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Abstract 
 

 

The optimal design task of complex engineering systems requires knowledge in 

various domains. It is thus often split into smaller parts and assigned to different design 

teams with specialized backgrounds. Decomposition based optimization is a 

multidisciplinary design optimization (MDO) technique that models and improves this 

process by partitioning the whole design optimization task into many manageable sub-

problems. These sub-problems can be treated separately and a coordination strategy is 

employed to coordinate their couplings and drive their individual solutions to a consistent 

overall optimum. Many methods have been proposed in the literature, applying 

mathematical theories in nonlinear programming to decomposition based optimization, 

and testing them on engineering problems.  These methods include Analytical Target 

Cascading (ATC) using quadratic methods and Augmented Lagrangian Coordination 

(ALC) using augmented Lagrangian relaxation. The decomposition structure has also 

been expanded from the special hierarchical structure to the general network structure. 

However, accuracy, efficiency, and parallelism still remain the focus of decomposition 

based optimization research when dealing with complex problems and more work is 

needed to both improve the existing methods and develop new methods. 

In this research, a hybrid network partition in which additional sub-problems can 

either be disciplines or components added to a component or discipline network 

respectively is proposed and two hybrid test problems are formulated. The newly 

developed consensus optimization method is applied on these test problems and shows 
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good performance. For the ALC method, when the problem partition is given, various 

alternative structures are analyzed and compared through numerical tests. A new theory 

of dual residual based on Karush-Kuhn-Tucker (KKT) conditions is developed, which 

leads to a new flexible weight update strategy for both centralized and distributed ALC. 

Numerical tests show that the optimization accuracy is greatly improved by considering 

the dual residual in the iteration process.  Furthermore, the ALC using the new update is 

able to converge to a good solution starting with various initial weights while the 

traditional update fails to guide the optimization to a reasonable solution when the initial 

weight is outside of a narrow range. Finally, a new coordination method is developed in 

this research by utilizing both the ordinary Lagrangian duality theorem and the 

alternating direction method of multipliers (ADMM). Different from the methods in the 

literature which employ duality theorems just once, the proposed method uses duality 

theorems twice and the resulting algorithm can optimize all sub-problems in parallel 

while requiring the least copies of linking variables. Numerical tests show that the new 

method consistently reaches more accurate solutions and consumes less computational 

resources when compared to another popular parallel method, the centralized ALC. 
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Chapter 1  

 

1.1 Decomposition based Optimization 

The optimal design task in engineering is facing rising challenges as products 

become more and more complex. Because the products consist of many components that 

are connected or coupled with each other, their design usually involves several 

interacting disciplines which may share some of the same design variables. The optimal 

design of a complex system cannot be solved by a single person or even a single design 

team. It requires experts in different specialties working both collaboratively and 

independently. By “independently”, it is meant that the original design task is split into 

many parts and each expert only needs to deal with the part related to his or her expertise, 

without considering the parts in other domains. By “collaboratively”, it is meant that 

experts focusing on different parts need to exchange certain design information that are 

shared among them and guarantee that the aggregation of their designs are consistent and 

optimal for the whole system. The theoretical foundation for decomposing the optimal 

design task has been studied since the early 1960s [1][2]. As shown in Figure 1.1, 

decomposition based optimization consists of two processes [3]: 

(1) Partitioning of a system into smaller sub-systems that can be designed 

autonomously.  

Introduction 
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(2) Coordination of the individual sub-systems towards an optimal and consistent 

system. 

 

Figure 1.1: The process of decomposition based optimization 

 

A large engineering optimization problem can either be partitioned according to 

the components it is composed of, or according to the disciplines involved [4].  These 

decompositions can be solved using Multilevel Optimization (MLO) and 

Multidisciplinary Design Optimization (MDO) [5][6][7]. Other partitions do exist, for 

instance based on functions or on flow of information, process, or organization divisions 

[8][9][10]. Figure 1.2(a) shows an example of a component based partition for the car 

optimal design which consists of frame, power unit, and suspension design. The power 

unit sub-problem can be further partitioned into transmission and engine design. These 

sub-problems form a hierarchical structure in which each sub-problem belongs to a 

specific level and can only communicate with its parent on the upper level or children on 

the lower level. MLO is designed to solve this kind of multilevel partitions, while in 

MDO there is no clear level in the problem partition. In Figure 1.2 (b), the discipline 
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based partition of the car design has three fully coupled sub-problems: structures, 

dynamics, and electronics. All the sub-problems are equally important and each of them 

can freely communicate with the others. This structure is called a network structure. The 

car design problem shown here is idealized and the only purpose of it is to illustrate the 

definitions of component and discipline based partition. The real design problem of a car 

is much more complex. 

Unlike single-level methods which have a single, centralized decision-making 

process, MLO and MDO distribute the decision-making tasks among all sub-problems 

[11], and both approaches have been applied to various engineering problems such as 

vehicle design and aircraft design [12][13]. 

 

(a) 

 

(b) 

Figure 1.2: The simple component based partition (a) and discipline based partition  

(b) of a car optimization problem 
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Many studies have also been conducted to find optimal partitions for 

decomposition-based optimization [14][15][16][17]. In particular, the model-based 

method of Michelena and Papalambros [15] uses hypergraphs to study the optimal 

problem partition in decomposition-based optimization. Those methods belong to the 

partition phase of decomposition based optimization. Although choosing the appropriate 

partition is important, in decomposition based optimization we often assume that the 

partition of an optimization problem has previously been determined according to certain 

rules (component, disciplines, model-based or hybrid) [4][9][11][16] , and the main focus 

of the studies in the literature has been on the coordination process. For example, the very 

recent methods such as Analytical Target Cascading (ATC) [18][22][23], Augmented 

Lagrangian Coordination (ALC) [20][24], and Consensus Optimization (CADMM) 

[25][26][27] all deal with the couplings between partitioned sub-problems which are 

generated beforehand.  

The ATC method is specifically designed to solve the decomposed problems 

exhibiting a hierarchical structure, which normally results from the component-based 

partition. In this hierarchical problem there are different levels and the sub-problems on 

the same level do not interact with each other but are allowed to communicate with the 

sub-problems on the higher or the lower level. The ATC method fits well the 

hierarchically decomposed problem and often is chosen as the coordination strategy for 

this kind of decomposition.  

When it comes to decomposed problems of a network structure, a more flexible 

coordination strategy such as the augmented Lagrangian coordination (ALC) is needed. 
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Tosserams [20] categorizes the ALC method for MDO into centralized ALC and 

distributed ALC based on the existence of a master problem. The centralized ALC has a 

sub-problem acting as a master problem that coordinates all other sub-problems, which 

results in a bi-level decomposed structure. Once the master problem on the top level has 

been solved, all the sub-problems on the bottom level can be solved in parallel. Due to 

this advantage, the centralized ALC is researched extensively and the traditional 

hierarchical ATC method can be extended to a non-hierarchical version by using the 

centralized ALC [24]. Also, the master problem in the centralized ALC is typically 

artificial and its analytical solution can be calculated easily. There is no master problem 

in the distributed ALC, thus its decomposed sub-problems may depend on each other 

which prevents parallel computation of all sub-problems.  

The network structure (as shown in Figure 1.2 (b)) is the most general structure in 

which there is no rule for how one sub-problem should connect with other sub-problems, 

whereas the hierarchical structure in Figure 1.2 (a) can be considered a special case of the 

network structure. This dissertation studies the general case where the problems are 

partitioned into network structures, for which the coordination process of sub-problems is 

called Network Target Coordination (NTC) [25][27]. As a result, the proposed research is 

applicable to hierarchical structures by default.  

1.2 Mathematical Foundations 

Mathematical programing is the foundation of most methods in decomposition 

based optimization, many theories derived from pure mathematical deductions turned out 

to be also very effective when solving engineering problems. Thus, in order to provide a 
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comprehensive view of current decomposition based optimization techniques, the related 

mathematical foundation is described first. 

1.2.1 Primal problem 

The general optimization problem can be expressed as follows: 

minimize ( )

subject to ( ) 0 1,...,

( ) 0 1,...,

i

i

f

g for i m

h for i l

X

 

 



x

x

x

x

       (1.1)  

where x is the vector of design variables. gi(x) and hi(x) are inequality and equality 

constraints respectively. f(x) is the objective we are trying to optimize. This problem is 

called the primal problem in contrast to the dual problem introduced next.  

1.2.2 Lagrangian Dual Problem 

Among various duality formulations, the Lagrangian duality formulation is one of 

the most studied. It has been proven to be powerful for solving convex, nonconvex and 

discrete optimization problems [28][29], and it is used throughout this dissertation.  

1 1

maximize ( , )

subject to ,

where ( , ) inf{ ( ) ( ) ( ) : }
m l

i i i i

i i

f u g v h X




 



    

u v

u 0

u v x x x x

      (1.2) 

The Lagrangian dual problem is to maximize the minimum of the Lagrangian 

function
1 1

( ) ( ) ( ) ( )
m l

i i i i

i i

L f u g v h
 

   x,u, v x x x . In this problem, the original constraints 

( )ig x and ( )ih x in Eq. (1.1) have been incorporated in the objective function ( , ) u v using 

the Lagrangian multipliers iu and iv respectively.  

According to the weak duality theorem [28][29], the objective value of any 

feasible solution to the dual problem in Eq. (1.2) yields a lower bound on the objective 
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value of any feasible solution to the primal problem in Eq. (1.1). The difference between 

these two objective values is called the duality gap, which can be eliminated under 

certain assumptions meeting the strong duality theorem [28][29]. 

1.2.3 Karush-Kuhn-Tucker (KKT) optimality conditions 

KKT optimality conditions are a series of equations built upon Lagrangian 

multipliers to characterize the optimal solutions of an optimization problem [28][29]. For 

the problem (1.1), suppose x* is a local optimal solution, gi(x*) and hi(x*) are 

differentiable at x*, ( *) for { : ( *) 0}i ig i i g  x x and ( *)ih x are linearly 

independently, then there exist scalars  for 1,...,iu i m  and  for 1,...,iv i l  such that  

1 1

( *) ( *) ( *)

                          ( *) 0              for 1,...,

  0                       for 1,...,

m l

i i i i

i i

i i

i

f u g v h

u g i m

u i l

 

  

 

 

 x x x 0

x

　　　　　　　

 

 

 

(1.3) 

Eq. (1.3) is called the KKT necessary conditions. Furthermore, if fi(x), gi(x) and 

hi(x) satisfy certain convex assumptions, Eq. (1.3) can becomes the KKT sufficient 

conditions and can be used to check if a feasible solution is the optimal solution.  

1.2.4 Block coordinate descent 

The optimization can be solved part by part iteratively. Assume an ideal 

optimization problem where there is no constraint: 

      
minimize ( )

subject to

f

X

x

x
          (1.4)  

The design variable vector x can be partitioned as 

1 2 mx (x ,x , ... , x )  
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Under the assumption that f is continuously differentiable over the set X and under 

certain convergence requirements, the original problem can be solved through the 

following iterative method, which is called block coordinate descent or nonlinear Gauss – 

Seidel method [29][30][31][32]. 

Given the current iterate 1( , ... , )k k k

mx x x , the next iterate is calculated through 

1 1 1

1 1arg min ( , ... , , , , ... , )
i i

k k k k k

i 1 i i i m
X

f  

 



x

x x x x x x      (1.5)  

As the iteration process continues, every limit point of { }k
x  is a stationary point, 

which in many cases is an optimal solution to the original problem.  

1.2.5 Penalty methods 

Penalty methods enable us to eliminate some constraints by adding a penalty term 

that prescribes an additional high cost to the objective function of infeasible points. 

Consider the equality constrained problem 

minimize ( )

subject to ( ) 0

f

h

X





x

x

x

        (1.6) 

It can be transformed to the following relaxed problem 

2minimize ( ) ( )

subject to ,

f h

X





x x

x
       (1.7) 

where 0   is called a penalty parameter. 

When   is large enough, due to the high cost of infeasibility, the relaxed problem 

generates a good approximation of the optimal solution of the original problem. This 

relaxation method is called the quadratic penalty method [28]. 

A more general form of penalty methods is stated as follows. For the problem 
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minimize ( )

subject to ( ) 0 1,...,

( ) 0 1,...,

i

i

f

g for i m

h for i l

X

 

 



x

x

x

x

        (1.8) 

The equality and inequality constraints can be relaxed as follows [28] 

1 1

minimize ( ) [ ( )] [ ( )]

subject to

m l

i i

i i

f g h

X

 
 

 



 x x x

x

                 (1.9)  

where   and   are continuous functions satisfying: 

( ) 0 0 and ( ) 0 0

( ) 0 0 and ( ) 0 0

y if y y if y

y if y y if y

 

 

   

   
 

1.2.6 Augmented Lagrangian relaxation method 

The Augmented Lagrangian relaxation method is a combination of the Lagrangian 

dual method and the quadratic penalty method [29].  

The constrained equality problem (1.6) can be relaxed as follows: 

2
minimize ( , ) ( ) ( ) ( )

2

subject to ,

T

c

c
L v f v h h

X

  



x x x x

x

              (1.10)  

where v  is the Lagrangian multiplier and c  is a positive penalty parameter. 

The augmented Lagrangian relaxation method can reach optimal solutions 

without a large penalty parameter c , thus it avoids the ill-conditioning difficulties 

encountered by the classical penalty methods as the penalty parameter approaches 

infinity.  

1.2.7 Method of multipliers 

For the augmented Lagrangian relaxation formulation to yield an accurate 

approximation to the optimal solution of the original problem, the multiplier ν should 
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tend to the optimal value ν
*
 of the dual problem. Normally this process needs iterations 

between solving the relaxed problem and updating ν toward ν
*
. The method of multipliers 

is an update strategy for the multiplier v . Given kv  at iteration k [29],  

1 ( )k k k kv v c h x                      (1.11) 

where kc  is the quadratic penalty weight parameter at iteration k. 

1.3 Research Scope and Research Questions 

 

The literature on decomposition based optimization has focused on the 

mathematical representation of the “split and assign” process happening in industry. The 

mathematical models being studied are built upon simplification of the modern 

engineering optimal design process and do not necessary contain all the factors 

considered in industry. For instance, the decision making process of an engineering 

design team is generalized to a mathematical optimization problem. The interactions 

between different design teams or the couplings between various components and 

disciplines are interpreted as the exchange of certain variables between these entities. As 

a research developed upon the literature in decomposition based optimization, this 

dissertation follows the same simplification rules and studies the generic mathematical 

model of engineering optimization problems. 

For problems solved through NTC, coordination of sub-problems always plays an 

important role because it eliminates the inconsistencies between the decomposed sub-

problems and drives their solutions towards the optimal solution of the original problem. 

Coordination is often carried out in an iterative manner, and as the complexity of 
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engineering problems continues to grow rapidly, accuracy, efficiency, and parallelism 

become critical issues during this process.  

Aiming at improving the accuracy, efficiency, and parallelism of Network Target 

Coordination (NTC), this dissertation is designed to explore the answers of the following 

research questions: 

1. Can NTC methods deal with problems with hybrid partitions?   

A hybrid partition is obtained when a new discipline (component) is added 

to a problem decomposed by components (disciplines) to reflect the inherent 

dynamics within the design process. The resulting problem becomes a non-

hierarchical, network optimization problem that requires a suitable coordination 

approach. The efficacy of the newly proposed NTC method - Consensus 

optimization via Alternating Direction Method of Multipliers (CADMM) on this 

kind of hybrid partition needs to be explored.  

2. What are the alternative structures for solving problems using Augmented 

Lagrangian Coordination (ALC) and how are they compared to each other? 

ALC is a very flexible coordination method and when we use it to solve 

NTC problems, there are many alternative structures which have different 

characteristics such as the number of multipliers and levels.  These structures may 

have great effects on the optimization results. The performance of these 

alternative structures needs to be analyzed and compared to provide guidelines for 

choosing the appropriate structure in the implementation of ALC.  
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3. Does the optimal solution of decomposition based optimization satisfy the KKT 

necessary conditions of the original problem? If not, what kind of mechanism can 

we employ to guarantee these conditions are met for NTC methods?  

The KKT optimality necessary conditions represent a series of 

requirements that must be fulfilled by a feasible solution if this solution is optimal. 

For the optimal solution of decomposition based optimization to be optimal for 

the original problem, it must satisfy the KKT conditions of the problem before 

decomposition. If not, some method needs to be introduced to drive the 

optimization results to match those KKT conditions. The update strategy of 

penalty weights is a potential candidate for this purpose.  

For the NTC methods using augmented Lagrangian relaxation, the initial 

setting and update strategy of the penalty weights are critical to the optimization 

performance. The traditional weight update strategy always increases the weights 

during the iteration process, and inappropriate initial weights tend to cause the 

iterative optimization process to converge prematurely and output irrelevant 

solutions.  

4. Instead of just using one duality theorem, can we employ two different duality 

theorems to develop a new NTC coordination method capable of solving all sub-

problems in parallel? 

Most popular coordination methods in the literature use duality theorems 

just once, transforming the primal problem (the original problem) into a dual 
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problem. What will happen if we apply the duality theorems twice? The resulting 

formulation will be a dual problem of a dual problem. By choosing the right 

duality theorems in this process, it is possible to introduce fewer copies of shared 

variables to the decomposition, which decreases the coordination effort necessary 

for the optimization to converge, thus the new NTC method is expected to 

perform better than other parallel methods in terms of efficiency and accuracy.   

1.4 Dissertation Outline 

The dissertation is organized according to the following outline: 

Chapter 2 reviews the popular decomposition based optimization methods in the 

literature, which includes methods with nested formulation (such as collaborative 

optimization), methods with hierarchical structure (such as analytical target cascading), 

and methods with nonhierarchical structure (such as augmented Lagrangian coordination, 

and consensus optimization). The weight selection and update strategy are also 

introduced as critical procedures in decomposition based optimization. 

Chapter 3 proposes a new type of partition which may emerge from engineering 

application of decomposition – the hybrid partition. The sub-problems in this new 

partition can be either a component design problem or a discipline design problem, and 

they are connected through a network structure. For numerical tests, the complex 

benchmark problem – micro-accelerometer design problem is reconstructed to form two 

hybrid partitions, to which the recently developed consensus optimization method is 

applied and its solution is compared to the AIO solution.  
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Chapter 4 numerically explores the alternative structures of ALC when the 

partition of a problem is given.  These alternative structures’ performance varies greatly 

in terms of accuracy and efficiency according to their number of multipliers. The 

distributed ALC consumes the least iterations and functions evaluation, whereas the 

centralized ALC enables parallel computation of sub-problems. 

Chapter 5 applies the KKT necessary conditions to the problem formulations of 

centralized ALC before and after decomposition. The results show that one dual 

feasibility condition of the original problem is not guaranteed by the optimal solution of 

the centralized ALC. The new terms “primal residual” and “dual residual” are introduced 

to centralized ALC, and a new flexible weight update is proposed based on the residuals. 

One mathematical and two engineering examples are used to test the new update. 

Chapter 6 extends the dual residual theory and the new flexible weight update for 

centralized ALC in Chapter 5 to the distributed ALC. Numerical tests show a significant 

increase in solution accuracy and robustness of distributed ALC when employing the new 

update. 

Chapter 7 develops a new coordination method using two duality theorems: the 

ordinary Lagrangian duality theorem and the alternating direction method of multipliers. 

The sub-problems in the new method can be solved in parallel and require the least 

copies of linking variables to be decoupled. The accuracy, efficiency, and robustness of 

this new method are tested on a math programming problem and a structural optimization 

problem.  
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Chapter 8 concludes the dissertation and provides possible directions for future 

research. 
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Chapter 2  

 

This chapter reviews the prevalent decomposition based optimization methods in 

chronological order, which covers collaborative optimization (bi-level nested), analytical 

target cascading (hierarchical), ordinary Lagrangian method (hierarchical), augmented 

Lagrangian coordination (network), and consensus optimization (network). The 

coordination methods using approximations and weight update in coordination are also 

discussed.     

2.1 Collaborative Optimization 

Several classical decomposition based methods have been proposed in the 1990’s, 

such as collaborative optimization (CO) [33][34], current subspace optimization (CSSO) 

[35] and bi-level integrated system simulations (BLISS) [36]. They all belong to the 

multi-level optimization methods which allow decision making at sub-system levels and 

provide many insights for follow up studies [37]. Among them, CSSO and BLISS 

involve the approximations of contributions of sub-systems in their coordination process. 

Consequently, their numerical performance typically depends on the quality of 

approximations. Since approximation is not the focus of this research, readers can refer to 

the above references for the details of CSSO and BLISS. 

Literature Review of Decomposition Based   

Optimization 
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The Collaborative Optimization method is a bi-level (system and sub-system 

levels) method. The system optimization is performed with respect to the system targets. 

Each sub-system receives the system targets and tries to minimize the discrepancy 

between the system targets and the corresponding responses generated by the sub-

problem design variables, subject to the local design constraints.  

Assume the design variables xj is the vector of local variables associated with sub-

system j. The total number of sub-problems is M. y is the vector of linking variables, 

which can either be the shared variables that appear in more than two sub-problems, or 

some intermediate variables required as inputs to some sub-problems but are not design 

variables of the original problem.  

To allow the sub-problems at sub-system level to make decisions on their own, 

copies of linking variables yj are introduced to the sub-problem j. The system level 

problem can be formulated as: 

0

0

2
*

2

min ( )

subject to ( )

( )

= , 1,...,j

f

j M





 

y
y

g y 0

h y 0

y y 0

          (2.1)  

where yj
*
 come from the optimal solution for the sub-problem j at sub-system level.  

The objective of sub-problem j is to minimize the discrepancy between y from the system 

level and the copies yj. 
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2

2,
min ( , )

subject to ( , )

( , ) , 1,...,

j j
j j j j

j j j

j j j

f

j M

 



 

x y
x y y y

g x y 0

h x y 0

                             (2.2)  

One evaluation of the system level problem needs the optimal solutions of all sub-

problems. Tosserams [38] classified CO as a nested formulation which means the sub-

problem optimization is nested in the system level optimization. The gradients of the 

system level constraints are undefined at optimal system solutions, which causes ill-

posedness to this method [39][40][41].   

2.2 Analytical Target Cascading 

Analytical Target Cascading (ATC) [18][23][42] is developed to solve complex 

systems with a hierarchical structure. Figure 2.1 illustrates a hierarchical structure. For 

two linked elements (or sub-problems), the one on an upper level is called a parent and 

the one on a lower level is called a child. Parents and children may share same design 

variables or intermediate parameters which are not part of the design variables but are 

dependent on design variables.  

 

Figure 2.1: Example of a hierarchical structure (left) and variable allocation (right) [20] 
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Assume we have a hierarchical structured problem with N levels and M elements 

(N = 3 and M = 6 in Figure 2.1). For convenience, each element in this structure is 

assigned an identification number ij, where i is the level this element belongs to and j is 

the number of the element.  Then the All-In-One (AIO) formulation for this problem can 

be defined as [20] 

1
11 22

1

1

, ( 1) ( 1)
,..., , ,...,

1

( 1) ( 1)

( 1) ( 1)

min ( , , ... , )

. .

1,... ,

cij
NM NM

i

cij

cij

N

ij ij ij i k i k

i j

ij ij ij i k i k

ij ij ij i k i k

i

s t

i N j





 

 

 

 





 


x x t t

,

,

f x t t t

g (x , t t , ... , t ) 0

h (x , t t , ... , t ) 0

        (2.3) 

where 
ijx  is the vector of local design variables, 

ijt  is the vectors of shared variables by 

element j at levels i with its parent at level i-1, which are called targets. The design 

variables are all the 
ijx  and 

ijt ; i  is the set of indices of all elements on level i; 

1{ ,..., }
ijij cC k k  is the set of indices of all children of element j and 

ijc  is the size of this 

set. 
ijg  and 

ijh  are inequality and equality constraints for each element. 

Copies of target 
ijt  are then introduced to separate this problem. These copies are 

called responses 
ijr  and are assigned to each child, while the target 

ijt  becomes a design 

variable for each parent. The value of the responses should match the targets which forms 

the consistency constraint cij: 

ij ij ij  c t r 0           (2.4) 

The modified AIO problem becomes  
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11

1

,...,
1

( 1) ( 1)

min ( )

. .

where { }

1,..., ,

NM
i

cij

N

ij ij

i j

ij ij

ij ij

ij ij ij

ij ij ij i k i k

i

s t

i N j





 

 





  



 


x x

,

f x

g (x ) 0

h (x ) 0

c t r 0

x x ,r t , ... , t

        (2.5)  

The consistency constraint
ijc  is so strict that it prohibits us from solving this 

problem using an iterative strategy. Therefore, ATC adopts the quadratic penalty function 

to relax 
ijc  to the objective.  

22

2 2
2

( )
i

N

ij ij

i j 


 

 c w c w c                  (2.6)  

where 
2

2
denotes the square of l2 norm; denotes the Hadamard production [20]:  

1 1 1 1[ ,..., ] [ ,.., ] [ ,..., ]n n n na a b b a b a b  

At this point the AIO problem can be decomposed into a collection of sub-

problems with the following general formulation. For the sub-problem j on level i, its 

design variables are 
ijx and the terms that do not include 

ijx  can be considered as 

constants and dropped. 

1

2 2

( 1) ( 1) ( 1)2 2

( 1) ( 1)

min ( ) ( ) ( )

. .

where { }

ij
ij

cij

ij ij ij ij ij i k i k i k

k C

ij ij

ij ij

ij ij ij i k i k

s t

  



 

   








x

,

f x w t r w t r

g (x ) 0

h (x ) 0

x x ,r t , ... , t

      (2.7) 
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For the sub-problem j on level i, the target vector 
ijt comes from its parent and the 

response vector 
( 1)i kr  comes from its children. They are kept constant for this sub-

problem. For the top level sub-problem, there is no 
2

2
( )ij ij ijw t r term since the top 

level sub-problem does not have a parent. For a similar reason, there is no 

2

( 1) ( 1) ( 1) 2
( )

ij

i k i k i k

k C

  



 w t r term for the bottom level sub-problems. 

Kim et. al. [22][43] proposes ATC for optimal system design and presented the 

ATC formulations for top (super-system), middle (system) and bottom levels (sub-

system). The efficacy of ATC is demonstrated through the chassis design of a support-

utility vehicle given necessary analysis models. Two objectives - ride quality and handing 

targets are cascaded down to system and sub-system levels. Michelena et. al. [23] studies 

the convergence properties of ATC and proposes a convergence proof under convex and 

smooth assumption.  Michalek and Papalambros [44] come up with a branch-and-bound 

approach for ATC to deal with integer variables. Kokkolaras et. al. [45] and Han et. al. 

[46] investigate solving multi-level problems under uncertainty. 

Approximation methods have also been applied to ATC. A sequential linear 

programming coordination algorithm for ATC is developed and the sub-problem 

evaluation effort is reduced considerably [47].   

Instead of treating the sum of the original objective and penalty terms as one 

objective, ATC is interrelated as a multi-objective optimization problem and the weighted 

sum method is applied to balance the tradeoff between the original objective and penalty 

terms in [48].  
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Numerical tests on ATC [49][50][51] show that reaching the accurate optimal 

solution needs significant computational resources. Large penalty weights are required to 

reduce the consistency errors between targets and response, and many sub-problems 

optimizations are needed in the coordination process.  

2.3 Ordinary Lagrangian Method 

Instead of the QP method, the Lagrangian dual function is employed to relax the 

consistency constraints under the ATC framework and the Ordinary Lagrangian (OL) 

method is developed based on the Lagrangian duality theory [52]. Since the relaxed dual 

term is linear, all the sub-problems in this method are independent and thus can be solved 

in parallel.  The dual multipliers in OL are updated through the sub-gradient algorithm 

towards the optimal multipliers of the original problem. Extension of OL from ATC 

hierarchical to nonhierarchical structures is available in [53]. The drawback of the OL 

method is that some sub-problems may become unbounded, which leads to infinite 

objective values and causes convergence difficulties [54][55].  

2.4 Augmented Lagrangian Coordination 

Combining both ATC and OL methods, the Augmented Lagrangian Coordination 

(ALC) method is proposed in [55] as an efficient and robust coordination strategy. A 

large penalty parameter in the ATC method may cause ill-conditioning in the relaxed 

problem, making it hard to be solved numerically. The (ALC) method reduces the 

computational cost associated with ill-conditioning through the use of an Augmented 

Lagrangian penalty function [29]. 
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2 2
2

( ) ( )
i

N
T T

AL ij ij ij ij

i j 


 

   c v c w c v c w c         (2.8)  

For problem (2.3) in the ATC section, the general formulation for sub-problems 

can be obtained by replacing the quadratic penalty term ( ) c  with the Augmented 

Lagrangian penalty term ( )AL c  

1

2

2

2

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) 2

( 1) ( 1)

min ( ) ( ) ( ) ...

( ) ( )

. .

where { }

ij

ij ij

cij

T

ij ij ij ij ij ij ij ij

T

i k i k i k i k i k i k

k C k C

ij ij

ij ij

ij ij ij i k i k

s t

     

 

 

    

  







 

x

,

f x v t r w t r

v t r w t r

g (x ) 0

h (x ) 0

x x ,r t , ... , t

       (2.9) 

This is the ALC method applied to the ATC structure [55]. The method of 

multipliers is employed to update the Lagrangian multipliers after all sub-problems have 

been solved and the penalty is also updated to increase as the solutions tend to converge. 

    

( 1) ( ) ( ) ( ) ( )

( 1) ( )

2

, 1

k k k k k

k k 





 

 

v v w w c

w w
       (2.10)        

ATC uses a nested structure to carry out iterations as shown in Figure 2.2. The 

optimization process iterates between solving sub-problems at level 1 and level 2 until 

they reach a consistent solution and then their targets are passed down to sub-problems at 

level 3. This mechanism forms an inner loop inside the outer loop of the multiplier 

update. To simplify this process, the Alternating Direction Method of Multipliers 

(ADMM) is introduced to ALC by Tosserams et. al. [55] which directly abandons the 

inner loop. All sub-problems are solved once sequentially and multipliers are then 

updated to prepare for the next iteration.  Experiments show that ALC with ADMM 
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decreases computational costs by orders of magnitude ranging between 10 and 1000 

compared to ATC and ALC without ADMM. 

                            

Figure 2.2: Nested ATC schemes with inner loop (left) and ADMM without inner loop 

(right) [55] 

 

ALC can be applied to an ATC structure but is not limited to it. Through creating 

an artificial master problem, ALC is able to deal with either hierarchical or non-

hierarchical partitions. Subsequent to the development of  the ATC based ALC in [55], 

the ALC approach for quasi-separable problems [56] in MDO is proposed, in which the 

sub-problems are coupled through shared variables in a non-hierarchical way. The 

solution process involves an inner loop and an outer loop. In the inner loop, all sub-

problems are solved through the block coordinate decent (BCD) method with fixed 

penalty weights and Lagrangian multipliers. In the outer loop, the penalty weights and 

Lagrangian multipliers are updated based upon the converged solution of the inner loop. 

The convergence tolerance of the inner loop can be set as a constant or a small but 

increasing variable, which results in the inexact nested method of multipliers (INMOM) 

and exact nested method of multipliers (ENMOM). To avoid the costly inner loop 

iterations at the beginning of optimization, an extreme case – the alternating direction 
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method of multipliers (ADMOM) is also proposed in which the inner loop is terminated 

in just one iteration. Numerical tests show that ADMOM is more efficient and robust that 

ENMOM and INMOM.  

 Assuming a quasi-separable problem shown below whose objective and 

constraint functions are coupled by linking variables y . 

1[ ; ;...; ]
1

min ( , )

. . ,

,

1,...,

M

M

j j

j

j j

j j

f

s t

j M











z y x x

y x

g (y x ) 0

h (y x ) 0

          (2.11)  

ALC solves this problem in four steps [56] 

(1) Introduction of auxiliary variables and consistency constraints 

(2) Relaxation of the consistency constraints 

(3) Formulation of the decomposed problem 

(4) Solution of the decomposed problem 

The introduction of the master problem enables the sub-problems to be solved in 

parallel, which is a big advantage over other decomposition methods. Also, the artificial 

master problem is a simple quadratic programming problem, which can be solved 

analytically.  

1

min ( ( , ))
M

j j j

j





y

c y y  

From quasi-separable problems, the solvable problems of ALC are expanded to 

problems with linking variables, coupling objective, and coupling constraints [57]. Two 

variants of ALC: the centralized ALC and the distributed ALC have been introduced to 
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offer more flexibility and freedom to the designers. The ALC for quasi-separable 

problems and ATC proposed before are shown to be subclasses of this general ALC and 

their convergence proof is presented based on theories in nonlinear programming. The 

research in [57] is applied to a special class of problems with block-separable coupling 

constraints [58], for which the coordinating master problem becomes a convex quadratic 

programming problem and the alternating direction method of multipliers is feasible. The 

two variants of ALC are derived and the resulting centralized ALC allows the parallel 

computation of all sub-problems.   

ALC’s capability of dealing with the non-convexity and multi-modality of 

complex problems is also studied empirically and the results show that ALC is able to 

find the global optimal solution even when the problems do not satisfy all the 

assumptions of its convergence proof [59]. Other complex problems that have been tested 

on ALC include the micro-accelerometer benchmark design problem [60] and the 

supersonic business jet design problem [24]. A nonhierarchical ATC is also proposed in  

[24] which allows nonhierarchical target-response couplings between sub-problems and 

options to parallel sub-problem optimizations are provided.  

Due to the quadratic penalty term in the augmented Lagrangian relaxation, the 

sub-problems of ALC in the ATC structure are linked with each other and cannot be 

solved in parallel as in the ordinary Lagrangian relaxation method [52]. In order to 

address this issue, the Diagonal Quadratic Approximation (DQA) and Truncated 

Diagonal Quadratic Approximation (TDQA) methods are developed to realize the 

parallelization of sub-problems in the ATC structure [54]. Several relaxation methods 
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(Quadratic penalty, Ordinary Lagrangian Relaxation, Augmented Lagrangian, Alternating 

Direction Augmented Lagrangian) are summarized and tested in this paper and their 

numerical test results are compared with those of the DQA and TDQA. Other methods 

based on ALC include the Exponential Penalty Function (EPF) method for multilevel 

optimization [61]. Unlike the ALC, the EPF employs an exponential penalty function to 

relax the consistency constraints of linking variables. Double loop EPF and single loop 

EPF are proposed which are similar to the nested and non-nested ALC formulations. 

Compared with the above methods, the consensus optimization method shown below has 

a different structure by introducing the concept of “consensus” to optimization. 

2.5 Consensus Optimization via Alternating Direction Method of 

Multipliers 

Assume the following problem formulation 

                                           

3

1

min ( )

subject to , 1, ... ,3

, 1, ... ,3

j
j j

j

j j

j j

f

for i

for i



 

 


x ,y

x ,y

g (x ,y) 0

h (x ,y) 0

      (2.12)     

where xj is the local design variable set for each sub-problem, y is the vector of coupling 

variables, fj is the local objective function and gj, hj are local constraint functions. The 

above problem is decomposable into three sub-problems as shown in Figure 2.3 (left). 

For sub-problem 1 the coupling variables are y1 = [y12 y13], for sub-problem 2, y2 = [y12 

y23], and for sub-problem 3, y3 = [y13  y23].   

To decouple the sub-problems,  copies for y12, y13, y23 are introduced at each sub-

problem [y12]1, [y12]2, [y13]1, [y13]3, [y23]2, [y23]3, and  y1 = [[y12]1  [y13]1], y2 = [[y12]2  
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[y23]2], y3 = [[y13]3  [y23]3]. The consensus variables zj are adopted to ensure all these 

copies are consistent zj - yj = 0. 

 

 

Figure 2.3: Original problem (left) and decoupled problem (right) for CADMM 

 

The decomposed formulation obtained introducing the consensus variables is 

shown in Figure 2 (right).  
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      (2.13)        

The following formulation is obtained relaxing the consistency constraints to the 

objective function 
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where vj is the vector of Lagrangian multipliers of sub-problem j, ρ is the weight for the 

quadratic penalty term .  

Problem  (2.14) can be solved using the block coordinate descent (BCD) iterative 

method: the primal variables xj, yj and zj are collected in two blocks [xj, yj] and [zj] that 

are updated sequentially [25]. Block [xj, yj] ([zj]) is obtained solving problem  (2.14) 

while considering [zj] ([xj, yj]) constant and equal to the most recent update. The 

decomposition paradigm is exploited in the first step when [xj, yj] can be computed 

optimizing each sub-problem independently (Step 1 in Figure 2.3 (right)). Note that the 

consensus variables zj are obtained in a closed form since problem  (2.14) is an 

unconstrained quadratic problem with respect to zj (Step 2 in Figure 2.3 (right)). Once the 

primal variables are obtained, the dual variables must be calibrated in order to achieve the 

feasibility of the consistency constraints. These steps read [25][26][27] 
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  

   

   

T

x ,y
y x ,y v (y - z ) y - z

z y + y v v

v v y - z

  (2.15) 

N(j) is the set of indices of sub-problems that share the same coupling variables 

with sub-problem j. yij are the coupling variables shared by sub-problems i and  j. vij are 

the Lagrangian multipliers associated with yij.  

The optimization terminates when the consistency error between the copies of the 

coupling variables and the consensus are satisfied within a desired tolerance and no 

improvement on the objective functions is possible. The consistency error is calculated as 

follows:  
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    , ( ) 1, ... ,3ij ij ij for i N j j   c z y ，              (2.16) 

 

2.6 Weight Selection and Update in Decomposition based Optimization 

Assuming c is the vector of consistency constraints and   is the relaxation 

function, the relaxation functions in ATC, OL, ALC and CADMM can be summarized in 

Eq.(2.17). Other relaxation methods in mathematical optimization have also been applied 

to coordination strategies, such as the exponential penalty function [61], but they are not 

the focus of this research.  
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(2.17) 

 

Here v is the vector of Lagrangian multipliers and w is the vector of penalty 

weights. Both of them need to be updated at each iteration following certain rules. For 

multipliers, the sub-gradient method and the method of multipliers are widely used to 

perform the update procedure. Various numerical tests have shown the effectiveness of 

these update strategies for reaching the optimal multipliers [52][62]. 

The weight selection and update are crucial to the efficiency and convergence of 

optimization [29][63][64]. For the weight in the quadratic penalty function, early versions 

of ATC adopt a fixed weight value through the whole iterative process. As a result, a 

large weight is required to generate satisfying results in many cases which often causes 

computational difficulties [50]. To address this issue, a nested iterative weight update 

method (WUM) is developed to find the appropriate weight for ATC [50]. In the inner 

loop of WUM, the decomposed problem is solved with a fixed weight. In the outer loop, 
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the weight is updated based on the results of the inner loop and another inner loop is 

started until the user-defined inconsistency tolerance is achieved.   

For the weight in the augmented Lagrangian relaxation, the ALC method sets the 

initial weight to a relatively small value, and then increases the weight at each iteration 

until reaching optimality.  

1

1

1

where 1,0 1

k k k

j j jk

j k k k

j j j

if

if
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

 
 



  

w c c
w

w c c  

 

(2.18) 

 

If the decrease of the consistency error c is large enough, the value of w is kept to 

the next iteration. If the decrease is not satisfactory, this means that the penalty applied to 

the violation of the consistency error is insufficient and w is multiplied by a factor larger 

than 1 and is thus increased. In this case w always increases. Experimental results show 

that this strategy is much more efficient than WUM and reduces significantly the use of 

computational resources [55].  However, this monotone update’s capability still greatly 

depends on the initial weight selection. A large weight may cause ill-conditioning and 

numerical difficulties while a small weight can slow down the convergence rate or even 

result in a solution far from the optimum [65]. 

Based on the above literature review and different requirements emerging from 

engineering design optimization, the proposed research is described in the next chapters. 

It is aimed at addressing the issues of accuracy, efficiency, and parallelism in 

decomposition based optimization through NTC.  
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Chapter 3  
 

 

 

3.1 Hybrid partition 

In the practical engineering design process, it is common to modify a 

decomposition during the design process. The introduction of a new component 

(discipline) to a discipline- (component-) based decomposition reflects the dynamics of 

the design process as requirements and criteria evolve. This forms a hybrid network 

optimization problem in which the interacting nodes are either components or disciplines 

[53]. Some methods such as Analytical Target Cascading (ATC) imply a hierarchical 

structure and may not be directly applicable to this kind of hybrid network optimization 

problem.  

          

Hybrid Partition with Both Component and 

Discipline Sub-problems 
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Figure 3.1: top left - discipline-based decomposition;  top right – component based 

decomposition; bottom – hybrid decompositions (rectangle stands for discipline, circle 

stands for component) 

 

Consensus Optimization via the Alternating Direction Method of Multipliers 

(CADMM) for Network Target Coordination (NTC) is a distributed coordination method 

designed to optimize sub-systems that are decomposed in a nonhierarchical fashion. 

Through the consensus variables, coupled systems are solved concurrently and the 

method of multipliers is used to efficiently reduce the inconsistency between the linking 

variables.  Its efficacy has been proved by some engineering examples [25][26][27]. 

In this chapter, we adopt CADMM to solve two hybrid nonhierarchical 

formulations of the ADXL150 micro-accelerometer design problem [60]. Both problems 

involve three disciplines (Structures, Dynamics, Electrostatics) and several components 

(Proof mass, U-spring, Comb, etc.). By adding and removing disciplines and/or 

components, the flexibility of the hybrid network (nonhierarchical) is explored. The 

results are discussed and conclusions drawn with respect to the modeling capabilities and 

computational efficiency of the proposed approach. The research presented in this chapter 

is also published in [21]. 
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3.2 Micro-accelerometer Benchmark Problem and its Hybrid 

Decomposition 

The micro-accelerometer problem [60][66][67] is a non-convex, nonlinear 

engineering test problem which is proposed as a benchmark problem for testing and 

comparing different multidisciplinary optimization methods. It involves four disciplines: 

Structures, Electrostatics, Dynamics, and Circuits. The four disciplines may depend on 

the same design variables or one discipline can depend on the output of another discipline. 

There are 22 design variables at most. The design objective is to minimize the footprint 

area A (which is proportional to fabrication cost). The design constraints are requirements 

that make sure the performance with respect to sensitivity, noise, and range is at least as 

good as the baseline design. 

This problem can be decomposed in four ways and solved using the Augmented 

Lagrangian Method (ALC). Details about this problem can be found in reference [60]. 

      
Figure 3.2: Microscope image and schematic illustration (right) of the micro-

accelerometer [60] 
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In this section, by adding and removing disciplines or components, the flexibility 

of the hybrid network (non-hierarchical) is explored. We propose two hybrid 

decompositions for solving this problem. In decomposition 1, a new discipline 

(Dynamics) is added into the original component decomposed problem, resulting in a 

hybrid problem. In decomposition 2, a new component (Springs) is added into the 

original discipline decomposed problem. Both decompositions do not include design 

variables and constraints in the Circuit discipline, which is one aspect considered in [60]. 

The number of design variables is 16. 

3.2.1 Hybrid Decomposition 1 

The original problem is decomposed into two components: Springs and Mass-

Fingers. These two components share five design variables. Mass & Fingers also needs 

the output of Springs (kx,m) as its parameter. The two components only involve two 

disciplines: Mechanics and Electrostatics. The constraints gs and ge correspond to the two 

disciplines and gs is distributed among the different components. 

When we add Dynamics as a new discipline to the original problem, the new sub-

problem needs the outputs of Springs and Mass & Fingers. As shown in Figure 3.3, for 

this decomposition, each sub-problem is coupled with the other two sub-problems. It is a 

typical network target coordination problem. 
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Figure 3.3: Hybrid decomposition 1 for the micro-accelerometer problem 

 

3.2.2 Hybrid Decomposition 2 

The original problem is decomposed into three disciplines: Mechanics, 

Electrostatics and Dynamics. They couple with each other either through sharing the 

same design variable or linking functions. In addition to gs and ge, gd is the constraint 

corresponding to the dynamics discipline. 

When we add springs as a new component to this original problem, this new sub-

problem shares 6 design variables with the mechanics sub-problem, and generates 

stiffness for the dynamics and electrostatics sub-problems. The resulting hybrid 

decomposition is shown in Figure 3.4. Each sub-problem in this decomposition network 

problem is coupled with the other three sub-problems. 
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Figure 3.4: Hybrid decomposition 1 for the micro-accelerometer problem 

 

3.3 Application of CADMM to Hybrid Micro-accelerometer Problems 

and Results 

 

3.3.1 Experimental Setup 

In this research, numerical experiments are conducted in Matlab R2012a [68]. 

The constrained minimization function “fmincon” is used.  

The limit for the number of iterations of the optimization loop is 1e3. The 

program converges if the consistency error (Eq. (2.16)) is less than the termination 

tolerance ε = 1e-3. The initial starting points for each sub-problem are randomly selected 

between 50% - 150% of the baseline design value. At each iteration, the exitflag output of 

fmincon of each sub-problem is checked to ensure they converge. If one sub-problem 

does not converge within 10 fmincon tries, its optimal value from the last iteration is used 

for the optimization of the other sub-problems and parameter updating. 

The initial value of ρ is 0.03. Instead of using a fixed penalty parameter ρ, we 

update ρ based on the inconsistency error as follows with ζ = 0.99 and λ = 1.01.: 
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In this way, the penalty term is small at the beginning of the optimization process. 

Thus, during the first iterations, the objective function is minimized and then, as the 

penalty weight increases, the consistency error becomes more important and the 

consistency error is reduced. 

The optimal objective value of the All-in-one (AIO) formulation is 4.5322e-08 m
2
, 

which is used as the reference solution for both problems. 

3.3.2 Results and Discussion 

Table 3.1 summarizes the numerical results of both problems. For each hybrid 

problem, ten runs are attempted starting from different random initial points. The 

percentage in Table 3.1 indicates how many runs have converged out of all test runs. All 

three metrics are statistically categorized into min, mean and max.  

Table 3.1: Optimization results of CADMM applied to the two kinds of hybrid 

decompositions (reference solution = 0.0453) 
 

               Area(mm
2
)        # of iters.     Max_vari _error                         

Hybrid 1 

90% 

Min          0.0458               459            0.7549 

Mean        0.0467               538            1.1135 

Max          0.0533              769             2.4103 

Hybrid 2 

90% 

Min          0.0457               367            0.9253 

Mean        0.0460               434            0.9589 

Max          0.0475               589            1.1281 
 

 

It can be seen that the results for both hybrid decompositions are very close to the 

reference optimal solution (with mean value 0.0467 for hybrid 1 and 0.0460 for hybrid 2). 

The high number of iterations may be due to the small initial value for the penalty term ρ 
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and update parameter λ for ρ. One explanation for the high design variable error is that 

the problems have many local optimal solutions which are far from the reference solution. 

Another is that the objective value is not sensitive to some design variables. So although 

the values for these design variables differ a lot from the reference solution, the objective 

does not.  

3.4 Summary 
The hybrid component-discipline based decomposition is proposed in this chapter, 

in which the sub-problems are coupled in a network way, thus each sub-problem may 

interact with any of the other sub-problems. This kind of structure is difficult for 

multilevel hierarchical decomposition methods such as ATC to handle.  

By fully exploring the flexibility of decomposition of the micro-accelerometer 

benchmark problem, two kinds of hybrid network decompositions are proposed. One is 

adding a new discipline to a component-decomposed problem; the other one is adding a 

new component to a discipline-decomposed problem. The CADMM is employed to solve 

these two decompositions. Numerical experiments show that the optimization results of 

the CADMM are very close to the reference optimal solution (with an error less than 3%). 

This demonstrates that the CADMM is able to deal with the hybrid network 

decomposition problem and supports component-discipline decomposition and sub-

system optimization to solve the overall problem.   
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Chapter 4  

 

Augmented Lagrangian coordination (ALC) is a powerful and flexible 

coordination approach for solving decomposed problems with a network structure. 

Depending on how to handle the couplings between sub-problems and whether a master 

problem is created, there are different alternative structures for ALC: centralized, 

distributed or hierarchical.  This chapter will compare these structures both analytically 

and numerically.  

4.1 Alternative structures of ALC 

Consider a decomposed quasi-separable problem with a nonhierarchical partition 

shown in Figure 4.1. There are four sub-problems fully coupled with each other through 

the linking variables , , {1,2,3,4}, ,ijy i j i j and i j   . Several variants of ALC can be 

employed to solve this problem: The distributed ALC (Figure 4.2(a)) can use the current 

partition and directly deal with the couplings between sub-problems; The centralized 

ALC (Figure 4.2(b)) creates an artificial problem as a master problem, cuts off all the 

original couplings (solid lines) in the partition, adds new links (dash lines) between each 

sub-problem and the master problem, and coordinate all sub-problems through the master 

Alternative Structures of ALC Under the Same 

Partition 
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problem; The extended ATC based ALC (Figure 4.2(c, d)) forms a hierarchical multilevel 

structure, assigns the roles of parents and children to the previous equal sub-problems, 

and puts them on different levels; During this process, certain original couplings are cut 

off and several new couplings associated with the cut couplings are created and passed 

through intermediate sub-problems. Consider the y23 in the original partition which is the 

linking variable that just exists between sub-problems 2 and 3, in the ATC-3 levels in 

Figure 4.2(d), the y23 is deleted and copies of it are created and the coupling of sub-

problems 2 and 3 are dealt through the intermediate sub-problems (sub-problem 1 and 4) 

in an implicit fashion. Depending on how this cutting and reconnecting process is 

conducted, different ATC structures with different number of levels can be achieved. 

Also it should be noted that there are more possible structures for this four-node network-

decomposed problem beyond the ones shown in Figure 4.2. In this chapter we mainly 

discuss distributed ALC, centralized ALC, and extended ATC using ALC. 

 

 

Figure 4.1: A four-node decomposed problem with a network structure 

 

The distributed ALC needs to optimize the sub-problems sequentially because the 

couplings between sub-problems are handled directly. The centralized ALC adopts a two-

level hierarchical structure in which once the optimization of the master problem is 

finished, which is very easy since it is a quadratic optimization problem with analytical 



 42 

solutions, all sub-problems can be solved in parallel. Partial parallelization can be 

achieved for ATC since sub-problems on the same level are not dependent on each other 

thus can be solved at the same time.  

 

 

Figure 4.2: Four different structures can be used to solve the example problem through 

ALC 

 

It can be seen that the methods in Figure 4.2 have a different number of levels and 

copies of linking variables, which results in a different number of consistency constraints. 

This makes their dual problems have a different number of design variables and their 

optimization require a different amount of coordination effort, which leads to different 

performances. Some of these variants are tested on complex systems[9][20], however the 

problem partition in those tests are different for different ALC variants, which makes it 

difficult to analyze the causes of the differences in the results. In this research, the 

performances of the distributed ALC, the centralized ALC, and the ATC based on ALC 
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are explored and compared numerically using the same partition. The results show that 

since the distributed ALC introduces the least copies of linking variables, it can reach a 

better solution while consuming less computational resources than other alternative ALC 

structures. However, the decomposed sub-problems in distributed ALC need to be solved 

sequentially.  The introduction of an artificial master problem in the centralized ALC 

enables all sub-problems to be optimized in parallel, but the solution is not as accurate as 

that in the distributed ALC.   

4.2 Comparison of the Distributed ALC, the Centralized ALC, and the 

ATC Extended by ALC through Numerical Tests 

One mathematical and one engineering test problems are used to test the three 

variants of ALC. The results presented here are different from our preliminary research in 

[69]. The reason is that the initial weights in [69] are set based on experience to the 

values that works best for each ALC, while in this research they are set through Eq. (2.18) 

to make the results more objective. Also, the name “alternatives of ALC”  is used to refer 

to the “solving structures” in [69]. 

4.2.1 Geometric optimization problem 

The first example is a standard nonconvex test problem which appears in earlier 

work on ATC and ALC [22][20][54][49][70][71]. It can be partitioned into five sub-

problems coupled through a network structure as shown in Figure 4.3. Its AIO problem 

can be easily solved with a unique solution and it is used as the reference solution.   
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Figure 4.3: Partition used for the geometric optimization problem with five sub-problems 

 

Distributed ALC, Centralized ALC, and two ATC approaches are proposed to 

coordinate the optimization of the problem with the chosen partition. As shown in Figure 

4.4, these methods have a different number of levels (2 to 4) and couplings (equals to the 

number of multipliers when these couplings are relaxed) (6 to 12). Note that the number 

of levels for a nonhierarchical solving structure is defined implicitly. In the distributed 
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ALC, sub-problems 3 and 4 can be solved in parallel which implies that the algorithm is 

sequentially applied to sub-problems 1, 2, then 3 and 4, and finally to sub-problem 5. The 

sequential way the algorithm works implicitly defines 4 levels for this structure. All four 

methods adopt the Augmented Lagrangian Relaxation to relax the introduced equality 

constraints generated by the auxiliary copies of the linking variables. The distributed 

ALC solves all the sub-problems sequentially. It does not change anything to the partition 

in Figure 4.3, thus introduces only 6 copies of linking variables. In the centralized ALC 

every original coupling is cut off and each sub-problem is coordinated through the newly 

created master problem, this process introduces the largest number of copies of linking 

variables.  

 

 

Figure 4.4: Four possible solving structures for the geometric problem 
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The tests are conducted in MatLab 2012 and the solver “fmincon” is chosen to 

solve the sub-problems, which uses the interior point as the default algorithm but may 

switch to other algorithms when necessary. The termination tolerance is ε = 1e-3. The 

initial design variables are set randomly between 0 and 1. The initial Lagrangian 

multipliers are all set to zero. For each case, ten runs are performed and the average value 

of the number of iterations and function evaluations are summarized in the following 

table. The initial weight setting method proposed in [20] is used to determine the initial w: 

2

2
1

ˆ

ˆ
M

j

j

f
w







 c

 

 

(4.2) 

where f̂ and ˆ
jc are estimates of the objective value and the consistency error before 

starting the optimization.   is a fraction number chosen by the user within the range 

1 3 1e    . The initial weight w is set by Eq. (4.2) with f̂ = 50, α = 0.1, and 

ˆ
jc computed using w

0
 = 0.001. 

Table 4.1: Results for solving geometric problem using different solving structures 

Methods # of levels # of multipliers # of iters. # of func.evals. 

Distributed ALC 4 6 49 6828 

Centralized ALC 2 12 61 11142 

ATC – 2 level 2 9 52 9907 

ATC – 3 level 3 10 56 10990 

 

 

It can be seen that: Distributed ALC performs the best out of the four methods. It 

consumes the least number of function evaluations and iterations. While centralized ALC 

needs the most number of function evaluations and iterations. The performance of ATC-2 
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level and ATC-3 level are better than centralized ALC, but still much worse than 

distributed ALC. As the number of multipliers gets larger, the number of function 

evaluations also gets larger, which means more computational resources are needed with 

the increase of the number of multipliers. In other words, the computational costs of the 

four methods are proportional to their number of multipliers. Their ratio of number of 

multipliers is 1:2:1.5:1.7, which is close to their ratio of number of function evaluations - 

1:1.6:1.4:1.6. This can be explained from two perspectives: (1) The number of multipliers 

equals to the number of relaxed consistency constraints. The bigger this number is, the 

more effort is required to drive the sub-problem optimization towards a consistent 

solution; (2) The coordination process of ALC can be interpreted as the process of 

solving the dual problem of the original problem. The number of multipliers equals to the 

number of design variables for this dual problem, thus a smaller number of design 

variables can make the optimization converge faster.  

Note that this example is relatively simple and all four methods reach the global 

optimal solution. More research on the solution accuracy of different solving structures is 

presented in the next test problem. 

4.2.2 Micro-accelerometer design problem 

The benchmark problem - micro-accelerometer design problem in Chapter 3 is 

used again. Here case 3 [60] is chosen and the partition shown in Figure 4.5 with three 

sub-problems coupled in a network structure.  
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Figure 4.5: Object based partition of the micro-accelerometer benchmark problem [60] 

 

Distributed ALC, centralized ALC and ATC are applied on this problem. As 

shown in Figure 4.6, distributed ALC directly uses the problem partition, while 

centralized ALC creates a master problem and ATC transforms the geometry sub-

problem to a master problem to coordinate other sub-problems.  

The termination tolerance is ε = 1e-3. The initial design variables are set 

randomly between 50% and 150% of the baseline design. The initial Lagrangian 

multipliers are all set to zero. The initial weight w is calculated by Eq. (4.2) with f̂ = 0.5, 

α = 0.1, and w
0 

= 0.001.  For each method, ten runs are performed and the average value 

of the number of iterations and function evaluations are summarized in Table 4.3. The 

optimal solutions for the All-in-One formulation are summarized in Table 4.2 and the 

best objective is 0.0807 mm
2
, which is used to calculate the objective error for 

decomposed based optimization. 
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 Table 4.2: Optimization results of the micro-accelerometer problem (case 3) without 

decomposition (AIO)[60] 

 Min Mean Max 

Objective (mm
2
) 

(15% of 100 runs have 

converged) 

 

0.0807 

 

 

0.0810 

 

 

0.0817 

 
 

 

 

 

Figure 4.6: Three solving structures for the micro-accelerometer problem for object based 

partition 

 

From Table 4.3, it is obvious that distributed ALC achieves the best result 

(objective error = 1.7%) within the least number of function evaluations (18432) among 

the three coordination methods. Centralized ALC structure with an artificial master 

problem costs the most computational resource (the average number of function 

evaluations is 48954, which is 166% more than that of the distributed ALC) and 

converges to the worst result (error = 12.4%). Again the number of function evaluations 

and the objective error of the ATC–2 level are between those of distributed ALC and 

centralized ALC.  
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Table 4.3: Results for different solving structures of the micro - accelerometer problem 

Methods # of 

levels 

#  of 

multipliers 

#  of iters. #  of  

func. evals. 

Optimal 

result / error 

Distributed ALC 3 12 31 18432 0.0821/1.7% 

Centralized ALC 2 24 69 48954 0.0907/12.4% 

ATC – 2 level 2 14 48 32906 0.0852/5.6% 

 

 

Figure 4.7: The effect of number of copies of linking variables in ALC and the tradeoff it 

causes between accuracy, efficiency, and parallelism.   

 

Through the above two test problems, we can see that the number of copies of 

linking variables (generally equals to the number of multipliers) plays an important role 

when determining the performance of a coordination strategy, which can be illustrated 

through Figure 4.7. For the alternative structures of ALC discussed in this chapter, the 

number of copies increases in the order of distributed ALC < ATC < centralized ALC, 

and so does the parallelism of the three methods, while the accuracy and efficiency 

decrease in the order of distributed ALC > ATC > centralized ALC. Centralized ALC 

sacrifices efficiency and accuracy in exchange for the parallel computation of sub-
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problems. By creating a master problem and introducing additional copies of linking 

variables, all sub-problems are put on the same level and can be optimized independently 

once the master problem optimization is finished, which is very easy since the master 

problem is an unconstrained quadratic programming problem with analytical solutions. 

However, for many engineering problems, the number of disciplines they can be 

partitioned into is limited, thus the number of sub-problems is small. Also, each design 

team in real life generally is not committed to just one job at a time. When these teams 

are waiting for inputs from other design teams, they may switch to other tasks instead of 

remaining idle. In these situations, the parallel computation is not as important as the 

efficiency and accuracy due to limited resources and increasing quality requirements of 

the market.  

The ATC method just changes the couplings that are necessary to be modified to 

form a hierarchical structure, thus it needs a few extra copies of linking variables. Its 

accuracy and efficiency also is much better than that of centralized ALC, and its sub-

problems can be solved partially in parallel because sub-problems located on the same 

level are independent from each other.  Distributed ALC is the most natural coordination 

strategy since it directly handles the couplings that exist in the problem partition and 

introduces the minimal number of copies of linking variables. Compared to centralized 

ALC and ATC, Distributed ALC can reach the best solution while consuming the least 

computational resources, but its sub-problems are fully coupled thus need to be solved 

sequentially.  
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4.3 Summary 

In this chapter, starting with a fully coupled network-decomposed problem, 

several alternative ALC structures are proposed to solve the decomposed problem, which 

have different number of consistency constraints and number of levels. A geometric 

programming problem is used to illustrate the effects of these structures and the results 

show that there are great differences between the performances of these ALC alternatives 

when solving the same problem using the same partition. The numerical tests on the 

micro-accelerometer results indicate that the distributed ALC method can reach a better 

design while consuming less function evaluations, compared to the centralized ALC and 

hierarchical ALC.  

The distributed ALC is shown to be the most accurate ALC and requires the least 

computational resources, but the sub-problems in this method need to be solved 

sequentially. When the scale of the problems grows much larger, the capability of parallel 

computation of all sub-problems of the centralized ALC is more desirable and preferable. 

This tradeoff between solution accuracy, efficiency, and parallel computation indicates 

that there is no single best ALC method and it totally depends on the engineers to choose 

which method works better for their specific scenario.  

The next two chapters focus on centralized ALC and distributed ALC respectively, 

and try to improve their performance through the dual residual theory and a new flexible 

weight update.   
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Chapter 5  

 

Besides the area of decomposition based optimization of complex problems, the 

augmented Lagrangian relaxation is also widely used in convex optimization, statistics, 

machine learning, and other areas [72]. In particular, advancements in the Alternating 

Direction method have been achieved for separable Variational Inequality problems 

[73][74]. A penalty parameter update strategy is proposed which considers both the 

“primal residual” and the “dual residual” and drives both of them to zero. This update has 

been shown to be more flexible and efficient through numerical tests. 

Inspired by their work, this chapter explores the “dual residual” in the context of 

optimization by decomposition, and the potential benefits it can bring to the ALC 

method. Although the convergence proof of ALC in [20] assumes that the weight w is 

non-decreasing during the iterative process, this does not necessarily mean that 

decreasing w will lead to optimization failure, which is therefore worth investigating in 

practice.  

In this chapter, the effects of weight w on the convergence of the centralized ALC 

are analyzed through the application of the Karush-Kuhn-Tucker (KKT) optimality 

conditions to the decomposed problem. The new terms, “primal residual” and “dual 

Dual Residual for Centralized ALC Based on 

Optimality Conditions 
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residual”, are derived and defined mathematically. A new weight update strategy 

considering both the primal and dual residuals which drives the dual residual to zero in 

the optimization process is developed. The proposed strategy can either increase or 

decrease the weight w, thus is more flexible and is expected to avoid the ill-conditioning 

caused by a large initial w in the monotone weight update. Moreover, since the strategy is 

based on the optimality conditions of the AIO problem which are not fully covered in the 

traditional update, the strategy is anticipated to improve the centralized ALC’s ability to 

generate optimal solutions.  

The rest of the chapter is organized as follows. The optimality conditions of AIO 

and decomposed problems in centralized ALC, including the derivation of the new terms 

“primal residual” and ”dual residual”, are introduced in Section 5.1. The new non-

monotone weight update and an auxiliary convergence check criterion, which drive both 

primal and dual residuals to zero, are presented in Section 5.2. In Section 5.3, numerical 

tests on the proposed strategy are conducted on three examples and the results prove the 

advantages of the proposed update over the traditional update in terms of efficiency, 

accuracy, and robustness.  Conclusions and future directions are presented in Section 5.4. 

The research presented in this chapter is published in [65][75]. 
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5.1 Optimality Conditions for Decomposed Problems in Centralized 

ALC 

The centralized ALC cuts off all the original links between the existing sub-

problems, creates an artificial master problem and adds new links between each sub-

problem and the new master problem, thus enabling the parallel computation of all sub-

problems. Since this master coordination problem is a simple unconstrained quadratic 

optimization problem, its optimal solution can be calculated analytically. In this section, 

the derivation of the centralized ALC is reviewed first in preparation for applying the 

KKT conditions to the problem formulations. 

5.1.1 Derivation of the Centralized ALC 

Consider the general quasi-separable optimization problem shown below (Eq. 

(5.1)) whose objective and constraint functions are coupled by linking variables y. Its 

overall or the AII-In-One (AIO) formulation is 

1; ;...;
1

min ( , )

. . ,

,

1,...,

M

M

j j

j

j j

j j

f

s t

j M










y x x

y x

g (y x ) 0

h (y x ) 0

 

 

(5.1) 

where M is the number of potential sub-problems. 

The structure of the problem is shown in Figure 5.1 (a), where the potential sub-

problems are coupled with each other through the linking variables y. These can either be 

the design variables shared by more than one sub-problem or some intermediate variables 

that are outputs of some sub-problems and required as inputs to other sub-problems.   
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The first step in the decomposition of this AIO problem involves the introduction 

of copies of the linking variables, enabling each potential sub-problem to have its own 

copy of y. The resulting formulation is shown in Eq. (5.2) and is also depicted in Figure 

5.1 (b), in which the original links between sub-problems are centralized to the link based 

on the consistency constraints , 1,..., .j j j M   c y y 0  

 

Figure 5.1: Procedure of centralized ALC (problems in grey areas are solved as one 

problem, dashed lines represent the sub-problem couplings when the number of sub-

problem is more than 4) 
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, ,
1

min ( )

subject to ( , )

( , )
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j j

M

j j j

j

j j j

j j j

j j

f

j M







   


x y y
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g x y 0

h x y 0

c y y 0

 

 

(5.2) 

 

The consistency constraints are then relaxed to the objectives and result in the 

following formulation, or the relaxed AIO problem 

2

2, ,
1 1 1

min ( )+ ( )

subject to ( , )

( , ) 1, ... ,

j j

M M M

j j j j j j j

j j j

j j j

j j j

f

j M

  





 

  T

x y y
x ,y v (y - y ) w y - y

g x y 0

h x y 0

 

 

(5.3) 

 

where vj is the Lagrange multiplier, and wj is the weight in the quadratic term. 

Finally, according to the Block Coordinate Descent (BCD) method [29], the 

problem can be solved by iterating between solving the relaxed AIO for a subset of 

variables, while fixing the other variables at their previous value.  The master problem 

and sub-problems of the centralized ALC generated in this process are shown in Figure 

5.1 (c). The master problem is solved first and then its solution y is passed to all sub-

problems as targets. This centralized ALC can be considered as a hierarchical two-level 

coordination and all sub-problems on the lower level can be solved in parallel. The 

formulation of the master problem is 

2

2
1 1

min ( )
M M

j j j j

j j 

 T

y
v (y - y ) w y - y  

(5.4) 

while the formulation of the sub-problem j is 
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2

2,
min ( )+ ( )

subject to ( , )

( , )

j j
j j j j j j j

j j j

j j j

f 





T

x y
x ,y v (y - y ) w y - y

g x y 0

h x y 0

 

 

(5.5) 

5.1.2 KKT Optimality Conditions for the Centralized ALC 

According to the KKT first order necessary conditions [28],  and under the 

assumption that fj and gj are continuously differentiable, an optimal solution to the AIO 

problem in Eq. (5.2) must satisfy 
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                                         ( )
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(5.9) 

(5.10) 
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(5.13) 

 

Eqs. (5.6), (5.7), and (5.8) can be simplified to: 
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(5.14) 

 

(5.15) 

 

(5.16) 

 

Eqs. (5.9), (5.10), and (5.11) are called the primal feasibility of the AIO problem 

in Eq. (5.2). Eqs. (5.13), (5.14), (5.15), and (5.16) are referred to as the dual feasibility of 

Eq. (5.2). Eq. (5.12) is called the complementary slackness condition of Eq. (5.2). 

The centralized ALC solves the AIO problem by iteratively optimizing its 

decomposed master problem and the sub-problems. Here we use a superscript to indicate 

the number of iterations. At iteration k+1, the master problem is first optimized using 

, 1,...,k

j j My passed from sub-problems in the last iteration, generating the optimal 

value for y at iteration k+1 : 1ky  . Then all the sub-problems are optimized in parallel 

using 1ky and generate
1, 1,...,k

j j M y , which are ready to be sent to the master problem 

in the next iteration. During this process, 
1 1 and k k

j j

 
x y optimize the sub-problem j (Eq. 
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(5.5)) with fixed ,k k

j jv w and 1ky . Again applying the KKT necessary conditions to the 

sub-problem j, 1 1 and k k

j j

 
x y  satisfy 
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Note that since the centralized ALC uses the method of multipliers to update the 

Lagrangian multipliers [20]:
1 1 12 ( )=k k k k k k

j j j j j
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(5.23) 

 

 

As illustrated in Figure 5.2, Eqs. (5.19), (5.20), (5.21), (5.22), (5.17), and (5.23) 

prove that the optimality conditions in Eqs. (5.9), (5.10), (5.12), (5.13), (5.14), and (5.15),  

are satisfied automatically at iteration k+1 for sub-problem j. Eq. (5.11) is guaranteed by 
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the convergence criterion when the iteration terminates [20]. The only condition left that 

needs to be checked is condition (5.16).  

 

Figure 5.2:  Comparison of KKT conditions between the AIO and centralized ALC (the 

equations with shadow background on the left are guaranteed by the equations with 

shadow background on the right or convergence criteria) 

 

Similarly to the sub-problems, since 1ky optimizes the master problem (Eq. (5.4)) 
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The left-hand-side in Eq. (5.24) yields 
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which implies 
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Let
+1 +1

1

2 ( )
M

k k k k k

j j j j

j

s w w y - y , then +1ks can be viewed as the residual for the 

dual feasibility condition in Eq. (5.16), and can be further split into 
+1 +1

1

M
k k

j

j

s s , where 

+1 +12 ( )k k k k k

j j j j js w w y - y   is called the dual residual for sub-problem j. If all 

+1k

js for 1,2,...,j M are equal to 0, then +1ks is equal to 0 and the optimality condition in 

Eq. (5.16) is satisfied.  

A solution is feasible to the original AIO problem if the consistency error c is zero. 

Therefore c is called the primal residual. In summary, in the centralized ALC method, the 

primal residual and the dual residual for each sub-problem j at iteration k+1 can be 

defined as follows: 

The primal residual for sub-problem j: 

                                           
+1 +1 +1( )k k k

j jr y - y  (5.27) 

 

The dual residual for sub-problem j: 
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+1 12 ( )k k k k k
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5.2 Weight Update Strategy Based on the Primal and Dual Residual 

In the centralized ALC, it is necessary to drive both primal and dual residuals to 

zero to guarantee the primal and dual feasibility of the decomposed problem. However, 

the definitions of primal residuals r
k+1

 and dual residual s
k+1

 suggest a contradiction when 

considering the elimination of primal and dual residuals. Specifically, a small w tends to 

decrease the dual residual, but it reduces the penalty put on the inconsistency thus 

increasing the primal residual. On the contrary, a large w can drive the primal residual 

towards zero quickly, but it also increases the dual residual.  

In order to make a tradeoff between the primal and dual residual and keep both of 

them decreasing during the iterative procedure in the centralized ALC, inspired by ref. 

[73][74], a new weight update strategy is proposed as follows: 
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(5.29) 

 

where 1  , 1incr   and 1decr  are parameters used to control the rate at which 

w increases or decreases. For example, small  and big incr and decr means that w can be 

easily changed in a speedy fashion. The basic idea of this update is that the weight w is 

increased if the primal residual is too large compared to the dual residual and decreased if 

the dual residual is much larger than the primal residual. Otherwise w is not changed in 

the next iteration. Update (5.29) is written in vector form for convenience and each 
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element wji of the weight vector wj can be updated separately, which is what is used in the 

following tests.  

The dual residual can also be included into the convergence criterion to ensure the 

dual feasibility condition(5.16) holds at the optimal solution. The traditional convergence 

check [20], which just considers the primal residual is shown below: 

1 and , 1,...,k k k

j j j i M 

 
   r r r  (5.30) 

where ε is the termination tolerance for the optimization process.  

In order to guarantee that both the primal and dual residuals are close to zero 

when the algorithm stops, a new convergence check criterion for the centralized ALC is 

proposed, which uses the square root of the sum of the squares of a pair of primal and 

dual residuals 

2 2( ) ( ) , for all 1,...,k k

ji jir s j M    (5.31) 

For the optimization to stop, it is needed that every pair of primal and dual 

residuals satisfies this criterion. 

5.3 Numerical Tests 

Three problems are considered to test the efficacy of the proposed update strategy 

and the convergence check criterion: one mathematical problem and two engineering 

problems. Four indicators are used to calibrate the performances: the biggest primal and 

dual residuals, the biggest error in the design variables, and the objective error. 
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The biggest primal and dual residuals are the biggest elements in the vectors ri 

and si, respectively, following Eq. (5.27) (5.28). The error in the design variable xi is 

calculated based on its optimal value in the All-in-One solution: 

ALC AiO

i i
x AiO

i

x x
e

x


  

(5.32) 

The objective error is calculated similarly: 
ALC AiO

f AiO

f f
e

f


  

(5.33) 

where f denotes the optimization objective. 
1

M

j

j

f f


  in Eq.(5.1). 

 
Since the initial value of the weight w greatly affects the performance of the 

centralized ALC, in order to compare the optimization results fairly and comprehensively, 

these problems are solved and compared with respect to their average behavior and “best 

case” behavior. The first test starts with the initial w determined by the proposed initial 

weight setting method in [20]. The second one starts with a fine-tuned initial w which has 

been improved though trial and error. The proposed initial weight setting method in [20] 

is shown below 
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(5.34) 

where f̂ and ˆ
jc are estimates of the objective value and consistency error before carrying 

out the optimization, and   is a fraction parameter chosen by the user within the range 

1 3 1e    . 
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In this chapter, the centralized ALC-ADMOM method is used due to its parallel 

computational ability and efficiency. Both the traditional update in Eq. (2.18) and the 

proposed update in Eq. (5.29) are applied to the centralized ALC-ADMOM and their 

performances are compared in terms of efficiency, accuracy and robustness. It should be 

noted that for sub-problems with a convex local objective, [20] suggests w to be fixed to 

a small value instead of being updated at every iteration. However, in the follow-up 

papers of ALC [24][59][60], a small step size  ( 1 1.2  ) is chosen for ALC-

ADMOM to reach a better performance when solving test examples. In this research, to 

make sure ALC-ADMOM works at top capacity, the same rule is adopted by updating w 

slowly in the comparison tests, which is different from the implementation of ALC-

ADMOM in references [54][61], where w is fixed by setting   to 1. The solver 

“fmincon” [68] in MATLAB 2012a, which uses the interior point method as the default 

algorithm but may switch to other algorithms during execution, is chosen to solve all sub-

problems.  

5.3.1 Geometric Optimization Problem 

The first test problem is a simple geometric optimization problem which has been used in 

many papers, e.g. [54][55]. Here this problem is partitioned into two sub-problems and 

uses an artificial master problem to coordinate them as shown in Figure 5.3.   
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Figure 5.3: The structure to solve the geometric programming problem through 

decomposition 

 

The parameter settings for the traditional weight update in Eq. (2.18)  are 

1.1, 0.9   , based on the preferred values in reference [20]. For the proposed 

strategy, 2incr decr    is suggested. For simple problems, andincr decr  can be assigned a 

relatively big value (1.5 – 2.0) to accelerate convergence by changing w quickly, while 

for complex problems small andincr decr  (1.0 – 1.1) are more preferable since the 

optimization of complex problems needs much more iterations and small andincr decr  can 

make this process smooth. For test problem 1, the following are set: 1.5   and 

1.5incr decr   . Since this is a fairly easy problem, the convergence check (5.30) is 

adopted with a termination tolerance ε = 10
-3

. The starting values of all design variables 
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are all one and the initial multiplier v is set to zero. For the first set of tests, the initial 

weight is decided by Eq. (5.34) with f̂ = 1, α = 0.1 and w
0 

= 0.001. The optimization 

process of centralized ALC using the traditional update and the proposed update are 

shown in Figure 5.4 and Figure 5.5 respectively. The curves of the biggest dual residual 

of these two updates are compared in Figure 5.6.  

 

Figure 5.4: Optimization process of the traditional update on the geometric programming 

problem – initial weight set by Eq. (5.34) 
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Figure 5.5: Optimization process of the proposed update on the geometric programming 

problem – initial weight set by Eq. (5.34) 

 

 

Figure 5.6: Comparison of the curves of the biggest dual residual for the traditional 

update and the proposed update on the geometric programming problem – initial weight 

set by Eq. (5.34) 
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It can be seen that the proposed method decreases the number of iterations from 

40 to 25 for this problem. Due to the simplicity of the problem, both methods reach a 

small objective error and a small dual residual error. For the proposed method, the 

magnitude of the biggest dual residual is the same as that of the primal residual in most 

iterations, which implies the proposed update is working on adjusting both the primal and 

dual residuals.  

For the second test, the fine-tuned initial weights are used which are 2.5 for the 

traditional weight update and 5 for the proposed update. The optimization process of the 

traditional update and the proposed update are shown in Figure 5.7 and Figure 5.8 

respectively. These figures show that the traditional and proposed methods reach a 

similar performance through the tuned initial weight, which is much better than the 

results depicted in Figure 5.4 and Figure 5.5.  The curves of the biggest dual residual of 

these two updates are compared in Figure 5.9. It can be seen that the final dual residual in 

the traditional update is bigger than that in the proposed update, although the proposed 

update starts with a bigger initial w that contributes more to the dual residual.  
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Figure 5.7: Optimization process of the traditional update on the geometric programming 

problem – using fine-tuned initial weight 

 

 

Figure 5.8: Optimization process of the proposed update on the geometric programming 

problem – using fine-tuned initial weight  
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Figure 5.9: Comparison of the curves of the biggest dual residual for the traditional 

update and the proposed update on the geometric programming problem – using fine-

tuned initial weight 

 

5.3.2 Golinski’s Speed Reducer Problem 

The Golinski’s speed reducer problem has been widely used in the literature [22] 

[14][54][55][49][70][71]][31][76][77]. The objective of this problem is to minimize the 

volume of a reducer, subject to stress, deflection, and geometric constraints. The design 

variables are the dimensions of gears (x1, x2, x3) and shafts (x4, x5, x6, x7). The problem 

partition in this test is the same as the partition in [20] and has two levels and four sub-

problems, which is shown in Figure 5.10. One sub-problem is located at the upper level 

as a master problem and three sub-problems are located at the lower level. All these four 

sub-problems are linked through the design variables (x1, x2, x3).  
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Figure 5.10: The structure to solve the Golinski's problem through decomposition 
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The parameter settings for the traditional weight update in Eq. (2.18) 

are 1.1, 0.9   . For the proposed strategy, 2   and 1.5incr decr   . The 

convergence check (5.30) is adopted with the termination tolerance ε = 10
-3

. Since 

previous research [20] has shown that the initial values of design variables have small 

effects on optimization results, here all the initial design variables are set to one and the 

initial multipliers v are set to zero. For the first set of tests, the initial weight is decided by 

Eq. (5.34) with f̂ = 10
3
, α = 0.1 and w

0 
= 0.001. The optimization process of centralized 

ALC using the traditional update and the proposed update are shown in Figure 5.11 and 

Figure 5.12 respectively. The curves of the biggest dual residual of these two updates are 

compared in Figure 5.13. 

 

Figure 5.11: Optimization process of the traditional weight update on the speed reducer 

problem – initial weight set by Eq. (5.34) 
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Figure 5.12: Optimization process of the proposed weight update on the speed reducer 

problem – initial weight set by Eq. (5.34) 

 

 

Figure 5.13: Comparison of the curves of the biggest dual residual for the traditional 

update and proposed update on the speed reducer problem – initial weight set by Eq.(5.34) 
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It can be seen that, similarly to the results in the first test problem, the proposed 

strategy decreases the number of iterations from 40 to 27, which means it needs 32.5% 

less sub-problem redesigns to optimize this problem. Meantime, the errors of variables 

(around 10
-5

) and objective (around 10
-6

) in the proposed method are smaller than those 

in the traditional update method (around 10
-4

). Additionally, the dual residual reaches a 

relatively large value 0.34 in the traditional method, while in the proposed method, it 

shows a trend of decreasing and being about 0.005 when the program converges.  

For the second test, the fine-tuned initial weights are used which are 8 for the 

traditional weight update and 20 for the proposed update. The optimization process of the 

traditional penalty parameter update and the proposed update are shown in Figure 5.14 

and Figure 5.15 respectively. The curves of the biggest dual residual of these two updates 

are compared in Figure 5.16. 

 

Figure 5.14: Optimization process of the traditional weight update on the speed reducer 

problem – using fine-tuned initial weight 
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Figure 5.15: Optimization process of the proposed weight update on the speed reducer 

problem – using fine-tuned initial weight 

 

 

Figure 5.16: Comparison of the curves of the biggest dual residual for the traditional 

update and the proposed update on the speed reducer problem – using fine-tuned initial 

weight 
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The performance of both the traditional and proposed methods with tuned initial 

weight improves a lot compared to what is shown in Figure 5.11 and Figure 5.12. For the 

traditional method, the number of iterations is decreased to 26 but the final dual residual 

is increased to 1.72 due to a larger initial weight. The performance of the proposed 

method is quite impressive, reaching the optimal solution in 7 iterations while the errors 

of variables and objective remain under 10
-5

. The biggest dual residual is also under 10
-2

. 

It is clear that the proposed update manages to drive both the primal and dual residuals to 

zero and thus is able to satisfy the dual optimality condition (5.16) when the program 

converges, which is not guaranteed in the traditional update. As a result, the proposed 

method is shown to be more efficient (in terms of the number of iterations) and more 

accurate (in terms of the errors of variables and objective) than the traditional update in 

both scenarios, with Eq. (5.34) determining a guessed initial weight and a fine-tuned 

initial weight.  

5.3.3 Micro-accelerometer Design Problem 

The benchmark problem - micro-accelerometer design problem in Chapter 3 is 

used again. Here case 3 [60] and the partition into four sub-problems proposed in [60] are 

adopted. Among the proposed four cases in [60], case 4 involves mixed-integer 

optimization which is not the focus of this research and case 3 is the most complex one. 

The optimal results of this problem (case 3) through the All–in–One formulation without 

decomposition are shown in Table 5.1. The best solution f = 0.0807 mm
2

 is used to 

calculate the objective error in the following part. The structure to solve the problem 

through the centralized ALC is shown in Figure 5.17. 
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Table 5.1: Optimization results of the micro-accelerometer problem (case 3) without 

decomposition (AIO)[60] 

 Min Mean Max 

Objective (mm
2
) 

(15% of 100 runs have 

converged) 

 

0.0807 

 

 

0.0810 

 

 

0.0817 

 

 

 

Figure 5.17:  The Structure to solve the micro-accelerometer problem through 

decomposition 

 

The decomposed problem is solved by the centralized ALC under three schemes: 

scheme 1 - the traditional weight update Eq.(2.18) + traditional convergence check Eq. 

(5.30); scheme 2 - the proposed weight update Eq. (5.29)+ traditional convergence check 

Eq. (5.30); scheme 3 - the proposed weight update Eq.  (5.29)+ the proposed convergence 

check Eq. (5.31). Also, as in the previous experiments, all these schemes are tested twice 

with a calculated initial weight and a fine-tuned initial weight.  

In the first set of tests, the initial weight is decided by Eq. (5.34) with f̂ = 0.5 

mm
2
, α = 0.1, and w

0 
= 0.001. The parameter settings for the traditional weight update in 

Eq.(2.18) are 1.1, 0.9   , and those for the proposed strategy 

are 2,  1.02incr decr   . The termination tolerance for both methods is ε = 1e-3. The 

initial design variables are set randomly between 50% and 150% of the baseline design. 

The initial Lagrangian multipliers are all set to zero. Similar to [60], to ensure that each 
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sub-problem transfers a correct solution to the other sub-problems, the sub-problem 

optimization is restarted when its optimization does not converge. For each scheme, 10 

runs starting from different random points are performed and the average of the number 

of iterations and objectives are summarized in Table 5.2.  

Table 5.2: Results of the micro-accelerometer problem with a calculated initial weight by 

Eq. (5.34) 

 Scheme 1: 

traditional update + 

traditional convergence 

check 

Scheme 2: 

proposed update + 

traditional convergence 

check 

Scheme 3: 

proposed update + 

proposed convergence 

criterion) 

Objective(mm
2
) 

/error 

# of 

iters. 

Objective(mm
2
) 

/error 

# of 

iters. 

Objective (mm
2
) 

/error 

# of 

iters. 

Min 0.0969 

/20.1% 

101 0.0811 

/0.5% 

187 0.0809 

/0.2% 

246 

Mean  
 

0.0994 

/23.2% 

116 0.0816 

/1.1% 

252 0.0812 

/0.6% 

370 

Max  
 

0.1016 

/25.9% 

143 

 

0.0821 

/1.7% 

308 

 

0.0814 

/0.9% 

494 

 

From Table 5.2 it can be seen that the proposed weight update greatly improves 

the solution accuracy. The mean value of the optimal objective error is decreased from 

23.2% for the traditional ALC to 1.1% for ALC using the proposed update, and it is 

decreased even further to 0.6% by the combination of the proposed update and the 

proposed convergence check. The expense for this improvement is the increase of the 

mean number of iterations from 49 to 252 and 370 respectively.  



 81 

 

Figure 5.18: Optimization process of the centralized ALC – scheme 1 on the micro-

accelerometer problem – initial weight set by Eq. (5.34) 

 

 

Figure 5.19: Optimization process of the centralized ALC – scheme 2 on the micro-

accelerometer problem – initial weight set by Eq. (5.34) 
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Figure 5.20: Optimization process of the centralized ALC – scheme 3 on the micro-

accelerometer problem – initial weight set by Eq. (5.34) 

 

Figure 5.18 shows that the dual residual no longer decreases after the first 20 

iterations. Figure 5.19 shows that for the proposed weight update, both the primal 

residual and dual residual decrease after the iteration process has gone through some 

fluctuations. The dual residual at the optimal solution is still much larger than the primal 

residual since only the primal residual is considered in the traditional convergence check 

criterion. Figure 5.20 shows that using the proposed convergence check criterion, the 

dual residual is also under 10
-3

 when the algorithm converges, which results in a better 

solution. 

An interesting thing can be observed if the results in the geometric programming 

and speed reducer problems are compared with those in this section: the proposed 

strategy decreases the number of iterations needed for the first two test problems while it 
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increases that number for the micro-accelerometer problem. The reason might be that it is 

not fair to compare the number of iterations when the objective errors are not at the same 

order of magnitude. Specifically, the first two test problems are fairly easy and both the 

traditional and proposed methods perform well and can easily reach a solution that is 

sufficiently accurate (with the objective error under 10
-3

). In this case, the objective errors 

of both updates are at the same order of magnitude and the advantage of the proposed 

update is arriving at the optimal solution with less iterations. However, the micro-

accelerometer problem is a complex engineering problem involving four disciplines and 

the Finite Element Analysis (FEA) and therefore is difficult for the traditional ALC 

which does not consider the dual optimality conditions. For this kind of complex problem, 

the proposed method is able to converge to an accurate solution (objective errors around 

1%) while the traditional method stalls at a point that does not satisfy the KKT conditions 

(objective errors larger than 20%). Therefore, since the new method succeeds where the 

old method fails, the difference in the number of iterations is irrelevant. The primal and 

dual residual values are indicative of satisfaction of the KKT conditions of the All-in-One 

problem and the proposed update enables the centralized ALC to reach these conditions 

by driving both residuals to zero. The relatively large variable errors reported may be 

indicative of nonconvexity in the problem formulation itself. The above analysis also 

applies to the tests with a tuned initial weight that follows. 

In the second set of tests, all the settings in the first test are kept the same, except 

the fine-tuned initial weight is used which is 0.3 for the traditional weight update and 0.5 
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for the proposed update. The optimization results of the three schemes using the fine-

tuned initial weights are summarized in Table 5.3. 

Table 5.3: Results of the micro-accelerometer problem with a fine-tuned initial weight  

 
 Scheme 1: 

traditional update + 

traditional convergence 

check 

Scheme 2: 

proposed update + 

traditional convergence 

check 

Scheme 3: 

proposed update + 

proposed convergence 

criterion) 

Objective(mm
2
) 

/error 

# of 

iters. 

Objective(mm
2
) 

/error 

# of 

iters. 

Objective (mm
2
) 

/error 

# of 

iters. 

Min 0.0893 

/10.7% 

40 0.0810 

/0.4% 

168 0.0807 

/0.0% 

267 

Mean  
 

0.0901 

/11.6% 

49 0.0815 

/1.0% 

200 0.0811 

/0.5% 

322 

Max  
 

0.0910 

/12.8% 

76 0.0817 

/1.2% 

223 0.0813 

/0.7% 

447 

 

Using the tuned initial weight, the mean objective error of traditional ALC is 

decreased from 23.2% to 11.6% while the mean number of iterations is decreased from 

116 to 49. Although the accuracy improves a lot, the objective error 11.6% is still 

relatively large compared with those of scheme 2 and scheme 3, which are 1.0% and 

0.5% respectively. Scheme 3 requires more iterations than scheme 2 as it puts a stricter 

convergence criterion on the dual residual, which results in a further improved solution 

since the dual optimality condition (5.16) is fully met. Compared to the AIO results in 

Table 5.1, scheme 3 in Table 5.3 reaches the same minimal objective of 0.0807 mm
2
 

which is the reference value and their mean objective values are almost the same.  

However, only 15% of all tests converge in the AIO test while here all tests of scheme 3 

successfully arrive at an accurate solution. This indicates that for some complex problems, 
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the decomposition-based optimization methods might show a better convergence 

property than the AIO method.   

For scheme 1 with the traditional ALC (Figure 5.21), the objective stops 

decreasing after a few iterations and the reason might be that the nondecreasing dual 

residual leads the optimization to an inaccurate solution to which the process starts to 

converge. Through introducing the dual residual into the update strategy, scheme 2 

(Figure 5.22) effectively drives both the primal and dual residual toward zero and the 

optimization starts fluctuating after it has reached a certain level of accuracy (with an 

objective under 1%, around 50 iterations) until the primal residual is under 10
-3

. Scheme 

3 (Figure 5.23) has more fluctuations and requires more iterations, but a decreasing trend 

of the objective error can be observed during this fluctuation process.  

 

Figure 5.21: Optimization process of the centralized ALC – scheme 1 on the micro-

accelerometer problem – fine-tuned initial weight  
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Figure 5.22: Optimization process of the centralized ALC – scheme 2 on the micro-

accelerometer problem – fine-tuned initial weight 

 

 

Figure 5.23: Optimization process of the centralized ALC – scheme 3 on the micro-

accelerometer problem – fine-tuned initial weight 
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The performance improvements of the proposed update, that can be observed 

when comparing Table 5.3 and Table 5.2, are not significant in contrast to the noteworthy 

improvements over the traditional method. This leads to a question: Is the performance of 

the proposed update affected greatly by the initial weight as in the traditional update, or is 

the proposed update more robust than the traditional update? Attempting to answer this 

question is the topic of the next section. 

5.3.4 Robustness of the Proposed Strategy 

The initial value of the penalty weight is always a critical parameter for the 

traditional ALC method [20]. An excessive initial weight often causes the optimization 

process to converge early to irrelevant solutions while a small initial weight often 

significantly slows down the convergence rate of optimization. Tosserams [20] proposed 

to heuristically set the initial weight as shown in Eq. (5.34).  But this method is not a fail-

safe approach and some trial-and-error runs are often required in practice. As shown in 

the previous three tests, the performance of the traditional update can be changed greatly 

by changing the initial weight set by Eq. (5.34).   

Since the strategy proposed in this research can either increase or decrease the 

weight w, it has more capabilities to adjust the weight during the optimization process 

than the traditional weight update strategy. This may make the performance of ALC less 

sensitive to the initial weight and bring robustness to it. To verify this conjecture, another 

set of tests is conducted on the micro-accelerometer problem. All settings are kept the 

same except for the following three initial weight values: 1, 1e-1, 1e-2. All three cases are 

performed ten times starting with random initial points between 50% and 150% of the 
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baseline design. The objective value and the number of iterations reported in Table 5.4 

are the mean values of these 10 runs. 

Table 5.4: Optimization results of the micro-accelerometer problem with different initial 

weights 

Initial 

penalty 

weight 

Traditional update  Proposed update 

Objective(mm
2
) 

/error 

# of 

iters. 

Objective(mm
2
) 

/error 

# of 

iters. 

1 N/A
*
 N/A 0.0814/0.9%  224

**
 

1e-1 N/A N/A 0.0816/1.1% 293 

1e-2 N/A N/A 0.0809/2.2% 496 

*  All the tests of the traditional update do not converge or converge to irrelevant solutions;  

**  90% of the tests converge to the accurate solutions;  

 

It is clear that none of the above three cases can generate an optimal solution for 

the traditional update. The appropriate initial weight in Section 5.3.3 is 0.3. The high 

sensitivity of the traditional update to the initial weight prohibits the convergence of the 

algorithm starting with the w that is not close enough to 0.3. 

Based on the two most right columns in Table 5.4 we note that ALC with the 

proposed strategy is able to work with any initial weight selected between 1e-2 and 1.  

Thus the proposed weight update method makes the centralized ALC method robust to 

the initial weight, which is of great significance to engineers. 

5.4 Summary 

In this chapter, to solve the issues of setting and updating the penalty weight in 

the centralized ALC, the KKT necessary optimality conditions are applied to the relaxed 

AIO problem and the decomposed problems. The analysis results show that most 

conditions are satisfied automatically in the centralized ALC except for one particular 

dual optimality condition Eq. (5.16), which is not guaranteed by the traditional weight 
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update. Based on this, the “primal residual” and “dual residual” are introduced to 

decomposition-based optimization and their mathematical definitions are given according 

to the KKT conditions for the master problem in the centralized ALC. Inspired by 

relevant research on augmented Lagrangian relaxation in the convex optimization area, a 

new robust weight update considering both the primal and dual residuals is introduced to 

engineering optimization based on the above theoretical exploration. This penalty weight 

can either increase or decrease depending on the comparison of the primal and dual 

residuals. Additionally, a new convergence check criterion is also proposed based on the 

primal and dual residuals. 

Both mathematical and engineering benchmark problems are used to test the 

proposed update and both a calculated initial weight and a fine-tuned initial weight are 

adopted to provide a comprehensive comparison between the traditional update and the 

proposed update. The experimental results on the first two problems indicate that the new 

update decreases the number of iterations consumed to reach the AIO optimal solution. 

The results of the micro-accelerometer design benchmark problem show that the 

proposed strategy greatly increases the solution accuracy by reducing the objective error 

from above 10% to below 1% which can be further improved using the new convergence 

check criterion. These results prove that driving the dual residual to zero through our 

proposed method greatly improves the ability of the centralized ALC to produce a better 

optimality. More importantly, the new update enables the centralized ALC method to 

converge regardless of the magnitude of the initial weight since it allows the weight to 
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either increase or decrease during optimization. This largely reduces the sensitivity of the 

ALC performance to the initial weight and brings robustness to the centralized ALC.  

In the future, it is necessary to study the reasons of the oscillations in the objective 

error, dual residual, and primal residual in Figure 5.20, Figure 5.22, and Figure 5.23, as 

these oscillations consume more than half of the overall iterations in those cases. The 

effects of μ and τ on the performance of the proposed methods need to be explored. 

Additionally, the applicability of the proposed theory on dual residual to a broader 

category of problems beyond quasi-separable problems (such as problems with system-

wide constraints) is worth investigating. 
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Chapter 6  
 

 

The update of the penalty weights in the penalty terms of ALC greatly affects the 

optimization results [20]. The traditional update assigns the initial weight w a relatively 

small value and then increases it during the optimization iterations, which is shown in Eq. 

(2.18). However, this monotone update may lead to irrelevant solutions if starting with an 

inappropriate initial w [20]. In the last chapter, a new non-monotone update strategy 

based on dual residual was proposed recently and has shown to increase the efficiency, 

accuracy, and robustness of the centralized ALC [65][75]. The dual residual is considered 

as an indicator of the satisfaction of the Karush-Kuhn-Tucker (KKT) optimality 

conditions of the All-in-one (AIO) problem and the new update manages to drive the dual 

residual to zero, which is not achieved by the traditional update.  

 In this chapter, the theory of dual residual on the centralized ALC is extended to 

the distributed ALC. A new update based on the dual residual is proposed and 

demonstrated to improve the performance of the distributed ALC. Section 6.1 examines 

and compares the KKT optimality conditions for the AIO problem and the decomposed 

problems, which leads to the definition of primal and dual residual in the distributed ALC. 

A new weight update is proposed based on both residuals. Section 6.2 presents numerical 

Dual Residual for Distributed ALC Based on 

Optimality Conditions 
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tests of the proposed method and the analysis of the results. The chapter is summarized in 

Section 6.3. The research presented in this chapter is also published in [78]. 

6.1 Optimality Conditions for Distributed ALC and a New Weight 

Update based on Dual Residuals 

Assume we have a quasi-separable problem whose objective and constraints are 

coupled by linking variables y. These variables can be either the shared design variables 

between constraints and objective or the outputs of one analysis function required as 

inputs for another analysis function. The general formulation of this quasi-separable 

problem is shown below.  

1; ;...;
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min ( , )
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1,...,

M
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j j

j

j j

j j

f

s t

j M




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


y x x

y x

g (y x ) 0

h (y x ) 0

 

 

(6.1) 

Distributed ALC can decompose problem (6.1) into M sub-problems and solve 

these sub-problems iteratively until they reach a consistent and optimal solution. A few 

steps need to be followed to reach this process [20]. First, M-1 copies of linking variables 

y: yj (j = 1 ,…, M-1) are introduced into the problem, and y is renamed as yM. New 

equality constraints yj – yn are required to guarantee these copies share the same value. 

These are called consistency constraints.  
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Nj denotes the set of indices of all sub-problems that are coupled with sub-

problem j through linking variables. The consistency constraints are then relaxed to the 

objective by the augmented Lagrangian relaxation [29], resulting in the following relaxed 

AIO formulation: 
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(6.3) 

 

Now the constraints are fully separable and problem (6.3) can be solved by 

iteratively optimizing sub-problem j (j = 1,…,M) with respect to xj and yj. The general 

formulation of sub-problem j is: 
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6.1.1 The necessary optimality conditions for the relaxed AIO problem 

Next the KKT optimality necessary conditions are applied to both the AIO 

problem as it exists before decomposition and to the sub-problem j resulting from 

decomposition. In order to reach the optimal solution, the distributed ALC must fully 

satisfy all the KKT conditions of the AIO problem.  

 The KKT optimality conditions for Eq.(6.2) are 
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Eqs. (6.5), (6.6) can be simplified as 
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(6.13) 

 

6.1.2 The necessary optimality conditions for distributed ALC 

Since the distributed ALC solves sub-problems in an iterative way, the 

superscripts are used here to indicate the number of iterations. For sub-problem j in Eq 

(6.4) at iteration k+1, 1 1,k k

j j

 
x y are the optimal solutions for the sub-problem. Thus 

according to the KKT necessary optimality conditions, these solutions must satisfy  
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(6.18) 
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Now the KKT conditions for distributed ALC in Eqs. (6.14) - (6.19) can be 

compared to those of the AIO problem in Eqs.(6.7) - (6.13). As illustrated in Figure 6.1, 

Eqs. (6.14), (6.16) - (6.19) guarantee the conditions in Eqs. (6.12), (6.7), (6.8), (6.10), and 

(6.11) at iteration k+1. Considering that condition (6.9) is reached at the end of the 

coordination as a convergence check criterion [20], the only condition left unchecked is 

condition (6.13). Before addressing that condition, some transformations need to be 

provided based on the method of multipliers used in the ALC [20].  
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Figure 6.1: Comparison of KKT conditions between the AIO and distributed ALC (the 

equations with shadow background on the left are guaranteed by the equations with 

shadow background on the right or convergence criteria) 

 

Since the sub-problems in the distributed ALC are solved sequentially, at iteration 

k+1 sub-problem j can use the latest information passed from sub-problem n 

( jn N n j  ), but it has to use the information of the last iteration for sub-problem n 

( jn N n j  ). Between sub-problem j and sub-problem n ( jn N n j  ) there is a 

relationship as follows 
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Between sub-problem j and sub-problem n ( jn N n j  ) there is a relationship 

as follows 
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(6.21) 

Substituting Eqs. (6.20), (6.21) into Eq. (6.15), the equation becomes: 
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Comparing condition (6.22) to condition (6.13), one can see that the solutions 

from the distributed ALC are not guaranteed to meet condition (6.13). There are many 

terms on the right hand side of Eq. (6.22) which depend on the weights w and on the 

consistency error. These have to be resolved. 
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6.1.3 The primal residual and dual residual for distributed ALC 

Let 1k

j


s  denote the right hand side of Eq. (6.22): 
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
s is called the dual residual of sub-problem j 

corresponding to the consistency constraint =j ny y 0 at iteration k+1. If all 
1k

jn


s  for 

1,..., |jj M and n N n j   are equal to 0, then 1k

j


s is equal to 0, which guarantees the 

optimality condition in Eq. (6.13). 

Based on the above analysis, the primal residual and dual residual for sub-

problem j at iteration k+1 are defined as follows: 

The primal residual: 

+1 1 1k k k

j j n

  r y y  (6.23) 

 

The dual residual: 

+1 12 ( )k k k k k

j jn jn n n

s w w y - y  (6.24) 

 

6.1.4 A new update strategy for distributed ALC 

In distributed ALC, both the primal and dual residuals need to be equal to zero for 

the coordination to generate an optimal solution satisfying the KKT conditions. From the 

definitions of the residuals in Eqs. (6.23) and (6.24), it can be seen that the penalty weight 

w has contrary effects on the primal and dual residuals: large w can force the 
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optimization to quickly converge to a solution with small primal residual, while it makes 

the dual residual big. Small w decreases the dual residual but fails to penalize a large 

primal residual generated during optimization. This indicates that the monotone weight 

update strategies including the popular one in Eq.(2.18) are not the best for distributed 

ALC.    

Similar to the update proposed in [65][75] and in last chapter, a new weight 

update for distributed ALC is proposed in Eq. (6.25). The update is non-monotone and 

considers both the primal and dual residuals when changing w, while the traditional 

weight update in Eq. (2.18) only considers the primal residual.  
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where 1  , 1incr   and 1decr  are parameters used to set how quickly w is increased or 

decreased. If the primal residual is much larger than the dual residual, w is multiplied 

by incr to get a larger w to penalize the primal residual. If the dual residual is much larger 

than the primal residual, w is divided by decr to reduce the dual residual. Through keeping 

a balance between the primal and dual residuals, the new update is expected to drive both 

residuals to zero. During implementation, each element wji of the weight vector wj in Eq.  

(6.25) can be updated separately, which is what is used in the following tests.  

There are no specific values for μ and τ that can work perfectly with any problem, 

just as the β and γ in ALC, which are given a recommended range instead of fixed values. 

The parameter μ in Eq. (6.25) controls the gap between the primal residual r and the dual 
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residual s, and a large value of μ allows a large difference between these two residuals 

and prevents the adjusting of w accordingly to decrease this difference. Parameter τ in Eq. 

(6.25) controls the rate at which w is changed, and a large value of τ can increase or 

decrease w quickly, which is good for simple optimization problems but may cause 

convergence issues when solving complex problems.  

Based on the above discussion, for this work, μ is recommended to be around 2 to 

guarantee that r and s are of the same order of magnitude. For simple problems, τ can be 

assigned a relatively large value (around 1.5) to accelerate the convergence, while for 

complex problems, a small τ (1.0 – 1.2) is suggested to make the optimization process 

smoother. The values of incr  and decr used for increasing w and decreasing w 

respectively do not necessarily need to be the same, but they are kept equal in this work. 

Numerical explorations for the feasible settings of μ and τ are conducted on the first two 

examples in Section 6.2.   

6.2 Numerical Tests  

The geometric programming and micro-accelerometer design problems in section 

3.2 are used again to test the proposed update. Both the traditional update in Eq. (2.18) 

and the proposed update in Eq. (6.25) are applied to the distributed ALC and their 

performance on the test problems are compared in tables and figures. In the optimization 

process figures there are four curves: the biggest primal and dual residuals (using Eqs. 

(6.23) and (6.24)), the biggest design variable error (the relative error between the ALC 

solution and AIO reference solution), and the objective error (the relative error between 

the ALC objective and AIO reference objective).  
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6.2.1 Example 1: Convex quadratic programming problem 

The first test example is a convex quadratic programming that has been used in 

[79][48]. It has a unique global optimal solution. The problem is partitioned into four 

sub-problems as shown in Figure 6.2. 
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Figure 6.2: The partition of Example 1 with four sub-problems 

 

All the design variables are initialized to one and all Lagrangian multipliers v are 

initialized to zero. For the traditional update, the following parameters are 

set: 1.1 and 0.9   , as suggested in [20]. For the proposed update, the 
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parameters: 2   and 1.5  are set as suggested in [75]. The termination tolerance is ε 

= 10
-3

. The initial weight w is calculated and is equal to 1.65 according to Eq. (5.34) 

with f̂ = 500, α = 0.1, and w
0 
= 0.001. Since the sequence in which the sub-problems are 

solved may affect the optimization results, the four sub-problems are optimized in four 

different orders: 1-2-4-3, 2-4-1-3, 3-4-2-1, and 4-3-2-1. The number of iterations and 

number of function evaluations of the traditional and proposed update are summarized in 

Table 6.1. The typical optimization processes of ALC using the traditional and proposed 

update are shown in Figure 6.3 and Figure 6.4 respectively. 

 

Figure 6.3: The optimization process with the traditional update on Example 1 (solving 
sequence: 1-2-4-3) 
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Figure 6.4: The optimization process with the proposed update on Example 1 (solving 
sequence: 1-2-4-3) 

 

Figure 6.3 shows some fluctuations in the optimization process with the 

traditional update and the optimization consumes 43 iterations. The biggest primal 

residual almost decreases to 0.001 while the biggest dual residual is around 1, which is 

much larger than the biggest primal residual. However in Figure 6.4, both the primal and 

dual residuals gradually drop to 0.003, which means the proposed update works on 

decreasing both residuals. As a result, the design variable and objective errors of the 

proposed update are diminished smoothly toward zero within 26 iterations. Table 6.1 

shows that for the same solving sequences, the proposed update can always decrease the 

number of iterations and number of function evaluations when compared to the 

traditional update.     

 



 105 

Table 6.1: Results of different coordination sequences for Example 1 

Sub-problem 

solving 

sequence 

Traditional update Proposed update 

# of 

iters.  

# of 

func.evals.  

# of 

iters. 

# of 

func.evals. 

1-2-4-3 43 2320 27 1338 

2-4-1-3 40 2209 27 1466 

3-4-2-1 51 2795 37 2051 

4-3-2-1 53 2905 38 2204 
 

 

Another set of tests is also conducted on this convex quadratic programming 

problem where the values of μ and τ are changed from 1.1 to 2.9 with increments of 0.2, 

and the problem is solved 100 times using these different μ and τ. The number of function 

evaluations associated with these μ and τ are recorded and plotted in Figure 6.5. This test 

does not serve the purpose of choosing appropriate μ and τ for this particular problem, but 

rather it is designed to empirically investigate the effects of μ and τ on the proposed 

update. 

 

Figure 6.5: Number of function evaluations resulting from different μ and τ of the 

proposed update for Example 1 
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The right corner range (μ ϵ [1.1, 1.9] and τ ϵ [1.7, 2.9]) in Figure 6.5 depicts high 

numbers of function evaluations and so should be avoided, while the left corner shows 

low numbers consistently hence choosing μ ϵ [1.5, 2.9] and τ ϵ [1.1, 1.7] can yield a low 

number of function evaluations and therefore higher efficiency for this problem. 

6.2.2 Example 2: geometric programming problem  

 The second example has appeared in Section 4.2.1. The partition illustrated in 

Figure 4.4 (a) is used to solve this problem. All the design variables for this example are 

initialized to one and all Lagrangian multipliers v are initialized to zero. For the 

traditional update, the parameters are set to 1.1 and 0.9   . For the proposed update, 

2   and 1.5incr decr   . The termination tolerance is ε = 10
-3

. The initial weight w is 

calculated and is equal to 0.02 according to Eq. (5.34) with f̂ = 50, α = 0.1, and w
0 

= 

0.001. Each update is tested 10 times using random initial points selected between 0 and 

1. The decomposed sub-problems are solved in five different sequences: 1-2-3-4-5, 2-1-

3-5-4, 3-5-1-2-4, 4-5-2-1-3, and 5-3-4-1-2.  

Table 6.2: Results of the traditional and proposed update using different coordination 

sequences for Example 2 

Sub-problem 

solving 

sequence 

Traditional update Proposed update 

# of 

iters. 

# of 

func.evals. 

# of 

iters. 

# of 

func.evals. 

1-2-3-4-5 76 8579 28 4033 

2-1-3-5-4 79 9002 28 3843 

3-5-1-2-4 76 8559 28 5875 

4-5-2-1-3 72 7861 30 4746 

5-3-4-1-2 72 13432 35 4652 
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The optimization results for the tests are summarized in Table 6.2, which shows 

that the proposed update can effectively decrease the number of iterations and number of 

function evaluations no matter which solving sequence is used. The typical optimization 

processes of distributed ALC with the traditional and proposed updates are shown in 

Figure 6.6 and Figure 6.7. The biggest dual residuals in both figures reach a small value 

at the end of optimization. However, it takes the traditional update 76 iterations to make 

the optimization converge while the proposed update only needs 28 iterations. Close 

inspection reveals that for the proposed update, starting from the 5th iteration, the biggest 

dual residual keeps producing similar values as the biggest primal residual. But in the 

traditional update the values of both residuals are far apart from each other until the 16th 

iteration. This proves that the proposed update has successfully controlled the primal and 

dual residuals at the same magnitude and has simultaneously driven both of them to zero, 

which saves many iterations. 

 
Figure 6.6: The optimization process with the traditional update on Example 2 

(solving sequence: 1-2-3-4-5) 
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Figure 6.7: The optimization process with the proposed update on Example 2 (solving 

sequence: 1-2-3-4-5) 

 

Experimental explorations of the effects of μ and τ on the performance of the 

proposed update are also conducted and the results are shown in Figure 6.8. μ is changed 

from 1.1 to 2.9 with an increment of 0.2 and τ is changed from 1.1 to 2.7 with an 

increment of 0.2. It can be seen from Figure 6.8 that choosing μ ϵ [1.1, 2.9] and τ ϵ [1.1, 

2.1] is appropriate for this problem. The value τ = 2.9 is also tested but it turns out to be 

so inappropriate that the optimization fails. 
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Figure 6.8: Number of function evaluations resulting from different μ and τ of the 

proposed update for Example 2 

 

6.2.3 Example 3: Micro-accelerometer benchmark design problem 

The centralized ALC shown in Figure 4.6 (a) is used again to solve this problem. 

To get comprehensive results, the initial design variables are set randomly between 50% 

and 150% of the baseline design. All the parameter settings are the same as in the 

previous two examples except for 1.2incr decr    because a small value of the update 

parameter τ is more suitable for this kind of complex problem. The initial weight w is 

calculated and is equal to 0.3 according to Eq. (5.34) with f̂ = 0.5, α = 0.1, and w
0 

= 0.001. 

The problem is solved 10 times for each update and the results are summarized in Table 

6.3. 
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Figure 6.9: Object based partition of Example 3 [60] 

 

Table 6.3 shows that the mean objective error of the distributed ALC is decreased 

from 1.7% to 0.4% by the proposed update. More iterations (35% increase) and function 

evaluation (40% increase) are required by the proposed update to drive the optimization 

to better solutions. In addition to just driving the primal residual to zero as in the 

traditional update, the proposed update is also in charge of driving the dual residual to 

zero and keeping a balance between the two residuals. This might be the reason that the 

proposed update needs more iterations and function evaluations. 

 Figure 6.10 and Figure 6.11 present the typical optimization process of 

distributed ALC with both updates. The biggest dual residual in the proposed update in 

Figure 6.11 reaches a smaller value than that in the traditional update in Figure 6.10, 

which means the solution in Figure 6.11 better satisfies condition (6.13) than the solution 

in Figure 6.10, and this leads to the decrease in the objective error. Moreover, if the 
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results are compared with those of the AIO solutions in Table 4.2, it can be seen that the 

proposed update attains the same mean objective and a better maximum objective. But 

only 85% of the AIO optimizations fail to converge while all of the decomposition based 

optimizations successfully reach the accurate solution. This approach is therefore very 

promising for decomposition based optimization because it shows that a better 

convergence property can be achieved without undermining the solution accuracy when 

solving this problem in decomposed fashion instead of as a whole.   

Table 6.3: Results of the traditional and the proposed updates on Example 3 

 traditional update proposed update 

Obj.(mm
2
) 

/error 

# of 

iters. 

# of  

func.evals.  

Obj.(mm
2
) 

/error 

# of 

iters 

# of 

func.evals. 

Min 0.0819 / 1.5% 28 16819 0.0808 / 0.1% 39 24301 

Mean 0.0821 / 1.7% 31 18897 0.0810 / 0.4% 42 26525 

Max 0.0825 / 2.2% 33 22028 0.0814 / 0.9% 46 29549 

 

 

Figure 6.10: The optimization process with the traditional on Example 3 
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Figure 6.11: The optimization process with the proposed updates on Example 3 

 

6.2.4 Robustness of the proposed strategy 

The initial weight w has a significant effect on the performance of the distributed 

ALC using the traditional update. An excessive initial weight often causes the 

optimization process to converge early to irrelevant solutions while a small initial weight 

often significantly slows down the convergence rate of the optimization. The setting 

method in Eq. (5.34) is heuristic and often needs some subsequent trial and error runs. 

Thus, a robust approach to selecting the initial w is highly desired by the distributed ALC. 

Since the proposed update can either increase or decrease w, it is more flexible 

than the traditional monotone update and has the potential to show some robustness with 

respect to initial weights. To verify this assumption, another set of tests on the micro-

accelerometer problem is performed, for which all the settings are kept the same as in the 

previous section except that the initial weights are set to 1, 0.1, 0.01, and 0.001. Both 
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updates are tested for 10 runs starting with each of these initial weights and their mean 

values of the objective error and number of function evaluations are presented in Table 

6.4. 

Table 6.4: Optimization results of Example 3 problem with different initial weights 

Initial 

penalty 

weight 

Traditional update  Proposed update 

Obj. (mm
2
) 

/error 

# of 

iters. 

# of func. 

evals.  

Obj. (mm
2
) 

/error 

# of 

iters. 

# of func. 

evals. 

1 0.1127 

/39.7% 

18 12616 0.0812 

/0.6% 

46 31217 

0.1 0.0929 

/15.1% 

82 85925 0.0809 

/0.2% 

111 106568 

0.01 0.1397 

/73.1% 

117 166339 0.0809 

/0.2% 

148 169699 

0.001 0.1017 

/26.0% 

140 177979 0.0810 

0.4% 

157 176066 

 

 

Table 6.4 shows that regardless of what the magnitude of the initial weight is, the 

proposed update is always able to consistently drive the optimization of the distributed 

ALC towards an accurate solution with an objective error less than 0.6%. In contrast, the 

solutions for the traditional update are much worse because the traditional update is very 

sensitive to the initial weights. Any inappropriate initial w may push the optimization 

away from the optimal solution. This shows that, for this example certainly, the proposed 

update is more flexible and significantly enhances the robustness of the distributed ALC. 

The high number of function evaluations with small initial weights in both updates is 

reasonable, because the small penalty weights allow relatively large primal consistency 

constraint violation at the beginning of the optimization. As a result, both updates need 

more computational efforts to eventually reduce this violation to zero. 
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6.3 Summary 

The KKT conditions are valuable indicators of optimality in mathematical 

programming and are expected to greatly benefit decomposition based optimization as 

well. The work in Chapter 5 shows that the dual residual theory based on the KKT 

conditions substantially improves the performance of the centralized ALC.  In this 

chapter, the theory of dual residual is extended from the centralized ALC to the 

distributed ALC which solves decomposed sub-problems sequentially without a master 

problem. The KKT optimality conditions for the AIO problem and decomposed sub-

problems are examined and compared. The comparison shows that a KKT condition is 

not guaranteed by the distributed ALC, which leads to the definition of the primal and 

dual residuals for the distributed ALC and the proposal of a non-monotone update for the 

penalty weights. The new update is able to drive both residuals simultaneously to zero, 

thus ensuring the resulting solutions satisfy all the KKT conditions of the AIO problem.   

Numerical tests are conducted on the two geometric programming problems and 

the micro-accelerometer problem that are described in previous chapters. For the first two 

problems, the distributed ALC using the proposed update converges to the optimal 

solution much faster than the distributed ALC using the traditional update. The effects of 

μ and τ on the proposed update are explored experimentally and the results provide 

reasonable ranges for selecting these parameters. For the complex micro-accelerometer 

problem, the proposed update improves the objective error from 1.7% to 0.4% at the 

expense of consuming more function evaluations. When changing the initial weights 

between 0.001 to 1, the proposed update is always able to guide the optimization to an 
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accurate solution (with an objective error less than 0.5%) while the traditional update 

fails to do the same (with an objective error more than 20%).  
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Chapter 7  
 

 

 

7.1 Alternating Direction Method of Multipliers (ADMM) 

Some theoretical studies in mathematical optimization have been applied to the 

decomposition-based optimization process and the Alternating Direction Method of 

Multipliers (ADMM) is one result of these studies [20][25]. ADMM [72] is a powerful 

algorithm developed in the field of convex optimization. The algorithm solves problems 

of the form: 

   

 
1 2minimize

subject to

f ( )+ f ( )

 

v z

Av Bz e
 

 

(7.1) 

 

The augmented Lagrangian function of this problem is 

 
2
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ADMM solves the problem in Eq. (7.1) through the following iterations 
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(7.3) 

 

(7.4) 

 

(7.5) 

 

In decomposed-based optimization, the Augmented Lagrangian Coordination 

An Efficient Parallel Coordination Method 

Using Two Duality Theorems  
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(ALC) adopts ADMM and the resulting algorithm has become one of the most popular 

coordination methods in recent years. ADMM enables ALC to decouple the sub-

problems using the augmented Lagrangian relaxation and to update the dual multipliers 

through the method of multipliers [20]. There are three types of ALC algorithms which 

either include an inner loop or not: Exact (ENMOM) inner loop, inexact (INMOM) inner 

loop, and alternating direction (ADMOM) without inner loop. At each iteration, 

ENMOM and INMON first use the Block Coordinate Descent (BCD) [29] method to 

iterate, solving each sub-problem with fixed dual multipliers and penalty weights until 

they reach a consistent solution, which represents the termination of the inner loop. Then 

the dual multipliers and penalty weights are updated in the outer loop to prepare the 

whole optimization process for the next iteration. The difference between the two inner 

loop methods is that ENMOM uses a small fixed convergence tolerance for the inner loop 

whereas in INMOM, the inner loop tolerance is relatively large at the beginning and 

decreases as the optimization process proceeds. ADMOM however, contains no inner 

loop since it uses ADMM and all sub-problems are solved only once at each iteration. 

Many tests have proven that ADMOM is the most robust and efficient algorithm among 

the three ALC algorithms since it does not require the expensive computational efforts of 

the inner loops when the current solution is far from the optimal solution [20]. 

Furthermore, the ADMOM algorithm is shown to perform better than other popular 

coordination methods such as the Analytical Target Cascading (ATC) which is based on 

a quadratic penalty method [22][23] and the Lagrangian duality-based coordination 

[52][24] which is based on the ordinary Lagrangian duality theorem. 
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Similar to ALC-ADMOM, Consensus Optimization via the Alternating Direction 

Method of Multipliers (CADMM) is another application of ADMM to decomposition-

based optimization. At each iteration of CADMM, all sub-problems are solved only once 

and their solutions are collected together and used to calculate the consensus values for 

the shared variables, which are then used as targets for sub-problems in the next iteration. 

The efficacy of CADMM has been verified through several test problems 

[21][25][26][27].  

In either ALC or CADMM, the ADMM is applied directly to the primal problem. 

In this study, inspired by the research in convex optimization [80], the ADMM is applied 

to the dual of the primal problem. Specifically, copies of shared variables are first 

introduced to the original optimization problem to get a primal problem set up for 

decomposition-based optimization, then the ordinary duality theorem is applied to that 

primal problem to generate a dual problem, after which ADMM is applied to the dual 

problem. In the resulting algorithm, all sub-problems are independent from each other 

and thus can be solved in parallel. The derivations of the algorithm are presented in 

Section 7.2. Section 7.3 tests the proposed algorithm using both mathematical and 

engineering problems and compares its performance with that of the parallel ALC-

ADMOM. Section 7.4 summarizes this chapter. The research presented in this chapter is 

also published in [81]. 

7.2 Derivation 

Depending on the ways an optimization problem is partitioned, the resulting 

partition can have either a hierarchical or a network structure. The hierarchical partition 
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can be considered a special case of the network partition, which is in great demand since 

in many cases partitions in the engineering area are non-hierarchical.  Multi-disciplinary 

optimization exemplifies network structures, and several nonhierarchical coordination 

methods have been proposed in this area [25][24][53][69][75]. This study deals with 

decomposed sub-problems with a network structure.  

Assuming a quasi-separable problem with M potential sub-systems with a network 

partition structure, the optimization problem is written as: 
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(7.6) 

 

where NRy is the vector of shared variables, which can either be the linking design 

variables between two sub-problems or the analysis output of one sub-system which is 

required as input for another sub-system. K

j Rx is the vector of local design variables 

which appears only in sub-problem  j. 

7.2.1 Applying the ordinary duality theorem to the primal problem 

To decompose the problem in Eq. (7.6) into M sub-problems, M-1 copies of y are 

first introduced into the problem: 
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where y is renamed yM  and y1 ,…, yM-1 are the M-1 copies newly created. 
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The new equality constraints 1 1 ... M M  S y S y 0 are called primal consistency 

constraints, and are added to the formulation to ensure that all the copies of the shared 

variables have the same value. Since elements in yj do not necessarily appear in every 

row of the consistency constraints,  a selection matrix, 
P N

j R S , which is similar to 

those introduced by Michalek and Papalambros [82] for ATC and by Tosserams [20] for 

ALC, is adopted. The elements of Sj can be 0, 1 or -1 and each row of Sj must only 

contain one “1” or one “-1”. For example, assume a partition in Figure 7.1 with three sub-

problems in a network structure coupled through three shared variables:  

 

Figure 7.1: A partition with a three-node network structure for the illustration of selection 

matrix 

 

The vector of shared variables in this partition is y = [y12, y13, y23]
T
. After creating 

two copies of the shared variables y1 = [y12
1
, y13

1
, y23

1
]

T
 and y2 = [y12

2
, y13

2
, y23

2
]

T
, 

renaming y as y3 = [y12
3
, y13

3
, y23

3
]

T
, and assigning y1, y2, y3 to the sub-problems 1, 2 and 

3 respectively, the resulting consistency constraints for the shared variables are y12
1
 - y12

2
 

= 0, y13
1
 - y13

3
 = 0, and y23

2
 - y23

3
 = 0. Then the selection matrixes for the three sub-

problems should be S1 =  [1 0 0;0 1 0; 0 0 0], S2 =  [-1 0 0;0 0 0; 0 0 1] and S3 =  [0 0 0;0 

-1 0; 0 0 -1], thus S1y1 + S2y2 + S3y3 = 0 would generate the above consistency 

constraints. It can be seen that some elements in yj are not used in sub-problem j at all, so 
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in the practical implementation, yj may only contain the shared variables relevant to sub-

problem j instead of all shared variables. 

Given the vector of Lagrangian multipliers PRv , the Lagrangian function L [29] is:   
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(7.8) 

 

The Lagrangian dual problem can be written as 
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Since the Lagrangian function in Eq. (7.8) is separable, the dual problem can be 

rewritten as: 
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(7.10) 

7.2.2 Applying the ADMM duality theorem to the dual problem 

At this step, the ADMM is applied to the dual problem in Eq. (7.10). M Copies of 

the Lagrangian multipliers v are introduced to the dual problem to decouple the objective, 

and new consistency constraints for the multipliers are added to the formulation. This 

results in: 
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where zj is the copy of v at the sub-problem j.  

Dual consistency constraints v - zj = 0 are added to Eq. (7.11) to guarantee v and 

its M copies share the same value. Relaxing the dual consistency constraints for the 

multipliers using Augmented Lagrangian Relaxation and applying ADMM in Eqs. (7.3) – 

((7.5) to the problem result in the following procedures to solve the problem in Eq. 

(7.11).  
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where pj is the vector of multipliers of the dual consistency constraints. The superscript in 

(.)
(k+1)

 is used to indicate the value of a term at the iteration (k+1). It should be noted that 

since the terms ( ) ( )( )k T k

jp z and ( ) ( 1)( )k T k

j


p v are constant and are simply added to the 

objectives, they are dropped from Eq. (7.12) and Eq. (7.13) respectively. 

Eq. (7.12) is a quadratic optimization problem with respect to v, thus it has an 

analytical solution: 
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Substituting dj(zj) from Eq. (7.11) into Eq. (7.13), one can write: 
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Let L(yj, xj,zj)  represent the objective function in Eq. (7.16) 
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According to Theorem 37.3 and 37.6 in [83], if L(yj, xj, ·) and L(·,·, zj) are convex 

functions, L(yj, xj,zj) has a saddle point and satisfies 
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Thus, the optimization problem in Eq. (7.16) becomes  
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Since L(yj, xj, zj) is a quadratic function with respect to zj, the solution to 

max[L(yj, xj, zj)] in vector form is 
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in scalar form, where ( 1) ( 1) ( 1) ( 1) T

1[ , ..., ,..., ]k k k k

j j ij Njz z z   z . Substituting Eq. (7.20) into Eq. 

(7.19) the equation becomes: 
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(7.22) 

 

where ρ and vi
(k+1)

 are constants and thus the last term in Eq. (7.22) can be dropped. The 

optimization problem in Eq. (7.13) is then simplified to: 

( 1) ( ) ( 1) 2

j
, , ,

1

1
min ( , ) [ ( ( ) )]

2j j j j

N
k k k

j j i ij j j i

i

f v p




 

 


  
y x g 0 h 0

y x S y  
(7.23) 

 

with Eq. (7.20) as the solution for zj
(k+1)

. 

 

7.2.3 A new parallel coordination algorithm 

In summary, the problem in Eq. (7.6) can be solved through the following steps. 

The flowchart of this new algorithm is shown in Figure 7.2. 
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Figure 7.2: The flowchart of the proposed parallel coordination method 

 

During this process, since copies of shared variables and Lagrangian dual 

multipliers are generated, consistency constraints are introduced to ensure these copies 
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share the same values. There are two kinds of consistency constraints at iteration k: the 

primal consistency constraints cp and the dual consistency constraints cd . 
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(7.28) 

 

y1,…,yM are shared variables and their copies and cp are used to ensure they have 

the same values at the end of the optimization for the primal problem in Eq. (7.7). v, 

z1,…, zM are dual multipliers and their copies and cd are used to ensure they have the 

same values at the end of optimization for the dual problem in Eq. (7.11). 

 
Figure 7.3: Dual transformations in the proposed method and other methods in the 

literature 

 

Figure 7.3 shows how the duality theorems are applied to the methods in the 

literature and the proposed method. Most developed methods apply ADMM directly to 

the primal problem, relax cp into the objective and solve the resulting dual problem 

instead of solving the original problem. In contrast, in the proposed method two kinds of 

duality theorems are employed. First the ordinary duality theorem is used to relax cp and 

an ordinary dual problem is generated, to which ADMM is then applied to relax cd and a 

dual problem of the first dual problem is formulated. Instead of solving the original 

problem, the proposed method is solving this dual problem of the dual problem to 

achieve the optimal solution for the original problem. Since the ordinary duality is 
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applied initially, the sub-problems in the proposed method are independent from each 

other and therefore can be solved in parallel. It should be noted that in mathematical 

programming, the dual problem of the dual problem is supposed to be the primal 

problem. However, this is not the case here since the two different duality theorems are 

used in this transformation. 

The ultimate goal of the developed algorithm is to solve the primal problem 

which is difficult to handle directly thus solving the dual of its dual problem is 

performed. In view of this, as the convergence criteria of the optimization process only 

the primal consistency constraints cp are checked and cd is not used. As long as the primal 

consistency constraints cp satisfy certain conditions and are very close to zero, the current 

solutions can be considered as consistent and feasible for the primal problem, which is 

the original problem to solve. Thus the convergence criteria for the proposed method are 

set as 

( ) ( 1) ( )andk k k

p p p 

 
  c c c  (7.29) 

where  is a convergence tolerance, which normally is set to be very small. 

The centralized ALC needs M copies of shared variables while the proposed 

method only needs M-1. As a result, the number of elements in cp in the proposed method 

is less than that in the centralized ALC. This is expected to bring certain benefits to the 

proposed method and is explored in the next section.  
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7.3 Numerical Tests and Results Analysis 

One mathematical problem and one engineering problem are used to test the 

efficacy of the proposed method. The number of function evaluations is recorded to 

represent the computational resources consumed. Errors of the design variables and the 

objective of each problem during the optimization process are also collected. The errors 

are defined as the relative errors of the decomposition-based optimization results with 

respect to the reference solution from the All-in-One formulation. All the sub-problem 

optimizations are solved using “fmincon” in Matlab. The centralized ALC-ADMOM is 

also applied to these test problems for comparison. Through the introduction of an 

artificial master problem, the centralized ALC-ADMOM allows parallel computation for 

all decomposed sub-problems and has been proven to be more efficient than other 

coordination methods [20]. In the following part of this research it is referred to as the 

centralized ALC for convenience.   

7.3.1 Problem 1 – Geometric optimization problem 

The first test problem is the simple geometric optimization problem used in 

Section 5.3.1 Here the problem is partitioned into two sub-problems and both the 

centralized ALC and the proposed method need a master problem to coordinate the two 

sub-problems, as shown in Figure 7.4. For the centralized ALC, the linking variables 

between the master problem and the sub-problems are the shared design variables. In the 

proposed method, the linking variables are the dual multipliers associated with the shared 

design variables and their copies. In both methods the master problems are simple 

quadratic programming problems thus their analytical solutions can be easily calculated. 
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The solution process of the master problem is merely a parameter update procedure based 

on the results of the sub-problems. 
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(7.30) 

 

  
Figure 7.4: The decompositions of the centralized ALC (left) and the proposed method 

(right) when solving the geometric optimization problem  

 

To explore the effects of the penalty weight ρ on the primal and dual consistency 

constraints, different values of ρ, 10, 1, 0.1, and 0.01, are considered. The biggest 

violations of cp and cd during the optimization process are plotted in Figure 7.5 for 

different ρ. Here the starting points for the design variables in all cases are set to one and 

the convergence tolerance ε in Eq. (7.29) is set to 0.001. 
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. 

 
         (a): ρ =10              (b): ρ =1 

  
       (c): ρ =0.1                (d): ρ =0.01 

Figure 7.5: The curves of biggest primal and dual consistency errors under different ρ  

 

Figure 7.5 clearly indicates that a large ρ can effectively reduce the dual 

consistency error, which is reasonable because a large ρ places a high penalty on the 

differences between the copies of dual multipliers. For ρ=10, the dual consistency error 

reaches around 1e-3 just after a few iteration while it takes the primal consistency error 

487 iterations to reach 1e-3. As the value of ρ decreases, the primal consistency error 

drops faster and the dual consistency drops more slowly. For ρ=0.01, the dual 

consistency error is around 0.5 when the primal consistency error reaches 1e-3.  
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Inspired by the above observation, it is proposed to decrease the value of ρ 

throughout the optimization process, instead of fixing it to a constant. Eq. (7.31) is the 

proposed update scheme for ρ. It is desired to keep ρ relatively big at the beginning to 

quickly reduce the dual consistency error, and then decrease ρ to reduce the primal 

consistency error faster thus to accelerate the convergence speed of optimization.   

(k+1) (k) , 0 1      (7.31) 

By adjusting the convergence tolerance in Eq. (7.29), one can control the solution 

error of decomposition-based optimization. Here, the tolerance ε is set to 1e-2, 1e-3, 1e-4 

and 1e-5 for both the centralized ALC and the proposed method. Their performances are 

collected in Figure 7.6. The initial ρ in the proposed method and the initial w in 

centralized ALC are all set to one. The update parameter β for ρ in Eq. (7.13) is 0.8. For 

the centralized ALC, the weight update scheme in [20] is used and β = 1.1 and ϒ = 0.9, as 

suggested in [20]. The initial Lagrangian multipliers are set to zero, and the initial design 

variables are set to one. Figure 7.6 shows that the proposed method is more efficient than 

the centralized ALC in terms of number of function evaluations.  

 
Figure 7.6: The test results of the centralized ALC and the proposed method on the 

geometric optimization problem (From right to left: ε = 1e-2, 1e-3, 1e-4 and 1e-5) 
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7.3.2 Problem 2 – Portal frame design problem 

The second test problem is a structural optimization problem – the portal frame 

design problem [84][85][86][87]. The optimization objective is to minimize the volume 

of the whole structure by changing the dimensions of the cross sectional areas. As shown 

in Figure 7.7, a horizontal force and a concentrated moment are applied on the structure, 

which cause normal and shear stresses. The design constraints are to satisfy all stress 

limits and geometry requirements. The values of stress are computed through Finite 

Element Analysis (FEA). Readers may find more details about this problem in [59].  

(7.32) 
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Figure 7.7: Structure and cross sectional area of the portal frame design problem[59] 

 

 
Figure 7.8: The decompositions of the proposed method and the centralized ALC when 

solving the portal frame design problem  

 

Due to the uncertainty of one set of the geometry constraints in this problem 

(which requires that either the top flange area is twice as large as the bottom one or vice 

versa), this problem has many local optimal solutions and one global optimal solution. 

Previous research has found that ALC with a hierarchical structure could reach the global 

solution 54 times out of 100 tries [59]. However the ALC in [20] cannot solve the sub-

problems in parallel. For this problem, the centralized ALC in [24] is adopted and 
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compared to the method proposed in this chapter. Both methods use the structure shown 

in Figure 7.8. 

20 tests are performed for the two methods, starting from random points between 

the lower bounds and upper bounds of the design variables. The objective errors of these 

test results are collected in Figure 7.9. The convergence tolerance ε is set to 1e-3 for both 

the centralized ALC and the proposed method. For the proposed method, the initial ρ is 1 

and β is 0.96. For the centralized ALC, a large initial w such as 1 or 0.1 does not work 

and always causes the optimization to converge prematurely, so the initial w is set to 0.01 

and the update parameters are set as β = 1.05 and ϒ = 0.9. All initial Lagrangian 

multipliers are set to 0. The AIO optimal objective value is 0.1661, which is used as the 

global optimal objective value to calibrate the objective error for decomposition-based 

optimization. 

For the centralized ALC, the objective errors for the 20 tests in Figure 7.9 range 

from 0.53% to 9.95% with an average value of 3.5%. While for the proposed method, all 

20 tests in Figure 7.9 reach the same objective value, 0.1660, with the objective error as 

low as 0.1%, which means that the proposed method has greatly improved the solution 

accuracy and has high robustness. On the efficiency side, the average number of function 

evaluations of the proposed method is 181,421 while that number for the centralized ALC 

is 368,028.  

In summary, for this multi-modal engineering problem, starting from random 

design variables, the proposed method consumes only half of the computational resources 

of the centralized ALC while it reaches a much better solution than the centralized ALC 
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does.  Also, the results of the centralized ALC vary a lot as the starting points change 

while the proposed method can consistently reach an accurate solution practically 

independently of the starting point.  

The numerical tests in this study have shown the high efficiency and accuracy of 

the proposed method over the centralized ALC. These advantages might stem from the 

major fact that the proposed method creates one less set of copies of all shared variables 

than the centralized ALC, which makes it easier for the algorithm to coordinate and reach 

a consistent solution. While in the proposed method copies of dual multipliers are 

introduced, these copies do not necessarily need to be equal to each other for the 

algorithm to generate the optimal solution for the original problem. For example, the 

portal frame design problem originally has 24 shared variables. In the proposed method, 

24 duplicated shared variables are introduced and thus 24 primal consistency constraints 

are added to the decomposition formulation. In the centralized ALC, the number of 

duplicated shared variables is 48 because each original shared variable requires two 

copies. As a result, the number of primal consistency constraint increases to 48. The 

convergence criterion for both methods is the closeness of the primal consistency error to 

zero, and it is apparently much easier to satisfy this condition with 24 rather than 48 

primal consistency constraints. 
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Figure 7.9: The objective errors of ALC-ADMM and the proposed method for 20 tests of 

the portal frame problem  

 

7.4 Summary 

A new parallel coordination method for decomposition-based optimization is 

proposed in this chapter. Instead of applying ADMM directly to the primal problem, the 

ordinary duality theorem is first employed to generate an ordinary dual problem, and then 

ADMM is applied to the dual problem. The resulting formulation is the dual problem of 

the dual problem, in which all sub-problems are independent from each other and thus 

can be solved in parallel. The mathematical derivations of the method are presented in the 

chapter along with its final computation procedures.  

One mathematical and one engineering example are used to test the proposed 

method and the results are compared to those of another popular parallel coordination 

method: the centralized ALC. The results show that for the mathematical problem, the 

proposed method consumes less function evaluations than the centralized ALC does 



 137 

while reaching the same objective accuracy. For the complex multi-modal structural 

optimization problem, the proposed method is more accurate (with an average objective 

error as 0.1% compared to 3.5% for the centralized ALC), efficient (needs only half of 

the number of function evaluations of the centralized ALC), and robust (consistently 

reaches the same accurate solution while the solutions of the centralized ALC vary when 

starting from random initial points).  
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Chapter 8  

 

Decomposition based optimization is a subject relevant to both mathematical 

programming and engineering optimal design. The motivation of the subject comes from 

engineering as the optimal design task of modern products is impossible and undesirable 

to be carried out by one single person or even one design team. The modeling and 

coordination of decomposed sub-problems rely heavily on mathematical theories of 

nonlinear programming. In decomposition based optimization, the engineering design 

tasks are represented as optimization problems with explicit objectives and constraints. 

The original design problem before decomposition is referred to as the All-in-One (AIO) 

problem, and the partitioned smaller problems are called sub-problems. The couplings 

between sub-problems are treated as linking variables, and the decoupling process of 

these sub-problems are realized by introducing copies of the linking variables and 

relaxing the newly added equality consistency constraints. 

8.1 Contributions 

Novel application of existing mathematical theorems and proposal of new 

theorems have always been the driving force for decomposition based optimization 

methods. One typical example is the evolutionary course from ATC to ALC, which was 

Concluding Remarks 
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achieved by switching from quadratic penalty relaxation method to augmented 

Lagrangian relaxation method. Another example is the huge computational cost reduction 

attained by ALC-ADMOM when the ADMM duality theorem is employed to replace the 

block coordinate descent method in ALC-ENMOM. Therefore, this research first tries to 

advance decomposition based optimization from the mathematical perspective and 

achieves the following contributions: 

 For the ALC method, the KKT necessary optimality conditions are applied to the 

formulations of AIO and the decomposed problems, the terms “primal residual” 

and “dual residual” are introduced into ALC, and a new update strategy 

considering both residuals and thus guaranteeing the unmet optimality condition 

in the traditional update is introduced. Numerical tests show a decrease in the 

number of iterations and significant improvements in solution accuracy with both 

calculated and fine-tuned initial weights using the new update. Additionally, the 

proposed approach is capable to start from a wide range of possible weights and 

achieve optimality, and therefore brings robustness to ALC.  

 Based on the alternating direction method of multipliers (ADMM), a new parallel 

coordination method with high efficiency is proposed. Instead of applying 

ADMM directly to the primal problem, the ordinary duality theorem is first 

employed to generate an ordinary dual problem, and then the ADMM is applied to 

the dual problem. The resulting formulation is the dual problem of the dual 

problem, in which all sub-problems are independent from each other thus can be 

solved in parallel. Numerical tests are conducted on both mathematical and 
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engineering problems and the results show an increase in efficiency and accuracy 

for the new method when compared to the centralized ALC, which is one of the 

most popular parallel coordination methods. Additionally, this increase in 

performance is consistently displayed by the new method when solving a 

multimodal structural optimization problem repeatedly starting from different 

random initial designs, while the centralized ALC fails to show similar robustness. 

The motivation of the development of decomposition based optimization is to 

solve engineering problems. The second part of the contributions of this research is 

accomplished from the engineering perspective and is related to the implementation of 

decomposition based optimization methods. 

 By exploring the flexibility of decomposition of the micro-accelerometer 

benchmark problem, two kinds of hybrid network decompositions are proposed. 

One is adding a new discipline to a component-decomposed problem; the other 

one is adding a new component to a discipline-decomposed problem. CADMM is 

employed to solve these two decompositions. Numerical experiments show that 

the optimization results of CADMM are very close to the reference optimal 

solution (with an error less than 3%). This demonstrates that CADMM is able to 

deal with the hybrid network decomposition problem and supports component-

discipline decomposition and sub-system optimization to solve the overall 

problem.  

 For a fully coupled network-decomposed problem, several alternative ALC 

structures are proposed and discussed. Both mathematical and engineering test 



 141 

problems are used to experimentally explore the performance of different solving 

structures. The results show that under the same partition and using the same 

coordination method - ALC, the performance of the decomposition-based 

optimization may be largely different in terms of efficiency, accuracy and 

computational resource cost. The results highlight the importance of choosing an 

optimal solving structure in the implementation of ALC. Several suggestions for 

guidelines on the selection of an optimal solving structure selection are proposed. 

While this study is conducted using ALC, the findings are potentially applicable 

to other NTC methods based on duality theorems. 

8.2 Future Research 

In this dissertation, the proposed dual residual and the new weight update 

significantly increase the accuracy and robustness of ALC. The new coordination method 

based on two duality theorems enables the parallel computation of sub-problems, which   

increases the efficiency of decomposition based optimization. In the future, more studies 

need to be conducted to improve these theories and methods. 

 The applicability of the proposed theory on dual residual to a broader 

category of problems beyond quasi-separable problems (such as problems 

with system- wide constraints) needs to be studied. Also, it is worth 

investigating whether this theory can improve the consensus optimization 

method which also employs the augmented Lagrangian relaxation to 

coordinate decomposed sub-problems.  
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 For the new flexible weight update, it is necessary to study the reasons of 

the oscillations in the objective error, dual residual, and primal residual, as 

these oscillations consume more than half of the overall iterations in 

several cases. The effects of the update parameters (μ and τ) on the 

performance of the proposed methods need to be explored. 

 For the new parallel coordination method, more numerical tests need to be 

conducted to compare the proposed method with other parallel 

coordination methods. It is also worthwhile to investigate how the penalty 

weight ρ affects the optimization process, and come up with an improved 

update scheme for ρ. 

 For the practical application of the proposed research, more large scale, 

realistic, complex models for engineering design optimization problems 

need to be developed to test the proposed methods.  
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