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ABSTRACT 

Accurate estimation of annual average daily traffic (AADT) is critical in nearly every 

roadway decision, such as allocations of funding for roadway improvements and maintenance. 

While some roadway locations have permanent count stations capable of counting vehicles 

24-hours a day throughout the entire year, they are typically only installed at selected

locations on major roadways (i.e., freeways and major arterials) with high traffic volumes. 

On lower functional class roads and roadway segments on higher functional class roads 

without permanent count stations, short-term coverage counts are collected and adjusted 

with data from permanent count stations to estimate AADT. Short-term coverage counts 

are essential because they provide data from roadways of all functional classes and lane 

configurations, accounting for varying volumes on all roads maintained by an agency. 

Although necessary, coverage counts can be expensive and can exhaust resources such as 

investment in data collection workforce, equipment and data analysis. This study develops 

a strategy for estimating AADT on every roadway within a given jurisdiction using 

permanent count stations and short term coverage counts, while limiting the number of 

coverage counts needed. The goal of this thesis is to illustrate a noteworthy time and cost 

savings using a new centrality based AADT estimation method. A set of new deterministic 

variables, based on the theory of centrality, are introduced. This study revealed that 

estimated root mean square error (RMSE) for the new centrality based AADT method is 

half of the estimated RMSE in the travel demand based AADT model for the same area. 

Additionally, it was found that using centrality based AADT estimation model, the number 

of coverage count stations necessary can be reduced by more than 60% compared to the 
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standard factor method for AADT estimation without compromising the AADT estimation 

accuracy.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Problem Statement 

Annual average daily traffic (AADT) is defined as the average daily measure of the 

total volume of vehicles on a roadway segment over a year. Traffic volumes are the lead 

indication travel demand and utilization of the roadways within a specified network (1, 2). 

Therefore, accurate traffic volume estimations are critical in nearly every roadway decision.  

While some roadway locations have permanent count stations capable of collecting 

vehicle volumes 24-hours a day throughout the entire year, they are very costly to 

implement and maintain, and are typically only provided at selected roadway segments. 

Therefore, short term coverage counts are taken at thousands of strategically placed 

roadway segments of all functional classes and lane configurations, accounting for varying 

volumes on the roads maintained by an agency (3). The counts at these locations are usually 

only collected once a year or every few years with pneumatic tubes, and the data collection 

period can last from 24 hours to 7 days, depending on the responsible transportation 

agency’s policy and reporting requirements (3, 4). For short-term count stations, the 

permanent count stations serve as control counts, and are used to determine daily, monthly, 

and seasonal factors to calibrate the data collected at short-term count stations in estimating 

AADT.  

However, operating and estimating AADT using coverage counts can be expensive 

and can exhaust a significant amount of resources in terms of manpower, equipment, and 
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data analysis. In addition, the data provided by these counts is limited, and not always 

sufficient in predicting accurate AADT values. For example, a 24-hour count on one day 

throughout the entire year may need to be used to calculate AADT using only the one count 

and calculated daily and monthly factors using the factor method, as further explained in 

the Chapter 2: Literature Review. Any inconsistencies between the day’s data and the other 

elements of that day and month may result in inaccurate AADT estimation.  

 

1.2 Objective of the Thesis 

This thesis aims to develop a unique means of estimating AADT on roadways 

within a given jurisdiction, while limiting the required amount of implementation time and 

effort. All of the data used in development of the AADT estimation method is readily 

available. The motivation for this research is to develop an AADT estimation method, 

which any jurisdiction can implement with minimal time and effort.  

 

1.3 Organization of the Thesis 

Chapter 2 describes the background research and literature on the currently 

available AADT estimation methods. Some of these methods are currently being utilized 

by state and local transportation agencies, while others are simply being used in academia 

for research purposes. Additionally, Chapter 2 discusses the theory of centrality, its 

applications, and its potential in AADT estimation. Chapter 3 discusses the method for 

applying the theory of centrality in AADT estimation used in this thesis. The steps used in 

the application are outlined and explained in detail.  
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Chapter 4 provides a detailed explanation of the linear regression model produced 

by this method. Additionally, Chapter 4 compares the newly developed model to an 

existing travel demand forecasting model for the city, both conceptually and statistically. 

Next in Chapter 4, a procedure is performed in order to determine if this method could 

reduce the number of short term count stations that the city of Greenville should use in 

order to produce AADT estimates for all current short term count locations. Finally in 

Chapter 4, a cost savings analysis is performed to determine the financial competence of 

this method. Chapter 5 concludes this thesis, offering conclusions and recommendations 

for further research.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Overview 

Because quality AADT estimation on local roads is vital, ample amounts of 

research have been carried out in order for models to be developed that can adequately 

estimate the AADT of every roadway within a given area (2,5,6), which is discussed further 

in this chapter.  It is important to note the amount of time and costs associated with these 

often inaccurate or inconsistent methods.  

In this chapter we have reviewed AADT estimation methods and the theory of 

centrality, as well as its feasibility in AADT estimation. 

 

2.2 AADT Estimation Methods 

Although collecting traffic count data every day in a year is the most accurate 

method of calculating AADT, it is not economically feasible to install and maintain data 

collection systems on a widespread scale. Traditionally, for roadways without permanent 

count stations, AADT is calculated using the America Association of State Highway and 

Transportation Official’s (AASHTO’s) factor method. Using this method, daily and 

monthly factors are calculated using permanent counts stations, and typically each 

permanent counts station is associated with a group of short term count locations, based on 

clustering. 24-hour traffic counts from short term count stations are then multiplied with 

the adjustment factors to find AADT, as shown in the following equation: 
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 Eqn. 1 ܶܦܣܣ ൌ ଶܸସ௔௕ ൈ ௔ܨܦ ൈ   ௕ܨܯ

where V24ab = 24-hour volume for day a in month b (vehs); DFa = daily adjustment factor 

for day a; and MFb = monthly adjustment factor for month b (1).  Another AADT 

estimation method, used by some states and implemented in programs such as the Traffic 

Count Database System (7), used additional factors such as a seasonal factor and an axel-

correction factor, as shown in the following equation: 

Eqn. 2  ܶܦܣܣ ൌ ଶܸସ௔௕ ൈ ௔௕ܨܵ ൈ  ௖ܨܣ

where V24ab = 24-hour volume for day a in month b (vehs); SFab = seasonal adjustment 

factor for day a and month b; and AFc = applicable axel-correction factor for c number of 

axels (7). 

 However, these formulas can only be used on roadway segments that have short 

term count locations, which are not used to collect data on most publically maintained 

roadways within a given state or jurisdiction. Therefore, ample amounts of research have 

been carried out in order for models to be developed that can adequately estimate the 

AADT of every roadway within a given area (2,5,6). 

Several studies have shown that linear regression that utilizes roadway 

characteristics and socioeconomic factors at short term count locations can be used to 

estimate AADT (2,5,6,8). Doustmohammadi et al. developed a linear regression model to 

calculate AADT using a variety of socio-economic factors and roadway data for small and 

medium sized urban communities in Alabama (5). The significant variables identified in 

the final two models (one for a small city and one for a large city) included the functional 

classification (FCLASS) and lane counts of roadway segments (LANE), in addition to 
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population, retail employment (RETAILEMBUFF), and all-other employment 

(NONRETAILEMBUFF) all inside a 0.25 mile radius around the traffic count site. These 

two models are shown below: 

Model 1 (R2 = 0.82): AADT = -5625 + 8493 FCLASS + 219 LANE - 1.16 POPBUFF 

-0.58 NONRETAILEMBUFF + 11.55 RETAILEMBUFF 

Model 2 (R2 = 0.79): AADT = -12590 + 4479 FCLASS - 1.15 POPBUFF – 0.86 

NONRETAILEMBUFF +7.91 RETAILEMBUFF 

It was concluded that their AADT estimation models can accurately estimate 

AADT on desired roadways in cities of similar populations (5). However, the accuracy and 

means of collecting the socio-economic factors used are resource intensive and difficult for 

annually updating AADT.  For example, the population data was obtained from the Census 

Department, where data is only updated every 5 years (9). In this study, the other two socio-

economic factors - retail and all-other employment – were found from case studies that 

were completed as a part of long-range transportation plans recently completed by a third 

party organization. This socio-economic data can be time consuming to collect, and relies 

on sources not maintained by the DOT. Additionally, socio-economic factors determined 

by surveys or sampling may not be accurate or capable of validation.  

Zhao et al. used regression and further statistical analysis to find factors 

supplemental to AADT estimation in a study conducted for Florida. The study used 

geographic information system (GIS) technology to investigate various factors that may be 

good predictor of AADT on a road (2). A variety of land-use and accessibility 

measurements were developed and tested in (2). The four models developed achieved R2 
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values from 0.66 to 0.82. The variables for each are: i) Model 1:  Lane count, functional 

class, access to employment centers, directness of access to expressways, and employment 

inside a 0.25 mile radius (R2= 0.8180); ii) Model 2:  Lane count, access to employment 

centers, directness of expressway access, and network distance to the mean centers of 

population (R2= 0.6607); iii) Model 3:  Lane count, access to regional employment centers, 

directness of expressway access, network distance to the regional mean centers of 

population, and population inside a 0.25 mile radius around a traffic count site (R2= 

0.7624); and iv) Model 4:  Lane count, access to regional employment centers, directness 

of expressway access, network distance to the regional mean centers of population, 

employment inside a 0.25 mile radius around a traffic count site, and population inside a 

0.25 mile radius around a traffic count site (R2= 0.7648). During their data collection 

efforts, the author used employment data, which was purchased from a third party, 

containing the number of employees at each business location and the standard industrial 

classification code. In this case, the data had been purchased for a prior project, however, 

for most DOTs, implementing this method would not only require attaining or purchasing 

additional data not readily available to their agency, but also relying on data not operated 

and maintained by the DOT and only updated at the third party’s discretion.  

Wang et al. presented a means to estimate AADT for roadways through travel 

demand forecasting (6). A main factor of applying the travel demand model involved using 

land-use data at the parcel level to determine estimated trips produced from or attracted to 

each parcel.  All-or-nothing trip assignment was conducted using free-flow travel times. 

Then, the trips were dispersed through a trip distribution gravity model at the parcel-level. 
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The results show that the proposed model generated 52% MAPE, which is 159% lower 

than the MAPE from regression models ran for the same area (6). While travel demand 

modeling methods have proven accurate in AADT estimation, they are often time 

consuming to develop and require a lot of data collection resources and modeling expertise.  

The classic four step travel demand model is complex, time consuming, and costly for 

many jurisdictions. This is explained in much further detail in the Chapter 4: Results and 

Analysis, where the newly developed model is compared to an existing Travel Demand 

Model. 

Artificial Neural Networks are also commonly utilized as a means to find AADT 

on roadways. Sharma et al. developed two models for estimating AADT using an Artificial 

Neural Network – one using the previous 48-hour count data and one using the previous 

two 48-hour count data (10). When compared to the traditional factor model, the artificial 

neural network models proved to be less accurate. However, an advantage of the neural 

network models is that they did not require the ATRs to be grouped, unlike in the factor 

method. The study found that the errors of AADT estimation using the factor approach 

could be lowered by grouping the ATR sites appropriately and accurately assigning short-

term count stations to each ATR site.   For two 48-hour counts, the 95th-percentile error is 

between 14.14 to 16.68 percent, as compared with the range of 16.77 to 24.89 percent for 

a single 48-hour count.  While their results are adequate, many practicing traffic engineers 

find the neural network approach to be more complex than the existing factor approach due 

to lack of expertize.  
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In emerging Connected Vehicle Technology where vehicles continuously send data 

to roadside infrastructure through a wireless communication medium potentially could 

reduce the needs of permanent as well as coverage count stations for collecting traffic 

volume data (11, 12). Although it will be several more years before enough connected 

vehicles on different road segments reduce the need for count stations for volume data 

collection, they potentially are considered as potentially an economically beneficial data 

collection strategy (13).   

 

2.3 AADT Estimation through Centrality 

Land-use characteristics at the parcel level have been incorporated in several 

AADT estimation models (8, 14). Centrality models, for example, seek to apply numerical 

values to the topological significance of each element in a network using land-use 

characteristics. Centrality is used in graph theory and network analysis in order to identify 

the level of importance of certain elements of a graph or network. A network in this case 

is broadly defined, and can refer to street networks, urban networks, and even social 

networks (15). 

In 2012, Zhang et al. developed a model based on road network patterns and traffic 

analysis zones using three types of centrality - betweenness centrality, degree centrality, 

and closeness centrality (14). The betweenness centrality of a node is the count of the times 

that the node is intersected by all of the “shortest paths” within the network – when 

considering the paths from every node in the network to every other node in the network. 

Degree centrality of a node is the count of the number of other nodes that are adjacent to 
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it, and with which it is, therefore, in direct contact.  Closeness centrality of a node is based 

upon the degree to which a point is close to all other points. The greater the closeness 

centrality of a node is, the closer the node is to all others within the network. Zhang et al.’s 

study used a centrality property of the whole network, based on the node centralities 

calculated, to find the each type of network centrality – betweenness, degree, and closeness. 

It was found that network betweenness centrality was the most accurate in distinguishing 

and describing various Traffic Analysis Zone (TAZ) road network patterns (14). 

Most recent approaches for estimating AADT use a modified form of stress 

centrality. Stress centrality is defined as the total count of the times a link would be used if 

one were to travel from every node to every other node via the shortest path in a network.  

Lowry introduced a new metric called origin-destination (OD) centrality that can be used 

in linear regression as a contributing variable to calculate AADT spatially (8).  Finding OD 

centrality can be executed using a geographic information system (GIS) platform and less 

data than other methods require, including land use data and the street network. A case 

study of this concept yielded an R2 of 0.95.  AADT can vary greatly among roadway 

segments of the same functional classification, and this method can demonstrate significant 

variation along roadway segments of the same functional class (8).  

There are several benefits of using centrality concepts in estimating AADT. First, 

the concept is simple and can be realistically applied to any given network, without the use 

of expensive, proprietary, and/or subjective data. Also, to derive centrality measures, a GIS 

program is essentially the only required tool. Not only can this entire model can be 
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completed within a short time period, but it has the potential to reduce the number of 

coverage counts needed to accurately estimate AADT.  

In this research, the author was motivated to investigate if the centrality method 

utilized on a small city could be applied to a medium size city, and determine if the model 

would benefit from the inclusion of additional variables, rather than the centrality variables 

alone (16).  
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CHAPTER THREE 

RESEARCH METHOD 

 

Opting to use only data that is readily available to South Carolina DOT, this study 

attempts to find new deterministic variables to calculate AADT on roadways in a medium 

size city (population roughly 65,000) based on the theory of centrality. A similar study was 

conducted for the small city of Mascow, Idaho (population of roughly 24,000) (7). Our 

study area, the city of Greenville, SC currently has 6 automatic traffic recorders (ATRs) 

and 153 short-term count locations within the city limits. The main objective of this 

particular research was to apply origin-destination centrality to the city as a means to find 

new variables to estimate AADT that are statistically significant at least 95% (p-

value<0.05).   

 To expand off of the discussion in the Literature Review, origin-destination 

centrality is a type of centrality that is derived from stress centrality. Stress centrality is 

defined as the total count of the times a link would be used if one were to travel from every 

node to every other node via the shortest path in a network.  In terms of calculating stress 

centrality, the stress centrality equation of a link within a network is given below: 

 Eqn. 3  ܵݏݏ݁ݎݐ	ݕݐ݈݅ܽݎݐ݊݁ܿ௘ ൌ 	∑ ௜௝ሺ݁ሻ௜௝∈௏ߪ  

where V = the set of all zones in a network, σij = the shortest route from node i to node j, 

and σij(e) = 1 if link e is used in this path and σij(e) = 0 if link e is not used in the shortest 

path. This stress centrality would be based on three types of travel in or through a city: 
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Internal-to-Internal, Internal to External, and External to External. These will be explained 

further in Step 5, later in this chapter.  

Unlike stress centrality, the origin-destination centrality of a link uses relative 

weights of the TAZs and gateways in each origin-destination combination. Additionally, 

the theory of centrality assumes all links are of the same size, and does not take into account 

the capacity of each. Therefore, this O-D centrality of each link is actually significant only 

per lane. Therefore, we will incorporate the number of lanes into the equation, making it 

simply:   

FIGURE 1 METHOD OF ORIGIN-DESTINATION CENTRALITY

CALCULATION 
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Eqn. 4  ܱܦ	ݕݐ݈݅ܽݎݐ݊݁ܿ௘ ൌ 	ܰ ∑ ௜௝ሺ݁ሻߪ ௜ܹ௜௝∈௏ ௝ܹ 

where N = is the number of lanes on link e, V = the set of all zones in a network, σij = the 

shortest route from node i to node j, σij(e) = 1 if link e is used in the path and σij(e) = 0 if 

link e is not used in the shortest path, Wi = the relative weight of origin I, and Wj = the 

relative weight of destination j.  A “node” in this instance will refer to either a TAZ or a 

gateway. 

The majority of the steps (Steps 1-5 and Step 7) included in this research effort were 

performed through a GIS software.  All of the data used in the new model development are 

publically accessible, updated at least once annually. The base data used in the model 

development was collected from the City of Greenville, SC’s GIS Data website (17) and 

the ITE Trip Generation Manual (18). This method does not require any additional data 

collection or cost for the purchasing of data from private organizations. The data used are 

geocoded in GIS shapefiles for the data sets shown in Table 1 below. 

TABLE 1 Shapefiles and Attributes used in the Model Development 

Shapefile Notable Attributes 

Street Centerlines Street Name, Functional Class, Speed Limit, Number of Lanes 
Parcels Parcel Number, Number of Buildings, Building SF, Parcel Area 
Zoning Zone Number, Zoning Code 
Count Station Locations Station Number, Count Data 

Step 1: Develop Street Network 

First, the polyline shapefile of the street network, titled “Street Centerlines” was 

used to develop a street network for the City of Greenville, SC. The ESRI ArcGIS 

extension, “Network Analyst”, has a tool called “Create Network Dataset” that can easily 
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convert a shapefile to a network.  When using ArcGIS to make routing decisions, it is 

essential to first convert a polyline shapefile to a network of links. 

Step 2: Create Traffic Analysis Zones (TAZs) 

Much like travel demand models, the stress centrality and origin-destination 

centrality models are composed of Traffic Analysis Zones (TAZs).  The “Parcels” shapefile 

contains land use attributes such as land area (acre), land use type, number of buildings, 

etc. Each TAZ is composed of multiple adjacent parcels based on geometry, land use type, 

and roadway access.  Within the city limits of Greenville, SC, the parcels were sorted into 

1,262 zones.  

Step 3: Create TAZ Centroids 

The area (acre), land use type, number of buildings, building square feet, and others 

are all specified in the shapefile’s attributes for each of the parcels. Given these attributes, 

combined with trip generation data from the ITE Trip Generation Manual (18), each parcel 

is assigned its own relative weight, by calculating daily trip generation rate for each TAZ, 

as shown in Figure 2. For example, if a parcel’s land use was identified as a single family 

residence, the daily trip generation rate from the Trip Generation Manual, in this case 9.5 

trips per dwelling unit, would be multiplied by the number of dwelling units within that 

parcel, giving that parcel a relative trip generation rate.   

Centroids for each zone are established through a weighted mean analysis based on 

the geometry and weight of each parcel within a zone. The weighted mean is essentially 
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the centroid of the zone taken as the mean center of all of the parcels within the TAZ, 

except instead of each of the parcels contributing equally to the center, some parcels 

contribute more than others based on relative trip generation rates. 

Step 4: Create External Entry and Exit Points 

Because the utilized methods of centrality use travel that can begin and/or end 

outside of the city limits, external points of entry and exit to the city are established by 

examining all potential major exit/entry roadways. Just outside of the city limits of 

Greenville, 32 major points of entry or exit are identified.   

FIGURE 2 Eternal Gateway Points 
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Step 5: Determine the Shortest Route between TAZs and Gateway Points 

Once all internal TAZ centroid and external points are established, the shortest 

routes between each origin-destination combination are determined. Table 2 below shows 

the inputs required for each routing type. Using the previously created Network in ArcGIS, 

the shortest distance between all of the points in a given dataset can be found through the 

use of the “Closest Facility” tool in the Network Analyst extension. The output of the tool 

produces routes between each origin-destination combinations established.  

TABLE 2 Three Centrality Types and Associated Inputs 

Stress Centrality 
Method 

Inputs 

Origins  Destinations 

Internal ‐ Internal  Zone Centroids  Zone Centroids 

Internal ‐ External  Zone Centroids  External Points 

External ‐ External  External Points  External Points 

Travel throughout a city (i.e., jurisdiction under consideration for modeling) is 

based on three types of origin-destination combinations: 

1) Internal-to-Internal (I-I): Trips from one travel analysis zone (TAZ) to another travel

analysis zone within the city;

2) Internal-to-and-from-External (I-E): Trips from one travel analysis zone to a

destination outside of the city limits, or vice versa;

3) External-to-External (E-E): Trips from an origin outside the city limits to a

destination outside of the city limits, that requires traveling through the city
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Step 6: Assign Weights to Each TAZ and External Point 

As in determining the stress centrality for each type of origin-destination 

combination, finding the origin-destination centrality began with creating a street network 

dataset, TAZs, and external exit/entry points.  In this method, each zone’s weight is 

determined by summing the weights of all of the parcels within that zone, which were 

established in Step 3. The relative weight of each external point (E) is then taken as the 

nearest AADT value available on that roadway. 

FIGURE 3 Greenville Parcels with Relative Weights 
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Step 7: Create Three Origin-Destination Centrality Models 

The three models are created using the origin-destination travel combinations: I-I, 

I-E, and E-E. Their outputs incorporate the weights created in Step 5 above.  The three new

origin-destination centrality maps are shown in Figure 4, Figure 5, and Figure 6. The 

findings of the analysis are explained in the Chapter 4: Results and Analysis. 

FIGURE 4 EXTERNAL-TO-EXTERNAL CENTRALITY MAP 
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FIGURE 5 Internal-to-External Centrality Map 
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FIGURE 6 Internal-to-Internal Centrality Map 

Step 8: Create Regression Model to Estimate AADT 

Using the outputs of the stress centrality formula above for each link and each type 

of stress centrality, the three new variables were calculated as potential independent 

variables in AADT multiple linear regression and non-linear regression model 

development. Other variables were incorporated in an attempt to produce the most accurate 

model are speed, number of lanes, and functional class.  These methods and the findings 

of the analysis are explained in Chapter 4: Results and Analysis. 
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CHAPTER FOUR 

ANALYSIS AND RESULTS 

4.1 AADT Estimation Using Centrality and Linear Regression 

Once the three new origin-destination centrality were calculated following the steps 

presented in Chapter 3: Research Method, multiple linear regression analysis was 

performed with these three and three roadway characteristic variables, in order to develop 

the most accurate centrality based AADT estimation model. The six independent variables 

considered are: 

i. I-I Origin-Destination Centrality (I-I OD)

ii. I-E Origin-Destination Centrality (I-E OD)

iii. E-E Origin-Destination Centrality (E-E OD)

iv. Functional Classification (FC)

5 - Interstate 

4 - Major Arterial Freeway/Expressway 

3 - Major Arterial 

2 - Minor Arterial, Major Collector 

1 - Minor Collector 

v. Speed Limit (SL)

The centrality variables were combined with roadway characteristic variables (i.e., 

speed, functional class and number of lanes) with the goal to derive new variables that 

could prove to be independent variables for AADT estimation model.  The final regression 

model is shown in Table 3 below.  
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TABLE 3 Regression Analysis Summary Statistics 

Regression Statistics 
Multiple R 0.910628468 
R Square 0.829244206 
Adjusted R Square 0.825851707 
Standard Error 4828.530729 
Observations 155 

ANOVA 
df SS MS F Significance F 

Regression 3 17096765045 5698921682 244.4346 9.9506E-58 
Residual 151 3520521060 23314709 
Total 154 20617286105 

Coefficients 
Standard 

Error P-value
Intercept -18267.96215 2496.893055 1.39986E-11 
I-I OD 3.12073E-06 4.95513E-07 3.12489E-09 
E-E OD 0.001284391 0.000124769 3.68774E-19 
Speed 712.4749964 77.96341866 3.94468E-16 

Due to these results, the formula below was selected as the best formula: 

AADT = 3.12073E-06* I-I OD + 1.284391E-04 *E-E OD+ 712.4749964 SL – 
18267.96215 

As shown, I-E OD centrality was not used in this final model. This is because, due 

to the nature of the three models, I-E OD centrality was too similar to E-E centrality and 

I-I OD centrality to provide statistical significance in the final model. The coefficient of

I-I Centrality is much lower than that of E-E Centrality, because the values used for I-I

centrality were much larger than those used for E-E Centrality. The coefficients for all 

variables used are positive, showing a positive correlation with AADT. Additionally, the 

p-values for each of the variables used are all significant at greater than 99% (p-value < 
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0.001). Finally, the intercept is a very large negative value, which is also not surprising, 

due to the large values of these variables.  

4.2 Comparison of AADT Estimation using Centrality based Model and Traditional 
Travel Demand Model Output 

In order to validate the accuracy of the centrality based AADT estimation model, 

the author compared the model’s predictive ability with that of the city’s existing travel 

demand model.  First, it is important to carefully specify the differences between the steps 

and data necessary to use the two models.  

Travel demand forecasting models consists of four major steps: Trip generation, 

trip distribution, mode choice, and trip assignment (19). Time-of-day and directional 

factoring is a very important step as well, but is not explicitly mentioned in four steps of 

the “four-step” model. For example, in the four step model, ample amount of data inputs 

are necessary prior to the initiation of the four steps, which can include, but are not limited 

to, employees, students, automobiles, and households by TAZ. In addition, there are two 

ends of any trip generation – trip productions and trip attractions – and all trips must have 

a given purpose – Home-based Work (HBW), Home-based Other (HBO), and Non Home-

based (NHB). Considering both trip productions and attractions, in addition to each 

purpose, there are six types of formulas that must be used for each TAZ in order to calculate 

the overall trip production and attraction of each TAZ. Then, once the formulas are 

estimated and the trip productions and attractions are calculated, the number of attractions 

must be balanced to the number of productions (19). The trips for Internal-to-External and 

External-to-External travel are then calculated separately. Table 4 and Table 5 below 

compare more of the inputs and steps of each of the models.  
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TABLE 4 Comparison of Model Inputs for Centrality Method and TDF Model 

Model Inputs 
Centrality 
Method 

Travel Demand 
Forecasting 

Model 

Street Network  x  x 

Street Data (Name, Number of Lanes, Speed, etc.)  x  x 

Employees by TAZ  x 

Students by TAZ  x 

Automobile by TAZ  x 

Households by TAZ  x  x 

TABLE 5 Comparison of Model Steps for Centrality Method and TDF Model 

Model Steps 
Centrality 
Method 

Travel Demand 
Forecasting 

Model 

Develop Street Network  x  x 

Create Traffic Analysis Zones (TAZs)  x  x 

Create TAZ Centroids  x  x 

Create External Entry and Exit Points  x  x 

Assign Weights to TAZs and External Points  x  x 

Generate Trip Productions by Purpose and TAZ  x 

Generate Trip Productions by Purpose and TAZ  x 

Balance Number of Attractions to Productions  x 

Generate Trips for Internal‐to‐External Travel  x 

Generate Trips by Gateway for External‐to‐External Travel  x 

Generate Production & Attraction Trip Tables by Purpose  x 

Transpose Table to Create Origin‐Destination Tables by 
Purpose  x 

Create a QuickSum Matrix  x 

Direct Traffic between all TAZ pairs using Trip Assignment      x  x 

Direct Traffic between all gateway and TAZ pairs using trip 
assignment  x  x 

Create Three Origin‐Designation Centrality Models  x 

Create Regression Model to Estimate AADT  x 

The Base AADT estimates used in Figure 7 are based on observations from 149 

short-term count locations in the City of Greenville.  Base AADT data was calculated using 
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adjustment factors and short term count data collected by SCDOT. The travel demand 

model was created by a third party for the Greenville Metropolitan Planning Organization 

(MPO) for year 2010. Average growth rates from the 6 ATRs located in the City of 

Greenville were used to estimate the 2015 volumes from the travel demand model’s 

calibrated volumes for 2010.  The comparison of the AADT estimates for short term count 

stations using two models (i.e., centrality based AADT method, and AADT from travel 

demand model) is shown in Figure 7. It is important to note that both the origin-destination 

centrality model and the travel demand model were calibrated using the estimated AADT 

using the factor approach and 24-hour count for each short-term count station. 

The travel demand model achieved lower goodness-of-fit (i.e., R2 value of 0.61), 

while the new centrality based AADT method developed in this research has higher 

goodness-of-fit (i.e., R2 value of 0.77). Additionally, the root mean square error (RMSE) 

for the centrality-based AADT linear regression model and the travel demand based AADT 

model are 7352.54 and 14073.19 respectively. It could be concluded that centrality based 

AADT method performs better compared to AADT estimate from travel demand model in 

terms of RMSE and R2. 
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FIGURE 7 Comparison of AADT Estimation Methods  

4.3 Possibility of Reduction of Coverage Counts using centrality based AADT Method 

In an attempt to explore if the number of short-term count locations maintained 

throughout the city could be reduced applying centrality based AADT estimation method, 

random sub-sets of short term count were used to determine how many short-term stations 

were necessary to achieve same level of AADT estimation for all roads in the city. Five 

random sub-sets of each scenario were used, and the scenarios consisted of 100%, 80%, 

60%, 40% and 20% of the total short term count stations in the city of Greenville. In each 

random sub-set, two thirds of the data were used for model calibration and the other third 

was used for model validation. This is shown in further detail in Figure 8 below, for 

clarification. 
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FIGURE 8 Method to Determine Coverage Count Reduction Potential 

After the model of the calibration set was developed, the validation set was ran using the 

same linear regression model. Then the Median Absolute Percent Error (MdAPE) of the 

calibration and validation data sets were calculated. This process was repeated 5 times for 

each scenario. The results of each trial in each scenario are shown in Table 6 below. As 

demonstrated in Figure 9, after using more than 60 short-term count stations (40% of 
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current short-term count stations), little AADT estimation accuracy is gained in terms of 

MdAPE, suggesting that the number of coverage counts used in the modeling can be 

reduced by 60%, which could substantially reduce data collection cost for the SCDOT. The 

author believes this method can further save DOTs resources without compromising model 

accuracy. A cost savings analysis is performed later in this chapter.  

TABLE 6 Trials for Reduction of Coverage Counts 

Percentage of 
Count Stations 

Trial 
Number 

Calibration 
Data MdAPE 

Validation 
Data MdAPE 

100 

1  55.264  92.253 

2  57.391  97.678 

3  59.166  64.559 

4  59.331  66.062 

5  64.716  62.194 

80 

1  56.670  60.501 

2  59.967  56.790 

3  58.667  64.027 

4  64.045  47.361 

5  58.784  70.419 

60 

1  53.213  61.825 

2  58.629  54.766 

3  45.903  72.636 

4  63.355  53.099 

5  65.522  64.652 

40 

1  54.727  79.689 

2  38.788  69.292 

3  62.132  58.174 

4  59.158  51.264 

5  60.729  111.861 

20 

1  68.901  96.816 

2  64.788  59.709 

3  45.558  195.504 

4  38.878  90.297 

5  67.126  57.824 
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FIGURE 9 Reduction of Coverage Counts Applying the Centrality Method 

4.4 Cost Savings Analysis 

Because the centrality based AADT method has the potential to reduce the 

number of short-term count stations, a cost savings analysis was performed to estimate 

annual savings for the South Carolina Department of Transportation by using this method 

throughout the state.  

SCDOT performs 12,000 short-term counts per year, each collecting 24 hour 

volume data. Due to the estimated reduction of over 60% short-term counts in Greenville 

applying centrality based AADT method cost savings analyses was performed for 40%, 

50%, 60%, and 70% short-term count reduction statewide, as presented in Table 7 below. 
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Each time SCDOT performs a short-term count, they use a PEEK-ADR 2000 

counter and two pneumatic tubes. The counter costs an average of approximately $1000 

(depending on features, etc.) and was assumed to have an average lifespan of 

approximately 200 uses. The tubes used have an approximate cost of $200 per pneumatic 

tube, with two tubes needed in every count. The average lifespan per tube is estimated at 

approximately 20 uses (due to tearing, breakage, and wearing out). It was assumed that 

every short term count requires 3 SCDOT employees for a total of 5 hours at $30/hour, 

which includes labor, travel, etc. The initial cost to develop the model is not included in 

this analysis. Additionally, according to the author’s estimates, it will cost approximately 

$10,000 per year to pay an in-house traffic engineer to maintain the centrality model vs. 

maintaining the factor method model. Then, the total cost of the centrality based method at 

each of the four levels of count location reduction was calculated in order to calculate a 

percent cost savings. Therefore, the cost savings of each reduction level is simply: 

Eqn. 6 Cost savings = ሾCost	of	factor	methodሿ െ ሾCost	of	centrality	method	with	ሺx%ሻ	reductionሿ 

The cost of each method is calculated using the final equation below: 

Eqn. 5    Total Cost = ሾCost	of	traffic	counterሿ ൅ ሾCost	of	tubingሿ ൅ ሺCost	of	manpowerሻ ൅

Cost	to	run	and	update	the	model 

Using this equation, the cost of the factor method was determined to be $5,700,000 

annually. 
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TABLE 7 Cost Savings Analysis 

Percent 
Reduction 
of Counts 

Counts 
Needed  

Total Cost 
Total 

Savings 

40% 7,200 ൤൬
ૠ૛૙૙
૛૙૙

൰ ∗ $૚, ૙૙૙൨ ൅ ቈቆ
ૠ૛૙૙	 ∗ ૛

૛૙
ቇ ∗ $૛૙૙቉ ൅ ሺ૚૞ ∗ $૜૙ ∗ ૠ૛૙૙ሻ ൅ $૚૙, ૙૙૙ $3,430,000 

50% 6,000 ൤൬
૟૙૙૙
૛૙૙

൰ ∗ $૚, ૙૙૙൨ ൅ ቈቆ
૟૙૙૙	 ∗ ૛

૛૙
ቇ ∗ $૛૙૙቉ ൅ ሺ૚૞ ∗ $૜૙ ∗ ૟૙૙૙ሻ ൅ $૚૙, ૙૙૙ $2,860,000 

60% 4,800 ൤൬
૝ૡ૙૙
૛૙૙

൰ ∗ $૚, ૙૙૙൨ ൅ ቈቆ
૝ૡ૙૙	 ∗ ૛

૛૙
ቇ ∗ $૛૙૙቉ ൅ ሺ૚૞ ∗ $૜૙ ∗ ૝ૡ૙૙ሻ ൅ $૚૙, ૙૙૙ $2,290,000 

70% 3,600 ൤൬
૜૟૙૙
૛૙૙

൰ ∗ $૚, ૙૙૙൨ ൅ ቈቆ
૜૟૙૙	 ∗ ૛

૛૙
ቇ ∗ $૛૙૙቉ ൅ ሺ૚૞ ∗ $૜૙ ∗ ૜૟૙૙ሻ ൅ $૚૙, ૙૙૙ $1,720,000 

The costs illustrated in Table 7 (Column 4) are the costs of performing the number 

of count locations specified at each level of reduction. It is estimated that 12,000 counts 

are reduced by 4,800, 6,000, 7,200, and 8,400 counts per year for 40%, 50%, 60%, and 

70% short-term count reduction scenarios, respectively. Using the Equation 5 shown, the 

final savings range from $1,720,000 to $3,430,000. Clearly, there is a financial benefit of 

utilizing this method for SCDOT. The monetary benefits could save DOTs hundreds of 

thousands of dollars, which could be allocated to other valuable projects, such as 

roadway and infrastructure maintenance.
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusions 

Affordably estimating AADT on all of the roadways within a given street network 

has been a challenge that many transportation agencies face, especially in smaller cities 

and municipalities where resources are limited. As AADT estimation on local roads is vital, 

ample amounts of research have been conducted to develop models that can estimate the 

AADT of every roadway within any jurisdiction. For example, linear regression, travel 

demand modeling, and Artificial Neural Network models have all been used in an attempt 

to estimated AADT. The new centrality-based AADT estimation model, utilizing roadway 

characteristics and new derived origin-destination centrality variables based on the theory 

of centrality, illustrates a method that is capable of minimizing cost and effort when 

compared to deploying dozens of short term count locations or using models such as the 

travel demand model.  Not only was a new variable to estimate AADT created, but the 

model has a lower RMSE than the city’s travel demand model, and can be developed using 

a GIS software alone. This thesis establishes a means of estimating AADT on every 

roadway within a given jurisdiction, while reducing the number of coverage counts in 

Greenville, SC by over 60%.  

This method has the potential to be used in cities that do not have the time, funding 

or resources to use coverage counts at many roads throughout their jurisdictions.  In 

addition, this method uses existing and publically available data to quickly and accurately 

estimate AADT within a reasonable estimation threshold. 
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While this method was successfully applied to Greenville, SC, it has not yet been 

tested for transferability among other cities within and outside SC. Future research should 

include a study of transferability. Another limitation of this study is that the “base AADT” 

counts that were used and compared to this regression model were not perfectly accurate 

AADT values. At 142 of the 148 locations utilized were calculated counts, the AADT 

values compared with the ones calculated using this model were also calculated counts, 

and may not be entirely accurate. The base data was calculated using 24-hour short-term 

traffic counts and the factor method.  

5.2 Recommendations 

The following recommendations are made based on this research: 

 The method presented in this study should be examined for other cities before

a decision can be made in its broader adoption. This should include cities of

various sizes to determine its applicability in various size cities.

 This method should be tested at the state level. In addition to its use at the state

level, this method can be used at local level as well for low-cost AADT

estimation strategy.

 This method should be tested against AADT estimations using short-term

counts and the factor method at the lowest functional classifications. Currently,

there is no short-term count data available for local roads in Greenville, SC.

 This method should be tested in an area with a much larger number of

permanent count stations for validation. While AADT estimations using short-
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term counts and the factor method are generally very accurate, they are not 

perfect data, and this model should be tested against actual ground truth data. 

 Cost savings estimates could be conducted for a specific area based on

regional costs, which can vary based on location-based manpower and

equipment costs, in order to determine an exact savings value for their

particular agency prior to making a decision.
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APPENDIX A 

SAMPLE DATA 

Streets _Shapefile 

FID OBJECTID RECNUM ST_LABEL ROADNUM 
0 1 3 RUTHERFORD RD S-23-21
1 2 4 RAYFORD LA 
2 3 5 N PLEASANTBURG DR SC-291 
3 4 6 TILBURY WY 
4 5 7 WEDGEWOOD DR 
5 6 8 BROUGHTON DR 
6 7 9 INGLEWOOD DR 
7 8 10 TAMBURLAINE CT 
8 9 11 WEDGEWOOD DR 
9 10 12 MEADOW CREST CIR 

10 11 13 WEDGEWOOD DR 
11 12 15 SUMMIT DR 
12 13 16 SUMMIT DR 
13 14 17 DEARSLEY CT 
14 15 18 BRENTWOOD DR 
15 16 19 RUTHERFORD RD S-23-21
16 17 20 GREEN MEADOW LA 
17 18 21 BRENTWOOD DR 
18 19 22 BRENTWOOD DR 
19 20 23 INGLEWOOD DR 
20 21 24 SUMMIT DR 
21 22 25 TILBURY WY 
22 23 26 WEDGEWOOD DR 
23 24 27 BROUGHTON DR 
24 25 28 STONE LAKE DR 
25 26 29 N PLEASANTBURG DR SC-291 
26 27 30 SUMMIT DR 
27 28 31 GOBLET CT 
28 29 32 VENNING CT 
29 30 33 RUTHERFORD RD S-23-21
30 31 34 COOL SPRINGS DR 
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LADD1 LADD2 RADD1 RADD2 PREFIX 
1241 1299 1240 1298 

1 99 2 98 
2001 2099 2000 2098 N 

1 11 2 12 
401 499 400 498 
201 299 200 298 

13 99 12 98 
1 99 2 98 

305 399 304 398 
1 99 2 98 

301 303 300 302 
1001 1009 1000 1008 
1011 1041 1010 1040 

1 99 2 98 
31 41 30 40 

1221 1239 1220 1238 
1 99 2 98 
0 0 0 0 

13 29 12 28 
1 11 2 10 

927 999 926 998 
51 99 50 98 

201 299 200 298 
101 199 100 198 

1 99 2 98 
1901 1999 1900 1998 N 
1043 1051 1042 1050 

1 99 2 98 
1 99 2 98 

1201 1219 1202 1218 
1 99 2 98 
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NAME TYPE SUFFIX ALTNAME 
RUTHERFORD RD 
RAYFORD LA 
PLEASANTBURG DR 
TILBURY WY 
WEDGEWOOD DR 
BROUGHTON DR 
INGLEWOOD DR 
TAMBURLAINE CT 
WEDGEWOOD DR 
MEADOW CREST CIR 
WEDGEWOOD DR 
SUMMIT DR 
SUMMIT DR 
DEARSLEY CT 
BRENTWOOD DR 
RUTHERFORD RD 
GREEN MEADOW LA 
BRENTWOOD DR 
BRENTWOOD DR 
INGLEWOOD DR 
SUMMIT DR 
TILBURY WY 
WEDGEWOOD DR 
BROUGHTON DR 
STONE LAKE DR 
PLEASANTBURG DR 
SUMMIT DR 
GOBLET CT 
VENNING CT 
RUTHERFORD RD 
COOL SPRINGS DR 



A4 

RDCLASS MAINTENANC SPEED MAJRDS LOW_STREET 
3 2 40 Y 1240 
1 1 30 N 1 
2 2 40 Y 2000 
1 1 30 N 1 
1 1 30 N 400 
1 1 30 N 200 
1 1 30 N 12 
1 1 30 N 1 
1 1 25 N 304 
1 1 30 N 1 
1 1 30 N 300 
1 1 35 N 1000 
1 1 35 N 1010 
1 1 30 N 1 
1 1 30 N 30 
3 2 40 Y 1220 
1 1 30 N 1 
1 1 30 N 0 
1 1 30 N 12 
1 1 30 N 1 
1 1 35 N 926 
1 1 30 N 50 
1 1 30 N 200 
1 1 25 N 100 
1 1 30 N 1 
2 2 40 Y 1900 
1 1 35 N 1042 
1 1 30 N 1 
1 1 30 N 1 
3 2 40 Y 1201 
1 1 30 N 1 



A5 

HIGH_STREE STREET_ID SECT_NO EDITORNAME LASTUPDATE 
1299 5600 2000000002 

99 2644 0000167600 
2099 2574 2000000004 

12 5251 0000167700 
499 3709 0000165800 
299 446 0000164400 

99 1629 0000164700 
99 5252 0000168000 

399 3709 0000165700 
99 2117 0000167500 

303 3709 0000165600 
1009 3105 0000163500 
1041 3105 0000163400 

99 5563 0000164200 
41 390 0000164800 

1239 5600 2000000018 
99 1349 0000168100 
0 390 0000165100 

29 390 0000164900 
11 1629 0000164600 

999 3105 0000163600 
99 5251 0000167900 

299 3709 0000165500 
199 446 0000164500 

99 3081 0000168200 
1999 2574 2000000028 
1051 3105 0000163300 

99 5401 0000164100 
99 5288 0000164300 

1219 5600 2000000032 
99 775 0000167400 



A6 

CSOURCE FACILITYID Shape_STLe 
LIB 8954 527.1766826 
LIB 8955 1150.473647 
LIB 8956 614.3874936 
LIB 8957 415.4401001 
LIB 8958 186.6661026 
LIB 8959 735.1952526 
LIB 8960 308.0473068 
LIB 8961 235.2168267 
LIB 8962 263.642934 
LIB 8963 645.0751654 
LIB 8964 165.4496045 
LIB 8965 202.4614411 
LIB 8966 697.1660385 
LIB 8967 140.9242893 
LIB 8968 297.5336242 
LIB 8969 752.6313822 
LIB 8970 404.4736069 
LIB 8971 396.117093 
LIB 8972 68.30224875 
LIB 8973 412.1011087 
LIB 8974 287.5025614 
LIB 8975 387.9861478 
LIB 8976 548.1792152 
LIB 8977 1409.610659 
LIB 8978 295.3921772 
LIB 8979 883.2929854 
LIB 8980 317.2860422 
LIB 8981 118.7954023 
LIB 8982 416.1107824 
LIB 8983 400.3369536 
LIB 8984 586.6512895 
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