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ABSTRACT 

The infiltration rate (IR) of water is a key soil property related to hydrological processes, 

soil health and ecosystem services. However, detailed measurements of IR in the field 

and/or laboratory are labor-intensive and expensive to perform. Soil judging in the field 

provides a rapid and inexpensive method to estimate IR classes based on soil texture, soil 

organic carbon/matter and soil structure. The objectives of this study were to classify and 

compare soil texture and IR for the A horizon across the 147-ha Cornell University 

Willsboro Research Farm using the Soil Survey Geographic (SSURGO) database and 

field-based measurements. Soil texture was the dominating factor to explain the general 

trend of Entisols > Inceptisols > Alfisols with regard to IR in the A horizon. In general, 

the variability in soil texture observed in field measurements was consistent with the 

variability reported in the SSURGO database, although the SSURGO representative 

values for soil texture did not completely match measured mean values for all soil map 

units. With the exception of one soil map unit, estimates of IR classes utilizing soil 

judging in the field criteria also were consistent when using either SSURGO or field-

based data. Estimating infiltration rate classes for ecosystem services frameworks using 

geospatial analysis of field and/or SSURGO data can be enhanced with emerging 

technologies (e.g., sensors) and/or easily measured conventional soil properties. 
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CHAPTER ONE 

Comparing SSURGO Data versus Geospatial Field Measurements to Estimate Soil 

Texture and Infiltration Rate Classes in Glaciated Soils 

Introduction

Water, when applied to the surface layer of a soil, infiltrates/permeates into the 

soil at a speed defined as an infiltration rate (IR) (USDA/NRCS, 1998). The IR of water 

(e.g., from rainfall or irrigation) is an important component of hydrological processes in 

soils (e.g., Haan et al., 1993; Ravi and Williams, 1998; Baveye et al., 2016) and has been 

long-recognized as an important characteristic for soil health (e.g., The Nature 

Conservancy, 2016; National Science and Technology Council, 2016). More recently, the 

IR of water has been identified as one of the key soil quality properties linked to 

ecosystem services:  provisional (e.g., food, fuel, fiber, water retention) and regulating 

(e.g., climate regulation, gas regulation, water regulation, erosion and flood control, water 

purification) (Adhikari and Hartemink, 2016; Baveye et al., 2016). 

Infiltration of water into soils is important for many different reasons (e.g., Haan 

et al., 1993; Ravi and Williams, 1998). With restricted infiltration, water does not readily 

enter the soil but ponds on the surface or runs off the land. Runoff can carry sediment, 

nutrients, pesticides and bacteria from fields into receiving water bodies such as streams, 

lakes and estuaries. Soils with reduced infiltration have an increase in overall runoff that 

can contribute to flooding problems and accelerated soil erosion (USDA/NRCS, 1998). A 

recent study (Prein et al., 2016) suggests that the number of extreme precipitation events 

will increase across parts of the U.S. in the future as a result of climate change, which 
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will further exacerbate the problems of ponding, runoff, flooding and soil erosion created 

by reduced infiltration in soils. 

In general, the IR for soils is influenced by soil texture, crust, soil organic matter 

(SOM), compaction, aggregation and structure, water content, frozen surface, porosity 

and flow paths (USDA/NRCS, 1998; Sajjadi et al., 2016). A low IR typically is 

associated with heavy clay soils but also can be produced by surface seals resulting from 

clogged or discontinuous pores, weakened structure and/or soil compaction 

(USDA/NRCS, 1998). Using a rain simulator, Ben-Hur et al. (1985) studied the effect of 

soil texture and CaCO3 content on IRs of water in crusted soils and found that soils with 

∼ 20% clay were most sensitive to crust formation and had the lowest IRs. Bamutase et

al. (2010) reported that soil texture, soil organic carbon (SOC) and slope were highly 

significant in explaining IRs in volcanic soils on Mt. Elgon, Eastern Uganda. Ma et al. 

(2016) measured water infiltration in soils from reclaimed land and found that both the 

IRs and the cumulative infiltration were higher in sandy than in loamy soils. 

Many different factors, as well as combination of factors, can affect the temporal 

and spatial variability patterns of water infiltration into soils (Merzougui and Gifford, 

1987; Paige and Stone 1996).  For example, infiltration varies across temporal and spatial 

scales due to heterogeneities in soil properties as well as variations in cover and 

vegetation characteristics (Merzougui and Gifford, 1987; Paige and Stone 1996). In 

addition, the ability to measure such variations is a function of the measurement 

technique and scale utilized (Paige and Stone, 1996). Brito et al. (2006) proposed a model 

of infiltration based on the selection and integration of key hydrogeological parameters 
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(categorized on a scale representing the suitability of the terrain to water infiltration) 

within a geographic information system (GIS). Using digital elevation models, Khan et 

al. (2014) compared simulated infiltration spatial patterns with actual field infiltration 

measurements and observed a positive correlation between the modeled and measured 

infiltration.  

Depending on their intended use, both quantitative values and qualitative 

classifications are useful to characterize the texture and IRs of soils.  Most quantitative 

estimates of IR are made in the field (e.g., using a ring infiltrometer, disc permeameter, 

Mariotte-double ring, rainfall simulator method, run off-on-ponding method, run off-on-

out method) or in the laboratory (e.g., trickle irrigation method and mini-disk 

infiltrometers) (Li et al., 2005; Lili et al., 2008). In general, such detailed IR 

measurements are labor-intensive and expensive to perform (Bamutase et al., 2010; Jiang 

et al., 2007).  Qualitative classes (e.g., Rapid, Medium, Slow) have been used to describe 

the overall IR of soils for irrigation and other hydrological purposes (Karathanasis et al., 

2013) and to characterize soil health and soil ecosystem services (Millennium Ecosystem 

Assessment, 2005; Adhikari and Hartemink, 2016; Baveye et al., 2016). A hybrid of 

approaches to characterize IRs in soils using geostatistical tools is becoming more 

commonly used, but Baveye and Laba (2015) argue that the approach one adopts to 

characterize spatially-varying soil properties should be dictated by the specific objectives 

and scale of research. One complication associated with scale is that ecosystem services 

of soils are typically evaluated on a large spatial scale, whereas management decisions 

and practices affecting soil health generally are made at the farm or field scale. 
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The Soil Survey Geographic (SSURGO) database contains soil information 

displayed by soil map unit (SMU) and is available for most areas in the United States and 

Territories, Commonwealths, and Island Nations served by USDA-NRCS (Soil Survey 

Staff, 2016a). Map units describe soils with unique properties, interpretations and 

productivity, with information collected/reported at scales ranging from 1:12,000 (more 

detailed) to 1:63,360 (Soil Survey Staff, 2016a). Map units are typically named for the 

major component present, although each SMU may contain one to three major 

components and several minor components (Soil Survey Staff, 2016a). The SSURGO 

database reports a number of soil attributes as three related values referred to as “low,” 

“representative value” and “high.” The low and high values denote the typical range of 

values of that attribute in the corresponding map unit component or soil horizon or layer, 

while the representative value denotes an average or expected value of that attribute in 

the corresponding map unit component or soil horizon or layer (Soil Survey Staff, 

2016a). 

This study was aimed at conducting an assessment of soil texture and estimates of 

qualitative IR classes for the A horizon of glaciated soils from field-based measurements 

compared against the information available from the SSURGO database and official 

NRCS soil series descriptions.  Many field-scale management decisions use SSURGO 

information, but the potential errors associated with this database are largely unknown 

(Fortin and Moon 1999; Jiang et al., 2007). The specific objectives of this study were to 

compare soil texture classes and IR classes in the A horizon of glaciated soils across the 

Willsboro Research Farm using two different data sources:  a) values of soil texture and 
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SOM reported in the SSURGO database for the soil map units (SMUs) present on the 

farm, and b) values of soil texture and SOC measured in soil cores taken across the farm. 

Materials and methods 

Study area 

The Cornell University Willsboro Research Farm (Figure 1) is located in 

Willsboro, NY (44° 22' N, 73° 26' W) in the northeastern part of New York State 

(Sogbedji et al., 2000). The 147-hectare farm is situated on the gently rolling lacustrine 

plain adjacent to Lake Champlain (Mikhailova et al., 1996). The climate in the area is 

temperate with a 150 day growing season (Mikhailova et al., 1996). Soils are 

heterogeneous and highly variable as a result of glacial deposits (e.g., glacial till, deltaic 

or glacial like sands and clays), and include the soil orders Alfisols, Entisols and 

Inceptisols (Mikhailova et al., 1996).  Boundaries of the soil map units (SMUs) were 

obtained from the SSURGO database at scale of 1:12,000 

(http://www.nrcs.usda.gov./wps/portal/nrcs/detail/soils/survey/) and mapped in ArcGIS 

10.4 (ESRI 2016). 

Sampling 

 Fifty-four soil cores were collected in the summer of 1995 on a square grid 

sampling pattern (Fig. 1) with each grid being 137.16 meters by 137.16 meters. 

Coordinates (NAD27 State Plane Coordinate System’s New York East Zone, using 

Station ESSEX2 and Poke-A-Moonshine L.O.T. and Bench Mark H 395) and elevation 

values for the 54 grid locations were obtained from a professional land survey that used 

an Intelligent Total Station, Set 2C SOKKISHA (standard deviation:  + 3 mm + 2 ppmD) 
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(Mikhailova et al., 1996). Undisturbed soil cores were collected with a Giddings 

hydraulic sampler (Model – GSR-T-S) using plastic tubes with an average diameter of 

4.5 cm (Mikhailova et al., 1996).   

Laboratory analyses 

Capped plastic tubes containing the soil cores were stored vertically in a freezer at 

approximately 1°C until processing and analysis (Mikhailova et al., 1996). For each soil 

core, the upper and lower soil horizon boundaries were recorded. Samples from each soil 

horizon were air-dried, manually ground and passed through a 2-mm-mesh sieve to 

quantify and remove the coarse fraction. Soil organic carbon (C) of the sieved fractions 

was determined by dry-combustion spectrometry using a Robo-prep-Tracemass system 

(Europa Scientific, Cheshire, UK).  Particle-size distributions of the less than 2-mm 

fractions were determined by sieve analysis and pipetting after pre-treating for carbonates 

and soluble salts with 1M NaOAc (adjusted to pH 5) and removing organic matter with 

30% H2O2 (Gee and Bauder 1986). Laboratory analysis results for the A horizon of the 

soil cores are summarized in Table 1 and the distribution of soil textures is shown in 

Figure 2. 

Estimating A horizon infiltration rate classes using soil core or SSURGO data 

    The A horizon of each soil core was classified for IR based on soil judging 

guidelines that utilize information on soil texture, soil structure and the percent SOC 

(Karathanasis et al., 2013). An IR classification of Rapid (infiltration rate greater than 7.5 

cm per hour) was assigned to A horizons with the soil texture classes of Sand (S) and 
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Loamy Sand (LS) and with the soil texture class Sandy Loam (SL) if the soils contained 

more than 1.2% SOC (Karathanasis et al., 2013). An IR classification of Slow (infiltration 

rate less than 0.5 cm per hour) was assigned to A horizons with the soil texture classes of 

Clay (C), Silty Clay (SiC) and Sandy Clay (SC), but only if they also were massive or 

exhibited a weak structure (Karathanasis et al., 2013); otherwise these three soil texture 

classes were assigned a Medium IR classification (infiltration rate of 0.5 to 7.5 cm per 

hour).  In addition, all other A horizons that did not match the conditions required for 

Rapid or Slow infiltration were assigned to the Medium class (Karathanasis et al., 2013). 

Soil judging criteria as described above were utilized to assign IR classes to the A 

horizons for the different SMUs present on the Willsboro Farm using information from 

the SSURGO database and official soil series descriptions as summarized in Table 2. We 

used the range of values (i.e., low value to high value) provided in SSURGO for 

percentage of sand, silt and clay to determine the range of possible soil texture classes for 

each SMU. In addition, we used the representative values of sand, silt and clay to 

determine the expected soil texture class of each SMU. When needed for assigning IR 

classes (e.g., for the sandy loam soil texture class), representative values of percent SOM 

in SSURGO were converted to percent SOC by dividing by 1.74. The SSURGO database 

does not report soil structure, so when it was needed for assigning IR classes (e.g., for 

clay, sandy clay and silty clay soil texture classes) we referred to the official NRCS soil 

series descriptions. 
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Results and discussion 

It is generally recognized that soil texture and SOM (or its proxy SOC) are the 

most important basic soil physical properties that influence the IR (USDA, 1998). For the 

glaciated, heterogeneous soils present on the Willsboro Research Farm, soil texture in the 

A horizon was highly variable among the different soil orders, with Alfisols generally 

having more clay and silty clay textures while the Entisols and Inceptisols tended to have 

more fine sand textures (Fig. 2). For each SMU, Tables 1 and 2 summarize the field-

measured and SSURGO-reported values, respectively, for the thickness of the A horizon, 

the distributions of sand, silt and clay, the percentage of SOC, and the percent coarse 

fraction of the Willsboro Farm soils. 

The soil texture class was determined for the A horizon of each of the 54 soil 

cores collected and the results aggregated in Table 1. Using the soil judging criteria 

described previously, IR classes of the A horizon were then assigned to the 54 soil cores 

and aggregated similarly (Table 1). From the SSURGO-reported ranges of sand, silt and 

clay for each SMU, the soil texture triangle was consulted to identify all possible soil 

texture classes for the SMU (Table 2). Expected soil texture classes and expected IR 

classes were assigned to each SMU based on the SSURGO representative values reported 

for sand, silt and clay (Table 2).  

Comparing the tabulated results in Tables 1 and 2 reveals many similarities for 

the SSURGO-based texture and IR classes and the corresponding classes determined 

from the detailed field measurements. For example, there was generally good (but not 

perfect) overlap with the A horizon texture classes for each SMU and a consistent trend 
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among the general soil texture of the three soil orders. Similarly, with both the field 

measurements and SSURGO data a general trend of Entisols > Inceptisols > Alfisols 

could be observed for the assigned IR classes. The one major exception to the overall 

qualitative agreement between the SSURGO- and field-based approaches was the 

Bombay gravelly loam (BoB) SMU, which tended to be sandier on the Willsboro Farm 

than expected based on the SSURGO data. This, in turn, resulted in a much higher 

number of BoB soil cores with an assigned class of rapid instead of medium for the IR. 

To provide a more rigorous, quantitative comparison between the findings shown 

in Tables 1 and 2, more advanced data analyses and statistical tests were performed. The 

approach used was to pose three basic questions about the 54 soil cores which then led to 

the appropriate corresponding analysis/test:  (1) How well did the SSURGO data/results 

match the soil core data/results for the Willsboro Farm A horizon samples?,  (2) Was the 

overall distribution of qualitative IRs derived from SSURGO significantly different than 

those resulting from field measurements?, and (3) Were the two different estimates of IR 

class significantly different at each core location? Each analysis/test was performed 

collectively on all 54 soil cores and then by soil order. 

To address the first question, we first compared the actual soil texture classes 

measured against the expected class based on SSURGO representative values for sand, 

silt and clay. For all 54 soil cores, only 9% matched the SSURGO expected soil texture 

class for the corresponding SMU. However, we found that 69% of the cores matched the 

expected soil texture class or an adjacent class on the soil texture triangle for the 

corresponding SMU, which we considered good agreement when considering the 



17 

heterogeneous nature of the soils present on the Willsboro Farm. When broken down by 

soil order, the results for the first question posed provided additional insight about soil 

texture. For Alfisols (n = 32), only 3% of the cores correctly matched the expected soil 

texture class from SSURGO, but that increased to 72% when considering adjacent classes 

on the soil texture triangle. For Entisols (n = 18), only 6% of the cores correctly matched 

the expected soil texture class from SSURGO and that increased to 61% when 

considering adjacent classes on the soil texture triangle. Lastly, for Inceptisols (n = 4), 

75% of the cores correctly matched the expected soil texture class from SSURGO but  

considering adjacent classes on the soil texture triangle did not increase the number of 

matches.  A similar analysis then was conducted on the IR classes to address the first 

question posed.  For all 54 soil cores, 69% matched the SSURGO expected IR class for 

the corresponding SMU.  Broken down by soil order, we found that the estimated IR 

class for each soil core matched the SSURGO expected IR class for 63% of the Alfisols, 

78% of the Entisols, and 75% of the Inceptisols.  Taken together, this analysis indicates 

that use of the SSURGO representative values for sand, silt and clay will result in 

expected IR classes that will be accurate for 70% to 80% of the soils on the Willsboro 

Farm.   

The second question essentially asked whether the two population distributions of 

IR classes (i.e., obtained from SSURGO representative values vs. actual field cores) were 

statistically different which can be addressed with a two-population test for equality of 

proportions. A significance level of α = 0.05 was selected, and because some of the tests

utilized small sample sizes we chose Fisher’s exact test to calculate p values. When 

considering all soil cores together (n = 54), Fisher’s exact test provided a p value of 0.247 
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indicating that there was no significant difference between the distributions of SSURGO-

derived and field-derived IR classes. Similar findings were obtained with Entisols (n = 

18, p = 0.104) and Inceptisols (n = 4, p = 1.000).  In contrast, for Alfisols (n = 32) 

Fisher’s exact test provided a p value of 0.000 which indicated that a significant 

difference did exist between the distributions of SSURGO-derived and field-derived IR 

classes for the soil order. Close examination of the A horizon samples from Alfisols 

revealed that a number of the Bombay (BoB) and Kingsbury (KyA, KyB) soil cores were 

responsible for the difference because of their sandier textures.     

The third question posed was the most powerful because it specifically tests 

whether the two different methods used to estimate IR class at each soil core location led 

to statistically different results – the approach itself is analogous to a paired t-test that one 

would typically use with paired quantitative data. Two different statistical tests were run:  

(i) a one sample sign test of the differences and (ii) the more powerful one sample

Wilcoxon test, more commonly known as the Wilcoxon signed-rank test, which utilizes 

the assumption of a symmetric distribution of the differences. Results of these last 

statistical tests are summarized in Table 3.  By either test, the only significant difference 

was observed with Alfisols for the reasons explained above. For the other two soil orders 

and for all 54 soil cores examined together, there were no significant differences when 

using SSURGO representative values of sand, silt and clay vs. actual field measurements 

to estimate IR classes for water infiltration into the soils.    

Conclusions 
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This study compared soil texture classes and estimated classes of IR as obtained 

from reported SSURGO values versus actual field measurements of soil properties at the 

farm scale in glaciated soils of Upstate New York. Soil texture was the dominating factor 

to explain the general trend of Entisols > Inceptisols > Alfisols with regard to IR class in 

the A horizon regardless of data source used. Except for one SMU, there was generally 

acceptable agreement among the SSURGO and field-based approaches.  Based on our 

findings, it appears that the SSURGO database can provide reasonable estimates of soil 

textures and qualitative classes of IRs that would be useful for incorporation within the 

frameworks needed to assess soil health and ecosystem services. Although detailed site-

specific field measurements must be utilized to ground truth the SSURGO database and 

better capture any variability that may exist within different SMUs and soil orders, their 

value must be balanced against the time and expenses associated with actual field and 

laboratory measurements. To better enhance ecosystem frameworks that properly account 

for the important role of soils, future efforts should be focused on obtaining higher 

resolution information in soils using emerging technologies (e.g., sensors) and/or more 

easily measured soil properties. 
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Appendix A 

Figures 

 

 

 
 

 

Figure 1. Map of Willsboro Farm, NY with the following soil types:  Howard gravelly 

loam, 2 to 8 percent slopes (HgB); Bombay gravelly loam, 3 to 8 percent slopes (BoB); 

Kingsbury silty clay loam, 0 to 3 percent slopes (KyA); Kingsbury silty clay loam, 3 to 8 

percent slopes (KyB); Covington clay, 0 to 3 percent slopes (CvA); Churchville loam, 2 

to 8 percent slopes (CpB); Cosad loamy fine sand, 0 to 3 percent slopes (CuA); Claverack 

loamy fine sand, 3 to 8 percent slopes (CqB); Deerfield loamy sand, 0 to 3 percent slopes 

(DeA); Stafford fine sandy loam, 0 to 3 percent slopes (StA); Amenia fine sandy loam, 2 

to 8 percent slopes (AmB); Massena gravelly silt loam, 3 to 8 percent slopes (McB); 

Nellis fine sandy loam, 3 to 8 percent slopes (NeB); Nellis fine sandy loam, 8 to 15 

percent slopes (NeC).  
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Figure 2. Soil texture of the A horizon from the 54 soil cores:  Alfisols (red), Entisols 

(green), and Inceptisols (black).  
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Appendix B 

Tables 

Table 1.  Measured and estimated properties of the A horizon for soils present on the Willsboro Farm (original soil core data from 

Mikhailova et al., 1996). 

Soil order / Soil series  

(Map unit symbol), number 

of soil cores 

Total 

Area 

Measured 

A Horizon 

Thickness Sand Silt Clay 

Soil 

Organic 

Carbon 

Coarse 

Fraction 

Texture 

Class* 

Infiltration 

Rate Class** 

m2 cm ---------------------------  %  --------------------------- 

Alfisols (total), n=32 937940 

Bombay gravelly loam, 

3 to 8 percent slopes  

(BoB), n=10 

270615 
21 

(± 5)*** 

65 

(+ 11) 

20 

(+ 5) 

14 

(+ 8) 

1.9 

(+ 0.4) 

23 

(+ 18) 

LS(1) 

SL(7) 

SCL(2) 

Rapid(8) 

Medium(2) 

Churchville loam,  

2 to 8 percent slopes 

(CpB), n=0 
36900 n/a**** n/a n/a n/a n/a n/a n/a n/a 

Covington clay,  

0 to 3 percent slopes 

(CvA), n=1 
49076 26 13 13 74 4.6 0.13 C(1) Medium(1) 

Howard gravelly loam,  

2 to 8 percent slopes  

(HgB), n=0 

58680 n/a n/a n/a n/a n/a n/a n/a n/a 

Kingsbury silty clay loam, 

0 to 3 percent slopes  

(KyA), n=19 

480679 
23 

(± 6) 

35 

(± 20) 

26 

(± 7) 

39 

(± 16) 

3.1 

(+ 0.9) 

5.9 

(+ 7.1) 

LS(1) 

SL(2) 

L(1) 

Rapid(3) 

Medium(16) 
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SCL(2) 

CL(1) 

C(12) 

Kingsbury silty clay loam, 

3 to 8 percent slopes  

(KyB), n=2 

41990 
30 

(± 14) 

59 

(± 18) 

21 

(± 5) 

20 

(± 13) 

1.8 

(+ 0.6) 

2.1 

(+ 0.3) 

SL(1) 

SCL(1) 

Rapid(1) 

Medium(1) 

Entisols (total), n=18 378691 

Claverack loamy fine sand, 3 

to 8 percent slopes  

(CqB), n=4 

64230 
28 

(± 10) 

61 

(± 26) 

26 

(± 18) 

13 

(± 9) 

2.3 

(+ 0.5) 

6.7 

(+ 8.6) 

S(1) 

SL(2) 

SiL(1) 

Rapid(3) 

Medium(1) 

Cosad loamy fine sand, 

0 to 3 percent slopes  

(CuA), n=6 

168530 
19 

(± 7) 

62 

(± 27) 

18 

(± 12) 

20 

(± 20) 

1.8 

(+ 0.8) 

12 

(+ 13) 

S(1) 

LS(1) 

SL(2) 

L(1) 

C(1) 

Rapid(4) 

Medium(2) 

Deerfield loamy sand, 

0 to 3 percent slopes  

(DeA), n=1 
331 22 87 10 3 2.2 1.9 S(1) Rapid(1) 

Stafford fine sandy loam, 

0 to 3 percent slopes  

(StA), n=7 

145600 
26 

(± 4) 

75 

(± 29) 

12 

(± 7) 

13 

(± 22) 

1.9 

(+ 0.8) 

2.0 

(+ 5.1) 

S(3) 

LS(3) 

C(1) 

Rapid(6) 

Medium(1) 

Inceptisols (total), n=4 157764 

Amenia fine sandy loam, 

2 to 8 percent slopes 

(AmB), n=0 
3185 n/a n/a n/a n/a n/a n/a n/a n/a 
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Massena gravelly silt loam, 

3 to 8 percent slopes  

(McB), n=0 
8479 n/a n/a n/a n/a n/a n/a n/a n/a 

Nellis fine sandy loam, 

3 to 8 percent slopes  

(NeB), n=3 
39030 

19 

(± 6) 

56 

(± 27) 

24 

(± 10) 

19 

(± 17) 

3.3 

(+ 0.9) 

21 

(± 20) 

SL(2) 

CL(1) 

Rapid(2) 

Medium(1) 

Nellis fine sandy loam, 

8 to 15 percent slopes 

(NeC), n=1 
107070 30 58 36 6 3.3 48 SL(1) Rapid(1) 

* Texture class abbreviations:  S – sand; LS – loamy sand; SL – sandy loam; L – loam; SiL – silt loam; SCL – sandy clay loam; CL –

clay loam; SiCL – silty clay loam; SC – sandy clay; C – clay; SiC – silty clay. Values in parentheses are the number of soil core A

horizons with the designated texture class.
** Infiltration rate classes are defined in the text. Values in parentheses are the number of soil cores with the designated infiltration rate

class in the A horizon.
*** XX (± XX):  Calculated mean value with standard deviation in parentheses, unless only one soil core was taken from a specified

soil map unit.
**** n/a:  not applicable. No soil core was taken from the specified soil map unit.
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Table 2.  Reported and estimated properties of the A horizon for soils present on the Willsboro Farm based on information from 

SSURGO (2016a) and NRCS official soil series descriptions. 

Soil order / Soil series 

(Map unit symbol) 

Reported 

A Horizon 

Thickness Sand* Silt* Clay* 

Soil 

Organic 

Carbon 

Coarse 

Fraction 

Texture 

Class** 

Infiltration 

Rate 

Class*** 

cm ------------------------------  %  ---------------------------- 

Alfisols 
Bombay gravelly loam, 

3 to 8 percent slopes  

(BoB) 
25 33-46-85 0-44-50 0-10-17 2.3 25 

LS 

SL 

L 

Rapid 

Medium 

Churchville loam,  

2 to 8 percent slopes 

(CpB) 
23 0-40-52 28-36-65 7-25-40 2.8 0 

L 

SiL 

SCL 

CL 

SiCL 

SC 

Medium 

Covington clay,  

0 to 3 percent slopes 

(CvA) 
23 0-22-45 0-28-65 27-50-90 4.0 0 

CL 

SiCL 

C 

SiC 

Medium 

Howard gravelly loam, 

2 to 8 percent slopes  

(HgB) 

25 24-45-85 0-43-50 0-12-27 1.7 30 

LS 

SL 

L 

SCL 

Rapid 

Medium 

Kingsbury silty clay loam, 

0 to 3 percent slopes  

(KyA) 

23 0-17-45 0-44-65 27-39-90 2.4 0 

CL 

SiCL 

C 

SiC 

Medium 
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Kingsbury silty clay loam, 

3 to 8 percent slopes  

(KyB) 

23 0-17-45 0-44-65 27-39-90 2.4 0 

CL 

SiCL 

C 

SiC 

Medium 

Entisols 

Claverack loamy fine sand, 

3 to 8 percent slopes  

(CqB) 

30 44-79-91 0-16-49 0-5-17 1.7 0 

S 

LS 

SL 

L 

Rapid 

Cosad loamy fine sand, 

0 to 3 percent slopes  

(CuA) 

30 44-87-91 0-6-49 0-7-17 2.4 0 

S 

LS 

SL 

L 

Rapid 

Deerfield loamy sand, 

0 to 3 percent slopes  

(DeA) 

25 44-79-91 0-17-49 0-5-17 1.7 0 

S 

LS 

SL 

L 

Rapid 

Stafford fine sandy loam, 

0 to 3 percent slopes  

(StA) 

25 44-64-91 0-31-49 0-5-17 2.3 0 

S 

LS 

SL 

L 

Rapid 

Inceptisols 

Amenia fine sandy loam, 

2 to 8 percent slopes 

(AmB) 

23 33-57-85 0-32-50 0-11-17 2.3 5 

LS 

SL 

L 
Rapid 
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Massena gravelly silt loam, 

3 to 8 percent slopes  

(McB) 
23 15-32-85 0-56-80 0-12-17 4.6 5 

LS 

SL 

L 

SiL 

Rapid 

Medium 

Nellis fine sandy loam, 

3 to 8 percent slopes  

(NeB) 
23 33-64-85 0-22-50 0-14-17 2.3 5 

LS 

SL 

L 
Rapid 

Nellis fine sandy loam, 

8 to 15 percent slopes 

(NeC) 
23 33-64-85 0-22-50 0-14-17 2.3 5 

LS 

SL 

L 
Rapid 

* Values for sand, silt and clay are shown as L-RV-H (L – low value; RV – representative value; H –  high value).
**  Texture class:  see Table 1 footnote for abbreviations. Texture classes listed are possible based on the range of values provided for

sand, silt and clay percentages. The expected texture class in bold italics corresponds to the representative values reported for sand, silt

and clay for each SMU.
*** Infiltration rate classes are defined in the text. The classes listed are based on the possible soil texture classes of each SMU. The

expected infiltration rate class in bold italics corresponds to the expected texture class having the representative values of sand, silt

and clay.
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Table 3.  Results of statistical tests to compare paired estimates of IR class for the A 

horizon of Willsboro Farm soil cores when derived from SSURGO representative values 

vs. actual field measurements.  

p value 

Sign Test 

for Median 

Wilcoxon Signed 

Rank Test 
Conclusion 

All soil cores 

 (n = 54) 
0.1435 0.142 No significant difference 

between paired IR estimates 

Alfisols 

 (n = 32) 
0.0005 0.003 Significant difference 

between paired IR estimates 

Entisols 

 (n = 18) 
0.1250 0.100 No significant difference 

between paired IR estimates 

Inceptisols 

 (n = 4) 
1.0000 1.000 No significant difference 

between paired IR estimates 
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