_Index;

Operation Shift_to_First (updates F: A_C_Fn)

 requires F.TP.Path =  and F.TP.Rem_Tr ≠ Ω;

 ensures F.TP.Path  F.TP.Rem_Tr  #F.TP.Path  #F.TP.Rem_Tr and

 F.TP.Rem_Tr ≠ Ω (which_entails F.TP.Rem_Tr: (Tr(IRV_Pair)~{}) and

 (Rt_Lab(F.TP.Rem_Tr)).id = i and

 Is_1st_Dev (Rt_Lab(F.TP.Rem_Tr).id, F.TP);

Recursive Procedure Shift_to_First (updates F:A_C_Fn);

 decreasing ht(F.TP.Rem_Tr);

 If (At_an_End (F.TP)) then

 Retreat (F.TP);

 else

 Advance (1, F.TP);

 Shift_to_First (F);

 end;

end Shift_to_First;

Operation Right_Rotate_Rem_Tr(updates F: A_C_Fn);

 requires F.TP.Rem_Tr   (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{})

 and Split_at(0, F.TP.Rem_Tr).RT  

(which_entails Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{});

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr 

 Jn( Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,

 Jn(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT,

 Split_at(1, #F.TP.Rem_Tr).RT, Rt_Lab(#F.TP.Rem_Tr)) ,

 Rt_Lab(Split_at(0, #F.TP.Rem_Tr).RT));

 94

 procedure
 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (1, F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Right_Rotate_Rem_Tr ;

Operation Left_Rotate_Rem_Tr (updates F : A_C_Fn);

 requires F.TP.Rem   (which_entails F.TP.Rem: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, F.TP.Rem_Tr).RT  

(which_entails Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{});

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr 

 Jn(Jn(Split_at(0, #F.TP.Rem_Tr).RT,

 Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT, Rt_Lab(#F.TP.Rem_Tr)),

 Split_at(1, Split_at(1, #F.TP.Rem_Tr).RT).RT,

 Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT));

procedure

 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (2, F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

end Left_Rotate_Rem_Tr;

 95

 Operation Elevate_Left_Middle(updates F: A_C_Fn);

 requires F.TP.Rem  

 (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and

 Split_at(0, F.TP.Rem_Tr).RT  

 (which_entails Split_at(0, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT   which_entails

 Split_at(1, Split_at(0, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{};

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr 

 Jn( Jn( Split_at(0, Split_at(0, #F.TP.Rem_Tr).RT).RT,

 Split_at(0, Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT).RT ,

 Rt_Lab(Split_at(0, #F.TP.Rem_Tr))),

 Jn( Split_at(1, Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT).RT,

 Split_at(1, #F.TP.Rem_Tr).RT , Rt_Lab(#F.TP.Rem_Tr)) ,

 Rt_Lab(Split_at(1, Split_at(0, #F.TP.Rem_Tr).RT).RT));

 procedure
 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (1, F.TP);

 Advance (2, F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Elevate_Left_Middle;

 96

Operation Elevate_Right_Middle(updates F: A_C_Fn);

 requires F.TP.Rem   (which_entails F.TP.Rem_Tr: U_Tr(2, IRV_Pair)~{}) and

 Split_at(1, F.TP.Rem_Tr).RT  

 (which_entails Split_at(1, F.TP.Rem_Tr).RT: U_Tr(2, IRV_Pair)~{}) and

 Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT   which_entails

 Split_at(0, Split_at(1, F.TP.Rem_Tr).RT).RT: U_Tr(2, IRV_Pair)~{};

 ensures F.Last_Id  #F.Last_Id and F.TP.Path  #F.TP.Path and F.TP.Rem_Tr 

 Jn( Jn( Split_at(0, #F.TP.Rem).RT),

 Split_at(1, Split_at(0, Split_at(0, #F.TP.Rem).RT).RT).RT ,

 Rt_Lab(#F.TP.Rem_Tr)),

 Jn( Split_at(1, Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT).RT,

 Split_at(1, (Split_at(1, #F.TP.Rem_Tr).RT).RT ,

 Rt_Lab(Split_at(1, #F.TP.Rem_Tr).RT) ,

 Rt_Lab(Split_at(0, Split_at(1, #F.TP.Rem_Tr).RT).RT));

 procedure
 Var New_Rem_Tr: Tree_Fac.Tree_Posn;

 Advance (2, F.TP);

 Advance (1, F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Advance (2, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Advance (1, New_Rem_Tr);

 Swap_Rem_Trees (New_Rem_Tr, F.TP);

 Retreat (F.TP);

 Swap_Rem_Trees (F.TP, New_Rem_Tr);

 Retreat (New_Rem_Tr);

 Swap_Rem_Trees(New_Rem_Tr, F.TP);

 end Elevate_Left_Middle;

 97

Operation LT_Height (restores F: A_C_Fn): Integer

 ensures LT_Height = ht (Split_at(0, F.TP.Rem_Tr).RT);

procedure

 If(At_an_end(F.TP)) then

 LT_Height := 0;

 else

 Advance (1, F.TP);

 LT_Height := Node_Height (F.TP);

 Retreat (F.TP)

 end;

end;

Operation RT_Height (restores F: A_C_Fn): Integer

 ensures RT_Height = ht(Split_at(1, F.TP.Rem_Tr).RT);

procedure

 If(At_an_end(F.TP)) then

 RT_Height := 0;

 else

 Advance (2, F.TP);

 RT_Height := Node_Height (F.TP);

 Retreat (F.TP);

 end;

end;

Operation Adjust (updates F: A_C_Fn)

 requires Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and F.TP.Rem_Tr ≠ Ω;

 ensures F.TP.Path  F.TP.Rem_Tr = #F.TP.Path  #F.TP. Rem_Tr and

 F.Last_Id = #F.Last_Id and

 Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and

 Is_Balanced (F.TP.Path  F.TP. Rem_Tr);

Recursive Procedure Adjust (updates F: A_C_Fn);

 decreasing ht(F.TP.Rem_Tr);

 Var balance: Integer

 balance := LT_Height (F) – RT_Height (F);

 If (balance > 1) then

 Advance (1, F.TP);

 If (LT_Height (F) >= RT_Height (F)) then

 Retreat(F.TP);

 98

 Right_Rotate (F);

 else

 Retreat (F.TP);

 Elevate_Left_Middle(F);

 end;

 else

 If (balance < − 1) then

 Advance (2, F.TP);

 If (RT_Height (F) >= LT_Height (F)) then

 Retreat(F.TP);

 Left_Rotate (F);

 else

 Retreat (F.TP);

 Elevate_Right_Middle(F);

 end;

 end;

 end;

 If (Path_Length(F.TP) /= 0) then

 Retreat (F.TP);

 Adjust (F);

 end;

end Adjust;

Operation Delete_Rt_Node (updates F: A_C_Fn);

 affects Remaining_Cap;

 requires F.TP.Rem_Tr ≠ Ω)

 Is_L_R_Cfml_w(◄, F.TP.Rem_Tr  F.TP.Path) and

 Is_Balanced (F.TP.Path  F.TP. Rem_Tr);

 ensures F.TP.Path = #F.TP.Path and

 Occ_Set (F.TP. Rem_Tr) = Occ_Set (#F.TP.Rem_Tr) ~ {Rt_Lab(#F.TP.Rem_Tr)} and

 Is_L_R_Cfml_w (◄, F.TP.Rem_Tr  F.TP.Path) and

 Remaining_Cap = #Remaining_Cap +1 and If (F.TP.Rem_Tr /= Ω) then

 0 ≤ |ht(Split_at(0, F.TP.Rem_Tr).RT) − ht(Split_at(1, F.TP.Rem_Tr).RT)| ≤ 2 and

  p: Occ_Set(F.TP.Path  F.TP.Rem_Tr), p.id ⊴ F.Last_Id and

 if Occ_Set(F.TP.Path  F.TP.Rem_Tr) ≠ ,

 then  q: Occ_Set(F.TP.Path  F.TP.Rem_Tr)  q.id  F.Last_Id;

Procedure Delete_Rt_Node (updates F: A_C_Fn);

 Var L, R : A_C_Fn;

 Var P : IRV_Pair;

 Var Is_Last_Id: Boolean;

 Is_Last_Id := False();

 If (Are_Equal((Rt_Lab(F.TP.Rem_Tr)).id, F.Last_Id)) then

 Is_Last_Id := True();

 end;

 99

 If (At_a_Leaf(F)) then

 Remove_Leaf(P, F.TP);

 else

 Advance(1, F.TP);

 If(At_an_End(F.TP)) then

 Retreat(F.TP);

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 else

 Retreat(F.TP);

 Advance(2, F.TP);

 If(At_an_End(F.TP)) then

 Retreat(F.TP);

 Advance(1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 else

 Retreat(F.TP);

 Advance(1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP);

 Retreat (F.TP);

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 Remove_Leaf(P, F.TP);

 Shift_to_First(R);

 Swap_Rem_Trees(R.TP, F.TP);

 Reset (R.TP);

 Advance (1, F.TP);

 Swap_Rem_Trees(L.TP, F.TP)

 Retreat (F.TP);

 Advance(2. F.TP);

 If (At_an_End(F.TP)) then

 Swap_Rem_Trees(R.TP, F.TP);

 else

 Advance(2, F.TP);

 Swap_Rem_Trees(R.TP, F.TP);

 Retreat(F.TP);

 end;

 Retreat(F.TP);

 end;

 end;

 100

 If (Is_Last_Id and At_an_End(F)) then

 Retreat(F.TP);

 F.Last_Id := Current_Id(F);

 Advance(2, F.TP);

 else

 If (Is_Last_Id) then

 F.Last_Id := Current_Id(F);

 end;

 end;

 end;

end Delete_Rt_Node;

Procedure Swap_Value(updates V: Range_Value; updates F: A_C_Fn; restores i: Index);

 Var P: IRV_Pair;

 Var present: Boolean;

 P.id := Replica(i);

 Shift_to_Index (i, F, present);

 If present then

 If not Is_Dflt_RV(V) then

 P.V :=: V;

 Swap_Label(P, F.TP);

 V :=: P.V;

 else

 Delete_Rt_Node(F);

 V :=: P.V;

 Adjust(F);

 end;

 else

 If not Is_Dflt_RV(V) then

 P.V :=: V;

 If (Node_Count(F.TP) = 0) then

 F.Last_Id := Replica(P.id);

 else

 If (not In_Order (F.Last_Id, P.id) then

 F.Last_Id := Replica(P.id);

 end;

 end;

 Add_Leaf (P, F.TP);

 V := New_Dflt_RV ();

 Adjust(F);

 end;

 end;

end Swap_Value;

 101

 Procedure First_Int_Index (replaces i: Index; restores F: A_C_Fn);

 Reset(F.TP)

 Shift_to_First(F);

 i := Current_Id(F);

end First_Int_Index;

Procedure Next_Int_Index (restores i: Index; restores F: A_C_Fn; replace r: Index);

 Var P: IRV_Pair;

 Var present: Boolean;

 Shift_to_Index (i, F, present);

 Advance (2, F.TP);

 If (At_an_End (F.TP)) then

 Retreat(F.TP);

 While (Precedes (Current_Id(F), i) or Are_Equal(Current_Id(F), i))

 maintaining F.Path  F.Rem_Tr =

 ((Prt_btwn(0, |#F.Path| ∸ 1, #F.Path)) o

 Prt_Btwn (|#F.Path| ∸ 1, |#F.Path|, #F.Path))  #F.Rem_Tr ;

 decreasing | F.TP.Path |;

 do

 Retreat(F.TP);

 end;

 r := Current_Id(F)

 else

 Advance(1, F.TP);

 If (At_an_End (F.TP)) then

 Retreat (F.TP);

 r := Current_Id(F)

 else
 Shift_To_First(F);

 r := Current_Id(F);

 end;

 end;

end Next_Int_Index;

Procedure Would_Be_Last (restores i: Index; restores F: A_C_Fn): Boolean;

 If (Are_Equal (F.Last_Id , i)) then

 Would_Be_Last := True();

 else
 Would_Be_Last := False();

 end;

end Would_Be_Last;

 102

 Procedure Max_Deviation_Ct(): Integer;

 Max_Deviation_Ct := Dev_Ct_Max;

end Max_Deviation_Ct;

Procedure Deviation_Count_of (restores F: A_C_Fn): Integer;

 Deviation_Count_of := Node_Count (F.TP);

end Deviation_Count_of;

Procedure Make_Constant (clears F: A_C_Fn);

 Reset(F.TP);

 Delete_Remainder(F.TP);

end Make_Constant;

end BST_Realiz;

 103

Appendix D

VC Generation for Delete Remainder

VCs for Obvious_Deletion_Realiz.rb generated Tue Apr 11 13:50:55 EDT 2017

================================= VC(s): =================================

VC 0_1

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

(P'.Path = P.Path)

Given(s):

1. (P'.Path = P.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (Q'.Path = Q.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

VC 0_2

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

(P'.Rem_Tr = Empty_Tree)

Given(s):

1. (P'.Path = P.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (Q'.Path = Q.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

 104

 VC 0_3

Ensures Clause of Delete_Remainder: Obvious_Deletion_Realiz.rb(4:11)

Goal(s):

((Remaining_Cap + N_C(Zip_Op(Q'.Path, Q'.Rem_Tr))) = (Remaining_Cap + N_C(P.Rem_Tr)))

Given(s):

1. (Q'.Path = Q.Path)

2. (P'.Rem_Tr = Q.Rem_Tr)

3. (Q'.Rem_Tr = P.Rem_Tr)

4. (P'.Path = P.Path)

5. (Q.Path = Empty_String)

6. (Q.Rem_Tr = Empty_Tree)

========================VC Generation Details =========================

 Enhancement Realization Name: Obvious_Deletion_Realiz

 Enhancement Name: Deletion_Capability

 Concept Name: Exploration_Tree_Template

==

 105

Appendix E

General Tree Theory Developed by Dr. Bill Ogden

Note: Because of the size of this theory, only few sections referred in thesis are included.

Precis General_Tree_Theory;

 uses General_String_Theory with Relativization_Ext, Basic_Multiset_Theory;

 Definition Is_Tree_Former(Tr⦂ Cls, : Tr, Jn: Str(Tr)El(Tr ~ {}))⦂ B  (

 Pty 1:  , : Str(Tr),  x, y: El, if Jn(, x)  Jn(, y), then    and x  y;

 Pty 2:  C⦂ P(Tr),

 if (i)   C and

 (ii)  : Str(C),  x: El, Jn(, x)  C,

 then C  Tr

);

 ( Tree, Empty Tree, Join, Is_Tree_Former: )

 Corollary 1:  Tr⦂ Cls,  : Tr,  Jn: Str(Tr)El(Tr ~ {}),

 if Is_Tree_Former(Tr, , Jn), then  U, V⦂ Cls,  p: UStr(Tr)ElU,

  b: UV,  s: UStr(V)Str(Tr)ElV, ! f: UTrV   : Str(Tr),

 u: U,  x: El, f(u, )  b(u) and f(u, Jn(, x))  s(u, f[p(u, , x, [], , x);

 ( Inductive definability, permutation, basis, successor, function)

 Corollary 2:  Tr1, Tr2⦂ Cls,  1: Tr1,  2: Tr2,  Jn1: Str(Tr1)El(Tr1 ~ {1}),

  Jn2: Str(Tr2)ElD(Tr2~ {2}), if Is_Tree_Former(Tr1, 1, Jn1) and

 Is_Tree_Former(Tr2, 2, Jn2), then ! h: Tr1Tr2  h(1)  2 and

  : Str(Tr1),  x: El, h(Jn1(, x))  Jn2(h(), x) and Is_Bijective(h);

 ( Isomorphism of instances )

 Corollary 3:  Tr⦂ Cls,  : Tr,  Jn: Str(Tr)El(Tr ~ {}) 

Is_Tree_Former(Tr, , Jn);

 ( Satisfiability )

 Categorical Definition for (Tr⦂ Cls, : Tr, Jn: Str(Tr)El(Tr ~ {})) is

Is_Tree_Former(Tr, , Jn);

 Corollary 1: Is_Surjective(Jn);

 Implicit Definition Indcd_Fn(U, V⦂ Cls, b: UV, s: UStr(V)Str(Tr)ElV,

 p: UStr(Tr)ElU): UTrV is

  u: U, Indcd_Fn(U, V, b, s, p) (u, )  b(u) and  : Str(Tr),  x: El,

 Indcd_Fn(U, V, b, s, p)(u, Jn(, x))  s(u, Indcd_Fn(U, V, b, s, p)[p(u, , x, []], , x);

 Inductive Def. on T: Tr of N_C(T): ℕ is ( Node Count )

 (i) N_C()  0;

 (ii) N_C (Jn(, x))  suc(Ag(, 0)(N_C[[]]));

 Corollary 1:  T: Tr, N_C(T)  0 iff T  ;

 106

 Inductive Def. on T: Tr of ht(T): ℕ is ( height )

 (i) ht()  0;

 (ii) ht(Jn(, x))  suc(Ag(Max, 0)(ht[[]]));

 Corollary 1:  T: Tr, ht(T)  0 iff T  ;

 Corollary 2:  T: Tr, ht(T)  N_C(T);

Def. Is_Leaf(T: Tr): B = ( x: El,  : Str({})  T  Jn(, x));

 Corollary 1:  T: Tr, if Is_Leaf(T), then N_C(T)  ht(T)  1;

Inductive Def. on T: Tr of Occ_Set(T: Tr): Set is ( Occurrence Set )

 (i) Occ_Set()  ;

 (ii) Occ_Set(Jn(, x))  Ag(,)(Occ_Set[[]])  {x};

 Corollary 1:  T: Tr, ||Occ_Set(T)||: ℕ;

 Corollary 2:  T: Tr, ||Occ_Set(T)||  N_C(T);

Inductive Def. on T: Tr of (T)TRev: Tr() is ( Tree Reversal )

 (i) TRev  ;

 (ii) Jn(, x)TRev  Jn(([[]]TRev)Rev, x);

 Corollary 1:  T: Tr, (TTRev)TRev  T;

 Corollary 2:  T: Tr, N_C(TTRev)  N_C(T);

 Corollary 3:  T: Tr, ht(TTRev)  ht(T);

 Corollary 4:  T: Tr, L_C(TTRev)  L_C(T);

 Corollary 5:  T: Tr, Occ_Tly(TTRev)  Occ_Tly(T);

Implicit Defs. Rt_Lab(T: Tr~{}): El and

 Rt_Brhs(T: Tr~{}): Str(Tr) is ( Root Label and Branches )

 Jn(Rt_Brhs(T), Rt_Lab(T)) = T;

 Corollary 1:  x: El,  : Str(Tr), Rt_Lab(Jn(, x))  x and Rt_Brhs(Jn(, x))  ;

 Def. Site  Cart_Prod

 Lab: El;

 LTS, RTS: Str(Tr) ( Left Tree String, Right Tree String )

 end;

 Implicit Def. (S: Site)SRev: Site is ( Site Reversal )

 SSRev.Lab  S.Lab and SSRev.LTS  ([[S.RTS]]TRev)Rev and SSRev.RTS  ([[S.LTS]]TRev)Rev;

 Corollary 1:  S: Site, (SSRev)SRev  S;

 Def. Tr_Pos = Cart_Prod ( Tree Position )

 Path: Str(Site);

 Rem_Tr: Tr ( Remainder Tree )

 end;

Implicit Def. (P: Tr_Pos)PRev: Tr_Pos is ( Position Reversal )

 PPRev.Path  [[P.Path]]SRev and PPRev.Rem_TR  P.Rem_TRTRev;

 Corollary 1:  P: Tr_Pos, (PPRev)PRev  P;

 107

 Inductive Def. on : Str(Site) of ()(T: Tr): Tr is ( zip operator )

 (i)   T = T;

 (ii) ext(, S)  T =   Jn(S.LTS◦T◦S.RTS, S.Lab);

 Corollary 1:  , : Str(Site),  T: Tr, (◦)T = (T);

 Corollary 2:  P: Tr_Pos, (P.Path  P.Rem_Tr)TRev  PPRev.Path  PPRev.Rem_Tr;

 Corollary 3:  P: Tr_Pos, |P.Path|  ht(P.Rem_Tr)  ht(P.Path  P.Rem_Tr);

 Corollary 4:  R, S: Site,  T, U: Tr, if R  T = S  U and

 (|R.LTS| = |S.LTS| or |R.RTS| = |S.RTS|), then R = S and T = U;

 Def. (T: Tr) Is_Subtree (U: Tr): B = ( : Str(Site)  T = U);

 Corollary 1: Is_Partial_Ordering(Is_Subtree);

 Corollary 2:  T, U: Tr, if T Is_Subtree U, then N_C(T)  N_C(U);

 Corollary 3:  T, U: Tr, if T Is_Subtree U, then ht(T)  ht(U);

 Corollary 4:  T, U: Tr, if T Is_Subtree U, then L_C(T)  L_C(U);

 Corollary 5:  T, U: Tr, if T Is_Subtree U, then Occ_Set(T)  Occ_Set(U);

 Corollary 6:  T, U: Tr, if T Is_Subtree U, then Occ_Tly(T)  Occ_Tly(U);

 Corollary 7:  T, U: Tr, if T Is_Subtree U, then TTRev Is_Subtree UTRev;

Implicit Def. Split_at(i: ℕ, T: Tr~{}): Cart_Prod St: Site, RT: Tr end is

 ( produces a Site and a Remainder Tree )

 Split_at(i, T).St  Split_at(i, T).RT = T and

|Split_at(i, T).St.LTS|  min(i, |Split_at(i, T).St.LTS|  |Split_at(i, T).St.RTS|);

 Corollary 1:  S: Site,  T: Tr, Split_at(|S.LTS|, S  T).St = S and  i: ℕ,

Split_at(i, S  T).RT = T;

 Corollary 2:  i: ℕ,  T: Tr~{}, Split_at(i, T).RT Is_Subtree T;

 Corollary 3:  i: ℕ,  T: Tr~{}, ht(Split_at(i, T).RT)  ht(T);

 Def. (P: Tr_Pos) T (Q: Tr_Pos): B = (P.Path  P.Rem_Tr  Q.Path  Q.Rem_Tr); ( are tree equivalent )

 Corollary 1: Is_Equivalence(T);

 Corollary 2:  T: Tr, ;1|P.Path|ht(T)|P.Path|)Max()Max(
T)(ΛP

:P
T)(ΛP

:P

TT









,,
Tr_PosTr_Pos

 Inductive Def. on T: Tr of Yld(T): Str is ( Yield )

 (i) Yld()  ;

 (ii) Yld(Jn(, x)) 



 

otherwise

if

]])α[[Yld(Ag

})({Strαx

Λ),(

;

 Corollary 1:  T: Tr, Yld(T)   iff T  ;

 Corollary 2:  T: Tr, |Yld(T)|  L_C(T);

 Corollary 3:  T, U: Tr, if T  U, then |Yld(T)|  |Yld(U)|;

 Corollary 4:  T: Tr, Yld(TTRev)  Yld(T)Rev;

 Corollary 5:  T: Tr, Yld(T)  Occ_Set(T);

 Corollary 6:  T, U: Tr, if T Is_Subtree U, then Yld(T) Is_Substring Yld(U);

 
end General_Tree_Theory;

 108

Appendix F

Left_Right_Conformality_Ext

Extension Left_Right_Conformality_Ext for General_Tree_Theory with Relativization_Ext;

Def. Is_L_R_Cfml_w(⋌: (: Set)⊠B, T: U_Tr(2, )) : B  ( : Str(U_Site(2, )),

  LT, RT: U_Tr(2, ),  y: , if   Jn(LT, RT, y)  T,

then  x: Occ_Set(LT),  z: Occ_Set(RT), x ⋌ y and y ⋌ z);

 ( Is Left Right Conformal with )

 Corollary 1:  : Set,  ⋌: ⊠B, Is_L_R_Cfml_w(⋌, );

 Corollary 2:  : Set,  ⋌: ⊠B,  LT, RT: U_Tr(2, ),  y: ,

 if Is_L_R_Cfml_w(⋌, LT) and Is_L_R_Cfml_w(⋌, RT) and  x: Occ_Set(LT), x ⋌ y

 and  z: Occ_Set(RT), y ⋌ z, then Is_L_R_Cfml_w(⋌, Jn(LT, RT, y));

 
end Left_Right_Conformality_Ext;

 109

Appendix G

Search_Tree_Balancing_Ext

Extension Search_Tree_Balancing_Ext for General_Tree_Theory with Relativization_Ext;

 Def. Is_Balanced (T: U_Tr (2, : Set)) : B  ( : Str (U_Site (2, )),

  LT, RT: U_Tr (2, ),  y: , if   Jn(LT, RT, y)  T,

then 0 ≤ ht(LT) - ht(RT)| ≤ 1

 Corollary 1:  : Set, Is_Balanced ();

 Corollary 2:  : Set,  LT, RT: U_Tr (2, ),  y: ,

 if Is_Balanced (LT) and Is_Balanced (RT) then Is_Balanced (Jn (LT, RT, y));

 
end Search_Tree_Balancing_Ext;

 110

REFERENCES

[1] Adel'son-Vel'skiĭ G.M. and Landis E.M.: An algorithm for the organization of

information, In: USSR Academy of Sciences 146: 263266, 1962.

[2] Beckert B., Hähnle R.,and Schmitt P.H.: Verification of object-oriented software:

The KeY approach, Springer-Verlag, 2007.

[3] Bjørner N., Ganesh V., Michel R., and Veanes M.: An SMT-LIB Format for

Sequences and Regular Expressions, In: Strings, 2012, p. 24.

[4] Cook C.T., Harton H., Smith H., and Sitaraman M.: Specification Engineering and

Modular Verification Using a Web-integrated Verifying Compiler, In: Proceedings

of the 34th International Conference on Software Engineering, IEEE, 2012, pp

1379 – 1382.

[5] Harms D., Weide B.W.: Copying and Swapping: Influences on the Design of

Reusable Software Components, In: IEEE Transaction on Software Engineering,

vol. 17, no. 5, 1991, pp. 424 – 435.

[6] Harton H.: Mechanical and Modular Verification Condition Generation For Object-

Based Software, Ph.D. Desertation, Clemson University , 2011.

[7] Kabbani, N.M., et al.: Formal Reasoning Using an Iterative Approach with an

Integrated Web (IDE), In: Proceedings Second International Workshop on Formal

Integrated Development Environment, F-IDE, 2015, pp. 56 – 71.

[8] Klebenov, V., et al.: The 1st Verified Software Competition: Experience Report. In:

Proceedings of the 17th international conference on Formal methods, FM'11,

Springer, 2011, pp. 154 – 168.

[9] Kirschenbaum, J., et al.: Verifying Component-Based Software: Deep Mathematics

or Simple Bookkeeping? In: Proceedings 11th International Conference on

Software Reuse, Springer LNCS 5791, 2009, pp. 31 – 40.

[10] Kulczycki, G., et al.: The Location Linking Concept: A Basis for Verification of

Code Using Pointers. In: VSTTE'12 Proceedings of the 4th international conference

on Verified Soft-ware: theories, tools, experiments, pp. 34 – 49.

[11] Leino K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness,

In: LPAR 2010. Springer, 2010, pp. 348 – 370.

[12] Piskac R., Wies T., Zufferey D.: Automating Separation Logic using SMT, In:

Computer Aided Verification,Springer Berlin Heidelberg, 2013, pp. 773 – 789.

[13] Sedgewick R. and Wyne K.: Binary Search Trees, In: Algorithms, Boston, MA

02116, Pearson Education, Inc, 2011, pp. 396.

[14] Sitaraman M., Adcock B., Avigad J. et al.: Building a push-botton resolve verifier:

Progress and challenges, In: Formal Aspects of Computing 23(5), 607-626, 2011

[15] Smith W.H.: Engineering Specifications and Mathematics for Verified Software.

PhD. Desertation, Clemson University, 2013.

https://www.researchgate.net/researcher/71079062_N_Bjorner

 111

[16] Wies T., Muñiz M., Kuncak V.: An Efficient Decision Procedure for Imperative

Tree Data Structures. In: Automated Deduction – CADE-23, Springer, 2011, pp.

476 – 491.

	Clemson University
	TigerPrints
	5-2017

	A Well-Designed, Tree-Based, Generic Map Component to Challenge the Progress towards Automated Verification
	Nicodemus M.J. Mbwambo
	Recommended Citation

	tmp.1497455285.pdf.NWWvk

