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Abstract

This thesis focuses on results concerning providing a Carleman type estimate for the Mindlin-
Timoshenko plate equations. The main approach is to provide an estimate for each of the three
equations in the model then present these estimates in totality as a singular Carleman estimate
for the entire model. The initial equation in the model is a simple two dimensional hyperbolic
partial differential equation known as the wave equation. Prior research has been done for this
type of equation and will be applied to provide the Carleman estimate for the first equation in the
model. The estimate for the second and third equations will be derived by first establishing a point-
wise inequality for the principal part of the equation multiplied by an exponential weight. After
establishing a suitable pseudo-convex function for the exponential weight factor, specifications will
be applied to the established point-wise estimates which will lead to the Carleman type estimates

and their corresponding integral inequalities.
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Chapter 1

Introduction

1.1 Background

The motivations behind the study of the model explored in the thesis has developed from the
classical Euler-Bernoulli beam theory as well as Kirchoff-Love plate models [2, 10]. In more recent
years, models which account for shear deformations have been of more interest and the models in
classical beam theory are limited in their description of plates or beams experiencing high-frequency
vibrations [2, 10]. A model accounting for the transverse shear deformation occurring to the plate
involving two shear angles was considered by Reissner [2, 11]. Reissner’s model possessed several
deviations from classical plate theory, including allowing for a change in the thickness of the plate due
to stresses [11]. These were also changes from Timoshenko’s earlier proposed model, which considered
the displacement of a beam taking into account a single shear angle of its filament [2, 10, 15]. A
later model was proposed by Mindlin, independent of Reissner, that also considered two shear
angles, and has been foundational in the development of modern plate theory [2, 9, 10]. The
Mindlin-Timoshenko model considered for this present paper was considered in Lagnese [4] with
explorations of the systems stability and well-posedness researched by Pei et al. [10], Jorge Silva et
al. [13], Grobbelaar-Van Dalsen [2], and Fernandez Sare [12]. The Mindlin-Timoshenko model is the
one of interest for the purposes of the research presented in this paper with the goal of presenting a

Carleman type estimate for the model.



1.2 The Model

This paper will be studying the Mindlin-Timoshenko plate model in the two dimensional

case given by

phwy — KAw — K (¢, +1,) =0, in  x [0,T]
By — D (e + 5200y,) — D (S ) + K (¢ +w,) =0, in Qx[0,7] (1.1)
2 b — D (byy + 5L 00a) — D (H40y) + K(¢+w,) =0 in Qx [0, 7]

with initial conditions

(w(x,y,O),w(z,y,O),gb(x,y,O)) = (w07¢07w0) € (H(}(Q))g
(wt(:r,y,0),¢t(x,y,0),¢t(a:,y,0)) = (w1’¢15¢1) € (LQ(Q))S

and boundary conditions
w=Y=¢=0 ondQx][0,T]

where  C R? is an open bounded domain and p, h, D and K are positive constants representing the
mass per unit surface area, thickness of the plate, flexural rigidity and shear modulus respectively [12,
10, 13]. Notice w is displacement of the plate from the central plane in the normal direction to the
mid-surface plane, while ¢ and v are the angles of shear deformation [12]. The constant p is referred
to as Poisson’s ratio constrained by 0 < p < % in physical situations [12, 10, 13]. The term 1_?”
will play a central role in parts of this paper and will be denoted as a for the purposes of easing the

notation. For the purposes of the results presented, the simplified model given by

Wt — Aw — ((bg; + wy) = 0, in © x [O,T] (12)
ot (wm + 12“wyy) St @) =0, i Qx [0,7] (1.3)
b= (5 0+ 0] — T+ @ w) =0 x0T (1.4)

will be used for this paper.



1.3 Carleman Estimate for Wave Equation in 2D

The goal of the present paper is to show a Carleman type estimate for the aforementioned
Mindlin-Timoshenko plate model with constants normalized. While, care must be taken in handling
the term 1_7” in equations (1.3) and (1.4), equation (1.2) is simply the wave equation in two dimen-
sions. As such, the work of Lasiecka, Triggiani, and Zhang [6] can be directly applied to (1.2) to
provide an estimate. Following Lasiecka et al.’s [6] results, consider the pseudo-convex function P
in 2 x [0,T] defined by

T

Play.t) = (5“—1‘0)2+(y—yo)2—C<t—2)2

where (z0,v0) ¢ Q and the constants 7' and ¢ are such that 0 < 7 and 0 < ¢ < 1. Then, defining
E,(t) as follows:
1
E,(t) = 5/ w? + |Vw|?dzdy
Q

and choosing the constants ¢, &, and p as specified by Lasiecka, Triggiani and Zhang [6] (see Chapter
3 also) we have, for 7 > 0 sufficiently large and arbitrary € > 0 small, the one parameter family of

estimates

T D ~
BT[¢ +2 / / P P dadydt + Cy 1re®™ / wdzdydt
0 Je [Q(3)e
T _
> (eTp — 20)/ / X P (w? 4 |Vw|?)dxdydt (1.5)
o Ja

+ (2738 4+ O(7?) — 20) / 2 Pu2dzdydt — Crr3e 2™ [,y (0) + By (T)]
Q%)

where f =1, + ¢, the region Q(&) is given by

Q@) = {(m,y,t) (z,y) €Q,0< t < T, Pz, y,t) ZJ>0},



and the boundary terms are

BT[% :27/ / — |Vw|?|Vd - vdSdt
o

+8CT/ / 2”’( — ) wy —det+8T/ / PIvd.- Vw]a—dsczt
00 00 v

2P T\> ar| ow
+ 472 4(x — 20)? +4(y —yo)? —4c* (t — 3) t5
19)

w—dSdt
T _ T 2
+ 27/ / e?? {87’2 l(az —20)* 4+ (y —yo)? — ¢ (t - )
o Joo 2

ov
with d defined as

+7(a—2¢c— 4)} w?Vd - vdSdt.

d(z,y) = (x —20)> + (y — yo)*

for (z,y) € Q and a fixed point (zg,yo) ¢ Q. The constant « in the boundary terms is defined as
a=3—-2c+kfor0<k<1

such that we have

4—2c—a>p=a—2c>0.

For the other two equations careful consideration must be taken to observe how the constant
11 impacts this process. This constant acts as a weight on one of the terms of the two dimensional
Laplacian in each of (1.3) and (1.4) preventing them from following the true wave equation model.

The final section of the paper will then establish a sum of the estimates for an overarching estimate

of the entire model.

1.4 Some Literature on Carleman estimates

The origination of the use of exponential weights can be traced to a mathematician named
Carleman [1] in 1939. Carleman’s intent was to apply these estimates to prove uniqueness in the
what is known as the Cauchy Problem in two variables. It was the mathematician Hérmander who
realized the implications of this notion of Carleman’s, which would lead to becoming a mainstay for
all related work in the field [3, p.61]. Hormander continued to popularize Carleman’s approach and

perfected the concept to a more broad class of differential operators. The general representation for



this Carleman estimate is given by

Z Tz(mfla‘)*l/|Do‘u62w|2d:c§C/|Pu62w|2dx.
laj<m
Hormander subsequently used this estimate to prove what is known as the Unique Continuation

Property defined below

Definition 1.4.1 (Unique Continuation Property). Consider the PDE P(z, D)u = 0. Then suppose
u to be the solution on some bounded domain Q C R™ and u = 0 for some ¢(x) > 0, where the
function ¢ : 2 — R defines a smooth hypersurface in the domain {2, meaning ¢ is smooth and

Vi # 0 on ¢ = 0. This property would then imply u = 0 on a neighborhood of ¢ = 0. [§]

These early results were only applicable, however, when involving solutions which assumed
to be compactly supported. Thus, these Carleman estimates did not contain boundary terms which
play a vital role in boundary control problems [8]. To emphasize this deficiency in the estimates
lacking boundary terms, homogenizing the Cauchy data (a known simple process) produces a term
in the right-hand side of the estimate involving norms of boundary traces that are a half derivative
higher than the norm of u on the left-hand side of the estimate [8]. This stresses the need for the
addition of boundary terms to the classical Carleman estimate since they are deficient in providing
decent results when applied to boundary value problems [8]. This issue was addressed by two
different approaches that were developed independently.

The development of improved Carleman type inequalities, which provided good results for
solutions of boundary value problems can be attributed to two originating sources that addressed
the issue rather differently. The first source is the mathematician D. Tataru [14] at the University of
Virginia while the second is Lavrentev—Romanov—Shishataskii [7] of the Novosibirski school. These
papers established to camps of though for how to produce boundary terms in the estimates [8].
The idea behind Tataru’s work was motivated by extending the main Carleman estimate to general
psuedo—differential operators [8]. This results in certain structures that need to satisfy geometrical
properties, including a surface which must be psuedo—convex. Tataru’s work was developed from
the work of of Lasiecka-Triggiani [5] which developed a sharp Carleman type estimate specifically
for second-order hyperbolic equations such as a wave. These estimates, were obtained using a type

of differential multiplier, which differed depending on the exact partial differential equation to which



it was applied [8]. In contrast, Lavrentev—Romanov—Shishaskii [7] approached the problem of pro-
ducing boundary terms in the estimate via a format which was much more computationally focused.
Their method was to establish an initial point—wise Carleman estimate with the resulting integral
form of this estimate [8]. This was the inspiration behind the subsequent work of Lasiecka-Triggiani-
Zhang [6], the primary source for the work in this paper. In their paper, Lasiecka—Triggiani—Zhang [6]
worked via the method produced in the Lavrentev camp by establishing a fundamental initial point—
wise inequality for the general second order hyperbolic equation that was used to produce a a one
parameter family of point—wise Carleman estimates [6].

The Carleman estimates derived for the Mindlin-Timoshenko equations follow the process
established by Lasiecka—Triggiani-Zhang wherein we establish an initial point-wise estimate for
the second and third equations in the system. This estimate will then, via careful selection of
an appropriate pseudo—convex function and other specifications, will ultimately yield point—wise
Carleman estimates, and followed by the corresponding integral inequalities. The final estimate is
expressed in terms of these point—wise integral inequalities.

The organization for the main result of this thesis is as follows: In Chapter 2 we prove the
main point—wise estimates for the equations of two shear angles in the model. In Chapter 3 we will
derive the Carleman estimates by introducing a suitable pseudo-convex function that is needed for

the special structure of the equations (1.3) and (1.4).



Chapter 2

A Fundamental Lemma

The following Lemma is the main result which consists of pointwise estimates for the equa-
tions (1.3), (1.4) in the Mindlin-Timoshenko model discussed in the introduction. The proof for the
first inequality is shown while the second is simply stated due to its derivation following a similar

process as the proof of Lemma 1.

2.1 Lemma

Let
(2, y,t) € C*(Ry x Ry x Ry); £(2,y,t) € CP*(Ry, x Ry x Ry); ((w,y,t) € C? int and C in z,y
be given and set 0(z,y,t) = e/(®¥t) . Additionally, set

v(x,y,t) = 0(x,y,t)(x,y,t)

A= (6 = lu) = (65 = Low) — ally — Lyy).

Then, letting ¢ > 0 be arbitrary, we have the following pointwise inequality (for ease of



computation, we use the substitution a = 177“ throughout the statement and proof of the lemma)

02 — (Vaa + atiyy)]” - % {P[=26 (07 + vz + avy) + 4u(latb + alythy) + 226 + 20ty — 268 + Oy
H(20,(2 + al?) — 203 — 244, — ()}

0
2 {220 (Gt + athyly — Yil) — LV + 0l — V7

¢

+2 (éi +al’ -0+ 2) Yotp + Lo (05 + ally — 17 — A)W]}

0
205, {02120y (Lt + arpyly) — £y (V2 + arpy) — 2biapyipe + Ly1)7

¢

+2 (ei +all —0; + 2> Yyt + Ly (62 + all — 67 — A)wz]}

> =80y (Lytvg + alyvy) + 2(lpg + alyy + by — ()vf

+2(¢— % —lyy — alyy + L) (V2 + avi) + 4(yr 02 + 2alpyvivy + agfyyvz)
o) 5} 9] 1
{2402 | (A +00) +ag(A+08) - 5 ((A+00)] - 1 +ach) 4

(2.1)

Proof. 2.1.1 Step 1
Let v(z,y,t) = 0(x, y, )¢ (x,y,t) = " @V (x,y,t) thus ¢(z,y,t) = e *¥Dy(z, y,t) and

by differentiation we have

Py = e H@Bt) (—f,)p 4+ e @ vy,

¢tt = e_z(wayvt) ([g)v -+ 6_‘6(937y:t)(_,€tt)fv -+ e_e(w’y’t)(—gt)vt + €_€(w’y’t)(—€t)'l)t + e_é(w’yxt)vtt.

(2.2)
Manipulating the results from (2.2) yields
01/)tt = ef(x,y,t)wtt = V¢t — 2€tvt + (Ef — gtt)’U. (23)
Similarly, we have
Oz = Vo — 2050 + (€2 — Ly )V
" (2~ t,) o

Oarhyy = alvy, — 20 v, + (Zi — Lyy)v].



From (2.3) and (2.4) we obtain

92 th - (wwa: + a"/}yy)]Q :e%(;c,y,t) th - (¢m + a"/’yy)}2

= {[vtt — 2€tvt —+ (E% — gtt)v} — [vmm — 2€mvm —+ (Ei — me)v]

(2.5)
—alvyy — 20yv, + (zj - Eyy)“]}
=1, + I 4 I3]* > 21, Iy + 21,15 + 2151,
where
I =v4 — (Vg0 + avyy) + Av
Iy = = 20wy + 20,0, + 2alyvy
(2.6)
13 :C’U
A=(0] = l) = (63 = Lae) — a(ly — £yy) = C.
2.1.2 Step 2
In Step 2, we shall prove
2111 :% [—2& (vtz + Av? + vi + avg) + 4v(bpv, + aﬂyvy)]
0
-2 {M[va(ﬁxvx + alyv,) — lo(v2 + cw;) — 20400, + 07 — Alyv?]
—|—a(%[2vy(€zvm + alyvy) — £y (v + av)) — 2l + Lyv] — AEyUQ]} (2.7)
— 80 (lzvg + alyyvy) + 202 (s + Low + aly,) +4 [ﬂmvg + 2alyyvvy + a2€yyv§]
0 0 0
— 2(lyy + alyy — Ly) (V2 + cw;) — 202 %(AZQ,) + aa—y(Aéy) ~ 5 (Aét)] .



Proof. By direct computation, and substitution from the expressions in (2.6), we have

21115 = 2[vy — (Vgo + aVyy) + Av][—200; + 20,0, + 2alyv,]
= *46{0,{0& + 4vtt€mvm + 4avtt€yvy + 4£tvt (U:E:E + Gﬂ)yy)

— 403 (Vgg + aVyy) — 4alyvy (Vay + avyy)

— 4Alvv + 4Alvgv + da Al oy (2.8)
0 0 0 0
= =20 — (v?) — 2A0, = (vV?) 4+ 2Al, — (v?) + 24al, — (v*
gtat(vt) Etat<v )+ gl‘ax(v )+ aeyay(” )

+ 404 (L + alyvy) + 400 (Vgz + aVyy) —4(Vge + avyy) (Lave + alyvy) .

1 2 3

We can next rewrite the last three terms of (2.8), in the order in which they are numbered, as

follows:

vy (bpvg + alyvy) = 4%[%(&0% + alyvy)] — 411,5%(@% + alyvy)

0
=4 —[v:(lavg + alyvy)] — 4vs(Uprvy + Lo + alyvy + alyvyt)

ot
0 0, 5 0, 4
— 4§[vt(€zvz + alyvy)] — dvy (Upvg + alypvy) — 2 Ez%(vt) + aﬁya—y(vt)

4001 (Vgz + aVyy) = 40005, + dalivivy,

0
=4—(lvvg) — v, — 400, + da— (bivvy) — daly,vvy, — dalivgy, v,

Ox oy
1o} b 9 9
=4 [ax(ét’(}tvm) + aay(gtvtvy>:| — 2&&(115) — 20&&(”5) — 4vilipvy — daviliyv,

0 ) 9
=4 [aw(gtvtvz) + aay(gtvt’l)y)} - 2&5&(’05 + avi) — dvy (Lizvg + aliyvy)

10



—4(Vgg + avyy) (Lzvg + alyvy)
= Ayl vy — 4aVz by, — davy,lov, — 4aPvy, Ly,

0 0
= —4%(1)2@) + 4vi€m +4v, b0y — 4a£(vz€yvy) + 4avy by vy + 4avplyvy,

0 0
- 4a28—y(v§£y) + 4a2v§€yy + 4a2vy€yvyy - 4aa—y(vy€xvm) + davylyy vy + davylyvg,

0 9]
=4 [ax(viﬁm + avylyvy) + ——(avy by, + azvjﬁy)}

dy

+ 4[lpv? + alyg U0y + alyy gy + aQZyyvz

Y]
Q 2 2 2 é a? 2
+2 {&J&T(vx) +a€yay(vy) +a€wax( y) l, T (v )]

Substituting the expressions derived in 1,2, and 3 into (2.8) we get

21,1, :-2@%(1}3) —2A€t%(v2)+2A {em;x( %) +al, 88 (v )}
+4g[vt(€v + alyvy,)] — 4vi(byv +a€tvy)—2[£ a( 2) +aly 8( )
o «Vz yVy atVz y v "oy
+4 [ 0 (Lo )—|—a2(€tvtv )} - QEtQ(vz + av?) — 4v; (Lipve + alyyv,)
ox r ay Y ot = y z Uz y Uy

4 {ij(vifm + avglyv,) + g(avyém% n azvjfy)]

Jy

+ AlgzvF 4 2aley vy + Ly,

0, 4 0, 0 2 0
2| (2 4 oty (08) + aka g () 40Pty 5 (02)].
Rearranging the terms produces
0 0 0 0
20 Iy = =24, 8t( 2y — 2A4, 8t( v?) + 4§M(£z% + alyvy)] — %ta(ui + avi)
0 0 0 0 0 0
+2A [Ema( )+ aly Y3y —(v )] -2 {Ezax(vf) + aﬁya (v )} +4 [8 (Lvvg) + aa—y(ﬁtvtvy)

0
—4 L%C(U?EZQ; + avglyvy) +

g 2 g 2 Q 2 ﬁ
] T R AR ]

gy(avy&cvx + a? vy, 2y )}

— 40 (L vg + alypvy) — 40 (Lig vy + alyyvy) + 4l pv? + 20l 5y vy 0y + agﬁyyvi].

(2.9)

11



Grouping the % terms in (2.9) yields

0
g [—2&1}? — 24007 — 204 (v2 + avi) + 4o (Lpv, + aﬁyvy)]

P (2.10)
+ 2&5{0? + QUQE(A&:) + 2€tt(vi + Gﬂ}z).
Grouping the % and 3% terms we have
9 2 2 2 2
—x[QAﬁxv — 20,07 + 400y — 4, (Lyvg + alyvy) + 26, (v + avy)]
0
+ aa—y[2A£y112 — 20,07 + 4wy — Ay, (Cpvg + alyvy) + 26, (V2 + avz)] (2.11)
2| 0 9 2 2 2
— 20 %(Agz) —+ aa—y(/wy) + 2Ut (me + agyy) — 2(£zz + aéyy)(vx + avy).

Finally, substituting (2.10) and (2.11) into (2.9) and rearranging the terms gives the result in (2.7).

O
2.1.3 Step 3
Applying the substitutions in (2.6) we shall prove for all € > 0
0
2013 = a@@vt = Gv®) + (G + 2400 — 2¢07
~2 | (€0at) + g (Goy0)] + 20(Gavs + aGy0,) + 2602 + )
5 . (2.12)
> a(z@vt — )+ {Ctt +2A¢ — E(Cﬁ + GCZ)} v? — 200}
20— 2+ ) 2| (Cog0) + ao-(Cuy)
€)(v; + av,, 5 (GVa¥ aay vyv) | .
Proof.
21113 =2[vy — (Vgz + avyy) + Av|Co
(2.13)

=2Cvvy — 2CV(Vgz + QVyy) + 2A(0.

12



Where

2Cvvy = 263 (Cvvy) — 21),5 (Cv)
= 2%((1}1&) — 20,Cv — 03¢
0

= ZE(CUU,:) — %(QUQ) + Cpv? — 2vf§

—2C0(Vgg + aUyy) = —2CV0zg — 2alVVy,

=— g(gvvm) + 211z 0 (Cv) - 2a 0 (vay) + 2avy§ (Cv)
{ (Cvvg) + 9y (vay)} + 2¢,v2v + 2aC,v,v + 2CvE + 2a§v§
[ (Cvvg) + y((vvy)} + 20(Ceuz + ayvy) + 2¢(v2 + cwz).

Substituting into (2.13) and using 2v(C,v. + afyvy) > —€(v2 + avy) — e+ a¢Z)v?, where € > 0 is

arbitrary and recalling a > 0, we have the result in (2.12). O

2.1.4 Step 4

In Step 4 we shall prove that

0
ol =g (60| (21)

— 2 _ 2 i 2 2 2 2 g
2laly = 5 (<2000%) + 5 (2000%) + 5 (2aC0,0%) + 207 | (00) =

Proof. By applying the definitions in (2.6) we have

2013 = 2 (—2bv; + 2050, + 2alyv,) U
5 5 5 (2.15)
— _2 — 2 2 o 2 2 . 2

by (07) + 20l - (0°) + anyay(U )

13



Where

0 0
—2&54%(’02) = &(—2&@;2) —+ 2@&4’02 + 2£t4t1)2
0
— &(wt@?) + 202 (01 + 04C)
0 0
= &(—2@@2) + 20 = (4:C)

ot

9, 0,5 0 2y 2 2
204, pe (v )+2a§€yay (v°) = ax(QC&CU ) — 203, Cv* — 20,C0

+ (%(261{@02) — 2a£yyCv2 — 2a£y§yv2

9 ) 9 )
— %(wgﬁv?) + 8—y(2a<@&) - 21)2%(&5@‘) - 20287/(11@,4)

Substituting these results into (2.15) gives the result in (2.14).

2.1.5 Step 5

Making the appropriate substitutions into (2.5), we will prove in Step 5 that
0% [ — (e + athyy))?

> — [—%t (vtz + Ui + avi) + 4v,(Lpvy + alyvy) + 2Cvv, — 20,(A + C)v2 — (:tvz]

t

— 2—1: [2%(1}1&5 + avyly) — lo (V2 + avz) — 204004 4 Ly07 + Cvvg — (A + C)EIUQ]
9 2 2 2 2

_ 2aa—y [2vy(vz€z + avyly) — £y (vy + avy) — 20w 0y + Lyvp + Cuoy — (A + Q) ey }

(2.16)
— 8vy (L Vg + alysvy) + 2(lyg + alyy + by — C)vf

€
+2(¢— 5 lyy — aly, + Ui (V2 + avi) + 4(0ypv? + 20l 5y U030y + aQEyyvf/)

{202 | 1A+ 00 +ag(A+08) - H(A+00)] - 1 +agd) 4G}
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Proof. Substituting (2.7) for 21115, (2.12) for 21113, and (2.14) for 21515 we obtain the inequality

e%(a:,y,t) th - (wmm + awyy)]Q
0
g [—20; (v} + AV? + 0} + av)) + Qv (Lovy + alyvy)]
0
-2 {ax[%z(&vvx + alyvy) — Ly (v2 + avf,) — 201040, + L0 — Alyv?]

>

+a(%[2@y(€zvz + abyv,) — Ly (v2 + avi) — 2vvy + LyvE — Aﬁva]}

— 8vt (Lipvy + alyyvy) + 2vt2(€tt + Uy +aly,) +4 [Emvi + 2al,, 00, + a2€yyv§]

— 2l + alyy — Ly) (V2 + avg) — 202 [a(Aém) + ag(AEy) - a(AEt)}
Y

or ot
+ %(QC’U% = o®) + {Ctt +2A¢ — %(Cﬁ + aCyz)} v? — 207
20— (a2 avd) =2 | £ (Cor) + g (Goyo)
0 0 0
+ a(—%ft?ﬂ) + %(2&“}2) + a*y(?anyUQ)

207 | (00 - £20:0) — an-(6,0)]

Combining the %, %, a% terms, the (v2 + avz) terms, and the v? and v? terms we obtain the result

in (2.16). O

2.1.6 Step 6
We particularize (2.16) with

Vg = 9(’1/& + ﬁﬂ/))» Ve = 9(%» + 51;1/))» Uy = 9(% + fyt/))

v=0¢=ep=>
vz +avy = 0%[(YF + L) + a(thy + y1)%].

Hence we shall prove the terms under % in (2.16) become

0
% (=20, (v + 02 + av)) + i (lovg + alyvy) + 2Cvv — 20(A + ()v* — G°]

= % {02[26,(02 + 92 + ay2) + 4, (Lot + alythy) + 2202 + 2al? — 202 + )by, (2.17)

(202 + al2) — 268 — 240, — G)v?]}

15



Proof. Making the relevant substitutions we have

0
g [—2¢, (v? +v2 4+ avg) + 40y (Lpvz + alyvy) + 2Cvv, — 20, (A + ()v? — CtUQ]

= 2 {PL2(+ 0) + (o + L0)) +alihy + (00
+ 4l (Yo + L) (e + b)) + aly (hy + Lyh) (Wy + L))
200 (Ve + L) — 26(A + Ov? — Gv®]}
= % {02[=20.(V7F + 2000 + G + 7 + 2p1pty + L0 + arp + 2alyhipy + ali)?)
+ A(latpatr + Laliiihy + Copty + Gl + alyihythy + alylyipy + al> iy + aliipnhy + alyly)p?)
F20r + 20007 — 26 A9 — 26,9 — Gp?]}
= % {O[=20(07 + 0% + avhy) + Wou(lathe + alythy) + 2(205 + 2005 — 2 + Ot

H(26(2 + al?) — 203 — 248, — ()}
which is the desired result in (2.17). O

2.1.7 Step 7

With the specialization v = 01 the 8%’ 3% terms in (2.16) become

. 2% {01200 (Lt + atpyly) — Lo (P + athy) — 263putpy + Loy

12 (fﬁ +al? — 02+ g) Vat) + Lo(£2 + al? — 03 — AW]} :
(2.18)

0
— 2“8721 {92[2%(&% + ahyly) — gy(wg + W;) = 260y + gywtz

¢

+2 (zﬁ +all — 0] + 2) Pyt + Ly (62 + all — 7 — A)qp?]}
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Proof. From the appropriate substitutions the a% terms are

_28% (204 (v ly + avyly) — Lo (V2 + av]) — 204005 + Lov] + CVvg — (A + () a0

= 2D (R4 U + )+ (Catha+ )] — GO0+ 50 + a0, + £,
—=20,0% (L) + ) (Gt + 1) + L0 (h 4+ P0)? + CO* Y (Lot + ) — (A + ():0797}

= —26% {26205 (Latpe + alyidy) + 20°0utp (03 + all) + 20° Lot (Uothy + alyt)y)
+ 200,007 (02 + all) — 00707 — (020207 — 2020° Y1) — aly 071 — al, 0% 070
— 200,020, 0 1by 1) — 20,07 pytp — 20,0%Dy1p — 20207 Ynby — 2020,0%0? + L0207 + 0,02 (342
+20% Lo by + O ptp + (070 — (A + ()E,070°}

= —23% {07120 (Catp + atiyly) — La (W + ay) = 2athutfr + Lot

+2<£§+a£§—£§+2

which is the desired result. Similarly, we have the a% terms simplify as follows
2 0 2 L L 0, (v? 2 —2al 0,02 A 0,0°
25, [2avy (vely + avyly) — aly(vi + avy) — 2alyvyvy + alyv} + alvvy — (A + ()alyv?]
0
= —28—y {2a92(€yw + %)[w(ﬁi + aﬁz) + (lethz + “Eywy)] - afy[92(fm1/} + 1pa:)Q + a92<¢y + Eyw)Q]
—2a0,0%(Cy1h + ) (Lrh + thy) + aly 02 (Cth + ¥0)* + aCO* Y (Lyrh + 1) — (A + ()E,0°4*}
0
= —Qa—y {2a02¢)y(€xww + alythy) + 2a0, (02 + aﬁfl) + 20020y 1p (Lt + alyih,,)
+ 2a92€yw2(€i + aéi) — aZyGQz/Ji — a€y92£iw2 — 2a2€§02¢y¢ — a2€y92w§ — a2€y92€§w2
— 200, 0%0 b b — 200,07 i)y, — 2ab10%Pably — 2al20%ip, — 2a02020,00% + al,0%7 + al,0?(2)?
+2a92€y€t¢¢t + a<92’l/Jy’l/J + a(92€y1/)2 —(A+ C)aﬂyﬁzwz}

0
= 2y, {02120y (et + atpyly) — Ly (V2 + arpy) — 20u1py by + Ly1)7

¢

+2 (éi +als — 07 + 2) PYytp + Ly (02 + all — (7 — A)W]}
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2.1.8 Step 8
Finally, inserting the expressions (2.17) and (2.18) into (2.16) we have

(i — (haw + athyy))* > % {07[—26:(07 + V2 + ay?) + AW (Catds + alytby) + 2(202 + 2al2 — 267 + ()i,
+(20:(02 + aly) — 203 — 2AL, — ()07}
_ 2% {02120 (Cotpe + atpyly) — La(W] + aty) — 203ty + Loty

+2 (43, +aly — 07 + g) Yotp + Lo (05 + ally — 17 — AW]}

0
~ 205, {02120y (Latpe + arpyly) — Ly (V2 + arh)) — 283pythy + Ly}
+2 (éi+a£§—€f+ ¢

5 ) vt (8 kot - & - )|
— 80 (L vy + alyvy) + 2(Lyy + alyy + Ly — Q)v;

+2(¢— ; Loy — alyy, + 6“)(1)36 + avi) + 4(&”1)?3 + 2al,, V50, + a2£yyv§)

{2ac-2 | J s 0t 4 ag (A +00) - A+ o) - 1

which is the desired result. Thus we have completed the proof to Lemma 1.

(¢ +ac?) + gt} 2

=
2.2 Statement of Lemma as applied to equation (1.4)

Similarly as the assumptions in Lemma 1, let

o(x,y,t) € C* (R, x R, x Ry); £(w,y,t) € C*(Ry x Ry x Ry); ((w,y,t) € C? int and O in 2,y

be given and set 8(z,y,t) = e/(*¥t) Additionally, set

v(x,y,t) = 9('17’ yvt)¢(x7y’t)
A= (02 —ly)—all? —ly,) — (@Z —Lyy).

Then, letting € > 0 be arbitrary, we have the following pointwise inequality (for ease of
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computation, we use the substitution a = 177“ throughout the statement and proof of the lemma)

0% (611 — (A + byy))* — % {62[-260(97 + a2 + ¢2) + W (aludy + €,0,) + 2(2a02 + 202 — 202 + ()b,
+(20(al2 + £2) — 203 — 244, — G)9%}

+ 20'% {92 [2¢x(a£3:¢x + d)yéy - d)tgt) - é:c(agbi + (bi - ¢t2)

¢

+2 (aei + 02— 2) G2t + Lo(all + 00 — 7 — A)ff]}

0
+25, {02120y (alstrs + Dyly — Bele) — Ly(ad? + &2 — ¢7)

¢

+2 (aei + 02— 07+ 2> Gyt + by(als + 02 — 07 — A)¢2]}

> —8u(alyt vy + Lyvy) + 2(alyy + Lyy + b — C)vf

+2(¢— 5 alypy — lyy + Le) (av? + “5) + 4(a*lppv? + 20l 5y vy 0y + Eyyvi)
9 9 9 1
{202 ag (A4 Q)+ (A4 08) - (A +00)] - Lagt 46+ G ?

(2.19)
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Chapter 3

Carleman Estimate

This chapter includes the resulting Carleman Estimate for smooth solutions to equation
(1.3) as well as establishing basic assumptions and inequalities necessary for the estimate. A similar
estimate is also established for (1.4), which, when combining with the estimates for (1.2) and (1.3)
will enable a final estimate for the entire model. Only the development of the results for (1.3) is

included in detail since the derivation of estimates for (1.4) follow a similar process.

3.1 Basic Assumptions

For convenience, we simplify the inequality in (2.1) using the following substitutions.

M =0*[—20, (V7 + 3 + av]) + dhy (Cothy + alyrhy) + 2205 + 2al2 — 207 + )iy
+ (20:(02 + al) — 207 — 248, — )V

Vi =20° (2005 (Lathe + arpyly — ily) — Lo (3 + at], — 1)7)

¢

+2 (zfj; +all — 07 + 2) Varh + Lo (65 + aly — 07 — A)y?)

Vo =2022tpy (Cathy + atbyly) — €y (V2 + ary) — 20byihy + L7

+2 <£§ +all — 07 + g) Vytp + Ly (2 + all — 17 — A)p?]
~ 0 0 0 1
B =240~ 2 [5L((A+ O6) + g (A+Ot) = (A + 08| = 1+ a6 + Ga
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Thus, (2.1) simplifies to be

9 9 B
2 _ 2 Y
Ol = (Vuw + athyy)]” = 5o M + 52 Vi + a—ayv2

Z —81)15 (gaztvz + agytvy) + 2(€x1’ + agyy + ‘ett - C)UE

+2(¢ - e —aly, + 0 )02 4 av2) + 4(lypv? + 20l Vv, + a*ly,02)
2 xT yy tt x Yy zx Yy xyvx Py Yy -y

+ Bv?

(3.1)

Consider the convex function d(z,y) = (z — x0)? + (y — yo)? where (z¢,0) is a fixed point outside
Q). Then for the parameter 7 > 0 and constant o we define the psuedo-convex function P, ¢ and ¢

as follows

T 2
Ple.y.1) = (II0)2+(yyo)200<f2>] 01T, (ry) €,

Uz, y,t) = TP(z,9,1),

(=ra.

Where T' > 0 and 0 < ¢ < 1 are selected following the specified criterion below where we first define
Ty by the equivalence
4
Ty = - max_{(z —20)>+ (y — %0)°} -

a (z,y)eR

Thus for T > Ty there exists § > 0 satisfying (recall a is as defined in (2.1))

40
T2>T02+;

Then for this ¢ there exists a constant ¢ such that 0 < ¢ < 1 and

acT? > 4 max {(z —20)® + (y — y0)°} +46
(z,y)€Q

holds. Thus the ¢ and T in the definition of ¢ are chosen in this way and P exhibits the following

properties for the given §:

o P,y,0)=P(x,y,T) = d(x,y) - ac’y <maxqd(w,y) —ac <=5, V(z,y)€Q
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° There exists a small neighborhood around %, say £ € (to,¢1) C (0,T), such that

min P(z,y,t) >0 >0
(z,y)€Q,tE[to,t]

where o < ming d(z,y) < d(z,y) = P(z,y, Z). Then we have the definition

T\ T ing d _
mind(z,y) —ac|t1 — =] =0o>0, sotl—:\/me(Z"y)al
& 2 2 ac

From this we can define the following region
Qo) ={(z,y,t) : (z,y) € Q,0<t <T,P(z,y,t) > 0 > 0}

which will be used to separate Q x [0, 7] since certain pointwise inequalities, derived later, will only

hold on Q(o). Next, applying the substitutions from Lemma 1 we have

Q(I, y,t) — ez(zvyﬂ:) — BTP(x7y’t)'

Moreover, as a result of these choices we have the following specializations of Lemma 1:

Ly =27(x — x0) Ei +a£§ :472{(357%) +aly —yo)}
by, =271(y — yo) Ly +aly, =27(1 +a) (3.2)
lyy = lyy =27 lyy =Lyy =0

Continuing with partial derivatives of ¢ with respect to ¢ we have the specializations
T
by = —2act |t — 3 ) Ly = —2acr, by =0y =0 (3.3)
The partial derivatives of ¢ then become

G =0, Co + Cy = T(ax + ay) =0 (34)
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3.2 A resulting pointwise inequality

Theorem 3.2.1. The aforementioned specializations and definitions thus make the pointwise esti-

mate in (2.1):

9] 0 9]
62 W)tt - (wzm + afwyy)}2 - EM + %VI + a@%

> 27((2 + 2a) — 2ac — alv? + 27 |a — % —(2+ 2a) — 2ac} (v2 + avi) + 47 (202 + 2a2v§) + 0%By)?

(3.5)

where A and B are:

2
A=r71? [4(1202 (t — g) — (4(!13 - 960)2 +4da(y — y0)2) + 7[2ac + (2 + 2a) — a (3.6)

B =273 {4[2ac+ (24 2a) — o] ((z — 20)* + aly — yo0)?) + 16(z — z0)* + 16a*(y — yo)*

T\ 2
—[6ac + (2 + 2a) — aJda®c? <t— 2) } + O(7?).
Proof. By direct computation we have

A =0 = ) = (0 = low) = ally = Lyy) = ¢

T\ 2
= [4a20272 (t — 2) + 2act

2

T2
:7'2 4(12(32 (t — 5 > — (d?lC + adz)

- [Tde. — Tdyy] — a[TQdi — Tdy,] — T

+ 7[2ac + (dgy + adyy) — ]

Substituting the partial derivatives of d(z,y) yields the result in (3.6). Now, recalling { = T we
obtain (via (3.2), (3.3), and (3.4))
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2
T
2A¢ =27 [4(1202 (t - 2> —(d* + adz) +27%a[2¢ + (dyy + ady,) — a

+272a2ac + (2 + 2a) — a

=27 [4a262 (t - T> —4((z = 20)* + aly — w)*)

o(r2)

T 2
t— 2) — (d2 + ad2) | dy + 7°[2ac + (o + adyy) — o]dy + T2 0d,

dy + 12[2ac + (2 + 2a)]d,

T 2
=73 |4a3c? <t — 2) —4 ((35 — $0)2 +aly — y0)2)
( dpw — T3[2d s + 2adydy)d, + O(T?)

A+ ] = 102 (1= 1) — (&2 + ad)

=273 l‘lazc2 (t - g) —4((x —20)* +aly - yo)z)] — 167 (x — 20)* + O(7?)

) —4 ((m —x0)? +aly — y0)2) dy + %[2ac+ (2 + 2a)]d,

(A+Q)e, =72 [4&202 <t -
a%[(A +0)4,] =27° [46362 (t - :;) —4((x —20)* +aly - yo)Z)] —16a7°(y — y0)* + O(7?)
)

T\ 2
+ 2acr3 <t — 2) 8a’c?

T\ 2
+16a>c3 (t — 2)

i 2
—t[(A + O)by)] =2act® |4a*c? (t - 1;) —(d2 + adz)

7\ 2
=2ac7® |4a?c? (t — 2) —4 ((96 —z0)® +aly — yO)Q)

T\ 2
=2act? | 12a°¢? (t - 2) —4 ((x —x0)* +aly — y())2)1

Thus, making the appropriate substitutions into the defined B at the beginning of the section yields
the result in (3.7). Morever, applying the specializations in (3.2), (3.3), and (3.4) to the estimate in

(3.1) changes the estimate to

0 0

0
92[’(/}7515 - (www + awyy)]Q - &M + aix‘/l + aﬁ—ng

> 2[27(1 + a) — 2acT — 1] v? 4+ 2 |Ta — % —27(1+a)— 2ac7'} (v + avi) + 42702 + a227v§) + 6% By?

which simplifies to the estimate in (3.5).
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Since Theorem 3.2.1 holds for an arbitrary constant «, let
a=(2+2a)—2ac—a(l—Fk) forO<k<1
such that (2 4 2a) — 2ac — o = a(1 — k) > 0. Moreover, if we define v by
Yy=a—2ac—(24+2a)=—4ac—a(l—k) <0
then we can choose a positive constant p by
p=da+y=4a—4dac—a(l—k)>0 forde—3<k<1

and the inequality (2 + 2a) — 2ac — a > p > 0 also holds.
Remark: While we have set p equivalent to 4a + vy, it is possible to set p slightly less than 4a +
for the purposes of the following corollary.

Thus we have the necessary conditions to establish the following pointwise inequality:

Corollary 3.2.1.1. Following the aforementioned specifications for our choice of a,~y, and p we

have the following improvement on the estimate in Thoerem 3.2.1 as

0 0 0 .
— M+ —le +a=Vy > 271plv? + (v + cw;)] + Bv?. (3.8)

0% [hre — (Vaw + C“pyy)]2 T ot P Oy

for all0 <t < T and (z,y) € Q. Additionally, for a positive constant B, we have the estimate
Bv* > 278+ O(*)® for all (x,y,t) € Q(a) = {(x,y,t)|P(z,y,t) > 0 > 0} (3.9)

where 0 < o <ming, ,yeq ((x —20)? + (y — y0)2) as established in the beginning of the chapter.

Proof. With the assumptions on p,y and «, and recalling v = 6 we have the following bound on

the right hand side of the inequality in (3.5)

6 ~
27 [(2 + 2a) — 2ac — o] v? + 27 [a 5 (24 2a) — 2(10} (V2 + avy) + 47(20F + a*2v]) + 6% By)?

> 27pv? + 27 |a — % — (24 2a) — 2ac+ 4a} (v + avf/) + Bv?.
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This can be taken further by simplifying the coefficient of the (v2 + UZ) term as follows

a—;—(2+2a)—2ac+4a:'y+4a—%Zp

by the arbitrary nature of e. Thus we have

6 ~
27 [(2 + 2a) — 2ac — o] v + 27 [a 5 (24 2a) — 2ac| (v + avy) + 47 (207 + a*2v]) + 6% By)?

> 27p[v? + (v + cw;)] + Bv?

as desired. For the part of the corollary regarding the bound on B notice from how a was defined

and the assumptions we have made for the function P, we have for all (z,y,t) € Q(0)

B =273 {4[2ac + (24 2a) — o[(x — x0)2 +a(y — y0)2] + 16(x — 1:0)2 + 16a2(y — y0)2
—[6ac + (2 + 2a) — a4a*c? <t — g) } +0(7%)
> 27° {4[dac + a(1 — k)a[(z — 20)* + (y — y0)*] + 16a°[(z — 20)* + (y — yo)?]

—[8ac + a(1 — k)]4a®c? (t - T> } +0(7?).

Hence, for all (z,y,t) € Q(o) we have
2 2 2.2 T\’
tal(dac + a(1 - k) + a] (& — 20)? + (y — y0)%] — [Bac + a(1 - k)}da%e (t - 2) >0

Thus there exists a positive constant /3 for the given domain satisfying (3.9).

O

In (3.8) there is still the issue of the left-hand side being expressed in terms of 1) while the

right-hand side is in terms of v. The following corollary provides an estimate that corrects this issue.

Corollary 3.2.1.2. For an arbitrary e (different than the previous € used) such that 1 > e > 0,
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from Corollary 8.2.1.1 we obtain

0 0 0 ~
0% [t = (bow & atyy))” = M + 2 Vi g Vo = erpt? [y + (v + avy)] + (B — 2eprr]fy”

(3.10)

Jor 0 <t <T,(z,y) € Q and where r = max { P} + P} + aP}}.

Proof. Recall ¢, = TP, £, = TP, {, = TP,, thus we have v, = 0(¢»y + {41)) = 6y + 07 P,;¢p and
similarly v, = 0(¢; + €p0) = 0, + 0T Ppip, vy = 0(y + £y9)) = 01, + 0T Pyp. So 0y = v, — 07 Py
and hence

02?7 < 207 + 20272 PP? = 207 > 0% — 20272 PP,

Similarly, we have

207 > 0792 — 20°T2 Py 20) > 07 — 20°77 Py,
Applying these results to the right-hand side of (3.8), and utilizing the defined e yields
27p[v? + (v2 + avz)] + Bv? > erp[20? + (202 + 2av§)] + Bv?

> erpl* [V + (V5 + apy)] + BO*)® — 2e7°p0° [P} + P} + aPyJy)”

> erp0? (7 + (2 + apl)] + [B — 2eprr]0%y)?

which gives the desired result. O

For the purposes of establishing the Carleman estimate in the next section we shall rewrite

(3.10) with the following definition

0 0 0
0 [ = (W + 0y ) = oM Vit ag Vo > erpf ] + (07 + )] + BEW - (3.11)

where B = B — 2epr3[P? + (P? + aP})] > B — 2epr3r. Thus making e sufficiently small gives
BY? > 276 + O(r*)]?, ¥(x,y,1) € Q(0)

where (5 is a positive constant whose dependence on ¢ is defined by g = (B—epr) > 0and B = O(73)
in [0,7] x Q.
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3.3 Carleman estimate for equations (1.3) and (1.4)

Theorem 3.3.1. With the established assumptions from section 3.1 as well as well as resulting
conclusions in the succeeding sections, then the following estimates hold for any small € > 0 and

7 > 0 sufficiently large:

T
BT|%+C / / P (2, + wl)dadydt + C1 re’™ /[ o Y dxdydt
0 Q Q(o)]¢

T
> (eTp — 20)/0 /QeQTP[wt2 + 2 + awj]da:dydt (3.12)

+ (2738 4+ O(1?) — 20) / > Pyt dadydt — Crr3e 2™ [Ey(0) + Ey(T))
(o)

where Ey(t) and BT|1£ are as defined in (3.14) and (3.15) respectively.

Proof. The initial step is to integrate (3.11) over Q = [0,7] x 2 where we separate ) as @ =
Q(o) U [Q(0)] since (3.9) holds necessarily on Q(o). This yields

/ /9 wtt—(iﬂxw—l—a%y)] dxdydt — {/ ] / /—V1+a—1/2dxdydt

> erp / /Q 0°[07 + (V2 + ayy)|ddydt + / /Q BO*y?dxdydt.
0 0

(3.13)

We will evaluate the terms separately, recalling pertinent details as they become relevant. Beginning

with the right-hand side, notice the estimate for B only holds true on (o) thus we have

T
/ / 02 By dadydt = / 62 By dxdydt + / 62 By dxdydt
o Ja Q(0) Qo))

0%dxdydt + / 62 Byp? dadydt.
[Q(o))e

> 2728 4 O(+)] /

Q(a)

Focusing on the left-hand side, we have, using a trivial inequality resulting from (1.3), the result

T
/0 /Q 62 [t — (s + atiyy)]? dexdydt

T T
<2C / 02y dxdydt | + 2C, / / 0%(¢3,, + w3 )dadydt.
0 Q 0 Q
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Next, recalling

M =0*[—20, (V] + 2 + ap]) + Why (Cothy + alyrhy) + 2(202 + 2al2 — 207 + )iy

F(26,(2 + al?) — 263 — 244, — )07

we have, via the specializations in section 3.1,

M =62 [4%7 (t - i;) (62 + 92 + a?) + 870 [(5 — 70) s + a(y — 50}y

+ 2

T\ 2
472 (2 — x0)? + 8ar?(y — yo)? — 8a>cP7? <t - 2) +7(2 4 2a — 2ac — a(l — k)] Yy
T 2 2 2 333 T\’
+ | —4dacr |t — 5 47% [(x — 20)” + aly — yo)?] + 16a’c*T t=5
2 2 2 T\ 2 2 T 2
+8act” | 4a“c t_§ —[4(x—a:0) —|—4a(y—y0)}—|—7(2+2a+2ac—a) t—§ e
Thus, by the highest order on 7 we observe
M < Crom°0[07 + 93 + aty, + 47
and by the Poincare inequality then
M < Cp,om°0[7 + 07 + 7).
Defining the energy term as
Ey(t) =

% /Q (7 + Y2 + 2] dady (3.14)
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the integral term of M on the left hand side of (3.13) then has the following estimate

T

{/ Md:cdy} < Cpr? {/ GQTPW? + 1/12 + d’;]]
Q 0 Q
< Cprie™?m0 [/ [7 + 2 + d’j]}
Q

< Cp73e 20 [Ey(0) + By (T))

where we drop the dependence of the constant on a since a is bounded as defined previously. Addi-
tionally, notice the middle inequality arises as a result of properties of P defined in section 3.1. For

the next integral we have

/ /—VlJra Vodzdydt = / /le (V1, aVe)dzdydt = / / (V1,aVa) - (v1,v2)dSdt.
9

To analyze the dot product in the final equality statement, first we rewrite V3 and V5 via the

specializations in section 3.1. This gives

=267 (21/& {27(3: — 20)¥s + 2a7(y — Yo)¥y + 2acT (t -

+2 (47’2(zx0)2+4a72(yy0) — da’c*r? <t —

2
27(x — o) (47'2(33 —x0)% +dat?(y — yo)* — 4a’*r? (t - Z) - A) w2>
aVs =2a6> <21/Jy |:27'(CE — 20)Ys + 2a7(y — Yo)¥y + 2acT <t -
2 (472(37 —20)? +4at*(y — yo)? — 4a*c*7? (t - g) + g) Yyt

2
27(y — yo) <4T2(.’E —20)? +4at*(y — yo)? — 47> (t — g) - A) 1/;2>

where we can simplify the following expression using the same specializations of partial derivatives
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of ¢ in the definition of A as

2
T
472 (x — 20)? + 4at?(y — yo)? — 4a?cPr? <t 2) —A
7\ 2
=87%(x — w0)” + 8ar?(y — yo)? — 8a’c*r (t - 2) + 7(a — 2ac — 2a — 2).

For the purposes of easing the notation, we will maintain the use of the following definition of an
operator for the rest of the paper:

VYf = (fu,af,) for some f € C1(R?).

Then, with v = (11, 112), the inner product (Vi,aVs) - (v1,v2)

= Viv1 +aVors can be written in terms
of the above expressions for V; and V5 as

62 {T[wf — (Y2 + azﬂ;)]Vad -vdacr (t - g) YiVat) - v+ 227 (x — 20) Ve + 2a7(y — y0) ¥y Vatb - v

7\ 2
+2 4723 (x — 20)? 4 4at?(y — yo)? — 4a*cP7? <t— 2) -|-£ YVath - v
T\ 2
+ 7 |41 (x — 10)? + 4dat?(y — yo)? — 4a>cPr? (t — 2) —A ’(/)2vad.y}.

So we can write the boundary terms with X

T
BT'% = / / (VlaaV2) : (V1,V2)d5'dt
o0
=27 / / TEYE — (02 + ayp)VEd - vdSdt
o0

+ 8acr / / 27P< )zptv% vdSdt + 81 / / P(Vd .- VY|V - vdSdt
o

7\ 2
+ 472 / / et [4(x —x0)% +da(y — yo)? — 4a*c? (t — )
0 o

= [0,7T] x 99 in the following expanded form:

2

+27/0T/69627P{872 l(w—xo)2+a(y—yo) —a’c (t_§>2

_|_7

5 YV - vdSdt

+ 7(a — 2ac — 2a — 2)} YAVYd - vdSdt.

(3.15)
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Applying these results to (3.13) produces

T
BT\% + C’a/ / eQTP((b?M/ + w?2)dzdydt — / > P By dadydt
0 Ja ) [Q(o)]°
T
> (eTp —20) / / TPl + 2+ cnbi]dxdydt + (27%8 4+ O(1?)) / 2 Py dadydt
o Ja Q(o)

T
—-2C / / eF Pyt dadydt — Crr3e 2™ [Ey(0) + Ey(T)).
0 Q

(3.16)

Moreover, recall B = O(73) in [0,T] x Q and P(z,y,t) < o on [Q(c)]¢. The term involving B on

the left-hand side of (3.16) hence has the estimate

—/ 2™ Byl dadydt < 627"0(73)/ V2 dxdydt.
[Q(o)]° [Q(o)]°

Examining the right-hand side of the inequality (3.16), we have

T
/ 2 P2 dadydt = / 2 Py dadydt + / e2 Py dadydt.
0 Qo) [Q(o)]°

Hence,

T
(2738 + 0(7'2))/ 2 P2 dudydt — 20/ / 2Py dadydt
Q(o) 0o Ja
= (278 + O(7%) — 20) / 2P drdydt — 2C X P2 dadydt
Qo) [Qo))e
> (236 + O(7?) — 20) / 2Py dedydt — 2Ce*7° / 2 dadydt.
Qo) Qo))

Substituting these results into (3.16) and manipulating the terms gives

T
BT|% + C, /0 /Q P (92, + w2)dzdydt + (O(73)e*™” +2Ce*™7) /[Q( . Y dxdydt

T
> (erp —20) / /Q X P2 4 4p2 + arpy]dedydt
0

+(2r°8 + O(7%) - 20) / P dadydt — Crre T [By (0) + By(T)).
Q)

Thus, defining the constant Cy 7e?™ = O(73)e?™ + 2Ce*7? produces the final result. O
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Similarly, we have the Carleman estimate for equation (1.4) below

Theorem 3.3.2. Again, with the established assumptions from theorem 3.3.1, then the following

estimates hold for any small € > 0 and 7 > 0 sufficiently large:

T
BT|% +C / / e* P (2, + wl)dwdydt + Cy re*™” / ?dudydt
0o Jo [Q(a)]°

T
> (eTp — 26’)/0 /QeQTP[gZSf + ag? + ¢7|dadydt (3.17)

+ (2738 4+ O(7?) — 20) / > P p2drdydt — Cpr3e ™ [E4(0) + Ey(T))].
Qo)

with Ey(t) defined as
1
Bo(t) =5 [ 102+ 62 + 63ldady

and where, using the notation V¢ f = (afy, f,) (the weight appears in the first component), we have

BT|% = 2r / / P97 — (ag? + ¢2)|Vd - vdSdt
o0

+8a07/ / w( )qst Ve dedt+87/ / PG4 T - v
o0
T\?2
+ 47‘2/ / 2P 4@(.%‘ — 1‘0)2 + 4(y _ y0)2 C4g22 (t B ) + ot
0 oQ 5 2

T 7\ 2
+ 27/ / P 872 la(x — x0)* + (y — yo)? — a®c? (t - )
0 JoQ 2

3.4 Carleman estimate for the Mindlin-Timoshenko model

dVe¢ - vdSdt

+ 7(a — 2ac — 2a — 2)} $*V2d - vdSdt.

Taking the sum of the estimates for equations (1.2), (1.3), and (1.4) produces a one param-

eter family of estimates for the Mindlin-Timoshenko model in its totality. First, let E(t) and BT|X

be given by

E(t) = Ey,(t)+ Ey(t) + Eg(t)

BT|s, = BT|¥ + BT|%, + BT|%.

Thus adding (1.5), (3.12), and (3.17) by choosing the maximum value of C' from the three estimates

since these values may vary, the maximum value of C +, the maximum Cr, the maximum ¢ and the
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minimum p and 8 produces

T -
BT|s + C/O /QeQTP( 2y + 02, + [V0?) + €7 (g + ¢y)* dadydt

+Cir

e / V2 + ¢*dxdydt + €>7° / w?dzdydt
Qo)) Q)]

T T .
> (erp —2C) / /Q<22TP(1/Jt2 + ¢ + ap? + 2 + 1/15 + ¢§)d$dydt + / /Qezﬂp(wt2 + |Vw|?)dzdydt
0 0

+ (2738 4+ O(7?) — 20C) — Crr2e 2 E(0) + E(T)].

/ P (Y + ¢°)dwdydt + / 2 Pw2dzdydt
Qo) Q%)
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Chapter 4

Conclusions and Discussion

The overall result achieved by the research presented was the final carleman estimate for

the Mindlin-Timoshenko model, with boundary terms, given by

T N
BT|s + C/ / e2™P( iy + d)iy + [Vw|?) 4 ¥ F (4, + ¢y ) drdydt
0o Ja

+Cir

e / 2 + P2 dxdydt + *7° / dexdydt]
Qo)) [Q(3)]

T T .
> (erp —20) / /QeQTP(z/)f + ¢7 + avl + ¢ + U] + ¢ )dwdydt + / /QeQTP(wt2 + |Vw|*)dzdydt
0 0

4 (2738 + O(r2) — 20) — Crre 7 [E(0) + E(T)).

/ eZTP(wz‘f'(bQ)dmdydt“r/ €2pr2dmdydt
Q(o) Q%)

which has not previously been published. Notice, for sufficiently large 7, the terms

Cir | / 2 + ¢Pdxdydt 4 €*7° / dexdydt] :
Qo)) Q&)

— Crr3e 2 [E(0) + E(T))

will either vanish or be absorbed in the estimate and hence are included for detail, but not apart
of the general estimate. The general Carleman estimate simply includes the principal part of the
model with boundary terms on the left-hand side, while the right-hand side consists of lower level

energy terms.
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4.1 Purpose of the Estimate

The original purpose of Carleman estimates were mostly to prove unique continuation theo-
rems, but this has evolved over time. The inclusion of the exact boundary terms make this estimate
useful for boundary control problems in the field of control theory. Observability for the model would
also need to be established since the model is different enough from the traditional wave equation
that this would not be guaranteed. Another application would be utilizing the estimate in exploring

the inverse problem for this model.

4.2 Recommendations for Further Research

The next step will be to pursue observability and, hence, exact controllability of the Mindlin-
Timoshenko model, which would open the possibility of a myriad of applications for this model. Due
to the nature of the model’s application to the mechanics of vibrating, thin plates, engineers and
applied mathematicians who work with such models could use the information to further there own
research. These systems of thin plates under high frequency vibrations have appeared in proximity

sensors and other electronic devices so the implications are broad [10].
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