
Clemson University
TigerPrints

All Theses Theses

8-2010

CREATING TOUCHPANEL GRAPHICS FOR
CONTROL SYSTEMS
Lucas McDaniel
Clemson University, lucasmcd@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
McDaniel, Lucas, "CREATING TOUCHPANEL GRAPHICS FOR CONTROL SYSTEMS" (2010). All Theses. 968.
https://tigerprints.clemson.edu/all_theses/968

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Clemson University: TigerPrints

https://core.ac.uk/display/268652408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/968?utm_source=tigerprints.clemson.edu%2Fall_theses%2F968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 

 

 

 

 

    CREATING TOUCHSCREEN GRAPHICS FOR CONTROL SYSTEMS 

 

 

A Thesis 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Fine Arts 

Digital Production Arts  

 

 

by 

Lucas Ramsay McDaniel 

August 2010 

 

 

Accepted by: 

Dr. Timothy A. Davis, Committee Chair 

Mr. Tony Penna 

Dr. Bruce Whisler 



 ii 

ABSTRACT 

 

 

More often than system designers would like to admit, a discrepancy lies between 

the implementation of audiovisual control systems and their apparent ease of use to a 

novice or casual user.  System designers and programmers are often hampered by the 

software tools provided by industry manufacturers and cannot reliably create desirable 

graphical interfaces that match the level of systems they are asked to program and install.   

Popular consumer trends in portable touchscreen devices, pioneered on devices 

such as the Apple iPhone, light a way forward into a new era of elegantly solving the 

audiovisual control system graphical user interface problem.  Since expensive specialized 

hardware can be replaced by readily available consumer devices and a wide variety of 

tools exists with which to create content, possible alternatives to the current methods of 

designing the graphical user interface for the audiovisual system are ripe for discovery.  

Using the latest release of Autodesk Maya 2011, with features such as Python and 

Pymel, we have developed scripts to generate graphical user interface content for use 

with audiovisual control systems hardware.  Also explored is the potential for a 

standalone development environment such that audiovisual designers and programmers 

are not required to operate Maya or adjust scripts to generate content.  Given this new 

level of control over the graphical user interface, coupled with the flexibility of the 

control system central processor programming, a truly powerful, intuitive, and 

groundbreaking control interface can finally be realized. 



 iii 

TABLE OF CONTENTS 

 

 

Page   

 

TITLE PAGE .................................................................................................................... i 

 

ABSTRACT ..................................................................................................................... ii 

 

LIST OF FIGURES ......................................................................................................... v 

 

CHAPTER 

 

 I. INTRODUCTION ......................................................................................... 1 

 

   1.1 The Advent of an Interoperable Touchscreen .................................... 1 

   1.2 Graphics Design Tools and Pipeline .................................................. 3 

 

 II. BACKGROUND ........................................................................................... 7 

 

   2.1 Technological Trends......................................................................... 7 

   2.2 Industrial Control Systems ................................................................. 9 

   2.3 Commercial Control Systems .......................................................... 12 

   2.4 Residential Control Systems ............................................................ 16 

   2.5 Control Systems Manufacturers ....................................................... 18 

   2.6 Advances in Touchscreen Technology ............................................ 20 

   2.7 Graphical User Interface Development ........................................... 22 

 

 III. IMPLEMENTATION .................................................................................. 26 

 

   3.1 Building an Integrated Development Environment ......................... 26 

   3.2 Prototype Development ................................................................... 28 

   3.3 Conceptual Refinement .................................................................... 29 

 

 IV. RESULTS .................................................................................................... 31 

 

   4.1 Standard Approaches ....................................................................... 31 

   4.2 Python Scripting............................................................................... 33 

   4.3 Python API Scripting ....................................................................... 35 

   4.4 Pymel GUI Window Scripting ......................................................... 37 

   4.5 Python Expressions .......................................................................... 39 

 

 



 iv 

 

Table of Contents (Continued) 

 

Page   

 

 

 V. CONCLUSION AND FUTURE WORK .................................................... 40 

 

REFERENCES .............................................................................................................. 44 



 v 

LIST OF FIGURES 

 

 

Figure                                                                                                                             Page   

 

 2.1 Left: Electrical Relay Bank, and Right: PAC with Ethernet 

   and Serial Ports ...................................................................................... 10 

 

 2.2 Linear Negative Feedback Loop .................................................................. 10 

 

 2.3 Block Diagram of PID Controller ................................................................ 11 

 

 2.4 Block Diagram of Building Automation System ......................................... 13 

 

 2.5 Left: Connected Real Estate with Automated Lighting,  

   and Right: Lighting System Interconnection Diagram .......................... 15 

 

 2.6 Automated Home Theater GUI Example .................................................... 17 

 

 2.7 General Setup of Left: FTIR System, and Right: DI system ....................... 20 

 

 2.8 Left: IR Camera Image, and Right: Image Data Extracted .......................... 21 

 

 2.9 Example Implementation of Microsoft’s Touch .......................................... 21 

 

       2.10 (a) AI Planning Flow Chart, and (b) Example  

   Implementation ...................................................................................... 24 

 

 3.1 A Screenshot of the Project Workspace in the Eclipse IDE ........................ 27 

 

 3.2 Dashboard for Controls Template ................................................................ 29 

 

 4.1 Apple iPad With CommandFusion Design .................................................. 32 

 

 4.2 Apple iPhone With CommandFusion Design .............................................. 32 

 

 4.3 VT-ProE Style Design, and Right: TPD4 Style Design .............................. 32 

 

 4.4 Creating a Source Selection Wheel.............................................................. 33 

 

 4.5 A Python Script-Generated Shader Network ............................................... 34 

 

 4.6 Custom Node Attribute Fields ..................................................................... 34 

 



 vi 

List of Figures (Continued) 

 

Figure                                                                                                                             Page   

 

 4.7 scaler.py Maya Node Script (Part 1) ............................................................ 35 

 

 4.8 scaler.py Maya Node Script (Part 2) ............................................................ 36 

 

 4.9 Sound Wave Maker GUI ............................................................................. 38 

 



 

CHAPTER ONE 

 

INTRODUCTION 

 

 

The Advent of an Interoperable Touchscreen 

Control systems brought to market by worldwide leaders AMX and Crestron 

[HLC01] have dominated the professional audiovisual, broadcast, presentation, video-

teleconferencing, and film industries for nearly thirty years.  As early adopters of 

touchscreen technology, these two companies have strived to develop hardware and 

software that make complicated electronic systems more manageable and easier to use.  

As computer technology has evolved, we now see such technology affordable by a much 

broader portion of consumers in the United States and across the world. 

In present day 2010, Apple Inc. has brought a series of products to market 

providing an elegant and affordable way to expand and improve on this two decade old 

concept of tightly integrated remote control, paving the way for newly developed 

applications to offer alternative and possibly groundbreaking approaches to the design 

and programming of control systems.  Previously, the programmer had no choice but to 

rely on the in-house graphics development software developed by control systems 

manufacturers.  Though not much more than Microsoft Paint [wiki01], they were the only 

way to develop and upload the graphical content for the touchscreens.  Such programs, it 

should be noted, were also exclusive to their product lines.  This situation prevented 

cross-platform support of the developer’s interface files, and it has remained that way 

through the years to discourage the use of the competing product. 



 2 

The fact that Apple has presented a situation that has forced compatibility in the 

audiovisual industry is not without a certain amount of irony, seeing as how they are 

often criticized for exerting too much control over their hardware and software products.  

It should be noted, however, that similar to what the personal computer did to computing 

in the 1990s, little known applications of technology have suddenly become much more 

viable in the current consumer market.  Could such easily obtainable and popular 

products actually cause interoperability between competing hardware manufacturers 

AMX [amx02] and Crestron in the years to come [rave01]?  Given the direction 

technology is heading, it appears as if this is one of the resulting eventualities [nsca01].  

Suffice to say that such camps have been entrenched for a number of years and 

have developed software tools that still get the work done day in and day out, and many 

designers will continue using those tools for years to come.  However, presented before 

us now is an entirely new area of graphics design that has a great deal of potential for 

growth, particularly among more technologically savvy consumers as they rise in 

numbers, age, and affluence.  This research is preparation for what could potentially be 

demanded:  an independent group of control systems graphics tools for independent 

programmers that serve not only the market giants, but many other smaller or more 

specialized niche brands of hardware products available on the market.  



 3 

Graphics Design Tools and Pipeline 

Concepts 

In subsequent chapters it will be argued that the time spent on implementing 

content for particular brands’ platforms should be replaced with time spent utilizing the 

incredibly powerful graphics tools available today.   Furthermore, content should be 

designed in an interoperable fashion such that many control system user interfaces can be 

generated from a central repository of graphics material.  Not only would this allow for 

interoperability, but would also aid in the support of new products and other emerging 

markets by supporting a larger base of hardware with a minimum of implementation time 

[MLC01].  With the demand of such hardware and software growing every day, this area 

could very well be worth exploring, quite possibly for more than purely intellectual 

pursuits. 

For interoperability and a central repository system to function, one-off and 

piecemeal graphical development, at least in the sense that the industry knows it now, 

would be a methodology that would need revamping.  The core of our study on the topic 

will rely on relatively simple graphical concepts like icons, text, submenus, short 

animation cycles, etc.  Such attributes are well suited for initial proof-of-concept, bearing 

in mind that the goal of this work is to focus on original concepts without concern over 

providing fully operational systems.  Given all of these factors, the method most useful 

for an undertaking of this sort appears to be centered on creating individual scripts to 

ultimately function as a set of design tools. 



 4 

The proposed tools would be specially tailored for audiovisual control system 

graphical user interface requirements, and in a later version, would be accessed by a 

standalone program that would be used to add and edit existing assets to formulate 

content for the control system.  Though the assets themselves may not vary much from 

project to project, the precise configurations thereof almost always do, and such a 

program would be quite useful, particularly if it provided a way to reduce the amount of 

re-entering of text data so typical in the system design, documentation, and programming 

process.  Examples of possible tools might include those which create and modify 

geometry, materials, and animated sequences, as well as provide a way to view, frame, 

and render the sequences while performing basic file I/O.   

Implementing a system to work flawlessly and with which the software has the 

capability of making more robust use of positional data (example: multi-touch gestures 

for translation, pan, and zoom, as well as accelerometer and compass data for rotation 

and azimuth) from the hardware device is not entirely out of reach, but it is out of scope 

of the work presented.  Such a prototype would be an important step to a more 

immersive, higher level 3D environment, and represents an important future goal of this 

project should it produce favorable results. 

 

Implementation 

With the inclusion of Maya’s python platform, Mayapy, and the recent addition of 

Pymel, scripts will be developed to generate graphical user interface files for use with 

audiovisual control systems hardware.  In addition, groundwork will be laid so that with 



 5 

further Python scripting, a fledgling standalone development environment can be 

deployed.  Such an addition would expand the usability of the tool set beyond the 

developer to other audiovisual designers and programmers with little to no skills in these 

areas.  The result of this work in the standalone application would generate a script that 

can be run on any installation of Maya 2011 or later, which would process the script’s 

instructions and create the graphics for use in a GUI designer program.  Later revisions of 

this application could attempt to replace the use of third-party GUI designers altogether, 

with output plugins for common control system formats developed and included along 

the way. 

Once the appropriate tie-in, or “hook” assignments, have been made with the 

control system’s run-time code, a standard procedure in the developmental phase, the 

graphics created can be run on a multi-touch platform such as the Apple iPad.  Given the 

control systems programmer’s central processor code and the feedback to/from the newly 

developed custom graphical user interface design files, a truly powerful and intuitive 

custom control interface can finally be realized.  

 

Results 

The technical achievements of this research will focus on the mechanics, 

supporting code, and development environment necessary to allow primitive models, 

textures, lighting, and camera arrangements to behave in a framework built with the 

express intent of developing 3D graphic sequences for user interface elements.  The 

artistic achievements will focus on updating and granting greater flexibility during the 



 6 

design phase of software development for a control system programmer, while 

simultaneously enhancing human interaction and providing a more intuitive look, feel, 

and curb appeal to the controls of an audiovisual control system.  Furthermore, the work 

will be supported by comparison with the standard approaches:  (1) low-level design 

within the proprietary software applications provided by the hardware manufacturer, and 

(2) high-level design by method of a third party implementation using standard 2D 

graphics methods.  

Results, including script snippets, screenshots, rendered stills, animated 

sequences, and their limitations will also be included.  Python, once feared and unknown, 

was found to be both wieldable and powerful in both the Maya script editor, expression 

editor, and open source integrated development environment (IDE).  Finally, for 

accomplishments, setting up all the dependencies, compilers, interpreters, and syntax 

highlighters for use with an external IDE proved to be an accomplishment in its own 

right. 



 7 

CHAPTER TWO 

 

BACKGROUND 

 

 

Background information will first be provided on control systems in general and 

then coupled with automation concepts to show how it applies to the industrial, 

commercial, and residential market sectors.  Before doing so it is also important to take a 

look ahead, as it appears that some very large changes in this area are coming, some of 

which might bolster the stance of high quality graphics design for use with user 

interfaces. 

 

2.1: Technological Trends 

AV/IT Convergence 

One way to get a glimpse of what is to come by taking a look at recent 

acquisitions by one of the largest technology corporations in existence, Cisco systems: 

Exerpts from: List of Acquisitions [cisc03]: 

Scientific-Atlanta, Inc. - November 18, 2005: …a leading global provider of set-

top boxes, end-to-end video distribution networks and video system integration…  

SyPixx Networks, Inc. - March 7, 2006: …This acquisition will enable Cisco to 

deliver video surveillance as part of an Intelligent Converged Environment.  

Arroyo Video Solutions, Inc. - August 21, 2006: ...network delivered 

entertainment … across the growing portfolio of televisions, personal computers, 

mobile handsets, and emerging media capable devices in our increasingly 

connected lives.  



 8 

Tivella, Inc. - December 15, 2006: …provider of digital signage software and 

systems. Digital signage is an emerging technology that has the potential to 

transform the customer experience and to promote richer communications… 

BroadWare Technologies, Inc. - May 21, 2007: …provides a smooth migration 

path from analog surveillance video to a digital network solution.  

DiviTech A/S - June 10, 2008: …Cisco plans to … create an end-to-end platform 

that offers all layers of digital video management (element, network and service) 

in a single modular product.  

Pure Networks, Inc. - July 23, 2008: … foundation for the development of new 

applications, tools and capabilities for consumers to use in an increasingly 

"connected life" at home, at work and on the go.  

Richards-Zeta Building Intelligence, Inc. - January 27, 2009: …intelligent 

middleware technology that enables businesses to integrate building infrastructure 

… improved efficiencies, greater energy savings and a reduced carbon footprint.  

Pure Digital Technologies Inc. - March 19, 2009: …key to Cisco's strategy to 

expand our momentum in the media-enabled home and to capture the consumer 

market transition to visual networking. 

Tandberg - October 1, 2009: …a global leader in video communications, 

including a broad range of world-class video endpoint and network infrastructure 

solutions with intercompany and multi-vendor interoperability. 

Starent Networks, Corp. - October 13, 2009: … a leading supplier of IP-based 

mobile infrastructure solutions targeting mobile and converged carriers … as 



 9 

global mobile data traffic is expected to more than double every year through 

2013… 

Set-Top Box Business of DVN (Holdings) Ltd. - November 2, 2009: …shares 

Cisco’s vision of a high-performance, scalable and services-rich cable interactive 

platform extending into every home.  

MOTO Development Group, Inc. - May 18, 2010: …develops products and 

product strategies for the consumer industry… 

CoreOptics Inc. - May 20, 2010: … will enable Cisco to equip service provider 

customers with highly advanced 100 Gigabits per second (Gbps) transmission 

technology… 

The companies listed above comprise over a third of Cisco’s acquisitions over the 

last five years, and over two-thirds of acquisitions in the last three.  As audiovisual 

technology converges with information technology and information technology 

converges with the management of building systems, graphical user interfaces will 

become more important to realize the resultant functionality of their interconnection. 

 

2.2: Industrial Control Systems 

A control system is defined as “a device or set of devices to manage, command, 

direct, or regulate the behavior of other devices or systems” [wiki03].  There are many 

types of control systems, most commonly derived from the mechanical and electrical 

engineering fields, though currently most of the control techniques themselves are 

implemented through computers. Logic control systems are Boolean by nature, and were 



 10 

first elaborate electrical relay banks.   They were replaced by the programmable logic 

controller (PLC) [wiki05] and the programmable automation controller (PAC) [wiki06], 

which are much more rugged, immune to electrical noise, and built to operate in 

extensive temperature ranges (Fig. 2.1).  

                            

Figure 2.1: Left: Electrical Relay Bank, and Right: PAC with Ethernet and Serial 

Ports [wiki03] [wiki06] 

Another simple control system is the linear negative feedback loop.  Such devices 

use “linear negative feedback to produce control based on other variables with the goal of 

keeping process within a particular range” [wiki07] (Fig 2.2).  A common example of this 

technique is an automobile’s cruise control. 

 

Figure 2.2: Linear Negative Feedback Loop [wiki07] 

One general category of control systems is the open-loop control system.  Open-

loop control systems do not directly make use of feedback, where the process of control 

is sequenced or prearranged. An alternative to this is the closed-loop method.  Closed-



 11 

loop control systems use feedback in order to regulate certain set values.   Such systems 

are of particular relevance to audiovisual control systems designers and programmers, 

and would make optimal use of the techniques developed in the results section below.   

Another important aspect to control systems originates from a field called control 

theory.  Control theory is “an interdisciplinary branch of engineering and mathematics 

that deals with the behavior of dynamical systems” [wiki07]. Classical control theory 

deals with single input, single output time domain differential equations, with the most 

common controller of this type being a proportional-integral-derivative (PID) controller 

[wiki09] (Fig 2.3).  Though most often set up and managed beforehand by means of 

mathematical calculations, research is currently ongoing in applying graphical user 

interface technology to the technique [MMM01].  

 

Figure 2.3: Block Diagram of PID Controller [wiki03] 

What has become categorized as modern control theory uses multiple input and 

multiple output first-order differential equations defined using state variables, one of the 

sets of variables that describe the state of a dynamical system.  Intuitively, “the state of a 

system describes enough about the system to determine its future behavior” [wiki08]. An 

example of modern control theory is the modern-day jet fighter aircraft.  The practice of 

implementing such concepts is called control engineering, or “the discipline that applies 



 12 

control theory to design systems with predictable behaviors” [wiki04].  It should be noted 

that modern control theory and control engineering as used in “satellites, spacecraft, 

automobiles, chemical processing plants, and manufacturing rely heavily on the software 

that is used to implement them” [HWV01].  Heck continues by quoting Boeing and 

Honeywell engineers who claim that the ratio of software development and control 

system design is as much as 5:1 [HWV01].  It is because industrial systems are so often 

designed and built in-house, third-party graphic user interface design is least likely to 

least be applied here. 

 

2.3: Commercial Control Systems 

The following section is a bit more in depth in order to give the reader an idea of 

the functionality that could be potentially managed by screens developed from the work 

presented in later chapters.  Discussion of commercial audio and video systems, found 

extensively in this market, will instead be discussed in later sections so focus can be 

brought upon larger elements coalescing in this sector of the economy.   

Functionality provided by a “computerized, intelligent network of electronic 

devices, designed to monitor and control the mechanical and lighting systems” [wiki11]. 

in a building is called a Building Automation System (BAS).  As a type of distributed 

control system, a building automation system reduces building energy and maintenance 

costs.  Building Management System (BMS) [wiki10] is a term coined in the 1970s for 

categorization of complex electronic devices developed for the purposes of managing 

critical building services by means of reliable RS-485 low voltage control networks tied 



 13 

to one or more building automation systems.  The responsibility of the BMS is to control, 

monitor, and optimize the mechanical, electrical, and plumbing equipment for comfort, 

safety and efficiency (Fig 2.4). 

 

Figure 2.4: Block Diagram of Building Automation System 

Recent developments by Cisco Systems and Johnson Controls now provide a way 

to transmit this data over a typical IT network. With risk managers free of looming 

concerns like security and critical functionality during network outages, the market is 

accelerating quickly towards a converged model comprised of integrated networks.  As 

such, Cisco Systems has introduced a term of their own for a top level categorization of 

BMS called Connected Real Estate (CRE) [cisc02].  In addition to the functions of a 

BMS, CRE aims to include “IP telephony, unified communications, data center 

managements, physical security, digital signage, and many more specialized 

applications” [MCP01]. 



 14 

The data gathered to verify efficiency claims relies on a sophisticated graphic user 

interface design as noted in [CM01].  This is but one benefit of designing appropriate 

graphical user interfaces for this environment.  Since a BMS can represent over two-

thirds of the buildings energy usage, proper configuration of such a system is paramount.  

Conversely, it is thought that as much as a fifth of the total building energy cost can be 

attributed to the building management system if not properly configured.  If this figure is 

accurate, this could account for as much as 8% of total energy usage in the United States, 

which is why the most important prerequisite for achieving Green Building status is its 

efficient functional integration of a BMS.  According to requirements of LEED and other 

Green Building initiatives, such integration will also create better air quality and water 

efficiency, not to mention less maintenance required due to the lower life cycle costs of 

building equipment [loni01]. 

Furthermore, larger enterprise-level companies may further reduce labor and 

maintenance costs by the assignment of a single staff to monitor and optimize several 

BMSs from one remote operations center [loni01].  Here dynamic graphical user 

interfaces are essential, and it is not unusual that one or more are required.  Among the 

many important items to monitor are the electric power distribution and energy 

consumption, alarms and faults, magnetic card and access, security and observations, 

burglar and fire, and lifts and elevator systems.   

In order to achieve the energy savings above, building lighting must be included.  

With occupancy sensors, outdoor photo-sensors, and dimming, cost savings can easily 

top 50% while extending the life of the bulb, and reducing landfill waste [dain01] (Fig 



 15 

2.5).  Building automation systems further reduce energy costs by controlling when air 

handlers use chilled or heated water and optimize the mix between return and outside 

   

Figure 2.5: Left: Connected Real Estate with Automated Lighting, and Right: Lighting 

System Interconnection Diagram [dain01] 

 

air for maximum efficiency.  Data is also received from the heating, ventilation, and air-

conditioning, trace heat, and plumbing system. 

Connected Real Estate can also help prevent catastrophic events by means of 

alarms and notification capabilities.  When an alarm is detected, it can notify personnel 

through an audible alarm and the graphical user interface.  Commonly monitored devices 

include temperature gauges, refrigerant levels, pumps, actuators, and valves, along with 

ways to monitor carbon monoxide, carbon dioxide, relative humidity and other gases.  

Often, as in a brief power outage, buildings of this complexity may chalk up a few 

hundred alarms almost instantly.  A well-programmed graphical user interface program 

would not only treat them in hierarchical fashion, but would also cascade the alerts by 

retriggering those that still need tending so all alarms can be adequately managed. 

Building automation systems are often also used to augment building access 

control, security, and life safety.  In the case of access control, turnstiles and access 



 16 

doors, as well as other security subsystems such as closed-circuit television (CCTV), a 

BAS can provide several additional data points on which to operate.  Fire alarm systems 

can be designed to override the building automation system and initialize an emergency 

related program to minimize further outbreak.  As of this writing, Cisco, AMX, and 

Crestron are introducing products that would allow the life safety system to override the 

digital signage content in a building and thus assist in mass notification in this case or for 

some other disturbance [schn01]. 

 

2.4: Residential Control Systems 

Home automation [wiki12] can be quite similar to commercial building 

management systems, though on a reduced scale in size and critical function.  In fact, 

[loni01] mentions graphical user interface requirements for home automation in mostly 

the same terms as they do for the BMS they specify.  Incidentally, this market would be 

most likely be the first adopters of the immediate results of the work presented here, and 

that fact will be reflected in the prototypes presented in subsequent chapters. 

It is becoming increasingly more common, particularly among new home 

construction, to pre-wire it as if it is to become a smart home [smar01], as much of the 

automation system in a retrofit environment is often using wireless or mesh technology, 

which is considerably more expensive to implement.  Interior design, particularly those 

designed for upscale urban settings, now find it a requirement to include home 

automation options in their client designs, due to demand and global trends [java01]. 



 17 

Control options in the home automation market that are not present in CRE could 

include changing the color of lighting by means of LED fixtures, or involve the 

additional control of natural lighting, such as window draperies, standard shades, LCD 

shades, and awnings.  Other popular features include audiovisual switching and 

distribution for multi-zone audio and video, integrated intercom, simulation of presence, 

medical alert, and also assistance to daily living, as explored in [VDC01]. 

Other perhaps more novel or eccentric automation (Fig 2.6) is also found here 

such as houseplant watering, pet feeding and watering, presets for entertaining guests, 

and the use of domestic robots.  Using special hardware, almost any device can be 

  

Figure 2.6: Automated Home Theater GUI Example [guif01] 

monitored and controlled, such as coffee pots, garage doors, pool and spa amenities, and 

inventory monitoring via RFID. 



 18 

2.5: Control Systems Hardware Manufacturers 

AMX 

The famous Apple origination story starts out in a garage.  AMX, not to be 

outdone, started out in a garage…with a garage door controller.  Since AMX was the first 

of its kind, so was the integrated control system industry born. 

AMX designs and manufactures hardware and software used for room automation 

in boardrooms, auditoriums, teleconferencing systems, museums, and home theaters, as 

well as the set of “The Matrix,” or wherever users desire touchscreens and traditional 

remotes to control a complex system of devices easily and intuitively. “Other common 

uses include entertainment systems, industrial command and control centers, security 

systems, hotels and restaurants” [wiki13]. 

AMX has developed a complete line of software tools for programming their 

products.  Most notable is Netlinx Studio, which is set up as an IDE exclusively for 

configuring and programming for either the legacy Axcess system, or the next generation 

Netlinx systems. A separate application, Touch Panel Design 4, allows the design of 

touch panel interfaces.  

“Programming an AMX control system,…involves a rare combination of 

skills in computer science, programming, user interface design, control 

systems programming, event-driven programming, audio visual systems 

technology, customer management, scope management and project 

management” [wiki13]. 



 19 

Crestron 

 Crestron Electronics creates similar hardware and software, but implements both 

in substantially different ways when compared to AMX.  Over the years, however, 

Crestron has become the de facto industry leader, although certain sectors such as 

government and military are still almost exclusively AMX. 

Crestron allocates a significant portion of annual revenues for product research 

and development, which has allowed them a more diverse line of products and in some 

cases lower cost offerings.  They also have successfully entered other vertical markets 

while their competition has not.  Such success has allowed Crestron to bring over 1000 

integrated products to market including media servers and distribution, signal processing, 

control systems, lighting, climate and shade control, touchpanels, keypads, and handheld 

remotes [wiki14].  Although AMX is known to be ranked as the best place to work in the 

US, Crestron now employs three to four times more employees. 

Not unlike the Cisco/Johnson Controls strategic partnering mentioned earlier, 

Crestron has reached out to many audiovisual component manufacturers to facilitate 

integration with their equipment.  The Crestron Integrated Partner Program [cres05] is a 

coalition of more than 400 manufacturers that are committed to deliver seamless 

integrated solutions with Crestron products. These programs help promote market 

development, and support Crestron resellers by proxy. 



 20 

2.6: Advances In Touchscreen Technology 

Touchscreen technology has been available since the late 1970s, but generally has 

been confined to processing a single touch at a time.  Until recently, this technology also 

required production facilities to make the special materials used in their construction.  

Differing types of touch surfaces may use resistance, capacitance, or surface acoustic 

wave touch surface technology.  When implemented with these materials, the touch 

surface is generally restricted to small surface areas. 

Recently, a new low cost alternative was demonstrated that not only was much 

cheaper to construct, but also could process multiple touches at a time and act 

accordingly.  In addition, these devices do not require industrial fabrication facilities like 

their predecessors and could be used in much larger scales.  These new systems rely on 

infrared optics, and inspired web-savvy tinkerers and seasoned veterans alike [SHMP01].  

Fig. 2.6 shows how these approaches work. 

 

Figure 2.6: General Setup of Left: FTIR System, and Right: DI system [SHMP01] 

Frustrated internal reflection (FTIR) beams infrared light through the touch 

medium.  When pressed, the medium refracts the light, allowing some to escape the 

medium, where it is captured by a camera.  The camera’s image can then be processed to 



 21 

reveal the location on which the surface medium was pressed.  Diffuse Illumination (DI) 

is a similar technique; however, in this method the touch surface acts as a diffusor of 

infrared light shining on the back side of the medium.  When the medium is pressed, that 

area is no longer diffuse, and image processing similar to FTIR allows for the location of 

the touch to be revealed (Fig 2.7).   

   

Figure 2.7: Left: IR Camera Image, and Right: Image Data Extracted [THFS01] 

Current development of consumer products that incorporate this technology are 

Microsoft's Surface, a medium-sized table based on DI, the Apple iPhone, and the Apple 

iPad.  In addition, small to mid-sized LCD multi-touch displays based on capacitive 

sensing are also available from regular hardware vendors, though much more limited in 

the amount of processing that can be done to attain the multi-touch data” [micr01] 

[THFS01]. 

       

Figure 2.8: Example Implementation of Microsoft’s Touch 



 22 

“Research is already ongoing with multi-touch surfaces such as the iPad also 

providing orientation data pertaining to acceleration and rotational attributes, such as 

pitch, roll and yaw” [BCTW01].  One such interaction technique implemented on an 

iPhone/iPod Touch was used for navigation tasks in a CAVE virtual environment. “We 

performed a pilot study to measure the control accuracy and to observe how human 

subjects respond to the interaction technique on the iPhone and iPod Touch devices” 

[KGMQ01].  In the mining industry, mining equipment is surrounded by various sensor 

networks that can provide feedback to the interactive display, allowing use of the 

equipment remotely and safely [BCTW01]. 

 

2.7 Graphical User Interface Development 

Development 

Generally speaking, issues addressed in GUI development usually concern 

perception, memory, learning, and problem solving.  Aesthetics and ergonomics are 

covered only briefly.  Closely held beliefs on the topic often involve such interactive 

systems, requiring a commitment and understanding of the entire process by the 

developer in order to be effective. Building a complete system and then spreading the 

interface over it “like peanut butter” [LRB01] rarely yields useful results. 

Avoiding such a destiny requires the involvement of not only the GUI designer, 

but also programmers, quality control personnel, documentation and training personnel, 

and others [LRB01].  These assertions leveled in [LRB01] appear to be backed up by data 

showing that half of the defects are a problem with the code they are interfacing with, be 



 23 

it data manipulation, sequential processing problems or otherwise.  In addition, as much 

as a one in five chance exists that using the GUI will result in a system crash.  In order to 

avoid such errors, graphical user interface design should involve the entire development 

team as early as possible [BRM01]. 

 

Design 

Early concepts for the results of the work presented here focus on the procedural 

nature of camera movement, and how a 3D animated touchscreen GUI might function.  In 

the early phases of this project, which included the concept of a virtual reality experience 

on an Apple iPad, rendering iterations of every possible camera movement from multiple 

start and end points seemed like an interesting problem to solve.  The related work 

presented below is similar, except that the animated object moves about the scene 

procedurally.  A video of the result of this work can be found at [KL02], and is notable 

for its time.  [KL01] notes that a concept used in artificial intelligence research was 

necessary to mitigate the factors of event-driven animation where operational sequences 

were required.  This allowed the computer to decide exactly how to proceed from the 

initial animation state to the goal animation state. 

A necessary tool for the animated interface designer should keep track of the 

requirements built into each start/goal sequence and verify the integrity thereof.  In the 

conceptual AI planning flow chart (Fig 2.10), this function is performed by the Player 

Animation Controller.  Such a concept is certain to play a factor in the work presented 

here, and has been noted for its usefulness.   



 24 

 

Figure 2.10: (a) AI Planning Flow Chart, and (b) Example Implementation [KL01] 

Another eventuality is the concern with not yet (or partially) executed commands 

sent to the animation controller when a new one is received, and deciding which takes 

precedence.  This was solved only by resolving all possible start states to all goal states as 

expressed in event definitions.  As such, the instruction set behaves much like a state 

machine in the end but retains the flexibility of adjusting, manipulating, and expanding 

the code further at another time. 

The emphasis on event handling as a requirement to break out of static interfaces 

is developed further in work by [JW01] who, while concerned with such issues, is more 

concerned with the notion of flow to generate positive affect.  Flow is defined as “a state 

of concentration, deep enjoyment, and total absorption in an activity” [JW01].  Though 

brought from the study of games to the study of ergonomics, the author argues that such a 

concept can “inform the development of non-leisure software for positive effect” [JW01].  

Another notable concept presented in this work is a specific example in which game 

theory contravenes non-leisure software applications. The author notes that games “often 

provide minimal information to the user, they employ context-dependent commands, and 



 25 

they allow the user to make a variety of errors” [JW01].   That is to say if we can make 

learning by error fun, then we stand more of a chance of success that the customer not 

only uses the GUI we designed, but also stands a better chance to use it more fully.  Other 

work as shown in [GQMC01] seems to bear this out empirically.  

The emphasis on flow and affect as a requirement to break out of static interfaces 

is developed further in work by [CU01] investigating other cognitive benefits to the user.  

As such, work presented in [CU01] seeks not to startle the user with unnatural motion of 

digital absolute or linear state, but to relax and amuse the user with analog motion blur 

techniques and cartoon animation.  Such an approach allows moving objects to move 

more comprehensibly if attention to timing, transient detail, dissolves, and 

anticipatory/contrary motion are made. [CU01] argues that the cognitive burden of 

deciphering the interface can be reduced if flashes and sudden changes are eliminated. 

The author concludes with “the animation doesn’t have to be slow, or distracting, or silly; 

on the contrary, with careful tuning, cartoon animation can turn the user interface into an 

understandable, engaging, and pleasurable experience.” 



 26 

CHAPTER THREE 

 

IMPLEMENTATION 

 

 

3.1 Building an Integrated Development Environment 

The implemented system, though developed primarily as a proof of concept, 

shows promise.  Scripts were generated in MEL, Python, and Pymel, and some examples 

will be shown later in this chapter.  MEL scripting proved most useful for situations that 

required quick processing.  Otherwise, it was more of a hindrance, particularly in 

building UI windows in Maya, which were used to aid in internal development, not for 

end user graphical interfaces.  Fast renders and calculations were not mission-critical for 

the project at hand, but ease of comprehending the code and organizing a large number of 

scripts were. 

Multiple tabs in Maya’s script editor are certainly an improved feature in the later 

releases, although developing scripts in the script editor proved to be somewhat unsafe 

due to concerns over data loss.  An external IDE was therefore required for work at this 

level.  IDLE, Wing, and EditPlus IDEs were considered, but Eclipse was ultimately 

chosen.  As an open source alternative running under the Java environment, Eclipse has a 

modular design that subsumes the power of a myriad of plugins.  It also supports all of 

the major operating systems platforms and has a comfortable workspace (Fig 3.1). 



 27 

 

Figure 3.1: A Screenshot of the Project Workspace in the Eclipse IDE 

Complimentary plugins to the Eclipse IDE include a plugin that talks with 

Mayapy and subsequently the script editor (com.myplugin.eclipseMayaEditor_1.0.0), and 

provides syntax highlighting, for all three available scripting languages.   

Eclipse presents a wide variety of tools useful for script development.  Also 

available are open source repositories and version trackers such as Bazaar, Mercurial, and 



 28 

Git that have plugins available for this IDE, which could prove useful if work expands 

beyond a single developer.  Trac and Redmine are examples of bug-tracking software that 

is freely available for Eclipse, and there are several wiki environments for help 

documentation publishing that are available as well (e.g.,  Moin Moin and Zwiki). 

 

3.2 Prototype Development 

Several early prototypes were developed, and the first expressions were written.  

A lamp for lighting controls and a ceiling fan for climate controls were used with 

primitive GUIs built in Maya to simulate off, warm up, on, cool down, and off states.  

The ability to manage all different sorts of lights, fans, speaker zones, and other assets 

representing other control categories, quickly became a concern.  From a scripting 

perspective, importing them to the proper spatial location within the scene, for example, 

or managing the appropriate assets for control system emulation, brought the focus back 

to learning more powerful ways of performing such tasks with Python.  Pymel was 

tapped for its strengths in Maya GUIs, working with node attributes, and making 

sophisticated lines of code easier to read. With Pymel 1.0.0, now shipped with Maya and 

included in the help documentation, an even more potent scripting language for Maya is 

available for the deployment of the developer UI. 

The help documentation tightly couples Pymel and Python, allowing the 

discovery of many useful concepts, including functions and methods for passing 

arguments between them, and ways to gather data from Maya GUI attributes.  Concepts 

explored in this manner spurred improvements in the way Python scripts were sourced 



 29 

and organized, which allowed code to be used, re-used, and tracked more easily.  

Fortunately, in rewriting the core scripts in this new hierarchy, important overarching 

code development concepts were incorporated such that the initial design could more 

realistically be achieved. 

 

3.3 Conceptual Refinement 

 As these development guidelines were advanced, it became more apparent the 

kinds of questions that should be answered as preliminary steps to achieving the initial 

design concept.  Making an audiovisual GUI fluid and fun to use will test many of the 

necessary parts and provide results thereof. 

 

Figure 3.2: Dashboard for Controls Template [BCFG01] 



 30 

By focusing on concepts of application that are more similar in nature to what is 

currently used as an industry standard, a basis is constructed to provide solid data points 

from which to strive and measure against, though concepts investigated are markedly 

different from current practice and are not without possible limitations. 

Key among such limitations is how many frames per second the multi-touch 

device can handle.  This issue is important in selecting from icon-based menus, and 

simulating browsing through them in a multi-touch fashion by spinning through them 

quickly.  The ideal implementation would incorporate a variable frame rate applied to an 

image sequence such that multi-touch input would feel more interactive.  For example, 

consider a spinning selector wheel.  Allowing for a range in playback speed of 24–72 

frames per second could assist in the feeling of immersion or potentially that of cartoon 

animation.  Another potential problem could be multiple select menus or otherwise 

animated items operating at the same time. 

Though each frame in an image sequence is stored locally on the device, they are 

triggered remotely by the control processor.  Care would need to be taken in how this 

transaction occurred over time and over a wireless connection.  Depending on the panel 

device’s use, there is potential for the need of sending hundreds of events per second in 

order to trigger two or three sets of image frames as they are updated simultaneously. 

 



 31 

CHAPTER FOUR 

RESULTS 

 

 

4.1 Standard Approaches 

Though there are ways to use image sequences in Crestron’s VT-ProE and 

AMX’s TPD4 programs, it is a very cumbersome process.  Thankfully, third party 

offerings allow the GUI designer to sidestep this problem while simultaneously granting 

us more general flexibility in how we tie-in to the control system.  Currently there are no 

known GUI editors that are tailored for what we are striving to accomplish, though a few 

at least support multiple brands.   This is an ideal place to start prototyping, however, in 

order to get the best support possible for a multi-touch device and to get the most out of 

the design.  Another benefit is the ability to test the design on as many platforms as 

possible as early as possible, to avoid any pitfalls during deployment.   

Our results will be tested on an Apple iPad (Fig 4.1) once we are in the 

production phase, due to its larger multi-touch surface and 9.7-inch screen.  Though the 

iPhone (Fig 4.2) or iPod Touch will provide a nice range of product to support in the 

future, for now, proofs of concept are the main focus.  To get a visual idea of what the 

end goal might look like, however, the following few examples present a cross-section of 

what is in use.  First, the most up-to-date are shown in Fig. 4.1 and Fig. 4.2.  Both are 

third-party designs that cost from several hundred to several thousand dollars apiece.  

Low level designs are shown in Fig. 4.3.  These are developed from the GUI design 

software provided by some of the larger hardware manufacturers. 



 32 

 

Fig 4.1 Apple iPad With CommandFusion Design [comm02] 

 

Fig 4.2 Apple iPhone With CommandFusion Design [comm02] 

   

Figure 4.3 Left: VT-ProE Style Design, and Right: TPD4 Style Design [cres01] [amx04] 



 33 

4.2 Python Scripting 

 

Fig. 4.4 Creating a Source Selection Wheel 

 One of the principal ways to implement the selection process on a multi-touch 

screen is to use its ability to track finger movements and turn them into vectors.  By 

dragging a finger across an area of grouped source icons, the user cannot only quickly 

make a selection, but also have persistent vision of others in the group that can be 

selected. 

 The script for this process (Fig. 4.4) makes use of Python’s powerful “os” 

module, whereby we gather information from the system to count the number of sources 

by finding the number of icons in the source selection images folder.  This information is 

passed into our main constructor function along with other useful parameters such as the 

button group radius, the two axes to build them around, and the spread distance between 

the buttons around the perimeter.  Another important Python task is gathering all the 



 34 

names of the icon images and calling them one by one each time a new button is built.  

Using a new shader, projection node, and file input node (Fig. 4.5) for every button 

graphic allows for many interesting effects much later in the design process.   

 

Figure 4.5: A Python Script-Generated Shader Network 

 

Figure 4.6: Custom Node Attribute Fields 



 35 

4.3 Python API Scripting 

Also on display is a custom-built Maya node called “scaler” (Figs. 4.7 and 4.8), 

which was built using the Maya Python API.  Previously, only C++ programmers could 

implement the API to great effect, but Python makes this important facet of Maya much 

more approachable.  In the example above, we take scale data from the geometry’s 

transform node, and feed it into the texture placement node by first routing it through the 

scaler node.  Inside, the data is modified to ensure that the placement node is always the 

correct size, no matter how large or how small the geometry becomes (Fig. 4.6).  Each 

button goes through this entire process, and has been tested to function beyond 275 icons 

in one directory.  This should prove useful when selecting from satellite radio channels, 

hundreds of cable or direc-TV channels, or even from a digital music collection.   

 

Figure 4.7: scaler.py Maya Node Script (Part 1) 



 36 

 

 

Figure 4.8: scaler.py Maya Node Script (Part 2) 



 37 

 Aside from handling a large amount of shader and geometry data in short order, 

the script was written such that part of it can become a GUI, allowing for as many 

differing types of selector wheels to be constructed as needed. 

 

4.4 Pymel GUI Window Scripting 

An example of a Maya GUI for manipulating scripts was created when 

developing environmental elements.  In these scripts, focus was placed on gathering data 

from GUIs, automatically setting keyframe animation, and developing initial shader 

assignment tools.  With commands from the Pymel command set, a window was created 

that allowed a camera view, some shading options, important attribute adjustment fields, 

and a color slider (Fig. 4.9).  When the “Make Waves” button at the bottom of the GUI is 

pressed, integer, float, and vector values are sent to a separate function for processing.  

Once there, the time slider updates and keyframes are set so that the user can search for 

the correct animation length, shape factors over time, and shader color.  At any time, the 

user can select the parented geometry stack from the outliner, delete, and start over.  The 

number of waves in the animation depend on how many times the “Make Waves” button 

is pressed before saving out and closing the file or starting over using the above method. 

 Several scripts work together in order to create this workspace: UI.py, 

soundWaves.py, createShader.py, assignShader.py, keyTransparency.py, and 

newShaderColor.py.  Each takes in values from other functions and work in concert to 

achieve the desired effect. 



 38 

 

  

  

Figure 4.9: Sound Wave Maker GUI 

  



 39 

4.5 Python Expressions 

Finally, expressions play a large role moving forward.  Without them, it would be 

difficult to animate from a scripting approach.  Though MEL may be at its best here by 

keeping the playback and rendering times down, Python can be used in expressions, 

boiling down many lines of code in the expression editor by calling a function.  The two 

expressions that were prototyped for this work are called “spin” and “lag.”  Both will 

play an important role in our selection sets of buttons, as they will determine their 

animation as they get spun around from multi-touch input.  The implementation goes as 

follows:  the initial button created has the “spin” expression on it.  It is put into the 

correct spot, and then the next button is made.  The second button and all subsequent 

buttons follow the first one around by means of the “lag” expression.  At every frame, the 

“spin” expression grabs its x and y coordinates from an array, and the “lag” function 

assumes the previous coordinates from the button ahead in the queue. 



 40 

CHAPTER FIVE 

 

CONCLUSION AND FUTURE WORK 

 

 

In the final calculus, great care was taken to leverage production-level computer 

capabilities to address the needs of the audiovisual industry.  The result was an 

environment in which easy-to-use, intuitive, and entertaining multi-touch graphics 

designs could be developed.  Such an endeavor is more feasible in today’s environment 

given the near ubiquitous nature of multi-touch display devices. 

Emerging technology and industry trends show the value of such an endeavor.  As 

discussed, various types of control systems benefit from the research results given here, 

specifically commercial and residential market sectors.  Relevant statistics, facts and 

figures were provided, ranging from AV/IT convergence to standard guidelines for the 

construction of audiovisual touchpanels, facilitating a vision of near-future graphical user 

interfaces for control systems, as well as their immediate practical applications. 

A major contribution of this work is the creation of a graphics lab from which to 

create designs as an AMX /Crestron programmer or for potential future business 

development, which is already generating interest among some industry professionals.  

By positing that graphics design is no longer up-to-date given current hardware 

capabilities, an argument can be made for its usefulness in many existing systems that 

could be up-fitted immediately with such modern graphics via multi-touch display 

products.  The owners of said systems often genuinely want original content for 

themselves, and are willing to pay a premium for it. 



 41 

Currently 44% of American homes have 6 remotes in them [OD01], not to 

mention laptops, PDAs and other gadgets that our current lifestyles embrace.  It is the 

intent that research in this and similar fields will help those who wish to pick one 

platform for as many technological tasks as possible.  The result of such a design 

principle, made possible by AV/IT convergence, would theoretically leave only one 

device to charge, one device to carry, and one device to manage.  In achieving this goal, 

the result would be a single device to simplify life’s daily demands in an ever more wired 

world. 

A chief improvement to the work presented here would be a way to modify and 

customize script attributes and other assets for use in new or existing projects without the 

need of understanding Maya, Python, or Pymel.  [APS01] offers a compelling argument 

here, but aside from laying the most basic of groundwork by selecting a scripting 

language that has such support in the greater programming community, this goal was 

beyond the scope of the current work.  A program named Qt is a possible candidate for 

future directions. 

Another important part of GUI creation indirectly targeted is the audio portion of 

the design and the resultant sound effects.  A re-examining of the “Peedy the Parrot” 

[KL02] video with closer attention paid to the audio component reveals how much more 

effective the graphical user interface experience could be, particularly considering current 

audio production standards. 



 42 

Overall this research brought together background in the audiovisual industry, 

computer programming techniques, and consideration of artistic principles as applied to 

computer graphics, though many challenges remain. 

The actual problem addressed is real and present, and the development of ideas 

presented here may at the very least serve as a set of options, if not guidelines, when 

developing control systems graphical user interfaces for the audiovisual industry.  Other 

recent developments in technology will doubtlessly demand refinement of the ideas 

discussed herein, making additional study not only possible, but likely.  [SH01] describes 

other interfaces such as the “Wiimote” tested for use beyond the Nintendo platform for 

3D UI purposes [BCFH01].  Other developments in the field of ubiquitous computing are 

certain to offer plenty of similar opportunity via work developed in augmented reality 

[BS01].  Even without these amazing new approaches to user interface design, the goal of 

this thesis is to provide pertinent information that would make further solutions to the 

specific problems raised here a worthwhile effort. 



 43 

 

WORKS CITED 

 

[amx02] AMX/ Crestron tie-ins to Apple product, http://www.amx.com/ui/apple.asp,  
August 2010. 

  
[amx04] AMX Touch Panel Design 4 (TPD4), http://www.amx.com/products/TPDesign.asp,  

August 2010. 
  
[APS01] M. Auer, J. Pölz, and S. Biffl, “End-User Development in a Graphical User  

Interface Setting,” ICEIS, 2009, May 2010. 

 

[BS01] István Barakonyi and Dieter Schmalstieg, “Augmented Reality Agents for User  

Interface Adaptation,” Computer Animation and Virtual Worlds Vol/19 No.1, 

2008, Hoboken NJ, USA, 2008. 

 

[BCTW01] T. P. Bednarz, C. Caris, J. Thompson, C. Wesner, and M. Dunn, “Human- 

Computer Interaction Experiments,” 2010 24th IEEE International 

Conference on Advanced Information Networking and Applications, 2010, 

Perth, Australia, April 2010. 

 

[BCFH01] D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Kitamura, K.  

Kiyokawa, and W. Stuerzlinger, “3D User Interfaces: New Directions and 

Perspectives,” IEEE Annals of the History of Computing, 2008, Washington 

DC, USA, 2008. 

 

[BCFG01] G. Bronson, T. Cape, A. Faunce, G. Maderic, R. Nimtz, Jr., H. Nunes, R.  

Remington, and D. Silberstein, “Dashboard for Control Design Guide 

Template,” 2005, Fairfax VA, USA, April 2005. 

 

[BRM01] P. A. Brooks, B. P. Robinson, A. M. Memon, “An Initial Characterization of  

Industrial Graphical User Interface Systems,” 2009 International Conference 

on Software Testing Verification and Validation, 2009, April 2004. 

  

[CU01] B. Chang and D. Ungar, “Animation: From Cartoons to the User Interface,” Sun  

Microsystems, Inc.  Technical Report: TR-95-33, 1995, Mountain View CA, 

USA, 1995. 



 44 

 

[CM01] S. Chien and A. Mahdavi, “Implementation of a User Interface Model for  

Systems Control in Buildings,” Universal Access in Human-Computer 

Interaction. Intelligent and Ubiquitous Interaction Environments, 5th 

International Conference, UAHCI 2009, Held as Part of HCI International 2009, 

2009, San Diego CA, USA, July 2009. 

 

[cisc02] Cisco Connected Real Estate,  

http://newsroom.cisco.com/dlls/2005/whitepaper.pdf, August 2010. 

  

[cisc03] Cisco Systems List of Acquisitions,  

http://www.cisco.com/web/about/doing_business/corporate_development/acqui

sitions/ac_year/about_cisco_acquisition_years_list.html, August 2010. 

  

[comm02] Cross Platform Intermediary example,  

http://www.commandfusion.com/controlsystems, August 2010. 

  

[cres01] Crestron website, www.crestron.com, August 2010. 

  

[dain01] Daintree Networks, “Wireless lighting control saves money and makes sense,”  

Daintree Networks, 2009, Mountain View CA, USA, 2009. 

  

[GQMC01] G. Golovchinsky, P. Qvarfordt, B. van Melle, S. Carter, and T. Dunnigan,  

“DICE: Designing Conference Rooms for Usability,” Conference on Human 

Factors in Computing Systems, 2009, Boston MA, USA, 2009. 

[HWV01] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos, “Software Technology for  

Implementing Reusable, Distributed Control Systems,” Applications of 

Intelligent Control to Engineering Systems Vol 39, 2009, June 2009. 

  

[HLC01] D. H. Huang, Y. Z. Liang, and W. K. Chiou, “The Practices of Usability  

Analysis to Wireless Facility Controller for Conference Room,” Proceedings of 

the 12th international conference on Human-computer interaction, 2007, 2007. 

  

[java01] Interior Design Trends – AV Smart Home Inclusion,  

http://javabali.info/trend/new-trend-interior-smart-home-decorating-ideas.html, 

August 2010. 

  

[JW01] D. Johnson and J. Wiles, “Effective Affective User Interface Design in Games,”  

Ergonomics,” Volume 46, Issue 13 & 14, 2003, October 2003. 

  

[KGMQ01] J. Kim, D. Gracanin, K. Matkovic, and F. Quek, “iPhone/iPod Touch as  

Input Devices for Navigation in Immersive Virtual Environments,” 2009 

IEEE Virtual Reality Conference, 2009, Lafayette LA, USA, March 2009. 

 



 45 

[KL01] D. Kurl and  D. T. Ling, “Planning-Based Control of Interface Animation,”  

Proceedings of CHI ’95 1995, Redmond WA, April 1995. 

  

[KL02] Peedy the Parrot, http://kurlander.net/DJ/Videos/PeedyVideo.shtml 

  

[LRB01] C. Lewis, J. Rieman and J. Bluestein, “Task-Centered User Interface Design,”  

eBook, 2008, Boulder CO, USA, February 2008. 

  

[loni01] Staff Assignment – Central Operations Center for Multiple Campus Buildings,  

http://www.lonix.com/specifications/IBMS_specification.pdf, August 2010. 

  

[MCP01] J. Martocci, D. Chute, and V. Pothamsetty, “Building Automation System Over  

IP (BAS/IP) Design and Implementation Guide,” Johnson Controls Network 

and Information Technology Considerations Technical Bulletin, 2008, 

Milwaukee WI, USA, August 2008. 

 

[MLC01] J. Meskens, K. Luyten, and K. Coninx, “Shortening User Interface Design  

Iterations Through Realtime Visualisation of Design Actions on the Target 

Device,” 2009 IEEE Symposium on Visual Languages and Human-Centric 

Computing, 2009, Corvallis OR, USA, September 2009. 

  

[micr01] Microsoft Surface, http://www.microsoft.com/surface, August 2010. 

  

[MMM01] T. L. T. Mohamed, R. H. A. Mohamed, and Z. Mohamed, “Development of  

Auto Tuning PID Controller Using Graphical User Interface (GUI),” 2010 

Second International Conference on Computer Engineering and Applications, 

2010, Bali Island, Indonesia, March 2010. 

  

[MHP01] B. Myers, S. E. Hudson, and R. Pausch, “Past, Present, and Future of User  

Interface Software Tools,” ACM Transactions on Computer-Human 

Interaction (TOCHI) - Special Issue on Human-Computer Interaction in the 

New Millennium, Part 1, Volume 7 Issue 1, 2000, March 2000. 

  

[OD01] O. Omojokun, P. Dewan, “Automatic Generation of Device User-Interfaces,”  

PERCOM '07 Proceedings of the Fifth IEEE International Conference on 

Pervasive Computing and Communications, 2007, 2007. 

  

[nsca01] AMX/ Crestron tie-ins to Apple product,  

http://www.nsca.org/Portals/0/Documents/IndustryNews/Projects/20100408-

Projects-AMX.pdf, August 2010. 

  

  



 46 

 

[rave01] AMX/ Crestron tie-ins to Apple product,  

http://ravepubs.com/index.php?option=com_content&view=article&id=2287:bo

th-amx-and-crestron-announce-ipad-apps-to-turn-ipad-into-touch-screen-

homeav-interface-&catid=48:media-recording-distribution-a-

control&Itemid=94, August 2010. 

  

[schn01] Schneider Electric, “Wireless Controller Networks for Building Automation,”  

Schneider Electric, North Andover MA, USA, June 2006. 

  

[SHMP01] J. Schöning, J. Hook, N. Motamedi, P. Olivier, F. Echtler, P. Brandl, L.  

Muller, F. Daiber, O. Hilliges, M. Loechtefeld, T. Roth, D. Schmidt, and U. 

von Zadow, “Building Interactive Multi-Touch Surfaces,” Journal of 

Graphics, GPU, & Game Tools, 2010, April 2010. 

  

[SH01] T. Shiratori and J. K. Hodgins, “Accelerometer-Based User Interfaces for the  

Control of a Physically Simulated Character,” ACM Transactions on Graphics 

Vol 27 I.5, 2008, New York NY, USA, December 2008. 

  

[smar01] Smart Home Pre-Wire without component purchase,  

http://www.smarthouse.com.au/Automation/Sound/P9F9R3W2, August 2010. 

  

[THFS01] J. Teichert, M. Herrlich, B. Walther-Franks, L. Schwarten, S. Feige, M.  

Krause, and R. Malaka, “Advancing Large Interactive Surfaces for Use in the 

Real World,” Advances in Human-Computer Interaction Volume 2010, 2010 

Bremen, Germany, 2010 

  

[VDC01] D. Vergnes, S. Giroux, and D. Chamberland-Tremblay, “Interactive Assistant  

for Activities of Daily Living,” From Smart Homes to Smart Care, 2005, 

Sherbrooke, Canada, 2005. 

  

[wiki01] Wikipedia Entry: Microsoft Paint, http://en.wikipedia.org/wiki/Paint(software), 

August 2010. 

  

[wiki03] Wikipedia Entry: Control Systems,  

http://en.wikipedia.org/wiki/Control_systems, August 2010. 

  

[wiki04] Wikipedia Entry: Control Engineering,  

http://en.wikipedia.org/wiki/Control_engineering, August 2010. 

  

[wiki05] Wikipedia Entry: Programmable Logic,  

http://en.wikipedia.org/wiki/Programmable_logic, August 2010. 

  



 47 

 

[wiki06] Wikipedia Entry: Programmable Automation Controller,  

http://en.wikipedia.org/wiki/Programmable_automation_controller, August 

2010. 

  

[wiki07] Wikipedia Entry: Control Theory, http://en.wikipedia.org/wiki/Control_theory,  

August 2010. 

  

[wiki08] Wikipedia Entry: State Variable, http://en.wikipedia.org/wiki/State_variable,  

August 2010. 

  

[wiki09] Wikipedia Entry: PID Controller, http://en.wikipedia.org/wiki/PID_controller,  

August 2010. 

  

[wiki10] Wikipedia Entry: Building Management System,  

http://en.wikipedia.org/wiki/Building_Management_System, August 2010. 

  

[wiki11] Wikipedia Entry: Building Automation System,  

http://en.wikipedia.org/wiki/Building_Automation_Systems, August 2010. 

  

[wiki12] Wikipedia Entry: Home Automation,  

http://en.wikipedia.org/wiki/Home_automation, August 2010. 

  

[wiki13] Wikipedia Entry: AMX, http://en.wikipedia.org/wiki/AMX_LLC, August 2010. 

  

[wiki14] Wikipedia Entry: Crestron, http://en.wikipedia/wiki/Crestron, August 2010. 


	Clemson University
	TigerPrints
	8-2010

	CREATING TOUCHPANEL GRAPHICS FOR CONTROL SYSTEMS
	Lucas McDaniel
	Recommended Citation


	tmp.1387585722.pdf.nT3vE

