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ABSTRACT 

Within this study, we sought to leverage knowledge from well-characterized 

protein coding genes to characterize the lesser known long non-coding RNA (lncRNA) 

genes using computational methods to find functional annotations and disease 

associations. Functional genome annotation is an essential step to a systems-level view of 

the human genome. With this knowledge, we can gain a deeper understanding of how 

humans develop and function, and a better understanding of human disease. LncRNAs 

are transcripts greater than 200 nucleotides, which do not code for proteins. LncRNAs 

have been found to regulate development, tissue and cell differentiation, and organ 

formation. Their dysregulation has been linked to several diseases including autism 

spectrum disorder (ASD) and cancer. While a great deal of research has been dedicated to 

protein-coding genes, the relatively recently discovered lncRNA genes have yet to be 

characterized. LncRNA function is tied closely to when and where they are expressed. 

Co-expression network analysis offer a means of functional annotation of uncharacterized 

genes through a “guilt by association” approach. We have constructed two co-expression 

networks using known disease-associated protein-coding genes and lncRNA genes. 

Through clustering of the networks, gene set enrichment analysis, and centrality 

measures, we found enrichment for disease association and functions as well as identified 

high-confidence lncRNA disease gene targets. We present a novel approach to the 

identification of disease state associations by demonstrating genes that are associated 

with the same disease states share patterns that can be discerned from transcriptomes of 

healthy tissues. Using a machine learning algorithm, we built a model to classify ASD 
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versus non-ASD genes using their expression profiles from healthy developing human 

brain tissues. Feature selection during the model-building process also identified critical 

temporospatial points for the determination of ASD genes. We constructed a webserver 

tool for the prioritization of genes for ASD association.  The webserver tool has a 

database containing prioritization and co-expression information for nearly every gene in 

the human genome.  
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CHAPTER I – LITERATURE REVIEW OF THE FUNCTIONAL ANNOTATION 

OF HUMAN LONG NON-CODING RNAS USING COMPUTATIONAL 

METHODS  

1.1 Introduction 

Biological data has expanded both in quantity and complexity from next-

generation sequencing and high-throughput methods. Most noteworthy is the global 

aspect of data. We have begun to work in ‘omics’, looking at systems as a whole, and  

data at this scale and complexity diminishes the ability of the scientist alone to efficiently 

and effectively discern actionable knowledge. An example would be the study of BReast 

Cancer susceptibility gene 1 (BRCA1). Mutations in BRCA1 were discovered in 1990 to 

be associated with families at high risk for breast and ovarian cancers (Hall et al., 1990). 

Given its impact on cancer research and relatively early discovery, it has been intensely 

studied for nearly 30 years (Scalia-Wilbur et al., 2016). Currently there are 12,812 

articles pertaining to BRCA1 in Pubmed (2011, accessed on 8/30/16). A scientist with a 

specific question may be able to find a relevant article or a review which can answer their 

query or provide an overview of BRCA 1, but a broad query such as identifying a 

comprehensive list of potential binding partners for BRCA1 and discerning interesting 

shared characteristics amongst the binding partners would require a comprehensive view 

of the available literature. While an individual scientist may not be able to read the 

12,812 articles, bioinformatics data mining techniques such as text mining and sentiment 

analysis could provide a solution.   

1
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The research environment has become data rich, information poor. The origins of 

the phrase “data rich, information poor” or otherwise known as the DRIP syndrome is 

difficult to determine. One of the first mentions of data rich information poor in 

biological research context is from Williamson (1987) which roughly coincided with the 

first international medical informatics conference hosted in 1985 (Sewell and Thede, 

2012). The phrase itself is in reference to the low cost of data production and the lack of 

return on this accumulation of data. Return comes in the form of knowledge which gives 

the data clarity and allows for decision making and predictions. Data in itself is 

meaningless, and applicable knowledge has to be extracted from it using data mining 

techniques (Obeidat et al., 2015). This idea became very apparent with widespread use of 

microarray technologies in the late 90s before there was a suitable infrastructure to 

handle the data deluge (Schulze and Downward, 2000).  Data has begun to accumulate 

faster than it can be analyzed (Schatz et al., 2010), which has led to the rise of cloud 

computing, bioinformatics cores, and the incorporation of bioinformatics curricula at 

research universities (Dai et al., 2012; Lewitter et al, 2009, Welch et al., 2014).  

The earliest work in bioinformatics was focused on databases. Following the 

advent of protein sequencing by Tuppy and Sanger (1951), the Protein Data Bank was 

formed in 1972 to archive the new sequences (Bernstein et al., 1977). With the advent of 

the internet, next generation sequencing, and high-throughput methodologies, the number 

of publically available databases has ballooned to a recent listing of 1,552 databases 

(Fernandez-Suarez et al., 2014). Biological databases can be categorized by the type of 

data contained within and how the data was obtained. Biological database data types are 
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DNA, RNA, protein, expression, pathway, disease, nomenclature, literature, and 

standard/ontology (Zou et al., 2015). Databases which act as repositories for 

experimentally derived results are considered primary databases, whereas databases 

which house data from analysis on this primary data are considered secondary databases 

(Mewes et al., 2010). An example of a primary database is GenBank, which is a 

comprehensive collection of all publically available DNA sequences (Benson et al., 

2013). An example of a secondary database is the UniProt knowledgebase, which 

contains annotated protein entries (Bateman et al., 2015).  The structuring and archiving 

of information into accessible formats is an active area of research. One of the challenges 

that lie in biological database research is structuring data from unstructured data. This is 

particularly difficult with the more traditional relational databases that store data in 

interconnected formally-defined tables. Novel approaches are being developed to address 

the issue. An example is the approach of Lysenko et al. (2016) who applied graph theory 

(see section 1.3) to the structuring of the database. Databases are so much an active area 

of bioinformatics research that the journal Nucleic Acids Research releases an annual 

database issue covering new releases and advances in the field.  

Bioinformatics is a multidisciplinary field that stands at the cross-section of 

mathematics, statistics, biology, and computer science. The emergence of bioinformatics 

as a major discipline incorporating data mining amongst other tools followed closely with 

the publishing of the human genome (Lander et al., 2001). Indeed, a formal definition 

was not proposed until 2001 when Luscombe et al. (2001) describe it as: 

“Conceptualizing biology in terms of macromolecules (in the sense of physical-
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chemistry) and then applying ‘informatics’ techniques (derived from disciplines such as 

applied maths, computer science, and statistics) to understand and organize the 

information associated with these molecules, on a large-scale”. Although the definition 

remains apt, Bioinformatics is pluralistic, and can be further broken down into three sub-

disciplines. The first is the development of algorithms which relies heavily on 

mathematics. Commonly, this field tries to reduce the complexity of existing algorithms, 

and one common area this is applied to is in image processing. An example is the study 

done by Zhao et al. (2016) where they developed a variation on principal component 

analysis for faster processing of cryo-electron microscopy images. The second sub-

discipline is the analysis and interpretation of biological data which may also be 

considered computational biology and relies on biological training. An example of this 

type of study would be co-expression network analysis (see section 1.3). The third sub-

discipline is the development of tools, which relies heavily on computer science. An 

example of this type of study would be the development of a disease gene prioritization 

systems (see section 1.5). Additionally, bioinformatics studies may show overlap 

between these different sub-disciplines. The definition of a bioinformatician is also 

pluralistic as well. Many would emphasize computational aspects over the biological 

aspects and vice versa. A recent survey by Bartlet et al. (2016) amongst bioinformaticians 

in the United Kingdom found that there was a large cultural divide amongst the different 

disciplines of bioinformatics and that the backgrounds of key members varied greatly as 

well.  Although it is evolving, bioinformatics is a field that has allowed for extraction of 

useful knowledge from the data deluge.  
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1.2 Long non-coding RNAs 

The evolution and quantity of lncRNAs in the human genome 

While only 2% of the human genome is made up of protein-coding regions, it is 

estimated that nearly 75% of the entire genome is transcribed (Djebali et al., 2012). 

When the genome was first sequenced, the genome size and the number of protein coding 

genes showed little to no correlation with organismal complexity. It has since been found 

that the complexity of an organism is actually more closely associated with the number of 

non-coding RNA genes (Taft et al., 2007, Necsulea et al., 2014).  

Non-coding RNA genes are transcribed but not translated. Non-coding RNAs lack 

an open reading frame (ORF) with coding potential.  Determining the coding potential of 

a transcript is a multi-step process. The GENCODE consortium (Harrow et al., 2012), 

whose lncRNA annotations were used for a majority of the studies in this dissertation, 

first compare the transcript to known sequences using the Basic Local Alignment Search 

Tool n (BLASTn) (Altschul et al., 1990) to cluster the transcripts and then compare the 

clusters to existing non-coding RNA families in RFAM (Nawrocki et al., 2015). Next 

they determine the length of the longest potential ORF if one is present. If the length of 

the ORF is greater than 35% of the transcript length then the transcript is determined to 

have coding potential. They also look for homology between potential proteins coded 

within the ORF and any known Protein families in Pfam (Finn, R. 2016). The last aspect 

of coding potential that is considered by the consortium is codon substitution frequency 

within the potential ORF. The PhyloCSF method performs multiple sequence alignments 

and measures conservation based upon the frequencies of synonymous codon 
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substitutions, conservative amino acid substitutions, and missense and non-sense 

substitutions, and this has been demonstrated as being effective in determining coding 

potential as non-coding sequences have lower conservation (Lin et al., 2011). Most 

groups which attempt to identify lncRNAs within the human genome employ a 

methodology similar to that of the GENCODE consortium for determining the coding 

potential of ORFs within transcripts. For example, the lncRNA gene identification study 

of Iyer et al. (2015) used the Coding Potential Assessment Tool (CPAT) to determine 

coding potential. CPAT employs a logistic regression model accounting for ORF size, 

Fickett Testcode Statistic (Fickett, 1982), and hexamer usage bias, which are similar 

features to those accounted for in the GENCODE method (Wang et al., 2013). Another 

interesting method of note for determining coding potential is ribosome profiling. It has 

been found that ribosomes can potentially bind long non-coding RNAs (lncRNAs), but 

this does not lead to translation (Guttman et al., 2013). The ribosome profiling can 

distinguish between a coding and a non-coding transcript based upon the sharpness of 

ribosome release e.g. coding transcripts release once they reach the stop codon where as 

non-coding transcripts have a much more variable release point (Guttman et al., 2013).      

Until the early 90s, the functions of RNAs were relegated to messenger RNAs 

(mRNAs), which is the intermediate between DNA and proteins, and the housekeeping 

RNAs such as transfer RNAs and ribosomal RNAs which are constitutively expressed 

and help maintain the base functionality of the cell (Yang et al., 2016). Non-coding 

RNAs are classified based upon their size with small non-coding RNAs (sncRNA) being 

less than 200 nucleotides in length, and lncRNAs being greater than 200 nucleotides in 
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length (Kapranov et al., 2007). The theory of lncRNAs as regulators was proposed in 

1961 by Jacob and Monod (Jacob and Monod, 1961; Kung et al., 2013). The first 

discovery in 1990 of an lncRNA with a regulatory role was that of H19, which regulates 

in a cis fashion the expression of insulin like growth factor 2 and plays a role in 

embryonic development (Brannan et al., 1990; Gabory et al., 2006). This was followed 

closely in 1992 by the discovery of X-inactive specific transcript (Xist) which is key in 

the inactivation of the X chromosome (Brockdorff et al., 1992; Brown et al., 1992). With 

the discovery of the regulatory role lncRNAs, it was hypothesized that mRNAs may 

serve dual functions (Karapetyan et al., 2013). In this instance, genes whose transcripts 

undergo alternative splicing could code for both messenger RNAs (mRNAs), which are 

translated to proteins, and lncRNAs serving an alternative function. While there have 

been recent examples, there are currently very few examples of genes demonstrating this 

behavior (Karapetyan et al., 2013). While the roles of sncRNAs have been well 

characterized over the last 10 years, lncRNAs remain poorly characterized (Clerget et al., 

2015; Xu et al., 2016). 

LncRNAs share many similarities to mRNAs in that they can have a 5’ cap and 3’ 

polyadenylation, undergo alternative splicing, and are transcribed by RNA polymerase II 

(Ulitsky and Bartel, 2013). Currently the GENCODE project, which seeks to identify all 

genes within the human genome, lists 15,941 lncRNA genes (Harrow et al., 2012). 

However, it is believed that lncRNA genes are more numerous than protein coding genes, 

and a recent computational study by Iyer et al. (2015) detected 58,648 lncRNA genes. 

Discrepancies in the estimated number of lncRNA genes arises from differences in 
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methodologies. GENCODE is widely used and considered by some to be the standard of 

gene annotations for the human genome. Examples supporting this claim are its use in the 

building of the BrainSpan dataset (Hawrylycz et al., 2012) and its use in the University of 

California Santa Cruz genome browser (Kent et al., 2002).  Given its use as a resource 

and need for highest accuracy, the GENCODE consortium is conservative in its 

estimates, and they employ a manual curation through the HAVANA group which looks 

at the genome itself rather than mapping the transcripts as outlined above (Harrow et al., 

2012). Another discrepancy is the amount of RNA seq data that is produced. While Iyer 

et al. (2015) produced the largest human lncRNA discovery list to date, they also used 

~100 fold greater RNA seq data than previous studies that included data from tumor 

tissues and cancer cell lines. Another key difference between lncRNA discovery studies 

is the handling of single exon lncRNAs. Earlier versions of GENCODE did not include 

them within their list of lncRNAs due to their unreliability in accurately being mapped 

and determined definitively to be non-coding, but Iyer et al., included them within their 

study. 

LncRNAs are classified by their genomic location into four categories: sense 

overlapping, intronic sense, bi-directional promoter, antisense, and intergenic or 

intervening (Figure 1.1) (Ma et al., 2013). Intergenic lncRNAs otherwise known as long 

intergenic/intervening RNAs (lincRNAs), as their name implies, lie between protein 

coding genes and comprise 7,539 of the 15,767 (48%) lncRNAs listed in GENCODE 

(Harrow et al., 2012). Sense overlapping lncRNAs contain a protein coding gene within 

their coding region on the same strand. Antisense lncRNAs overlap exon or introns of 
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protein-coding genes on the opposing strand. Intronic sense lncRNAs are located within 

the introns of protein-coding genes on the same strand. Bidirectional promoter lncRNAs 

overlap the promoter of a protein-coding gene on the opposing strand. 

 

 

Figure 1.1 Positional classification of lncRNA genes. Protein-coding genes are shown in 

blue and lncRNA genes are shown in red. For each gene, the arrows indicate strand 

placement, the thick lines indicate exons, and the thin lines indicate introns. The box is an 

expanded view of the region surrounding the protein coding gene. Adapted from Derrien 

et al. (2012). 

 

In a landmark study, Nesculea et al. (2014) demonstrated that evolutionarily, 

lncRNA genes have poor interspecies conservation across exons in comparison to 

protein-coding genes, but their splice sites and promoter regions are more conserved than 

protein-coding genes. They also found that lncRNAs have higher time and tissue specific 

expression, and lncRNAs that are found to be conserved from lower organisms have been 
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primarily associated with embryogenesis based on the higher likelihood of their promoter 

regions to contain HOX transcription factor binding sites. Collectively, this indicates a 

rapid evolution of lncRNAs and implicates the more recent lncRNAs in the formation of 

the complex organs in higher organisms. In perhaps one of the most complex organs, the 

human brain, lncRNAs have shown elevated expression relative to other tissues (Derrien 

et al., 2012). 

Functional Annotation 

After the identification of the numerous lncRNAs within the genome, the next 

step in gaining a deeper understanding of their role is to determine their functions (Figure 

1.2). A genome annotation for a gene is a description of the gene, its product, which can 

be either RNA or protein, and the function of that product (Koonin and Galperin, 2003). 

The description is further refined by gene ontology, which seeks to apply a structured 

vocabulary to biological processes, cellular components, and molecular functions 

associated with a given gene. This concept was proposed by the Gene Consortium in 

1998 for model organism databases (Ashburner et al., 2000). The hierarchies have been 

adopted and expanded on by multiple term enrichment software packages to allow for 

more fields such as disease associations and keywords (see more in Section 1.3). The 

general process of functional gene annotation is first the identification of the gene within 

the genome. This is followed by in silico annotation which seeks to associate a putative 

function for the gene product. The third step of the process is the experimental validation 

of the annotation. While automated annotation cannot account for all caveats and can 

display inconsistencies (Devos and Valencia, 2001; Schnoes et al., 2009; Brenner, 1999), 
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the putative functional assignment provided by the computational analysis can guide the 

experimental aspect as well as prioritize targets warranting further study (Koonin and 

Galperin, 2003). In addition, manual annotation errors can still arise and in larger 

datasets, they tend to persist longer (Percudani et al., 2013).  

 

 

Figure 1.2 Schematic of the functional annotation process. This is a step by step process 

of the functional annotation of genes. The first step shows the mapping of transcripts to a 

reference genome. The second steps indicates some of the potential computational 

methods that are used to annotate the gene. The final step is the experimental validation 

of function. An example of this being the effect of the knockout of a gene, which affects 

the morphology of the cell.  
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Functional annotation is the precursor step to understanding how genes interact on 

a systems level, and lncRNA genes present interesting challenges in terms of annotation. 

The first is that although the number of lncRNA genes is comparable if not greater than 

protein coding genes (see above), very few of the lncRNA genes lack functional 

annotation (Laurent et al., 2015). The lncRNA database, which derives its lncRNA 

entries from literature searches, only has 184 entries for human lncRNAs (Quek et al., 

2015). With such a small fraction of lncRNAs with known function, comparative analysis 

provides little insight into function.  

The second challenge is that, in contrast to sncRNAs whose function are closely 

related to their sequence (Clerget et al., 2015), lncRNA function can be dependent on 

sequence or derived from structure. For example the function of lncRNA referred to as 

highly upregulated in liver cancer (HULC) is dependent upon its structure. It has been 

found to have a competitive endogenous function in that it binds and sequesters the 

miRNA, miR-372 (Wang et al., 2010). The well-studied HOX transcript antisense RNA 

(HOTAIR) has been shown to have structurally dependent binding to polycomb 

repressive complex 2 (PCR2) and lysine-specific histone demythylase 1A (LSD1) 

(Huang  et al., 2014). These are just two examples of the dichotomy of function 

demonstrated by lncRNAs.  

The annotation of lncRNAs is further complicated by a lack of conservation. 

While protein-coding genes show high levels of conservation in their sequences, 

lncRNAs only demonstrate small and difficult to discern ultra-conserved regions 

(Johnsson et al., 2014). These considerations rule out traditional similarity methods that 
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are employed to determine function. However similarity methods such as network 

analysis can be applied between the expression patterns of well-studied protein-coding 

genes and lncRNA genes.  

 

The molecular mechanisms of lncRNAs 

Although many lncRNAs have been discovered, there various functions are still 

being determined (Kung et al., 2013). To provide organization to the known functions of 

lncRNAs, Wang and Chang (2011) proposed four archetypes of molecular mechanisms 

employed by lncRNAs: signal, decoy, guide, and scaffold (Figure 1.3), and here I use 

these archetypes to further describe the function of lncRNAs 

As mentioned previously, lncRNA have highly specific temporal spatial 

expression patterns in comparison to protein-coding genes. As signals, lncRNAs can 

respond to stimuli and initiate biological processes or provide feedback as to the current 

state of the cell. As an example of an lncRNA initiating a biological process, Xist is 

activated during development to inactivate the X chromosome (Brockdorff et al., 1992; 

Brown et al., 1992). As an example of cell state feedback, prostate cancer antigen 3 

(PCA3) is a lncRNA that is only expressed in prostate cancer cells (Bussenmakers et al., 

1999; Hessels et al., 2003). These links to biological processes and cell state based on 

their expression allow us an avenue into the functional annotation of lncRNAs through 

shared expression patterns with the well-characterized protein coding genes. Another 

mechanism of lncRNAs is as a decoy. This again points to the dichotomy of function of 

lncRNAs based on either sequence or structure as decoys bind and attenuate the function 
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of their target. An example of sequence based decoy function are the competitive 

endogenous long non-coding RNAs which share binding sites with miRNAs. These 

lncRNAs essentially act as a sponge to ‘soak up’ through binding and attenuate the 

function of miRNAs (Thompson and Dinger, 2016). This role is critical and in 

dysregulation can lead to disease states. Recently, Liu et al. (2016) discovered that the 

lncRNA Ras suppressor protein 1 pseudogene 2 (RSR1P2) competitively binds the micro 

RNA let-7a in a process that promotes cervical cancer. An example of a structure based 

decoy is the lncRNA Growth arrest-specific 5, which binds to and represses the 

glucocorticoid receptor (Kino et al., 2010). LncRNAs classified as guides effectively 

direct protein functions to designated targets. The previously mentioned HOTAIR is an 

example of an lncRNA which employs this mechanism. It binds both PRC2 and LSD1 

which are chromatin modifying enzymes and targets them to HOX gene loci to repress 

their expression (Huang et al., 2014). The final mechanism archetype is scaffold. Given 

the large number of potential secondary structures for lncRNAs (Wan, et al., 2014) and 

the 6%-8% frequency of RNA binding proteins (Jingna et al., 2015), lncRNAs are 

particularly effective in the formation of protein complexes. While HOTAIR also 

employs this mechanism archetype, probably the most well-known example would be 

ribosomal RNAs. The full diversity of lncRNA function remains to be determined, which 

is why lncRNAs are currently one of the most active areas of research.  
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Figure 1.3 Schematic of the molecular mechanism archetypes for lncRNAs. The diagram 

shows lncRNAs acting as signals, decoys, guides, and scaffolds within both the 

cytoplasm and nucleus of the cell.  Adapted from Wang and Chang (2011).  

 

LncRNAs in human disease 

 Given characterization of lncRNAs above, it is not surprising that lncRNAs are 

associated with multiple diseases. The lncRNADisease database contains entries for 

experimentally determined lncRNAs associated with disease based upon literature 
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searches (Chen et al., 2013). They currently have 478 lncRNA entries and they have 

found associations with 166 diseases. Although it may be reflective of the degree to 

which diseases receive focus, lncRNAs have been found to have particularly critical roles 

in cardiac diseases and cancers. One example of a critical lncRNA in cardiac disease is 

tie-1 AS regulates the expression of tyrosine kinase with immunoglobulin-like and EGF-

like domains 1 (tie-1). Tie-1 helps maintain cell junctions and when overexpressed, tie-1 

leads to impairment of vascular development (Li et al., 2010). Several examples of 

cancer associated lncRNAs exist. One previously mentioned example is HOTAIR, which 

has been shown to be overexpressed in and contribute to breast cancer (Gupta et al., 

2010). Another interesting cancer associated lncRNA is metastasis-associated lung 

adenocarcinoma transcript 1 (MALAT1). It has been associated with 16 different cancers, 

and its overexpression correlates with metastasis and thus poor prognosis (Wei and Niu, 

2015). These lncRNAs play critical roles in the progression of cancers and offer potential 

treatment targets, however, lncRNAs are particularly sensitive to alterations in cell state 

and therefore offer excellent means of diagnosis and prognosis (Xiong et al., 2016). The 

previously mentioned PCA3 is one such example. The role of lncRNAs in autism 

spectrum disorders (ASD) is still being determined, however given that lncRNAs impact 

development and show elevated expression in the brain (see above), they are likely 

contributors. This is further supported by the Ziats and Rennert (2013) study which 

detected 222 differentially expressed lncRNAs between ASD and control brain samples.  

   

 



 17 

1.3 Co-expression network analysis 

 Network analysis is based upon graph theory, one of the disciplines in 

discrete mathematics. The first instance of the application of graph theory was in 1736 by 

the mathematician Euler. It is commonly used to map networks. In networks, nodes or 

vertices are entities such as genes, which are connected by edges. This connection 

implies a relationship. The nature of this relationship determines whether the network is 

directed or undirected. Directed networks imply causality. An example would be in a 

gene regulatory network. If gene A upregulates gene B then the directionality would be 

from A to B, however this does not imply that when gene B is downregulated, gene A is 

upregulated. In undirected networks, there is no causality or direction. For the previous 

example in an undirected network, gene A and gene B would simply share a connection. 

Mapping of biological networks is a common practice. Graph theory offers a semantic 

view of data and has a wide variety of applications. It has been used to map and 

understand brain function (Mears and Pollard, 2016), describe evolution (Shakarian et al., 

2012) and design and discover drugs (Takigawa and Mamitsuka, 2013). The idea of the 

co-expression networks evolved from the work of Butte and Kohane (1999), who initially 

proposed the employment of graph theory to biological networks. Bulle and Kohane were 

the first to point to the idea that nodes within biological networks can be connected via 

correlations. This eventually led to the idea of co-expression networks. Their idea was 

that if a correlation measured via any correlation measurement was above a threshold, 

then an edge or connection was established.  
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Co-expression networks are constructed through the measure of correlation 

between expression profiles for two genes.  Examples of correlation measures include 

Pearson product moment correlation and Spearman correlation. Once this value has been 

determined then a connection is established either through a hard threshold such as 

ranking the interactions and taking a certain high percentile or by applying a weighted or 

soft threshold where the connectivity is a continuous measure (Langfelder and Horvath, 

2008). Genes can then be clustered into what is referred to as modules based on their 

similarities in expression profiles.  These modules can be measured for enrichment of 

terms, gene biotypes (i.e. lncRNAs, protein-coding genes, etc.) or any tag that can be 

assigned to the individual genes in comparison to a background. Therefore, genes of 

known function, such as many human protein-coding genes can be used to characterize 

genes of unknown function such as lncRNAs. Network analysis allows us to look for 

topology to determine the nature of interactions. Network topology refers to statistical 

measures which describe the distribution of nodes and edges. One commonly employed 

topology measure is the degree distribution. This measures the distribution of connections 

per node. For example in scale-free networks, plotting of the degree distribution should 

follow a linear pattern. These topologies can be overlaid to determine the strength of the 

network and note any changes between overlays. Network analysis also allows for a 

measure of centrality, which is the degree of the node or otherwise stated the number of 

connections or the summation of the connection weights for weighted networks. Genes 

showing high connectivity or centrality are assumed to be critical to the process being 

studied (Serin et al., 2016).  
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Co-expression network analysis is a “guilt by association” approach that has been 

widely employed in research (Serin et al., 2016). The first gene co-expression network 

analysis was performed by Carter et al. (2004) to identify critical genes in the 

determination of cell state. Giuletti et al. (2016) built a co-expression network to identify 

critical genes in the development of pancreatic ductal adenocarcinoma. Lv et al. (2016) 

utilized a co-expression network to identify nitrogen responsive long intergenic non-

coding RNAs (lincRNAs) in maize. Oliver et al. (2014) applied a co-expression network 

to disease gene prioritization for epileptic encephalopathy. These are just a few examples 

of the wide applications of this approach. The key assumption of co-expression network 

analysis is that over a range of samples, expression patterns will be shared by genes in the 

same pathways, between interacting partners, and genes that share functions.  

 

1.4 Machine learning 

 Machine learning is a field comprised of methods for the identification of patterns 

from complex data to complete a given task. The idea of machine learning was first 

proposed by Alan Turing (1950) in his famous Turing test, in which he proposed that it 

may be possible for a machine learn to the point that it would be impossible for an 

interviewer to discern whether they were talking to a machine or a person. The first 

implementation of machine learning was the perceptron machine (Rosenblatt, 1958), 

which later became a binary classification algorithm that adjusts its decision boundary 

dependent on input data. This was shortly followed by the KNN algorithm which classify 

unknown instances by employing a distance metric and determining the classification of 
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the closest instances from the training set (Cover and Hart, 1967). The adoption of 

machine learning into the field biological science was heralded by Ted Shortliffe, who 

was the first to employ it to solve biological problems (Shortliffe, 1973).  

 Machine learning is becoming ubiquitous as it is employed in nearly every facet 

of business and technology (Jordan and Mitchell, 2015). In biology, its ability to make 

classifications based on large complex datasets make a valuable asset. The identification 

of a suitable machine learning problem can be the most time-consuming in the field of 

bioinformatics and requires domain-specific knowledge. Machine learning requires a 

task, a means of scoring the performance of the algorithm to perform this task, and 

experience upon which to learn.  The experience itself is data, and the nature of this data 

determines the type of machine learning problem. If the data is unlabeled, then the task is 

unsupervised. Common tasks include clustering such as in a co-expression network, rule 

association, and dimensionality reduction. Rule association is the search for reliable 

association between fields in data. It is commonly used for sales transactions, in that if 

someone buys product A then they are likely to buy product B as well. A more pertinent 

example within biology would be the mining of a transcriptome to find that if genes are 

upregulated in tissue A, then they are down regulated in tissue B.  Dimensionality 

reduction, as the name implies, are the methods for reducing the number of dimensions 

within data. This reduction allows for easier training of models and can decrease the 

probability of overfitting of models (high performance in training but poor real world 

performance). For example, Kim et al. (2016) recently applied self-organizing maps, 
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which are a form of artificial neural networks, to ultrasonography images. The group 

found patterns which led to the discernment of appendicitis.   

However, if the data is labeled, for example disease versus non disease gene, then 

the machine learning algorithm is said to be supervised learning. The most common task 

for supervised machine learning is classification. These tasks seek to devise a model 

based upon examples with known classes to determine the class of unknown entities. 

Support vector machine (SVM) is a popular algorithm for machine learning. It is well 

suited to biological data as it deals well with high dimensionality and numerical versus 

categorical data (Cortes and Vapnik, 1995; Kourou et al., 2014). It has been applied to 

diagnosing attention deficit hyperactive disorder using neuropsychological data (Bledsoe 

et al., 2016), diagnosing gastric cancer using serum biomarkers (Tong et al., 2016), and 

determining the onset of Alzheimer’s disease using magnetic resonance imaging (Wei et 

al., 2016).  The algorithm can be used for binary classifier that seeks to find a decision 

boundary between two groups plotted with their features acting as dimensions. The 

decision boundary that is found has the widest possible margin, which is the greatest 

distance from the closes training instances on either side of the decision boundary.   

 

1.5 Candidate gene prioritization 

 Gene prioritization servers are particularly useful. Most disorders that are studied 

are complex in that they are multigenic. For example, there are over 400 genes associated 

with autism spectrum disorder (ASD) (Abrahams et al., 2013). When attempting to find 

genes associated with a disorder, association studies can lead to large gene lists. This 
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becomes a difficulty because each of those genes within the list is challenging to validate 

and test. Another difficulty in dealing with complex diseases is the extent of interaction. 

Two hypotheses are considered for complex diseases, one is the common disease 

common variant hypothesis, which argues that there exist many alleles with low 

penetrance which impact the expression of the disease. A counter to this hypothesis is the 

common disease rare variant hypothesis which argues that rare alleles with high 

penetrance lead to expression of the disease (Schork et al., 2009). While both hypotheses 

can be considered equally valid depending on the disease in question, disease 

prioritization servers operate on the common disease rare allele hypothesis. These 

systems are designed to prioritize gene lists based upon their likelihood to be associated 

with a given disease. Often these systems will utilize data from several sources including 

expression data, literature, physical interactions, and annotations. One guiding principle 

of prioritization systems is that disease genes are convergent on pathways which has been 

verified for ASD (Parikshak et al., 2013), and disruption of these pathways lead to 

disease. Therefore if a prioritization can identify genes within a shared pathway of 

disease genes, then these genes can be implicated in the disorder. GeneMANIA is an 

interesting example of a prioritization server. The user supplies their own gene list and 

genes with the highest association through analysis of co-expression, interactions, 

pathways, and co-localization, are returned to the user (Warde-Farley et al., 2010).  The 

ENDEAVOUR system employs a similar methodology. Users submit a training set which 

is then passed through multiple models to allow for the prioritization of a given candidate 

gene list (Tranchevent et al., 2008).  
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1.6 My research 

In chapter 2, we demonstrate the application of co-expression networks to 

determining the role of lncRNAs in cancer. In chapter 3 we employed co-expression 

network analysis to characterize the role of lncRNAs in neural development and autism 

spectrum disorders. In chapter 4, we apply the SVM algorithm to predict and prioritize 

ASD risk genes. In chapter 5, we show the construction of PGAR, a system incorporating 

co-expression analysis and machine learning results from previous studies (chapters 3 

and 4) to prioritized genes for their association with ASD.  
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Abstract 

 

We used gene co-expression network analysis to functionally annotate long 

noncoding RNAs (lncRNAs) and identify their potential cancer associations. The 

integrated microarray dataset from our previous study was used to extract the expression 

profiles of 1,865 lncRNAs. Known cancer genes were compiled from the Catalogue of 

Somatic Mutations in Cancer and UniProt databases. Co-expression analysis identified a 

list of previously uncharacterized lncRNAs that showed significant correlation in 

expression with core cancer genes. To further annotate the lncRNAs, we performed a 

weighted gene co-expression network analysis, which resulted in 37 co-expression 

modules. Three biologically interesting modules were analyzed in depth. Two of the 

modules showed relatively high expression in blood and brain tissues, whereas the third 

module was found to be downregulated in blood cells. Hub lncRNA genes and enriched 

functional annotation terms were identified within the modules. The results suggest the 

utility of this approach as well as potential roles of uncharacterized lncRNAs in leukemia 

and neuroblastoma. 
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2.1 Introduction 

Long noncoding RNAs (lncRNAs) are a major class of noncoding RNAs and 

exceed 200 nucleotides in length. Originally suspected of being the result of 

transcriptional noise, lncRNAs have been shown to have a broad range of functions 

including transcriptional regulation, mediating protein interactions, and influencing 

mRNA splicing (Cech and Steitz, 2014). The ENCODE project has demonstrated that 

74.7% of the human genome is transcribed, and more than 9,000 lncRNAs have been 

annotated (Djebali et al, 2012; Derrien et al., 2012). A large number of lncRNAs have 

also been identified in many other organisms. For instance, the FANTOM3 annotation 

project has discovered 34,030 lncRNA transcripts in the mouse genome (Maeda et al., 

2006). These studies have led to the projection that there may be more lncRNAs than 

protein-coding genes. The roles in biological processes and mechanism of action for the 

majority of lncRNAs have not yet been determined (Calibi et al., 2011; Wang and Tran, 

2013). For functional annotation, a weighted gene co-expression network analysis 

(WGCNA) of lncRNAs with well-annotated protein-coding genes offers an approach for 

insight into the biological roles of lncRNAs (Langfelder and Horvath, 2008).  

A definitive link between cancer and lncRNAs has been established through 

disease state studies and their functions in development and cellular differentiation 

(Cheetham et al., 2013; Iyengar et al., 2014; Zhu et al., 2014). Examples of well-studied 

lncRNAs associated with cancer include HOX antisense intergenic RNA (HOTAIR), 

prostate cancer antigen 3 (PCA3) and metastasis-associated lung adenocarcinoma 
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transcript 1 (MALAT1). HOTAIR interacts with Polycomb Recessive Complex 2 (PRC2) 

and the LSD1/CoREST/ REST complex to modify histones, which results in silencing at 

multiple sites (Rinn et al., 2007; Tsai et al., 2010). PCA3 in contrast has no known 

function but acts as an effective noninvasive diagnostic marker for prostate cancer 

(Bussenmakers et al., 1999; Hessels et al., 2003). MALAT1, which was first discovered 

in a differential expression study of non–small-cell lung cancer tumors, has been linked 

to 16 different cancer types including cervical cancer and hepatocellular carcinoma (Ji et 

al., 2003; Chen et al., 2013; Guo et al., 2010; Luo et al., 2006). These three lncRNAs 

share the common feature found in most cancer associated lncRNAs, which are 

overexpressed in cancerous tissues (Bussemakers et al., 1999; Luo et al., 2006; Huang et 

al., 2014). The significant changes in expression levels aid in determining the function of 

these cancer-associated lncRNAs, which have become important for diagnosis and 

prognosis of cancers. 

This study is unique in the application of co-expression analysis to normal 

(noncancerous) tissues to determine lncRNA and cancer gene associations. Previous 

studies have focused on differential expression between normal and cancerous tissues. An 

example is the genome-wide differential and co-expression analysis of hepatoblastoma 

tissues (Dong et al., 2014). Bipartite network analysis has also been performed to predict 

lncRNA–disease associations (Yang et al., 2014). In this study, we use a previously 

compiled dataset consisting of 2,968 microarray expression profiles across a wide 

spectrum of tissues (Wang et al., 2010). All expression profiles in this dataset were 

obtained using publicly available data from the Affymetrix HG-U133 Plus 2.0 Array 
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platform, which provides suitable genome coverage for known protein-coding genes with 

98.6% of our cancer gene list being represented in the array probes. This microarray 

platform also contains probes for 1,970 lncRNAs (Zhang et al., 2012). By utilizing the 

available data for co-expression analysis, we have examined the previously 

uncharacterized lncRNAs for their potential role in cancer and functional annotation. 

 

2.2 Methods 

Gene lists 

A core and an extended gene list of known cancer genes were compiled for this 

study (Additional file A-1). The core list comprised the known causal cancer genes from 

the Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census List from 

the Wellcome Trust Sanger Institute (Futreal et al., 2004). Redundant genes and genes 

that do not have protein-level expression were removed from the list. The UniProt 

knowledgebase was used to determine if there was evidence of protein-level expression 

(UniProt Consortium, 2014). The core list consisting of 472 protein-coding cancer genes 

was used to select microarray probes for the co-expression analysis of cancer genes and 

lncRNAs. To expand the core list for all plausible cancer genes, additional cancer genes 

not present within the core list were added to create the extended gene list (Additional 

file A-1). A custom search query was used to search the UniProt knowledgebase for 

additional cancer genes. Among the search criteria was a requirement for evidence of 

protein-level expression. The extended list consisting of 951 protein-coding cancer genes 

was used to select microarray probes for the WGCNA. The lncRNAs used in this study 
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(Additional file A-1) have at least one corresponding probe on the Affymetrix HG-U133 

Plus 2.0 Array. 

Microarray Expression Data 

The microarray gene expression dataset was compiled in our previous study 

(Wang et al., 2010). The dataset had 2,968 microarray gene expression profiles generated 

using the Affymetrix HG-U133 Plus 2.0 Array with 54,675 probe sets. A data integration 

method was developed to combine the expression profiles from 131 different microarray 

studies into a single dataset (Wang et al., 2010). Most human tissue types were 

represented in the integrated microarray dataset, and the high quality of the dataset was 

demonstrated by examining tissue-specific gene expression patterns as well as for 

identifying co-expressed genes. 

Co-expression analysis of cancer genes and lncRNAs 

For each cancer gene probe in the core list, co-expression was calculated against 

all lncRNA probes individually using the microarray expression data. Co-expression was 

measured by Pearson product–moment correlation with Microsoft Excel (2013). The top 

10 absolute correlation values were kept. P-values were calculated using R 3.0.2 (R Core 

Team, 2013). Due to the high degrees of freedom, the P-value after Bonferroni correction 

for multiple testing in each correlation measurement returned a significance of <6.53E-

13. Cancer gene and lncRNA function were retrieved from the NCBI Gene database 

(Maglott et al., 2011). Cancer gene disease associations were provided in the COSMIC 

Cancer Gene Census List (Futreal, 2004). 

Weighted gene co-expression network analysis 
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The co-expression network was constructed using the WGCNA package 

(Langfelder and Horvath, 2008). The normalized expression data for probes from the 

extended cancer gene list and lncRNAs were used as input. Given the relatively large 

dataset and our interest in finding all the co-expression modules, we opted for a smaller 

minimum module size at 10 probes. The merge cut height, defined as the threshold of 

dissimilarity, 1-Topological Overlap Matrix (TOM), below which separate modules 

would be merged, was set to 0.2. Visual inspection of the initial hierarchical clustering 

revealed no outliers, and soft thresholding was set to 4. An unsigned network with 

connections based upon absolute correlations was constructed. Module assignment of 

cancer genes and lncRNAs was performed using democratic vote method. A gene was 

assigned to the module that had the highest number of probes for the gene. Genes with 

equal numbers of probes in different modules were assigned using the highest mean 

module membership for the probes. 

Functional term enrichment analysis 

Each module was analyzed for gene ontology term enrichment using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) (Huang da et al., 

2009). The analysis was performed using the Affymetrix probe identifiers in each module 

with the Affymetrix HG-U133 Plus 2.0 Array as the background. Where significant, 

functional annotation terms were selected for biological process, molecular function, and 

Online Mendelian Inheritance in Man (OMIM) disease association (Amberger et al., 

2009). The P-value provided by DAVID was used as the measure of significance. The 

significance threshold was set to 0.1 for the reported functional terms. 
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Network visualization 

Network visualization was performed using the VisANT software (Hu et al., 

2013). All edges were based on TOM values with a threshold set for a minimum of one 

connection for each node. The 100 probes with the highest intramodal connectivity were 

analyzed. Node size was determined by connectivity. 

 

2.3 Results 

Normal cross-tissue expression profiles show high co-expression between lncRNAs and 

cancer genes 

Cancer genes and lncRNAs appear to be involved in some common biological 

functions. Examples include the involvement in development and transcriptional 

regulation. Both cancer genes and lncRNAs have been shown to have tissue-specific 

expression patterns (Cabili et al., 2011). We thus hypothesize that associations between 

known cancer genes and lncRNAs could be demonstrated through correlations in 

expression across various tissue samples. Previous studies have also shown that different 

isoforms of a cancer gene or lncRNA may have specific activity, function, and impact on 

cancer progression (Li et al., 2013; Bochenek et al., 2013). Because of this possibility 

and our concern about the poor quality of some probe sets, we studied the microarray 

data at the probe level instead of combining multiple probe sets for a gene. We examined 

the highest co-expression correlations between the lncRNA and cancer gene probes. The 

degree of co-expression is shown here as a measure of the Pearson product–moment 

correlation. Since lncRNAs may have a silencing effect, the absolute correlation was used 
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in the ranking to account for a negative Pearson correlation (Negishi et al., 2014; Pandey 

et al., 2008). 

The core cancer genes are a curated list of genes from the COSMIC cancer gene 

census database, and they are causal in that for 90% of the gene list, mutations in somatic 

cells causes some form of cancer and for 20% of the gene list mutations in germ line cells 

causes a predisposition to cancer (Futreal et al., 2004). From the integrated microarray 

expression dataset, which contains 2,968 profiles of various normal tissue samples (Wang 

et al. 2010), we extracted the expression profiles for the corresponding probes of all 

available lncRNAs and core cancer genes. The 10 highest correlations were compiled 

(Additional file A-2). Interestingly, a large majority of the co-expressed lncRNA probes 

show positive correlation with cancer genes and the minority show negative correlation. 

The well-known lncRNA HOTAIR showed a positive correlation (0.38) with homeobox 

C13 (HOXC13) and the lower level of positive correlation (0.28) with the transcription 

factor paired box 1 (PAX1). The lowly expressed lncRNA, PCA3, only showed a low 

level of positive correlation (0.23) with Rho guanine nucleotide exchange factor 12 

(ARHGEF12). 

To highlight the extent of co-expression between lncRNAs and cancer genes, the 

pairs with the highest correlations were compiled and annotated. Ten cancer genes with 

the highest absolute correlations with lncRNAs are shown in Table 2.1. The disease 

associations are from the COSMIC list (Futreal et al., 2004). All the correlation values 

are greater than 0.8 and well below the significance threshold of 0.05 (P-value < 6.53E-

13). The majority of the lncRNAs analyzed in this study lack any functional annotation, 
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and this is reflected in the highly co-expressed lncRNAs. MEG3 is the only lncRNA to 

have functional annotation (Maglott et al., 2011). Notably, two lncRNAs, 

LOC100505812 and ITGB2 antisense RNA 1 (ITGB2-AS1), demonstrate high co-

expression with multiple cancer genes. For the cancer genes highly co-expressed with 

LOC100505812, three (PTPRC, FLI1, and IKZF1) are associated with acute lymphoid 

leukemia and two (IKZF1 and MYD88) are associated with diffuse large B-cell 

lymphoma. ITGB2-AS1 has high co-expression with IKZF1 and LCK, both of which are 

associated with acute lymphoid leukemia. The third cancer gene co-expressed with 

ITGB2-AS1, WAS, is associated with lymphoma. The proteins encoded by the cancer 

genes have various functions. Two of the 10 proteins function as transcription factors, 

and 5 have DNA- or RNA-binding capacity. While the majority of the proteins appear to 

have functions related to transcription, the other proteins include receptors, phosphatases, 

and kinases. Four of the 10 cancer genes are involved in the immune response. 

Weighted gene co-expression network analysis shows close associations of lncRNAs and 

cancer genes 

WGCNA with the extended gene list resulted in 37 distinct modules (Figure 2.1A 

and 2.1B). With the exceptions of Module 3 and Module 5, the six largest modules 

showed a greater number of cancer gene probes within the module than lncRNA probes 

(Figure 2.1B). Module 3 had twofold more lncRNAs than cancer genes. All of the 

modules contained at least one lncRNA probe, and Module 34 was the only module that 

contained only lncRNA probes. Nevertheless, the majority of the modules showed a 

relatively equal distribution of lncRNAs and cancer genes. There were 1,493 out of the 
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5,079 probes analyzed (29.4%) which were not assigned to any modules (shown in grey 

in Figure 2.1A). Out of the 2,632 cancer gene probes, 489 (18.6%) were not assigned, 

whereas 1,004 out of the 2,447 lncRNA probes (41.0%) were left out. 

 

Table 2.1 Identification of lncRNAs highly co-expressed with known cancer genes 

 
Cancer 

Gene 

Function Disease 

Associations 

lncRNA Function Correlation 

Coefficient 

PTPRC Protein tyrosine 

phosphatase 

receptor involved 

in T-cell activation 

Acute lymphoid 

leukemia (ALL) 

LOC100505812 Uncharacterized 0.86215 

FLI1 Transcription 

factor and proto-

oncogene 

Ewing sarcoma, 

ALL 

LOC100505812 Uncharacterized 0.85744 

IKZF1 Zinc finger 

transcription factor 

involved in 

lymphocyte 

differentiation 

ALL, diffuse 

large B-cell 

lymphoma 

(DLBCL) 

LOC100505812 Uncharacterized 0.84260 

ITGB2-AS1 Uncharacterized 0.83235 

C21orf96 

(RUNX1-IT1) 

Uncharacterized 0.82207 

RBM15 RNA-binding motif 

protein 

Acute 

megakaryocytic 

leukemia 

LOC144438 Uncharacterized 0.83453 

HNRNP

A2B1 

Ribonucleoprotein 

involved in pre-

mRNA processing 

Prostate cancer FLJ31306 Uncharacterized 0.81977 

CNBP Zinc finger 

SSDNA and 

SSRNA-binding 

protein 

Aneurysmal 

bone cyst 

LOC388789 Uncharacterized 0.81457 

MYD88 Adapter protein for 

Toll-like receptor 

and interleukin-1 

(IL-1) signaling 

DLBCL LOC100505812 Uncharacterized 0.81449 

LCK Protein tyrosine 

kinase involved in 

T-cell development 

ALL ITGB2-AS1 Uncharacterized 0.81244 

CHN1 GTPase-activating 

protein involved in 

neuronal signal-

transduction 

Extraskeletal 

myxoid 

chondrosarcoma 

MEG3 Potential tumor 

suppressor that 

interacts with 

p53 

0.81079 

WAS Signal transduction 

protein possibly 

involved in actin 

filament 

reorganization 

Lymphoma ITGB2-AS1 Uncharacterized 0.81049 



 41 

 

 

Figure 2.1 WGCNA of cancer genes and lncRNAs. (A) Cluster dendrogram of the co-

expression modules. The modules were designated numerically based on size, and the six 

largest modules with Module 1 as the largest module are labeled adjacent to their 

respective color band. The grey band contains probes not assigned to any module. (B) 

Chart of the probe counts for cancer genes and lncRNAs respectively for each module. 
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Modules 1, 4, and 5 were chosen for further analysis. These selected modules 

were larger in size and showed high connectivity and module membership (data not 

shown) as well as divergence in expression patterns from one another. 

Module 1 shows functional enrichment of transcriptional activity and blood-specific 

expression patterns 

To examine the expression pattern of the module, samples were grouped by tissue 

types, and the mean expression level in each tissue type was calculated. As shown in 

Figure 2.2A, the average expression level of Module 1 genes is significantly higher in 

blood cells than the other tissues. Within the blood tissue type, neutrophils have the 

highest expression. The blood-specific expression pattern is also evident in the Module 1 

expression heat map (Figure B-1A). The other tissue types have median to low 

expression for both lncRNAs and cancer genes. Interestingly, the cancer genes have a 

more uniform high expression pattern in blood cells in comparison to lncRNAs, which 

show moderate expression in blood cells. 
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Figure 2.2 Expression and functional term enrichment of the largest Module 1 with high 

level of expression in blood. (A) Chart of the average expression levels of Module 1 

genes in broad tissue types. Error bars represent standard deviations. (B) DAVID 

functional analysis of Module 1 genes. The enriched terms for biological process, 

molecular function, and OMIM disease association are plotted against fold enrichment 

with the corresponding P-value. 
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Figure 2.3 Network visualization of the largest Module 1 with high level of expression in 

blood. VisANT network visualization of the top 100 probes with the highest intramodal 

connectivity within Module 1. Node size is proportional to intramodal connectivity and 

edges are based upon TOM values with the minimum threshold set to 0.06. 

 

To determine the biological significance of the module, functional term 

enrichment using the DAVID web server was performed (Figure 2.2B). While the highest 

fold enrichment has been found in a component of the innate immune response, there is a 

significant enrichment for lymphocyte activation for Module 1. Other terms show 

functional enrichment for processes involved in cell death. The tissue specificity and 

gene ontology term enrichment reinforce the OMIM disease association with acute 

myeloid leukemia (AML). 

To visualize the co-expression network and identify hub genes, the 100 probes 

with the highest intramodal connectivity were analyzed using the VisANT software 

(Figure 2.3). The network visualization shows dense connectivity within the module. The 

lncRNA LOC100505812 is a hub gene for Module 1, providing further evidence of the 
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module’s role in lymphocyte activation. Two other uncharacterized lncRNAs are present 

in Module 1, ITGB2-AS1and C17orf44. Module 1 is the largest module with 879 co-

expressed probes. Thus, although the other lncRNAs do not represent hub genes in the 

network of the selected probes, they may have high connectivity degrees and possibly 

play a central role in the biological function of the module. 

Module 4 expression is low in blood and enriched for genes associated with intracellular 

signaling pathways 

In contrast to Module 1, Module 4 shows significantly lower expression in blood 

samples than the other tissue types (Figure 2.4A). Module 4 genes do not show obvious 

tissue-specific expression patterns. The lncRNAs show relatively low expression across 

tissues when compared to the cancer genes (Figure B-1B). Functional terms for Module 4 

are enriched for intracellular signaling pathways involved in cell proliferation at the 

process level and phosphatase and kinase activity at the molecular level (Figure 2.4B). 

Interestingly, Module 4 shows an OMIM disease association for AML similar to Module 

1. Module 4 also has less disparity between the proportion of lncRNAs to cancer genes 

and a larger number of higher intramodal connectivity for lncRNAs than Module 1 

(Figure 2.5C). The network visualization reveals a tendency of the lncRNAs to not have 

connections with each other but many connections with the cancer genes. For the nodes 

with the highest connectivity in Module 4, only 1.3% of the potential lncRNA–lncRNA 

connections were above the TOM connection threshold of 0.06, and of the potential 

connections between lncRNAs and cancer genes, 13.5% were above the TOM connection 

threshold. The uncharacterized lncRNA, LOC100130776, is identified as a potential hub 
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gene within Module 4, and the lncRNA, AC009133.2 (GenBank accession) is of interest 

as well due to its high connectivity within the module. 

Module 5 exhibits high expression in brain tissues, OMIM disease association with 

neuroblastoma, and functional enrichment for neural development 

Module 5 genes show significantly higher levels of expression in the brain and 

retina tissues than the other tissue types (Figure 2.4A). Moreover, the expression level in 

the brain is higher than in the retina. The heat map of Module 5 expression shows that 

cancer genes generally have higher expression than the lncRNAs in the brain samples 

(Figure B-1C). Within the brain tissue group, dorsolateral prefrontal cortex has the 

highest mean expression level. 
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Figure 2.4 Expression and functional term enrichment of Module 4 genes with low level 

of expression in blood. (A) The average expression levels of Module 4 genes in broad 

tissue types with standard deviation bars. (B) The functional enrichment of biological 

process, molecular function, and OMIM disease association terms for Module 4 plotted 

against fold enrichment with the corresponding P-value. 
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Figure 2.5 Network visualization of Module 4 genes with low level of expression in 

blood. VisANT network visualization of the top 99 probes with the highest intramodal 

connectivity within Module 4 (RNASEH2B excluded from visualization due to no 

connectivity above the edge threshold). The minimum TOM value threshold for edges is 

set to 0.06. 
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Figure 2.6 Expression and functional term enrichment of Module 5 genes with high 

proportion of lncRNAs and high level of expression in brain tissues. (A) Average 

expression levels of Module 5 genes in broad tissue types with standard deviation bars. 

(B) Functional enrichment analysis of Module 5 genes. The enriched terms for biological 

process, molecular function, and OMIM disease association are plotted against fold 

enrichment with the corresponding P-value. 
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Figure 2.7 Network visualization of Module 5 genes with high proportion of lncRNAs 

and high level of expression in brain tissues. VisANT network visualization of the top 

100 probes with the highest intramodal connectivity within Module 5. The minimum 

TOM value threshold for edges is set to 0.06. 

 

Functional term enrichment indicates that Module 5 genes may play a role in 

neural development (Figure 2.4B). Module 5 has the significant enrichment of the 

biological process terms, positive regulation of developmental process and neuron 

differentiation. Not surprisingly given its brain-specific expression pattern, Module 5 is 

the only module to show an OMIM disease association with neuroblastoma. Although 

Module 5 does not show any significant molecular function term enrichment for 

transcriptional regulation as the previous two modules analyzed, it is similar to Module 4 

in its term enrichment for intracellular signaling functions. Module 5 is also enriched for 

microtubule binding. 
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Network visualization of Module 5 shows less connectivity than Modules 1 and 4 

(Figure 2.4C). The pattern of high numbers of connections between lncRNAs and cancer 

genes is also observed in this module. However, there is not a greater propensity of 

connections between lncRNAs and cancer genes as was observed in Module 4. For the 

nodes with the highest connectivity in Module 5, 59.3% of the potential lncRNA–

lncRNA connections were above the TOM connection threshold of 0.06, and of the 

potential connections between lncRNAs and cancer genes, 57.1% were above the TOM 

connection threshold. Six lncRNAs are identified as hub genes within Module 5. Four of 

the hub genes, LOC645323, LOC643763, LOC150622, and RFPLS are uncharacterized, 

whereas the other two hub genes, MEG3 and SOX2OT, have been studied. SOX2OT has 

been shown to be expressed specifically in the brain and linked to neurogenesis in mice 

(Amaral et al., 2009). MEG3 is implicated in a variety of cancers, and MEG3 knockouts 

cause developmental disorders in mice (Benetatos et al., 2011). 

 

2.4 Disucussion 

In this study, we have demonstrated high degrees of co-expression between 

certain lncRNAs and cancer genes in noncancerous tissues. We have cataloged the 

lncRNAs that are highly co-expressed with the cancer genes in the core list. This catalog 

can serve as a prioritizing resource for research focused on the causal cancer genes and 

their potential interactions with lncRNAs. We have highlighted the biological 

significance of these interactions through the analysis of the highest correlations between 

lncRNAs and cancer genes. Interestingly, cancer genes that have high correlation with the 
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same lncRNA also tend to share a common disease association. The co-expression 

analysis has also provided new insights into the association of lncRNAs and cancer 

genes. The mainly positive correlations in expression between lncRNAs and cancer genes 

imply function beyond transcriptional inhibition. Tissue-specific cancer genes, especially 

those expressed in blood or brain tissues, tend to have higher degrees of co-expression 

with lncRNAs. The cancer gene with the highest lncRNA co-expression, CHN1, is 

predominantly expressed in the brain, consistent with the relatively high level of 

expression for lncRNAs in this tissue type (Wu et al., 2013). In addition, our results 

suggest a potential role of lncRNAs in the immune response. LOC100505812 is located 

on chromosome 19 adjacent to the caspase recruitment domain family member 8 

(CARD8) gene, which is involved in the inflammation response. It is possible that 

LOC100505812 may have a functional role in the immune response as well as the 

leukemia and lymphoma disease states. However, the expression of LOC100505812 may 

also be the result of transcriptional noise due to its close proximity to the CARD8 gene 

since lncRNAs and protein-coding genes are equally likely to be transcribed with 

adjacent genes (Djebali et al., 2012). Both LOC100505812 and ITGB2-AS1 present 

interesting possibilities as leukemia or lymphoma biomarkers. 

We have also performed gene co-expression network analysis to identify modules 

containing both lncRNAs and cancer genes. The expression patterns of the modules and 

their enrichment for biological process, molecular function, and disease association terms 

have provided the initial characterization for the previously uncharacterized lncRNAs. 

We have identified candidate lncRNAs that are hub genes within the biologically 
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significant modules and thus warrant further studies. For instance, LOC100505812 is a 

hub gene in Module 1, which shows functional term enrichment for transcriptional 

regulation and disease association for AML. Moreover, the analysis of three co-

expression modules has provided new insights into the potential roles of lncRNAs in 

cancer. While Modules 1 and 4 share AML disease association, there is a stark contrast in 

the expression patterns between the two modules. Recent studies have suggested the 

involvement of several lncRNAs such as HOTAIRM1 and RUNX1 in AML, but still 

little is known about their roles in the disease (Zhang et al., 2014; Wang et al., 2014). 

Given the elevated expression pattern, the lncRNAs within Module 1 may have more 

functional potential related to the disease when compared with Module 4. However, 

overexpressed lncRNAs have previously served as diagnostic biomarkers. Thus, Module 

4 with low level of expression in normal blood cells may provide some interesting 

diagnostic lncRNAs for cancer. Module 5 is of particular interest due to its brain-specific 

expression pattern, greater proportion of lncRNAs than cancer genes, and disease 

association with neuroblastoma. While lncRNAs have been shown to be involved in 

neural development, little is known about their role in neuroblastoma (Wu et al., 2013). 

Further characterization of the lncRNAs within Module 5 could provide insights into this 

disease. 

We have shown the utility of our integrated microarray expression dataset for 

functional annotation of lncRNAs associated with cancer genes. The dataset contains 

2,968 high-quality expression profiles of various normal tissue samples, which have been 

selected, after manual curation, from the vast amount of microarray data in public 
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databases (Wang et al., 2010). We have used this high-quality dataset for the co-

expression analysis of cancer genes and lncRNAs. Since highly co-expressed genes are 

often involved in similar biological processes, the findings provide useful information for 

lncRNA annotation as well as cancer research. Our approach is different from the 

differential expression analysis of cancerous and normal samples, which is commonly 

used to identify disease-associated lncRNAs. Since cancer is a highly heterogeneous 

disease and lncRNAs are normally expressed at low levels, the analysis of gene co-

expression in a wide range of normal tissue types may allow for the broader identification 

of cancer-associated lncRNAs and functional characterization. This approach can also be 

used to determine lncRNA associations with other disease states. Nevertheless, one 

limitation in this study is that only 1,865 lncRNAs are represented in the microarray 

platform (Affymetrix HG-U133 Plus 2.0 Array). This limitation can be overcome by 

utilizing RNA-seq data. With the rapid accumulation of RNA-seq data in public 

databases, a high-quality expression dataset containing all lncRNAs will be compiled and 

used for the gene co-expression network analysis in the future. 
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Abstract 

Long non-coding RNAs (lncRNAs) have been implicated in autism spectrum 

disorder (ASD) and identified as potentially key regulators of neural development. Yet, 

many lncRNAs remain uncharacterized for their association with either. In this study, we 

performed co-expression network analysis on the developing brain transcriptome to 

identify potential lncRNAs associated with autism spectrum disorder and possible 

annotations for lncRNAs’ functional role in brain development. We found co-enrichment 

of lncRNA genes and ASD risk genes in two distinct groups of modules showing 

elevated prenatal and postnatal expression patterns respectively. Further enrichment 

analysis of the module groups indicated that the early expression modules were 
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comprised mainly of transcriptional regulators while the later expression modules were 

associated with synapse formation. Finally, lncRNA genes were prioritized for their 

connectivity with the known ASD risk genes through analysis of an adjacency matrix. 

Collectively, the results imply early developmental repression of synaptic genes through 

lncRNAs and ASD transcriptional regulators. 

 

3.1 Introduction 

Long non-coding RNAs (lncRNAs) are defined as transcripts greater than 200 

nucleotides in length, which do not code for protein. They serve a wide range of 

functions including, but not limited to, scaffolding for protein complexes, transcriptional 

regulation, and translational regulation (Shi et al., 2013; Tsai et al., 2010; Wang and 

Tran, 2013). Currently, the GENCODE consortium lists 15,941 lncRNA genes (Harrow 

et al., 2012). LncRNAs are potentially key regulators of brain development. Expression 

of lncRNAs has been shown to have increased temporospatial specificity in comparison 

to protein-coding genes, and lncRNAs are expressed in the brain at relatively high levels 

(Derrien et al., 2012; Cogill and Wang, 2014). Nescula et al. (2014) found that lncRNA 

genes of earlier evolutionary origin have been shown to contain homeobox transcription 

factor binding sites in their promoter regions at a frequency greater than two times that of 

protein coding genes. This indicates the potential role of lncRNAs in development. This 

group also found that younger lncRNAs, in terms of phylogenic split from a common 

ancestor, show lower interspecies conservation and a number of lncRNA families unique 

to primates offer potential insight into higher cognitive functions. 
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Autism spectrum disorder (ASD) is a heterogeneous group of 

neurodevelopmental disorders with a complex genetic etiology. The diagnosis is 

determined by significant deficit in reciprocal social interactions, impaired 

communication, and restricted, repetitive behaviors, and most documented cases are 

clinically diagnosed by the age of three (American Psychiatric Association, 2012). There 

is strong evidence to support a genetic causation model, including 88% pairwise 

concordance amongst monozygotic twins and 18.7% risk of ASD for siblings of affected 

individuals (Rosenberg et al., 2009; Ozonoff et al., 2011; Liu and Takumi, 2014). As 

with most complex genetic disorders, ASD could result from the accumulation of low 

risk common variants, high risk rare variants, or both. Approaches for ASD genetic 

studies have included copy number variation (CNV) studies, genome-wide association 

studies (GWAS) and rare de novo variant (RDNV) exome studies (Liu and Takumi, 

2014). Ziats and Rennert (2013) found 222 differentially expressed lncRNAs in ASD. 

ASD risk genes are convergent on synaptic gene translation, transcription and chromatin 

remodeling (Liu and Takumi, 2014; Parikshak et al., 2013). These three processes can be 

controlled by lncRNAs (Wang and Chang, 2011).  

This study used co-expression network analysis to identify lncRNAs potentially 

associated with ASD and provide possible functional annotations of lncRNAs for brain 

development. Since anatomical differences between ASD and control brain samples have 

been shown in several different structures, it is therefore beneficial in this study to 

examine all of the structures during the developmental period to place lncRNAs in a 

functional context within the developing brain (Lange et al., 2015). The BrainSpan 



 61 

dataset offers a unique opportunity for identification of high-priority potential ASD 

associated lncRNA genes due to its comprehensive array of brain structures and 

developmental time points (Hawrylycz et al., 2012). We have compiled a comprehensive 

list of ASD risk genes from several sources to measure co-expression with lncRNA genes 

annotated in the GENCODE dataset (Harrow et al., 2012). Co-expression network 

analysis was performed on a curated set of genes from the BrainSpan dataset to cluster 

the genes into modules. Expression patterns and co-enrichment with lncRNA genes and 

ASD risk genes were used to identify modules of interest. Enrichment analysis and 

network topology analysis were carried out to associate biologically significant functions 

with the modules. Finally, to identify lncRNA genes of interest, lncRNAs were 

prioritized based upon their association with the known ASD risk genes within the 

network.  

 

3.2 Methods 

Datasets 

The BrainSpan data set is a developmental transcriptome for the human brain 

(Hawrylycz et al., 2012). It is a RNAseq dataset in units of reads per kilobase million 

(RPKM), mapped to genes as annotated by the GENCODE consortium version 10. It 

consists of 524 samples covering a developmental time span of 8 weeks post conception 

to 40 years of age and 26 brain structures. Genes which did not show a minimum 

expression of 1 RPKM for one of the 524 samples and genes not present in the latest 

build of the GENCODE consortium (version 24) were removed from the dataset (Harrow 
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et al., 2012). Expression values were then 
2log ( 1)RPKM   transformed. Next the sum of 

pairwise covariance was calculated for each gene. Using the KMeans class from the 

Scikit-learn Python library (Pedregosa et al., 2011), clustering with the total clusters set 

to 2 was performed on the sum of covariance values to filter out low information genes 

(Tritchler et al., 2009; Sakata et al., 2015). Then ASD risk genes and lncRNA genes 

within the dataset were identified (Additional file A-3). ASD risk genes were compiled 

from three different sources. We selected 290 genes from the Gene Scoring Module from 

the Simons Foundation Autism Research Initiative (SFRARI) on the criteria of a score of 

1-4 with 1 being high confidence and 4 being minimal evidence (Basu et al., 2009). An 

additional 170 genes were from the core set of the Autism Knowledge Base from the 

Center for Bioinformatics in Peking University (Xu et al., 2012). The third source from 

which we selected 107 genes was from an exome sequencing study for de novo loss-of-

function mutations in ASD cases (De Rubeis et al., 2014). Redundancy among the three 

datasets were removed resulting in an ASD risk gene set consisting of 433 genes. Genes 

of the lncRNA biotypes were indicated in the GENCODE build. 

Co-expression network analysis 

Genes were clustered into modules using the weighted gene co-expression 

network analysis (WGCNA) package in R (Langfelder et al., 2008). The package first 

generates a topological overlap matrix using neighbourhood analysis and the weighted 

pairwise correlation between genes  
P

i jcorr x x  where P  is a soft threshold for network 

scalability. For this study, we found that we reached a scale free topology with a soft 

threshold of 7 for this study. Then a dissimilarity dendrogram from the topological 
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overlap matrix is created, and the genes are grouped using a dynamic tree- cutting 

algorithm. The network in this study was an unsigned bi-weight network with a minimum 

module size of 30 and a merge cut-off height of 0.2. The heatmap of the expression 

patterns for the modules was generated using a modified version of the gplots package in 

R (Warnes et al., 2015). The expression patterns themselves are the eigengene (first 

principal component) for the respective modules. Enrichment of lncRNA and ASD risk 

genes within the modules was calculated by applying Fisher’s exact test to gene type 

frequency within the module compared to gene type frequency for the entire dataset. The 

P-value was adjusted to a false discovery rate (FDR) to account for multiple testing using 

the p.adjust function in the stats package in R (R Core Team, 2014). For better 

visualization of enrichment, significance values were 
10log ( )FDR   transformed.  

Enrichment analysis 

Functional term enrichment for each module was implemented through the use of 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang 

da et al., 2009). This software receives a gene list and applies the EASE algorithm, which 

is a variation of the Fisher’s exact test, using gene annotations present in the database and 

a designated background. In this study, enrichment was measured against a human 

genome background, and genes which could not be mapped were not considered in the 

enrichment calculations. The FDR values generated from DAVID were transformed as 

mentioned previously. Enrichment for significantly expressing genes within brain 

structures was calculated using the same methodology used to determine ASD and 

lncRNA gene enrichment in the previous section. Frequencies were grouped by 
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developmental time periods and gene types. The three developmental time periods used 

were prenatal (8pcw-37pcw), childhood (4mos-15yrs), and adulthood (18yrs-40yrs) 

(pcw=post conception weeks; mos=months; yrs=years). The gene types were lncRNA 

genes, ASD risk genes, and all genes within the module. The values were determined by 

the number of genes with expression greater than or equal to 1 RPKM for a given sample 

divided by the total possible number of genes compared to the appropriate background.  

Network visualization and analysis 

To construct a network visualization, we first sought to determine significant 

interactions between genes. We therefore constructed an adjacency matrix for the entire 

dataset using the absolute Pearson product moment correlation to a power of 7 as a 

measure of connectivity between genes. We then selected the top 5% of the correlations 

which became the edges in our network while the genes became the nodes. The network 

was then sub-divided based upon module assignments to determine changes in topology 

specifically in regard to lncRNA gene and ASD risk gene interactions. Representative 

modules were visualized using the Cytoscape software (Shannon et al., 2003). To 

prioritize lncRNA genes within our dataset for ASD association, we adapted a 

methodology used by Oliver et al. (2014), which used connectivity as a means of 

prioritization. Here we sum the pairwise connectivity from the adjacency matrix between 

the target lncRNA gene and all the known ASD risk genes in the dataset. The 

connectivity score is then normalized using 
 

 

min( )

max( ) min( )

ix x

x x




  for the range of all lncRNA 

genes analysed. 
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3.3 Results 

Co-expression network analysis within the developing brain shows high co-enrichment of 

lncRNA genes and ASD risk genes in elevated pre- and postnatal expression modules 

The BrainSpan dataset offers an opportunity to analyse in depth the gene 

expression patterns of the developing human brain (Hawrylycz et al., 2012). However, 

the dataset required further curation for efficient co-expression analysis to prevent noise 

from low expression or low variance genes. We first removed all genes which did not 

show sufficient expression (< 1 RPKM), and then selected for genes which showed high 

pairwise covariance with other genes within the dataset. The 20,456 genes which 

remained after the curation presented an interesting distribution of gene biotypes (Figure 

3.1A). While protein-coding genes only account for 40.4% of the genes within the 

dataset, after curation they account for 71.1% while antisense lncRNA genes and long 

intervening RNA (lincRNA) genes originally comprised 19.1% of the dataset were 

reduced down to 11%.  

 

 

 

 

 

 

 

 

 

 

 



 66 

A 

 

B 

 
 

Figure 3.1 Co-expression analysis of BrainSpan dataset. (A) Pie chart of the distribution 

of genes by biotype for the curated gene set. (B) Heat map of module eigengenes from 

co-expression analysis for all samples chronologically. The row labels correspond to the 

module (M1=Module 1) and the column labels indicate the time point ranges (pcw=post 

conception weeks, mos=months, and yrs=years). To the right of the heatmap is a color 

sidebar mapping the enrichment of the modules for lncRNA genes and ASD risk genes 

respectively. The legend indicates the level of significance with the threshold set at 1.3 or 

FDR=0.05 (sig=significance). 
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After dataset curation, weighted gene co-expression network analysis (WGCNA) 

was performed (Langfelder et al., 2008).  We found 29 modules. We mapped the 

expression pattern of the eigengene (first principal component) for each module onto a 

hierarchically clustered heatmap to better visualize shared expression patterns. Co-

enrichment for lncRNA genes and ASD risk genes were also mapped to the modules 

(Figure 3.1B). We found two distinct clades from the module clustering, which show co-

enrichment for lncRNA genes and ASD risk genes. One clade comprised of modules 1, 4, 

6, 8, 12, which accounts for 9,355 genes within the dataset, shows elevated expression in 

prenatal samples and lower expression in postnatal samples. These sets are further 

referred to in this paper as early expression modules. Intriguingly, the other clade 

comprised of modules 3 and 7 shows an inverse pattern in that prenatal expression is low 

and postnatal expression is elevated. These sets are referred to as late expression 

modules. Only 5 of the 29 modules did not show significant enrichment (FDR<0.05) for 

lncRNA genes while 10 of the modules showed significant enrichment for ASD risk 

genes with module 6 being alone in showing high enrichment for both gene types. 

Enrichment analysis of two module groups shows term enrichment for transcriptional 

regulation and synapse formation respectively and complementary structure enrichment 

for sensory cortical regions  

To further characterize our module groups of interest, we performed term 

enrichment analysis. The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) term enrichment analysis assigns Gene Ontology (GO) terms based 

upon their enrichment within the gene set (Huang da et al., 2009). It should be noted that 
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the gene sets are comprised of all of the genes within a module and not limited to ASD 

and lncRNA genes. While there are several categories for terms, we chose biological 

process, molecular function, and cellular component functional annotation terms to 

characterize our module groups. These categories offer the most relevant information for 

lncRNAs whereas the other categories are more relevant to protein coding genes or 

partially redundant to the given categories. For each module in either the early expression 

or late expression group, the most significant terms for each category are shown in Figure 

3.2A and Figure 3.2B. The early expression modules (M1, M4, M6, M8, and M12) show 

overlap in biological process for the broad terms of transcription and modification-

dependent macromolecule catabolic process, which corresponds to the breakdown of 

large macromolecules. There is also overlap in localization to the nuclear lumen, and the 

molecular function of DNA-binding as well as general nucleotide binding. Collectively 

this implies that the early expression modules are enriched for transcriptional regulators 

as well as partially involved in the breakdown of nucleotides. However, the late 

expression modules (M3 and M7) are enriched for a different aspect of brain 

development. While module 7 has enrichment for relatively ambiguous terms associated 

with protein transport, module 3 shows enrichment for genes involved in synaptic 

transmission and localized to the synapse.  

Grouping together the samples based on structure and developmental period 

(prenatal, childhood, and adulthood), we analysed the enrichment of structures for 

expressed genes collectively, lncRNA genes, and ASD risk genes for the two module 

groups (Figure 3.3A and Figure 3.3B). Some structures had samples for the prenatal 
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period but did not have samples for childhood and adulthood. Therefore for the early 

expression modules, we analysed all the structures for just the prenatal period as the later 

developmental periods (childhood and adulthood) showed little to no enrichment for 

structure-specific expression. For the late expression modules we analysed only 

structures present in all three developmental periods.  

Enrichment of expressed genes in the early expression modules was significant 

for all of the structures. Interestingly, expressed lncRNA genes and ASD risk genes show 

similar patterns of enrichment in the different brain structures for the early expression 

modules. Not surprisingly, expressed lncRNA genes and ASD risk genes are highly 

enriched for the sensory cortical regions, striatum, and amygdaloid complex. These three 

structures have been implicated in ASD (Di Martino et al., 20011; Zalla and Sperduti, 

2013; Marco et al., 2011).  

Enrichment of expressed genes in the brain structures for the late expression 

modules shows distinct patterns based on gene type. With the exception of the 

mediodorsal nucleus of thalmus, all of the structures were significantly enriched 

(FDR<0.05) for expressed genes during the prenatal period. Thirteen of the structures 

were significantly enriched for expressed genes during childhood, and thirteen structures 

were significantly enriched for expressed genes during adulthood. The hippocampus 

became significantly enriched during the transition from childhood to adulthood, and the 

cerebellar cortex lost significant enrichment in the same transition period. Enrichment 

values for expressed lncRNA genes and ASD risk genes within structures do not show 

the same similarities as was observed for the early expression modules. Expressed 



 70 

lncRNA genes are significantly enriched in the prenatal period for every structure, only 

significantly enriched for the cerebellar cortex in the childhood developmental period, 

and significantly enriched for six structures in the adult developmental period. Expressed 

ASD risk genes show no enrichment for any structure in the prenatal period, significant 

enrichment in eight structures during the childhood developmental period, and significant 

enrichment in eight structures during the adult developmental period. Intriguingly, there 

is no significant enrichment for expressed ASD risk genes in the striatum, which has been 

implicated in the physiopathology of ASD (Di Martino et al., 2011). 
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Figure 3.2 Term enrichment analysis of early and late expression module groups. (A) 

Term enrichment color coded by module for early expression modules. Term categories 

are from the top to bottom: cellular component, molecular function, and biological 

function for each module in the group. The red vertical line indicates the significance 

cutoff (FDR=0.05). Modules 8 and 12 did not have significant terms for molecular 

function and cellular compartment respectively. (B) Term enrichment for late expression 

modules. 
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Figure 3.3 Gene expression enrichment analysis of early and late expression module 

groups. (A) Heatmap for structure specific enrichment for early expression modules. Row 

labels indicate the brain structure and the columns indicate the developmental period and 

the gene type with all corresponding to all of the genes within the module. The 

enrichment values are shown in each cell, and rows are clustered based on their 

enrichment values. (B) Heatmap for structure specific enrichment for late expression 

modules.  
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Visualization of the topology of module networks demonstrates high connectivity between 

lncRNA genes and ASD risk genes for early expression modules 

While term and structure enrichment can give general information on the 

biological roles associated with modules and provide potential annotation for 

uncharacterized lncRNA genes, it does not indicate the interactivity between ASD risk 

genes and lncRNA genes. The enrichment analysis did demonstrate the possibility that 

lncRNA and ASD risk genes may be more closely associated in the early expression 

modules than in the later ones. This is confirmed by network analysis. To form the 

network we used an adjacency matrix to establish pairwise correlation for all of the 

genes. We then selected for the most significant (highly correlated) interactions for the 

network. For each of the modules of interest, we observed the significant connections 

between lncRNA genes and ASD risk genes and found that for the early expression 

modules there was greater connectivity between the two gene types. Figure 3.4A and 

Figure 3.4B show the networks for a representative early expression module (M12) and 

late expression module (M7) respectively. One module from each group was chosen to 

demonstrate the contrast in topologies between them. Module 12 shows dense 

connectivity for all of the nodes but does have a greater number of interactions between 

ASD risk genes and lncRNA genes than between lncRNA genes and ASD risk genes 

respectively. Notably there is a high degree of interaction between lncRNA genes. 

However, module 7 shows a less dense network even though the number of genes present 

is comparable to that of module 12. Interactions between ASD risk genes and lncRNA 
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genes are greater than other interactions in the network with few interactions between 

lncRNA genes. 

 

A 

 
B 

 
 

Figure 3.4 Network topology for modules of interest (A) Network topology for lncRNA 

genes and ASD risk genes for module 12. ASD genes are red rectangles and lncRNA 

genes are blue ellipses. Interactions are color coded as follows: ASD to ASD=Green, 

ASD to lncRNA=Purple, lncRNA to lncRNA=turquoise. Modules are in an attribute 

based circular layout with the attribute being gene type. (B) Network topology for 

lncRNA genes and ASD risk genes for module 7. 
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Prioritization of lncRNA genes using connectivity with known ASD risk genes implicates 

biologically relevant targets 

To identify high-priority targets for further study, we prioritized the lncRNA 

genes in our dataset based on their connectivity with known ASD risk genes. For each 

lncRNA gene, the pairwise correlation from our adjacency matrix was summed for all 

ASD risk genes. Genes were ranked relative to their sums of connectivity with higher 

values associated with greater potential association with ASD. The complete list of 

lncRNAs with their module assignment and normalized values for ASD gene 

connectivity and adjusted intramodular connectivity are provide in Additional file A-3. 

Adjusted intramodular connectivity is the sum of the pairwise connectivity of a gene for 

all other genes within the module with the sum of pairwise connectivity for the gene for 

all genes not in the module subtracted from it. The normalized value is based upon the 

range for all the genes in the dataset and calculated using the same method as for the 

normalized value for ASD gene connectivity. Table 3.1 shows highly prioritized 

lncRNAs which have been previously characterized and demonstrate tentative links to 

ASD. The gene prioritized the highest is RP11-281C10.5, an antisense lncRNA to 

CEP170, which is a component of the centromere and critical to cell division (Wellburn 

and Cheeseman, 2012). KDM4A-AS1 is antisense to KDM4A, a lysine de-methylase, 

which has been shown to increase copy number gains in CNVs associated with ASD 

(Black et al., 2013). LINC-PINT is a lincRNA, which is activated by P53 and like the 

well-characterized lncRNA, HOTAIR, has been shown to associate with polycomb 
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recessive complex 2 (Marin-Bejar et al., 2013). TUG1 is one of the few highly prioritized 

genes not grouped to module 1, and it has low intramodular connectivity. It has no direct 

link to ASD but has been implicated in neurodegenerative disorders (Wu et al., 2013). 

The role of lncRNAs in ASD is still being elucidated, so it is not surprising that many of 

the genes have no direct link to ASD. The list itself acts as a putative implication of the 

highly prioritized lncRNAs for their role in ASD.  

 

Table 3.1 List of selected biologically significant and highly prioritized for ASD 

association lncRNA genes. 

 

Name Biotype ASD Connectivity 

(Normalized) 

Module Intramodular Connectivity 

(Normalized) 

RP11-

261C10.5 

Antisense 1 1 0.8482 

KDM4A-

AS1 

Antisense 0.9015 1 0.8479 

LINC-

PINT 

Antisense 0.7091 1 0.7510 

TUG1 Antisense 0.6992 6 0.3157 

 

3.4 Discussion 

With the relatively recent expansion of the Autism Disorder to include Asperger’s 

Syndrome, Rett Syndrome, uncharacterized pervasive developmental disorders, and 

Autistic Disorder under the common banner of Autism Spectrum Disorders, the 

complexity of finding its causality increases (American Psychiatric Association, 2012). 

While there have been significant advances in clinical diagnostic tools, the number of 

ASD-affected individuals has increased at a rate greater than what is estimated to be due 

to improved diagnostics with the CDC reporting a 10-fold increase over a 20-year period 
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(Okamura et al., 2004). There are competing theories on the underlying cause of the 

disorder which are not mutually exclusive (Liu and Takumi, 2014). However, the leap 

from genetic abnormalities to phenotypic causation has been difficult due to a multitude 

of factors. Among them include the difficulty of studying the brain physiology of affected 

individuals and the complexity of genetic interactions associated with the disorder. 

Within this study we utilized the most comprehensive expression dataset currently 

available for the developing human brain to further elucidate the complex interactions in 

an effort to show the role of lncRNAs in brain development and ASD.  

LncRNAs have been shown to be in evolutionarily conserved gene families 

unique to primates and even further to humans alone (Necsulea, 2014), yet their 

functional roles in brain development warrant further definition. This study indicates a 

critical role for lncRNAs in transcriptional regulation and synaptic formation in the brain 

during development. Within this study, we have broadly characterized the role of 

lncRNAs in brain development and ASD. Clustering our curated gene list, we found that 

lncRNAs were enriched nearly ubiquitously across our modules but only co-enriched 

with ASD risk genes in two distinct module groups showing high prenatal and high 

postnatal expression respectively. This distinction in expression at that particular 

developmental point is interesting as it has been previously implicated as a critical time 

for ASD development (Parikshak et al. 2013). This data combined with term enrichment 

suggesting transcriptional regulation and the network topologies showing higher numbers 

of significant interactions between lncRNA genes and lncRNA genes strongly suggest 

that lncRNAs within the group of early expression modules regulate brain development 
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through repression of genes controlling synapse formation possibly in the late expression 

modules.  

ASD is a neurodevelopmental disorder, and in identifying potentially key lncRNA 

regulators of brain development we have also begun to identify putative high priority 

targets for potential therapeutics and diagnostics. Due to their tight regulatory control 

(Derrien et al., 2012), lncRNAs are excellent biomarkers. One of the most notable 

examples was in 1995, when the lncRNA PCA3 was discovered and has since become a 

diagnostic for pancreatic cancer (Angata et al., 2000). It was recently found that 90% of 

disease associated SNPs from genome-wide association studies were found outside of 

protein coding regions (Wang and Chang, 2011), which indicates non-coding genes and 

regulatory regions within the genome could have a major role in disease. These regions 

may also provide insight into the etiology of complex disorders such as ASD. Our group 

has previously applied the approach of co-expression network analysis to define high 

priority disease-associated lncRNA genes based upon normal tissue expression patterns 

when we published work showing strong associations between cancer genes and 

lncRNAs (Cogill and Wang, 2014). Our approach allows for disease associations to be 

implied based solely on expression patterns. It is our hope that this study will highlight 

lncRNA genes that can act as diagnostic markers to the disorder as well as genes that can 

further elucidate the etiology of ASD. We also hope that this study further demonstrates 

the utility of co-expression network analysis on non-disease samples to implicate 

lncRNAs in disorders.  
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Abstract 

Motivation: Autism spectrum disorders (ASD) are a group of 

neurodevelopmental disorders with clinical heterogeneity and a substantial polygenic 

component. High-throughput methods for ASD risk gene identification produce 

numerous candidate genes that are time-consuming and expensive to validate. 

Prioritization methods can identify high-confidence candidate genes. Previous ASD gene 

prioritization methods have focused on a priori knowledge, which excludes genes with 

little functional annotation or no protein product such as long non-coding RNAs 

(lncRNAs). 
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Results: We have developed a support vector machine (SVM) model, trained 

using brain developmental gene expression data, for the classification and prioritization 

of ASD risk genes. The selected feature model had a mean accuracy of 76.7%, mean 

specificity of 77.2% and mean sensitivity of 74.4%. Gene lists comprised of an ASD risk 

gene and adjacent genes were ranked using the model’s decision function output. The 

known ASD risk genes were ranked on average in the 77.4th, 78.4th and 80.7th percentile 

for sets of 101, 201 and 401 genes respectively. Of 10,840 lncRNA genes, 63 were 

classified as ASD-associated candidates with a confidence greater than 0.95. Genes 

previously associated with brain development and neurodevelopmental disorders were 

also prioritized highly within the lncRNA gene list. 

 

4.1 Introduction 

Autism spectrum disorder (ASD) is the umbrella term for the neurodevelopmental 

disorders: autistic disorder, Asperger’s syndrome, pervasive developmental disorder not 

otherwise specified, Rett syndrome and childhood disintegrative disorder. It is generally 

diagnosed at an age greater than four years old based predominantly on the behavioral 

phenotype described as delayed communication, difficulty acknowledging social cues, 

and engaging in repetitive behaviors (American Psychiatric Association, 2012). In 2010, 

the Centers for Disease Control and Prevention (CDC)  estimated the prevalence of ASD 

at 1 in 68 children aged 8, and this was an increase from the 2007 estimate of 1 in 150 

(CDC, 2014). The increase in prevalence may be attributable to more public awareness 

and implementation of prescreening technology (Chlebowski et al., 2013). Twin and 
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sibling studies indicate that ASD etiology is influenced heavily by genetics and to a lesser 

extent environmental factors (Kim and Leventhal, 2015). The actual physiological cause 

of ASD is currently unknown, but leading theories include imbalance between excitatory 

and inhibitory synapses and substandard signaling between brain structures due to poor 

axonal growth (McFadden and Minshew, 2013; Fakhoury, 2015). It is possible that a 

myriad of genetic and environmental factors could lead to distinct physiological 

conditions convergent on the behavioral phenotype.  

ASD is complex with hundreds of genes implicated in its etiology. The 

predominant focus of previous research has been on protein-coding genes, but there is the 

potential of more genes such as non-coding genes being implicated as well. Disease gene 

identification studies are usually large-scale and high-throughput. Examples include 

genome-wide association studies (GWAS), copy number variation studies (CNV) and 

whole exome sequencing (WES). These studies in themselves are time-consuming and 

expensive especially when considering the sample size required for an effective study. 

The output can contain numerous potential candidate genes, which are also expensive and 

time-consuming to validate, with minimal impact on risk of the disease itself. GWAS 

studies have been shown to be particularly susceptible to weak SNP associations for ASD 

(Anney et al., 2012). Disease gene prioritization systems seek to determine high 

confidence for disease association targets amongst gene lists, and while disease gene 

prioritization methods have become somewhat ubiquitous, they generally do not have 

methodologies accounting for prioritization of non-coding genes. 
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Support vector machine (SVM) approaches have previously been applied to ASD 

research. Bruing et al. (2014) provided support for a phenotype-genotype relationship by 

using symptom profiles as features and genetic disorders as classes for a multi-class 

extension of SVM. Magnetic resonance image (MRI) offers one of the most potentially 

fruitful routes for ASD diagnostics, and SVM approaches have been applied to MRI data 

to classify and further characterize the morphology of the disorder. Retico et al. (2016) 

used SVM to determine differences in the morphologies between young male and female 

patients with ASD. A similar method was employed by Ecker et al. (2010) on whole-

brain structural imaging to reveal a correlation for the distance from the decision 

boundary and the severity of the disorder. 

In this study, we have developed a machine learning method to prioritize genes 

for ASD risk. Based on domain-specific knowledge of ASD, it is hypothesized that 

expression patterns offer a potential means of prioritization for all gene types for ASD 

risk. In particular, we design the novel approach of using the normal developmental brain 

expression patterns found in the BrainSpan dataset to leverage previous research focused 

primarily on protein-coding genes to classify ASD risk gene candidates. The validity of 

this approach is supported by weighted gene co-expression network analysis on the 

BrainSpan dataset, which has shown convergence of ASD risk genes on developmental 

pathways (Parikshak et al., 2013). It is further supported by evidence of the potential role 

in ASD of lncRNAs, whose function is closely linked with their expression patterns 

(Derrien et al., 2012; Necsulea et al., 2014; Ziats and Rennert, 2013). In this study, we 

first generated a gene list of high-confidence developmental ASD risk genes. We were 
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then able to create a support vector machine (SVM) model for ASD risk gene prediction 

with a 76.7% accuracy capable of prioritizing ASD candidate genes based solely on 

expression patterns in the developing brain. Utilizing a wrapper methodology and a best-

first search method during feature selection, we were able to drastically reduce the 

dimensionality and identify biologically relevant and novel temporospatial features 

within the dataset. The performance of the feature subset showed improvement over the 

full feature set. To further test our model, we used the ASD risk gene list to generate 

hypothetical loci similar to what would be expected from an association study. The genes 

within the loci were prioritized to determine the relative rank within the list of the known 

risk gene. Finally, the model was applied to the prioritization of long non-coding RNA 

(lncRNA) genes. Overall, the study demonstrates the effective application of a machine 

learning approach to ASD risk gene identification using normal tissue expression 

patterns. 

 

4.2 Materials and Methods 

The machine learning problem in this study can be defined in the following way: 

genes serving as instances are to be classified for autism spectrum disorder (ASD) risk 

using their respective expression profiles which serve as the feature set. A model for this 

decision would allow the prioritization of gene lists based on the strength of predicted 

ASD associations. Using known ASD risk genes and non-ASD genes with their 

expression profiles, we seek to perform supervised training of a model. 
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Datasets 

The BrainSpan Atlas of the Developing Human Brain is a developmental 

transcriptome dataset compiled by a consortium consisting of the Allen Institute for Brain 

Science and five collaborating universities (Hawrylycz et al., 2012). The dataset consists 

of 524 samples with a developmental time point range from 8 weeks post-conception to 

40 years of age from 26 brain structures. While the dataset demonstrates a lack of 

availability for multiple samples at each temporospatial time point in development, the 

BrainSpan dataset is currently the most comprehensive transcriptome of the human 

developing brain. Expression values were RNA-sequencing reads that were assembled 

and aligned using the GENCODE consortium’s annotation release v10 (Harrow et al., 

2012).  They were in the units of Reads Per Kilobase of transcript per Million mapped 

reads (RPKM). A 2log ( 1)RPKM   transformation was applied to the data. Genes in the 

dataset were instances, and their expression values for the temporospatial time points 

acted as features for the training dataset. 

To build a model for ASD risk gene classification, negative and positive gene 

instances were required.  While many genes can be considered non-ASD, two 

considerations were made to enhance potential model performance. Genes associated 

with diseases unrelated to the disease being studied have previously been used as 

negative controls in prioritization studies in an effort to reduce potential systematic bias 

(Thienpont et al., 2010; Erlich et al., 2011;  Moreau and Tranchevent, 2012), and here we 

employ that same methodology by using non-ASD disease-associated genes as our 

negative instances. Since many individuals afflicted with ASD are also diagnosed with 
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some form of intellectual disability (ID) (Bakken et al., 2010; Hoekstra et al., 2010), and 

there is considerable overlap between ID and ASD-associated genes (Pinto et al., 2010), 

ID genes were not among the negative instances. The positive instances were ASD risk 

genes compiled from the Simons Foundation Autism Research Initiative Gene database 

(Abrahams et al., 2013), AutismKB (Xu et al., 2012), and De Rubeis et al.’s (2014) large 

exome sequencing study for de novo mutations in individuals with ASD. To curate for 

developmental ASD risk genes, the top 85% of the genes based upon expression variance 

within the BrainSpan dataset were used (Additional file A-4). 

Support vector machines 

Support vector machine (SVM) is a supervised machine learning algorithm that is 

effective for high-dimensional datasets comprised of real numerical as opposed to 

categorical values. It is commonly used for biological classification problems (Cortes and 

Vapnik, 1995; Kourou et al., 2014). Genes within our training dataset are vectors defined 

as | 0 1i ix x    (after normalization) for 1, ,i l , where i  is a temporospatial feature in 

the BrainSpan dataset and l  is the size of the feature vector. The classification of each 

gene, non-ASD or ASD, is defined here as  1, 1
i

y    . When the model is trained, the 

algorithm seeks to maximize the distance between margins for a decision boundary 

separating the positive and negative instances in hyper-dimensional space. The margins 

are determined from a subset of the total instances nearest in Euclidian distance to the 

decision boundary referred to as support vectors. The distance between margins is 

defined as 2/   where   is a vector orthogonal to the decision boundary such that its dot 

product with a support vector is zero. The sign of the decision function (positive or 
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negative) is used for binary classification. Classification problems generally require 

richer feature space than what is defined originally within the dataset to separate the 

variables. Plotting vectors in higher dimensions is computationally expensive, but 

application of a kernel function allows for model optimization in higher dimensional 

space without having to plot the points.  Popular kernel methods for SVM models include 

radial basis, linear, polynomial and sigmoidal, and for our initial feature selection and 

final model after optimization, we used the radial basis function (RBF) kernel:  

2
( ') exp 'K x x x x

 
 
 

       (1) 

The parameter γ determines the ‘smoothness’ of the decision boundary.  For this study, 

we use the SVM SVC class from the Scikit-learn Python library (Pedregose et al., 2011) 

for all SVM implementations with the exception of the feature selection process where 

the libSVM package from the WEKA data mining software was used (Hall et al., 2009).  

 The training dataset was imbalanced, consisting of 366 ASD risk genes as 

positive instances and 1762 non-ASD disease genes as negative instances, a ratio of 

1:4.8. For model construction, there are methods of balancing the dataset such as 

oversampling using synthetic minority over-sampling technique (SMOTE) (Chawla et 

al., 2002) and randomized under-sampling of the majority class (Kubat and Matwin, 

1997). However, adjusting class weights within the parameters of the learning algorithm 

may offer an optimal solution. The class weights balance the misclassification cost in 

establishing soft margins (see Model parameter optimization and performance 

evaluation) without altering the underlying data space. In this study, we have empirically 

demonstrated that there is no performance loss in using the class weight parameter versus 
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randomized under-sampling of the majority class for optimized SVM models with the full 

feature set (Table C-1) based on 50 repetitions of tenfold cross-validations. 

The SVM algorithm was chosen over other machine learning algorithms due to its 

effectiveness in producing a more generalized model through its maximization of the 

decision boundary and not the minimization of training errors (Yang, 2004). It has been 

shown to outperform many other learning algorithms on various biological problems, 

including prediction of proteolytic cleavage (duVerle and Mamitsuka, 2012), DNA-

binding residues in proteins (Si et al., 2015; Wang and Brown, 2006) and linear B-cell 

epitopes (Wang and Pai, 2014). It is favorable due to its low computational cost for 

training a model and easily optimized parameters. The SVM algorithm also has the 

benefit of a function output, which allows for gene prioritization (see Candidate Gene 

Prioritization). To verify its suitability for ASD risk gene prediction, we compared the 

performance of the weighted SVM model to other commonly used machine learning 

algorithms (Table C-1). The dataset used for this analysis was balanced through 

randomized under-sampling of the majority class, and the performance evaluation was 

the same as outlined in Model parameter optimization and performance evaluation for 50 

repetitions of tenfold cross-validations. 

Feature selection 

Gene expression datasets such as the BrainSpan dataset can have high 

dimensionality. The feature selection process removes redundant and irrelevant features 

to improve model performance, reduce computational load, and decrease the ratio of 

features to samples, which reduces the probability of overfitting. Wrapper methods 
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evaluate feature subsets in the context of the learning algorithm. Given that these 

methods take into account the learning algorithm that is to be optimized, wrapper 

methods generally perform better than filtering or embedded techniques especially for 

gene expression datasets, but they are computationally expensive (Hira and Gillies, 2015) 

and can potentially lead to overfitting (Saeys et al., 2007). To address potential 

overfitting in this study, the approach of candidate gene prioritization (see Candidate 

Gene Prioritization) has been employed as external validation in lieu of an independent 

test set. In addition to model performance improvement, the methodological approach of 

the wrapper method allows us further knowledge discovery in evaluating the performance 

of the model with the addition of each new feature. This is of particular interest in this 

study given that the features represent temporospatial points in brain development and the 

molecular etiology of ASD is still unclear.  

The number of potential feature subsets for a brute force search is equivalent to a 

power set or N2 , where N = 524  for our dataset. This is infeasible. Deterministic feature 

selection methods such as the sequential forward selection (SFS) method, which 

incrementally adds features in a greedy hill-climbing search, have been used successfully 

in cancer machine learning studies with expression datasets (Kourou et al., 2014). In a 

greedy hill-climbing search, for a machine learning algorithm such as SVM, a feature set 

of size n , and a feature subset F , 

   1 2  , , , nSVMf F where F f f f     (2) 

 1 2, , , nif f f f   
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the performance of the classifier is measured by a scoring metric. For this study, overall 

accuracy was used (TP=true positive, TN=true negative, FP=false positive, and FN=false 

negative):  

TP+TN
Accuracy=

TP+TN + FP+ FN
    (3) 

After testing multiple performance measures, overall accuracy was determined to be 

optimal for searching subsets. It showed steady increases and converged on a subset with 

minimal processing time. The subset is then built in the following manner where t  is 

representative of iterations: 

    1 1 1   : { }t t t t
i iSVM SVMif f F f f F then Set F F f      (4) 

    1 1    t t
iSVM SVMif f F f f F then Feature Set F    

While SFS is an effective wrapper search method, it does present the possibility 

of local maxima. One way to partially alleviate this while maintaining a heuristic search 

is to allow for hill traversal. The best-first search algorithm implements a greedy hill 

climbing algorithm but allows for backtracking and expansion of previously evaluated 

nodes. It has also been shown to outperform the greedy algorithm (Kohavi and John, 

1997). In this study using the WEKA data mining software, we searched the feature 

subset using the best-first search algorithm with the overall accuracy from a fivefold 

cross-validation using libSVM at default settings as the performance measure (Hall et al., 

2009). The best-first search was forward starting from an empty feature set and allowed 

for the expansion of five non-improving nodes. 
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Model parameter optimization and performance evaluation 

To improve SVM classification performance with the full and selected feature 

sets respectively, we optimized the three parameters, cost ( C ),  , and kernel using a grid 

search approach, which evaluates all combinations based on a performance measure. 

Parameter optimization for high-dimensional datasets can be sensitive to class imbalance 

if overall accuracy is used as the performance measure. Optimized parameters can favor a 

model with low sensitivity where positive instances are in the minority such as ASD 

genes. Therefore, we used G-mean (geometric mean) as the performance metric, which 

measures the classifier’s ability to balance specificity and sensitivity (Lin and Chen, 

2012): 

TP
Sensitivity =

TP+ FN
      (5) 

 

          
TN

Specificity =
TN + FP

      (6) 

 

          Gmean= Sensitivity Specificity     (7) 

C  is the penalty assigned for misclassifications. In the maximization of 2/  , which 

alternatively is the minimization of 2
/ 2  during training of the SVM model, when 

misclassifications are allowed, the problem takes on the form, 

21{ }
2, ii

min C         (8) 
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where   is the quantification of the misclassification. The   parameter can be found in 

Equation (1). Previous work has shown that the most efficient method of optimization for 

C  and  , is to exponentially increase the values across a range (Hsu et al. 2003). In this 

study, we used 5 3 13 15{2 ,2 , ,2 ,2 }C    and 15 13 1 3{2 ,2 , ,2 ,2 }   . Using the radial basis 

function (RBF) kernel, we measured the performance for each parameter pairing of C  

and  . Using the linear based kernel, we measured the performance for each  C . The 

optimal kernel, C  and   parameter combinations were selected based on the highest G-

mean returned from tenfold cross validations. Model performance was evaluated using 

sensitivity (Equation 5), specificity (Equation 6), overall accuracy (Equation 3), and the 

Matthews correlation coefficient (MCC), which measures the correlation between the 

predicted and actual classifications on a scale of | 1 1MCC MCC     (Matthews, 1975): 

(TP+TN)-(FP+FN)
MCC =

(TP+FP) (TP+FN) (TN +FP) (TN +FN)  
   (9) 

Candidate Gene Prioritization 

To rank candidate genes, we used the output from the SVM model with greater 

output corresponding to higher rank. To test the ability of the model to prioritize ASD 

risk genes, we generated gene lists containing at least one ASD risk gene. This 

methodology was adapted from the work by Prio et al. (2010). For each ASD risk gene in 

the training dataset, we identified N  flanking genes on the same chromosome using the 

GENCODE release v10 annotation. We then constructed a hypothetical locus with 2 1N   

genes centered on the ASD risk gene. If an ASD risk gene was close to a chromosome 

terminal, the number of genes in the opposing flank were extended to ensure that each 
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gene list was of equal length. Three gene list lengths were tested: 101, 201, and 401. 

Genes present in the training dataset were removed from each gene list. The SVM model 

was trained for each hypothetical locus, and the candidate gene list was prioritized. 

Model performance was evaluated by the percentile rank assigned to the known ASD risk 

gene in its respective candidate gene list: 

 100%
L

Percentile Rank
N

       (10) 

In the above equation, L  is the number of SVM scores less than the target, and N  is the 

total number of candidate genes. 

Long Non-Coding RNA Gene Candidate Prioritization 

The 10,840 lncRNA genes in the GENCODE release v10 were prioritized using 

the SVM model to further demonstrate its capabilities and performance. The model was 

built with all instances from the training dataset, the feature subset from feature selection, 

and the optimized parameters. Confidence measures of the classification (ASD or non-

ASD associated) were assigned for each gene. If the instance was classified as positive, 

the confidence was (1 - false positive rate), and if the instance was classified as negative, 

the confidence was (1 - false negative rate) (Wang and Brown, 2006).  

 

4.3 Results 

Support vector machine classification of ASD risk genes 

Table 4.1 shows the performance of the support vector machine (SVM) classifier 

for 50 repetitions of tenfold cross-validations using all 524 features available in the 

dataset. The model was optimized on the G-means performance measure and used the 
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radial basis function (RBF) kernel with a cost ( ) 8C   and 0.0078125  . The SVM model 

with the full feature set achieved a mean accuracy of 0.739 with 0.748 sensitivity, 0.737 

specificity and 0.385 Matthews Correlation Coefficient (MCC). The receiver operator 

characteristic (ROC) curve for ASD risk gene prediction using the full feature set is 

shown in Figure 4.1. The ROC curve is a plot of the true positive rate (sensitivity) versus 

the false positive rate (1 - specificity) for varying output thresholds of the SVM classifier 

(Hajian-Tilaki, 2013), and in this study it was generated using the ROC class from the 

Scikit-learn Python library (Pedregosa et al., 2011) The ROC curve and the area under 

the curve (ROC-AUC) are considered to be the most robust measures of model 

performance. The ROC-AUC for the full feature set is 0.8045. This value is significantly 

greater than the random guess value of 0.5. Given the novelty of the study, there are no 

real means of comparison to other model performance, and therefore the SVM model 

performance can serve as a benchmark for future models. The heterogeneous nature of 

ASD warrants against over-optimization as the probability of overfitting may increase, 

and the current performance appears to be indicative of an effective generalized model.  

 

Table 4.1 The mean sensitivity, specificity, overall accuracy and Matthews Correlation 

Coefficient (MCC) of each model for 50 repetitions of tenfold cross-validations. 

 

 Full Feature Set Selected Feature Set 

Sensitivity 0.748 ± 0.006 0.744 ± 0.005 

Specificity 0.737 ± 0.003 0.772 ± 0.002 

Accuracy 0.739 ± 0.003 0.767 ± 0.002 

MCC 0.385 ± 0.003 0.419 ± 0.005 
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Figure 4.1 ROC curves of the selected and full feature set SVM models. The AUCs for 

the ROC curves are given in the legend. 

 

 

Wrapper method with best-first heuristic search for feature selection 

Reduction of the dimensionality for a dataset decreases computational load and 

the probability of overfitting. Here we demonstrate SVM model performance gain with a 

selected feature subset over the full feature set. Our methodology applied a forward 

heuristic best-first feature selection search using a wrapper method. Forward searches 

begin with empty sets and build them incrementally with the addition of one feature at a 

time, and this approach allows for evaluation of each feature added to what will become 
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the final subset. The best-first search is a modification of the greedy stepwise method and 

allows for backtracking if no improvement is seen with further feature additions. Table 

4.2 shows the incremental building of the feature subset. The features are in the order of 

their additions to the subset, and the overall accuracy is listed for each resulting subset. 

For example, the feature subset of the primary somatosensory cortex (area S1, areas 

3,1,2) (S1C) at 13 post-conception weeks (pcw) had an accuracy of 0.662, and the subset 

of S1C at 13 pcw and the dorsolateral prefrontal cortex (DFC) at 8 pcw had an accuracy 

of 0.694. The selected feature model was evaluated with the same parameters as the full 

feature set model. The specificity of 0.772, accuracy of 0.767 and MCC of 0.419 are all 

significantly improved over the model with the full feature set, and there was no 

significant difference in the specificity (Table 4.1). The selected feature model used the 

RBF kernel with 32C    and 0.03125   . Its ROC-AUC of 0.8194 shows a performance 

improvement over the full feature model (Figure 4.1). 
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Table 4.2 The selected features from the best-first search algorithm. The features are 

described by the time point when the sample was collected and the brain structure where 

the sample was collected. They are listed in order of their addition to the cumulative set. 

The overall accuracy, sensitivity, and specificity of each subset is listed. pcw=post 

conception weeks, yr(s)=years of age. 

 

Developmental 

Time Point 

Structure Accuracy Sensitivity Specificity 

13 pcw primary somatosensory 

cortex (area S1, areas 3,1,2) 

0.661071 0.73918 0.644847 

8 pcw dorsolateral prefrontal cortex 0.694323 0.703607 0.692395 

9 pcw parietal neocortex 0.709699 0.721585 0.70723 

37 pcw mediodorsal nucleus of 

thalamus 

0.719803 0.70153 0.723598 

1 yr dorsolateral prefrontal cortex 0.728092 0.745902 0.724393 

4 yrs dorsolateral prefrontal cortex 0.746203 0.722787 0.751067 

1 yr primary visual cortex (striate 

cortex, area V1/17) 

0.747989 0.740929 0.749455 

16 pcw orbital frontal cortex 0.750761 0.755628 0.74975 

8 pcw orbital frontal cortex 0.754389 0.751694 0.754949 

30yrs primary auditory cortex 

(core) 

0.754474 0.754754 0.754415 

8 pcw occipital neocortex 0.756053 0.752787 0.756731 

40 yrs primary motor cortex (area 

M1, area 4) 

0.756147 0.75153 0.757106 

21 yrs inferolateral temporal cortex 

(area TEv, area 20) 

0.758778 0.748798 0.760851 

8 pcw hippocampus (hippocampal 

formation) 

0.759596 0.751093 0.761362 

8 yrs primary somatosensory 

cortex (area S1, areas 3,1,2) 

0.759746 0.747978 0.762191 

 

Prioritization of ASD risk gene candidates using SVM model output 

Given the relatively low number of high-confidence ASD risk genes and the 

heterogeneity of the disorder, all of the positive instances were used in the training of the 

model to maximize the available data space. This however precludes the use of an 

independent test dataset as a means of external validation. As an alternative to the use of 
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an independent test dataset, both models were evaluated on their ability to prioritize 

hypothetical loci. We generated gene lists for each ASD risk gene and its surrounding 

genes, and model performance was measured by the ability to highly prioritize the known 

ASD risk genes. While the lists may contain previously unknown ASD risk genes, a 

liberal estimate of ASD risk gene frequency in the genome at 2% (De Rubeis et al., 2014) 

and varied location of CNV’s (Liu and Takumi, 2014) would allow us to assume that a 

high performing model would prioritize a known ASD risk gene within the 90th 

percentile. Since our interests are in the relative ranks of the genes for the hypothetical 

loci, we perform a form of ordinal regression in ordering by the decision function output. 

Here we compare the prioritization capability for the selected and full feature set SVM 

models. 

Table 4.3 shows the mean percentile rank for known ASD risk genes in their 

respective hypothetical loci of varying sizes. Again, the selected feature model 

outperformed the full feature model. The selected feature model showed 2-3% greater 

mean percentile rank of ASD risk genes for each locus length than the full feature model. 

The mean percentile ranks increase with the size of the loci, which is to be expected 

given the assumption that ASD risk genes highly prioritized would remain so in an 

expanding list. Figure 4.2 shows the distributions of ASD risk genes grouped by 

percentile rank for the two models. There were little to no genes ranked in or near the 

50th percentile for the two models. ASD risk genes were either ranked in the low or high 

percentiles, and the amounts in each are consistent with the overall accuracy of the 

models. Risk genes classified as positive instances were predominantly in the 95th 
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percentile or above. This is consistent with expectations and indicative of strong 

performance for both models. Genes in the lower percentiles were principally classified 

as negative instances. Given the heterogeneity of the disorders, it is also possible that the 

misclassified genes are false positives or that their etiology for ASD is independent of 

brain development. 

 

Table 4.3 The mean percentile rank of known ASD risk genes for three prioritized gene 

set sizes for the selected and full feature set SVM models. 

 

Number of Genes Selected Features Model Mean 

Percentile Rank 

Full Feature Set Model 

Mean Percentile Rank 

101 77.4 75.6 

201 78.4 75.6 

401 80.7 77.2 

 

 

 

Figure 4.2 Histogram of ASD risk gene count grouped by percentile rank for the selected 

and full feature set SVM models for the three gene set sizes. For each hypothetical locus, 

the percentile rank of the known ASD risk gene within the gene list was calculated, and 

here those ranks are grouped in 5 percentile point increments. 
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Application of the SVM model to lncRNAs 

Long non-coding RNA (lncRNA) genes code for transcripts greater than 200 

nucleotides in length, which are not translated to peptide sequences. They are ideal genes 

for testing the performance of an expression-based prioritization model since they lack 

protein product, generally lack functional annotation, may be more numerous than 

protein-coding genes in the genome, and are highly expressed in the brain (Derrien et al., 

2012). They also have high temporospatial expression specificity, and conservation 

studies have identified them as potentially key developmental regulators (Necsulea et al., 

2014). LncRNAs have been found to be differentially expressed in individuals with ASD 

(Ziats and Rennert, 2013), but the role of lncRNAs in ASD is still an emerging field of 

research. 

To further evaluate the model performance, we prioritized a gene list comprised 

of the available lncRNA genes within the dataset using the selected feature model. For 

each gene, confidence values for the prediction were assigned based upon the SVM 

output for the gene (Additional file A-5). Of the 10,840 lncRNA genes, 962 (8.87%) were 

classified as potential ASD risk genes, but only 63 had a confidence measure greater than 

0.95. 

While an exhaustive investigation of the high-priority candidate lncRNAs and 

their potential ASD association is outside the scope of this study, we highlight the most 

interesting genes based on existing annotations as a means of further demonstrating the 

validity of the approach. Table 4.4 shows four lncRNA genes that are highly ranked for 

ASD association. CHL1-AS1 is antisense to the ASD risk gene CHL1 (Salyakina et al., 
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2011). MALAT1 has been shown to be a regulator of synapse formation (Bernard et al., 

2010). MIAT has been shown to influence cell fate during neurogenesis (Aprea et al., 

2013). TUG1 has been linked previously to neurodegenerative disorders (Wu et al., 

2013).  Given the limited knowledge of the role of lncRNAs in ASD, the high 

prioritization of genes with roles in brain development or adjacency to known ASD risk 

genes demonstrates the high performance of the SVM model. 

 

Table 4.4 Genes of interest from the prioritization of lncRNA genes with their biotype, 

SVM output, and confidence score. lincRNA= long intervening non-coding RNA. 

 

Gene Type SVM Output Confidence 

CHL1-AS1 lncRNA-antisense 3.150 0.996 

MIAT lincRNA 2.933 0.974 

MALAT1 lincRNA 2.266 0.919 

TUG1 lincRNA-antisense 1.915 0.846 

 

4.4 Discussion 

Autism spectrum disorder (ASD) has a complex physiologic etiology. 

Combinations of environmental and genetic factors causing aberrant development of 

brain regions have been linked to the disorder (Fakhoury, 2015). Studies utilizing non-

invasive brain imaging procedures such as magnetic resonance imaging (MRI) and 

positronic emission tomography (PET) have also implicated brain structures and 

biological processes contributing to ASD (Ecker et al., 2015; Zürcher et al., 2015). While 

the underlying mechanisms remain poorly understood, there is a large body of knowledge 

in the field to be utilized for further study. Although treatment of ASD has been shown to 

be effective, it is dependent on early detection. Imaging can offer diagnostic input, but 

the process is expensive and not always practical. Biomarkers may offer the best means 
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for early detection of the disorder, but the complexity of the disorder and the increase in 

sequencing capacity have led to a multitude of potential targets too numerous to test. The 

need for an ASD risk gene prioritization system encompassing all gene types is evident. 

In this study, we employ a novel approach to bridging this gap.     

By reframing the task of ASD risk gene identification as a supervised machine 

learning problem, we were able to construct an accurate classification model. Leveraging 

the existing extensive research on protein-coding genes in ASD and the comprehensive 

view of the transcriptome for the developing human brain offered by the BrainSpan 

dataset, we were able to discern a pattern from the expression profile, which distinguishes 

ASD risk genes. Applying a heuristic search through the possible feature space, we were 

also able to refine the model through feature selection, which improved performance and 

implicated potentially critical temporospatial features in the onset of ASD. To test the 

performance of our model in the absence of an independent test set, we used both 

standard cross-validations and the prioritization of candidate genes within hypothetical 

loci. The performance measures confirmed that the model achieved high accuracy and 

had the capability to highly prioritize ASD risk genes within gene lists of varying lengths. 

In light of the gathering evidence that lncRNAs are associated with ASD, we further 

demonstrated the utility of our model through the prioritization of lncRNA candidates. 

Biologically significant candidates were highly prioritized, providing further validation to 

our approach.  

Collectively, the feature subset has interesting aspects (Table 4.2). It is intriguing 

that while ASD as early developmental disorders can be diagnosed by the age of two 
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years old with standard methods (American Psychiatric Association, 2012), the 

developmental time points of the selected features span the entirety of the transcriptome 

studied (from 8 pcw to 40 years of age).  Most notably, the time points are enriched for 

early development, particularly from 8 pcw to one year of age, and these points were 

predominantly added to the subset before later developmental time points such as those 

greater than four years of age. Therefore, the early developmental period appears to have 

a larger influence on ASD risk gene identification. Co-expression modules enriched with 

ASD risk genes have been shown to have either dramatic upward or downward trends in 

expression patterns between 8 pcw to one year of age which indicates a critical timespan 

in relation to ASD etiology (Parikshak et al., 2013). Not surprisingly, the structures that 

were selected are mainly cortical regions, which are associated with sensory input 

processing and behavior. Generally, cortical regions have been found to be enlarged in 

children with ASD around three years of age (Schumann et al., 2010). Two non-cortical 

regions selected are the hippocampus and the mediodorsal nucleus of thalamus (MD). 

Both the hippocampus and the thalamus have been found to be proportionately smaller 

for individuals between the ages of four and eighteen years old with ASD (Sussman, et 

al., 2015). However, there is little to no evidence of a role for the MD in ASD. The 

selected feature set also contained later development cortical structures. These 

unanticipated features may present new avenues of research for ASD.   
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4.5 Conclusions 

In this study, a novel approach is proposed for knowledge transfer from known 

ASD risk protein-coding genes to all gene types. We have demonstrated that a model 

built using only expression patterns within normal brain development as features can 

accurately classify and prioritize ASD risk genes. This provides a distinct advantage over 

previous models. It does not require a priori knowledge and allows for the prioritization 

of non-protein coding genes. It is our hope that this will lay the groundwork for an 

accurate prioritization tool utilizing this model. 
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Abstract 

The Prioritization system of Genes for Autism Risk (PGAR) is a web-based tool 

for autism spectrum disorder (ASD) candidate gene prioritization. It is built on a database 

which stores information from machine learning and co-expression analysis for a 

majority of known human genes. Users submit a gene list, and for each gene, a 

classification score from the machine learning model is retrieved. A prioritized gene list 

is returned based on the classification score with links to gene profiles with co-expression 

analysis. The system is novel in its use of expression patterns, which allows for 

prioritization of non-coding RNA genes and genes lacking functional annotation. The 
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user-friendly design, high accuracy classification model, and depth of information for all 

genes make PGAR useable for researchers studying ASD.   

 

5.1 Introduction 

Autism spectrum disorder (ASD) is a heterogeneous group of disorders 

convergent on a behavioral phenotype with a strong genetic component (American 

Psychiatric Association, 2012). Hundreds of genes are currently associated with ASD, 

and given an etiology that is still not definitively known, many more genes are 

hypothesized to be associated (Banerjee-Basu and Packer, 2013). Current high-

throughput screening such as genome-wide association studies produce multiple targets, 

which are not feasible to research on an individual level. Therefore, prioritization is 

needed. However, many candidate gene prioritization systems have focused on annotated 

protein-coding genes through the use of protein-protein interaction networks and 

literature mining (Erten et al., 2011; Hristovski et al., 2005). This neglects the other gene 

types. This is very prominent in ASD for one gene type in particular, long non-coding 

RNA (lncRNA) genes. They are defined as genes, which have transcripts greater than 

200 nucleotides that do not code for protein. These genes have been shown to be 

developmental regulators, highly expressed in the brain, and differentially expressed in 

ASD cases (Derrien et al., 2012; Ziats and Rennert, 2013). Here we present the 

Prioritization system of Genes for Autism Risk (PGAR), a prioritization system which 

employs support vector machines (SVM) and co-expression network analysis to gene 

expression profiles to prioritize and annotate gene lists. To our knowledge, the PGAR 
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system is unique in its use of expression data from developmental brain tissue for ASD 

gene prioritization.  PGAR is a web tool with a database backend which facilitates ASD 

research through the identification of high priority targets within gene lists.  

 

5.2 Database 

Our database uses a star schema with a gene profile table at the center. Each gene 

was assigned a unique ID for the PGAR system, and the location and type of the gene 

were documented in this center table. For this current version of the system, these 

annotations were from GENCODE (Harrow et al., 2012). This schema allows for an 

extensible database in that there are three distinct table groups linked to the main table. 

One section is comprised of lookup tables for potential identifiers such as the ENSEMBL 

ID. The second group comprises machine learning results, and the third group is made up 

of co-expression data. This design allows for multiple analyses and identifications of the 

genes in our system. Currently there is one machine learning analysis and co-expression 

analysis respectively in our system. The two analyses were run using the same expression 

dataset and list of known ASD risk genes. These analyses were from previous studies 

using the BrainSpan dataset, which consists of 524 samples from 8 weeks post 

conception to 40 years of age and 26 brain structures (Hawrylycz et al., 2012). The 

known ASD risk gene list used in the studies was compiled from three different resources 

(Banerjee-Basu and Packer, 2013; Basu et al., 2009; Xu et al., 2012). The dataset has 

values for all the genes in the GENCODE v10 build, and genes not in the most recent 

build (v24) were removed leaving 46,782 genes currently in PGAR. Therefore we have 
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prioritization information for the majority of known genes of all types in the human 

genome based on their expression patterns in the developing human brain.  

 

5.3 Supervised machine learning model 

The values used for prioritization are from a previous study (Cogill and Wang, 

2016) performed by this group. We developed a supervised machine learning model. 

Briefly, the BrainSpan dataset was used, and the 524 features in the dataset were reduced 

down to fifteen features using a wrapper method with the SVM algorithm and a best-first 

search method. Once the model was generated, all of the available genes in the dataset 

were analyzed using the model to generate an SVM output value. This value is what the 

genes are prioritized on. The output itself has a sign value associated with it, and this 

determines the classification of the gene as either ASD risk or non-ASD risk, which is 

what is shown in the output. To assign a meaningful numeric value, a confidence score is 

given for the classification. This is on a scale of 0-1 for both negative and positive 

classifications. For example, a gene with high confidence for ASD risk could have a 

value of 0.9 and a gene with high confidence for non-ASD risk could also have a value of 

0.9. These values are based on the range of outputs for the genes used to train the model.   

 

5.4 Gene Co-expression network 

In another study we sought to provide functional annotation of lncRNAs through 

weighted gene co-expression analysis (WGCNA) (Cogill et al., unpublished). In that 

study, we curated the BrainSpan dataset down to 20,456 genes with the highest 
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covariance sums, and then clustered those genes based on co-expression into modules. 

Further enrichment analyses were performed. To incorporate our study results into the 

PGAR system, we used the adjacency matrix generated in the study and summed the 

weighted connectivity between each gene in the curated dataset and all the known ASD 

risk genes in the dataset. This provided a means of measuring co-expression with known 

ASD risk genes and offered further insight into the role of the gene in ASD. Next we 

analyzed each module as a means of providing partial functional annotation for the genes 

within our system through their module assignment. We calculated the enrichment of 

ASD risk genes within the module using a Fisher’s exact test for the frequencies of ASD 

genes within the module and those for the total set. Then we performed term enrichment 

analysis using the DAVID bioinformatics tool (Huang da et al., 2009). 

 

5.5 PGAR input and output 

To begin the analysis users submit a gene list and have the option of pasting an 

existing list into the field under the “Paste Gene List:” heading or they can submit a text 

file (Figure 5.1). Currently PGAR supports gene identifiers in the formats of ENSEMBL 

IDs (Flicek et al., 2014) and gene symbols as dictated by the HUGO Gene Nomenclature 

Committee (Gray et al., 2015). Alternatively, users can provide loci. For instance, if  a 

region from a copy number variant study is identified, users can simply indicate that 

region in the input field, and PGAR will return a prioritized list of all the available genes 

in that region.  

The format is as follows:  
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“chromosome:start position to end position” 

For example, 1:10,000-50,000 would refer to all genes on chromosome 1 which overlap 

or are between positions 10,000 and 50,000.  When the loci list is submitted, the user is 

given the option of either prioritizing the loci as a group or as individual lists. 

 

 

Figure 5.1 Screenshot of the PGAR home page. A brief introduction of the system is 

provided. The panel on the right provides options for the uploading of gene lists for 

prioritization. 

 

After submission of a gene list, the user is directed to a page containing a result 

table of the prioritized gene list (Figure 5.2). The far left column is the PGAR ID which 

is the systems’ unique identifier. The next column is the gene name, which is the 

identifier in the submitted list, and the third column is the list rank. This number is the 
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prioritized rank within the submitted gene list, and it should be noted that this is not the 

rank within the entire system. The next column is the classification as ASD risk gene or 

non-ASD risk gene, and it should be noted that this is the candidate classification 

prediction by the PGAR system. Finally, the confidence of this classification is given in 

the last column. For loci submissions, the locus searched is given at the top of the table 

and for loci prioritized separately, a table is generated for each locus. For all tables, there 

is a button to export the table to a “.csv” file located at the bottom right of the table. 

Each PGAR ID has a link to the profile for that gene. In that profile, general 

information for the gene is provided, which includes the gene symbol, location, and type 

(Figure 5.3). Next the classification and confidence from the machine learning model-

based prioritization is shown, which for the current prototype is from the SVM model 

outlined above. Following that, the co-expression information is displayed. This consists 

of the gene’s weighted connectivity with known ASD risk genes as well as the gene’s 

module assignment. It should be noted that not all genes have associated co-expression 

information because as stated previously, to form the co-expression network, the original 

dataset was curated. However given the nature of our machine learning approach, this 

does not necessarily preclude them from being high priority candidates or there utility as 

negative instances. Therefore, genes without co-expression data were not removed from 

the system. 
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Figure 5.2 Screenshot of the PGAR results page. Below the banner, a table is generated 

for the prioritized gene list with links to the system profiles for each gene. 

 

Each module assignment on the profile pages links to a profile for that module. 

That profile includes basic information about the module, which is the number of genes 

within the module and ASD gene enrichment P-value (Figure 5.4). The profile also 

includes a table of the enrichment terms for the module. At the top of the list is a link to 

the source for the enrichment terms which currently is the DAVID bioinformatics server. 

For each listing, the term itself, its broader category designation, fold enrichment, and P-

value are given. 
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Figure 5.3 Screenshot for the PGAR gene profile page. This page shows the profile for 

an unprocessed pseudogene which is in module 1 for the WGCNA analysis. 
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Figure 5.4 Screenshot of PGAR module summary page. The page gives a brief summary 

of the module attributes and the displays a table of the enrichment terms associated with 

the module. 

 

 

5.6 Validation of the prioritization system 

Future plans for the PGAR software include multiple machine learning methods 

as options or considered together in an ensemble approach, but currently the system uses 

the high performance model built using a supervised SVM approach. The model boasts a 

77% classification accuracy for ASD vs non-ASD risk genes and has been demonstrated 

to prioritize known ASD genes highly (Cogill and Wang, 2016). Given that a majority of 

known ASD risk genes were used in our machine learning and co-expression studies, 

testing of the prioritization system requires new data. We are currently in collaboration 
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with another group at the Greenwood Genetic Center, which is independently testing the 

PGAR system using copy number variant studies where a larger region was associated 

with ASD and that region was subsequently parsed down through a process of 

elimination. Given that the novel risk gene(s) is known, the performance of the system 

can be determined by its ability to both classify the gene(s) as an ASD risk gene and to 

prioritize it highly in the system. The system is currently residing on a test server at 

http://scogill.people.clemson.edu/PGAR.php. We are in the process of testing all of the 

utilities as well as compatibility with various browsers.  

 

5.7 Comparison with other systems 

ASD is currently a high profile area of study. There are many data repositories of 

ASD risk genes including AutKB (Basu et al., 2009) and SFARI (Xu et al., 2012), which 

characterize genes based on empirical evidence from previous studies. While this is 

useful, it does not allow for the identification of novel candidate genes. Many of the 

existing popular prioritization systems such as DADA (Erten et al., 2011), ENDEAVOR 

(Tranchevent et al., 2008), and GeneMANIA (Warde-Farley et al., 2010) use broad 

expression networks, existing annotations, or rely upon protein-protein interactions. Our 

system is novel in that it uses brain developmental data in a targeted approach to ASD 

risk gene prioritization. ASD is a neurodevelopmental disorder, and the study of 

expression patterns in developing brain tissue is essential to identifying high priority 

candidate genes. This specialization for ASD gives our system a performance advantage 
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over existing systems, and we believe this will lead to the identification of many novel 

non-coding ASD candidate genes.  

 

5.8 Conclusions 

This system offers a novel approach to the identification of high-confidence ASD 

candidate genes. The system is easy to use with a simple interface for input in the form of 

gene lists. The site provides a ‘Help’ section found in the banner at the top. One of the 

future goals is the expansion of the allowable inputs to afford the user more options for 

data analysis. This may include transcript IDs as well as microarray probes. We also plan 

to expand the system in several areas. As more known ASD risk genes are discovered or 

genes within are current set are further curated due to new evidence, we will update and 

rerun our analyses to determine any significant performance benefits in the form of 

higher classification accuracy or identification of more relevant interactions within the 

co-expression network. We also plan to increase the number of expression datasets used. 

The BrainSpan dataset is unique in its comprehensive coverage of the developmental 

brain transcriptome, but we have begun looking for other suitable expression datasets to 

be incorporated into our prioritization analysis. The use of new expression data may 

allow us to increase the number of genes within our system. The database design allows 

for multiple machine learning models and co-expression networks. With additional 

expression datasets, we can add more analysis data to the system and potentially improve 

on the existing entries. We are currently in the process of testing the system, and in the 

future we will start updating PGAR. 
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CHAPTER VI - CONCLUSIONS 

Within this study, data mining approaches are applied to the annotation of 

lncRNAs for function and disease association. We have leveraged the existing knowledge 

of protein-coding genes to elucidate the expression patterns associated with function and 

disease. We have then applied this knowledge to the identification of lncRNAs of 

interest. Co-expression network analysis is a particularly useful approach for functional 

annotation. In this study, we have constructed two separate co-expression networks. One 

was built using microarray data with expression profiles for known cancer genes and the 

lncRNA genes available in the microarray platform. The results demonstrate the efficacy 

of the approach of using co-expression between protein-coding genes and non-coding 

genes to identify disease associations. As more expression data becomes available, the 

construction of a similar tissue specific expression dataset with a more comprehensive 

lncRNA list becomes possible, and this approach could be applied again for co-

expression between lncRNA genes and cancer genes to potentially identify more 

lncRNAs associated with cancer. Additionally, several high-priority targets were 

identified, which may act as treatment routes or potential diagnostic measures. For the 

second co-expression network analysis study, we sought to find autism spectrum disorder 

(ASD) associations for lncRNA genes and functionally annotate their role in brain 

development. The second network used an RNAseq dataset, which contained all known 

lncRNA genes at the time of its construction. We again showed the benefit of using 

expression patterns in healthy tissue samples to identify potential disease genes based 
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upon shared expression patterns. This study also further demonstrated significant roles of 

lncRNAs in human brain development. Beyond potential diagnostic measures, this co-

expression network began to identify some lncRNAs affecting development with may 

further elucidate the complex etiology of ASD.  

 This study also demonstrated the novel application of machine learning to the 

prediction of ASD risk genes from their expression patterns in brain development. This 

expression profile approach was demonstrated to accurately predict ASD risk genes, and 

the lncRNAs prioritized within the list could potentially act as biomarkers or further 

elucidate the etiology of this complex disorder. We have also extracted knowledge from 

the dataset in finding the minimum combination of temporospatial features required for 

the accurate prediction of ASD risk genes. While this approach was applied specifically 

to the identification of ASD risk genes, future directions for the research might find that 

binary classification of genes via machine learning applied to expression patters is 

applicable to other disease gene types.  

Finally, the study describes a prioritization system for ASD risk genes. Often is 

the case where large gene lists are returned with a tentative association with ASD, but a 

lack of means to effectively test all genes within the list. In this study, we outline the 

design and use of our inclusive prioritization system. The design of the system allows for 

the inclusion of multiple machine learning models and co-expression networks and it is 

our hope that the system will continue to improve in performance through updated 

information.  
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 Predicting the functional role of lncRNAs is difficult. They have little annotation, 

little sequence conservation, are potentially greater in number than protein-coding genes, 

and their structures have yet to be elucidated. This is compounded with their emerging 

importance in development, tissue and cell differentiation, and multiple disorders. 

Currently, in the absence of an efficient high-throughput method to determine the 

structure of lncRNAs, expression patterns offer the best means to determining the 

functional roles on a global scale. Within this study, we have demonstrated the effective 

use of expression patterns to determine lncRNA disease associations and functional 

annotations. 
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APPENDIX A – ADDITIONAL FILES 

Additional file A-1 Lists of all the genes and their module assignments. Included are the 

core and extended lists of cancer genes compiled from the COSMIC and UniProt 

databases and the list of lncRNAs with probes available on the Affymetrix HG-U133 

Plus 2.0 Array. 

 

Additional file A-2 Highest co-expression lncRNAs for each cancer gene in the core list. 

The core cancer gene and corresponding probe are listed with the ten lncRNA probes 

with the highest absolute Pearson product moment correlation. 

 

Additional file A-3 List of lncRNAs with their module assignment and normalized 

values for ASD gene connectivity and adjusted intramodular connectivity. 

 

Additional file A-4 Disease and ASD genes after curation with expression values for the 

BrainSpan dataset. 

 

Additional file A-5 Prioritized lncRNA gene list with confidence values for the ASD 

non-ASD classification assigned based upon the SVM output for the gene. 
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APPENDIX B – SUPPLEMENTARY FIGURES 
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B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 132 

C 

 

 

Figure B-1 Heat maps to show expression patterns across normal tissue samples in (A) 

Module1, (B) Module 4, and (C) Module 5. The probes are sorted by their average 

expression levels across the tissue types highest to lowest.   
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APPENDIX C – SUPPLEMENTARY TABLES 

 

Table C-1 A comparison of the performance of different machine learning approaches 

for ASD risk gene prediction. The mean sensitivity, specificity, overall accuracy (acc.) 

and Matthews Correlation Coefficient (MCC) of each model for 50 repetitions of tenfold 

cross-validations is shown.   

 

Methods Sensitivity Specificity MCC Accuracy 

SVM 

(Balanced) 

0.807 ± 0.009 0.694 ± 0.003 0.388 ± 0.008 0.714 ± 0.003 

SVM 

(Weighted) 

0.748 ± 0.006 0.737 ± 0.003 0.385 ± 0.006 0.739 ± 0.003 

K-nearest 

Neighbor 

(Balanced) 

0.712 ± 0.012 0.684 ± 0.005 0.307 ± 0.010 0.689 ± 0.004 

Gaussian Naïve 

Bayes 

0.684 ± 0.004 0.674 ± 0.001 0.278 ± 0.003 0.676 ± 0.001 

Random Forest 

(Balanced) 

0.789 ± 0.008 0.654 ± 0.003 0.338 ± 0.007 0.677 ± 0.003 

Adaboost 

Decision Tree 

(Balanced) 

0.758 ± 0.015 0.651 ± 0.008 0.312 ± 0.012 0.669 ± 0.007 
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