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ABSTRACT 

Additive manufacturing (AM) is increasingly used in new product development: 

from prototyping to functional part testing, tooling and manufacturing. The flexibility of 

AM results in the ability to develop a geometrically complex part with reduced effort by 

moderating some manufacturing constraints while imposing other constraints. However, 

additively manufactured parts entail a certain amount of ambiguity in terms of material 

properties, microstructures effects and defects. Due to the intensive energy, rapid cooling 

and phase changes, parts made by Fused Deposition Modelling (FDM – a branch of AM) 

and other layer-manufacturing processes may deviate from the designed geometry resulting 

in inaccuracies such as discontinuities, curling, and delamination, all of which are 

attributed to the residual stress accumulations during geometry fabrication. Therefore, the 

FDM part can strongly differ from its design model, in terms of strength and stiffness. In 

performance critical applications, analyzing and simulating the component is necessary. 

Identifying appropriate methodologies to simulate and analyze additively manufactured 

parts accurately, enables better modelling and design of components. The Finite Element 

Method (FEM) is a widely used analysis tool for various linear and nonlinear engineering 

problems (structural, vibrational, thermal etc.). Therefore, it is necessary to determine the 

accuracy of FEA while analyzing the non-continuous, non-linear FDM parts. The goal of 

this study is to compare Finite Element Analysis (FEA) simulations of the as-built 

geometry with the experimental tests of actual FDM parts. A dogbone geometry is used as 

a test specimen for the study, with a set of different infill patterns. A displacement 
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controlled tensile test is conducted using these specimens to obtain the experimental stress-

strain results.  Further, as built 3D CAD models of these specimens are developed and a 

displacement controlled tensile test is simulated using different material models in two 

FEA solvers. The stress-strain results of the analyses are compared and discussed with the 

experimental results. The metrics of the comparison are the precision and the accuracy of 

the results. This study found that FEA results are not always an accurate or reliable means 

of predicting FDM part behaviors, even when advance experimentally derived material 

models and as-built geometries are incorporated.  
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CHAPTER 1: INTRODUCTION 

1.1 Additive Manufacturing 

Additive Manufacturing (AM) or 3D printing has generated a renewed interest of 

engineering and manufacturing sectors in the recent years. Additive manufacturing is 

increasingly used in the development of new products: from prototypes to functional parts 

and tooling [1]. According to an industry report by Wohler’s Associates’ [2] ‘Annual 

Worldwide Progress Report on 3D printing’, by 2019, the sale of AM products and services 

could reach or exceed $6.5 billion. The dexterity of AM can be related in terms of the 

moderation of the manufacturability constraints, the ability to develop a geometrically 

complex part with reduced effort, that otherwise would have been tedious with traditional 

methods. Adding to this, these parts can be customized for low volume production with 

economic feasibility. Figure 1 shows use of AM parts in different applications.  

 

Figure 1:  Chart showing applications of AM [2]. 
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AM is the process of creating parts by depositing material in layers, i.e. by adding 

material. AM usually employs techniques such as extrusion of material as in Fused 

Deposition Modelling (FDM), Photo Polymerization: Stereo lithography (SLA) and 

Powder bed techniques like Selective Laser Sintering (SLS). A generic process for 

fabricating a part by AM starts with generating a 3D CAD (Computer Aided Design) 

model. This model is converted into an STL (Stereo lithography) file, which transforms 

the CAD geometry into a triangulated mesh format. Next, slicing software slices the model 

into horizontal layers. This software also determines an optimized toolpath for the extruder 

to generate the part boundary and infill pattern; and generates computer numeric control 

(CNC) commands. This file enables the 3D printing machine to print the final part.  

Traditional subtractive manufacturing imposes design constraints upon the 

geometry and materials of the part. These constraints can be relaxed or even eliminated 

through AM processes. The strengths of AM lie in the limitations of the traditional means 

of manufacturing. The principal point is the ability of AM to produce complex geometries 

for zero added costs. Figure 2 and Figure 3 show complex geometries manufactured from 

a single process, which is not possible through traditional manufacturing. AM enables 

materials savings by enabling infill patterns that result in lightweight parts. A high degree 

of design freedom, coupled with optimization and integration of functional features has 

resulted in designers increasingly exploiting the strengths of AM.  
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Figure 2: Parts manufactured from metal-laser sintering: Hip Implant with lattice 

structure [3] 

 

Figure 3:  Parts manufactured from metal-laser sintering: handheld ball built 

bottom-up [4]. 

1.2 Fused Deposition Modelling 

Fused Deposition Modelling (FDM) is used for printing the parts in this study. 

FDM is an AM technology based on the principle of material extrusion. FDM begins with 
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the software stage, where a CAD model of the part is created and stored in a STL (Stereo 

lithography) file format. Next, a slicing software mathematically slices the part into a 

number of layers and generates a toolpath for the printer nozzle to print the geometry. The 

software stores this data in a G-code file format for the 3D printer. The part is built from 

the bottom up, one layer at a time. In FDM, the filament is fed through an extruder nozzle, 

which heats the filament to a semi-molten state. The filament is then extruded through the 

nozzle and deposited to form the part geometry on the printer bed. Figure 4 is a 

diagrammatic representation of the FDM process. Often, the printer bed is heated to enable 

for better adhesion of the first print layer. Since the material is extruded in a semi-molten 

state, the newly deposited material fuses with the adjacent material that has previously been 

deposited. After an entire layer is deposited, the build platform moves downward along the 

z-axis by an increment equal to the filament height (layer thickness) and the next layer is 

deposited on top of it [5]. The extruder moves in X-Y plane, whereas the bed moves in Z 

direction (however, in case of certain printers, the bed moves in the X-Y plane). Even 

though FDM is quite flexible in printing complex geometries with small overhangs, by the 

support from lower layers, FDM generally has some restrictions on the slope of the 

overhang. For slopes greater than 45˚, support material is extruded which can be detached 

later. The support structure can be printed from the same material or from a different 

material if a dual-extruder set-up is present. Figure 5 shows a part built using FDM. Since 

the part is built in a single process, it eliminates the need of assembling individual parts.  
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Figure 4: Fused Deposition Modelling process representation. 

 

Figure 5: FDM parts: (left) – bicycle chain prototype, (right) – planetary gear 

system [6]. 
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The quality of the FDM parts largely depends upon the printing parameters used 

for the build process. A higher layer resolution (i.e. the number of layers) increases the 

quality of the part and better represents fine geometries. Table 1 shows the list of few of 

the process parameters affecting the properties of parts. The strength and material 

properties of the FDM part are dependent on these parameters, majorly on the layer 

orientation of the filament. Due to the type of manufacture, FDM parts not completely 

homogeneous and often exhibit voids. Thus, FDM parts have an anisotropic behavior. 

Different parameters lead to different properties for the same geometries. Figure 6 

represents a FDM part from a microstructure perspective. Table 1 lists some of the 

parameters that affect the properties of the FDM part.  

 

Figure 6: Multiscale levels of FDM part. 
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Table 1: Process Parameters affecting the final part. 

Process Parameters affecting the final part 

Extruder Temperature Layer Height 

Layer Orientation Percentage Infill  

Filament Width  Extrusion rate 

Filament Overlap Bed Temperature  

Time between bonding Movement speed 

Infill Pattern Number of shells 

 

In addition, each of these processes result in certain amount of inaccuracy. Creating 

the STL files preserves only the approximate geometric information of the original model 

[7] resulting in an imperfect geometry. In addition, the final product is largely dependent 

on the precision and accuracies of the slicers as well as the machine. Figure 7 shows the 

errors (ε) introduced in each of the stages of manufacturing the part. Thus, the additively 

manufactured part is not in perfect rendition of its 3D model. Additive manufacturing 

provides flexibility in terms of material, microstructures and layer thickness, but it also 

entails certain amount of ambiguity in terms of material properties, microstructures [8], 

etc. Owing to the intensive energy, rapid cooling, and phase changes, parts made by FDM 

and other layer-manufacturing processes may deviate from the designed geometry; and 

exhibit inaccuracies such as curling, warping, and delamination which are attributed to the 

residual stress accumulations during prototype fabrications [9]. 
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Figure 7: FDM processes introducing error at different stages. 

 Since the material is built up in layers of fibers, the directional orientation of fibers 

leads to an anisotropic behavior.  Therefore, even though the material of FDM parts is not 

anisotropic, the FDM part as a whole behaves as an anisotropic part. The mechanical 

properties of the FDM parts are generally inferior to those of the parts made from the 

traditional methods due the structure of FDM parts. The presence of voids at the 

mesostructural level accounts for some of the decreases in strength. They do result in a 

lightweight part and provide an opportunity for tailoring the mechanical performance via 

control of void geometry and layer distribution. However, the mechanical properties and 

strength of FDM parts are generally weaker as compared to traditionally manufactured 

parts, and therefore, should be analyzed.  

CAD model to 
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1.3 Material Models  

With FDM parts exhibiting an anisotropic behavior, even though, the material being 

isotropic, it is necessary to understand the material models related to the isotropic and 

anisotropic behaviors. In a general form, Hooke’s Law states that the strain applied is 

proportional to stress induced. This enables us to obtain a general matrix relation between 

stress and strain for different materials. An isotropic material has uniform material 

properties in all the directions. The relation between stress and strain for an isotropic 

material is given in Eq. 1, 

 [ε] = [C][σ] (1) 

Where, C is the compliance matrix, 

σ = Stress, 

ε = Strain 

Equation 1 can be expanded in matrix form as follows,  

 

[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

=
1

E

[
 
 
 
 
 
1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)]
 
 
 
 
 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

 (2) 

Where,  

σij = stresses in respective planes,  
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εij = strain in respective planes, 

E = Young’s Modulus,  

ν = Poisson’ Ratio, 

Inverting Eq. 2, we get stress in terms of strain, given in Eq. 3,  

 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

=
E

(1 + ν)(1 − 2ν)

[
 
 
 
 
 
 
 
 
1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

 (3) 

This equation enables us to calculate the stresses at a given strain, if the material 

properties are known. Such material models are used in analytical approaches to calculate 

stresses and other mechanical variables. The isotropic model thus needs two independent 

elastic constants i.e. the Young’s modulus and Poisson’s ratio for a complete analysis. 

On the other hand, in case of anisotropic materials, the material properties change 

with direction along the object. With an anisotropic model however, we need twenty-one 

independent constants from the compliance matrix to define a material model completely. 

Deriving all twenty-one constants is not always possible and therefore, a simpler 

orthotropic material model is resorted to.   

An orthotropic material is material whose properties differ along three mutually 

orthogonal axes. Eq. 4 gives the compliance matrix for orthogonal materials, 
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[
 
 
 
 
 
εxx

εyy

εzz

εyz

εzx

εxy]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

Ex
−

νyx

Ey
−

νzx

Ez
0 0 0

−
νxy

Ex

1

Ey
−

νzy

Ez
0 0 0

−
νxz

Ex
−

νyz

Ey

1

Ez
0 0 0

0 0 0
1

Gyz
0 0

0 0 0 0
1

Gzx
0

0 0 0 0 0
1

Gxy]
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
σxx

σyy

σzz

σyz

σzx

σxy]
 
 
 
 
 

 

νij = Poisson’s ratio in different orientations, 

Gij = Shear Modulus in respective planes, 

Ei = Young’s Modulus in respective planes.  

(4) 

Inverting Eq. 4, we can solve for stresses analytically. For an orthotropic material 

model, only nine constants are required to define the material model completely. This not 

only reduces the amount of experimental data needed, but also reduces the computational 

time required for analyses.  

A special case of orthotropic materials is the transversely isotropic case. 

Transversely isotropic materials have uniform (same) properties in a given plane (e.g. x 

and y) and different properties in direction normal to this plane (z). With properties being 

similar in a given plane, this reduces the independent constants in the compliance matrix 

to five. Eq. 5 gives the compliance matrix for transversely isotropic materials, 
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0 0 0 0 0
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σxx

σyy

σzz

σyz

σzx
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 (5) 

Where, 

‘p’ represents the principle direction of symmetry,  

Ep = Ex = Ey 

The factor 1/2 multiplying the shear moduli in the compliance matrix results from 

the difference between shear strain and engineering shear strain, where, 𝛾xy = εxy + εyx =

2εxy. More information can be found in [10]. These material models are used in analytical 

methods and commercial FEA solvers to define anisotropy and isotropy in different 

analyses. The material model for composites is discussed in the next section.  

1.4 Classical Laminate Theory.  

Since the FDM parts are built up layer-by-layer, they are similar to composite 

materials in the sense that composite is also made up of stacked up laminae. Therefore, a 

composite theory might be able to lend itself for the analysis of FDM parts. This approach, 

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/strain.cfm#engstrain
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adopted in different works, is discussed further in Chapter 2. A composite is made up of a 

stack of plies or lamina, consisting of individual fibers. Classical Laminate Theory (CLT) 

is used for analysis of composite materials. In order to extend the CLT towards analysis of 

FDM parts, it is necessary to understand the assumptions of the theory. Certain important 

assumptions pertaining to this study are [11]: 

 A perfect bonding prevails between each lamina, such that there is no slip in 

adjacent layers.  

 Each lamina is considered as a homogeneous layer of fibers.  

A coordinate system is considered for the laminae, shown as follows in Figure 8 [11],  

  

Figure 8: Coordinate system of composites [Adapted from 11]. 

For a laminate theory, the constitutive model can be described as that for a thin 

plate (Kirchhoff’s Classical Plate Theory).  If a lamina is thin and does not carry any out 

of plane loads, one can assume plane stress conditions for the lamina [11]. Causing σ3=0, 
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τ31 =0 and τ23 =0. Therefore, equation for orthotropic plane stress can be written as shown 

in Eq. 6 [12]. 

 [

ε1

ε2

ν12 
] = [

S11 S12 0
S21 S22 0
0 0 S66

] [

σ1

σ2

τ12

] (6) 

Inverting the equation gives us the stress values shown in Eq. 7 [12].  

 [

σ1

σ2

τ12

] = [
Q11 Q12 0
Q21 Q22 0
0 0 Q66

] [

ε1

ε2

ν12 
] (7) 

Where Qij are reduced stiffness coefficients given by [12], 

Q11 =
E1

1 − ν12ν21
, Q12 =

ν12E2

1 − ν12ν21
, Q22 =

E2

1 − ν12ν21
, Q66 = G12  

E1 = Longitudinal Young’s Modulus (direction 1) 

E2 = Transverse Young’s Modulus (direction 2) 

G12 = In-plane shear Modulus (direction 1) 

ν12= Major Poisson’s Ratio  

CLT builds on plane stress theory to develop relationships for composite material 

under loading. Laminate strains can be written as Eq. 8 [12]. 

 [

εx

εy

νxy

] = [

εx
0

εy
0

νxy
0

] + z [

kx

ky

kxy

] (8) 
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In addition, Eq. 9 [12] gives the corresponding stress relationship  

 [

σx

σy

τxy

] = [

Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

] [

εx
0

εy
0

νxy
0

] + z [

Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

] [

kx

ky

kxy

] (9) 

Equation 10 gives the stresses in each lamina in terms of these unknowns. The 

stresses in each lamina can be integrated through the laminate thickness to give resultant 

forces and moments [12]. The resultant forces and moments can be written in terms of mid-

plane strains and curvatures. 

 [
N
M

] = [
A B
B D

] [
ε0

kx
] (10) 

[N] = Resultant Forces, 

[M] = Resultant Moments, 

[A] = Extensional Coupling, 

[B] = Cross-coupling Stiffness, 

[D] = Bending Stiffness.  

These are the basic equations for the analysis of composite laminae. 

1.5 Finite Element Analysis 

Finite Element Analysis (FEA) is widely used as an analysis tool in engineering 

problems (structural, vibrational, thermal etc.), that is based on the Finite Element Method 
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(FEM). FEA was originally developed as a method for stress analysis for aircrafts, but 

nowadays is extensively used for a range of mechanical and thermal analyses and 

simulations. FEM is a numerical technique for finding approximate solutions to boundary 

value problems for partial differential equations. FEM subdivides a large problem into 

smaller parts, known as finite elements, each represented by a simple set of equations. The 

simple equations that model these finite elements are then assembled into a larger system 

of equations that models the entire problem. Using methods from calculus, an approximate 

solution can be found [13]. Figure 9 depicts the FEA of a part, showing its meshed 

geometry (larger geometry divided into finite elements). FEA has also been used to analyze 

AM parts as well as AM processes. However, since in FEA, the part is discretized into a 

continuum of finite elements, it might not be able to effectively represent discontinuous 

(AM) components. Due to the microstructure of FDM and the difficulties in representing 

the material constitutive behavior model, FEA may not be able to predict the behavior of 

FDM parts effectively. Thus, an FEA technique that takes into account these differences 

between the ideal and actual conditions relating to anisotropy and microstructure, would 

be able to represent the behavior of FDM parts accurately. Therefore, there is need to link 

local structural and bonding differences to a global anisotropic material behavior, in order 

to develop an accurate FEA model. More information can be found in [14]. 

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Variational_methods
https://en.wikipedia.org/wiki/Calculus_of_variations


17 

 

 

Figure 9: Finite Element Model: Discretization of geometry. 

1.6 Objective and Scope  

With the differences mentioned above, an additively manufactured component can 

strongly differ from an ideal model in terms of its strength and stiffness. In performance 

critical conditions, it is necessary to know the behavior of the FDM parts or to simulate the 

part under actual application conditions. AM parts with specific infill patterns can be used 

for function specific purposes making it necessary to analyze AM parts with their infill 

patterns. With increasing use of AM parts in functional applications, the need for 

simulating these parts in their actual loading conditions arises. Therefore, identifying 

methodologies to simulate and analyze additively manufactured parts would enable better 

understanding, modeling and design of components. 

The simplest approach, which is commonly used, represents a FDM part as a 

continuous part, with a linear isotropic material model. However, FDM parts are neither 

isotropic nor continuous bodies; therefore, such an FEA would not be the best 

representation of its behavior. Another approach is to represent the material with an 
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isotropic material property derived by experimental testing of the specified raster 

orientation and layer thickness. However, due to vast number of potential parameters, such 

an analysis would be true for only the specific orientation and layer parameters. The next 

logical step is to use an orthotropic model, using the derived properties in the three principle 

directions to build a constitutive model for the part. This should take into consideration the 

directional orientation of fibers. A similar approach can be found in [15, 16].   

Another parallel approach can be to model the parts as they are built, i.e. fiber-by-

fiber and layer by layer. In addition, FDM parts are not always manufactured as continuous 

solids in order to save weight. The infill patterns used in a complex part need to be 

represented accordingly when an FEA is performed.  Modeling additively manufactured 

components with an as-built model; simulating and analyzing these as-built components 

enables an understanding the effective material properties and behavior. This in turn 

enables us to better design FDM parts. The focus of this study is to compare FEA 

simulations of the as-built geometries in tensile loading with the experimental tests of 

actual AM parts.  

The design statement for this work is: 

FEA simulations of as-built geometries in tensile loading, using experimentally 

derived material models, predict actual behaviors of FDM parts. 

For this comparison, a suitable dogbone geometry is designed with different infill 

patterns for obtaining experimental results. Similarly, to compare the infill patterns with a 

solid pattern of similar weight, corresponding continuous geometries of equal volume are 
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also designed and evaluated both in simulation and with a microscale tensile testing 

machine. Due to a large number of potential parameters affecting the material properties, 

the printing parameters used for the parts are consistent throughout the study. Therefore, 

results of the study stand true for parts built with these parameters. A uniaxial tensile test 

is performed to obtain experimental data and this test is simulated using FEA. A suitable 

sample size is used to ensure repeatability. The study also uses as-built CAD models of the 

infill geometries to be analyzed in an FEA software. Initially, the properties of the bulk 

material are used to carry out the FEA. However, FEA is also performed using derived 

properties with an isotropic material model and derived properties with orthotropic material 

model as well as a composite layup model.  

Chapter 2 describes a brief background about the differences of the material 

properties of the additively manufactured parts as compared to the continuous counterparts. 

Work done on similar platforms is reviewed.  Chapter 3 describes the initial part of the 

study. This includes the methodology; presenting the geometries and infill patterns used 

for the study. The as-built 3D model and its FE analyses using the bulk properties and 

derived properties are also discussed. The experimental test results and the FEA 

simulations are presented; differences in the results of the FEA simulations and 

experimental tests are studied and discussed. Chapter 4 discusses a few more commonly 

used infill patterns. We analyze the geometries using orthotropic material model and the 

composite layup model and discuss the results. In Chapter 5, we conclude by giving 

remarks regarding the accuracy of FEA simulations with respect to the experimental results 

for FDM parts and state the scope for future development. 
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CHAPTER 2: LITERATURE REVIEW 

AM has developed as a technology both in process and product. AM, also known 

as ‘Rapid Prototyping’, in its initial stages was used for developing prototypes; the 

technology then not being feasible for producing functional parts. AM manufacturing today 

is not just limited to prototyping, but is used for a variety of different purposes ranging 

from concept modeling and modeling aesthetic commodities to creating functional models, 

end use parts, high heat applications and as components in assemblies [17]. The 

development in AM technologies has led to many advantages:  

 Decrease in the time required for printing. 

 Increase in the number of materials that can be used.  

 Increase in control of printing parameters.  

 Ease of printing complex parts. 

 Ability for low volume production with short lead times. 

FDM parts are used in varied sectors from aerospace, automobile, industrial, 

medical etc. FDM technologies today enable manufacturing parts with high mechanical 

and thermal durability with fast lead times. FDM proves perfect for low volume production 

for complex end-use products, jig and fixtures and other applications. Further information 

of applications of FDM parts can be found in [18, 19, and 20] 

Due to these reasons, it is necessary to understand the behavior of the FDM parts. 

Simulating and analyzing these parts in their functional environment is important. 
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Therefore, understanding the material behavior and structure of FDM parts is required to 

accurately simulate and analyze them. This would enable us to validate the fidelity of the 

FEA simulations of FDM parts with their actual behaviors and scenarios. 

2.1 Anisotropy in FDM parts.  

The FDM parts often fail to match the properties of corresponding parts 

manufactured by traditional means (i.e. molding and machining). The difference in 

properties of FDM parts emanates primarily from their structure. FDM parts are 

manufactured by laying down fibers adjacent to each other to form the geometry of the 

part. This is done layer by layer for the entire thickness of the part. The absence of ideal 

bonding conditions and the presence of cooling effects leads to a part that is not completely 

continuous. This, in addition to the directions of fibers that are laid down, leads to 

anisotropy in the FDM parts. This anisotropy in FDM parts makes the material properties 

difficult to determine and the analyses of FDM parts complicated. Understanding the 

anisotropic behavior would enable us to better simulate FDM parts and predict their 

mechanical behavior. One of the limitations of additive manufacturing as pointed out in 

[5], is that if the material properties for the AM parts were known in detail, then AM could 

be used to fabricate functional parts of a wide variety and complexity.  Zieman et al [5], 

Lee et al [21] and Upadhyay et al [22] discuss the anisotropic properties of FDM parts.  

Zieman et al [5] and Upadhyay et al [22] use FDM parts printed with different fiber 

orientation to derive a range of mechanical properties through tensile, compressive and 

hardness tests. Both the studies discuss the failure patterns and strengths of each of the 
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fiber orientations. Figure 10 depicted below shows the fracture patterns under tensile 

loading of parts with different fiber orientations conducted in [5]. It is important to 

document these fracture patterns, as these would prove to be a metric for comparison with 

FEA simulations.  

 

Figure 10: Fracture patterns of specimens with different layer orientations [5]. 

Upadhyay et al [19] conclude that the horizontal arrangement of fibers proves to be 

the strongest orientation for tensile strength whereas the vertical arrangement of fibers is 

stronger in a compressive strength test, even though both were weaker than their 

corresponding injection molded parts. Evidently, the FDM parts should be manufactured 

considering the application of the parts. Similar work is presented in [23]. Es-Said et al 

[23] develop models which they print and test FDM parts with different layer orientations. 

Tensile tests, bending tests and impact tests are conducted. The results are similar and in 

accordance to those mentioned in [5, 22]. Es-Said et al [23] further discuss the critical 

parameters influencing the quality of prototypes in FDM parts. 
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Li et al [24] study the mechanical properties of FDM prototypes by conducting 

theoretical and experimental analyses to establish constitutive models. Elastic constants of 

the prototypes are determined using a set of equations and the models are then evaluated 

by experiments. The authors intend to use this data to develop prototypes with locally 

controlled properties. With these studies, the fact that the anisotropic properties of FDM 

parts are influenced by the build parameters becomes apparent. Studying these printing 

parameters is necessary, so as to determine the material properties of the FDM parts used 

in this study.   

2.2 Effects of Process Parameters on Strength 

Owing to the anisotropy, the properties of such parts depend upon the printing 

parameters specified. Therefore, it is critical to understand the influence of the printing 

parameters on the part and on its anisotropic behavior.  Gajdos et al [25] discusses how the 

processing temperatures affect the structure of FDM parts. The study analyzes the structure 

of these parts and how varying head and envelope temperatures change the structure of the 

parts. The results show that higher temperatures lead to a decrease in the percentage of 

non-filled area in the volume, indicating better bonding. Figure 11 shows how the process 

temperatures affect the structure of the part. The authors however, conclude that the 

structure homogeneity of the part is affected more by the geometry and shape of the part 

than the process temperatures.  
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Figure 11: The influence of liquefier and envelope temperatures on the volume of 

non-filled area in samples with rectangular cross-section [25]. 

The void area is directly related to how the fibers are laid. These fibers bond to the 

material surrounding the fibers as they cool and solidify. Effectively the quality of the 

bonds between the individual neighboring fibers is a determining factor of the mechanical 

properties of the specimens. The quality of the bonds formed is affected by amount of 

necking present in adjacent filaments and the relative temperatures of the fibers. 

Bellehumeur et al [26] talk about modeling this bond formation between fibers in a FDM 

process. The quality of the bond formation determines the strength of the part. The results 

show that the bond quality is more affected by the extrusion temperature than the envelope 

temperature. The authors state that the extruded filaments cannot be maintained at high 

temperatures long enough to enable complete bonding to occur between filaments and 

therefore, a finer control of the cooling conditions will affect how the bonds are formed in 

the process and eventually affect the material properties of the part. In a similar work, Sun 

et al [27] investigate the mechanisms controlling the bond formation between filaments. 
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The authors analyze the mesostructure and bond formation in adjacent polymer filaments 

and study the temperature profile to state that the process temperature and convection 

coefficient strongly affect the bond formation and therefore, the quality of the part.   

Another important parameter that affects the behavior of FDM models is the raster 

orientation or the layer orientation. In addition to the literature mentioned before, Bagsik 

et al [28] compares the effect of layer orientation on the mechanical properties of the parts. 

These parts are built in three orientations representing the three different directions; these 

parts are tested under tension and compression. Ahn et al [29] presents a comprehensive 

work, which studies the effect of raster orientations, filament width, air gap and 

temperature of model on the strength of the model. The work also compares these FDM 

parts with a corresponding injection molded part. Figure 12 shows that the longitudinal 

fiber orientation (0º) is the strongest followed by the 45/-45, and both are weaker than the 

injection molded part. The figure represents parts printed with -0.003 inch air gap (0.003 

inch fiber overlap) which yield the strongest parts [29]. The authors also suggest a set of 

build rules derived from the study to help designers to better utilize the influence of the 

parameters of build result. In a similar work, Montero et al [30] discuss the effect of process 

parameters on the strength of part, using a Design of Experiments approach. This literature 

is used to obtain optimum prints results in this study. 
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Figure 12: Tensile Strength of specimens with varied raster orientations versus 

injection molded ABS [29]. 

Ample literature is available dealing with the influence of process parameters on 

the outcome of the part. Domingo-Espin et al [31] talk about the influence of process 

parameters on the dynamic mechanical properties of parts. Further information on the 

influence of process parameters can be found in [32, 33, 34, 35, 36, 37 and 38]. These 

papers discuss the effect of various process parameters on the final part.  

Khan et al [39] study the effect of infill pattern on the strength of the part. Wu et al 

[40] discuss the effects of layer thickness on the mechanical properties of the part. The 

authors report that the layer height of 0.3 mm resulted in a stronger part whereas layer 

thickness of 0.4 mm resulted in the weakest part. Figure 13 is a summary of the mechanical 

strengths with varying parameters. Further reading for effect of layer thickness can be 

found in [41] 
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Figure 13: Mechanical properties from different layer thicknesses and raster angles 

[40]. 

Table 2: Summary of research pertaining to effect of process parameters. 

 
Raster / Layer 

Orientation 

Temperature 

Filament 

Width 

Air 

gap 

Layer 

Thickness 

Upadhyay et al [22] 

Es-Said et al [23], 

Bagsik et al  27], 

     

Gajdos et al [25]       

Sun et al [27]      

Ahn et al [29], 

Montero et al  [30] 
     

Wu et al [40], 

Syamsuzzaman et al 

[41] 

     
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Table 2 categorizes the literature according to the process parameters studied in 

their work. This knowledge of the effect of process parameters enables us to develop an 

optimum final part to be used in our study.  

2.3 Analytical Approaches  

Understanding the material properties or the anisotropic properties of the material 

is necessary when these parts are analyzed using FEA. The choice of type of material 

models used in simulations would greatly affect the results of the analyses. Using the 

properties of the bulk material, would be erroneous since this would treat the part as a 

continuous isotropic model and may not represent the discontinuous, anisotropic nature of 

FDM parts. Therefore, Material Characterization or Material modeling of a general FDM 

part is necessary. This would enable us to derive the material properties of the anisotropic 

FDM parts and apply these in analysis.  

Zou et al [42] compare the two types of material models for FDM parts. The first 

model they use is a transversely isotropic model and then compare it with a completely 

isotropic model. The directional moduli are calculated using the compliance material 

matrix equations. The authors however go on to mention that a complete anisotropic model 

should be used for better precision and accuracy.  

Casavola et al [43] describe the mechanical behavior of FDM parts using Classical 

Laminate Theory (CLT). Orthotropic properties are derived using experimental procedures 

and a CLT compliance matrix is used to derive the stress and strain results. The author then 

compares the results from the CLT predictions. The results from the CLT predictions are 
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in accordance with the experimental values of stress for majority of the stress-strain curve; 

however, CLT results deviate close to 2% strain. Figure 14 shows the stress-strain results. 

With such results, it can be said that the CLT predictions for elastic modulus were quite 

accurate for elastic deformations.  

 

Figure 14: Stress-Strain plot comparing experimental and CLT results [43]. 

Bertoldi et al [44] also uses a similar approach to derive stress results to be further 

applied using CLT. The compliance matrix is populated using the values determined from 

the experimental tests and a stiffness matrix is calculated for an orthotropic model. The 

authors state this model can be used for computational analyses using CLT. Magalhães et 

al [45] too work on similar grounds using CLT to evaluate the stress results. The authors 

evaluate a part having different raster orientation in each layer, which they call a 

sandwiched pattern. Experimental values are used to derive the CLT compliance matrix 

and the results are compared. It is noteworthy that the authors state that the results obtained 

indicated that the analytical model did not accurately predict the mechanical behavior of 

parts especially in case of longitudinal layers and therefore suggest the need for a better 
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analytical model. On the other hand, Alaimo et al [46] conducted a similar study to predict 

mechanical behavior for FDM ABS parts, and they suggest that this orthotropic CLT based 

model is consistent with the experimental values and should be adopted in analyses of FDM 

parts. Thus, we see contradicting results while using similar approaches. Kulkarni et al [47] 

examines the differences in strengths of FDM parts resulting from different deposition 

strategies i.e. layer orientations. Composite material modeling is used to analytically 

determine the stress results and in this case was also found to be consistent with the 

experimental results.  

Liu et al [48] use a different approach to predict mechanical behavior, a 

homogenization method to compensate for the heterogeneity FDM parts. An implicit 

representation of the effective mesoscale structure is created and is then homogenized at a 

macro scale using a solution through an integral equation using Green’s function [48]. 

These models are validated with a FE model and experimental results. The results indicate 

appreciable agreement with the homogenization model indicating opportunities for 

effective analyses.  

In another study, Croccolo et al [49] discuss the experimental characterization and 

analytical modeling for FDM ABS parts. The procedure adopted is similar to other works 

discussed in this section. Test parts are used to obtain experimental results and using these, 

analytical models were developed and compared with the experimental values. A case 

specific, complex analytical model was developed along with a general model consisting 

of longitudinal and inclined raster orientations. The general model assumes that the load is 

shared by both longitudinal and inclined fibers, as if two beams working in parallel. 
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Therefore, equivalent stiffness and force equations are developed for longitudinal and 

inclined beams (fibers). In addition to this, the adhesive force between adjacent fibers is 

also modeled. This information is aggregated to calculate the net effective force acting and 

to evaluate the results. The results obtained using this model, provides accurate results with 

reasonable error as compared to the experimental values. Figure 15 depicts a part of the 

results of the study showing Young’s Modulus derived experimentally and analytically for 

different test specimens. ‘Type’ in figure means the different types of dogbone geometries 

used in the study. Further results can be found in [49].  

 

Figure 15:  Comparison of experimental and analytical values of Young’s Modulus 

[49]. 

The results obtained are accurate but the process is computationally intensive. The 

adhesive forces depend on the build parameters and the raster orientation and pattern 

varies; consequently, leading to changes in the effective stiffness and force equations i.e. 
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the model is derived for a specific part.  A designer would want to adapt an already existing 

model rather than developing a new one each time.  

Gurrala et al [50] develop a mathematical model of neck growth between adjacent 

filament both in intra-layer and inter-layer situations. These models represent the bonding 

between each fiber of the FDM parts. Figure 16 shows the schematic used. This theoretical 

model and the experimental data is used to determine how the bonding between the fibers 

affects the strength of the overall part. Even though this work is not essentially a 

comparison between numerical and experimental results, it is important to note that this 

work presents a new idea for simulating FDM parts; i.e. modeling the part with the actual 

fiber microstructure. This study determines strong correlation between neck growth 

between filaments and the strength of parts effectively, using experimental and 

mathematical models [50]. Such a model would be conducive to analyze actual fracture 

behavior of FDM parts.  Table 3 below summarizes the different material models adopted 

by different authors. 

 

Figure 16: Schematic model of inter-fiber bonding: (a) before bonding, (b) after 

bonding [50]. 
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Table 3: Summary of literature regarding analytical approaches. 

 Material Model Used Results 

Zou et al  [42] 

Isotropic, 

Transversely Isotropic 

2% difference between the 2 models. 

Recommends using anisotropic 

model. 

Casavola et al  [43] 

Classical Laminate 

Theory 

Results are in accordance with 

experimental data for majority of the 

stress-strain curve; Results deviate at 

2% strain. 

Bertoldi et al  [44] Orthotropic model -  

Magalhães et al  [45] 

Classical Laminate 

Theory 

Mechanical Behavior not predicted 

accurately using CLT; Suggest using 

a better analytical model. 

Alaimo et al  [46] 

Classical Laminate 

Theory 

Results obtained using CLT are 

consistent with the experimental 

data. 

 

With analytical approaches, stress calculation of cross-section having continuous, 

uniform areas is straight-forward. However, in case of complex geometries, stress 

calculations at different regions of part becomes complicated. A series of FEA algorithms 

have to be used, which would be cumbersome on part of the designer. Hence simulation 
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approaches using commercial software is preferred instead of manually generating a FEA 

solver. General FEA solvers used for mechanical analyses are ANSYS, Abaqus and 

Hyperworks.  

2.4 Simulation Approaches  

Simulation of real loading conditions enables us to realize the behavior of the part 

as a whole. Analytical approaches suggest using material models to analyze FDM parts. 

The literature below can be segregated in to 3 types: using orthotropic material models 

with solid parts, using orthotropic material model with mesostructured parts; and 

composite layup.   

Hambali et al [51] discusses the effect of build orientation on FDM parts to validate the 

deformation behavior in FEA. Material properties are derived to be used in an orthotropic 

model. 3D model is created in the three different orientations and a linear-static FEA is 

performed to simulate the loading conditions. The results from FEA show close correlation 

with the experimental results, however, the accuracy of FEA results depend on the build 

orientation of the part. Moreover, the FEA stress plots are in unison with the fracture modes 

of the physical test models. The authors conclude that FEA is reliable tool for visualizing 

the fracture in FDM parts but a non-linear, dynamic FEA should be used for better results. 

In a similar work, Hambali et al [52] determines the effect of build orientation on the 

strength of parts. In this work, the experimental results are validated by FEA. The 

experimental results show, change in part strengths with change in part orientation. Even 

though FEA results show a change in strength with changes in part orientations, the results 
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are not consistent in magnitude with the respective experimental counterpart. Errors as 

large as 30% are observed from the results [52]. Figure 17 shows the results from [52]. 

 

Figure 17: Failure comparison of different orientation of FEA and experimental 

data [52]. 

Domingo-Espin et al [53] aims to find a simulation approach to analyze FDM parts 

and to validate the simulation model with experimental results. The authors derive a 

constitutive orthotropic material model to obtain the stiffness matrix. This matrix would be 

used as input material properties for simulations. A simple part comprising of L shape is 

printed and tested to obtain experimental data. This loading condition is simulated using 

ANSYS using a completely solid CAD model. The simulation results show similarities 

with the experimental data. The similarity in results however, depend on the building base 

orientation [53]. A similar simulation is performed using an isotropic model for analysis. 

Results show similarities in the isotropic model as well, showing similar deviances as the 
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orthotropic model [53]. The authors suggest that since the isotropic model is easier to set 

up, it should be used in elastic region only, since errors were similar and acceptable. 

Whereas, in analyses exceeding the elastic region, orthotropic or anisotropic model should 

be adopted.  

Mamadapur et al [16] also discuss a similar methodology. A compliance matrix is 

derived from experimental results of FDM parts to evaluate the material properties. This 

characterization is then used with analytical methods as an application of mechanical 

characterization. Two simple parts are designed to be analyzed under different loading 

scenarios; angled bar under combined loading and solid bar under bending. A solid model 

was created and assigned different material orientation as per the actual parts. The 

orthotropic properties from the material model were used for an FEA. These results are 

validated using experimental testing and the authors found that the FEA results match 

experimental results with an acceptable amount of error (4%-10%). However, in case of 

the solid bar, FEA values were consistent with experimental values only in case of two of 

the four orientations. This may be possible in case of bending tests due to the composite 

material behavior of FDM parts [16].  

Bellini et al [54] developed FEA models without directional orientation and using 

isotropic properties and then using anisotropic properties. The authors reveal considerable 

differences in the results obtained from an isotropic model as compared to the experimental 

results.  
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Rodriguez et al [55] discuss the development of computational models for FDM 

material stiffness and strengths. These theoretical predictions are validated with 

experimentally derived values of moduli and strength. A finite element model is used to 

evaluate the effective elastic moduli using two approaches: a strength of materials approach 

and a homogenization approach. These are compared to the experimental values of the 

ABS. The authors state that assuming an orthotropic material model is a good 

approximation to model the stiffness of the extruded fibers in FDM parts. The properties 

are largely dependent on the void shape and area; hence, further detail modelling is required 

[55].  

Owing to the non-continuous fibered nature of the FDM parts accurately, 

representing the model to be analyzed is necessary. Several papers have represented the 

parts with its mesostructure; i.e. designing the parts in form of fibers and with voids. Cuan-

Urquizo et al [56] focusses on mechanical characterization of lattice structure of FDM 

parts. The authors develop a cubed lattice model, using simple elastic elements to form the 

entire part. These parts are printed and tested to obtain material properties and study the 

structure-property relationship, which is used in a FEA solver to determine the effective 

elastic moduli.  

Villalpando et al [57] compares an FEA approach to experimental data, using 

models with parametric internal matrix structures under compressive loading. A solid 3D 

CAD model is created and converted to a shell structure, shown in Figure 18. A primitive 

modifiable element is used to form internal structures by joining the spherical ends along 

with specific geometrical constraints to create complex truss-like structures [57]. Different 
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internal structures are used. An FEA simulation is run using Abaqus©.  This model is sliced 

and printed using FDM to obtain experimental data. Figure 19 shows the results of the FEA 

simulations and experimental data for the compressive tests conducted on the different 

models. The load applied is compared and shows consistent similarities between simulation 

and experimental results. Therefore, it can be assumed that the FEA simulations will 

provide a reliable estimation in compressive loading cases for parts with similar 

characteristics as the ones simulated in this CAE model. [57]. A similar compressive 

analysis is also performed in [58].  

 

Figure 18: Parametric modeling of the modifiable element structure (a), the 

parametric web-like structure, and (c) the internally modified shelled part [57]. 
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Figure 19: Comparative of FEA simulations and experimental compressive tests 

[57]. 

El-Gizawy et al [59] present an integrated approach to characterize mechanical 

properties and internal structure of FDM parts and analyze these using CLT. Experimental 

data is used to derive the material properties. Image based mesostructure is analyzed using 

electron microscope based images and these are recreated to represent the cross-section of 

lamina. A composite layup is used so that the part is represented as composite.  The 

resulting simulations are consistent with the experimental data. 

Rezayat et al [60] conducts a similar study which studies the macroscopic behavior 

by modeling the microstructure. An FEA using composite lamina is performed in 

COMSOL and validated with experimental data. Garg et al [61] try to study the failure of 

FDM parts under tensile loading, using FEA. Parts built in different orientations and with 

different raster orientations are simulated in FEA and later validated. It is important to note 

that even this study uses a mesostructure to model FDM parts using microscopic imaging.   
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Ajoku et al [62] replicates compression loading on a Nylon-12 FDM part using 

FEA and validating with experimental results. This work adopts two approaches to 

modeling; in the first approach, material data from injection molded and laser sintered parts 

is used, whereas, the second approach obtains material data from laser sintered parts and 

translates the degree of porosity into the model. The first approach shows considerable 

deviance from the experimental values for laser-sintered parts. Even though the second 

approach shows better predictions than the first approach, authors state that the approach 

of geometric porosity is not an entirely appropriate method to represent the AM parts. 

Since FDM parts are built layer-by-layer, authors argue that a composite lamina 

theory will enable to better realize the behavior of FDM parts. Martinez et al [63] uses a 

composite laminate layup in FEA using Abaqus to predict the behavior of FDM parts. The 

orthotropic material properties are derived and used as input in FEA simulations. Two 

approaches are used; modelling a rigid geometry using orthotropic properties, and 

secondly, modeling a composite geometry using orthotropic properties. Both the models 

show remarkable approximation to reality with the rigid model underestimating the failure 

criterion more than the composite model.   

Sayre et al [11] performs an FEA on 3D printed part using modifications to the 

CLT. Two models are created, an isotropic model, based on a part manufactured from 

traditional means; and a composite FE model, based on a layered FDM part. Tensile, 

compressive and bending tests are simulated in Abaqus©, and results show considerable 

difference in the values of the two models; the composite parts yield at a lower load than 

their isotropic counterparts. The authors however have not compared the FEA models with 
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experimental results directly. It is important to note that FEA model using a composite 

configuration tend to exhibit properties of the laminate as a whole rather than exhibiting 

failure in a single lamina during uniaxial tests [11]. The authors conclude that the FE model 

with modification of material properties appear to reasonable to mimic the behavior of 

FDM parts better than isotropic model.  

Table 4: Summary of literature regarding simulation of FDM parts. 

Approach References Work needed. 

Orthotropic Material Model 

Hambali et al  [51, 52] Inconsistency 

Domingo-Espin et al  [53] In agreement 

Mamadapur et al  [16] Inconsistency 

Bellini et al  [54] In disagreement 

Mesotructure 

Villalpando et al  [57], In agreement 

Garg et al  [61], -  

Ajoku et al  [62] Inconsistency 

Composite Laminate Model 

Martinez et al  [63], In agreement 

Sayre [11] In agreement 
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Table 4 summarizes the different simulation approaches used. It is evident that the 

FEA results for FDM parts have not been consistent. Some models show agreement with 

a general FEA model of a simple part, whereas other models show inconsistencies. It is 

evident that a detailed model that takes into account the microstructure and the anisotropy 

of FDM parts is required for precise and accurate analyses. FDM parts are usually complex 

with an integral infill pattern, and validating FEA approaches to accurately predict the 

FDM part behavior is necessary. In the following chapters, FEA is performed on as-built 

FDM parts and is validated with experimental results. Chapter 3 talks about an isotropic 

model used for FEA, and its comparison with experimental results.   
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CHAPTER 3: INTIAL FEA SIMULATIONS AND EXPERIMENTAL RESULTS 

The goal of this study is to evaluate approaches that would best represent the AM 

parts; not as continuous entities but as anisotropic, discrete fibers closely spaced together 

to form the part. With the properties of FDM in mind, considering a general method of 

analysis that accounts for all these properties is herculean task. Therefore, a systematic 

approach is used. This chapter is submitted as a conference paper for ASME IDETC 2017 

Conference. Two approaches to represent AM parts better, have been proposed in the 

following sections. The first approach modifies the CAD model to represent the AM parts 

better. This approach deals with design the parts as they are built, so that they are closer to 

their actual structure. The second approach deals with modifications in the analysis process 

so that a better representation of the AM parts’ material model can be achieved. The basic 

approach for analysis of FDM parts is performed using the bulk isotropic properties of 

ABS. These properties are the properties of a continuous bulk ABS. The parts are assumed 

to be continuous and isotropic in nature. Even though this is against the actual behavior of 

FDM parts, it is important to point the difference in representing FDM parts as continuous 

isotropic elements. In order to have a basis for comparison, the simulation results are 

compared with the experimental results. Further, to represent the FDM parts better, derived 

properties of the FDM parts are used in the simulations. The following sections talk about 

the approaches mentioned to analyze FDM parts and validate their precision and accuracy 

with the experimental results. An overview of the methodology, specimen development, 

comparison metrics and the process of the study is provided in the following subsections. 
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3.1 Methodology 

The approach used in the initial part of the study is to redesign the AM part as it is 

built to an acceptable extent of precision, accuracy and detail in CAD. A set of geometries 

is designed, to be printed and tested on a tensile test bed. Once the part is printed, its CAD 

model was redesigned as an ‘as-built’ model using the G-code from slicer. A fiber-by-fiber 

and layer-by-layer model was created that would represent the actual printed parts. This 

structure should represent the geometry as well as the infill pattern of the part. Thus, the 

as-built CAD model enables us to represent the FDM parts with their mesostructure: with 

individual fibers forming the entire part. The G-code was input in Solidworks© to obtain a 

toolpath in a particular layer to be extruded. Figure 20 shows the G-code sketched in 

Solidworks©.  

 

Figure 20: Solidworks© sketch using G-code of the printer toolpath 

 ‘Sweep’ feature was used to sweep the rectangular shaped filament through the 

toolpath. Thus, each layer was form built on top of the previous one. However, initial 
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analyses pointed out the problems faced in using this model. Figure 21 shows the individual 

filaments along the toolpath.  

 As seen from the figure, some of the filaments intersected adjacent features 

(filaments), whereas some did not. This resulted in intersecting errors within 

the part, rendering the CAD model useless. In addition, it is not possible to 

merge adjacent bodies while using the ‘Swept’ feature in Solidworks© 

unlike the ‘Extrude’ feature.  

 Secondly, a part without these errors caused meshing problems. The mesh 

elements were not aligned and caused misalignment between adjacent 

elements of the mesh.  

 The part file was large owing to large features, taking four hours to save. 

Meshing the part further took nine more hours, and the analysis took forty 

hours. 

 

Figure 21: ‘Sweep’ feature on the G-code toolpath sketch. 
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This is a fairly simple geometry which took an extensive amount of time and 

memory to be analyzed and hence using this method to model FDM parts was prohibitive. 

Therefore, a continuous model depicting the geometry and infill pattern is used. Further 

details about the geometry and design are discussed in 3.1.1. These parts are then simulated 

in a FEM solver, first using bulk properties, and then using derived properties. A sample 

model is used to derive the material properties for the parts. This would enable us to 

compare the simulations results of the ‘as-built’ AM parts with the experimental results. In 

order to efficiently compare both results, appropriate test problems and test metrics are 

developed. The tensile test conducted on the print specimens are replicated in the 

simulations and later compared with each other.   

3.1.1 Geometry.  

The present work primarily includes tensile tests only; therefore, the test specimen 

used is a dogbone geometry. It has enlarged ends known as shoulders for gripping. The 

area of concern in the specimen is the gage section. The cross-sectional area of the gage 

section is reduced relative to that of the shoulders of the specimen so that deformation and 

failure will be localized in this region [64]. All the measurements of the test sample are 

carried out over the gage length of the specimen. This geometry was designed as a CAD 

model in Solidworks© and later converted to the STL format for printing. The design of the 

geometry is similar to the standard specifications stated in ASTM D638 but not identical 

due to printing and testing considerations. The final dimensions of the dogbone were a gage 

area of 50x20x2 mm. Including the shoulders, the specimen was 170 mm in length and was 
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35 mm wide at the shoulders. The height of the geometry was uniform throughout. The 

maximum length was dependent on the length of the 3D-printer bed as well as the 

maximum test frame length of the tensile testing machine. Whereas, the width of the 

shoulders and the height of the specimen were determined based on the grips of the test 

machine. Figures 22 through 26 depict the drawings of the different dogbone geometries 

that were designed for this study using Solidworks©.  

 

Figure 22: Hexagonal Infill (HI) specimen. 

 

Figure 23: Circular Infill (CS) specimen. 
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Figure 24: Circular continuous (CCS) specimen. 

 

Figure 25: Hexagonal continuous (CHI) specimen. 

 

Figure 26: Continuous (C) specimen. 
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Another important aspect of the AM parts is the infill pattern and the infill 

percentage. Many times, AM parts are not 100% solid but have a structured mesh inside 

the model. Infill percentage and pattern influence print weight, material usage, strength, 

print time and sometimes, decorative properties. Therefore, a number of infill patterns were 

considered in this study, namely honeycomb and circular. The infill percentage for each of 

the pattern was different and was decided on basis of the accuracy of the printer. The 

dimensions of the reduced cross section of the dogbone geometry were decided keeping in 

mind whether the geometry is able to accommodate the necessary features of all the infill 

patterns. The patterns are constrained to the gage area only and not over the entire 

geometry. This would ensure that the specimens would primarily elongate and fracture in 

the gage area. The rest of the geometry was designed to be continuous so that the results 

would not be affected by the compressive forces of the grips or the localized stresses due 

to the change in geometry. The patterns were designed such that each side of a pattern 

would represent an extruded filament. Therefore, in case of the hexagonal pattern, the sides 

of each hexagon were 0.6 mm thick. Similarly, each of the infill pattern geometries had a 

corresponding continuous model. This model was continuous in the gage length with the 

same width but lesser thickness so that it was equal in volume with the corresponding 

patterned part. The corners in the gage area for all the geometries were filleted to avoid 

stress concentrations. To ensure repeatability a sample set of 20 specimens for each pattern 

were printed and tested. 

Additionally, a completely continuous specimen is modelled as shown in Figure 26 

to derive the material properties for the FDM parts. This part has a narrower gage section 
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to ensure fracture in the gage section. To avoid confusion with the names of these 

specimens, abbreviations are assigned for the sake of this study. The geometries considered 

for this study are listed below: 

 Completely Continuous (C) 

 Hexagonal Infill (HI) 

 Hexagonal Continuous (CHI) 

 Circular Straight Infill (CS) 

 Circular Continuous (CCS) 

3.1.2 Assumptions 

A number of assumptions that were made in the study have been stated below: 

 Since different spools of ABS were used for printing the specimens, it is assumed 

that the material from the different spools is consistent with the material properties.   

 The environment is not considered as a significant factor that affects the printing or 

testing. This is considered since the laboratory operation temperature was 

consistent throughout the study.  

 Any errors in clamping the specimens were considered to be randomly distributed.   

3.1.3 Printer 

Once a CAD model had been created taking into account the appropriate 3D 

printing considerations, these files were converted to a STL format. The STL file is 

processed using the slicer, which creates a G-code file for the 3D printer. The 3D printer 
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used for this study is the MakerBot© Replicator 2X. The printer is shown in Figure 27. The 

printer only runs .x3g files unlike other printers, which use G-code files. The process of 

creating the file remains the same, i.e. we import the STL file in the ‘MakerWare Desktop©’ 

software which slices the dogbone geometry and converts it into an .x3g file for the printer. 

However, initial prints revealed that the 3D printer was not printing consistent specimens. 

Analysis of the failed prints and print previews from the software suggested that the 

software was not able to efficiently slice the models and subsequently the printer could not 

replicate the models as required.  

 

Figure 27: MakerBot© Replicator 2X used for printing. 

The next task was to search a different slicer that would slice the model 

convincingly and write it to an .x3g file format. The next slicer sought to was ‘Slic3r©’. 
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With the firmware of the slicer set to MakerWare (MakerBot) © settings, it was effectively 

able to slice even the thin walled features in the model. ‘Slic3r©’ stored this data in a G-

code format. Therefore, ‘Replicator G©’ (another slicing software) was used to convert the 

G-code files to ‘.x3g’ format. This produced effective results.  

3.1.4 Printer Parameters. 

The MakerBot© Replicator 2X has a heated bed. The material used in this study 

was white ABS (Acrylonitrile Butadiene Styrene). The extruder temperature for ABS was 

set to 230º C. Whereas, the bed temperature was set to 130º C. This avoided warping and 

ensured that the part would stay on the bed firmly during the entire build. As discussed 

earlier, the 3D print settings have a huge impact on the strength, structure and the finish of 

the specimen. Therefore, the settings for each of the model were decided such that they 

would result in the best possible specimen. The HI specimens were printed with a layer 

height of 0.2 mm whereas the CS specimens were printed with a layer height of 0.4 mm. 

At a particular layer height, the slicer automatically sets the filament width. The continuous 

models on the other had to be modeled with a layer height of 0.4 mm and a filament 

extrusion width of 0.4 mm. This was because the printer extruder was not able to print the 

continuous infills consistently and resulted in a discontinuous fill.  Since all the infill 

patterns had already been modelled in CAD, the infill percentage used for each of the model 

is 100%, i.e. a solid rectangular infill to represent the continuous solid part. Each of the 

specimen was printed without a raft to enable the bottom layer of the parts to bond 

adequately resulting in a stronger part. Another reason that the parts were printed without 
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the raft was that the process of removing the raft also strains some of the bottom fibers and 

may damage the parts. Initial tests also revealed that the parts printed without a raft were 

stronger than the ones printed with a raft.   

The continuous specimens had a continuous area in the gage length, which was 

suspended along the length exactly midway in height of specimen. Hence, this region 

needed a support structure to avoid sagging of the suspended area. Default support settings 

were used for this region i.e. 0.42 mm filament thickness and 0.4 mm layer height. The 

support structure was later scrapped off using carving knives. The completely continuous 

(C) sample used for deriving the material properties had the same print settings; 0.2 mm 

layer height and 45º/-45º solid infill. The printing parameters are summed up in Table 5.   

Table 5: Printing Parameter for the dogbone geometries. 

 

Layer Height 

(mm) 

Filament Width 

(mm) 

Required 

Support 

Continuous (C) 0.2 0.67 No 

Hexagonal Infill (HI) 0.2 0.67 No 

Hexagonal Continuous(HC) 0.35 0.4 Yes 

Circular Infill (CI) 0.4 0.42 No 

Circular Continuous (CC) 0.4 0.42 Yes 
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3.1.5 Tensile Tests  

In order to test the strength and compare the material properties with the simulation 

results, tensile test was performed on the test specimens. The tests were performed on 

‘Modular under Microscope Mechanical Test System – μTS’ by Psylotech©. Figure 28 

shows the tensile test frame with a specimen attached with grips. As the specimen geometry 

did not fit the slotted grips, clamping grips were used to hold the specimen. A displacement 

controlled tensile test was performed. A displacement of 10 mm was applied at a uniform 

velocity of 50 µ/s. This ensured that the specimens elongated plastically and finally 

fractured. Similar settings were used for the corresponding continuous parts as well. The 

test data file records the displacement and the corresponding force applied at every time 

step of 0.05 seconds. Therefore, for every specimen, approximately 1000 data points are 

collected per test. This data is further post processed to obtain the effective modulus of the 

specimens. The displacement is used to obtain the average strain throughout the specimen. 

The force applied is used to calculate the stress in the least cross-sectional area as shown 

in Eq. 11. 

  

σ =
F

A
                                                                           (11) 

σ = Stress, 

F = Force applied, 

A = Area of cross-section 
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ε =
δL

L
                                                                          (12) 

ε = Strain, 

δL = Change in length, 

L = Length (Gage length), 

The strain calculation is given by Eq. 12. The stress and stress are used to calculate 

the effective elastic modulus. The elastic modulus is calculated using Eq. 13, 

E =
δσ

δε
                                                                         (13) 

E = Young’s Modulus (Effective elastic modulus in case of this study),  

 

Figure 28: Psylotech© Tensile Test frame used in the study. 
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3.1.6 FEA Simulations 

Once the specimens are printed, each of the specimen is compared with their 

corresponding CAD models for each of the dimension of the gage length. An average of 

the length, width and height of the gage section is calculated for each set of 20 samples. A 

new CAD model is designed considering the change in the dimensions, so that the 

specimens are modelled as-built. The only difference is that these models are designed as 

continuous geometries and not as discrete fibers closely bonded to each other. This CAD 

model is the as-built model. 

The next step is to analyze these specimens with an FEA solver. The solvers used 

for this were ANSYS© and Abaqus©. A Transient Structural Analysis is conducted on the 

as-built CAD models. Two approaches are followed in the initial part of study. First, an 

analysis is carried out using the material properties of bulk ABS [65]. Since bulk ABS is 

isotropic, an isotropic model is used with the bulk material properties. This approach is 

called as Bulk Isotropic Model (BIM).  

For the second approach, the material properties for the test specimens of ABS are 

derived from the completely continuous (C) samples. An isotropic model along with these 

properties is used.  This approach is called as a Derived Isotropic Model (DIM) at this stage 

of the study. This would enable us to compare the FEA simulations using bulk and derived 

properties with the experimental results.  

Since the patterned specimens have thin walled structures, a refined mesh is used 

and displacement controlled uniaxial tensile test is simulated. The mesh statistics are 

tabulated in Table 6. Quadratic tetrahedral elements were used in ANSYS© and Abaqus© 
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simulations. Table 6 shows the mesh statistics for the specimens. Figures 29 through 32 

show the meshes for different geometries using ANSYS©. Since the mesh plots in Abaqus© 

are similar they have not been presented; they can be found in Appendix A. The end of one 

of the shoulders is set as a fixed support. The displacement results from the tensile test are 

inputted in as the displacement, applied at the opposite shoulder end. However, since the 

study is comparing only the linear FEA results, displacements until yield are used. The 

specimen data is ensured to remain in the elastic region. The stress and strain are calculated 

as outputs in the results section.   

Table 6: Mesh statistics from FEA solvers. 

 

ANSYS© Abaqus© 

Nodes Elements Nodes Elements 

Continuous (C) 15209 7344 2400 1092 

Hexagonal Infill (HI) 19522 9397 103885 62493 

Hexagonal Continuous (CHI) 13341 6582 18765 9667 

Circular Infill (CS)  26840 13026 44840 13026 

Circular Continuous (CCS) 13280 6515 17520 9572 
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Figure 29: Mesh model for Hexagonal Infill (HI). 

 

Figure 30: Mesh model for Circular Infill (CS). 

 

Figure 31: Mesh model for Hexagonal continuous (CHI). 
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Figure 32: Mesh model for Circular continuous (CCS). 

Similarly, FEA is also conducted on a different solver i.e. ABAQUS©. Since 

ABAQUS© does not accept Solidworks© files, each of the CAD files are converted to a 

‘.step’ format. A similar displacement controlled analysis is carried out with this solver as 

well. Stress and strain are obtained as results. Since the Elastic Modulus is already an input 

in the solver, only the stress and strain values of each of the patterned and continuous 

specimens are compared. 

3.2 Results and Discussions 

The final prints of each of the geometries are shown in the Figure 33. The 

dimensions of the printed parts in a given set varied by ± 0.1 mm. These parts were tested 

on a tensile test bed; the results of the tensile test are discussed below.  
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Figure 33: Printed specimens: (a) Continuous (C), (b) Hexagonal Infill (HI), (c) 

Circular Infill (CS), (d) Circular Continuous (CCS), (e) Hexagonal Continuous 

(CHI). 

3.2.1 Tensile Tests 

The Tensile tests generated a series of data to analyze. For each specimen, a Stress 

vs Strain and Force vs Displacement curve is plotted. The continuous (C) sample data is 

post processed to calculate the material properties for the study. The stress-strain curve for 

this sample is shown in Figure 34. The derived elastic modulus is 1±0.1 GPa. The 

continuous (C) parts typically fractured in the center of the gage sections transversely. The 

fractured part is shown in Figure 40. This modulus calculated was used in FEA simulations.  

   a                 b                  c                    d                e 
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Figure 34: Stress-Strain curve for Continuous (C) samples. 

As mentioned earlier, effective modulus is calculated for each of the specimens. 

Consider the results of the Hexagonal Patterned specimens. Stress is calculated across the 

least cross sectional area. For the 20 hexagonal patterned specimens (HI) the average 

effective elastic modulus was 1.25±0.25 GPa. The actual elastic modulus of a continuous 

ABS specimen ranges from 2 GPa to 2.4 GPa and that of the 45/-45 FDM ABS specimen 

is 1±0.1 GPa. Comparing these results with the corresponding set of equivalent volume 

continuous (CHI) specimens, the elastic modulus ranged from 1±0.1 GPa. This meant that 

the continuous specimens of equal volume of infill showed a lower effective modulus. The 

test results have been tabulated in this section to aid comparison.  A stress-strain plot for 

the patterned and continuous specimens in Figure 35 illustrates the elastic and plastic 

region before fracture. The ultimate strength of Hexagonal infill (HI) patterns was 28.1 

MPa at 4.5% strain and the ultimate tensile strength of its corresponding continuous (CHI) 

sample is 16.7 MPa at 7.3% strain. The equivalent continuous patterns withheld a lesser 

force than the infill specimens withheld. The Force vs Displacement diagram in Figure 36 
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depicts the forces applied during the tensile test. The continuous (CHI) model had a single 

layer of diagonally oriented fibers and hence were weaker than the infill specimens (HI).  

 

Figure 35: Stress-Strain curve for Hexagonal specimens. 

 

Figure 36: Force-Displacement curve for Hexagonal set. 
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The circular infill specimens had an average effective elastic modulus of 1.6±0.2 

GPa, whereas the corresponding continuous (CCS) specimen set had an average effective 

elastic modulus of 0.99±0.1 GPa. The maximum force applied during the test for samples 

was around 400 N as shown in Figure 37. However, in contrast to the previous case, the 

equivalent volume continuous (CCS) samples failed at a similar value of strain as that of 

the infill specimens. Figure 38 shows the stress-strain plots for CS and CCS specimen set. 

Even though both the geometries failed at a similar value of displacement, the maximum 

stress for CS specimens is more than the CCS set.   

 

Figure 37: Force-Displacement curve for Circular Patterns. 
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Figure 38: Stress-Strain curve for Circular samples. 

 

Figure 39: Comparison of Stress-Strain curves. 
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samples did not have a plastic region on the stress-strain curve suggesting brittle behavior. 

Figure 39 shows a comparison of the stress-strain curves of all the specimens. The infill 

geometries (CHI and HI) are stiffer (higher effective modulus) than their corresponding 

continuous geometries (CS and CCS) and withstand higher values of stresses. Table 7 

summarizes the test data for all of the tested samples. CS samples had highest effective 

modulus and showed similar tensile strength as that of the HI samples.   

Table 7: Comparison of test data for different samples. 

 

Maximum 

Force Applied 

(N) 

Ultimate 

Strength 

(σut) (MPa) 

Ultimate 

Strain 

(εut) 

Effective 

Modulus 

(GPa) 

Continuous (C) 724 27 0.06 1 ± 0.1 

Hexagonal Infill (HI) 301 28.1 0.045 1.26 ± 0.25 

Hexagonal Continuous (CHI) 285 16.7 0.0726 1 ± 0.1 

Circular Infill (CI) 426 24.9 0.027 1.6 ± 0.2 

Circular Continuous (CC)   407 16.9 0.027 0.99 ± 0.1 

 

Analyzing the fracture of the specimens during the test showed stress whitening in 

the load carrying features and eventual fracture. Further examination of the crack and 

fracture pattern suggested that the patterned parts fractured at intersection or junction 

points in the infill pattern. Since the path followed by the extruder while printing the pattern 

is a time-optimized path and not a continuous path, whenever the extruder joins one end of 

the filament to another feature of the pattern, a junction or intersection is created. Since 
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this point is not a continuous point, the bonding of the filament over both the features may 

not be perfect while the part solidifies. This imperfect bonding creates discontinuities. In 

case of the hexagonal pattern, junction points are where one side of the hexagon meets 

another hexagon, where the fracture occurred. In addition, primary fractures occurred in 

sides of the gage length. This section though continuous has a diagonal infill pattern, which 

is not the strongest orientation [23] since its direction is not parallel to the stress axis. 

Another reason for the fracture was imperfect interlayer bonding. The fractured specimens 

are shown in Figure 40. Since the hexagonal specimen did not break completely, the 

fracture points are marked with a line in Figure 40.  

 

Figure 40: Fractured Specimens: (a) Continuous (C), (b) Hexagonal Infill (HI), (c) 

Circular Infill (CI), (d) Circular Continuous (CC), (e) Hexagonal Continuous (HC). 

    a                       b                   c                   d                   e                
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The continuous specimens on the other hand fractured along a 45º line (same 

direction as the infill). The gage section consisted of only a single layer of material and 

hence the fracture was governed by the direction of the fibers. However, the continuous 

specimens had imperfections in them, namely small areas where inter-filaments 

delamination occurred. This manufacturing defect was present in almost all specimens. All 

the continuous specimens broke along these delaminations (which represented imperfect 

bonding) and the crack propagated along the direction of the infill causing a lateral 

separation between the adjacent filaments. Further fractures occurred along the sides of the 

geometry. Since the region representing the continuous volume consists of only a single 

layer of material in a 45º direction, the inter-filament strength is weakened and therefore 

the continuous specimens failed at lower value of force. One noteworthy observation is 

that for all the continuous specimens, for all the samples, the failure and failure mode was 

governed by defects. The fracture mode of the continuous (CCS) specimens was similar to 

those mentioned earlier i.e. along the 45º direction. For the circular infill (CS) specimens, 

the part failed transversely across the least cross-sectional area. 

3.2.2 Finite Element Analyses 

The final post-print dimensions were recorded and a new CAD model was designed 

for each set based on these new dimensions. These as-built models were analyzed in 

ANSYS© and Abaqus©. Since normal stresses were obtained from the experimental 

calculations, normal stresses were considered in the analyses. The stress results from both 

the FEA solvers, were similar, such that the stress-strain curves from both FEA solvers 
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were coincidental, therefore, only the results from ANSYS are presented, unless otherwise 

necessary. The stress plots are also truncated to limit the stress comparison in the elastic 

region. Consider the continuous (C) specimen used for deriving material properties. The 

stress at 1.5% strain from the tensile test was calculated to be 13.9 MPa. Using the BIM, 

the yield stress calculated in Abaqus© and ANSYS© was 21% and 24% more than the 

experimental value. Figure 41 shows the stress strain plot of FEA simulations and 

experimental results. Using DIM in this analysis led to a negative error of 45% with the 

experimental values. The normal stress plot from ANSYS© and Abaqus© for (C) model is 

shown in Figure 42 and Figure 43 respectively.  The stress plots depicted stress 

concentration in areas where actual failure occurred.  

 

Figure 41: Stress-strain plot for C samples: Experimental and Simulated 
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Figure 42: Normal stress plot of continuous (C) sample from ANSYS©. 

 

Figure 43: Normal stress plot of continuous (C) sample from Abaqus©. 

For the as-built hexagonal infill geometry, the stress at 1.5% strain from FEA is 

11.9 MPa from ANSYS© and 11.2 MPa from Abaqus© using the DIM. This is lesser than 

the corresponding stress from experimental results. The stress at 1.5% strain using BIM is 

23.8 MPa from ANSYS© and 22.7 MPa from Abaqus©, which is more than the 

corresponding experimental results. Therefore, FEA predicts that specimen can withstand 

higher values of stresses than actual while using BIM and that the specimen can withstand 
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lesser stress values than actuality when used with DIM. Thus, FEA is not able to predict 

the yield stress values reliably, with bulk or derived material properties models. Similar is 

the case for stress at 1% strain. Figure 44 shows the stress-strain curves for experimental 

and simulation results. For the results of yield strain, the errors in values of strain though 

present, were considerably small. The stress contour plots from the FEA solvers can be 

used to visualize the position of maximum stress, which is in accordance with the 

experimental values. The normal stress plots for HI samples from both the solvers using 

derived properties are shown in Figures 45 and 46.  

 

Figure 44: Stress-strain plot for HI samples: Experimental, BIM and DIM. 
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Figure 45: Normal stress plot of HI sample from ANSYS©. 

 

Figure 46: Normal stress plot of HI sample from Abaqus©. 

In case of the equivalent volume (hexagon) continuous (CHI) samples, FEA from 

both the solvers over predicted the stresses when bulk properties were used. Nevertheless, 

the yield stress values using the derived material properties were within a close range of 

the experimental values. Figure 47 shows the stress-strain curves; the results using DIM 
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are close to experimental results. It can be seen from the figures that the stresses are 

concentrated in the center of the gage section, where the fracture occurs. However, FEA 

may not be able to depict the failure mode unless further intensive analysis is conducted. 

The stress plots using derived properties are shown in Figures 48 and 49.  

 

Figure 47: Stress-strain plot for CHI samples: Experimental, BIM and DIM. 

 

Figure 48: Normal stress plot of CHI sample from ANSYS©. 
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Figure 49: Normal stress plot of CHI sample from Abaqus©. 

 

Figure 50: Normal stress plot of CS sample from ANSYS©. 

 

Figure 51: Normal stress plot of CS sample from Abaqus©. 
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Figure 52: Stress-strain plot for CS samples: Experimental, BIM and DIM. 

In case of Circular-straight (CS) samples as well, using BIM, FEA over-predicted 

the results by as much as 70%. The difference in stresses at 1% strain, of experimental and 

simulation results was about 55%; BIM results showing 25.8 MPa and experimental results 

showing 16.6 MPa. However, the DIM results were in excellent agreement with the 

experimental results until 1.5% strain. The stress-strain curve using DIM model strong 

adhered to the experimental data. Errors between experimental and simulation results were 

as low as 4%, can be found in Figure 52. From the FEA stress plots in Figure 50 and Figure 

51, we can see that, stress concentration occurs in areas of least cross-section, which is 

where the fracture initiated. Thus, stress plots accurately depict the stress concentrations in 

the specimen.  

With the equivalent volume continuous (CCS), yield stress is about 20% less than 

the experimental results when DIM is used. An error of 30% is seen when bulk material 
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properties are used. Since the facture in the continuous samples is governed by cracks along 

the 45º fibers, the FEA stress plot cannot be used to visualize the failure in case of 

continuous specimens.  Figures 53 and 54 give the FEA stress plots for CCS specimens. 

All the stress and strain results from the FE analyses are listed in Table 8 alongside the 

experimental results. Since the stress plots of FEA using bulk properties are similar to the 

ones obtained using derived properties, they have not been presented in this section.  

 

Figure 53: Normal stress plot of CCS sample from ANSYS©. 

 

Figure 54: Normal stress plot of CCS sample from Abaqus©. 
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Table 8: Comparison of FEA stress results with experimental results. 

  

Experi-

mental 

(MPa) 

DIM BIM 

ANSYS© 

(MPa) 

Abaqus© 

(MPa) 

Error 

ANSYS© 

(MPa) 

Abaqus© 

(MPa) 

Error 

C 

σ1.5% 13.9 7.6 7.1 45% 17.3 16.9 24% 

σ1% 9.4 5.3 4.9 43% 11.5 11.1 18% 

HI 

σ1.5% 18.6 11.9 11.2 35% 23.8 22.7 28% 

σ1% 12.1 8 7.5 33% 16.1 15.8 33% 

CHI  

σ1.5% 14.1 11.8 12.7 16% 20.6 21.5 45% 

σ1% 10 7.9 8.7 20% 13.8 15.1 38% 

CS 

σ1.5% 23.2 22.3 22.1 3% 39.5 38.2 70% 

σ1% 16.6 14.6 13.5 12% 25.8 24.5 55% 

CCS 

σ1.5% 14 10.5 11.5 6% 18.2 18.9 30% 

σ1% 8.8 6.2 7.1 19% 11.1 12 26% 

 

Table 8 compares all the results of the simulations with the experimental results. 

σn% represents stress (σ)  at n% strain. The experimental results are considered as 

benchmark and represented as neutral, uncolored cells. The results of simulations that are 

in acceptable range of the experimental results are colored in green. The results with large 

errors with respect to experimental values are colored in a shade of red. 
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To summarize, the results predicted by FEA were not entirely in accordance with 

the experimental results. Using the DIM, FEA from both the solvers under predicted the 

stress and strain values for different samples, namely the continuous, hexagonal and 

circular patterns. It is important to note that for the hexagonal continuous (CHI) samples, 

FEA results were close to the experimental results (6% error). The FEA results for the 

circular infill samples were under predicted by 4% - 12%. This indicates that geometry 

plays a role in the observed errors. On the other hand, using BIM, the stress results of FEA 

were consistently larger than the experimental results with large errors percentages (30% 

to 70%). The continuous samples’ FEA results were the least erroneous with about 15% of 

error. These errors in results of stress decreased at smaller displacements i.e. at 1% strain.  

 The Hexagonal Infill specimens failed at the junction point first, as shown in Figure 

40, shortly before fracturing on the sides. FEA could not predict the failure within the infill 

pattern for this specimen. On basis of the stress plot, the hexagonal infill pattern, should 

have failed only in the sides, which is not the case. For the hexagonal continuous and the 

circular continuous sample, at even though the stress concentration is in the gage section, 

the current analysis could not predict failure along the 45º fiber direction. Nevertheless, the 

completely continuous and the circular infill sample failed at points where stress 

concentration was maximum in the FEA stress plots. Thus, FEA was able to predict failure 

modes in samples having continuous geometries. The current analysis is not entirely 

reliable when compared with the experimental results of different FDM samples. 

 From the above analyses, we can conclude that the FEA simulations that were 

carried out were unpredictable and therefore unreliable. One could propose that if all the 
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results were over predicted or if all the results were under predicted a certain correction 

factor could be used in simulations. However, this was not the case while using BIM or 

DIM. This analysis paves us a way to quantify the error in simulation results and 

experimental values when basic simulations are performed. An intensive research is 

required to effectively analyze FDM parts using FEA or other methods of analysis. The 

next step is to develop a material model to account for the anisotropy of the FDM model. 

Another approach that can be studied is to use the composite layer representation in the 

FEA solvers to represent the layers of a FDM part. This can enable to represent the layer 

orientation of the FDM parts and analyze them. Chapter 4 discusses these approaches and 

the results of performing these analyses. Four different infill patterns are also included in 

the chapter for a more extensive analysis.  
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CHAPTER 4: FEA SIMULATIONS WITH ADVANCED MATERIAL MODELS 

A better FEA model is needed to accurately represent the behavior of FDM parts. 

Isotropic FEA models used in the precious chapters were not reliably in agreement with 

the experimental values. Therefore, as-built models of additional infill patterns are also 

conducted, along with analyses of a completely solid model. A need arises to conduct a 

detailed analysis that would be decisive to validate results of the FEA simulations of AM 

parts. FEA using isotropic model is performed on these geometries. Since the FDM parts 

behave as anisotropic materials, FEA using an orthotropic model is conducted and 

eventually compared to the experimental results. A composite analysis is also conducted 

for all the different geometries; with the view that a composite layup might better predict 

the layered FDM part. The methodology used is similar to that followed in Chapter 3; to 

design geometry, print, develop FEA model, analyze, and validate with experimental 

results. The following sections talk about the specimen development, analyses 

methodologies, comparison metrics and the results of the study.  

4.1 Methodology  

As mentioned earlier, the methodology followed in this section is similar to the one 

followed in Chapter 3. A 3D CAD model is created for each of the infill pattern, such that 

the geometry accommodates the infill pattern and can be subjected to tensile testing. Along 

with hexagonal, circular straight and their corresponding continuous specimens, ‘Linear 

(Straight and Cross-Hatch)’, ‘Circular Packed’, ‘Hilbert Curve infill’, and ‘Infill-less’ 

patterns are designed.  These geometries are printed with the same MakerBot© printer. The 
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data is post-processed to be compared with the simulation results. Since G-code based 

models were prohibitive, solid continuous models depicting the infill were used. The two 

analysis-approaches used in Chapter 3 were applied to the new geometric specimens: 

1. Isotropic model using properties of bulk ABS material (BIM).  

2. Isotropic model using derived properties from experimental tests (DIM).  

However, the representation does not completely adhere with the structure or 

mechanical behavior of FDM parts, therefore an anisotropic approach is adopted. A set of 

tensile test samples is used to derive the orthotropic properties, by printing the sample in 

three mutually perpendicular orientations. Further directional material properties are 

calculated and used as input to perform an FEA using orthotropic material model. Next 

approach includes using a composite analysis with orthotropic properties. These analyses 

are performed on all of the specimens. Results are compared with the experimental data, 

normal stresses being metric of comparison.     

4.1.1 Geometry  

In addition to the four geometries developed earlier, five new specimens as 

mentioned are designed. Each pattern type has an infill specimen and a corresponding 

equivalent volume continuous specimen. Therefore, the final list of the specimens is as 

follows: 

1. Hexagonal – Infill (HI) and Continuous (CHI) 

2. Hilbert Curve – Infill (HC) and Continuous (CHC). 
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3. Circular: Straight Arrangement – Infill (CS) and Continuous (CCS).    

4. Circular: Packed Arrangement – Infill (CP) and Continuous (CCP).    

5. Linear: Straight Arrangement – Infill (LS) and Continuous (CLS).    

6. Linear: Cross-Hatch Arrangement – Infill (LC) and Continuous (CLC).    

7. Infill-less (I) 

8. Completely continuous (C) 

Since these specimens will be subjected to tensile testing, a typical tensile-test 

dogbone geometry is used. The dogbone is designed similar to the specifications stated in 

ASTM D638. These geometries were designed in Solidworks© as solid continuous models. 

The maximum dimensions of the dogbones were 170 × 35 × 2 mm and the gage dimensions 

are 50 × 20 × 2 mm, decided on basis of properly accommodating the infill features. The 

design process for these specimens is similar to the one followed in Chapter 3. To ensure 

repeatability a sample set of 20 specimens for each pattern was selected. The continuous 

geometries were designed so as the gage section would have a continuous infill, which 

would be equivalent in volume with the corresponding infill pattern. The infill pattern 

accounted to 20% to 30% of the volume in the gage section; this resulted in the continuous 

section being only a layer thick. The continuous patterns designed for the new infill pattern, 

taking into account the printing abilities of the printer, turned out to be similar to the two 

corresponding samples printed earlier. Hence, these samples would not be printed again. 

In addition to these geometries, another set of dogbones was designed to derive orthotropic 
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properties.  A set of 10 parts each were printed in three different orientations: X, Y and Z 

to evaluate the properties in these directions. Figure 55 to Figure 60 depict the geometries.  

 

 

Figure 55: Circular – Packed Infill (CP) specimen. 

 

Figure 56: Linear – Straight Infill (LS) specimen. 
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Figure 57: Linear – CrossHatch Infill (LC) specimen. 

 

Figure 58: Hilbert Curve Infill (HC) specimen. 

 

Figure 59: Infill-less (I) specimen. 
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Figure 60: Orthotropic (Printed in three directions: CX, CY, CZ) specimen. 

4.1.2 Printing Parameters 

These CAD models were converted into ‘STL’ file format for the printer. The 

MakerBot© Replicator 2X printer was used, along with ‘Slic3r©’ as the slicing software. 

The material used in this part of the study was white ABS (Acrylonitrile Butadiene Styrene) 

as well. The printing parameters for all the parts is provided in Table 9. All the 

corresponding continuous parts had geometries similar to those designed in Chapter 3 and 

hence they were not printed again. The parts were printed with a 100% infill with a 

rectangular fill pattern without a raft. The orthotropic part was printed in X direction with 

the fibers aligned in X direction to obtain CX parts; the same part was printed with the fiber 

orientation being in the Y direction to get CY. Similarly, the orthotropic dogbone was 

printed vertically with fiber orientation along the width to get CZ parts. The orientation of 

parts is shown in Figure 61. For the CZ samples, which were built in Z direction, support 

material had to be printed to enable efficient prints. 
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Figure 61: Orthotropic samples printed in three orientations. 

Table 9: Printing Parameters for dogbone geometries. 

 

Layer Height 

(mm) 

Filament Width 

(mm) 

Required 

Support 

Hilbert Infill (HI) 0.2 0.67 No 

Circular Packed Infill (HI) 0.4 0.42 No 

Linear Straight Infill  0.2 0.67 No 

Linear CrossHatch Infill  0.2 0.67 No 

Infill-less  0.2 0.67 No 

Continuous X 0.2 0.67 No 

Continuous Y 0.2 0.67 No 

Continuous Z 0.2 0.67 Yes 
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4.1.3 Tensile tests 

The tensile tests were performed on ‘Modular under Microscope Mechanical Test 

System – μTS’ by Psylotech©. The samples were subjected to a displacement controlled 

tensile loading at a constant speed of 50 µ/s until fracture. The data from the orthotropic 

samples provided material properties for the orthotropic model, whereas the data from test 

samples was used to validate the simulation results.  

4.1.4 FEA Simulations  

Once these specimens were printed, as-built CAD models are developed that take 

into account the dimensional changes of the final part. Since analyses using the isotropic 

models are already completed for C, HI, CS, CCS and CHI, isotropic analyses are carried 

out on the new infill patterns only. The first being FEA using isotropic properties of bulk 

ABS material properties (BIM) and the second approach being, analysis using isotropic 

model using experimentally derived properties (DIM). These properties were derived in 

Chapter 3. The third approach is using an orthotropic material model to simulate the tensile 

loading. This model should better represent the anisotropic behavior of FDM parts. The 

engineering constants required for the material model are derived from the experimental 

test samples (CX, CY, and CZ). Since these are derived properties, this approach is referred 

to as orthotropic derived model (ODM) henceforth. These analyses are performed in both 

ANSYS© and Abaqus©. A refined mesh was defined using the adaptive mesh feature in 

ANSYS© to mesh the fine features of the infill effectively. This mesh was recreated in 

Abaqus© using locally governed mesh tool. Quadratic tetrahedral elements were used in 
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both the solvers.  The tensile test is simulated similar to that described in Chapter 3. Figure 

62 and Figure 63 depict the meshes for two of the new infills. Rest of the meshes can be 

found in Appendix A. 

 

Figure 62: Mesh model for Linear Straight infill. 

 

Figure 63: Mesh model for Hilbert infill. 
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Figure 64: Ply-stack plot for composite analysis of HI specimen. 

The fourth approach uses a composite layup to define the finite element model for 

the part. In a composite analysis, the part is divided into a set of plies or lamina, stacked 

together to form a composite. This analysis enables us to set up fiber orientations within 

each lamina, so that the directional layup of fibers is taken into account while analyzing 

the part. Since the FDM parts are built in layers (analogical to laminae), a composite 

analysis is conducted on as-built parts to examine if such an analysis can accurately predict 

behavior of FDM parts. The as-built models are divided into the appropriate number of 

composite plies while specifying the thickness of each ply. The models built with 0.2 mm 

layer height have a ply thickness of 0.2 mm with 10 layers stacking up to the 2 mm height 
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of the part. Similarly, 0.4 mm layer height parts have a ply thickness of 0.4 mm. The fiber 

directions are specified as 45º/-45º every alternate layers, just as the actual parts. A solid 

composite model is selected. Figure 64 shows the ply-stack plot for 10-ply HI specimen. 

In addition to this, in a composite analysis, tetrahedral elements cannot be used for meshing 

the geometry (as each ply is treated as a 2D lamina), but only brick elements can be used. 

The parts that were not automatically meshed as brick elements are partitioned to achieve 

a brick meshing. Since the equivalent volume, continuous specimens are completely 

similar with only dimensional differences, only CHI is analyzed and discussed.  The 

composite analyses are however performed only in Abaqus©, since ANSYS© only permits 

using shell models for composite analysis. 

4.1.5 Dimensional Sensitivity of FEA simulation. 

The dimensional accuracy of the FDM printer used is 0.1 mm. The standard 

deviation of the dimensions of the set of parts were within ±0.1 mm. In order to check the 

sensitivity of the FEA simulations of these changes in dimensions, a sensitivity check was 

performed. The FEA was performed using a DIM model, on HI sample set. Two models 

were developed representing the maximum dimensional change in the infill features (the 

filament width and the polygon size). The original filament width was 0.7 ± 0.1 mm. and 

the polygon size was 10 ± 0.1 mm. However, the FEA simulations did not show any 

considerable differences in the results of the two models used as compared to the base 

model. Table 10 summarizes the parameters if this analysis.  
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Table 10: Dimensional sensitivity analysis. 

 Original model (HI) Model 1 Model 2 

Filament width (mm) 0.7 0.8 0.6 

Polygon size (mm) 10 10.1 10.2 

Error in results (%) - < 2% < 1% 

 

4.2 Results  

The final specimens and infill patterns are depicted in Figure 66. The orthotropic 

parts built in the Z orientation were built with supports, which were removed by sawing, 

with no damage to the part. Figure 65 shows the parts used for deriving orthotropic 

properties. The behavior of the parts is discussed in brief along with the comparison of the 

infill patterned parts with the corresponding continuous parts.  

 

Figure 655: Final printed parts: CC (a), CX (b), CY(c), CZ (d). 

         a               b               c               d                  
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Figure 666: Final printed parts: Circular Packed (a), Circular Straight (b), Linear 

Straight (c), Linear Cross-Hatch (d), Hexagonal (e), Hilbert Curve (f). 

4.2.1 Experimental Results.  

Similar to the previous analyses, the tensile test data was post processed; force-

displacement curves, stress-strain curves and effective moduli are evaluated for each part 

as average of the 20 samples for that part. The stress-strain data for each of new infill 

pattern and their corresponding continuous samples are presented below. Figure 67 shows 

the stress-strain curve for the orthotropic parts; this is used for deriving the orthotropic 

material properties.  

       a               b                 c                  d                 e                 f 
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Figure 67: Stress-Strain curve for Orthogonal Samples. 

It is evident from Figure 67 that the CX part has a higher strength followed by CY 

and CZ. The elastic moduli are calculated as the slope of each of the curves. The derived 

engineering constants are presented in Table 11. Density was not derived; Young’s 

Modulus was calculated by Eq. 14, 

E =
δσ

δε
                                                                         (14) 

σ = Stress, 

ε = Strain, 

E = Young’s Modulus, 

ν = Poisson’s Ratio. 

Shear modulus (G) was calculated using Eq. 15. 
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G =
E

2(1 + ν)
                                                                    (15) 

Table 11: Orthotropic material properties derived from experimental testing. 

Material Property of ABS Value 

Young’s Modulus in X (E
x
) 1.1 GPa 

Young’s Modulus in Y (E
y
) 0.9 GPa 

Young’s Modulus in Z (E
z
) 0.88 GPa 

Poisson’s Ratio (ν
xy 

= ν
xy 

= ν
xy

) 0.394 

Shear Modulus (G
xy

) 0.39 GPa 

Shear Modulus (G
yz

) 0.32 GPa 

Shear Modulus (G
xz

) 0.31 GPa 

Density 1020 kg/m
3
 

 

These properties were used as input to the material model in FEA simulations. The 

stress-strain data for rest of the samples is provided below from Figure 68 to Figure 71.  
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Figure 68: Stress-Strain curve for Hilbert Curve (HC & HCI) and Infill-less (I). 

 

Figure 69: Stress-Strain curve for Circular Packed Infill (CP) Pattern. 
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Figure 70: Stress-Strain curve for Linear Straight Infill (LS) Pattern. 

 

Figure 71: Stress-Strain curve for Linear Cross-Hatch Infill (LC) Pattern. 
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It is evident from the results that the infill specimens withstood higher amounts of 

stress than their corresponding equivalent volume samples; even though both the samples 

of a pattern set behaved similarly in the elastic region. Stress values were calculated based 

on the least cross-sectional area for all the samples. The infill specimens also sustained 

higher strains before fracture, as compared to their equivalent continuous samples. It is 

important to note that the LS specimens showed brittle behavior, as opposed to the other 

infill specimens, which showed considerable plastic deformation as well. The LS and LC 

specimens were equally strong, but were weaker than HC, CP and I specimens.  

Table 12: Comparison of test data for different samples. 

 

 Ultimate 

Strength 

(σut) (MPa) 

Ultimate 

Strain (εut) 

Stress at 2 % 

strain (σ2%) 

(MPa)  

Effective 

Modulus 

(GPa) 

Hilbert Curve  

(HC) 28.7 0.036 25.3 1 ± 0.1 

(CHC) 15.1 0.036 15.7 - 

Circular Packed  

(CP) 25.1 0.04 22.7 1.26 ± 0.25 

(CCP) 16.7 0.027 18.9 - 

Linear Straight  

(LS) 25 0.029 22.6 1 ± 0.1 

(CLS) 16.7 0.027 18.9 - 

Linear 

CrossHatch  

(LC) 18.85 0.06 21.7 1.6 ± 0.2 

(CLC) 16.7 0.027 18.9 - 

Infill-less  (I) 32 0.036 29 0.99 ± 0.1 
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Table 12 summarizes the experimental data as per the respective specimens. The 

continuous samples for each of the samples shared the same dimensions as the continuous 

samples printed for Chapter 3. Therefore, the test data from the Chapter 3 is reused for 

comparison. It is important to analyze and discuss the fracture patterns of different 

geometries, to compare the results from FEA simulations. Figure 72 presents the fractured 

specimens. Every fracture point for each specimen is marked by red line.  

 

Figure 72: Final printed parts: Hilbert Curve (a), Hexagonal (b), Linear Straight 

(c), Linear Cross-Hatch (d), Circular Straight (e), Circular Packed (f). 

       a                  b                   c                    d                 e                   f 
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Consider the HC specimen, which fractured only on the side structures; the infill 

feature was elastic as a whole and did not fracture. In case of LS pattern, first, the infill 

pattern fractured at the joints between ends of the infill fibers and the solid part; eventually 

fracturing at the sides as well. The LC specimens fractured in a complex way, with the infill 

pattern fracturing first along the fibers and later the sides fracturing with opposite sides 

fracturing at a 45º pattern. The CP specimens fractured in the infill region at the least cross-

sectional area first and later along the sides. The I specimens fractured with opposite sides 

fracturing along a 45º line. FEA simulations should be able to predict such behaviors.  

4.2.2 FEA Simulations – Isotropic Models 

This sections talks about the FEA results of simulations performed using the 

isotropic material model. Since the HI and CS and the continuous specimens have already 

been analyzed under isotropic models, only the new specimens have been analyzed and 

discussed in this section. The as-built models of these specimens were analyzed in Abaqus© 

and ANSYS© and normal stresses were considered for comparison. Stress plots have been 

truncated since only elastic region is compared. Since the stress plots from both the solvers 

are similar, only stress plots from ANSYS© analyses have been shown. Stress plots from 

Abaqus© can be found in Appendix D. Additional, ANSYS© stress plots can also be found 

in Appendix C. Considering the Hilbert Curve (HC) results from Figure 73; it is evident 

that the BIM analyses over-predicted whereas the DIM under-predicted (by a huge margin). 

Stress results using the BIM are closer to the experimental data as compared to the DIM. 
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Using BIM, we see an 8% - 15% of error, with strong adherence in the initial half of the 

stress-strain curve; the DIM results present a 40% - 45% error throughout the curve.   

 

Figure 73: Stress-strain plot for HC: Experimental, BIM and DIM results. 

 

Figure 74: Stress plot for HC: left – FEA contour plot, right – actual fractured part. 
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Figure 74 shows the stress contour plot and the actual fractured specimen. It is 

evident that maximum stress occurs in the side members, where the fracture actual 

happened and that the infill features carry very little stresses, which in physical testing did 

not break either. The fracture points are circled in Figure 74. The stress plots from both the 

models is similar with only difference being the magnitude of stress. Hence, only the stress 

plot from DIM is shown. This is applicable for all the specimens. Similarly, with the I 

specimens, BIM agrees strongly with the experimentally data (4% - 9% error). 

Nevertheless, DIM under predicted the data by about 50% as seen in Figure 75. The stress 

plot in Figure 76 also shows high stress concentrations in the shoulders, however, it is not 

possible to say if FEA would predict the exact point of fracture (like opposite shoulders 

fracture along the inclined line) without further analysis.  

 

Figure 75: Stress-strain plot for I: Experimental, BIM and DIM results. 

0

5

10

15

20

25

30

0.0% 0.5% 1.0% 1.5% 2.0%

S
tr

es
s 

(M
P

a)

Strain

I Results - Experimental vs FEA

Experimental Derived Isotropic Bulk



101 

 

 

Figure 76: Stress plot for I: left – FEA contour plot, right – actual fractured part. 

 

Figure 77: Stress-strain plot for CP: Experimental, BIM and DIM results. 
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Figure 78: Stress plot for CP: left – FEA contour plot, right – actual fractured part. 

The CP results are shown in Figures 77 and 78. The stress-strain plot in Figure 77 

shows that results from DIM are in close agreement with the experimental data. The DIM 

results stand in agreement throughout the stress-strain curve with a 1% to 6% of error; 

which considering the fact that a non-homogeneous FDM part is being analyzed, are 

acceptable results. Similarly, the stress plot shows high stress concentrations in areas of 

least cross-section, which is where the fracture initiated in physical tests. We can see in 

Figure 78 that the FEA model has high stress concentrations in areas where the fracture 

actually occurred, leading us to infer that FEA can be used as a stress visualization tool. 

The BIM model however, deviated highly from the actual results by as much 65%.  
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Figure 79: Stress-strain plot for LS: Experimental, BIM and DIM results. 

 

Figure 80: Stress plot for LS: left – FEA contour plot, right – actual fractured part. 
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Figure 81: Stress-strain plot for LC: Experimental, BIM and DIM results. 

 

Figure 82: Stress plot for LC: left – FEA contour plot, right – actual fractured part. 

In case of both LS and LC specimens, the error between DIM results and 

experimental data was higher as compared to the CP specimen. For both LS and LC 
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showed 30% - 40% error. DIM on the other hand showed 20% to 30% error as seen in 

Figure 79. Figure 80 shows the stress plots and the actual fractured LS part. The actual part 

fractured at the junction points at the ends of the infill pattern and later broke at the 

shoulders. However, the junction points in the stress plots have minimal stress 

concentrations. This is likely an artifact of the inadequacy to represent imperfect bonding 

at junction points in the FEA model. Similarly, for the LC specimens, the infill features are 

predicted to have low stress concentrations, but we can see from the fractured parts the 

infill patterns also fractured. Figure 81 shows comparison of experimental and FEA results 

for LC specimens. Figure 82 shows stress plots for LC specimen. Table 13, summarizes 

the stress values for each specimen for FEA and the errors with respect to (wrt) 

experimental results. Stresses at 1% and 2% strain, are presented.  

Table 13: Summary of FEA results. 

 

DIM BIM 

Stress at 

1% strain 

(MPa) 

Stress at 

2% strain 

(MPa) 

Error wrt 

Experimental 

results 

Stress at 

1% strain 

(MPa) 

Stress at 

2% strain 

(MPa) 

Error wrt 

Experiment 

results 

HC 7 15 40% 15.2 29 8% 

I 8.7 - 50% 14.4 - 5% 

CP 10.8 21.8 < 1% 18.7 37 75% 

LS 10.1 - 30% 20.3 - 40% 

LC 7.3 - 32% 14.3 - 30% 
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It is evident from results that, even though FEA simulations are in accordance with 

some of the samples, they deviated from actual results in most of the cases. BIM 

consistently over-predicted and DIM consistently under-predicted; some simulations were 

in agreement using BIM whereas others were in accordance while using DIM. The 

following subsections discuss the results of the orthotropic and the composite models.  

4.2.3 FEA Simulations – Orthotropic and Composite Models  

The orthotropic analyses take into consideration the anisotropy of the FDM parts 

to an extent. Even though a complete anisotropic model is not derived, an orthotropic 

analysis should predict results better than the previous FEA models. On the other hand, the 

composite analysis should take into the effects of the layered structure of FDM parts. The 

results from both the FEA models: ODM and CLM are discussed simultaneously for a 

given specimen. The results from ODM of both ANSYS© and Abaqus© are similar and 

hence only ANSYS© results are presented (Stress-Strain curves coincide for most 

specimens, stress plots are identical), unless in cases where there are considerable 

differences in results from both the solvers. Separate results are presented wherever 

necessary. The stress contour plots from FEA simulation using both the models are similar 

to the ones discussed in the previous section. Therefore, they are not presented in this 

section but can be found in Appendix C and Appendix D.  

The first specimen is the C specimen; Figure 83 shows a cone of results from the 

FEA simulations, including ODM and CLM results. ODM under-predicted the results just 

like DIM. Even though they were slightly better than the DIM results, were far off from 
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the experimental data. CLM also failed to give accurate results with higher error values 

than ODM results. The ODM show considerable differences in results from both the solvers 

as well.  The stress plots however, of both the models show stress concentration in areas 

where the actual fracture occurs. However, whether or not these simulations can predict 

the zigzag nature of the fracture is difficult to state without further analysis.   

 

Figure 83: Stress-strain plot for C: Experimental and Simulated results. 
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Figure 84: Stress-strain plot for HC: Experimental and Simulated results. 

 

Figure 85: Stress-strain plot for I: Experimental and Simulated results. 
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The HC and I specimen results are similar as well, ODM and CLM results being 

better than DIM results however, still way off from the actual results. Both the models 

under-predict the results, the stress plots being similar to the previous models. Figures 84 

and 85 show the stress-strain results of simulations and experimental results for HI and I 

specimens respectively.   

In case of HI samples, even though the ODM under-predicted the results, the model 

resulted in better accuracy as compared to the DIM results. The errors between the 

experimental values reduced to about 26% for ODM results. CLM however did not result 

in improvement of the stress values, but were very similar to the ODM results. The stress 

strain results can be found in Figure 86. The stress plot is similar to Figure 45 presented in 

Chapter 3, i.e. it did not account for the fracture in the infill feature or junction points.  

 

Figure 86: Stress-strain plot for HI: Experimental and Simulated results. 
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Figure 87: Stress-strain plot for LS: Experimental and Simulated results. 

 

Figure 88: Stress-strain plot for LC: Experimental and Simulated results. 
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Similar is the case with the LS and LC specimens, as shown in Figure 87 and Figure 

88 respectively, with ODM, the stress-strain curve from simulations moves closer to the 

experimental curve. There is a reduction in the percentage error, with the orthotropic model 

even though the errors are not within acceptable range. Around the 2% strain, the ODM 

results for LS coincide with the experimental results. The stress plots are similar to the ones 

as discussed in section 4.2.3. The CLM results however, deviated from the experimental 

and ODM values in a negative direction.  

In case of the CS and CP samples, the DIM results were quite close to the 

experimental results. The ODM results were even closer for both the samples as seen from 

Figures 89 and 90. The ODM stress-strain curve was within acceptable deviances of about 

1% to 8% from the experimental results for CS. It can be seen from Figure 90 that the 

ODM results were almost entirely similar in case of CP samples, such that the ODM stress-

strain curve from ANSYS© almost entirely coincided with the experimental results curve. 

However, the Abaqus© results using ODM showed higher deviations. Thus, we see a 

considerable difference between the results from different solvers (in this case, error 

between the solvers is more than the error between simulation and experimental results). 

The CLM results deviated farther away from the experimental results showing more 

percentage deviation than even the DIM results. The stress plots are similar to previous 

results hence the earlier discussions remain valid. The stress plots for CS specimen is 

similar to the plot shown in Figure 50, whereas the stress plots for CP specimens is similar 

to the plot shown in Figure 78. Additionally, the stress plots can also be found in Appendix 

C and Appendix D. 
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Figure 89: Stress-strain plot for CS: Experimental and Simulated results. 

 

Figure 90: Stress-strain plot for CP: Experimental and Simulated results. 
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Figure 91: Stress-strain plot for CHI: Experimental and Simulated results. 

In case of the CH samples, from Figure 91, CLM results show strong agreement 

with the experimental data, with the simulation based stress-strain curve completely 

coinciding with the experimental data until 1.5% strain. However, ODM results deviate 

from experimental data. Thus, this is the experiment predicting the model that predicts the 

experiment. This is the only case where CLM predicted more accurate results as compared 

to ODM. The stress plot shows similar stress concentration as shown in Figure 72, but 

might not be able to predict the angled fracture as seen in actual tests, until further analysis 

is conducted.  

Table 14 summarizes the results from simulations with the errors. Figure 92 

describes the error from the simulations with respect to the experimental data at 1.5% 

strain.  
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Table 14: Summary of FEA results. 

 ODM CLM 

 Stress at 

1% strain 

(MPa) 

Stress at 

1.5% strain 

(MPa) 

Error wrt 

Experiment 

Stress at 

1% strain 

(MPa) 

Stress at 

1.5% strain 

(MPa) 

Error wrt 

Experiment 

C 5.3 8.6 38% 5.3 7.9 43% 

HI 9 13.7 26% 8.6 13 30% 

CHI 9 12.9 10% 10 14.6 0% 

HC 7.8 11.8 41% 7.8 11 45% 

I 8 12.3 45% 8.6 12.9 42% 

CS 14.8 21.5 8% 13.3 20.1 14% 

CP 12.3 17.6 0% 8 13.6 28% 

LS 11.2 - 23% 10.2 - 30% 

LC 8.3 - 22% 7.7 - 29% 
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Figure 92: Summary of errors between FEA simulations and experimental results. 

From Figure 92, we can see that in most of the cases, FEA simulation results 

deviated from the experimental results. We can see from the figure that BIM consistently 
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over-predicted the results, meaning FEA predicted the part to be stronger than it actually 

was in physical tests (except in case of I specimen). BIM model showed huge deviations 

in most of the specimens, especially the infill specimens. The only cases when BIM model 

results were within acceptable regions were in case of HC and I samples. BIM results in 

case of HC and I models were more accurate than the rest of the models. In addition to 

these samples, the C sample was the only other case in which BIM were gave better results 

as compared with other models.  

On the other hand, DIM constantly under-predicted the results. DIM results for CP 

and CS were the closest to experimental values with deviations within the acceptable limit. 

In case of HI, LS, LC and CH samples, the stress-strain curve deviated from the 

experimental data up to 30%. Similar was the case of ODM, with results being under-

predicted throughout all samples expect CS, CP and CH. The ODM model results seemed 

like an improvement in DIM results, but still exhibited significant prediction errors in case 

of C, HC and I samples. However, in case of CS, CP and CH samples, the respective ODM 

stress-strain curves almost completely adhered to their respective experimental stress-

strain curves, thus, stating that and orthotropic FEA model is accurate with experimental 

values. From an overall perspective, we see that errors reduced with an orthotropic model 

in most cases, since the orthotropic model took the effects of anisotropy of the parts into 

consideration. However, a complex ODM resulted in only a slight improvement in results 

as compared to DIM. This can be associated with the fact that only a uniaxial tensile test 

was simulated. Therefore, Young’s Modulus in direction of loading (Ex) was the dominant 

property from the orthotropic matrix. It can be hypothesized that with a complex loading 
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scenario, ODM would provide far better results as compared to DIM. It is also important 

to note that in case of CP models, ANSYS© results were completely in agreement with the 

experimental data, however Abaqus© results of the same model deviated considerably. 

Similarly, Abaqus© results in case of CHI samples were more accurate as compared to 

ANSYS results. Thus, a difference between the results of different solvers is observed.  

The CLM results however, were generally inferior to ODM results, i.e. they showed 

more divergence from experimental data as compared to ODM results. Again, this was 

consistent throughout, with deviations being acceptable only in case of CS and CP (worse 

than ODM) but not in case of other specimens. In addition to this, CLM analysis showed 

large deformation which can be attributed to element meshing errors. CLM also takes a 

longer time to complete the analysis as compared to ODM and other models, yet fails to 

predict the results as accurately as ODM. The composite layup was employed with a view 

that it would take into consideration the layered structure and fiber orientation of FDM 

parts, therefore, predicting accurate results; but ODM provided better results. One 

explanation can be due to the type of analysis. In case of ODM analyses, the model is 

considered as a solid model with orthotropic material properties and assigned a particular 

material orientation. In composite layup, each ply (or layer) is considered as a lamina or a 

planar surface. The mesh elements are created on this surface and extruded with a finite 

thickness equal to the thickness of the ply. The results are depicted in a laminar sense; since 

a laminar representation is not an appropriate representation of the solid structure of FDM 

parts, we see an error in the results as compared to the ODM analysis. Laminar theory also 
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assumes perfect bonding between each layer of composite; however, this is not the case in 

actual scenario and can be a reason for the divergence from experimental data.  

As far as the stress contour plots are concerned, since the FEA simulation for a 

given sample stayed the same, with changes in only material models, the stress plots for a 

sample geometry were very similar, the only difference being the magnitude of the stresses 

developed. It was evident that FEA was able to predict the stress concentrations in most of 

the parts, be it continuous or infill samples. However, in case of more intricate infill 

samples, like HI, LS, LC, even though FEA predicted the stress concentrations in 

shoulders, it failed to depict the stresses developed in the infill features. The joints were 

the first to break in physical tests, whereas FEA simulations showed least stress 

concentrations in these areas. In addition, in case of CH and C where fracture occurred 

along the fiber direction, FEA cannot be used to predict such a fracture, until further 

analysis is conducted.  The stress plots from all the analyses can in found in Appendix C 

and Appendix D 

Observing the data in Figure 92, we can see that ODM results in case of CP, CHI 

and CS specimens are highly accurate. This is true in case of DIM results as well. ODM 

results for HI, LS and LC specimens show deviations from experimental data. This leads 

us to believe whether ODM predictions are accurate in geometries with continuous load 

bearing areas (CP, CS, and CHI). However, ODM results deviate heavily in case of C 

specimens, and hence the previous statement is refuted. Similarly, with BIM, the accuracy 

of prediction changes with geometries as evident in Figure 92.  



119 

 

We see that some FEA models predict the behavior of FDM parts accurately (with 

acceptable deviations), whereas in most of the cases, FEA simulations fail to predict the 

normal stresses in a typical uniaxial tensile test accurately. We observe that a given FEA 

model predicts the same test differently, and hence there is no certainty to propose a 

correction factor for these errors. Over-prediction in some models and under-prediction in 

others renders us to state that FEA is unreliable in case of simulating FDM parts under 

uniaxial loading. In addition to the type of FEA analysis, the accuracy of the results in some 

cases were also dependent on the FEA solvers. We also observe that the accuracy of the 

predictions of results also depends on the geometry of the part. Some infill pattern results 

were more accurate than others with the same FEA model were. It is necessary to look into 

this data to enable us to analyze FDM parts accurately. Chapter 5 lays down the conclusions 

based on the results from these studies. These conclusions are based on results from both 

Chapter 3 and Chapter 4. Chapter 5 also discusses the scope of future work in addition to 

the conclusions of this study.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusion 

A comparative study of FEA simulations and experimental data is performed. In order to 

compare this data, a set of different specimen geometries were designed and printed. These 

sets of parts were tested and these tests were simulated using different FEA models. The 

goal of this study was to compare FEA simulations of as-built models of FDM dogbone 

specimens with experimental test results. The conclusions from the results of this study are 

two fold and listed below. 

1. Higher Fidelity Material Models provide better results. 

As mentioned earlier, FDM parts exhibit anisotropy, therefore, considering this 

while simulating an FDM part is necessary. It is evident from the results that the 

Orthotropic Material Model consistently provided better results than both the 

Isotropic (derived) Material Models (with an exception in BIM for the I specimen).  

It is also seen that ODM also consistently produced better results than CLM. The 

orthotropic properties were also used in composite model, along with specifying 

the fiber orientation for each layer. However, CLM results were poorer than a 

simple orthotropic model. In addition to this, CLM analyses showed meshing 

errors, large deformations and consistently took longer time as compared to ODM 

analyses. Therefore, there is no need to resort to a complex composite model while 

analyzing FDM parts. It can be concluded that, from the four models used, the 
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higher fidelity Orthotropic Material Model (ODM) best represents the non-

isotropic FDM parts. 

2. FEA results are inconsistent and therefore, unreliable. 

The inconsistency of FEA of FDM parts can be discussed in three parts. 

a. Stress-strain curve results. 

The stress-strain results from the FEA simulations were plotted along with the 

experimental results. It is evident from the results that, BIM consistently over-

predicted the results (with errors up to 75%), whereas the derived material 

models consistently under-predicted the results. BIM provided acceptable 

results only in case of the I specimens. Even though, the ODM model better 

represented the non-isotropic behavior of FDM parts, the accuracy of this model 

was not consistent with all the specimens. Errors using ODM were lesser than 

2% for the CHI, CP and CS specimens but were as high as 30% in case of the 

HC and I specimens. FEA results were accurate in certain simulations and 

inaccurate in others. Therefore, it can be concluded that the stress-strain curve 

results from FEA simulations are inconsistent and therefore, may not be 

reliable.  

b. Stress contour plots. 

Stress contour plots were similar for the different FEA models used, the only 

difference being the magnitude of stresses developed. The stress plots enabled 

us to compare the areas of stress concentration (and ultimately fracture) in FEA 

models with the actual areas of fracture. We can see that in case of the CP, CS, 
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C, I and HC, the FEA stress plots accurately predicted the areas of fracture. 

However, in case of the HI, LS and LC, FEA failed to depict the stress 

concentrations at the junction points in the infill features. In addition, current 

FEA models cannot predict the fracture along the fiber orientations seen in the 

CHI specimens. Therefore, we can conclude that in cases where geometries 

have a continuous load bearing area, like in case of the C, CP and CS, FEA can 

be used as visualization tool for stress concentrations. However, in cases of 

intricate infill patterns with junction points, like the HI, LS and LC FEA cannot 

be relied upon. Stress concentrations may be identifiable from FEA, but 

junction points are often sources of inaccuracy.  

c. Type of geometry. 

From the results discussed in the previous chapter, it is clear that the ODM 

results were very accurate only in case of the CP, CHI and CS specimens. In 

addition, the DIM results for these specimens were within acceptable 

deviations. However, ODM results showed considerable deviations in case of 

rest of the specimens. Similarly, BIM results were accurate for the I and HC 

specimens, and were way off in case of other specimens. This leads us to 

conclude that even when the parts are modeled as-built, the accuracy of FEA 

simulations depends upon the geometry of the part. One explanation for this can 

be the effect of bonding on the final material properties of the part. The quality 

of bonding and in turn the material properties, depend upon the time between 

the laying the adjacent fibers within the layer and the time between each 



123 

 

successive layers. This determines the quality of bond formation between 

adjacent and successive layers. The time between laying adjacent fibers and 

layers is dependent on the path of the extruder, which in turns depends on the 

geometry of the part, and the path derived from the slicer. Therefore, the 

properties of the part become a geometry and slicer (toolpath) dependent 

function. So in addition to the material model, lack of accurate representation 

of as-built microstructure causes errors as well. 

To summarize, due to material model infidelities and geometric dependencies 

(leading to a bonding dependency), the FEA simulations performed in this study are not a 

reliable means for analyzing FDM parts. 

5.2 Future Scope  

It is important to address these problems; this would enable us to tie the material 

model problems with the toolpath dependencies to obtain a high fidelity FEA model, to 

accurately analyze FDM parts. The study also had some limitations that are needed to be 

addressed. The future scope is listed below: 

1. Perform and Simulate different loading conditions. 

The FDM parts in this study are only subjected to uniaxial tensile tests. However, 

the real loading conditions of end use FDM parts are more complex than 

unidirectional loading.  Future research can include testing and simulating the FDM 

parts in complex multiple loading scenarios. This includes compressive tests, 

bending tests, impact tests. A multi-dimensional test system would enable us to 
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compare the accuracy of FEA simulations for FDM parts in complex loading 

situations. Using ODM lead to only a small improvement in results as compared to 

DIM. The reason being that only uniaxial tensile tests were simulated. An ODM 

used in combined loading (e.g. bending and tensile loading) might results in a larger 

improvement as compared to DIM results.  

2. Higher fidelity material models and FEA models. 

With FDM parts exhibiting anisotropy, an anisotropic material model with 21 

independent elastic constants, may best represent these parts. However, deriving all 

the 21 independent constants is a tedious process. Owing to the anisotropy, non-

homogeneous and non-linear behavior of FDM samples, multi-axial testing of may 

samples is required to fully characterize the response of FDM parts [66].  Using a 

data-driven characterization strategy that employs an automated six degree of 

freedom test apparatus as stated in [67], would enable us to characterize the real 

response of FDM parts.  

3. Microstructure representation of FDM parts. 

We can say from the study, that representing FDM parts as homogeneous solid 

entities leads to errors within the results. With the toolpath and fiber-to-fiber 

bonding playing an important role in the behavior of FDM parts, it is necessary to 

take the microstructure of FDM parts into consideration while simulating them. The 

fiber-to-fiber bonding can be represented in the model by specifying the fiber-to-

fiber overlap in the CAD model. This can be done in two ways. 
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a. Using a toolpath from G-code to correctly generate a CAD model without 

errors. 

b. To analyze microscopic images of FDM parts to create voids (pertaining to 

different orientations) in the CAD to replicate the non-homogeneous FDM part. 

A similar void analysis can be found in [45] 

It is necessary to look into such a method to represent FDM parts, since a change in the 

geometry of the infill pattern, will ultimately lead to a change in the bonding between 

adjacent and successive filaments. Therefore, in addition to the material model, a model 

that accurately represents the microstructure is also required.  

4. Extend for different AM technologies. 

Similar studies can and should be conducted by using samples from different AM 

technologies. With parts from different AM technologies increasingly being used 

in end use applications, research in this direction is needed.  

5. Discrete Element Analysis.  

FEA represents a CAD model as a continuum of smaller finite elements, a 

contradicting idea for non-homogeneous FDM parts. Another interesting method 

of analysis that could be used is Discrete Element Analysis, which is based on 

Discrete Element Method (DEM). DEM is a numerical approximation method for 

mechanics of continuous and discontinuous models, which is based on an 

interacting system of particles [68]. The material is modelled as an assembly of 

rigid particles and the interaction between each particle is explicitly considered to 

evaluate the stress-strain results. Steuben et al [68] discusses a Discrete Element 
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Method to analyze the particle based AM methods. Such a system of discrete rigid 

particles might be better able to link the material model and the toolpath 

dependencies associated with an FDM part.  

There is potential to investigate and develop better means to relate the 

microstructure and material behavior of FDM (or AM) parts. An ample amount of research 

would be needed. With the increasing use of AM parts for functional applications, research 

regarding simulating these parts under the actual loading condition is necessary.  

5.3 Summary 

Numerous research tasks were performed in this study. These are summarized 

below.  

 Designed specimen geometries for the study. 

 Printed the specimens with the optimum quality.  

 Tested specimens on uniaxial tensile test bed to obtain experimental results. 

 Derived material models (isotropic and orthotropic) from experimental data for 

simulations. 

 Modeled ‘As-built’ specimen geometries of FDM parts with: 

o A fiber model approach  

o A solid model approach. 

 Performed FEA simulations of as-built geometries using continuum material 

models: 

o Isotropic model. 
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o Orthotropic model. 

o Composite model. 

Derived properties (from experiments) were used to achieve higher fidelity for each 

of the material models.  

 Compared FEA results with the corresponding experimental data. 

Recalling the design statement, FEA simulations of tensile loading of as-built 

geometries using experimentally derived material models predict actual behaviors of 

FDM parts verified with experimental testing. From this research, we conclude that FEA 

results of as-built geometries using experimentally derived material models are not always 

accurate or reliable means of predicting behavior of FDM parts due to both geometric 

dependencies (which lead to bonding dependencies) and material model inaccuracies.   

Further research is necessary to solve the issues pertaining to the material model 

inaccuracies as well as microstructure (bonding) representations. Developing and 

validating approaches that answer these issues can lead to a better representation of FDM 

parts for their effective analyses. 

 

  



128 

 

REFERENCES 

[1] Gibson, Ian, David W. Rosen, and Brent Stucker, 2010, Additive manufacturing 

technologies. New York: Springer. 

[2] T. Wohlers, “U.S. Manufacturing Competitiveness Initiative Dialogue,” presented 

at the Council on Competitiveness, Oak Ridge, TN, 18-Apr-2013. 

[3] https://www.eos.info/additive_manufacturing/for_technology_interested 

[4] http://www.3epd.com/services/additive-manufacturing/ 

[5] Ziemian, C., Sharma, M., & Ziemian, S. (2012). Anisotropic mechanical properties 

of ABS parts fabricated by fused deposition modelling. INTECH Open Access 

Publisher. 

[6] http://www.avid3dprinting.com/fdm/ 

[7] Hashmi, S., Batalha, G.F., Tyne, C.V. and Yilbas, B. S. (2014), “Comprehensive 

Materials Processing”, Elsevier, Amsterdam, pp. 338. 

[8] Mani, M., Lane, B., Donmez, A., Feng, S., Moylan, S., & Fesperman, R. (2015). 

Measurement science needs for real-time control of additive manufacturing powder 

bed fusion processes. National Institute of Standards and Technology, 

Gaithersburg, MD, Standard No. NISTIR, 8036. 

https://www.eos.info/additive_manufacturing/for_technology_interested
http://www.3epd.com/services/additive-manufacturing/


129 

 

[9] Zhang, Y., & Chou, Y. K. (2006). Three-dimensional finite element analysis 

simulations of the fused deposition modelling process. Proceedings of the Institution 

of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(10), 

1663-1671. 

[10] Vasiliev, V., and Evgeny V. Morozov, Advanced Mechanics of Composite 

Materials (Third Edition), Elsevier, Boston, 2013, Page iii, ISBN 9780080982311. 

[11] Sayre III, R. (2014). A Comparative Finite Element Stress Analysis of Isotropic and 

Fusion Deposited 3D Printed Polymer (Doctoral dissertation, Rensselaer 

Polytechnic Institute). 

[12] Koruche, U. S., & Patil, S. F. (2015), “Application of Classical Lamination Theory 

and Analytical Modeling of Laminates.” International Research Journal of 

Engineering and Technology, Volume: 02 Issue: 02. 

[13] Reddy, J.N. (2006). An Introduction to the Finite Element Method (Third Ed.). 

McGraw-Hill. ISBN 9780071267618. 

[14] http://www.padtinc.com/blog/the-focus/fused-deposition-modeling-fdm-

properties-a-micromechanics-perspective 

[15] http://www.padtinc.com/blog/the-focus/constitutive-modeling-of-3d-printed-fdm-

parts-part-2-approaches 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780071267618
http://www.padtinc.com/blog/the-focus/fused-deposition-modeling-fdm-properties-a-micromechanics-perspective
http://www.padtinc.com/blog/the-focus/fused-deposition-modeling-fdm-properties-a-micromechanics-perspective
http://www.padtinc.com/blog/the-focus/constitutive-modeling-of-3d-printed-fdm-parts-part-2-approaches
http://www.padtinc.com/blog/the-focus/constitutive-modeling-of-3d-printed-fdm-parts-part-2-approaches


130 

 

[16] Mamadapur, M. S. (2007). Constitutive modeling of fused deposition modeling 

acrylonitrile butadiene styrene (ABS) (Doctoral dissertation, Texas A&M 

University).  

[17] Hopkinson, N., & Dicknes, P. (2003). Analysis of rapid manufacturing—using layer 

manufacturing processes for production. Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 

31-39. 

[18] https://www.stratasysdirect.com/solutions/fused-deposition-modeling/ 

[19] http://proto3000.com/fused-deposition-modeling-solutions-fdm-3d-printing-

applications.php 

[20] http://www.stratasys.com/resources/case-studies/defense 

[21] Lee, C. S., Kim, S. G., Kim, H. J., & Ahn, S. H. (2007). Measurement of anisotropic 

compressive strength of rapid prototyping parts. Journal of materials processing 

technology, 187, 627-630. 

[22] Upadhyay, K., Dwivedi, R., & Singh, A. K. (2017). Determination and Comparison 

of the Anisotropic Strengths of Fused Deposition Modeling P400 ABS. In Advances 

in 3D Printing & Additive Manufacturing Technologies (pp. 9-28). Springer 

Singapore. 

https://www.stratasysdirect.com/solutions/fused-deposition-modeling/
http://proto3000.com/fused-deposition-modeling-solutions-fdm-3d-printing-applications.php
http://proto3000.com/fused-deposition-modeling-solutions-fdm-3d-printing-applications.php
http://www.stratasys.com/resources/case-studies/defense


131 

 

[23] Es-Said, O. S., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., & Pregger, B. 

A. (2000). Effect of layer orientation on mechanical properties of rapid prototyped 

samples. Materials and Manufacturing Processes, 15(1), 107-122. 

[24] Li, L., Sun, Q., Bellehumeur, C., & Gu, P. (2002). Composite modeling and analysis 

for fabrication of FDM prototypes with locally controlled properties. Journal of 

Manufacturing Processes, 4(2), 129-141. 

[25] Gajdoš, I., & Slota, J. (2013). Influence of printing conditions on structure in FDM 

prototypes. Technical Gazette, 20(2), 231-236. 

[26] Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of bond formation 

between polymer filaments in the fused deposition modeling process. Journal of 

Manufacturing Processes, 6(2), 170-178. 

[27] Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing 

conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping 

Journal, 14(2), 72-80. 

[28] Bagsik, A., Schöppner, V., & Klemp, E. (2010, September). FDM part quality 

manufactured with Ultem* 9085. In 14th International Scientific Conference on 

Polymeric Materials (Vol. 15, pp. 307-315). 

[29] Ahn, S. H., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic 

material properties of fused deposition modeling ABS. Rapid prototyping 

journal, 8(4), 248-257. 



132 

 

[30] Montero, M., Roundy, S., Odell, D., Ahn, S. H., & Wright, P. K. (2001). Material 

characterization of fused deposition modeling (FDM) ABS by designed 

experiments. Society of Manufacturing Engineers, 10(13552540210441166). 

[31] Domingo-Espin, M., Borros, S., Agullo, N., Garcia-Granada, A. A., & Reyes, G. 

(2014). Influence of building parameters on the dynamic mechanical properties of 

polycarbonate fused deposition-modeling parts. 3D Printing and Additive 

Manufacturing, 1(2), 70-77. 

[32] Baich, L., & Manogharan, G. (2015). Study of infill print parameters on mechanical 

strength and production cost-time of 3D printed ABS parts. In International Solid 

Freeform Fabrication Symposium, Austin, TX (pp. 209-2018). 

[33] Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2001). Mechanical behavior of 

acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental 

investigation. Rapid Prototyping Journal, 7(3), 148-158. 

[34] Dutta, D. (1999). Deposition strategies and resulting part stiffnesses in fused 

deposition modeling. Ann Arbor, 1050, 48109. 

[35] Huang, B., Masood, S., Nikzad, M., Venugopal, P. R., & Arivazhagan, A. (2016). 

Dynamic Mechanical Properties of Fused Deposition Modelling Processed 

Polyphenylsulfone Material. American Journal of Engineering and Applied 

Sciences, 9(1), 1-11. 



133 

 

[36] Anitha, R., Arunachalam, S., & Radhakrishnan, P. (2001). Critical parameters 

influencing the quality of prototypes in fused deposition modelling. Journal of 

Materials Processing Technology, 118(1), 385-388. 

[37] Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. 

P. (2017). Influence of processing and orientation print effects on the mechanical 

and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive 

Manufacturing, 13, 71-80. 

[38] Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. (2015). The impact of process 

parameters on mechanical properties of parts fabricated in PLA with an open-source 

3-D printer. Rapid Prototyping Journal, 21(5), 604-617. 

[39] Khan, S. A., Fahad, M., & Khan, M. A. (2016). Evaluation of the Effect of Infill 

Pattern on Mechanical Strength of Additively Manufactured Specimen. Professor 

Dr. Muhammad Tufail Convener, 356, 356. 

[40] Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer 

thickness and raster angle on the mechanical properties of 3D-printed PEEK and a 

comparative mechanical study between PEEK and ABS. Materials, 8(9), 5834-

5846. 

[41] Syamsuzzaman, M., Mardi, N. A., Fadzil, M., & Farazila, Y. (2014). Investigation 

of layer thickness effect on the performance of low-cost and commercial fused 

deposition modelling printers. Materials Research Innovations, 18(sup6), S6-485. 



134 

 

[42] Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and 

anisotropic elasticity and yielding of 3D printed material. Composites Part B: 

Engineering, 99, 506-513. 

[43] Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. (2016). Orthotropic 

mechanical properties of fused deposition modelling parts described by classical 

laminate theory. Materials & Design, 90, 453-458. 

[44] Bertoldi, M., Yardimci, M. A., Pistor, C. M., Guceri, S. I., & Sala, G. (1998). 

Mechanical characterization of parts processed via fused deposition. In Proceedings 

of the 1998 solid freeform fabrication symposium (pp. 557-565). 

[45] Magalhães, L. C., Volpato, N., & Luersen, M. A. (2014). Evaluation of stiffness and 

strength in fused deposition sandwich specimens. Journal of the Brazilian Society 

of Mechanical Sciences and Engineering, 36(3), 449-459. 

[46] Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. (2017). Influence of meso-

structure and chemical composition on FDM 3D-printed parts. Composites Part B: 

Engineering, 113, 371-380. 

[47] Dutta, D. (1999). Deposition strategies and resulting part stiffnesses in fused 

deposition modeling. Ann Arbor, 1050, 48109. 

[48] Liu, X., & Shapiro, V. (2016). Homogenization of material properties in additively 

manufactured structures. Computer-Aided Design, 78, 71-82. 



135 

 

[49] Croccolo, D., De Agostinis, M., & Olmi, G. (2013). Experimental characterization 

and analytical modelling of the mechanical behaviour of fused deposition processed 

parts made of ABS-M30. Computational Materials Science, 79, 506-518. 

[50] Gurrala, P. K., & Regalla, S. P. (2014). Part strength evolution with bonding 

between filaments in fused deposition modelling: This paper studies how 

coalescence of filaments contributes to the strength of final FDM part. Virtual and 

Physical Prototyping, 9(3), 141-149. 

[51] Hambali, R. H., Celik, H. K., Smith, P. C., Rennie, A. E. W., & Ucar, M. (2010, 

September). Effect of build orientation on FDM parts: a case study for validation of 

deformation behaviour by FEA. In IN: Proceedings of iDECON 2010—

international conference on design and concurrent engineering, Universiti Teknikal 

Malaysia Melaka, Melaka (pp. 224-228). 

[52] Hambali, R. H., Smith, P., & Rennie, A. E. W. (2012). Determination of the effect 

of part orientation to the strength value on additive manufacturing FDM for end-use 

parts by physical testing and validation via three-dimensional finite element 

analysis. International Journal of Materials Engineering Innovation, 3(3-4), 269-

281. 

[53] Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., 

Borros, S., & Reyes, G. (2015). Mechanical property characterization and simulation 



136 

 

of fused deposition modeling Polycarbonate parts. Materials & Design, 83, 670-

677.  

[54] Bellini, A., & Güçeri, S. (2003). Mechanical characterization of parts fabricated 

using fused deposition modeling. Rapid Prototyping Journal, 9(4), 252-264. 

[55] Rodríguez, J. F., Thomas, J. P., & Renaud, J. E. (2003). Mechanical behavior of 

acrylonitrile butadiene styrene fused deposition materials modeling. Rapid 

Prototyping Journal, 9(4), 219-230. 

[56] Cuan-Urquizo, E., Yang, S., & Bhaskar, A. (2015). Mechanical characterisation of 

additively manufactured material having lattice microstructure. In IOP Conference 

Series: Materials Science and Engineering (Vol. 74, No. 1, p. 012004). IOP 

Publishing. 

[57] Villalpando, L., Eiliat, H., & Urbanic, R. J. (2014). An optimization approach for 

components built by fused deposition modeling with parametric internal 

structures. Procedia CIRP, 17, 800-805. 

[58] Villalpando, L. (2013). Characterization of parametric internal structures for 

components built by fused deposition modeling. Electronic Theses and 

Dissertations: University of Windsor. 

[59] El-Gizawy, A. S., Corl, S., & Graybill, B. (2011, July). Process-induced properties 

of fdm products. In Proceedings of the ICMET, International Conference on 

Mechanical Engineerings and Technology Congress & Exposition. 



137 

 

[60] Rezayat, H., Zhou, W., Siriruk, A., Penumadu, D., & Babu, S. S. (2015). Structure–

mechanical property relationship in fused deposition modelling. Materials Science 

and Technology, 31(8), 895-903. 

[61] Garg, A., & Bhattacharya, A. (2017). An insight to the failure of FDM parts under 

tensile loading: finite element analysis and experimental study. International 

Journal of Mechanical Sciences, 120, 225-236. 

[62] Ajoku, U., Hopkinson, N., & Caine, M. (2006). Experimental measurement and 

finite element modelling of the compressive properties of laser sintered Nylon-

12. Materials Science and Engineering: A, 428(1), 211-216. 

[63] Martínez, J., Diéguez, J. L., Ares, E., Pereira, A., Hernández, P., & Pérez, J. A. 

(2013). Comparative between FEM models for FDM parts and their approach to a 

real mechanical behaviour. Procedia Engineering, 63, 878-884. 

[64] Davis, J. R. (Ed.). (2004). Tensile testing. ASM international. 

[65] https://plastics.ulprospector.com/generics/1/c/t/acrylonitrile-butadiene-styrene-abs-

properties-processing 

[66] Steuben, J. C., Iliopoulos, A. P., & Michopoulos, J. G. (2016). Implicit slicing for 

functionally tailored additive manufacturing. Computer-Aided Design, 77, 107-119. 

[67] Michopoulos, J. G., Hermanson, J. C., & Iliopoulos, A. (2014). Advances on the 

constitutive characterization of composites via multiaxial robotic testing and design 

https://plastics.ulprospector.com/generics/1/c/t/acrylonitrile-butadiene-styrene-abs-properties-processing
https://plastics.ulprospector.com/generics/1/c/t/acrylonitrile-butadiene-styrene-abs-properties-processing


138 

 

optimization. Advances in computers and information in engineering research, 1, 

73-95. 

[68] Steuben, J. C., Iliopoulos, A. P., & Michopoulos, J. G. (2016). Discrete element 

modeling of particle-based additive manufacturing processes. Computer Methods in 

Applied Mechanics and Engineering, 305, 537-561. 

 

 

  



139 

 

APPENDIX A: MESH STATISTICS 

All the specimens were meshed taking into account an optimum mesh quality according to 

the geometry of the specimens. As every geometry had its unique infill features, each 

specimen was meshed differently depending on the geometry. A refined mesh is used on 

intricate geometry details using the adaptive mesh control in ANSYS©. However, due to 

differences in automatic meshing between solvers, in Abaqus©, local control was used to 

assign mesh properties to the geometry to match those of ANSYS©. This was done to 

ensure that both the solvers have similar mesh statistics.  The mesh statistics and mesh 

plots from both the solvers is presented in the following sections.    

A.1: Mesh Properties 

Quadratic elements are used throughout all the simulations. However, due to meshing 

errors in some geometries in case of Abaqus©, linear hexahedral elements are used instead 

of tetrahedral elements.  For example, composite model necessarily needed hexahedral 

elements. The mesh statistics from both the solvers are tabulated in Table A - 1. 
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Table A - 1: Mesh statistics for specimens 

 

ANSYS© Abaqus© 

Type Nodes Elements Type Nodes Elements 

Continuous (C) Tetrahedral 36961 18762 Tetrahedral 33776 19455 

Hexagonal Infill 

(HI) 

Tetrahedral 19522 9397 Tetrahedral 50054 28285 

Hexagonal 

Continuous (CHI) 

Tetrahedral 13341 6582 Tetrahedral 18765 9667 

Circular Straight 

Infill (CS)  

Tetrahedral 26840 13026 Tetrahedral 39358 22276 

Circular 

Continuous (CCS) 

Tetrahedral 13280 6515 Tetrahedral 18141 9248 

Circular Packed 

(CS) 

Tetrahedral 237364 147796 Hexahedral 253152 217305 

Linear Straight 

(LS) 

Tetrahedral 321630 152453 Tetrahedral 235015 132826 

Linear Crosshatch 

(LC) 

Tetrahedral 148474 70412 Tetrahedral 198523 114529 

Hilbert Curve 

(HC) 

Tetrahedral 424719 212611 Tetrahedral 196970 119300 

Infill less (I) Tetrahedral 60437 36631 Hexahedral 24745 18448 
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Since composite analysis required the geometry to be meshed in hexahedral elements only, 

each of the specimens’ geometries were manually partitioned and assigned a hexahedral 

element meshing. Further, each region was manually meshed, since automatic meshing 

could not be used. The mesh statistics for composite analyses are shown in Table A-2.   

Table A - 2: Mesh statistics for geometries used in CLM analysis. 

 Abaqus© 

Type Nodes Elements 

Continuous (C) Hexahedral 50732 44020 

Hexagonal Infill (HI) Hexahedral 96140 81110 

Hexagonal Continuous 

(CHI) 

Hexahedral 72251 62366 

Circular Straight Infill 

(CS) 

Hexahedral 39282 30005 

Circular Packed Infill (CS) Hexahedral 61852 49248 

Linear Straight Infill (LS) Hexahedral 70397 51392 

Linear Crosshatch Infill 

(LC) 

Hexahedral 61205 45044 

Hilbert Curve (HC) Hexahedral 73953 56790 

Infill less (I) Hexahedral 15005 10800 
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A.2: Mesh Plots  

Figures A-1 to A-10 depict the mesh plots used in ANSYS©. 

 

Figure A - 1: ANSYS© mesh plot for C specimen. 

 

Figure A - 2: ANSYS© mesh plot for HI specimen. 



143 

 

 

Figure A - 3: ANSYS© mesh plot for CHI specimen. 

 

Figure A - 4: ANSYS© mesh plot for HC specimen. 
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Figure A - 5: ANSYS© mesh plot for I specimen. 

 

Figure A - 6: ANSYS© mesh plot for CS specimen. 
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Figure A - 7: ANSYS© mesh plot for CCS specimen. 

 

Figure A - 8: ANSYS© mesh plot for CP specimen. 



146 

 

 

Figure A - 9: ANSYS© mesh plot for LS specimen. 

 

Figure A - 10: ANSYS© mesh plot for LC specimen. 

Figures A-11 to A-29 depict the mesh plots used in Abqaus©. 
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Figure A - 11: Abaqus© mesh plot for C specimen. 

 

Figure A - 12: Abaqus© mesh plot for HI specimen. 
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Figure A - 13: Abaqus© mesh plot for CHI specimen. 

 

Figure A - 14: Abaqus© mesh plot for HC specimen. 



149 

 

 

Figure A - 15: Abaqus© mesh plot for I specimen. 

 

Figure A - 16: Abaqus© mesh plot for CS specimen. 
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Figure A - 17: Abaqus© mesh plot for CCS specimen. 

 

Figure A - 18: Abaqus© mesh plot for CP specimen. 
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Figure A - 19: Abaqus© mesh plot for LS specimen. 

 

Figure A - 20: Abaqus© mesh plot for LC specimen. 
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Since CLM required, a hexahedral mesh, the geometries were manually mesh with 

hexahedral elements. Figures A-21 to A-29 show the mesh plots used with CLM.  

 

Figure A - 21: Abaqus© mesh plot for C specimen for CLM analysis. 

 

Figure A - 22: Abaqus© mesh plot for HI specimen for CLM analysis. 
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Figure A - 23: Abaqus© mesh plot for CHI specimen for CLM analysis. 

 

Figure A - 24: Abaqus© mesh plot for HC specimen for CLM analysis. 
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Figure A - 25: Abaqus© mesh plot for I specimen for CLM analysis. 

 

Figure A - 26: Abaqus© mesh plot for CS specimen for CLM analysis. 
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Figure A - 27: Abaqus© mesh plot for CP specimen for CLM analysis. 

 

Figure A - 28: Abaqus© mesh plot for LS specimen for CLM analysis. 
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Figure A - 29: Abaqus© mesh plot for LC specimen for CLM analysis. 
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APPENDIX B: NORMAL STRESS RESULTS  

This section presents the stress values from experimental data as well as different FEA 

simulations. The stress values at yield strain, at 2% strain and 1% strain are presented for 

experimental and FEA results. Table B-1 shows the stress values for BIM results. Table B-

2 shows the stress values for DIM results. Table B-3 shows the stress values for ODM 

results. Table B-4 shows the stress values for CLM results. 
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Table B - 1: Normal Stress - Experimental and BIM results.  

  Experimental ANSYS© ABAQUS© 

Continuous 

(C) 

Yield Stress (σy) (MPa) 30 45 43 

Stress at 2% strain (σ2%) (MPa) 18.5 22.8 22 

Stress at 1% strain (σ1%) (MPa) 9.6 12 11.9 

Hexagonal 

Infill (HI) 

Yield Stress (σy) (MPa) 27.9 44.4 43 

Stress at 2% strain (σ2%) (MPa) 24 32 32 

Stress at 1% strain (σ1%) (MPa) 12.1 15.9 16 

Hexagonal 

Continuous 

(CHI) 

Yield Stress (σy) (MPa) 16.2 23.3 26 

Stress at 2% strain (σ2%) (MPa) 15.7 21.5 23 

Stress at 1% strain (σ1%) (MPa) 9.9 13.8 14.2 

Circular 

Straight 

(CS) 

Yield Stress (σy) (MPa) 28.6 62.2 63.4 

Stress at 2% strain (σ2%) (MPa) 27.4 52.2 51 

Stress at 1% strain (σ1%) (MPa) 16.4 26.7 25.8 

Circular 

Continuous 

(CCS) 

Yield Stress (σy) (MPa) 21.2 27.8 28.5 

Stress at 2% strain (σ2%) (MPa) 18.9 20 22 

Stress at 1% strain (σ1%) (MPa) 8.2 12.5 11.9 

Circular 

Packed 

(CP) 

Yield Stress (σy) (MPa) 26.5 50 51 

Stress at 2% strain (σ2%) (MPa) 22.7 37.6 38 

Stress at 1% strain (σ1%) (MPa) 11.6 18.7 19.5 

Hilbert 

Curve 

(HC) 

Yield Stress (σy) (MPa) 29.1 35.2 35 

Stress at 2% strain (σ2%) (MPa) 25.3 29.4 30 

Stress at 1% strain (σ1%) (MPa) 14.2 15.2 15.5 

Linear 

Straight 

(LS) 

Yield Stress (σy) (MPa) 24.6 45.5 44.2 

Stress at 2% strain (σ2%) (MPa) 22.6 40 41.5 

Stress at 1% strain (σ1%) (MPa) 14.7 20.3 21.2 

Linear 

CrossHatch 

(LC) 

Yield Stress (σy) (MPa) 22.8 42 43 

Stress at 2% strain (σ2%) (MPa) 21.7 28 28.8 

Stress at 1% strain (σ1%) (MPa) 11 14.3 15 

Infill-less 

(I) 

Yield Stress (σy) (MPa) 32.9 33.7 34.8 

Stress at 2% strain (σ2%) (MPa) 29 27.7 28 

Stress at 1% strain (σ1%) (MPa) 15.8 14.3 14 
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Table B - 2: Normal Stress - Experimental and DIM results. 

  Experimental ANSYS© ABAQUS© 

Continuous 

(C) 

Yield Stress (σy) (MPa) 30 17.5 17 

Stress at 2% strain (σ2%) (MPa) 18.5 9.6 8.6 

Stress at 1% strain (σ1%) (MPa) 9.6 5.3 6 

Hexagonal 

Infill (HI) 

Yield Stress (σy) (MPa) 27.9 22.8 21.8 

Stress at 2% strain (σ2%) (MPa) 24 16 15.8 

Stress at 1% strain (σ1%) (MPa) 12.1 8 7.9 

Hexagonal 

Continuous 

(CHI) 

Yield Stress (σy) (MPa) 16.2 15 16.4 

Stress at 2% strain (σ2%) (MPa) 15.7 14 14.4 

Stress at 1% strain (σ1%) (MPa) 9.9 8 8.5 

Circular 

Straight 

(CS) 

Yield Stress (σy) (MPa) 28.6 34.8 32 

Stress at 2% strain (σ2%) (MPa) 27.4 29 29.5 

Stress at 1% strain (σ1%) (MPa) 16.4 14.5 14.2 

Circular 

Continuous 

(CCS) 

Yield Stress (σy) (MPa) 21.2 15.8 16.9 

Stress at 2% strain (σ2%) (MPa) 18.9 13.5 14.4 

Stress at 1% strain (σ1%) (MPa) 8.2 7.1 7.6 

Circular 

Packed 

(CP) 

Yield Stress (σy) (MPa) 26.5 28.7 29.2 

Stress at 2% strain (σ2%) (MPa) 22.7 21.9 22.1 

Stress at 1% strain (σ1%) (MPa) 11.6 10.8 11.3 

Hilbert 

Curve 

(HC) 

Yield Stress (σy) (MPa) 29.1 17.5 17.2 

Stress at 2% strain (σ2%) (MPa) 25.3 14.8 15.4 

Stress at 1% strain (σ1%) (MPa) 14.2 7.7 8.1 

Linear 

Straight 

(LS) 

Yield Stress (σy) (MPa) 24.6 22.7 22.3 

Stress at 2% strain (σ2%) (MPa) 22.6 20.1 19.4 

Stress at 1% strain (σ1%) (MPa) 14.7 10.1 9.8 

Linear 

CrossHatch 

(LC) 

Yield Stress (σy) (MPa) 22.8 21.1 22.2 

Stress at 2% strain (σ2%) (MPa) 21.7 14.3 15.3 

Stress at 1% strain (σ1%) (MPa) 11 7.3 8.1 

Infill-less 

(I) 

Yield Stress (σy) (MPa) 32.9 22.8 21.1 

Stress at 2% strain (σ2%) (MPa) 29 18.2 17.3 

Stress at 1% strain (σ1%) (MPa) 15.8 8.9 7.8 
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Table B - 3: Normal Stress - Experimental and ODM results.  

  Experimental ANSYS© ABAQUS© 

Continuous 

(C) 

Yield Stress (σy) (MPa) 30 21.9 22.5 

Stress at 2% strain (σ2%) (MPa) 18.5 11.4 11.9 

Stress at 1% strain (σ1%) (MPa) 9.6 5.8 6.1 

Hexagonal 

Infill (HI) 

Yield Stress (σy) (MPa) 27.9 25.4 25.6 

Stress at 2% strain (σ2%) (MPa) 24 18.3 18.9 

Stress at 1% strain (σ1%) (MPa) 12.1 9.5 9.6 

Hexagonal 

Continuous 

(CHI) 

Yield Stress (σy) (MPa) 16.2 19.3 19 

Stress at 2% strain (σ2%) (MPa) 15.7 17.2 17 

Stress at 1% strain (σ1%) (MPa) 9.9 8.7 8.5 

Circular 

Straight 

(CS) 

Yield Stress (σy) (MPa) 28.6 31.8 30.7 

Stress at 2% strain (σ2%) (MPa) 27.4 28 27.5 

Stress at 1% strain (σ1%) (MPa) 16.4 14.3 14 

Circular 

Packed 

(CP) 

Yield Stress (σy) (MPa) 26.5 31.7 25.9 

Stress at 2% strain (σ2%) (MPa) 22.7 23.9 19.2 

Stress at 1% strain (σ1%) (MPa) 11.6 12.2 9.7 

Hilbert 

Curve 

(HC) 

Yield Stress (σy) (MPa) 29.1 19.2 19.6 

Stress at 2% strain (σ2%) (MPa) 25.3 15.7 16.1 

Stress at 1% strain (σ1%) (MPa) 14.2 7.9 8.5 

Linear 

Straight 

(LS) 

Yield Stress (σy) (MPa) 24.6 25.1 25.9 

Stress at 2% strain (σ2%) (MPa) 22.6 22 22.7 

Stress at 1% strain (σ1%) (MPa) 14.7 11 11.9 

Linear 

CrossHatch 

(LC) 

Yield Stress (σy) (MPa) 22.8 23.9 23.5 

Stress at 2% strain (σ2%) (MPa) 21.7 16.5 16.1 

Stress at 1% strain (σ1%) (MPa) 11 8.3 7.7 

Infill-less 

(I) 

Yield Stress (σy) (MPa) 32.9 18.4 19.7 

Stress at 2% strain (σ2%) (MPa) 29 16.1 16.2 

Stress at 1% strain (σ1%) (MPa) 15.8 7.9 8 
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Table B - 4: Normal Stress - Experimental and CLM results. 

  Experimental ABAQUS© 

Continuous (C) 

Yield Stress (σy) (MPa) 30 20.7 

Stress at 2% strain (σ2%) (MPa) 18.5 10.4 

Stress at 1% strain (σ1%) (MPa) 9.6 5.2 

Hexagonal Infill (HI) 

Yield Stress (σy) (MPa) 27.9 24.2 

Stress at 2% strain (σ2%) (MPa) 24 17.5 

Stress at 1% strain (σ1%) (MPa) 12.1 8.8 

Hexagonal 

Continuous (CHI) 

Yield Stress (σy) (MPa) 16.2 22 

Stress at 2% strain (σ2%) (MPa) 15.7 19.6 

Stress at 1% strain (σ1%) (MPa) 9.9 9.8 

Circular Straight (CS) 

Yield Stress (σy) (MPa) 28.6 31.4 

Stress at 2% strain (σ2%) (MPa) 27.4 26.4 

Stress at 1% strain (σ1%) (MPa) 16.4 13.2 

Circular Packed (CP) 

Yield Stress (σy) (MPa) 26.5 24 

Stress at 2% strain (σ2%) (MPa) 22.7 18.2 

Stress at 1% strain (σ1%) (MPa) 11.6 9.2 

Hilbert Curve (HC) 

Yield Stress (σy) (MPa) 29.1 18.4 

Stress at 2% strain (σ2%) (MPa) 25.3 14.9 

Stress at 1% strain (σ1%) (MPa) 14.2 7.3 

Linear Straight (LS) 

Yield Stress (σy) (MPa) 24.6 22.8 

Stress at 2% strain (σ2%) (MPa) 22.6 20.3 

Stress at 1% strain (σ1%) (MPa) 14.7 10.3 

Linear CrossHatch 

(LC) 

Yield Stress (σy) (MPa) 22.8 23.3 

Stress at 2% strain (σ2%) (MPa) 21.7 15.7 

Stress at 1% strain (σ1%) (MPa) 11 7.8 

Infill-less (I) 

Yield Stress (σy) (MPa) 32.9 21.1 

Stress at 2% strain (σ2%) (MPa) 29 17.3 

Stress at 1% strain (σ1%) (MPa) 15.8 8.7 
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APPENDIX C: SIMULATION RESULTS – ANSYS©  

C.1: BIM Results  

This section presents the BIM analysis-normal stress plots of all the specimens from 

ANSYS©. The body of thesis has plots zoomed in on the infill patterns, the entire body 

stress plots are shown in this section. Figures C-1 to C-27 show the stress plots from the 

analyses. Figures C-1 to C-9 show ANSYS© normal stress plots using BIM.  

 

Figure C - 1: ANSYS© Normal Stress plot for C specimen using BIM. 
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Figure C - 2: ANSYS© Normal Stress plot for HI specimen using BIM. 

 

Figure C - 3: ANSYS© Normal Stress plot for CHI specimen using BIM. 
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Figure C - 4: ANSYS© Normal Stress plot for HC specimen using BIM. 

 

Figure C - 5: ANSYS© Normal Stress plot for I specimen using BIM. 
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Figure C - 6: ANSYS© Normal Stress plot for CS specimen using BIM. 

 

Figure C - 7: ANSYS© Normal Stress plot for CP specimen using BIM. 
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Figure C - 8: ANSYS© Normal Stress plot for LS specimen using BIM. 

 

Figure C - 9: ANSYS© Normal Stress plot for LC specimen using BIM. 
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C.2: DIM Results 

This section presents the DIM analysis normal stress plots for all the geometries using 

ANSYS©. Figures C-10 to C-18 show the normal stress plots.  

 

Figure C - 10: ANSYS© Normal Stress plot for C specimen using DIM. 
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Figure C - 11: ANSYS© Normal Stress plot for HI specimen using DIM. 

 

Figure C - 12: ANSYS© Normal Stress plot for CHI specimen using DIM.  



169 

 

 

Figure C - 13: ANSYS© Normal Stress plot for HC specimen using DIM. 

 

Figure C - 14: ANSYS© Normal Stress plot for I specimen using DIM. 
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Figure C - 15: ANSYS© Normal Stress plot for CS specimen using DIM. 

 

Figure C - 16: ANSYS© Normal Stress plot for CP specimen using DIM. 
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Figure C - 17: ANSYS© Normal Stress plot for LS specimen using DIM. 

 

Figure C - 18: ANSYS© Normal Stress plot for LC specimen using DIM. 
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C.3: ODM Results 

This section presents the ODM analysis normal stress plots for all the geometries using 

ANSYS©. Figures C-19 to C-27 show the normal stress plots.  

 

Figure C - 19: ANSYS© Normal Stress plot for C specimen using ODM. 
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Figure C - 20: ANSYS© Normal Stress plot for HI specimen using ODM. 

 

Figure C - 21: ANSYS© Normal Stress plot for CHI specimen using ODM. 
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Figure C - 22: ANSYS© Normal Stress plot for HC specimen using ODM. 

 

Figure C - 23: ANSYS© Normal Stress plot for I specimen using ODM. 
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Figure C - 24: ANSYS© Normal Stress plot for CS specimen using ODM. 

 

Figure C - 25: ANSYS© Normal Stress plot for CS specimen using ODM. 
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Figure C - 26: ANSYS© Normal Stress plot for LS specimen using ODM. 

 

Figure C - 27: ANSYS© Normal Stress plot for LC specimen using ODM. 
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APPENDIX D: SIMULATION RESULTS – Abaqus© 

D.1: BIM Results 

This section presents the BIM analysis-normal stress plots of all the specimens from 

Abaqus©. The body of the thesis has plots zoomed in on the infill patterns, the entire body 

stress plots are shown in this section. Figures D-1 to D-9 show the stress plots from the 

BIM analyses.    

 

Figure D - 1: Abaqus© Normal Stress plot for C specimen using BIM. 

 

Figure D - 2: Abaqus© Normal Stress plot for HI specimen using BIM. 
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Figure D - 3: Abaqus© Normal Stress plot for CHI specimen using BIM. 

 

Figure D - 4: Abaqus© Normal Stress plot for HC specimen using BIM. 

 

Figure D - 5: Abaqus© Normal Stress plot for I specimen using BIM. 
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Figure D - 6: Abaqus© Normal Stress plot for CS specimen using BIM. 

 

Figure D - 7: Abaqus© Normal Stress plot for CP specimen using BIM. 

 

Figure D - 8: Abaqus© Normal Stress plot for LS specimen using BIM. 
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Figure D - 9: Abaqus© Normal Stress plot for LC specimen using BIM. 

D.2: DIM Results 

This section presents the DIM analysis-normal stress plots of all the specimens from 

Abaqus©. This the body of the thesis has plots zoomed in on the infill patterns, the entire 

body stress plots are shown in this section. Figures D-10 to D-18 show the stress plots from 

the DIM analyses.    

 

Figure D - 10: Abaqus© Normal Stress plot for C specimen using DIM. 



181 

 

 

Figure D - 11: Abaqus© Normal Stress plot for HI specimen using DIM. 

 

Figure D - 12: Abaqus© Normal Stress plot for CHI specimen using DIM. 

 

Figure D - 13: Abaqus© Normal Stress plot for HC specimen using DIM. 
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Figure D - 14: Abaqus© Normal Stress plot for I specimen using DIM. 

 

Figure D - 15: Abaqus© Normal Stress plot for CS specimen using DIM. 

 

Figure D - 16: Abaqus© Normal Stress plot for CP specimen using DIM. 
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Figure D - 17: Abaqus© Normal Stress plot for LS specimen using DIM. 

 

Figure D - 18: Abaqus© Normal Stress plot for LC specimen using DIM. 

D.3: ODM Results 

This section presents the ODM analysis-normal stress plots of all the specimens from 

Abaqus©. This the body of the thesis has plots zoomed in on the infill patterns, the entire 

body stress plots are shown in this section. Figures D-18 to D-27 show the stress plots from 

the ODM analyses. 
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Figure D - 19: Abaqus© Normal Stress plot for C specimen using ODM. 

 

Figure D - 20: Abaqus© Normal Stress plot for HI specimen using ODM. 

 

Figure D - 21: Abaqus© Normal Stress plot for CHI specimen using ODM. 
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Figure D - 22: Abaqus© Normal Stress plot for HC specimen using ODM. 

 

Figure D - 23: Abaqus© Normal Stress plot for I specimen using ODM. 

 

Figure D - 24: Abaqus© Normal Stress plot for CS specimen using ODM. 
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Figure D - 25: Abaqus© Normal Stress plot for CP specimen using ODM. 

 

Figure D - 26: Abaqus© Normal Stress plot for LS specimen using ODM. 

 

Figure D - 27: Abaqus© Normal Stress plot for LC specimen using ODM. 
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D.4: CLM Results 

This section presents the CLM analysis-normal stress plots of all the specimens from 

Abaqus©. This the body of the thesis has plots zoomed in on the infill patterns, the entire 

body stress plots are shown in this section. Figures D-28 to D-36 show the stress plots 

from the CLM analyses. 

 

Figure D - 28: Abaqus© Normal Stress plot for C specimen using CLM. 

 

Figure D - 29: Abaqus© Normal Stress plot for HI specimen using CLM. 
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Figure D - 30: Abaqus© Normal Stress plot for CHI specimen using CLM. 

 

Figure D - 31: Abaqus© Normal Stress plot for HC specimen using CLM. 

 

Figure D - 32: Abaqus© Normal Stress plot for I specimen using CLM. 
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Figure D - 33: Abaqus© Normal Stress plot for CS specimen using CLM. 

 

Figure D - 34: Abaqus© Normal Stress plot for CP specimen using CLM. 

 

Figure D - 35: Abaqus© Normal Stress plot for LS specimen using CLM. 
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Figure D - 36: Abaqus© Normal Stress plot for LC specimen using CLM. 

We can see from Figure D-35 and Figure D-36 that large out of plane deformations occur 

while using composite analysis. Composite analysis, considers a stack of 2D lamina, 

therefore, the forces in between the lamina, which are normal to the laminar plane, tend to 

cause this deformation. However, the stress in these regions are minimal.  
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