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Abstract

An online estimator for the Oxygen Transfer Rate OTR for Escherichia coli cultured in

bioreactors was developed, which allowed for improved culture outcomes. E.coli are used to man-

ufacture recombinant proteins used as therapeutics, such as insulin and human growth hormone.

E.coli cultures require high levels of oxygen in order to produce the therapeutics efficiently. Previ-

ous methods to estimate OTR used values for the volumetric mass transfer coefficient, kLa, which

had been determined from separate experiments and thus set to a constant value or by stopping

oxygen flow periodically to the bioreactor to update the kLa value. In this work, the kLa value was

estimated in real-time and continuously from the on-line dissolved oxygen concentration and off-gas

measurements. The gas phase mixing in the head space and time response of the off-gas sensor were

accounted for in the model. The improved estimates of OTR were incorporated into a model of

E.coli metabolism to better predict the metabolic state of E.coli, such that glucose could be fed to

E.coli at near optimal rates. Additionally, the effects of enriching the air with pure oxygen were

accounted for in the estimator model, as this enrichment is necessary to reach final cell densities

representative of the industrial process.
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Chapter 1

Introduction

In the biopharmaceutical industry, simple proteins are produced using bacterial cultures,

where recombinant Escherichia coli(E.coli) is the most common. The types of biopharmaceutical

made in E.coli include insulin, human growth hormone (hGH), and some anticancer drugs [Sanchez-

Garcia et al., 2016].

In order to culture E.coli in large quantities, cost effective computer controlled bioreactors,

which are set to control temperature, pH, and Dissolved Oxygen (DO), and to feed the culture over

time to assure biomass growth and hence more protein production. Many different control methods

have been used to maximize the protein production by controlling the feed rate. One of these control

methods uses the Oxygen Uptake Rate (OUR) to determine the feed rate. This work developed an

improved estimator for OUR for E.coli cultures cultivated in a bioreactor.
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1.1 Bioreactors

Figure 1.1: Basic bioreactor system.

Industrial fermenters, or bioreactors, are used to cultivate suspensions of cells. A bioreactor

is a vessel that provides required conditions for a biochemical process. Figure 1.1 shows a typical

configuration of a bioreactor. Aeration tube ending with a sparger provides any needed input gas

or a mixture of gases; i.e., O2, Air, or CO2. Impeller blades are connected via a shaft to an agitator

to stir the culture medium and break down the sparge gas into smaller bubbles for a higher surface

contact between the bubbles and the culture medium so that the sparge gas dissolves in the medium

at a higher rate. The spinning blades cause the medium to rotate in a centrifugal pattern towards

the wall of the vessel, where baffles, located at the vessel wall, are used to form obstacles and push

the medium back to the spinning blades for an effective mixing.

A metal head plate with a polymeric O-ring is used to seal the vessel and most of the

control instruments are connected via this plate. Temperature, dissolved oxygen, and pH probes
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are connected as input signals to a digital control unit (DCU) to regulate the fermentation process

and provide the required conditioning for the cells to grow. A water jacket (heat exchanger system),

agitator, and a pump are controlled by the DCU to keep the culture temperature, dissolved oxygen,

and pH, respectively, at desired levels. Pumps can also be used to control nutrient additions. After

the start of the fermentation, nutrients are added. This process is called fed-batch. The fed-batch

phase usually starts at the end of a batch phase in which the culture grows using the initial amount

of the nutrient.

A continuous flow of filtered air is used to provide the culture with oxygen. The amount of

oxygen in air is, usually, insufficient for high cell density to remain aerobic. Air is normally mixed

with oxygen to increase the oxygen mole ratio in the sparge gas. This technique is used to increase

the dissolved oxygen when the agitator speed approaches the maximum rotation speed. Thus, gas

mixing enables the culture to grow to higher cell densities.

1.2 Purpose of Metabolism Controlling

Usually, the process of cultivation starts with a sterile culture medium inside the bioreactor,

which is set up in a batch operation with some amount of initial substrate (nutrient). The culture

is then inoculated with some amount of cells. During the cultivation process, the culture is kept

at the desired temperature. Base is added to keep the culture at a desired pH levels. A continuous

flow of air is maintained to provide sufficient dissolved oxygen required for oxidative metabolism. At

the end of the batch phase, fed-batch starts to prevent substrate depletion and to keep cells growth

rate at a high level. When substrate concentration exceeds a certain level, growth rate increases and

cells start entering overflow metabolic state in which the substrate consumption occurs without the

involvement of oxygen in the chemical process. E.coli produces acetate during overflow metabolism.

When biomass reaches a specified cell density, the culture is induced by a chemical agent to

start recombinant protein production. It is desired to maximize the protein production and minimize

the production of acetate that inhibits growth [Luli and Strohl, 1990] and reduces protein production

[Jensen and Carlsen, 1990]. To achieve this goal, the feed rates have been experimentally determined

to keep growth rate high enough while low enough to prevent acetate production. Under this control

strategy, the recombinant protein production is maximized. This control strategy could be achieved

withou human interaction by monitoring the OUR as suggested by [Pepper, 2015], which requires
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an on-line monitoring of OUR signal.

A real-time adaptive estimator of the Oxygen Transfer Rate (OTR) using an off-gas sensor

was implemented by [Wang, 2014], and was used by [Pepper, 2015] in his control algorithm. The

OTR was estimated from dissolved oxygen measurements and a volumetric mass transfer coefficient

kLa, which was continuously updated using off-gas measurements. The OTR estimator was limited

to working with air as the input gas, thus could not be used to culture E.coli to high-cell densities,

where oxygen enriched air was required. The focus of the current work was to extend the OTR es-

timator to function with variable oxygen enriched air as the input sparge gas, and to demonstrate

that E.coli could be cultured to high-cell densities and adapting the feed rate.

1.3 Prior Work

This section is divided into two subsections. First, an overview is presented for computing

the oxygen transfer rate OTR and the need for having a real-time estimate for the volumetric transfer

rate coefficient kLa. Second, methods used to increase the oxygen transfer rate are discussed.

1.3.1 Computing the OTR

Aerobic biological processes need sufficient dissolved oxygen to function, thus accurate cal-

culation or estimation of OTR is very important for process scale-up or prediction of metabolic

states. The key to OTR calculation is the accurate estimate of the volumetric transfer rate coeffi-

cient kLa. Several different methods are used to estimate kLa. Theses methods can be classified into

two main groups: based on the presence or absence of biological consumption of oxygen [Garcia-

Ochoa and Gomez, 2009]. The problem of finding kLa without biological consumption of oxygen is

that once the medium is inoculated with the microorganisms, kLa will change due to the oxygen

consumption itself [Vashitz et al., 1989] and due to the change in the medium composition and its

physical properties by secretion of waste products by the microorganism. Therefore, for this work,

OTR estimates were only considered in the presence of the biological consumption of oxygen.

In presence of microorganisms, dynamic methods are most commonly used to estimate kLa .

The most common method turns off the inflow gas supply, OUR is obtained by the slope of decreasing

dissolved oxygen concentration. The gas supply is turned on and the dissolved oxygen concentration

increases back to steady state. Using the time profile, kLa is computed [Bandyopadhyay et al., 1967].
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This method has several limitations such as the time response of the dissolved oxygen probe should

be accounted for. In addition, the dissolved oxygen concentration required for the microorganisms

should not decrease below a critical level to prevent periods of non-optimal growth. Modifications of

this method have been proposed to overcome these limitations. The time response of the dissolved

oxygen probe was accounted for to more accurately estimate the kLa [Badino et al., 2000]. Another

change to the dynamic method was to use oxygen enriched air instead of stopping the flow of air in

order to change the dissolved oxygen concentration and thus estimate kLa and to also account fro

the time response of the dissolved oxygen probe [Kim and Chang, 1989]. kLa was also estimated

by applying series of changes in the stir speed and/or in gas flow rate, and the time response of the

dissolved oxygen probe was also accounted for [Patel and Thibault, 2009].

kLa can also be estimated using gas analyzers in the inflow and outflow in presence of

biological consumption of oxygen. By measurements of oxygen mole ratios in the input and output

gases of a bioreactor along with measurements of dissolved oxygen concentration in the culture liquid,

kLa can be estimated under steady state conditions [Redmon et al., 1983]. Dilution effect of the off-

gases, however, should be taken into consideration for the correct calculation of the OTR [Van’t Riet,

1979]. This method has become simple and practical for bioreactors after the recent advances in

off-gas sensors technology, i.e., using BlueSens single gas sensor for O2 and CO2 [BlueSens, nd].

This method needs two sensors, however, it enables for real time estimation for the kLa without the

need for perturbing the dissolved oxygen concentration.

Other techniques using chemical reactions have also been proposed to find the kLa [Ortiz-

Ochoa et al., 2005]. These techniques, however, might be time-consuming and the physical properties

of the culture liquid could change due to the chemical additions. Physical techniques have also been

proposed for the kLa determination, such as using radioactive materials [Pedersen et al., 1994], or

dynamic pressure method [Carbajal and Tecante, 2004].

1.3.2 Increasing the OTR

The simplest way to increase the OTR is to use higher agitation speeds, which is limited

by hardware specifications and some microbial strains die at high speeds of agitations. Therefore,

cultivation of higher cell density is limited by OTR. To increase the OTR in bioreactors, there are

mainly three techniques known in the literature: pressurizing the bioreactor, oxygen enrichment in

input gas, and adding chemicals to the culture medium.
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Some metal bioreactors can be pressurized to enhance the OTR. E.coli TB1 was used in

fed-batch cultivations that require high levels of oxygen supply [Belo and Mota, 1998]. The study

was to compare two cultivations having the same OTR, which was increased by two different ways.

The first way was by increasing the stir speed while the pressure inside the bioreactor was kept

around one [atm]. The second way was by pressurizing the bioreactor up to around 4.7 [atm] while

the stir speed was kept low. A higher cell density and four-fold increase in the final productivity

of the recombinant protein were achieved in the pressurized bioreactor compared with the lower

pressure and higher stir speed. Higher oxygen supply was provided to the culture in the pressurized

bioreactor.

Oxygen enrichment in the input gas is a very common technique for OTR enhancement.

Compressed oxygen from a tank, for example, is mixed with another input gas, such as compressed

air, using some instruments so that the mixed gas contains mole ratio of oxygen higher than that in

the air. When 40% oxygen enriched air was used, for example, the produced biomass of E.coli was

increased by 77% [Castan et al., 2002]. In a comparison between oxygen enriched air and pressurized

bioreactor fed-batch cultivations, it was found that the OTR and the final biomass concentration

were higher in the pressurized cultivation [Lara et al., 2011]. However, pressurizing the bioreactor

cannot be implemented for many small-scale laboratory bioreactors.

OTR could also be enhanced chemically. An addition of perfluorocarbon emulsions to

the culture medium, for example, has been studied to improve oxygen supply in a bioreactor for

E.coli cultivation [Ju et al., 1991]. The result of the study demonstrated an enhancement in the

oxygen transfer.

1.4 Thesis Statement

The aim of this work was to augment the adaptive OTR estimator for E.coli cultivation

developed by [Wang, 2014] to have the capability to handle sparge gases with variable oxygen

enrichment. The OTR adaptive estimator was modified to account the variable oxygen mole ratio

in the input gas. In addition, a more accurate method was used to calculate the oxygen mole ratio

in the input gas. The dissolved oxygen concentration was controlled by a PID controller. A variable

gain that decreases over time was used for the OTR adaptive estimator.
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1.5 Thesis Outline

The thesis is organized as follows, in Chapter 2, system configuration required to achieve

the proposed solution will be presented along with the mathematical modifications used in OTR es-

timation. In addition, other design considerations will also be discussed. Results are presented and

discussed in Chapter 3. Conclusions and future work will be presented in Chapter 4. Finally, the

appendix will include other related work and more details about used algorithms, and settings and

conditioning of all experiments used in this thesis.
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Chapter 2

Research Design and Methods

Previous work developed method to estimate OTR in real-time from off-gas and dissolved

oxygen concentration sensors. However, the inlet gas was limited to air. In this work, the OTR es-

timator was augmented to be capable of addressing enriched sparge gases. In this chapter, other

design considerations for the OTR adaptive estimator are discussed. These considerations include

the calculation of oxygen mole ratio in sparge gas, excitation of the input signal and the estimator

gain.

Figure 2.1 shows the system configuration and connections used in this design. The Digital

Control Unit (DCU) of the bioreactor controls the desired mole ratio of oxygen in the sparge

air using input signal called GasMx, which could be set by a connected computer. The input

gases are compressed air and oxygen which are regulated by pressure regulators PR-air and PR-O2,

respectively. A Mass Flow Meter (MFM) and Rotameter are used for measuring and tuning the

sparge air flow rate. Off-gas sensor is used to measure oxygen mole ratio at the exhaust. Dissolved

Oxygen (DO) is measured by the in-liquid autoclavable probe. A motor is used to control the

dissolved oxygen level in the liquid. There are three equally spaced impeller blades connected to the

stirrer shaft.
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Acronym Unit Definition

τh s Head space time constant.
τb s Off-gas sensor time constant.

bin
mol
mol Oxygen concentration in the sparge air.

bSL
mol
mol Oxygen concentration at surface level of the culture media.

bh
mol
mol Oxygen concentration in off-gas at the headspace of the vessel.

bout
mol
mol Oxygen concentration measured by the off-gas sensor.

bair
mol
mol The mole ratio of oxygen in air ≈ 0.2096.

OUR
mol
L·h Oxygen uptake rate.

ÔUR
mol
L·h Estimated OUR.

kLa s−1 Volumetric oxygen transfer coefficient.

k̂La s−1 Estimated kLa.

OTR
mol
L·h Oxygen transfer rate computed using dissolved oxygen measurements.

ÔTR
mol
L·h Estimated OTR.

OTRoff−gas
mol
L·h Oxygen transfer rate computed using off-gas sensor measurements.

OURoff−gas
mol
L·h OUR computed using off-gas sensor measurements.

Mf
L
h Mass flow.

ρα bar Normal pressure = 1.0133.
Vc L Volume of liquid in the bioreactor.
Vh L Volume of headspace in the bioreactor.

R
bar·L
K·mol Gas constant = 8.314 × 10−2 .

T K Temperature = 273.15 .

Table 2.1: List of acronyms
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Figure 2.1: Bioreactor Connections.

2.1 OTR Calculations

Using measurements of oxygen and carbon dioxide mole ratios from off-gas sensor at the

exhaust of the bioreactor, OTR can be calculated by

OTRoff−gas =
Mf · ρO2

Vc ·R · T
(bin − 1 − bin − din

1 − bout − dout
· bout), (2.1)

where the constants ρO2 , R, T , and din, are, respectively, the normal pressure [bar], ideal gas constant

[L · bar · K−1 · mol−1], culture temperature [K], and partial pressure of carbon dioxide in sparge air

[BlueSens, nd]. Mass flow rate Mf [L · h−1] was kept fixed for every experiment, but it could change

from one experiment to another. Culture volume Vc [L] is used to normalize the OTR value, and

it increased over time with feeding. Output oxygen bout and carbon dioxide dout concentrations at

the exhaust are measured by the off-gas sensor. The oxygen concentration in the sparge air bin was

computed and will be explained in Section 2.5. For simplicity in mathematical expressions, the ratio

OG =
1 − bin − din

1 − bout − dout
(2.2)

refers to the ratio of other gases in the sparge air, excluding O2 and CO2, to other gases in the off

gas and it is assumed to be one all the time (OG = 1) as shown in Figure 2.2. It was assumed

that the culture does not consume nor does it produce gases other than oxygen and carbon dioxide,

respectively. For calculation simplicity, Equation 2.1 could be rewritten as

10
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Figure 2.2: Plot of Equation 2.2.

OTRoff−gas = Fr(bin − bout) (2.3)

which shows the oxygen demand, the difference between the oxygen concentrations in the sparge air

and off-gas, multiplied by a scaling factor Fr.

Fr =
Mf · ρO2

Vc ·R · T
(2.4)

The OTR can also be calculated by

OTR = kLa(C∗ − C), (2.5)

which is well known in the literature and it is a function of oxygen volumetric transfer coefficient

kLa and a difference between the oxygen saturation concentration in the liquid phase C∗ and the

dissolved oxygen concentration C [Van Suijdam et al., 1978, Åkesson and Hagander, 1999]. The

kLa coefficient is a function of many variable factors, such as agitator speed (N), gas flow rate

(Mf ), the solubility of the liquid, temperature, etc.

For simplifying the algorithm and implementation on computer, we refer to (C∗−C) as the

OTR driving force DF

DF = (C∗ − C) (2.6)
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where C∗ comes from Henry’s law [Zumdahl, 2014], and it is the maximum concentration of oxygen

that can dissolve in a liquid at P [atm] pressure and T [Kelvin] temperature. C∗ could be calculated

by

C∗ = K · bin
bair

(2.7)

where the ratio bin
bair

is used to scale C∗ because of the oxygen enrichment in the sparge air and

this one of the modifications to the OTR estimator developed by [Wang, 2014]. bair ≈ 0.2096 is

the partial pressure of O2 in air, and K is the solubility of oxygen that can dissolve in a liquid

at P [atm] pressure and T [Kelvin] temperature. For our purpose, during the system setup, the

dissolved oxygen probe is calibrated using: nitrogen to read zero and compressed air to read 100%.

The measurement of dissolved oxygen probe at 100% corresponds to K0 = 2.1 × 10−4 [mol · L−1],

which is the maximum solubility of oxygen (contained in the compressed air bair) in fresh water

in equilibrium with one [atm] pressure at 37 [◦C] temperature [Benson and Krause, 1980, Stewart

A. Rounds and Ritz, 2013]. In our particular system, the pressure inside the bioreactor vessel is

almost one atmospheric pressure all the time. Note that, K changes slowly over the course of

the fermentation run due to the change in the liquid composition. At time zero, however, we use

K = K0. The dissolved oxygen concentration C is computed by

C = K0 ·
DO

100
(2.8)

where DO is the dissolved oxygen probe measurement. Equation 2.6 could be rewritten as

DF = (K · bin
bair

−K0 ·
DO

100
) (2.9)

For a fixed mass flow rate Mf , the kLa is commonly linearized using Taylor series expansion

[Bastin and Dochain, 1990], and used as a function of the stir speed (kLa ∼ N) as shown in the

equation

kLa(N) = kLa(NL) +
dkLa

dN
(N −NL) = α0 + α1(N −NL). (2.10)

For simplicity, we use NL = 0 and this is another modifications to the OTR estimator developed by

[Wang, 2014]. kLa is, therefore, calculated by

kLa(N) = αN (2.11)
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Equation 2.5 could be rewritten as

OTR = α ·N ·DF. (2.12)

Measurements of N and C, which are read from the control unit DCU within a sampling

interval (15 seconds in our system), enable Equation 2.12 to give results faster than Equation 2.3,

because the latter depends on off-gas measurement that is heavily filtered by the bioreactor headspace

dilution time constant τh and the time constant of the off-gas sensor itself τb. The response time

t98% of the DO probe, however, is 30 to 60 seconds at 25 ℃, from air to nitrogen (given by the

manufacturer, Hamilton OxyFerm FDA VP 325). Therefore, despite the dynamics of the DO probe

and the stir, Equation 2.12 is the fastest available way to calculate OTR. The problem is the

unknown coefficient α, which represents all the slowly changing factors in kLa. To find α, Equation

2.3 can be modified as if the off-gas sensor measures the gases at the liquid surface directly without

any delay as shown in the equation

OTRoff−gas−SL = Fr(bin − bSL) (2.13)

where bSL and OTRoff−gas−SL denote oxygen concentration at the liquid surface level and the

oxygen transfer rate computed using off-gases measured instantaneously at the liquid surface level.

This change was made so that the following expression can be used

OTR = OTRoff−gas−SL

kLa ·DF = Fr(bin − bSL)

bSL = bin − α · N ·DF
Fr

(2.14)

and find out the unknown parameter α. To find out the unknown coefficient α using Equation 2.14,

the dynamics of bioreactor head space and off-gas sensor can be characterized in a state space linear

time invariant system. Then an adaptive estimator is used to iteratively estimate the value of α.
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2.2 Head Space and Off-Gas Sensor Dynamics

The bioreactor headspace dynamics can be written as a first order model

ḃh =
1

τh
(bSL − bh) (2.15)

where τh = Vh

Mf
is the vessel headspace dilution time constant and it is changing slowly over the

course of the fermentation run due to increasing in the culture liquid. Moreover, the Mf rate could

change from one experiment to another. The off-gas sensor dynamics can also be characterized by

a first order model

˙bout =
1

τb
(bh − bout) (2.16)

with a time constant τb that is almost constant and independent of Mf rates ranging from 1 to less

than 8 [L/minute]. As a result, 55 seconds will be used for τb. Using Equation 2.15 and Equation

2.16, almost time in-varying linear system for the dynamics of bioreactor headspace and off-gas

sensor could be written as

˙̄x = Āx̄ + B̄f̄

y = C̄x̄

(2.17)

x̄ =

 bh

bout

 , Ā =

−τ−1
h 0

τ−1
b −τ−1

b

 , B̄ =

bin α

0 0

 ,

C̄ = [0 1], f̄ = τ−1
h ·

 1

−N ·DF
Fr


2.3 Design of α Adaptive Estimator

Equation 2.17 has an unknown coefficient α in the matrix B̄, and now, we need an adaptive

estimator for this unknown coefficient. We start designing the adaptive estimator by finding the
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system’s transfer function,

Ḡ(s) = C̄(sI − Ā)−1B̄ =
τ−1
b

s2 + (τ−1
h + τ−1

b )s + τ−1
h · τ−1

b

[
bin α

]
(2.18)

so that the system matrices are rewritten in the observable canonical form, as a requirement of the

implemented estimator [Kudva and Narendra, 1973, Narendra and Annaswamy, 2012]. As a result,

the observable canonical form realization of Equation 2.17 is

ẋ = Ax +Bf

y = Cx

(2.19)

x =

bout
bh

 , A =

−(τ−1
h + τ−1

b ) 1

−(τ−1
h · τ−1

b ) 0

 , B =

 0 0

bin α



C = [1 0], f =

f1
f2

 =

 τ−1
h · τ−1

b

−τ−1
h ·τ−1

b

Fr
·N ·DF


As an assumption required by the implemented estimator, first, the system matrix A must

be stable, and this is satisfied by Equation 2.18, where the real parts of the system poles are less

than zero. So, the system is BIBO stable. Second, CT (sI − A)−1d must be strictly positive real,

where d = [1 d2]T and d2 will be chosen later in this chapter based on this assumption and to meet

other design requirements as well.

Equation 2.19 has the unknown parameter α in the B matrix, and now we build the adaptive

estimator to find an estimated value α̂ of the unknown parameter. We define the estimator state

variables in the vector z

z =

 ˆbout

b̂h


and using the system matrices A and B in Equation 2.19, the adaptive estimator is built as shown

below

ż = Az + B̂f + M, (2.20)

where B̂ is the system B matrix in observable canonical form with the estimated unknown parameter
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α̂. M is an adaptive auxiliary vector input

M =

 0

−eζTΛA2ζ


where Λ is a gain diagonal positive definite matrix.

Λ =

Λ11 0

0 Λ22

 , (2.21)

and ζ is

ζ = G(s) · f2,

which is obtained by passing the system input f2 through an auxiliary signal generating filter bank

G(s) =

 s
s+d2

1
s+d2

 ,
d2 = 8.3 × 10−3, which is chosen; first to meet the assumption CT (sI − A)−1d is strictly positive

real, and, second, based on the system sampling time. That is because the estimator is designed in

continuous time but it is implemented in discrete time, the pole of G(s) is chosen such that it is at

least a factor of 25 smaller than the sample time 2π
15 [rad/sec] [Franklin et al., 2011]. The estimator

error e is

e = ˆbout − bout, (2.22)

and A2 is

A2 =

0 −d2

0 1


The adaptive law is

˙̂α = −eSΛζ (2.23)

which updates the estimated unknown coefficient α̂, where S = [0 1] is to convert the vector Λζ

into a scaler. Then, after α̂ is found, the estimated oxygen transfer rate ÔTR and estimated oxygen
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uptake rate ÔUR are calculated by

ÔTR = α̂ ·N ·DF (2.24)

ÔUR = ÔTR− Ċ (2.25)

The iterative algorithm can be found in Appendix B.

2.4 Computing the Expected O2 Mole Ratio in the Sparge

Air

The idea of tracking the states of the system especially ÔUR using off-gas sensor is to

compare the measured ratio of O2 at the output with the ratio of O2 in the sparge air. The

difference between the two values is actually the demand of O2. In some bioreactors, gas mixing is

controlled by a digital control unit DCU via solenoids. As shown in Figure 2.3, when Gasmx signal

is 0%, no O2 will flow to the sparger, but when Gasmx is 10%, air solenoid is opened for nine seconds

and O2 solenoid is opened for one second. The ratio of O2 in the sparge air could be computed and

it is vital to assure the accuracy of the computation. When solenoids are used to mix input gases,

then the equation

bin =
(100 −GasMx) · bair ·Mf−air +GasMx ·Mf−O2

· Cf
100 ·Mf

(2.26)

is used to compute the mole ratio of O2 in the sparge air using compressed air and O2 from a tank,

where bair, Mf−air, and Mf−O2 are oxygen mole ratio in air, mass flow rate of air, and mass flow

rate of oxygen, respectively. Cf is Correction factor of Mf meter measurement when measuring

mass flow of pure oxygen. For our specific system, the value of Cf could be calculated by

Cf = (
Scurrent
Snew

)0.3 (2.27)

where Scurrent = 1 is the specific gravity of original calibration gas (air), and Snew = 1.1044 is

specific gravity of new gas (O2). Cf = 0.9706 for oxygen. Equation 2.27 can be found in the
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Figure 2.3: DCU solenoid period and duty cycle. (a) 10% DCU GasMx signal results in 28.57% oxy-
gen concentration in sparge air. (b) 40% DCU GasMx signal results in 51.40% oxygen concentration
in sparge air.

MFM user’s guide for mass flow meter model number FLR 1000 by Omega. Cf is required in the

calculation because we use the same Mf meter to balance the air and O2 so that they read the same

mass flow rate.

2.5 Tuning and Balancing the Sparge Gases

The calculation of the OTRoff−gas−SL requires an accurate calculation of the oxygen mole

ratio bin in the sparge air. At the steady state and when there is no consumption of oxygen in the

bioreactor, the off-gas measurements of O2 should be equal to the calculated bin. In the proposed

system configuration Figure 2.1, only one mass flow meter MFM is used. It is assumed to not have

instant time response as was the case for the experimental setup, where the time response t67%

was about 30 seconds (specified by the manufacturer, Engineering Inc., for the gas mass flow meter
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Omega FLR 1000). Therefore, to use only one MFM and to cancel the impact of the time response,

Equation 2.26 is valid only when Mf−O2
and Mf−air are tuned and balanced. Under this condition,

each gas line, when fully open at 100%, gives the same reading measured by Mf meter located

just before the bioreactor sparger, see Appendix A for balancing and tuning procedure. When the

expression

Mf−air = Mf−O2
= Mf (2.28)

is satisfied, then Equation 2.26 could be rewritten as

bin =
(100 −GasMx) · bair +GasMx · Cf

100
(2.29)

An experiment was don (called Experiment 58) to validate results of Equation 2.29. The

system was configured as shown in Figure 2.1 and the two lines of compressed air and O2 were

tuned so that every line gives the same mass flow rate when the line is opened 100% using the signal

GasMx. The bioreactor vessel had water without biomass to have zero oxygen demand. The signal

GasMx was incremented every 20 minutes by five. Table 2.2 shows the expected oxygen mole ratio,

that should be measured by the off-gas sensor at the exhaust, calculated by Equation 2.29 for two

cases: Cf = 1 ignoring the correction factor that should be accounted for when measuring pure

oxygen by the MFM , and Cf = 0.9706 considering the pure oxygen as the gas being measured by

the MFM .

GasMx%
Expected measurements by off-gas sensor at zero O2 demand

With Mf balanced and
Cf = 0.9706

With Mf balanced and
Cf = 1

0 0.2096 0.2096

5 0.24765 0.24912

10 0.2857 0.28864

15 0.32375 0.32816

20 0.3618 0.36768

25 0.39985 0.4072

30 0.4379 0.44672

35 0.47595 0.48624

40 0.514 0.52576

Table 2.2: GasMx% and expected measurements by off-gas sensor.

Figure 2.4 shows the results of experiment 58. When Cf = 1, there was an error between

the expected and the measured oxygen mole ratios. The error increases with higher GasMx oxygen
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enrichment levels. When Cf = 0.9706, however, the expected and measured oxygen mole ratio were

almost the same despite the delay caused by the head space dilution and the off-gas sensor time

response. Note that, Equation 2.29 gives accurate expected measurements for GasMx values less

than 50% which is the maximum safe limit of the off-gas sensor used in our system.
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Figure 2.4: Calculated V.S. measured oxygen mole ratios at input and output at zero oxygen demand.
The oxygen mole ratio at the input bin was calculated with the mass flow meter Correction factor
Cf as shown in red color. This calculation gave an accurate results at different oxygen enrichment
concentrations when compared to the oxygen mole ratio measured by the off-gas sensor at the output
bout when there was no cells in the bioreactor and the oxygen demand was zero. However, there was
an error in bin when computed without Cf .

2.6 Further Considerations

2.6.1 PI-controlled dissolved oxygen

A Zig-Zag controlled DO was suggested by [Wang, 2014] mainly to provide a sufficient

excitation for the estimator. However, using a PI controller, which is embedded in the bioreactor

control unit DCU is preferred over the Zig-Zag due to the following reasons:

A. The PI controller is well adopted by industry due to robustness and reliability.
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B. Experimentally, the PI controller can provide a sufficient excitation for the estimator.

C. Kalman filters can be used to filter out noise caused by PI controlled DO.

D. The PI controller is more robust than the Zig-Zag especially during probing times at high

oxygen demand when the biomass becomes large and whenOTR is close to maximum hardware

limits; i.e., stir speed is near 1200 rpm or off-gas measurement of O2 is 50%. For our particular

system, in other words, the fastest response of the Zig-Zag controller is two times the sampling

time (30s), which is much longer than the DCU sampling time. Therefore, the DCU PI

controller is much faster and thus reliable.

E. The PI controller gain tuning is very common in the literature and there are many suggested

solutions such as gain-scheduling approach [Åkesson and Hagander, 1999] or continuous iden-

tification of gains [Kumar et al., 2008, Pramod and Chidambaram, 2000, Ertunc et al., 2009].

F. The Zig-Zag method of controlling the DO level can cause perturbations to the oxygen demand

that is made by the biomass respiration. This causes wrong calculations of ÔTR and ÔUR.

Therefor, the DCU PI controller will be used for controlling the DO level.

2.6.2 Variable gain for the adaptive estimator

The modified estimator explained in Section 2.3 was tested with recorded data of previous

experiments. The purpose was to tune the estimator gain and to make sure of the performance of

the new modifications, which are using only one unknown parameter α and scaling C∗ by the ratio

bin
bair

. The estimator performance was highly dependent on the values of the gain matrix Λ. Large

gain values help for a faster convergence but cause a huge amplification of the estimator error. This

usually causes the estimator output to blow up. Small gain values, on the other hand, cause the

estimator to very slowly converge to the correct value but to preform much better at later times of

a fermentation run when OTR is high.

By using data from previous experiments, it was required to have a decreasing gain along

the course of the fermentation run. To have such a decreasing gain, it is required to have a smoothly

increasing or decreasing variable among the process parameters. One of the best parameters that

could be utilized here is the estimated liquid volume so that the estimator gain becomes a function of

the estimated liquid volume. An example of the estimated liquid volume from one of the experiments

21



is shown in Figure 2.5 and the proposed gain, which is obtained by trial and error using data from

previous experiments, is

Λ11 = Λ22 =
300

V 14
+ 0.01 (2.30)

where V = Vc is the total liquid volume. This is estimated by summing the volume of initial liquid

plus volumes of the base and feed pumped into the culture liquid during the cultivation. The output

of Equation 2.30 , which is plotted in Figure 2.6, is used for both entries of the diagonal gain matrix

Λ.
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Figure 2.5: Estimated liquid volume.
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Figure 2.6: Proposed estimator gain as a function of estimated liquid volume.
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Chapter 3

Results and Discussion

Two E.coli fermentations were controlled using the proposed OTR estimator with oxygen

enriched air. These cultures reached high-cell densities typical of industrial fermentations. Obser-

vation regarding the estimator will be discussed toward further refinement.

For all details regarding the different settings and conditions of all experiments used in this

chapter, see Appendix C.

3.1 Exponential Feeding Profile (µset)

Exponential feeding (µset) is one common method used in industry and also in research

laboratories to conduct fed-batch cultures of E.coli in order to reach high-cell densities. The

estimator was first tested with real-time data collected from an experiment (called Experiment

60) for E.coli MG1655 cultured grown with an exponential feeding profile and oxygen enriched

air. The purpose of this test was to probe the estimator performance under oxygen enriched air.

As shown in Figure 3.1, ÔTR is superimposed on OTRoff−gas that increased along the cultiva-

tion time without downward shifting after each increase in the oxygen enrichment. ÔTR con-

verged to OTRoff−gas in about seven hours, as shown in Figure 3.2(a), after the inoculation with

E.coli cells. The decrease in both ÔTR and OTRoff−gas at 7.8 [hours] was due to the end of

batch phase. The spikes in OTRoff−gas appear after every transition in GasMx signal and this is

because the term bin in Equation 2.26 instantaneously changes with GasMx signal, and bin is used

in both ÔTR and OTRoff−gas calculations, with Equation 2.24 and Equation 2.3, respectively.
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Figure 3.1: Exponential feed profile. (a) shows the estimated oxygen transfer rate ÔTR in red color
superimposed on blue colored OTRoff−gas, which is calculated using off-gas measurement of O2.
(b) shows the oxygen enrichment signal (GasMx). (c) shows optical density measurements by a
spectrophotometer and the feed rate, where 100% corresponds to 5.7 [mL/min].

Then, OTRoff−gas takes a few minutes to return to its previous value due to the system total time

constant, and ÔTR re-converges again as shown in Figure 3.2(b).

3.2 BOOM II

BOOM controller was first proposed by [Pepper, 2015]. Then the algorithm was modified

(BOOM II) by [Gharakozlou Lashkari, 2017]. The algorithm controls the feed rate so that the

E.coli grows at near optimal growth rate with minimum acetate accumulation before and after

induction.

Under feed-limited cultivation, theoretically, the culture respiration of oxygen should in-

crease when the feed rate increases and the culture is in the oxidative metabolic state. If the
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Figure 3.2: Exponential feed profile zoomed at two different time intervals. The estimated oxygen

transfer rate ÔTR in red color superimposed on blue colored OTRoff−gas, which is calculated using
off-gas measurement of O2. (a) shows the estimator converges to OTRoff−gas after about 7 hours.
(b) shows the estimator re-converges after an increase in the oxygen enrichment signal (GasMx).

increase in feed rate continues, the culture respiration of oxygen should start slowing down once the

culture enters the overflow metabolism state or region. BOOM II algorithm is meant to keep the

culture just under the overflow region. In summary, the BOOM II algorithm depends on ÔUR and

feed rate signals F . After the end of the batch phase, fed-batch starts with an initial feed rate

Fi = F0. Then, after a few minutes, the culture is probed to detect its metabolism state. The probe

is done by increasing the feed rate exponentially for a few minutes. During this probing, a sensitivity

ratio, which is computed by

SR =

˙̂
OUR

ÔUR

Ḟ
F

,

is monitored. The SR signal should increase and exceed certain threshold level if the culture is in

the oxidative region. If the SR signal exceeds the threshold level and starts decreasing, then the
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transition from the oxidative to overflow is detected and the probing stops. If the SR signal does

not exceed the threshold level until a maximum specific probing time, then the culture is considered

in the overflow region and the probing stops. A higher feed rate is set if the culture was considered

to be in the oxidative region. Otherwise, the feed rate is decreased.

The estimator was used in an experiment (called Experiment 74) of E.coli MG1655 culture

using BOOM II to control the feeding and to grow the culture at near optimal growth rate. In

this experiment, the sparge air was enriched with oxygen to extend the OTR whenever the stir

speed was approaching the maximum limit. Figure 3.3 shows both ÔTR and OTRoff−gas along

with the oxygen enrichment signal (GasMx) during the whole cultivation time. The estimator

provided the BOOM II controller with ÔTR, which was responding to the probing signal ahead of

the OTRoff−gas , and thus enabling the BOOM II controller to quickly detect the metabolic state

and change the feeding rate. Figures 3.4 and 3.5 show examples of ÔTR which was expected ahead of

OTRoff−gas at different cultivation times. Figure 3.4(c) shows ÔTR ahead of OTRoff−gas during a

probing time, which was followed by a spike in OTRoff−gas due to an increase in the GasMx signal

as explained previously in Section 3.1. The noise in the ÔTR was due to gains tuning problem of

the DO PI controller. The tuning problem becomes more apparent at higher values of kLa [Åkesson

and Hagander, 1999].

3.3 Importance of Accurate Identification of Oxygen Mole

Ratio in the Input Gas

The OTR calculations depend on the partial pressure of oxygen in the sparge air bin. In

our system, we have only one off-gas sensor which is connected to the exhaust of the bioreactor. As

mentioned in Section 2.5, balancing the two input gases, air and O2, is required so that every line

provides the same flow rate.

To see the importance of the balancing, we can use the oxygen demand as a reference to

compare between two different experiments (called Experiments 5 and 60, see Appendix C). The

two experiments were open loop controlled with an exponential feed profile and oxygen enriched

sparge air. The two gas lines were not balanced in experiment 5. In a feed controlled E.coli culture

in a bioreactor, oxygen demand, however, should look like the feed profile as long as the culture is

in the oxidative state and in healthy condition. For experiment 5, which was open loop controlled
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Figure 3.3: BOOM II feed controller. (a) shows the estimated oxygen transfer rate ÔTR in red
color superimposed on blue colored OTRoff−gas, which is calculated using off-gas measurement of
O2. (b) shows the oxygen enrichment signal (GasMx). (c) shows optical density measurements by
a spectrophotometer.

with an exponential feed profile, Figure 3.6(a) shows the oxygen demand which looks like the feed

profile but with downward shifting after every increase of the oxygen enrichment in the sparge air.

Nevertheless, the culture was healthy according to many signals such as pH, CO2, the total volume

of base added to the culture, and the culture cell density measured by a spectrophotometer as shown

in Figure 3.7(a), (b), (c), and (d), respectively.

O2−demand = O2−in −O2−out (3.1)

The demand is calculated by Equation 3.1, where O2−in is the ratio of oxygen in the sparge

air computed by Equation 2.29 but without balancing the mass flow rate of the air and oxygen lines,

and without considering the correction factor (Cf = 1). O2−out is the partial pressure of oxygen at

the exhaust measured by the off-gas sensor. The reason of downward shifting in Figure 3.6 is due to
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Figure 3.4: BOOM II Probing example 1 at different cultivation times. (a) and (c) show that

the estimated oxygen transfer rate ÔTR is a head of that calculated using off-gas measurements
OTRoff−gas. (b) and (d) show exponentially increasing probing signal using 50% [v/v] Glucose

solution. Note that, (a) and (c) show the ÔTR response of the probing signal shown in (b) and (d),
respectively.

wrong calculation of O2−in. After increasing the oxygen enrichment in the sparge air, both O2−in

and O2−out should increase with the same exact amount so that the oxygen demand stays at the

same level as it was before increasing the level of oxygen enrichment.

O2−in was always greater than what it should have been as shown in Figure 3.8. Table 3.1

summarizes Figure 3.8 and compares the oxygen demand before and after increasing the GasMx

signal. It shows that the O2 measurement of off-gas sensor was always greater than what was

expected by calculation without balancing. This result indicates to a mass flow rate on O2 line

greater than the one on the line of air.

We can cancel the error by scaling down the off-gas sensor measurements of O2 for every

GasMx level. In other words, the off-gas sensor measurement was higher than what was expected for
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Figure 3.5: BOOM II Probing example 2 at different cultivation times. (a) and (c) show that

the estimated oxygen transfer rate ÔTR is a head of that calculated using off-gas measurements
OTRoff−gas. (b) and (d) show exponentially increasing probing signal using 50% [v/v] Glucose

solution. Note that, (a) and (c) show the ÔTR response of the probing signal shown in (b) and (d),
respectively.

GasMx [%] Unit 0 10 20 30 40

Expected O2 measurement
at zero O2 demand

mol
mol 0.2096 0.28864 0.36768 0.44672 0.52576

O2 measurement before
GasMx increase

mol
mol - 0.175 0.2585 0.3302 0.3976

O2 demand before GasMx
increase

mol
mol - 0.0346 0.03014 0.03748 0.04912

Expected O2 measurements
at current O2 demand

mol
mol - 0.25404 0.33754 0.40924 0.47664

O2 measurement after
GasMx increase

mol
mol - 0.2759 0.35 0.4268 0.4921

Error % - 8.605 3.691 4.291 3.243

Table 3.1: Experiment 5, Off-gas sensor O2 measurements with GasMx%.

30



 (a)

 Time [h]

 G
as

M
x 

  [
%

]

 (b)

Figure 3.6: Experiment 5, O2 demand. (a) shows the dotted line feed profile and the solid line
O2 demand shifting downward after every increase in the oxygen enrichment signal (GasMx), which
is shown in (b).

GasMx (%) 0 10 20 30 40

Required scale down ratio 1 0.905 0.880 0.855 0.880

Table 3.2: Experiment 5 scale down ratios of O2off-gas sensor measurements for different oxygen
enrichment levels.

every GasMx level due to a higher mass flow rate of O2 line. To cancel this error, only for discussion

purpose, the off-gas sensor measurements of O2 for every GasMx level can be scaled down so that

the oxygen demand becomes equal before and after the change in oxygen enrichment level. Table

3.2 shows the ratios required to scale down every GasMx level so that the oxygen demand looks like

the feed profile. Figure 3.9 shows the feed and corrected oxygen demand profiles. Figure 3.10(a)

shows the ÔTR when air and O2 lines have unbalanced mass flow rates, and Figure 3.10(b) shows

the ÔTR after removing the error resulting from unbalanced mass flow rates of input gases.

In contrast, the two gas lines were balanced in experiment 60. Figure 3.11 shows ÔTR and
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 (a)

 (b)

 (c)

 Time [h]

 (d)

Figure 3.7: Experiment 5, E.coli growth indicators. (a) pH is regulated properly by the DCU. (b)
CO2 is increasing in the same pattern of the feeding profile, which is exponential. (c) Total volume
of base added was also similar to the feeding profile. (d) shows optical density measurements by a
spectrophotometer.

the oxygen demand which looks like the feed profile. Table 3.3, which summarizes Figure 3.12, shows

the oxygen demand before and after increasing the GasMx signal in experiment 60. If we compare

the average error in Tables 3.1 and 3.3, we can find a sufficient statistical evidence at α = 0.05 level

of significance to conclude that tuning and balancing the mass flow rate of the two input gases (air

and O2) has significantly reduced the error, which occurs when changing the oxygen enrichment

level, in oxygen demand profile. Figure 3.13 shows experiment 60 signals: - pH, CO2, total volume

of base added to the culture, and the culture cell density measured by a spectrophotometer.
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Figure 3.8: Experiment 5, oxygen mole ratio in input and output gases. (a) shows the expected
oxygen mole ratio in the sparge air O2−in and oxygen mole ratio measured by the off-gas sensor
O2−out. (b) shows the oxygen enrichment signal (GasMx).

GasMx [%] Unit 0 5 10 20 30 40

Expected O2 measurement
at zero O2 demand

mol
mol 0.2096 0.2476 0.2834 0.3597 0.4361 0.5124

O2 measurement before
GasMx increase

mol
mol - 0.1935 0.2278 0.2403 0.2943 0.3622

O2 demand before GasMx
increase

mol
mol - 0.0161 0.0198 0.0431 0.0654 0.0739

Expected O2 measurements
at current O2 demand

mol
mol - 0.2315 0.2635 0.3166 0.3707 0.4385

O2 measurement after
GasMx increase

mol
mol - 0.2329 0.2654 0.318 0.3691 0.4383

Error % - 0.583 0.702 0.442 -0.431 -0.045

Table 3.3: Experiment 60, Off-gas sensor O2 measurements with GasMx%.
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Figure 3.9: Experiment 5, corrected O2 demand. (a) shows the dotted line feed profile and the solid
line O2 demand corrected using ratios in Table 3.2. (b) is the GasMx signal.

3.4 Some Observations and Suggested Improvements

3.4.1 Need for an adaptive gain

In Equation 2.30, which was

Λ11 = Λ22 =
300

V 14
+ 0.01,

the gain was expressed as a function of total liquid volume and tuned by trial and error using data

from many experiments with E.coli MG1655 culture. While this gain function worked well for many

experiments, there will be still a need for a better tuning if another stain of E.coli cells is used.

Another reason for the need of such an adaptive gain is if the system sampling time were changed

due to a change in d2 value, for example, then another tuning of Equation 2.30 will be needed. The

liquid volume, moreover, is estimated based on feed and base rates of pumps and size of tubings.
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Figure 3.10: Experiment 5, ÔTR and OTRoff−gas after numarically correcting the oxygen de-

mand. The estimated oxygen transfer rate ÔTR in red color superimposed on blue colored

OTRoff−gas, which is calculated using off-gas measurement of O2. (a) shows the shifting in ÔTR and

OTRoff−gas caused by mis-tuning of air and O2 lines. (b) shows ÔTR and OTRoff−gas after scaling
the the oxygen demand using the ratios in Table 3.2.

If the estimated value of the liquid volume changed, another tuning of the function gain will be

required. The calculation of estimator gain as a function of culture volume might be subject to any

flaw in the control part. For example, when the culture is in overflow metabolic state, more base

is pumped into the culture, or when a probing lasts for a longer time, more glucose is pumped in.

Then, by Equation 2.30, the estimator gain changes faster than what it should be.

Therefore, there is no such known independent variable that could be reliably used to

calculate the estimator gain and thus an adaptive gain should be used for more accuracy and

stability.
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 (a)

 Time [h]

 (b)

Figure 3.11: Experiment 60, cultivation profile. (a) shows the solid black colored O2 demand and
feed profile in dashed black color. (b) shows the dotted black colored GasMx signal along with the

estimated oxygen transfer rate ÔTR in red color superimposed on blue colored OTRoff−gas, which
is calculated using off-gas measurement of O2.

An adaptive gain could be obtained by

Λ̇ = −ΛζζTΛ (3.2)

and Λ is initialized as in Equation 2.21 [Narendra and Annaswamy, 2012]. Then Equation 2.23

could be rewritten as

˙̂α = −eFgSΛζ (3.3)

where Fg is a fixed positive gain. This adaptive gain was tested using data from many experiments.

The estimator performance using the adaptive gain was almost similar to that using the function

gain Equation 2.30. An example of the estimator performance using the adaptive gain with data of

experiment 74 is shown in Figure 3.14, which shows that the estimator performs almost the same
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 Time [h]

Figure 3.12: Experiment 60, oxygen mole ratio in input and output gases. The dashed line is
the expected oxygen mole ratio in the sparge air O2−in and the solid line is the off-gas sensor
measurement of oxygen concentration at the reactor exhaust O2−out. The dotted line is the oxygen
enrichment signal (GasMx).

using either gains and ÔTR is ahead of OTRoff−gas.

3.4.2 Persistent excitation

A better understanding of system excitation is still needed for faster convergence. However,

it was observed that external excitation, such as Zig-Zag used in [Wang, 2014], is needed when

the biomass is very small and the oxygen demand is very low. By looking at the data of different

experiments, it was noticed that the estimator converges when the off-gas sensor starts measuring

a decrease in O2 value. For example, we usually start experiments with only air as the input gas

which is measured 20.96% at the exhaust. The estimator usually converges when this measurement

drops (due to oxygen demand of biomass or Zig-Zag C controller) to 20.92%. After the estimator

converges and when oxygen demand is continuously increasing, a PI controller is recommended to be
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Figure 3.13: Experiment 60, E.coli growth indicators. (a) pH is regulated properly by the DCU.
(b) CO2 is increasing in the same pattern of the feeding profile, which is exponential. (c) the total
volume of base added was also similar to the feeding profile. (d) shows optical density measurements
by a spectrophotometer.

used for controlling C so that a better OUR estimation and more control robustness are achieved.

The input of the headspace linear system is bSL Equation 2.14 which should be kept persis-

tently excited. The easiest way to excite this input is to change the stir speed N , which is correlated

with C so that oxygen demand is formed by transferring more oxygen from the sparge gas to the

liquid media when N swings with a large peak to peak difference. It looks like this excitation should

continue in one direction (increasing or decreasing) until it is measured by the off-gas sensor and

the system dynamics (τh and τb) should be taken in consideration. This excitation is only needed at

the start up when oxygen demand is very low and can not be detected by the off-gas sensor. More

experiments are needed to prove this observation.

This excitation requirement is similar to the correlation needed between inputs and output
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Figure 3.14: Adaptive V.S. function gain. (a) and (c) show that the estimated oxygen transfer

rate red colored ÔTR (using Equation 2.30), and dotted black colored ÔTR (using Equation 3.2

and Fg = 3). Both red and dotted black colored ÔTR look almost similar and are a head of
that calculated using off-gas measurements OTRoff−gas. (b) and (d) show exponentially increasing

probing signal using 50% [v/v] Glucose solution. Note that, (a) and (c) show the ÔTR response of
the probing signal shown in (b) and (d), respectively.

when regressing independent variables to predict a dependent variable. The adaptive estimator

works like an on-line linear regression. So, it looks to be a requirement to excite the input in one

direction until it is reflected on the output before going to the other direction.

When a PI is used to control C at a set point, any change in the oxygen demand will

be, first, translated into a change in stir speed N , which is used to calculate ÔTR as the fastest

available signal, and, second, measured by the off-gas sensor at the exhaust. Therefore, a persistent

excitation will be there in the system input bSL and output bout. If the PI gains are tuned very well,

C will be kept close to the set point and then Ċ will be almost equal to zero. In this case, ÔUR =

39



ÔTR and OURoff−gas = OTRoff−gas. However, because Zig-Zag creates a change in the oxygen

demand that is not formed by the biomass, Ċ becomes considerable and the estimated oxygen uptake

rate is calculated by ÔUR = ÔTR − Ċ. But it will be difficult to calculate OURoff−gas because

the off-gas measurement is filtered by the headspace dynamics.

3.4.3 Changing the control algorithm for less disturbed input signal

The estimator needs some time to re-converge after every change in the percentage of oxygen

enrichment. So, it is suggested to use larger changes in the GasMx signal for less frequent change

times. In experiment 74 as shown in Figure 3.3, for example, there was a frequent change in the

GasMx signal separated by short time intervals. This increases the estimator error and limits the

number of times when probing can occur.

Figure 3.15 shows a significant increase in the estimator error after an increase in the GasMx

signal at cultivation time 12 [h]. The figure also shows a slight increase in the estimator error during

probings and this might be due to the DO dynamics which is not considered in our design.

The PI controller of the DO level was a major source of noise. The miss tuning of the PI

gains had a negative impact on the estimator error. It is suggested to check the estimator error

before any probing. If the absolute value of the estimator error, for example, was less than a specific

small positive number for some time to insure a good estimator convergence, then a probing can

occur.

3.4.4 Value of α̂ shifts when changing GasMx

After every change in oxygen enrichment, the estimator readjusts α̂ to a lower value than

that before the change in the oxygen enrichment in the sparge air as shown in Figure 3.16, which

for an experiment (called Experiment 62). This might be due to scaling C∗ in Equation 2.7, which

is

C∗ = K · bin
bair

The value of K, as explained in Section 2.1, changes slowly over the course of the fer-

mentation run due to the change in the liquid composition. However, K = K0 was used as an

initialization value. The exact value of K at different times, when GasMx signal changes, is un-

known. The adaptive estimator, however, takes care of this issue by adjusting the value of α̂ all the
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Figure 3.15: Control algorithm affects the estimator error. (a) shows the dotted black colored

oxygen enrichment signal (GasMx) along with the estimated oxygen transfer rate ÔTR in red color
superimposed on blue colored OTRoff−gas, which is calculated using off-gas measurement of O2.
(b) shows an exponentially increasing probing signal using 50% [v/v] Glucose solution. (c) shows
the error between estimated and measured value of oxygen in off-gas, calculated by Equation 2.22.

time.

The increments of GasMx signal was to increase the oxygen enrichment in the sparge air

when the stir speed N approaches the maximum speed limit of the agitator. When using a PI

controller to keep C at a set point, the N value is readjusted to a lower speed value. The value of

α̂ should not change suddenly by the change in oxygen enrichment, however, by looking at equation

ÔTR = α̂ ·N · (K · bin
bair

−K0 ·
DO

100
) (3.4)

which is an expanded form of Equation 2.24, we can tell a probable reason for this change in the

value of α̂. When oxygen enrichment increases, the PI controller readjusts N to a lower speed so

that C, which is K0 · DO100 , is almost fixed at the set point. It looks like α̂ is readjusted due to a
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Figure 3.16: Downward shifting in α̂ value when GasMx increases.

change in the first part C∗ of the driving force DF

DF = (K · bin
bair

−K0 ·
DO

100
).

It looks like that K decreases along the course of fermentation due to change in the liquid

composition and becomes unknown and less than K0 because K = K0 in our calculation. Therefore,

the adaptive estimator readjusts α̂ to a lower value to compensate the wrong scaling up of C∗ by

the fraction bin
bair

.

3.4.5 Difference between measurements of MFMs before and after the

bioreactor

A difference was noticed between the mass flow rate measurements of input and output

gases. The reason might be the specific gravity difference between the input gas and the off-gas,
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which has different humidity, pressure, temperature, and gas mixture. This means a correction factor

should be used to scale the measurements of the MFM of the off-gas for more accurate readings.
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Chapter 4

Conclusion

In this thesis, an on-line OTR estimator, that works with oxygen enriched air, was proposed

and implemented on a laboratory scale bioreactor. The method estimates the OTR or specifically

kLa using measurements of oxygen concentration at the exhaust using off-gas sensor, and in the

culture medium using dissolved oxygen probe. The dynamics of the bioreactor head space and

the off-gas sensor were included in the design. When the estimated OTR is converged to the

OTRoff−gas computed using measurements of oxygen mole ratio by the off-gas sensor, the estimated

OTR is ahead in time of theOTRoff−gas. Thus, the estimatedOTR was used to detect the metabolic

state of E.coli culture.

The dissolved oxygen DO level was controlled by a PI controller. The input air was enriched

with pure oxygen to increase the OTR whenever the stir speed was close to the maximum limit. The

estimator was tested in experiments with exponential feeding profile and with BOOM II controller.

The estimated OTR re-converged very well after every change of the oxygen mole ratio in the input

gas. Thus, the OTR was estimated for a longer time.

The proposed design is a low-cost solution for a bioreactor controller that uses solenoids to

control the oxygen enrichment in the sparge air. An alternative solution could require addition of

more instruments to the system. For example, another off-gas sensor could be used in the input

side to measure the oxygen mole ratio of sparge gas. Another example is to use one off-gas sensor

whose input is multiplexed with two gas solenoids, one solenoid for vessel exhaust and the other is

for the input gas. In this case, the two solenoids work alternately so that one gas is measured at a

time by the off-gas sensor. Other alternatives will require addition of mass flow controllers for more
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accurate results. However, the proposed design is limited by the specifications of instruments used

in the laboratory. These limits include, for example, 1 atm pressure inside the bioreactor, and 0 to

50% off-gas measurement of oxygen concentration at the bioreactor exhaust.

There was some difficulties and may be limitations of the design proposed in this thesis.

The following list shows a summary of these issues:

A. The result accuracy of the proposed design is sensitive to the tuning of the mass flow rates of

input air and oxygen lines.

B. PI controller of DO was a major source of noise due to gains mis-tuning.

C. The estimator is sensitive to any sudden change in the input signals. Kalman filters were used

to alleviate the noise contained in the measurements of mass flow Mf by MFM , O2 by off-gas

sensor, stir speed N , and dissolved oxygen DO.

D. There was a difficulty in choosing the estimator gain, but the adaptive gain explained in

Subsection 3.4.1 is recommended.

4.1 Modification Done in this Work

The differences between this work and the work developed by [Wang, 2014] include scaling

the C∗ by the ratio bin
bair

as in Equation 2.7, and using only one unknown coefficient in the linearized

kLa as in Equation 2.11. The changes also include using a PI controller for the dissolved oxygen

concentration level instead of using the Zig-Zag method. Another modification was by employing

a decreasing over time estimator gain that is a function of the culture volume as in Equation 2.30.

The most important modification was the accurate identification of the oxygen mole ratio in the

sparge gas. This was done by tuning the input gases to insure equal mass flow rates, and adding a

Correction factor Cf as in Equation 2.29.
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4.2 Future Work

4.2.1 Difficulties in prediction of carbon dioxide concentration at liquid

surface level dSL

We can get a fast estimation of the partial pressure of oxygen at the liquid surface level

(bSL) using Equation 2.14 which is

bSL = bin − α · N ·DF
Fr

,

by N and DF , ignoring the dynamics of DO probe and the stir speed N , and assuming a slow

changes in α which is estimated by the adaptive estimator. With an estimated value of α, Equation

2.24, which is

ÔTR = α̂ ·N ·DF,

gives an estimation value of OTR faster than Equation 2.1

OTRoff−gas =
Mf · ρO2

Vc ·R · T
(bin − 1 − bin − din

1 − bout − dout
· bout),

which depends on off-gas sensor measurements delayed by the total system delay.

An approximation of the CO2 emission rate [Kamen et al., 1996] using pC02 measured by

the off-gas sensor and delayed by the total system delay can be calculated by

CER = pC02 ·Mf ·
1

R · T · Vc
(4.1)

The problem of estimating the carbon dioxide concentration at liquid surface level dSL is, however,

that we have only Equation 4.1, and we do not have a faster equation or technique to better

estimate an instantaneous value of dSL without time delay. In addition, the commercially available

CO2 probes that can go in the culture liquid, have no better time constant compared to that of the

off-gas sensor used in our experiments.
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4.2.2 Implementation under pressurized bioreactor

Our implementation was designed and tested at one atmospheric pressure. It is worth it

to modify the design, if required, to enable the prediction for OTR of a cultivation running in a

pressurized bioreactor with oxygen enriched input gas along. This will enable for controlling an

industrial size bioreactors for further higher production of recombinant proteins.
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Appendix A Tuning Procedure for more Accuracy in bin Cal-

culation

Figure 1: Bioreactor Connections.

Using the configuration shown in Figure 1, the two lines of air and oxygen can be tuned so

that the predicted oxygen mole ratio in the input gas bin, which is computed by Equation 2.29

bin =
(100 −GasMx) · bair +GasMx · Cf

100
,

equals to the oxygen mole ratio measured by the off-gas sensor bout when there is no biological

consumption of oxygen. The procedure shown below was used for the tuning, however, this is not

necessarily to be the best procedure. The procedure was tested for GasMx values up to 40% which

gives around 51% of oxygen mole ratio in the input gas. This was limited by our particular off-gas

sensor, where the maximum safe range of oxygen concentration measurement is 50%. The procedure

is: -

A. Hardware limits must always be considered during this procedure, i.e., maximum measurements

of off-gas sensor, and MFM, and the maximum pressure of the bioreactor vessel.

B. Start by flowing only air and the pure oxygen line is closed, i.e., GasMx = 0.

C. Use the rotameter to measure the desired mass flow rate of air Mf−air, which can be adjusted

with air pressure regulator PR-air, rotameter and DCU aeration knobs. After this step, these
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knobs should not be changed.

D. Open oxygen line.

E. Using only the oxygen pressure regulator PR-O2 knob, adjust the oxygen mass flow rate Mf−O2

so that the rotameter measurement reads Mf−O2
= Mf−air.

F. If there was a difficulty in achieving Mf−O2
= Mf−air, then consider changing the mass flow

rate of air by repeating this procedure from step B.
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Appendix B Estimator Algorithm and Simulink Blocks

The algorithm was implemented on Simulink. Figure 2 shows the blocks used to implement

the adaptive estimator explained in Chapter 2. The following list explains the blocks according to

the alphabet letter of each block as shown in Figure 2.

A. Inputs of the adaptive estimator are marked in green color. They are off-gas sensor measure-

ment of oxygen [O2], stir speed [N], dissolved oxygen probe measurement [DO], mass flow rate

[MF] measured by MFM, estimated liquid volume [Vc hat], oxygen enrichment signal [GasMx].

B. Kalman filters are used to alleviate the noise contained in some of the input signals. [O2], [N]

and [DO] are slightly filtered, but [MF] is heavily filtered because it is not expected to change

during the cultivation time.

C. Pre-calculations needed for the estimator as shown in the following Matlab code.

1 function [f1,f2,Fr,Tau h,DF,b i,Gain] = ...

preCalc(GasMx,DO KF,Hery law,FermSim w2,N KF,FermSim Vt,Vc hat,MF KF)

2 % MM. Modifications 09 April 2017 for kLa estimator

3

4 %% ############# Mass Flow Rate #################

5 % To solve the problem of division by zero,

6 % we use 4 [L/min] as the minimum mass flow rate

7 if (MF KF ≤ 4)

8 Mf LperH = 4*60; % Mf LperH is the mass flow rate [L/h]

9 else

10 Mf LperH = MF KF*60;

11 end

12

13 %% ############# Time Constants #################

14 Tau h = (FermSim Vt-Vc hat)/(Mf LperH/3600); % FermSim Vt is the veesel ...

total volume, and Vc hat is the estimated liquid volume.

15 Tau h inv = 1/Tau h; % Tau h is head space time constant

16 Tau b inv = FermSim w2; % Tau b is Off-gas sensor time constant = 55 sec ...

(FermSim.w2 = 1/55 seconds)

17

18 %% ############# Driving Force DF #################
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19 C = DO KF/Hery law; % Equation 2.8, where Hery law = 100/K

20 C f = 0.9706; % Equation 2.27

21 b air = 0.209627; %

22 b i = (((100-GasMx)*b air+GasMx*C f)/100); % Equation 2.29

23 C star = (100/Hery law)*(b i/b air); % Equation 2.7

24 DF = C star - C; % Equation 2.9

25

26 %% ############# Calculate Scaling Fraction #################

27 Fr = (Mf LperH*1.0133)/(Vc hat*8.314e-2*(273.15+37)); % Equation 2.4

28

29 %% ############# Calculate f matrix #################

30 f1 = Tau b inv*Tau h inv; % Equation 2.19

31 f2 = -1*Tau b inv*Tau h inv*DF*N KF/Fr; % Equation 2.19

32

33 %% ############# Calculate Gain Function #################

34 Gain = 300/Vc hatˆ14+.01; % Equation 2.3

D. Filter bank G(s) to generate Zeta ζ implemented in discretized transfer function is shown in

Figure 3. To add a continuous to digital transfer function block in Simulink, use the command

”discretizing” in Matlab command window. Select ”tustin Discretized Transfer Fcn” and

change it to ”zoh” and fill in both denominator and nominator with polynomials in S-plane.

Figure 3: Simulink discrete transfer function for ζ.

E. Discrete derivative to compute Ċ as shown in Figure 4.

Figure 4: Simulink discrete derivative function for Ċ computation. FermSim.H is 100
K0

, where K0 =

2.1 × 10−4 [mol · L−1]
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F. Calculations of the adaptive estimator are shown in the following Matlab code.

1 function ...

[Z out,alpha Hat,OUR off gas,OTR off gas,OUR hat,OTR hat,kLa hat,error] = ...

Estimator(OTR DF,N,C dot hat,Fr,Tau h, ...

b i,off gas O2,Gain,f1,f2,Zita,Z in,alpha Hat in,FermSim)

2 % MM. Modifications 09 April 2017 for kLa estimator

3

4 T sample = 15; % Sampling time 15 seonds

5

6 %% ############# Time Constants #################

7 Tau b inv = FermSim.w2; % Tau b is Off-gas sensor time constant = 55 sec ...

(FermSim.w2 = 1/55 seconds)

8 Tau h inv = 1/Tau h; % Tau h is head space time constant

9 d2=1/120; % d2 value used in the filter bank G(s) and A2 matrix

10 %% ############# Time Constants #################

11 bo hat = Z in(1); % The estimated oxygen mole ratio at the exhaust

12 b out = off gas O2/100; % oxygen mole ratio measured by the off-gas sensor at ...

the exhaust

13 error = bo hat - b out; % Equation 2.22 the estimator error

14

15 %% ############# The Gain Matrix #################

16 Lambda = [Gain 0; 0 Gain]; % Equation 2.21 the Gain matrix Lambda

17 % % % If adaptive gain is required, then Lambda22 is added to the output

18 % % % signals and fed-back to the estimator block via a memory. An input signal

19 % % % Lambda22 in is added, then the following lines are used instead of

20 % % % the line 16- Lambda = [Gain 0; 0 Gain]; % Equation 2.21

21 % Lambda in = [0 0;0 Lambda22 in];

22 % Lambda dot = -Lambda in*Zita*Zita'*Lambda in; % Equation 3.2

23 % Lambda = Lambda in + Lambda dot*T sample; % Discrete intergation of ...

Equation 3.2

24 % Lambda22 = Lambda(2,2);

25

26 %% ############# Head Space Linear Model #################

27 A = [-(Tau h inv+Tau b inv) 1; -(Tau h inv*Tau b inv) 0]; % Equation 2.19

28 B = [0 0;b i alpha Hat in]; % Equation 2.19

29 f = [f1;f2]; % Equation 2.19

30
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31 %% ############# The Adaptive Estimator #################

32 % we need one auxiliary variable in the observer bacause we have only one

33 % uknown coefficient (alpha)

34 A2 = [0 -d2; 0 1]; % A2 matrix used in M matrix

35 M = [0;-error*Zita'*Lambda*A2*Zita]; % M matrix used in Equation 2.20

36 Z dot = A*Z in + B*f + M; % Equation 2.20

37 Z out = Z in + Z dot*T sample; % Discrete intergation of Equation 2.20

38

39 %% ############# The Adaptive Law #################

40 S = [0 1]; % used to convert Lambda*Zita in Equation 2.23 into a scaler

41 alpha Hat dot = - error*S*Lambda*Zita; % Equation 2.23

42 % % % If an adaptive gain was implemented, then

43 % alpha Hat dot = - error*F g*S*Lambda*Zita; % Equation 3.3, where F g is ...

any positive number selected by trial and error

44 alpha Hat = alpha Hat in + alpha Hat dot*T sample; % Discrete intergation of ...

Equation 2.23

45

46 %% ############# OUR & OTR Calculations #################

47 kLa hat = alpha Hat*N; % Equation 2.11

48 OTR hat = kLa hat*OTR DF; % Equation 2.24

49 OUR hat = OTR hat - (C dot hat/240); % Equation 2.25, where the division by ...

240 is to get change per hour

50 OTR off gas = Fr*(b i-b out); % Equation 2.3

51 OUR off gas = OTR off gas; % this is valid only when C dotHat is almost zero

52

53 %% ############# Convert [mol/(L*h)] into [g/(L*h)] #################

54 OTR hat = OTR hat*32; % *32 to get g/(L*h)

55 OUR hat = OUR hat*32; % *32 to get g/(L*h)

56 OTR off gas = OTR off gas*32; % *32 to get g/(L*h)

57 OUR off gas = OUR off gas*32; % *32 to get g/(L*h)

G. Kalman filter for slight final filtration of ÔUR and to generate
˙̂

OUR simultaneously during

the filtration process.

H. Output signals α̂ [alpha hat], ÔUR [OUR hat], ÔTR [OTR hat], kLa [kLa hat], e [error],

OURoff−gas [OUR off gas], OTRoff−gas [OTR off gas], Kalman filtered ÔUR [OUR hat KF],

and first derivative of ÔUR computed by the Kalman filter block for faster calculation [OUR hat KF Dot].
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Appendix C List of Experiments Used for this Thesis

Table 1 summarizes the settings and conditioning of experiments used in this thesis.

Experiment
5 58 60 62 74

DO controller Steps 1 N/A 4 PI 3 PI 3 PI 3

Inoculation Yes No Yes Yes Yes
Induction No N/A 4 No No Yes

Feeding profile EFP 5 N/A 4 EFP 5 EFP 5 BOOM II 6

Time [h] 20.76 2.38 22.91 27.43 23.8

Table 1: Experiments summary.
1 Stir speed was changed in steps so that DO was kept bounded

between 40% to 70%.
2 Stir speed was continuously ramping up and down so that DO

was kept bounded between 40% to 70%.
3 DO was kept at a set point and controlled via a PI controller

embedded in the DCU.
4 Not applicable because there were no cells in the liquid and there

was no biological consumption of oxygen.
5 Exponential feeding profile.
6 Feed rate was controlled via BOOM II algorithm so that
E.coli grows at nearly optimal rate.
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