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Abstract

In this thesis, we present a novel approach for achieving phase desynchronization in a pulse-

coupled oscillator network. Ensuring phase desynchronization is a difficult problem, and existing

results are constrained to a completely interconnected network and a fixed number of oscillators.

Our approach is more robust than previous approaches, removing the constraint of a fixed number

of oscillators. The removal of this constraint is significant because it allows the network to receive

and drop nodes freely without any change to the phase update strategy. Also, to our knowledge,

our approach is the first to prove the convergence to the desynchronized state for a topology that

is more general than the all-to-all topology. More specifically, our approach is applicable to any

circulant and symmetric network topology, including the circulant symmetric ring topology. Rigorous

mathematical proofs are provided to support the result that any circulant symmetric network with

ordered phases under our proposed algorithm will converge to uniform phase desynchronization.

Simulation results are presented to demonstrate the algorithm’s performance, as well as experimental

results on a physical system to further illustrate applications of pulse-coupled oscillator networks.
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Chapter 1

Introduction

The study and analysis of pulse-coupled oscillators (PCOs) is a currently active field of

engineering research. The pulse-coupled oscillator (PCO) model was first introduced by Peskin in

1975 [1].

The basic concept of a pulse-coupled oscillator network is simple. Each node in the network

has a continuously cycling phase variable, or oscillator, that increases at a constant rate. When this

oscillator reaches some threshold value, it resets its phase to zero and it sends, or fires, a single,

simple pulse signal to any connected nodes in the network. When a node receives a pulse signal,

it then modifies is phase variable according to some control algorithm. Each oscillator sends an

identical pulse, often just a single bit, thus allowing the control algorithm to be the same for each

node in the network.

Peskin used PCOs to model the synchronization of pacemaker cells in the heart [1]. PCOs

are also used to model the synchronization of many other biological systems, such as the firing of

neurons [1, 2], and the flashing of fireflies [3, 4]. In synchronization, the oscillators in the network

attempt to converge to an identical phase value through the resulting pulse-coupled interaction

between the nodes.

A few years after Peskin’s introduction of the PCO model, Mirollo and Strogatz improved

the model, providing a more rigorous mathematical formulation [3]. Up to the present time, the

synchronizing PCO model has been used and developed by many others [5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16], who have presented ways to improve the model’s capabilities and characteristics, and

extend its applications. The primary benefits of the model are found through the minimization of
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communication latency, packet loss, signal corruption, and energy consumption, and are due to the

simplicity of the communication between nodes in the network, i.e., single pulses.

More recently, the model has been expanded to encompass more complex behaviors other

than synchronization [17, 18]. One such behavior is desynchronization, a more difficult problem and

the inverse problem to synchronization. In desynchronization, the phases of the oscillators attempt

to spread apart evenly from each other, such that there is equal separation between all oscillators.

This state of desynchronization is sometimes termed the splay state.

Desynchronization has many important applications, primarily in the area of decentralized

network communication [19, 20, 21], but also in the design of analog-to-digital converters and the

control of traffic intersection flow [19]. Compared with the increased research on achieving oscillator

synchronization, as discussed above, there has been much less research on desynchronization in PCO

networks.

Many algorithms and approaches have been proposed to achieve desynchronization. Some

control strategies ensure weak desynchronization, where the timing between oscillator firings is

constant, but the phases are constantly shifting [19, 22]. Other control strategies ensure strong, or

phase, desynchronization, but must assume a completely interconnected, or all-to-all, network and

a fixed number of nodes [19, 20, 21, 23, 24]. Some have tried to relax the constraint of an all-to-all

connection topology, but instead require either a continuously coupled, rather than pulse-coupled,

network [17, 25], or the use of additional types of nodes and pulse transmissions [14]. Work has also

been done to improve the speed of convergence assuming an all-to-all topological network [26, 27].

In this thesis, we propose a desynchronization strategy and algorithm that relaxes the con-

straint of complete interconnection and removes the requirement of a fixed number of nodes to

achieve complete phase desynchronization. To the best of our knowledge, our approach is the first

to prove that a network topology other than the all-to-all topology can be used to achieve uniform

phase desynchronization with identical pulse-coupled oscillators, and is unique to the literature for

desynchronizing pulse-coupled oscillator networks.

Inspiration for the proposed algorithm is based on the DESYNC and DESYNC-STALE

algorithms proposed in [19]. However, different from [19], which only allows a node to react based

on the oscillators directly ahead of and behind it in phase, our approach allows every node to react

to all nodes with which it is connected.

A mechanical analogy can be made, where each node, spread around the unit circle, is

2



connected to other nodes by compressed springs [9]. The closer the nodes are in phase, the more

force the nodes will exert in moving the other away. An equilibrium is achieved when all of the

nodes are as far away from each other in phase as possible, the desired state of desynchronization.

In Chapter 2, we will formally introduce the proposed phase desynchronization algorithm.

We provide rigorous proof that the strategy guarantees phase desynchronization in a completely con-

nected network, as well as the class of circulant symmetric networks. In Chapter 3, we will simulate

our proposed algorithm, showing how the network desynchronizes, and analyzing the algorithm’s

convergence rate. We will then apply the proposed algorithm to a real system in Chapter 4, and

compare the results to the simulations. We will offer final conclusions in Chapter 5.
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Chapter 2

Phase Desynchronization

2.1 Network Dynamics

2.1.1 General Algorithm Definitions

Let us assume a network of N pulse-coupled oscillators, as shown in Fig. 2.1. Let θi ∈ [0, 2π]

be the associated phase of oscillator, or node, i ∈ V = {1, 2, · · · , N}, with ω as the fundamental

frequency for all oscillators. The state of the network ~θ = [θi] is a column vector representing the

phase of the N nodes.

We define AR = [aij ] ∈ RN×N to be the adjacency matrix for the network, where element

aij is 1 if there is a connection from node i to node j, and 0 if there is no connection. The adjacency

matrix defines the topology for the network. AR is zero diagonal (aii = 0 ∀i ∈ V), and is symmetrical

if connections between nodes are bidirectional. For each node i, we let Ni denote the set of nodes

connected to node i, where Ni ⊂ V, and |Ni| = ni.

Our proposed algorithm1can be described as follows.

1. A node fires a pulse when its phase reaches 2π. When the node fires, all connected nodes

receive the pulse.

2. When a node receives a pulse, the node records the value of its own current phase, θi,m. This

value is stored to be used when the node fires, i.e., when its phase reaches 2π.

1This algorithm has been published in the IEEE Transactions on Signal Processing, Vol. 65, No. 5. [28].
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02π 

θ1

θ2

θ3

θN

θN-1

ω

θi

θ2,1

θ3,2

θi,m

θN-1,n-1

θN,n

α  1

Figure 2.1: A snapshot of current and recorded phases when a node fires for a network of N pulse-
coupled oscillators with fundamental frequency ω. When a node fires, all connected nodes record
the mth instance of their current phase. For example, when node 1 fires, node 2 records θ2,1 and
node 3 records θ3,2. Node 3 recorded θ3,1 when node 2 fired previously.

3. When a node fires, emits a pulse, and resets its phase to zero, it jumps, and the amount that

the node jumps is dependent upon all of the recorded phase values due to the firing of the

other nodes. The node computes the phase response curve (PRC) value, Q(θi,m), for each of

its own recorded phase values, and then computes the change value, Ci, or the amount that

the node needs to jump, from the PRC values. If the change value is positive, the node will

jump by a proportional amount, αCi, where α is a positive real number; otherwise, the node

will not jump. Thus, the node will only jump forward in phase.

The phase update for the network is asynchronous. Each node updates its phase when it

fires, and does not wait for other nodes. However, the amount that each node jumps is determined

by the recorded phase values found from the previous firing cycle. In other words, the network relies

on “stale” information obtained from the timing of received pulses, as in the DESYNC-STALE

algorithm in [19]. In this paper, the invariance of the firing sequence of the nodes is assumed, which

will be proven later.

Let us denote the stroboscopic recorded phase values when a node receives a pulse as θi,m,

where i is the node that received the pulse, and m ∈ {1, 2, . . . , ni} is the index of the recorded phase

5
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Figure 2.2: Phase Response Curve, Q, as given in (2.1) for the proposed algorithm.

value of that node due to the pulses received from neighboring nodes in Ni. Thus, 0 < θi,1 < θi,2 <

. . . < θi,ni
< 2π.

We define the PRC of the network, Q, in the following way:

Q(θi,m) = −(θi,m) + π (2.1)

An interpretation of the PRC function, as shown in Fig. 2.2, is that if two nodes are close

in phase, they will exert a force on each other that causes them to move farther away from each

other. Otherwise, when the nodes are as far apart as possible (θi,m = π), they will exert no force

on each other.

2.1.2 Pulse Dynamics

The amount that a node jumps is dependent on the relative position and total number of

other nodes from which it has received pulses. For our algorithm, the node will compute the average

amount of the calculated PRC values from its recorded phase values. Let us, then, define the change

6



value, Ci, to be this average amount:

Ci =
1

ni

ni∑
m=1

Q(θi,m) (2.2)

As mentioned earlier, when a node fires, it computes its change value and then jumps by

a portion of that amount if the change value is positive. Otherwise, the node does not jump. This

jump rule is described mathematically as

θ+i =

 αCi if Ci > 0

0 if Ci ≤ 0
(2.3)

To summarize, a node will jump in phase only when it fires, and then only if it will jump

forward in phase.

Remark 1. In application, the phase could be allowed to jump backward, allowing for faster con-

vergence. However, there will exist the problem of having the state, in theory, be less than zero for

a period of time. Care will need to be taken to ensure the proper behavior of the network and to

maintain the proper firing sequence.

Let us define the change vector, C, as the column vector of the phase change values corre-

sponding to all nodes in the network:

C = [Ci] ∈ RN (2.4)

2.1.3 Network Equilibrium

In order for us to show that the network will desynchronize, we need to show that the splay

state is the only equilibrium point for the network under our proposed algorithm. For this paper

we will show that the splay state is the equilibrium point for any circulant symmetric network with

ordered nodes.

Definition 1. Nodes in a PCO network are considered ordered when they are initially numbered in

order by their phase magnitude, i.e., 0 ≤ θ1 < θ2 < . . . < θN−1 < θN ≤ 2π.

Definition 2. A network with ordered nodes is called circulant symmetric if the resulting adjacency

matrix AR for the ordered nodes is both circulant and symmetric.

7



02π 02π 

(a) N = 7 (b) N = 6(a) Seven node network, N = 7, with each node con-
nected to two nodes ahead in phase and two nodes be-
hind in phase.

02π 02π 

(a) N = 7 (b) N = 6(b) Six node network, N = 6, where each node is without
connections to the nodes directly ahead and behind it in
phase.

Figure 2.3: Examples of circulant symmetric networks that will achieve desynchronization under the
proposed algorithm.

Remark 2. For our paper, a circulant symmetric network assumes ordered nodes.

Remark 3. For circulant symmetric networks, all nodes have the same number of neighbors, or

Ni = n ∀i ∈ V. For the all-to-all network topology, n = N − 1, and for the ring topology, n = 2.

Proposition 1. For any circulant symmetric network under the proposed algorithm, the network is

desynchronized if and only if the change vector in (2.4) is the zero vector.

Proof. When the network is in the state of desynchronization, all nodes are as far apart from each

other in phase as possible. In this state, the phases are equally spaced around the region [0, 2π].

Since the network is circulant and symmetric, for each node in the network, there will be equal force

pushing the node forward in phase as there is pushing it backward in phase. Thus, over a cycle of

firings, Ci will be zero for all nodes, and no node will jump in phase.

If the network is not desynchronized, then since the network is circulant and symmetric,

there will be an imbalance in the network, causing the change vector to be non-zero.

Proposition 1 indicates that the desynchronized state is the only equilibrium state under

our setup. This result gives us insight into how to determine when the network has reached desyn-

chronization.

8



2.1.4 Network Energy Measure

Let us define an energy function for the network using the change vector after the kth firing

cycle:

p(k) =
1

2
C(k)TC(k) =

1

2

N∑
i=1

Ci(k)
2

(2.5)

By the definition, the energy is non-negative everywhere, and zero only when the change

vector from (2.4) is the zero vector. Thus, (2.5) is a potential “Lyapunov” function. The energy is

computed after every firing cycle, when all nodes have fired once in the sequence.

We also need to define the change in the energy as a function of the cycle:

∆p(k) = p(k + 1)− p(k) (2.6)

Proposition 2. For any circulant symmetric network under the proposed algorithm, the network

will desynchronize if ∆p(k) < 0 for any k when p(k) > 0.

Using LaSalle’s theorem given in [29], Proposition 2 follows easily from the defined energy

function and Proposition 1.

In the next sections, we will prove that the condition in Proposition 2 holds for the all-to-all

topology and circulant symmetric topologies in general, specifically for the circulant symmetric ring

topology.

Remark 4. The all-to-all and circulant symmetric ring topologies are special cases of circulant

symmetric networks. Networks with adjacency matrices that are both symmetric and circulant are a

subset of highly symmetrical networks, as described in [9].

2.2 All-to-All Case

2.2.1 Preliminaries

In order for the network to desynchronize, we need to ensure that the firing sequence of

the nodes remains unchanged between cycles. If nodes switch order after a cycle, then the resulting

network with ordered nodes may no longer be circulant.

9



Lemma 1. The firing sequence for any circulant symmetric network is invariant between cycles

under the proposed algorithm for any change ratio α ∈ (0, 1].

See Appendix A for proof.

To simplify our proofs, we will utilize the following property of the change values Ci.

Lemma 2. For a circulant symmetric network under the proposed algorithm,
∑N
i=1 Ci = 0 holds if

no nodes have jumped during the previous cycle.

See Appendix A for proof.

Remark 5. For both Lemma 1 and Lemma 2, it is necessary that the network be circulant symmetric.

Thus, we restrict our analysis to this class of networks.

2.2.2 Convergence of the All-to-All Topology

Let us first consider a PCO network with an all-to-all topology. This network has been

shown to converge under other desynchronization algorithms [19], so we will show that the network

will also converge under our proposed algorithm.

Theorem 1. A network with an all-to-all topology under the proposed algorithm will converge to

the desynchronized state.

Proof. We can prove Theorem 1 if we can show that ∆p(k) < 0 for a general k when p(k) is non-zero.

Let us first note that the expression for the change in energy can be rewritten by combining

(2.5) and (2.6) and simplifying:

∆p(k) =
1

2

N∑
i=1

[
Ci(k + 1)

2 − Ci(k)
2
]

(2.7)

By substituting the PRC in (2.1) into (2.2), we can write an expression for the change value

for a node at a given cycle:

Ci(k) =
1

n

n∑
m=1

(
− θi,m(k) + π

)
(2.8)

Let j ∈ Ni be an element in the set of nodes that are connected to node i. For the all-to-all

topology, Ni includes all of the network nodes except node i. The recorded phase values can be

expressed as

θi,m(k) = 2π −
((
θj(k)− θi(k)

)
mod 2π

)
, (2.9)

10



where j corresponds to the node that resulted in the mth recorded phase value. We can thus express

(2.8) in terms of the node phases during the current cycle as follows:

Ci(k) =
1

n

∑
j∈Ni

[((
θj(k)− θi(k)

)
mod 2π

)
− π

]
(2.10)

Similarly, the change value for the same node at the next cycle can also be expressed in

terms of the node phases during the next cycle:

Ci(k + 1) =
1

n

n∑
m=1

(
− θi,m(k + 1) + π

)
=

1

n

∑
j∈Ni

[((
θj(k + 1)− θi(k + 1)

)
mod 2π

)
− π

]
(2.11)

We now need an expression for the recorded phase value for the next cycle. We know that,

in the next cycle, the phases may have jumped a fractional amount of Ci, which may have been

non-positive, from the previous cycle following the update rule given in (2.3). The amount that

node i jumps during the current cycle, which we will denote as C̄i, can be mathematically described

as the maximum of zero and Ci, or

C̄i = max {0, Ci} (2.12)

Eqn. (2.12) allows us to write an expression for the next recorded phase value based on

the previous recorded phase value and the amount that each node jumped in the previous cycle, as

illustrated in Fig. 2.4:

θi,m(k + 1) = θi,m(k) + α
(
C̄i(k)− C̄j(k)

)
(2.13)

Using the expression in (2.9), we can rewrite (2.13) as

2π −
((
θj(k + 1)− θi(k + 1)

)
mod 2π

)
= 2π −

((
θj(k)− θi(k)

)
mod 2π

)
+ α

(
C̄i(k)− C̄j(k)

)
=⇒

((
θj(k + 1)− θi(k + 1)

)
mod 2π

)
=
((
θj(k)− θi(k)

)
mod 2π

)
+ α

(
C̄j(k)− C̄i(k)

)
(2.14)

Thus, the expression for the next change value, by substituting (2.14) into (2.11), can be

11



02π θi,m(k)

ω

θi,m(k+1)
α  j(k)

α  i(k)

Figure 2.4: Illustration for (2.13), showing the change in θi,m from one cycle to the next.

written as

Ci(k + 1) =
1

n

∑
j∈Ni

[((
θj(k)− θi(k)

)
mod 2π

)
+ α

(
C̄j(k)− C̄i(k)

)
− π

]
=

1

n

∑
j∈Ni

[((
θj(k)− θi(k)

)
mod 2π

)
− π

]
+
α

n

∑
j∈Ni

[
C̄j(k)− C̄i(k)

]
(2.15)

Recognizing the expression for the change value from (2.10), we can simplify (2.15) as

follows:

Ci(k + 1) = Ci(k) +
α

n

∑
j∈Ni

[
C̄j(k)− C̄i(k)

]
(2.16)

Squaring both sides of (2.16) and subtracting Ci(k)
2

from both sides give us the following

expression for the summation term in (2.7):

Ci(k + 1)
2 − Ci(k)

2
=

2α

n
Ci(k)

∑
j∈Ni

[
C̄j(k)− C̄i(k)

]
+
(α
n

∑
j∈Ni

[
C̄j(k)− C̄i(k)

])2
(2.17)
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We can rearrange and simplify (2.17) as follows:

Ci(k + 1)
2 − Ci(k)

2

=
2α

n

[
Ci(k)

∑
j∈Ni

C̄j(k)− Ci(k)
∑
j∈Ni

C̄i(k)
]

+
α2

n2

( ∑
j∈Ni

[
C̄j(k)− C̄i(k)

])2
=

2α

n

[
Ci(k)

∑
j∈Ni

C̄j(k)− nCi(k)C̄i(k)
]

+
α2

n2

( ∑
j∈Ni

[
C̄j(k)

]
− nC̄i(k)

)2
(2.18)

We can use the fact that Ci(k)C̄i(k) = C̄i(k)2, and then expand and recombine (2.18) to

achieve the following:

Ci(k + 1)
2 − Ci(k)

2

=
2α

n
Ci(k)

∑
j∈Ni

C̄j(k)− 2αC̄i(k)2 +
α2

n2

[ ∑
j∈Ni

C̄j(k)
]2
− 2α2

n
C̄i(k)

∑
j∈Ni

C̄j(k) + α2C̄i(k)2

= (α2 − 2α)
(
C̄i(k)2

)
+
α2

n2

[ ∑
j∈Ni

C̄j(k)
]2

+
(2α

n
Ci(k)− 2α2

n
C̄i(k)

)[ ∑
j∈Ni

C̄j(k)
]

(2.19)

Substituting (2.19) into (2.7) gives us an expression for the change in network energy, where

we drop the cycle (k) notation for clarity:

∆p =
1

2

N∑
i=1

[
(α2 − 2α)(C̄2

i ) +
α2

n2
( ∑
j∈Ni

C̄j
)2

+
(2α

n
Ci −

2α2

n
C̄i

)( ∑
j∈Ni

C̄j
)]

=
1

2

(
(α2 − 2α)

N∑
i=1

(C̄2
i ) +

α2

n2

N∑
i=1

[ ∑
j∈Ni

C̄j

]2
+

N∑
i=1

[(2α

n
Ci −

2α2

n
C̄i

)( ∑
j∈Ni

C̄j
)])

(2.20)

We can further simplify the second term in (2.20) by expanding and recombining terms as

follows:
N∑
i=1

( ∑
j∈Ni

C̄j
)2

= n

N∑
i=1

C̄2
i + (n− 1)

( N∑
i=1

C̄i
( ∑
j∈Ni

C̄j
))

(2.21)

13



Substituting (2.21) into (2.20) and recombining terms give the following result:

∆p =
1

2

(
(α2 − 2α)

N∑
i=1

(C̄2
i ) +

α2

n2

(
n

N∑
i=1

C̄2
i + (n− 1)

[ N∑
i=1

C̄i
( ∑
j∈Ni

C̄j
)])

+

N∑
i=1

[(2α

n
Ci −

2α2

n
C̄i

)( ∑
j∈Ni

C̄j
)])

=
1

2

(
(α2 − 2α)

N∑
i=1

(C̄2
i ) +

α2

n

N∑
i=1

(C̄2
i ) +

N∑
i=1

[α2(n− 1)

n2
C̄i
( ∑
j∈Ni

C̄j
)]

+

N∑
i=1

[(2α

n
Ci −

2α2

n
C̄i

)( ∑
j∈Ni

C̄j
)])

(2.22)

Further recombination and simplification lead to the following final result:

∆p =

N∑
i=1

[(n+ 1

2n
α2 − α

)
(C̄2

i )− 1

n

(n+ 1

2n
α2C̄i − αCi

)( ∑
j∈Ni

C̄j
)]

(2.23)

It now leaves to show that (2.23) is always non-positive, and only stays zero when the

network is desynchronized. Let us denote ∆pi as the ith term of ∆p, corresponding to the ith change

value, such that

∆p =

N∑
i=1

∆pi. (2.24)

Let us arrange the ∆pi terms into two groups: 1) Set M corresponding to when Ci is

non-positive, and 2) Set S when it is positive.

1. If Ci ≤ 0, then, from (2.12), C̄i = 0, and ∆pi ∈M can be simplified as follows:

∆pi =
α

n
Ci

( ∑
j∈Ni

C̄j

)
(2.25)

Eqn. (2.25) is non-positive for any positive α, and the sum of all of the ∆pi ∈M will also be

non-positive.

2. If Ci > 0, then, from (2.12), Ci = C̄i, and the sum of all ∆pi ∈ S can be simplified as follows:

∑
i∈S

∆pi =
(n+ 1

2n
α2 − α

)∑
i∈S

[
C̄2
i −

1

n

( ∑
j∈Ni

C̄iC̄j

)]
(2.26)
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For the summation term in brackets, there will be |S| = s square terms and at most sn
n = s

non-zero pairwise terms, causing the expression to be strictly non-negative. Thus, (2.26) will

be non-positive for any α ∈ (0, 2n
n+1 ).

Therefore, the sum of non-positive values results in the fact that (2.23) is always non-positive for

any α ∈ (0, 2n
n+1 ).

We therefore must deal with the cases where ∆p is zero and desynchronization has not yet

been achieved. There are two such cases: 1) All change values are equal and positive (C1 = C2 =

. . . = CN > 0), and 2) all change values are non-positive (Ci ≤ 0 ∀i).

1. It is trivial to show that the first case cannot happen. If all change values are positive, then

θi − θi−1 < θi+1 − θi < . . . < θi−1 − θi−2 < θi − θi−1, which is a contradiction.

2. The second case can be true for one cycle since the nodes can sense only the “stale” phase

from each node. However, this case will not be true for the next cycle. If no nodes move in

a cycle, each node will then be observing the true phase of its connecting nodes, and not the

stale values, in the next cycle. According to Lemma 2,
∑N
i=1 Ci = 0 holds in the next cycle.

If desynchronization has not yet been achieved (i.e., not all change values are zero), then at

least one node will have a positive change value, and will move forward in phase, causing the

change in energy to be negative according to (2.23).

Therefore, the energy will always decrease and converge to zero. According to Proposition

2, the network will converge to the state of desynchronization.

Remark 6. As determined from the derivation of (2.23), a choice of change ratio α ∈ (0, 2n
n+1 ) will

ensure that the network energy will decrease with each cycle. An α larger than 2n
n+1 cannot be used to

guarantee that the network energy will converge to zero, and thus cause the network to desynchronize.

Because we want to choose α such that it can guarantee desynchronization independent of network

size, the largest range of α, then, that can ensure desynchronization is α ∈ (0, 1], since minn∈N
2n
n+1 =

1.

2.3 Circulant Symmetric Case

We now relax the constraint of an all-to-all topology. We will show that any circulant

symmetric network will desynchronize under our algorithm, specifically for the circulant symmetric
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ring topology.

2.3.1 Convergence of the Ring Topology

Let us now consider the case of the circulant symmetric ring topology, where every node is

connected to the node directly ahead of and behind it in phase.

Theorem 2. A network with the circulant symmetric ring topology, where every node is connected

to the node directly ahead of and behind it in phase, under the proposed algorithm will converge to

the desynchronized state.

Proof. We can prove Theorem 2 if we can show that ∆p(k) < 0 for a general k. The proof follows a

similar approach to Theorem 1.

Using the result from (2.16) in Theorem 1, and knowing that n = 2 for the ring topology,

we can write an expression for the change value during the next cycle as follows:

Ci(k + 1) = Ci(k) + α
( C̄i−1(k) + C̄i+1(k)

2
− C̄i(k)

)
(2.27)

Squaring both sides, subtracting Ci(k)
2

from both sides, and using the fact that C̄i(k)2 =

Ci(k)C̄i(k) give us the term in the summation of (2.7):

Ci(k + 1)
2 − Ci(k)

2

= α
(
Ci(k)C̄i−1(k) + Ci(k)C̄i+1(k)− 2C̄i(k)

2
)

+
α2

4

(
C̄i−1(k) + C̄i+1(k)− 2C̄i(k)

)2
(2.28)

Substituting (2.28) into (2.7) and then splitting the summation give us the following rela-

tionship, where we drop the cycle (k) notation for clarity:

∆p =
1

2

(
α

N∑
i=1

(
CiC̄i−1 + CiC̄i+1 − 2C̄2

i

)
+
α2

4

N∑
i=1

(
C̄i−1 + C̄i+1 − 2C̄i

)2)
(2.29)

Through expanding and recombining, the first summation term in (2.29) can be simplified,

resulting in a convenient shifting of indices as follows:

α

N∑
i=1

(
CiC̄i−1 + CiC̄i+1 − 2C̄2

i

)
= −2α

( N∑
i=1

[
C̄2
i −

1

2
(CiC̄i+1 + Ci+1C̄i)

])
(2.30)
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In a similar way, we can expand and recombine the second summation term in (2.29), also

resulting in a convenient shifting of indices:

α2

4

N∑
i=1

(
C̄i−1 + C̄i+1 − 2C̄i

)2
=
α2

4

N∑
i=1

(
C̄2
i−1 + C̄2

i+1 + 4C̄2
i − 4C̄iC̄i−1 − 4C̄iC̄i+1 + 2C̄i−1C̄i+1

)
=
α2

4

(
6

N∑
i=1

[C̄2
i ]− 8

N∑
i=1

[C̄iC̄i+1] + 2

N∑
i=1

[C̄iC̄i+2]
)

(2.31)

By adding zero in a clever way, we can further simplify (2.31) as follows:

α2

4

(
6

N∑
i=1

[C̄2
i ]− 8

N∑
i=1

[C̄iC̄i+1] + 2

N∑
i=1

[C̄iC̄i+2]
)

+
α2

4

(
2

N∑
i=1

[C̄2
i ]− 2

N∑
i=1

[C̄2
i ]
)

= 2α2
( N∑
i=1

[C̄2
i − C̄iC̄i+1]

)
− α2

2

( N∑
i=1

[C̄2
i − C̄iC̄i+2]

)
(2.32)

We can now substitute (2.30) and (2.32) into (2.29):

∆p =

(
− α

[ N∑
i=1

(
C̄2
i −

1

2
[CiC̄i+1 + Ci+1C̄i]

)]
+ α2

( N∑
i=1

[C̄2
i − C̄iC̄i+1]

)
− α2

4

( N∑
i=1

[C̄2
i − C̄iC̄i+2]

))
(2.33)

Further simplification gives us the following final result:

∆p = (α2 − α)
[ N∑
i=1

(C̄2
i )
]
− α2

4

[ N∑
i=1

(C̄2
i − C̄iC̄i+2)

]
−

N∑
i=1

(
α2[C̄iC̄i+1]− α

[1

2
(CiC̄i+1 + Ci+1C̄i)

])
(2.34)

It now leaves to show that (2.34) is always non-positive. We first notice that the first term

is non-positive for α ∈ (0, 1), and the second term is non-positive for any positive α. These results

now leave to show that the third term causes the entire expression to always be non-positive.

We will consider the following three cases separately: 1) Both Ci and Ci+1 are positive, 2)
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one is positive, and the other non-positive, and 3) both are non-positive.

1. In the first case, the terms in brackets are equivalent, allowing us to combine the first and

third term of (2.34):

(α2 − α)
[ N∑
i=1

(C̄2
i )
]
−

N∑
i=1

(
α2[C̄iC̄i+1]− α[C̄iC̄i+1]

)
= (α2 − α)

[ N∑
i=1

(C̄2
i − C̄iC̄i+1)

]
(2.35)

Eqn. (2.35) is non-positive for α ∈ (0, 1).

2. In the second case, the first term in brackets is zero, and the second term in brackets is

non-positive. Thus, the whole term will be non-positive for any positive α.

3. In the third case, both terms in brackets are zero, making the whole term zero, and thus

non-positive.

We next deal with the cases where ∆p is zero and desynchronization has not yet been

achieved. There are two such cases: 1) All change values are equal and positive (C1 = C2 = . . . =

CN > 0), and 2) all change values are non-positive (Ci ≤ 0 ∀i). These are the same cases as for the

all-to-all topology.

1. It is trivial to show that the first case cannot happen. If all change values are positive, then

θi − θi−1 < θi+1 − θi < . . . < θi−1 − θi−2 < θi − θi−1, which is a contradiction.

2. The second case can be true for one cycle since the nodes can sense only the “stale” phase

from each node. However, this case will not be true for the next cycle. If no nodes move in

a cycle, each node will then be observing the true phase of its connecting nodes, and not the

stale values, in the next cycle. According to Lemma 2,
∑N
i=1 Ci = 0 holds in the next cycle.

If desynchronization has not yet been achieved (i.e., not all change values are zero), then at

least one node will have a positive change value, and will move forward in phase, causing the

change in energy to be negative according to (2.34).

Therefore, the energy will always decrease and converge to zero for a choice of α ∈ (0, 1].

According to Proposition 2, the network will converge to the desynchronized state.
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2.3.2 Convergence of Circulant Symmetric Topologies

We can further prove the convergence of any network that can be described with an adja-

cency matrix that is both circulant and symmetric to the desynchronized state.

Theorem 3. A network with any circulant symmetric topology under the proposed algorithm will

converge to the desynchronized state.

Proof. The proof follows an identical structure as the proof for Theorem 2, and hence will be omitted

here, due to tedious bookkeeping. Given the associated adjacency matrix for the network, we can

derive the change in energy after each cycle. It will be non-positive for α ∈ (0, 1], and cannot stay

at zero unless the network is desynchronized. Thus, the network energy will approach zero, and,

according to Proposition 2, the network will converge to the state of desynchronization.

Remark 7. The definition of circulant symmetric effectively limits the region of initial conditions

under which convergence can be achieved. Enforcing this condition on the initial phases for large

networks may deserve separate investigation.

Remark 8. Other types of topologies may also desynchronize under our algorithm, but we cannot

prove that from the theory presented in this paper. One would need to show that the splay state is

the only equilibrium point for the network under the proposed algorithm, and that the energy for that

network topology decreases with each firing cycle.
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Chapter 3

Simulation Results

We will now simulate how the network evolves over time using our proposed algorithm. We

offer comparisons between the all-to-all topology and circulant symmetric ring topology. The results

of these simulations confirm our theoretical results from the previous sections. All simulations were

done using MATLAB, with all PCOs having identical fundamental frequency, ω = 2π, and identical

period of one second.

3.1 Proposed Algorithm Results

We consider a network of six PCOs, with randomly chosen initial phases from the interval

[0, 2π]. For the circulant symmetric ring topology, we order the initial phases first, and then create

the network such that every node is connected to the node directly ahead of and behind it in phase.

The evolution of the phases under our algorithm in the all-to-all topology and the circulant

symmetric ring topology is given in Fig. 3.1. To visualize the evolution of the network toward

desynchronization more easily, we also measure the phase difference between adjacent nodes, which

we define in the following manner:

∆θi = (θi+1 − θi) mod 2π, where θN+1 = θ1 (3.1)

Fig. 3.2 shows the plot of this phase distance between adjacent nodes, and confirms that

desynchronization is indeed achieved.
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Figure 3.1: Initial and final phase evolution for six nodes with random initial state and α = 0.9.
Solid lines depict behavior under the all-to-all topology. Dotted lines depict behavior under the
circulant symmetric ring topology. The network converges to the state of desynchronization.

In Fig. 3.3, we plot the change values for each node, which converge to zero with time. This

behavior is to be expected, since once the network desynchronizes, no more jumps in phase need to

be made.

In Fig. 3.4, the network energy as defined in (2.5) is shown for both the all-to-all and

ring topology. It is important to note that the energy is not always strictly decreasing with regard

to time. This result is primarily caused by the asymmetric nature of the update algorithm and

secondarily due to the restriction that only forward jumps in phase can be made. However, the

energy does strictly decrease while observing the value after every firing cycle, as was determined

in our theoretical derivation. This result and our theoretical derivation show the importance of

analyzing the evolution of the energy based on complete firing cycles instead of individual firing

instants. Our treatment of desynchronization in this paper is different than the treatment of pulse-

based desynchronization in the literature, which analyzes convergence to the splay state based on

individual firing instances and will fail if applied directly to analyzing desynchronization in this

paper.

As shown in Fig. 3.5, the rate at which the network energy converges is shown to be

dependent on the network topology. More node connections cause the network to desynchronize

more quickly than with fewer connections.
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Figure 3.2: Phase differences for six nodes with random initial state and α = 0.9. Solid lines depict
values under the all-to-all topology. Dotted lines depict values under the circulant symmetric ring
topology. The phase differences converge to the same value, one sixth of the unit circle distance,
and all nodes become evenly spread out around the unit circle.

It is also important to note that the initial network energies under different network topolo-

gies are different. This difference is due to the increased number of connections in the all-to-all

topology, making comparisons between the energy of the network and the closeness to desynchro-

nization more difficult for networks of different topologies and sizes. Normalizing the energy curves

to have the same initial value aids in this comparison.

3.2 Example of Insufficient Initial Condition

Although our proposed algorithm relaxes the constraint of an all-to-all network topology,

our theory only expands the set of potential network topologies to circulant symmetric networks

with ordered nodes. If the network does not satisfy the conditions of being circulant or symmetric

when the nodes are ordered, then our theoretical results do not guarantee that the network will

desynchronize.

As an example, we take the initial node phases from the previous example and swap the

phases of node 1 and node 2, keeping the same network connections from before. The all-to-all

topology, with the swapped nodes, still has a circulant symmetric adjacency matrix, and thus meets

22



0 5 10 15 20 25 30 35 40

Time (seconds)

-1.5

-1

-0.5

0

0.5

1

1.5

C
h

an
g

e 
V

al
u

es
 (

C
i)

Figure 3.3: The evolution of the change value Ci for each node. Solid lines depict behavior under
the all-to-all topology. Dotted lines depict behavior under the circulant symmetric ring topology.
All change values converge to zero.

the conditions for our proposed algorithm. However, the resulting node ordering for the circulant

symmetric ring topology causes the network to have a symmetric, but non-circulant, adjacency

matrix.

As seen in Fig. 3.6, the nodes in the all-to-all topology achieve phase desynchronization.

However, the nodes of the ring topology do not achieve phase desynchronization, but rather converge

into groups of two, and do not maintain the initial firing sequence. Fig. 3.7 more apparently shows

the effect of the ring topology not achieving desynchronization, and also shows the shifting of relative

node positions.

Even though the network energy approaches zero, as shown in Fig. 3.8, the required initial

conditions were not met for this topology, and the energy does not indicate desynchronization.

3.3 Comparison with DESYNC-STALE

Our proposed algorithm can be thought of as a variant and generalization of the DESYNC-

STALE algorithm first given in [19]. The primary advantage that our proposed algorithm has over

the DESYNC-STALE algorithm is the relaxation of the all-to-all topology constraint. Whereas the

DESYNC-STALE algorithm assumes an all-to-all topology, our proposed algorithm can generalize to
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Figure 3.4: Network energy as a function of time for six nodes with random initial state and α = 0.9
for both the all-to-all (ATA) and circulant symmetric ring topologies. Markers indicate the measured
energy after a complete firing cycle. The energy converges to zero as the network desynchronizes.

any circulant symmetric network. Our proposed algorithm thus allows for a wider range of network

topologies that can achieve desynchronization.

To illustrate the advantages of our proposed algorithm, we use the network topology shown

in Fig. 2.3b, and use both algorithms to try to achieve the state of desynchronization. In the

DESYNC-STALE algorithm, a node moves based on the nearest phase neighbor directly ahead of

and behind it, whereas in our proposed algorithm the node moves based on all connected nodes.

In Fig. 3.9, we see that our proposed algorithm achieves evenly spaced node phases, whereas

the DESYNC-STALE algorithm is unable to achieve desynchronization, as a result of each node

ignoring the phase of one node to which it is connected.

Fig. 3.10 shows that our algorithm is able to accurately desynchronize under the given

network topology, but the DESYNC-STALE algorithm is unable to accurately desynchronize. The

desynchronization accuracy of the network |~∆|, defined in [19], is given to be “the sum of the absolute

deviations from perfect desynchrony.”

|~∆| =
N∑
i=1

∣∣∣∆θi − 2π

N

∣∣∣ (3.2)
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Figure 3.5: Network energy after a complete firing cycle for six nodes with random initial state and
α = 0.9 for both the all-to-all (ATA) and circulant symmetric ring topologies. The energy strictly
decreases when measured after a complete firing cycle. The energy convergence rate depends on the
network topology.

3.4 Proposed Algorithm Convergence

We now evaluate the speed of convergence of our algorithm for various sizes and types of

topologies. To do so, we need some measure for when the network has desynchronized. We say that

a network is ε-desynchronized after k cycles when the network energy satisfies p(k) < ε.

In Fig. 3.11, we compare the relative convergence speed for various network topologies

and sizes under different change ratios. We run 25 simulations at random initial conditions for

each set of parameters, and plot the mean and standard deviation for when the network becomes

ε-desynchronized. We see that more node connections cause the network to desynchronize more

quickly for a given change ratio. Also, larger sizes of networks take more time to desynchronize. It

is interesting to note that the ratio between the mean amount of cycles to ε-desynchronization for

identical network size is approximately constant with regard to the change ratio.
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Figure 3.6: Initial and final phase evolution for six nodes with random initial state and α = 0.9.
Solid lines depict behavior under the all-to-all topology. Dotted lines depict behavior under the
circulant symmetric ring topology. When unordered, the nodes in the circulant symmetric ring
topology converge into groups of two, rather than spreading out evenly. The all-to-all topology is
not affected by the reordering of the nodes.
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Figure 3.7: Phase differences for six nodes with random initial state and α = 0.9. Solid lines depict
values under the all-to-all topology. Dotted lines depict values under the circulant symmetric ring
topology. The ring topology does not properly desynchronize or maintain the initial firing sequence
when the nodes are unordered, and the resulting adjacency matrix is non-circulant.
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Figure 3.8: Network energy as a function of time for six nodes with random initial state and α = 0.9
for both the all-to-all (ATA) and ring topologies. Markers indicate the measured energy after a
complete firing cycle. The energy of the ring topology still approaches zero, but does not indicate
desynchronization, since the ordered adjacency matrix is non-circulant.
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Figure 3.9: Phase Differences for six nodes with random initial state and α = 0.9. Solid lines
depict values under our proposed algorithm. Dotted lines depict values under the DESYNC-STALE
algorithm. Both algorithms use the circulant symmetric network topology shown in Fig. 2.3b. The
DESYNC-STALE algorithm is unable to completely desynchronize.
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Chapter 4

Experimental Results

We now want to apply our algorithm to a real-world system, and demonstrate experimen-

tally the proposed phase desynchronization algorithm. We seek to discover how a PCO network

under the proposed algorithm behaves in more general conditions. Typical assumptions, such as

negligible communication delay, identical oscillation period, perfect communication exchange, and

instantaneous phase change, are not always valid in real systems. Deviations from these assump-

tions must be taken into account when designing a physical network with a pulse-coupled oscillator

framework.

4.1 Roomba Robot Network

To demonstrate the proposed algorithm, we introduce Roomba robot platform to achieve

coordinated motion control using the pulse-coupled oscillator model.

Roombas, as shown in Fig. 4.1, are small, circular robots that are primarily used to vacuum

carpets in homes. However, these robots, with the vacuum components removed, can also be used

as a programming testbed for engineers and hobbyists. By attaching a micro-controller to the input

port of the Roomba, an external program can be run that sends commands to the robot according

to the specifications given by the manufacturer. The micro-controller thus has direct access to

the entire hardware of the robot, including the lights, motors, sensors, and speaker. Roombas are

popular as a testbed system due to its simple and intuitive command scheme, its combination of

sensors, and differential steering.
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Figure 4.1: A single Roomba robot with the additional sensors needed to determine its orientation
and communicate with other Roombas autonomously. It senses its orientation with a magnetometer,
and communicates to other Roombas using a RF transmitter and receiver.

To control the Roombas, we utilize the Arduino Uno micro-controller. These small, in-

expensive, boards have a simple computer interface and integrated development environment, on

which programs can be written, compiled, and uploaded quickly in a custom programming language

similar and compatible to the C and C++ programming languages. Its compatibility with C and

C++ allow libraries written for those languages to be imported and used easily on Arduino. The

many digital and analog inputs and outputs allow for easy and quick configuration for a variety of

additional hardware.

In addition to the built in sensors on the Roomba and the Arduino micro-controller, we add

on a magnetometer and a RF transmitter and receiver, as shown in Fig. 4.2. The magnetometer

is a digital compass that measures the surrounding magnetic field in three dimensions, allowing

for the calculation of local orientation. The RF transmitter and receiver give the Roombas a way

to exchange information, or packets, directly with each other. For our purposes, the information
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(a) HMC5883L magnetometer (digital compass) on a
3D-printed mount

(b) TWS-BS transmitter and RWS-371 receiver RF
modules connected to an Arduino

Figure 4.2: External Roomba sensors to determine orientation and achieve pulse-coupled commu-
nication. The magnetometer is used to determine the Roomba’s orientation. The RF modules are
used to send pulse transmissions between Roombas.

exchanged is a simple pulse, rather than a standard information packet.

With these additional components connected to the Roomba, we can now achieve the goal

of having the Roombas desynchronize their headings by pointing in directions that are as different

as possible. This goal is achieved by having each Roomba behave as an oscillator in a network

under our proposed desynchronization algorithm, where the “phase” variable, θ, is the sum of the

Roomba’s heading, φ, and a continuously increasing counter, τ .

θ = φ+ τ

When a Roomba receives a pulse on its RF receiver, it will record the PRC value of its

“phase” according to Eq. (2.1), and keep track of the total number of pulses that it heard from

other Roombas between its own firings.

When the sum of the heading and the counter reaches the threshold value of 2π, the Roomba

will send a pulse out over the RF transmitter. It will then update its heading value, φ, according

to the phase update rule from Eq. (2.3) by rotating itself to have the magnetometer match the new

heading value. Lastly, the Roomba will then subtract 2π from the counter value, τ . The combination

of these steps is equivalent to an oscillator firing a pulse and updating its phase variable, θ, according
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(a) Comparison of Roomba phase between simulation
and experimental data
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(b) Comparison of Roomba heading between simulation
and experimental data

Figure 4.3: Phases and headings of 5 Roombas in an all-to-all topology under the proposed algorithm,
with α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured phase and heading
of the Roomba. Dotted lines indicate the simulated phase and heading. The Roombas perform very
closely to how the simulation predicts.

to the proposed algorithm.

Since the counter for each Roomba in the network is not directly adjusted according to the

desynchronization algorithm, all of the counters will be equivalent across the network. Thus, over

time, the headings of the Roomba will tend toward desynchronization, such that each Roomba is

facing in as different a direction from the others as possible.

4.2 All-to-all Topology Results

To test out our proposed algorithm on the Roombas, we upload identical code onto each

Arduino board that controls the Roomba, and gather data from the Arduino while observing the

behavior of the Roombas. An example of the Arduino program used to implement the proposed algo-

rithm is given in Appendix B. Given the initial conditions and design parameters of the network, we

can also simulate in MATLAB how the Roombas should respond according to the desynchronization

algorithm.

The first experiment we perform uses an all-to-all topology with each Roomba facing a

random initial direction. The phase of the Roombas over the duration of the experiment is shown

in Fig. 4.3a. As the figure shows, the phase of the Roombas matches well with the expected result

of the simulation. To better see the performance of the Roombas, we also look at the headings of

the Roombas, as shown in Fig. 4.3b, which should be separated as much as possible. We can see
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Figure 4.4: Phase differences for 5 Roombas in an all-to-all topology under the proposed algorithm,
with α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured phase differences
between the Roombas. Dotted lines indicate the simulated phase differences. The Roombas are
nearly able to achieve perfect desynchronization.

that the heading of the Roombas closely match the expected result of the simulation.

Another way to quantify the performance of the experiment is to view the phase differences

between each Roomba, as given in Eq. (3.1). The phase differences between the Roombas are shown

in Fig. 4.4. For a network of 5 Roombas, the phases should all be separated by an amount of 2π
5 .

As the figure shows, the Roombas tend toward this amount of equal separation.

The final way to view the performance of the Roombas is to look at the change values and

network energy. The change values, as shown in Fig. 4.5a, indicate the last amount that each

Roomba determined to change, based on the timing of the received pulses during each cycle, and

are calculated according to Eq. (2.2). The network energy, used in the analysis of Ch. 2 to prove

convergence, is calculated according to Eq. (2.5), and shown in Fig. 4.5b. The change values and

network energy do not always follow the simulated results as closely, but this behavior is primarily

due to the Roombas not hearing every pulse in each cycle.

Remark 9. An important note to make is that the network energy does not decrease during the first

two cycles, but rather increases. This increase in network energy is due to the initialization of the
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(a) Comparison of Roomba change values between sim-
ulation and experimental data
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(b) Comparison of Roomba network energy between sim-
ulation and experimental data

Figure 4.5: Change values and network energy of 5 Roombas in an all-to-all topology under the
proposed algorithm, with α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured
change values and network energy of the Roombas. Dotted lines indicate the simulated change
values and network energy.

network, since the Roombas start out with no prior knowledge of the other Roombas in the network,

and thus no amount of change occurs. However, during the second cycle, each Roomba is able to

hear and respond to all of its neighboring Roombas, and thus the network energy begins to decrease

as expected.

4.3 General Topology Results

As the theory in Chapter 2 suggests, the network does not need to have an all-to-all topology

to achieve desynchronization. To test this, we perform another experiment, assuming a more general

topology of 5 Roombas, where each Roomba only hears and responds to the two Roombas farthest

away from it in phase. We refer to this topology as a “star” topology, which is similar to a ring

topology, where each Roomba responds to the two Roombas closest to it in phase. The star topology

is the only other circulant symmetric topology possible with 5 nodes besides the ring topology and

the all-to-all topology.

We first view the phase and heading of the network as it evolves. The phase of the Roombas

are shown in Fig. 4.6a. To see more clearly the network’s evolution, we also show the Roomba’s

heading in Fig. 4.6b. As can be seen, the network tends toward the state of desynchronization.

As in the all-to-all topology, the phase differences need to approach a constant value as the

state of desynchronization is achieved. Fig. 4.7 shows the phase differences between the Roombas.

35



(a) Comparison of Roomba phase between simulation
and experimental data
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(b) Comparison of Roomba heading between simulation
and experimental data

Figure 4.6: Phases and headings of 5 Roombas in a star topology under the proposed algorithm,
with α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured phase and heading
of the Roomba. Dotted lines indicate the simulated phase and heading. The Roombas perform very
closely to how the simulation predicts.

As shown, the phases, and thus the headings, of the Roombas tend toward the constant value of 2π
5 .

The final measure of desynchronization we use is the change values and network energy.

The change values are shown in Fig. 4.8a, as well as the network energy in Fig. 4.8b. As in the

all-to-all topology, these values are susceptible to pulse drops within each cycle, and thus cause the

energy to deviate from the expected values.

4.4 Discussion

The Roombas do not perform exactly as the simulations indicate, and this behavior is due

to numerous factors, besides the inherent variance and randomness of the measurement values.

The first and most significant deviation from the simulation is through pulse loss. The

proposed algorithm assumes that all pulses are always received. However, the Roombas sometimes

miss, or drop, a pulse that was sent. If a Roomba loses a pulse, it appears to that Roomba that one

of the other Roombas has left the network, and thus will respond as if there is one fewer Roomba,

even though the Roomba did not physically leave the network. The pulse loss causes the equilibrium

of the desynchronized state to be upset, as if the Roomba had left and rejoined the network.

Additional error occurs due to the skew rate of the counters on each Roomba. In the

Roomba network, the counter is based on the oscillation frequency of the internal clock on the

Arduino board. However, even though this frequency is labeled as equivalent across all boards,
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Figure 4.7: Phase differences for 5 Roombas in a star topology under the proposed algorithm, with
α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured phase differences between
the Roombas. Dotted lines indicate the simulated phase differences. The Roombas are nearly able
to achieve perfect desynchronization.

there are slight variations due to the manufacturing, causing the oscillation period of the Roombas

to be slightly longer or shorter than the others. Since the phase correction is only applied to the

heading, the counters will continue to diverge, unless the counters are manually reset after some

time.

Some other minor sources of error do occur in our experiment. One is due to the small

communication delay between the Roombas over the RF transmitter and receiver. Any small delay

between when the pulse is sent and when the pulse is received (and enacted upon) will cause the

phase to tend to decrease slightly. Another error can occur due to the continuity of the heading

of the Roomba. Rather than updating its phase instantaneously, it takes time for the Roomba to

adjust and turn its heading to the proper value. If a Roomba is in the middle of this adjustment

when it receives a pulse, the value that the simulation would expect is going to be different than

what the Roomba actually records, since it has not yet finished its heading adjustment.

However, even under these non-ideal conditions, the Roombas are still able to achieve a

significant degree of desynchronization. The stability of the network is not strongly affected, and
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(a) Comparison of Roomba change values between sim-
ulation and experimental data
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(b) Comparison of Roomba network energy between sim-
ulation and experimental data

Figure 4.8: Change values and network energy of 5 Roombas in a star topology under the proposed
algorithm, with α = 0.9, and cycle period of 10 seconds. Solid lines indicate the measured change
values and network energy of the Roombas. Dotted lines indicate the simulated change values and
network energy.

the algorithm is robust to dynamic changes within the network. Furthermore, the algorithm is

capable of achieving desynchronization in more general topologies than the completely connected

network.
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Chapter 5

Conclusion

In this thesis we present a novel control algorithm for achieving phase desynchronization

in pulse-coupled oscillator networks. Our proposed algorithm is robust, allowing the control of the

network to be independent of the number of nodes in the network. Having the control independent

of the size of the network allows for the network to add and remove nodes freely without modifying

the update strategy. This robustness presents itself useful in many applications, where the network

may have nodes dynamically entering and leaving the network.

It is our belief that this thesis is the first to present a proof for the convergence to the

desynchronized state for a pulse-coupled oscillator network topology other than the all-to-all net-

work. Specifically, we show that the network, under our proposed dynamics, will converge to the

state of uniform phase desynchronization for any circulant symmetric network with ordered nodes,

which includes the all-to-all and circulant symmetric ring topologies as special cases. Relaxing the

constraint of an all-to-all topology makes our proposed algorithm desirable for various applications,

where direct communication may not be available between every pair of nodes in the network.

To verify our theory, we perform various computer simulations to demonstrate the behavior

of the network under various topologies, as well as to compare the proposed algorithm with previous

desynchronization algorithms. We also introduce the Roomba robot platform to create a pulse-

coupled oscillator network to achieve coordinated motion control. We use the Roombas, along with

the computer simulations, to analyze the proposed algorithm on a physical system. The results of

the simulations and experiments show that the algorithm behaves as expected under a variety of

circulant symmetric topologies.
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Further analysis can still be made regarding the proposed algorithm. Specifically, theoreti-

cally analyzing the convergence speed of the network is desirable so that the network can be tuned

by an appropriate choice of topology and change ratio. This analysis will be complex, since it will be

dependent on the type of network topology and initial conditions of the nodes. It may also be desir-

able to more rigorously analyze the behavior of the network in the presence of pulse loss, frequency

skew, and communication delay. As indicated in the experiments with the Roomba platform, pulse

loss causes decreased performance in the network. Furthermore, research can be done to see if any

additional types of network topologies can desynchronize under the proposed algorithm beyond the

class of circulant symmetric networks.
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Appendix A Proofs of Lemmas

Proof for Lemma 1:

Proof. To prove this lemma, we need only to show that the firing sequence is invariant for one node,

and then it will be true for all other nodes. To show the firing invariance for one node, we need

only to show that the node will not pass the node directly ahead of it in phase within a firing cycle,

regardless of whether the two nodes are connected.

Without loss of generality, let us consider node N , and show that it will not pass node 1

in phase during a firing cycle. We can describe this relationship mathematically with the following

equation:

αC1 +
(
(θ1 − θN ) mod 2π

)
> αCN (1)

We need only to consider the case when node N jumps forward in phase (CN > 0), since the

node will not pass the node directly in front of it if it does not jump. Without loss of generality, let

us assume that the network has evolved to the instant right before node N fires (θN = 2π). Thus,

(1) can be rewritten as follows:

(αC1 + θ1) > αCN (2)

We can express the amount that node N will jump when it fires as a function of the phases

connected to it,

CN =
1

n

∑
l∈NN

(
−
(
2π −

(
(θl − θN ) mod 2π

))
+ π

)
=

1

n

∑
l∈NN

(
θl
)
− π (3)

where l ∈ NN corresponds to the node that caused the mth instance of node N ’s recorded phase.

Similarly, we can express the amount that node 1 will jump,

C1 =
1

n

∑
j∈N1

(
−
(
2π −

(
(θj − θ1) mod 2π

))
+ π

)
=

1

n

∑
j∈N1

(
θj
)
− θ1 − π (4)

where j ∈ N1 corresponds to the node that caused the mth instance of node 1’s recorded phase.

Since the nodes are ordered and the network is circulant, node 1 is connected to the nodes

that are directly ahead in phase of the nodes that are connected to node N . Thus, we can express
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(4) in terms of the neighbors of node N :

C1 =
1

n

∑
l∈NN

(
θl+1

)
− θ1 − π (5)

By substituting (3) and (5) into (2), we achieve the following relationship:

α
( 1

n

∑
l∈NN

(
θl+1

)
− θ1 − π

)
+ θ1 > α

( 1

n

∑
l∈NN

(
θl
)
− π

)
=⇒ α

n

∑
l∈NN

(
θl+1

)
+ (1− α)θ1 >

α

n

∑
l∈NN

θl (6)

Since the nodes are ordered, then we know that θl+1 > θl ∀l ∈ NN . Thus, for any α ∈ (0, 1],

the expression in (6) will be true, and after a cycle the relative node positions and the resulting

firing sequence will be maintained.

An issue arises if αCN > θ1 holds when node N fires for the first time. When this condition

is true, then, due to the asynchronous update of the algorithm, node N will fire again before node

1, breaking the invariance of the firing sequence. Even though the amount that node 1 will change

would put it past node N again, node N will fire first. However, this problem does not occur

in practice where the nodes begin with no knowledge of the positions of neighboring nodes in the

network. Each node senses the location of neighboring nodes based on received pulses as the network

evolves. Specifically, node N has the largest initial phase and will fire first. When it fires, it will not

have received any pulses from its neighboring nodes, and thus it has CN = 0, and will not jump. As

the network evolves, node (N−1) will fire next. When it fires, it will only have received a pulse from

node N if N ∈ NN−1, and, from the phase response function in (2.1), any jump that node (N − 1)

makes will not break invariance. A similar result occurs for node (N − 2) to node 2. When node

1 fires, it will have full knowledge of the positions of all neighboring nodes, and from the analysis

above, will jump and maintain firing invariance. Thus, when node N fires the second time, Eq. (2)

holds, and invariance is maintained.

As an example, suppose that there are four nodes in an all-to-all topological network. Sup-

pose the initial phases are given by the ordered phase vector ~θ = [0, 13π8 , 7π4 ,
15π
8 ]T . If the nodes begin

with initial knowledge of the location of the other nodes, then when node 4 fires, it has C4 = π
4 ,

and for any α > 1
2 , node 4 will jump past node 1, and invariance is broken. However, because nodes

43



begin with no prior knowledge of neighboring nodes, when node 4 fires first, it has not received any

pulses yet and hence its change value, C4, is zero, which results in no jump. When node 3 fires, it

has C3 = − 7π
8 , and no jump occurs. Similarly, when node 2 fires, it has C2 = − 13π

16 , and no jump

occurs. Now, when node 1 fires, it has C1 = 3π
4 , and will jump by amount αC1. At the end of the

first cycle, the resulting ordered phase vector is ~θ = [α 3π
4 ,

13π
8 , 7π4 ,

15π
8 ]T . When node 4 fires again

during the second cycle, it has C4 = π
4 , and since the amount it will jump, απ4 , is less than the

distance to node 1, (π8 + α 3π
4 ), invariance is maintained.

Proof for Lemma 2:

Proof. From (2.1) and (2.2), we can write that

ni

N∑
i=1

Ci =

N∑
i=1

ni∑
m=1

Q(θi,m) =

N∑
i=1

∑
l∈Ni

(
− [(θi − θl) mod 2π] + π

)
(7)

where l ∈ Ni corresponds to the node that caused the mth instance of node i’s recorded phase.

Since the network is symmetric, then for two nodes j and k with a connection between

them (assuming j > k), node j will record the mth
1 instance of its phase (denoted θj,m1

) when node

k fires, and node k will record the mth
2 instance of its phase (denoted θk,m2

) when node j fires.

Note that θj,m1 represents the phase difference between nodes k and j, and θk,m2 represents the

phase difference between nodes j and k. Since no nodes have jumped in phase, the phase difference

measured by these two nodes is the true phase difference between them and is equivalent for both

nodes. Combining these two terms causes them to cancel.

Q(θj,m1
) +Q(θk,m2

) =
(
− (θj − θk) + π

)
+
(
− (θk − θj + 2π) + π

)
= 0 (8)

Since the entire network is symmetric, and no nodes have jumped in the cycle, the whole

expression can be recombined and canceled.

ni

N∑
i=1

Ci = 0 =⇒
N∑
i=1

Ci = 0 (9)

Thus, the desired result is achieved.
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Appendix B Arduino Desynchronization Code for Roombas

/∗ DeSync030817 . ino

∗ Heading Deynchronizat ion Code

∗ Uses Phase Desync a l go r i th m in [ Anglea−Wang, 2017]

∗ Last Updated : 3/17/2017

∗/

#include <S o f t w a r e S e r i a l . h>

#include <SPI . h>

#include ” VirtualWire . h”

#include ”Wire . h”

#include ”compassCUCI . h”

#define address 0x1E // 0011110b , I2C 7 b i t address o f HMC5883

const int rxPin = 3 ; // Communication l i n k s to Roomba

const int txPin = 4 ;

const int ddPin = 5 ;

const int greenPin = 7 ; // On when the Roomba sends a p u l s e .

// ( very f a s t , may not see )

const int redPin = 8 ; // On when Roomba heading update i s 0

const int yel lowPin = 11 ; // On when the Roomba i s tu rn in g .

const int t ransmi t p in = 12 ; // Communication l i n k s to RF t r a n s m i t t e r

const int r e c e i v e p i n = 2 ; // and r e c e i v e r

/∗ Globa l v a r i a b l e s f o r t ransmiss ion and r e c e i v i n g ∗/

unsigned char buf [VW MAX MESSAGE LEN] ;

u i n t 8 t bu f l en = VW MAX MESSAGE LEN;

unsigned char message = 0 ;
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/∗ Globa l v a r i a b l e s needed to implement turn f u n c t i o n s ∗/

f loat ang le ; // Heading o f Roomba

// ( found from d i g i t a l compass )

f loat counter ; // Globa l counter f o r Roomba ( works

// wi th ang l e to compute ” phase ”)

f loat d ang le ; // Change in ang le t h a t Roomba

// w i l l turn ( updates each c y c l e )

f loat myPhase [ 6 ] = {0 , 0 , 0 , 0 , 0 , 0} ; // Phase v a l u e s at f i r i n g i n s t a n c e s

f loat change = 0 ; // Change v a l u e o f Roomba

int t o ta lnode s = 0 ; // # o f p u l s e s r e c e i v e d in a c y c l e

f loat DesiredHeading ; // Heading s e t p o i n t o f Roomba ;

int forward = 0 ; // Speed (mm/ s ) t h a t Roomba whee l s

// turn to move forward ;

// must be in range [−400 ,400]

const f loat pi = 3 .1415926 ; // Pi to 7 decimal p l a c e s

/∗ A d j u s t a b l e Synchroni za t ion Parameters ∗/

const f loat RATIO = 0 . 9 ; // Ratio f o r amount to turn

// must be in range (0 1 ]

const f loat EPSILON = 1 . 0 ; // ( i d e a l l y ) S m a l l e s t r e s o l u t i o n o f

// d i g i t a l compass

boolean DHFlag = fa l se ; // Desired Heading f u n c t i o n i n d i c a t o r

// ( was the l a s t command not to turn ?)

/∗ Sync Counter Setup ∗/

unsigned long mi l l i sCounte r ; // Base time f o r determining counter

const f loat counterspeed = 36 ; // Number o f t imes per second t h a t the

// counter increments − range (0 ,1000 ]

// Adjust t h i s v a l u e to vary the

// speed / f requency o f the counter

46



const f loat m i l l i s R a t i o = counterspeed / 1000 ;

// Counter increments per m i l l i s e c o n d

const f loat m i l l i s A d j u s t = 360000 / counterspeed ;

// Amount o f counter adjustment / f i r i n g

const unsigned long counterAdjust = (unsigned long ) m i l l i s A d j u s t ;

// Truncate to unsigned long

/∗ Data Parameters ∗/

const int dataTIMER = 100 ; // Number o f m i l l i s e c o n d s between data p o i n t s

/∗ Roomba S e r i a l Setup ∗/

S o f t w a r e S e r i a l Roomba( rxPin , txPin ) ; // Set up Roomba communication

/∗ Data Point C o l l e c t o r Setup ∗/

unsigned long de l t ime ;

unsigned long r e s e t t i m e ;

long sno = 0 ;

/∗ S t a r t up Roomba ∗/

void setup ( ) {

S e r i a l . begin (115200 ) ; // Declare S e r i a l Monitor baud r a t e

disp lay Running Sketch ( ) ; // Show s k e t c h in format ion at s t a r t u p

S e r i a l . p r i n t l n ( ”Loading . . . ” ) ;

pinMode ( ddPin , OUTPUT) ; // Set the p ins as o u t p u t s

pinMode ( greenPin , OUTPUT) ;

pinMode ( redPin , OUTPUT) ;

pinMode ( yel lowPin , OUTPUT) ;

Roomba . begin (115200 ) ; // Declare Roomba baud r a t e

d i g i t a l W r i t e ( greenPin , HIGH) ; // Say we ’ re a l i v e
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// s e t up ROI to r e c e i v e commands

Roomba . wr i t e ( byte ( 7 ) ) ; // RESTART

delay ( 8 0 0 0 ) ;

S e r i a l . p r i n t ( ”STARTING ROOMBA. ” ) ;

Roomba . wr i t e ( byte ( 1 2 8 ) ) ; // START

delay ( 5 0 ) ;

Roomba . wr i t e ( byte ( 1 3 1 ) ) ; // CONTROL

//131 − Safe Mode

//132 − F u l l mode (Be ready to catch i t ! )

// Test to make sure Roomba communication i s working

Roomba . wr i t e ( byte ( 1 3 9 ) ) ; // Turn on Dirt Detect l i g h t

Roomba . wr i t e ( byte ( 2 5 ) ) ; // and Green Clean but ton

Roomba . wr i t e ( byte ( 0 ) ) ;

Roomba . wr i t e ( byte ( 1 2 8 ) ) ;

de lay ( 5 0 0 ) ;

Roomba . wr i t e ( byte ( 1 3 9 ) ) ; // Change Green to Red

Roomba . wr i t e ( byte ( 2 5 ) ) ;

Roomba . wr i t e ( byte ( 2 5 5 ) ) ;

Roomba . wr i t e ( byte ( 1 2 8 ) ) ;

de lay ( 5 0 0 ) ;

Roomba . wr i t e ( byte ( 1 3 9 ) ) ; // Turn o f f Clean Button

Roomba . wr i t e ( byte ( 2 5 ) ) ;

Roomba . wr i t e ( byte ( 2 5 5 ) ) ;

Roomba . wr i t e ( byte ( 0 ) ) ;

de lay ( 5 0 ) ;

/∗ Transmitter Setup ∗/

Wire . begin ( ) ; // I n i t i a l i z e S e r i a l and I2C communications
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/∗ Put the HMC5883 IC i n t o the c o r r e c t o p e r a t i n g mode ∗/

Wire . beg inTransmiss ion ( address ) ; // open communication wi th HMC5883

Wire . wr i t e (0 x02 ) ; // s e l e c t mode r e g i s t e r

Wire . wr i t e (0 x00 ) ; // cont inuous measurement mode

Wire . endTransmission ( ) ;

/∗ Compass C a l i b r a t i o n : ∗/

compas s in i t ( 1 ) ; // Set Compass Gain

Move(0 , −75); // Set roomba sp inning to c a l i b r a t e the compass

// Spins ˜2.75 r o t a t i o n s CCW.

compass debug = 0 ; // Show Debug Code in S e r i a l Monitor

// ( Set to 0 to h ide Debug Code )

c o m p a s s o f f s e t c a l i b r a t i o n ( 2 ) ; // Find compass a x i s o f f s e t s

Move(0 , 0 ) ; // Stop sp inn ing a f t e r comple t ing c a l i b r a t i o n

/∗ I n i t i a l i s e the IO and ISR ∗/

vw se t tx p i n ( t ransmi t p in ) ;

vw se t rx p in ( r e c e i v e p i n ) ;

v w s e t p t t i n v e r t e d ( true ) ; // Required f o r DR3100

vw setup ( 2 0 0 0 ) ; // B i t s per second

/∗ Receiver Setup ∗/

delay ( 1 0 0 0 ) ;

S e r i a l . p r i n t ( ” Setup” ) ;

vw rx s ta r t ( ) ; // S t a r t the r e c e i v e r PLL running

d i g i t a l W r i t e ( yel lowPin , HIGH) ;

S e r i a l . p r i n t l n ( ” . . . complete ” ) ;

de lay ( 5 0 0 ) ;
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d i g i t a l W r i t e ( yel lowPin , LOW) ;

d i g i t a l W r i t e ( greenPin , LOW) ; // say we ’ ve f i n i s h e d se tup

/∗ Wait f o r command to i n i t i a l i z e s y n c h r o n i z a t i o n ∗/

delay ( 1 0 0 0 ) ;

ang le = Calcu late Heading ( ) ; // Throw away f i r s t c a l c u l a t i o n

delay ( 2 0 0 ) ;

/∗ I n i t i a l i z e s y n c h r o n i z a t i o n ∗/

ang le = Calcu late Heading ( ) ; // Determine i n i t i a l heading in format ion

sendPalse ( ) ; // Send r e s e t Palse

r e se tCounter s ( ) ; // Reset counter v a l u e s

}

void loop ( ) { // Swarm ”Heading Synchroni za i ton ” Code

/∗ Read ang le from compass ∗/

ang le = Calcu late Heading ( ) ; // Set ang l e from the compass read ing

counter = m i l l i s R a t i o ∗ ( long ) ( m i l l i s ( ) − mi l l i sCounte r ) ;

// Find curren t counter v a l u e

i f ( ang le + counter < 0) { // I f the ” phase ” i s n e g a t i v e . . .

mi l l i sCounte r = mi l l i sCounte r − counterAdjust ; // Adjust base counter

} // Happens when o s c i l l a t o r f i r e s and moves heading p as t 360 de gree s .

/∗ Receive a p u l s e s i g n a l ∗/

r e c i e v e P u l s e ( ) ;

/∗ Send a p u l s e s i g n a l and a d j u s t heading ∗/

i f ( ang le + counter >= 360) { // I f the ” phase ” reaches 360 d egr ees . . .

sendPulse ( ) ; // Fire p u l s e

mi l l i sCounte r = mi l l i sCounte r + counterAdjust ; // Adjust base counter

// Adjust DesiredHeading

i f ( t o ta lnode s > 0) { // I f I ’ ve heard at l e a s t one o s c i l l a t o r
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PhaseUpdateF ( ) ; // Update Roomba Heading ( on ly forward motion )

t o ta lnode s = 0 ; // Clear v a l u e f o r next c y c l e .

} // Else i gnore i f no nodes were heard

} // Ignore i f the ang l e and counter are l e s s than 360 deg rees .

/∗ Receive a p u l s e s i g n a l ∗/

r e c i e v e P u l s e ( ) ;

/∗ I f a p u l s e s i g n a l was r e c i e v e d ∗/

i f ( message == ’b ’ ) { // I f r e s e t p a l s e i s r e c e i v e d . . .

// S e r i a l . p r i n t l n (” Reset Palse . ” ) ; / / I n c l u d e f o r debugg ing

d i g i t a l W r i t e ( redPin , HIGH) ; // N o t i f y t h a t we r e c e i v e d p a l s e

d i g i t a l W r i t e ( greenPin , HIGH) ;

r e se tCounter s ( ) ; // Reset the counter v a r i a b l e s

d i g i t a l W r i t e ( redPin , LOW) ; // End N o t i f y t h a t we r e c e i v e d p a l s e

d i g i t a l W r i t e ( greenPin , LOW) ;

message = 0 ; // Clear the message v a r i a b l e

} else i f ( message == ’ z ’ ) {

// S e r i a l . p r i n t l n (” Sync Pulse . ” ) ; // I n c l u d e f o r debugg ing

d i g i t a l W r i t e ( yel lowPin , HIGH) ; // N o t i f y t h a t we r e c e i v e d p u l s e

myPhase [ t o ta lnode s ] = ( ang le + counter ) ; // Record curren t phase

t o ta lnode s++; // Increment t o t a l number o f nodes

d i g i t a l W r i t e ( yel lowPin , LOW) ; // End N o t i f y t h a t we r e c e i v e d p u l s e

message = 0 ; // Clear the message v a r i a b l e

}

/∗ Receive a p u l s e s i g n a l ∗/

r e c i e v e P u l s e ( ) ;

/∗ Turn to the DesiredHeading s e t p o i n t ∗/
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DH Turn ( ) ;

/∗ Send a data p o i n t to the S e r i a l monitor ∗/

i f ( m i l l i s ( ) − de l t ime >= dataTIMER) { // Every so o f t e n . . .

de l t ime += dataTIMER ; // Reset base v a l u e f o r data p o i n t s

sno++; // Increment the data p o i n t number

S e r i a l . p r i n t l n ( ” ; ” ) ; // End row , s t a r t new row of data

Print Heading Data ( ) ; // Print data p o i n t to the S e r i a l Monitor

}

/∗ Receive a p u l s e s i g n a l ∗/

r e c i e v e P u l s e ( ) ;

/∗ Reset Counters o f a l l Roombas every 5 minutes ∗/

i f ( m i l l i s ( ) − r e s e t t i m e >= 300000) { // I f i t ’ s been 5 minutes . . .

sendPalse ( ) ; // Send Reset Palse

r e se tCounter s ( ) ; // Reset Counter v a l u e s

}

}/∗ Go back and check e v e r y t h i n g again . Should be f a s t ∗/

/∗ SUBROUTINES ∗/

/∗ Recieve p u l s e from RF t r a n s m i t t e r and save v a l u e ∗/

void r e c i e v e P u l s e ( ) {

i f ( vw get message ( buf , &buf l en ) ) { // I f I r e c e i v e a p u l s e . . .

message = (char ) buf [ 0 ] ; // Return p u l s e c h a r a c t e r

}

}

/∗ Sends out a p u l s e when phase e q u a l s 360 deg rees ∗/
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void sendPulse ( ) {

char pu l s e [ 2 ] = { ’ z ’ } ;

// S e r i a l . p r i n t l n (” Sync Pulse Sent . ” ) ; // I n c l u d e f o r debugg ing

d i g i t a l W r i t e ( greenPin , HIGH) ; // T e l l me t h a t I ’m sending a p u l s e

vw send ( ( u i n t 8 t ∗) pulse , s t r l e n ( pu l s e ) ) ;

vw wait tx ( ) ; // Wait u n t i l the whole message i s gone

d i g i t a l W r i t e ( greenPin , LOW) ; // T e l l me t h a t I ’m done sending a p u l s e

}

/∗ Sends out a p a l s e when new Roomba f i n i s h e s se tup ∗/

void sendPalse ( ) {

char pa l s e [ 2 ] = { ’ b ’ } ;

// S e r i a l . p r i n t l n (” Reset Pulse Sent . ” ) ; // I n c l u d e f o r debugg ing

d i g i t a l W r i t e ( greenPin , HIGH) ; // T e l l me t h a t I ’m sending a p a l s e

d i g i t a l W r i t e ( redPin , HIGH) ;

vw send ( ( u i n t 8 t ∗) pa l se , s t r l e n ( pa l s e ) ) ;

vw wait tx ( ) ; // Wait u n t i l the whole message i s gone

d i g i t a l W r i t e ( greenPin , LOW) ; // T e l l me t h a t I ’m done sending a p a l s e

d i g i t a l W r i t e ( redPin , LOW) ;

}

/∗ Reset ALL the counters ∗/

void r e se tCounter s ( ) {

mi l l i sCounte r = m i l l i s ( ) ; // Reset base counter ( on a l l r o b o t s )

de l t ime = m i l l i s ( ) ; // Reset base v a l u e f o r data output

r e s e t t i m e = m i l l i s ( ) ; // Reset base v a l u e f o r r e s e t t imer

sno = 0 ; // Reset data p o i n t counter

DesiredHeading = angle ; // Reset heading s e t p o i n t

counter = 0 ; // Reset counter v a l u e

change = 0 ; // Reset change v a l u e
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t o ta lnode s = 0 ; // Reset t o t a l number o f nodes

S e r i a l . p r i n t l n ( ) ; // Move to next l i n e

Print Heading Data ( ) ; // Disp lay i n i t i a l heading in format ion

}

/∗ Update heading due to r e c e i v e d p u l s e s ( on ly a d j u s t forward ) ∗/

void PhaseUpdateF ( void ) {

change = 0 ; // Clear out the v a r i a b l e

for ( int i = 0 ; i < t o ta lnode s ; i++) {

// Accumulate t o t a l change v a l u e

change = change + (180 − myPhase [ i ] ) / to ta lnode s ;

myPhase [ i ] = 0 ; // Clear the phase v a l u e a f t e r i t i s used .

} // change w i l l not be modi f ied u n t i l the next heading update f i r i n g

i f ( change > 0) { // Don ’ t change i f amount i s n e g a t i v e

// Update d e s i r e d heading

DesiredHeading = DesiredHeading + (RATIO∗ change ) ;

i f ( DesiredHeading < 0) { // Normalize the heading v a l u e

DesiredHeading += 360 ;

} else i f ( DesiredHeading >= 360) {

DesiredHeading −= 360 ;

}

d i g i t a l W r i t e ( redPin , LOW) ; // I n d i c a t e a change in heading

} else {

d i g i t a l W r i t e ( redPin , HIGH) ; // I n d i c a t e no change in heading

}

}

/∗ Set Roomba sp in to a c h e i v e the v a l u e o f DesiredHeading

∗ DesiredHeading i s the s e t p o i n t f o r the heading
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∗ EPSILON i s d e s i r a b l y sma l l ( p r o b a b l y in range [ 0 . 5 , 1 ] )

∗/

void DH Turn( void ) {

i f ( ang le < ( DesiredHeading + EPSILON) &&

angle > ( DesiredHeading − EPSILON) && DHFlag == fa l se ) {

// I f i t ’ s not moving , and I ’m c l o s e enough . . .

d i g i t a l W r i t e ( yel lowPin , LOW) ; // Say we have s topped tu rn in g .

return ; // Leave f u n c t i o n

}

int spinValue ; // Speed o f whee l s in mm/ s to sp in

f loat ho lder ;

f loat thresh1 = 25 ; // F i r s t t h r e s h o l d v a l u e

f loat thresh2 = 5 ; // Second t h r e s h o l d v a l u e

ho lder = ang le − DesiredHeading ;

ho lder = abs ( ho lder ) ; // Abso lu te d i f f e r e n c e o f where I am ( ang l e )

// and where I want to be ( DesiredHeading )

// Determine sp in speed based on Thresho lds

i f ( ho lder > thresh1 && holder < (360 − thresh1 ) ) {

spinValue = 100 ; // Move f a s t e r

} else i f ( ho lder > thresh2 && holder < (360 − thresh2 ) ) {

spinValue = 50 ; // Move f a s t

} else { // i f ( h o l d e r <= t h r e s h 2 )

spinValue = 15 ; // Move s low ( keeps down o s c i l l a t i o n s

} // due to main loop e x e c u t i o n r a t e )

// Determine d i r e c t i o n o f sp in

i f ( DesiredHeading < EPSILON) {

i f ( ang le > ( DesiredHeading + EPSILON) &&

angle < ( DesiredHeading + 180) ) {
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// Spin L e f t (CCW)

Move( forward , −spinValue ) ;

DHFlag = true ;

} else i f ( ( ang le < (360 + DesiredHeading − EPSILON) ) &&

( ang le >= ( DesiredHeading + 180)) ) {

// Spin Right (CW)

Move( forward , spinValue ) ;

DHFlag = true ;

} else {

// Stop Spinning

Move( forward , 0 ) ;

DHFlag = fa l se ;

d i g i t a l W r i t e ( yel lowPin , LOW) ; // Say we have s topped tu rn in g .

}

} else i f ( DesiredHeading < 180) {

i f ( ang le > ( DesiredHeading + EPSILON) &&

angle < ( DesiredHeading + 180) ) {

// Spin L e f t (CCW)

Move( forward , −spinValue ) ;

DHFlag = true ;

} else i f ( ( ang le < ( DesiredHeading − EPSILON) ) | |

( ang le >= ( DesiredHeading + 180)) ) {

// Spin Right (CW)

Move( forward , spinValue ) ;

DHFlag = true ;

} else {

// Stop Spinning

Move( forward , 0 ) ;

DHFlag = fa l se ;

d i g i t a l W r i t e ( yel lowPin , LOW) ; // Say we have s topped tu rn in g .
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}

} else i f ( DesiredHeading < (360 − EPSILON) ) {

i f ( ( ang le < ( DesiredHeading − EPSILON) ) &&

( ang le > ( DesiredHeading − 180)) ) {

// Spin Right (CW)

Move( forward , spinValue ) ;

DHFlag = true ;

} else i f ( ( ang le > ( DesiredHeading + EPSILON) ) | |

( ang le <= ( DesiredHeading − 180)) ) {

// Spin L e f t (CCW)

Move( forward , −spinValue ) ;

DHFlag = true ;

} else {

// Stop Spinning

Move( forward , 0 ) ;

DHFlag = fa l se ;

d i g i t a l W r i t e ( yel lowPin , LOW) ; // Say we have s topped tu rn in g .

}

} else {

i f ( ( ang le < ( DesiredHeading − EPSILON) ) &&

( ang le > ( DesiredHeading − 180)) ) {

// Spin Right (CW)

Move( forward , spinValue ) ;

DHFlag = true ;

} else i f ( ( ang le > ( DesiredHeading + EPSILON − 360)) &&

( ang le <= ( DesiredHeading − 180)) ) {

// Spin L e f t (CCW)

Move( forward , −spinValue ) ;

DHFlag = true ;

} else {
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// Stop Spinning

Move( forward , 0 ) ;

DHFlag = fa l se ;

d i g i t a l W r i t e ( yel lowPin , LOW) ; // Say we have s topped tu rn in g .

} // End ” e l s e ang l e ”

} // End ” e l s e DesiredHeading ”

} // End Function

/∗ General Wheel Motor command f u n c t i o n .

X = common wheel speed (mm/ s ) ; Y = d i f f e r e n t i a l wheel speed ;

X > 0 −> forward motion ; Y > 0 −> CW motion

This f u n c t i o n a l l o w s f o r both t urn i ng and forward motion .

Error may r e s u l t i f |X|+ |Y | > 500 (Max v a l u e i s 500)

∗/

void Move( int X, int Y) {

unsigned int RW = (X − Y) ;

unsigned int LW = (X + Y) ;

Roomba . wr i t e ( byte ( 1 4 5 ) ) ;

Roomba . wr i t e ( byte ( (RW & 0 x f f 0 0 ) >> 8 ) ) ;

Roomba . wr i t e ( byte (RW & 0 x f f ) ) ;

Roomba . wr i t e ( byte ( (LW & 0 x f f 0 0 ) >> 8 ) ) ;

Roomba . wr i t e ( byte (LW & 0 x f f ) ) ;

return ;

}

f loat Calcu late Heading ( void ) {

f loat t ;

c o m p a s s s c a l l e d r e a d i n g ( ) ; // Get Raw data from the compass

/∗ Heading C a l c u l a t i o n ( y−a x i s f r o n t ) ∗/

t = ( atan2 ( compass y sca l l ed , compas s x s ca l l ed ) ∗ (180/ p i ) − 9 0 ) ;
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i f ( t < 0) {

t = t + 360 ;

}

return t ;

}

/∗ Disp lay Heading Informat ion to the S e r i a l Monitor ∗/

void Print Heading Data ( void ) {

S e r i a l . p r i n t ( sno ) ; // Data p o i n t number

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t ( ang le ) ; // Robot Heading

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t ( counter ) ; // Counter v a l u e

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t ( DesiredHeading ) ; // Desired Set p o i n t

// ( ang l e shou ld f o l l o w t h i s )

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t ( change ) ; // Current change v a l u e

}

/∗ D i s p l a y s the Sketch running on the Arduino .

∗ Use at s t a r t u p on a l l code . ∗/

void disp lay Running Sketch ( void ) {

/∗ Find the necessary in formai ton ∗/

St r ing the path = FILE ;

int s l a s h l o c = the path . l a s t IndexOf ( ’ \\ ’ ) ;

S t r ing the cpp name = the path . s ub s t r i n g ( s l a s h l o c + 1 ) ;

/∗ Disp lay to the S e r i a l Monitor ∗/

S e r i a l . p r i n t ( ”\nSketch Name : ” ) ;

S e r i a l . p r i n t l n ( the cpp name ) ;
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S e r i a l . p r i n t ( ”Compiled on : ” ) ;

S e r i a l . p r i n t ( DATE ) ;

S e r i a l . p r i n t ( ” at ” ) ;

S e r i a l . p r i n t ( TIME ) ;

S e r i a l . p r i n t l n ( ”\n” ) ;

}
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[11] F. Núñez, Y. Q. Wang, and F. J. Doyle III. Synchronization of pulse-coupled oscillators on
(strongly) connected graphs. IEEE Transactions on Automatic Control, 60(6):1710–1715, June
2015.
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