
Clemson University
TigerPrints

All Theses Theses

12-2016

Uniform Micro-Patterning of an Arbitrary Surface
Viraj Rajendra Kulkarni
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Kulkarni, Viraj Rajendra, "Uniform Micro-Patterning of an Arbitrary Surface" (2016). All Theses. 2575.
https://tigerprints.clemson.edu/all_theses/2575

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2575?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

UNIFORM MICRO-PATTERNING OF AN ARBITRARY SURFACE

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Viraj Rajendra Kulkarni

December 2016

Accepted by:

Dr. Georges M. Fadel, Committee Chair

Dr. Gregory Mocko

Dr. Rodrigo Martinez-Duarte

ii

ABSTRACT

According to the literature, creating specific micro-level patterns on some

surfaces can significantly reduce friction. To this effect, a method is presented to create a

regular pattern of micro-level indentations on any irregular surface. Creating a uniform

pattern on a regular surface is possible using commercial CAD software, where regular

surface is the surface obtained by extrusion or revolution of a 2D sketch along any curve.

But, it is complicated and often incorrect for irregular surfaces. The thesis presents the

approach followed to create parameterized regular patterns on arbitrary surfaces. Three

different algorithms are presented, each achieving a progressively increased quality

solution. The last and best method provides a set of points with their corresponding

normals to the surface to enable the creation of the patterning feature. The algorithm

reads an STL file, a format neutral output of any CAD software and implements the

method on the approximated surface. Each facet surface upon which the pattern has to be

created is sliced by planes at specific distances from each other. The intersections of the

facets and the planes are calculated and chains are formed from the intersections in each

plane. Points are interpolated at the required pitch in different chains formed at the

intersection of a single plane and the facets. This procedure is repeated for each plane.

Thus, a pattern of points of specified pitch distance that can be as low as microns can be

generated.

Given specifications of a machine, this method generates the X, Y, and Z

translations and the axis rotation angles needed to generate a g-code specific to a micro-

milling machine. This code can be used directly for any metal removing process that has

iii

to create micro-level indentations on an arbitrary surface. If instead, the features are

protrusions on some irregular surface, then the resultant points obtained with the

developed approach can be used to apply the pattern at each of the identified locations.

iv

DEDICATION

I would like to dedicate my work to my family, who always stood by me and

supported me in whatever I pursue.

v

ACKNOWLEDGMENTS

I would like to express my sincere thankfulness to my advisor Dr. Georges M.

Fadel for all his continuous guidance and support. He has always encouraged me to think

more and come up with different ideas and solutions.

I would like to thank Dr. Gregory Mocko and Dr. Rodrigo Martinez-Duarte for

providing valuable inputs through the entire course of my research work.

I would like to thank all my colleagues of the Department of Mechanical

Engineering, Clemson University for their assistance throughout my research.

vi

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

1. INTRODUCTION ... 1

1.1. Motivation ... 1

1.2. Literature review ... 2

1.3. Using 2D Meshing...7

1.4. STL format .. 9

1.5. VRML format ... 10

1.6. Research Objective ... 12

1.7. Thesis Organization .. 13

2. PATTERNING ALGORITHMS ... 14

2.1. Reading STL file ... 18

2.2. Reading VRML file .. 23

2.3. Direct Interpolation Approach .. 27

2.4. Slicing Approach ... 34

2.5. Slicing-Chain Approach ... 48

3. OBTAINING X, Y, Z TRANSLATIONS AND A, B ANGLES 46

vii

Table of Contents (Continued)

Page

4. TESTING, RESULTS AND DISCUSSION ... 69

4.1. Planar Surfaces ... 70

4.2. Uniform Curved Surfaces ... 72

4.3. Non-Uniform Surfaces .. 74

5. CONCLUSION AND FUTURE WORK .. 80

5.1. Conclusion .. 80

5.2. Future Work .. 80

REFERENCES .. 82

APPENDICES ... 84

APPENDIX A. STL FILE OF PLANAR SURFACE ... 85

APPENDIX B. STL FILE OF UNIFORM CURVED SURFACE................................ 86

APPENDIX C. VRML FILE FOR PLANAR SURFACE .. 87

APPENDIX D. PROGRAM MANUAL.. 88

viii

LIST OF TABLES

Table Page

4.1 Time Required using CAD-Planar Surface .. 71

4.2 Analysis for different slicing directions for uniform curved surface 72

4.3 Time Required using CAD-Uniform Curved Surface 73

4.4 Analysis for different slicing directions for

uniform curved surface .. 75

4.5 Time Required using CAD-Non Uniform Curved Surface 76

4.6 Analysis for varying patterning distance for

non-uniform curved surface ... 77

4.7 Analysis for varying patterning distance for non-uniform curved surface

modifying slicing direction .. 77

ix

LIST OF FIGURES

Figure Page

1.1 Example of 2.5 D Mold ... 3

1.2 Original Curve [8] .. 4

1.3 Single-Sided Approximation Curve [8] ... 4

1.4 Offset of Single-Sided Approximation Curve [8] ... 5

1.5 Tolerance Region [8] ... 5

1.6 ASCII format of STL facet .. 11

2.1 Flowchart for creating a Micro-patterning ... 15

2.2 Extracting surface for micro-patterning ... 16

2.3 Assigning User Co-ordinate System .. 17

2.4 Flowchart for reading STL... 18

2.5 Sample STL File .. 19

2.6 Sample VRML file ... 23

2.7 Flowchart for reading VRML format .. 21

2.8 Direct Interpolation Approach with starting distance 'd' 29

2.9 Direct Interpolation Approach with starting distance as 'd/2' 29

2.10 Flowchart for Direct Interpolation Approach .. 30

2.11 3D plot of obtained points by micro-patterning Direct Interpolation 32

2.12 2D -XY plot of obtained points by micro-patterning

Direct Interpolation Approach ... 32

x

List of Figures (Continued)

Figure Page

2.13 Demonstration of slicing the geometry by plane offsets 35

2.14 Interpolation in Slicing .. 36

2.15 Intersection Case 1: z1< z < z2 ... 40

2.16 Intersection Case 2: z1< z2 < z .. 41

2.17 Intersection Case 3: z < z1 < z2 ... 42

2.18 Flowchart for Slicing Approach... 44

2.19 3D plot of obtained points by micro-patterning Slicing Approach.............. 45

2.20 2D-XY plot of obtained points by micro-patterning Slicing Approach 45

2.21 Limitation 1 of Slicing Approach .. 46

2.22 Limitation 2 of Slicing Approach .. 47

2.23 Chain Formation .. 51

2.24 Interpolation in Slicing Chain .. 53

2.25 Before implementation of chain structure for slicing 56

2.26 After implementation of chain structure for slicing 56

2.27 Interpolation on shorter segments before implementation of

chain structure for slicing... 57

2.28 Interpolation on shorter segments after implementation of

chain structure for slicing... 57

2.29 Flowchart For Slicing -Chain Approach .. 59

2.30 3D plot of obtained points by micro-patterning

Slicing-Chain Approach... 60

xi

List of Figures (Continued)

Figure Page

2.31 2D-XY plot of obtained points by micro-patterning

Slicing-Chain Approach... 60

2.32 Direction Curve for Slicing - Uniform Curved Surface 1 62

2.33 Direction Curve for Slicing - Uniform Curved Surface 2 63

3.1 A & B angle orientation ... 65

4.1 Plane Surface with Patterning pitch: 0.35mm.. 70

4.2 Uniform Curved Surface with Patterning pitch: 0.35mm 72

4.3 Effect of Slicing Direction on micro-patterning for

uniform curved surface .. 73

4.4 Non-Uniform Curved Surface with Patterning pitch: 1mm 74

4.5 Non-Uniform Curved Surface with Patterning pitch: 5mm 75

4.6 Effect of Slicing Direction on micro-patterning for

non-uniform curved surface ... 76

 4.7 Effect Patterning distance on micro-patterning

for non-uniform curved surface ... 77

xii

NOMENCLATURE

NURBS Non-uniform rational Basis spline

B-reps Boundary Representation

tria Triangular Element

rtria Right angled triangular element

quad Quadrilateral Element

CAD Computer Aided Design

IGES Initial Graphics Exchange Specification

STEP Standard for the Exchange of Product model data

VRML Virtual Reality Modeling Language

ASCII American Standard Code for Information Interchange

TOL Tolerance

1

1 INTRODUCTION

1.1 Motivation

In [5], Ramesh et al. have shown that producing micro-textures on stainless steel

surfaces have enhanced their frictional performance. They conducted a study varying the

micro-textures pattern geometry. Width, depth, and pitch of the holes were three

parameters defined for the study. The width of the hole was considered to be the diameter

of the hole. The depth of the hole was defined as the extent up to which the hole is

drilled. Pitch was defined as the distance between two holes. These three parameters were

varied by microns. By carrying out various experiments, they have reported a friction

reduction as high as 80% for textured surfaces when compared with the normal surfaces

with no texture. The textured stainless steel surface considered consists of uniform micro-

scale holes at uniform distances from each other. They have observed that friction

increases significantly when the texture width and density is decreased. They have

identified the possibility of applying micro-scale textures to surfaces in fluid power

systems like seals, pumps, and valves for a noteworthy reduction in the friction.

In [6], Braun et al. have investigated the effect of varying the size of spherical

dimples with diameters ranging from 15 to 800 µm and a depth-to-diameter ratio of 0.1

on friction reduction. At high pressure regimes, there may be a considerable rise in fluid

viscosity, causing a separation in surface and possibly generating contact between raised

solid features and asperities as a result. This state is called a mixed lubrication.

Tribological tests were performed under mixed lubrication against bearing steel 100Cr6.

2

They have stated that the pressure built up depends on the number of dimple edges and

their size. A severe dependence of the dimple diameter was found on the friction

reduction. They achieved an 80% reduction in friction with what they consider to be an

optimum texture, which they identified for certain operating conditions. The number of

dimple edges provide the count for the micro-pattern generated on the surface. The

diameter and the depth represent the other characteristic for the micro-pattern on the

surface.

In [7] Ventola et al. have produced diamond shaped micro-protruding patterns

with the objective of improving convective heat transfer in electronic cooling

applications. They have achieved significant improvements in thermal performance per

unit production cost of up to 73%. , with respect to the considered commercial heat sink.

They have concluded that the methodology can be extended to various and diverse micro-

protruding or micro-structured patterns.

The research issue is to find a method to create the micro-level patterns on

arbitrary surfaces.

1.2 Literature Review

Creating patterns on an irregular surface requires multiple mathematical

techniques based on computational geometry. Much work exists on relevant aspects of

the problem. The literature cited below addresses some of these most critical aspects.

3

In [8], Shih et al. have proposed an algorithm to compute the single-sided offset

approximation of a NURBS curve as a tool path for NURBS machining. Their proposed

method results in NURBS path curves with no self-intersections and no cusps. The

practical test for the algorithm was conducted for a 2.5D mold. It is a 2D sketch with an

extrusion thickness. Figure 1.1 gives an example of a 2.5D mold. The mold is obtained

by extruding a 2D sketch with a given thickness in the perpendicular direction to the

sketch plane.

Figure 1.1 Example of 2.5 D Mold

To compute the single-sided offset of the curve, a tolerance is defined on the

offset value for obtaining the offset curve. It consists of dividing the tolerance ε defined

by the user into two parts ε1 and ε2. It is followed by obtaining a single-sided

approximation of the original curve, considering an error of ε1. This is a linear

approximation. ε1 is determined by average error of the corner points of the

approximation curve with actual curve.

4

Figure 1.2 Original Curve [8]

Figure 1.3 Single-Sided Linear Approximation Curve [8]

Figure 1.3 is obtained by approximating the original curve from figure 1.2,

considering an error of ε1. By lowering the error, the linear approximation tends towards

the original curve. Further, ε2/2 is added to the prescribed distance to offset the

approximation curve as shown in figure 1.4

5

Figure 1.4 Offset of Single-Sided Linear Approximation Curve [8]

It is followed by offsetting the generated offset curve backwards by a distance

ε2/2 and then again offset by distance less than or equal to ε2/2.

Figure 1.5 Tolerance Region [8]

A tolerance region is achieved by the process as shown in figure 1.5. The two

layers of lines are the backward and forward offsets with ε2/2 error to form a tolerance

region of error ε2. A C
1

piecewise Bezier curve is constructed considering all the control

points that lay in the obtained tolerance region. Thus points can be patterned along the

6

offset curve at uniform distances from each other. To obtain offset curves on a 2d

surface, the inner offset is obtained from the outermost boundary of the surface. This

process is continued until it is not possible to offset the curve more, where the offset

distance is more than the dimensions of the area available. Accordingly, the last offset

curve is obtained in the process. For a single 2D surface, there may be many regions

where the last inner offset curve is obtained. In addition, there exists many cases where

the offset curves obtained display sharp corners. In such cases the pattern of points on the

outer offsets may not have a uniform distance from the inner offset, thus a uniform

pattern is not guaranteed. Also this study was conducted for a 2.5D object. This method

has not been extended to the offsetting of a 3D sculptured surface.

In [9], Ravi Kumar et al. present an approach to offset a NURBS B-Rep surface

used for a class of manifold B-Reps. The faces of the B-Rep are offset then followed by a

process of removing gaps and intersections. The new offset faces are stitched together.

The approach rests on the assumption that faces are at least G1 continuous and do not

have any intersection when a constant offset is applied. When two surfaces share a

common edge and the adjoining faces are tangent, they are said to be G1 continuous.

In [10], Schroeder et al. propose a decimation algorithm for an STL file.

Decimation is reducing the number of triangles in a triangle mesh, maintaining the

original topology of the surface and also maintaining a good approximation of the

original surface. Multiple passes on all the vertices are done, where in each pass every

vertex is checked with the decimation criteria. A vertex and the triangles using it are

7

removed when a vertex meets the decimation criteria. Triangulation is done for the

resulting hole created.

In [12], Tata et al. introduced a method for an adaptive slicing algorithm. This

method varies the layer thickness according to the complexity of the surface with cusp

height, maximum deviation and chord length. This algorithm introduces a simple

backtracking technique where there is an increase in surface complexity. The next layer

thickness can be calculated by the slicing direction making an angle with the original

slice axis. Repeated backtracking is performed for multiple levels of complexities.

Throughout the literature, offsetting of curves has been highlighted. However, the

work has not been extended to obtaining a uniform micro-pattern of points. Adding

further, for machining operations like drilling at the points of the micro-pattern so

obtained, needs additional inputs such as the translations and rotations applied. No work

has been done yet to obtain the uniform micro-pattern of the points along with the

required machining translations and rotations. Finding a method which does so, can be

directly coupled to a g-code and machining operations could be done in succession.

1.3 Using 2D Meshing

The possibility of obtaining a patterning of points on surfaces using 2D meshing

was investigated. 2D mesh is forming a finite element model from the given surface.

There are different element types for 2D meshing. 'Trias' and 'quads' are the 2D element

types which can be used for meshing. A 'tria' element is a triangle with 3 vertices and a

'quad' element is a quadrilateral with 4 vertices. The idea was to obtain a mesh in such a

8

way that length of the element would represent the patterning distance. 'Trias', 'rtrias',

'quads', 'quads' and 'quads only' are the types of 2D meshing. Trias method consists of all

triangles and the rtrias method consists of all right angles triangles. The quads method

consists of maximum quads and minimum trias. The mixed method consists of mixture of

trias and quads, while not minimizing the number of quads. The quads only type of

meshing will produce only quad elements. The quad only was chosen for meshing to

obtain a uniform 2D mesh.

A surface was 2D meshed using Hypermesh 13.0. The CAD model shown in

figure 1.6 was imported as an IGES format into Hypermesh. The objective of this

experiment was to test if a uniform pattern of 0.5 mm can be obtained from 2D meshing.

Figure 1.6: Surface Model of Glass

9

Figure 1.7: 2D Mesh- Surface Model of Glass.

The meshing shown in figure 1.7 was done by quads only. If all the quads have

0.5 mm element size, the pattern would be uniform. But it was observed that 28% of the

elements had an element size or the side of the quad less than 0.45 mm and 13% had

more than 0.55 mm with element size ranging from 0.21 mm to 0.72 mm. Efforts were

made to achieve better mesh using quality index optimization or morphing. Quality index

optimization runs an optimization to re-mesh the surface according to a user-defined

criteria. The element size was given as a criterion. Morphing is applying an existing 2D

mesh on a surface. But application of the quality index optimization meshing and

morphing methods for 2D meshing still had the element size had variations. Therefore, to

achieve a uniform pattern, more investigation and alternate methods were needed to be

identified.

10

1.4 STL format

STL files are triangular facets representations of surfaces [2]. The STL file format

was initially developed under a request by 3D systems company which was about to

commercialize the first additive manufacturing process, namely, the stereolithography

Apparatus or SLA. Many names have surfaced in the literature for STL, such as

“STereoLithography format”“Standard Triangle Language” and “Standard Tessellation

Language”[3]. An STL file contains geometric information of a 3D object in form of

triangular data. It includes the coordinates of the three vertices of each triangle and its

normals. The coordinates are in order of rank one to three. Therefore the sides of the

triangle formed are by vertices 1 and 2, vertices 2 and 3 and vertices 3 and 1. A cross

product can be formed by any two ordered vectors to generate the normal. But as the STL

file has normal data, this is not necessary.

The STL file can be encoded in ASCII or Binary formats. The ASCII format is

easy to read but takes much more space to be stored in memory. Each data set

representing a triangle begins with the term “facet” and ends with “end facet”. Normal

data is given in the first line inside that data set. Next, the vertices are listed inside a loop

which begins with “outer loop” and ends with “endloop”. Three vertices data are listed in

three separate lines. So in the STL format, point coordinates are repeated when used in

different triangles.

For the Binary format, a binary reader is required as a record of 80 characters

represent a triangle. That format is much more compact and uses less space than the

11

ASCII format, but is not readable. For both of the formats, ASCII as well as Binary, the

logic of reading an STL file is the same. It can be read as a string and split using

delimiters. The character spacing defines the positions of the normal and the vertices for

each and every loop.

facet normal ni nj nk

outer loop

vertex v1xv1yv1z

vertex v2xv2yv2z

vertex v3xv3yv3z

endloop

endfacet

Figure 1.8 ASCII format of STL facet

1.5 VRML format

The Virtual Reality Modeling Language, commonly known as VRML is a

standard file format for 3D objects[4]. It also includes options for noting the complex

behavior or animation. It consists of additional display parameters like Material ambient

color, diffuse color, emissive color, shininess and transparency, etc.

VRML is a more compact and less error prone format than STL. A matrix in the

VRML file stores all the coordinates of all vertices. Next, a Coordinate index matrix links

the coordinates of the vertices to the triangles they belong to. The coordinate index

matrix defines a triangle by specifying the three vertices numbers from the previous

coordinates matrix. For instance, a triangle is identified as formed by the coordinates of

12

points 5,6, and8. The coordinates are in the coordinate matrix. The next triangle can be

formed by points 6, 8 and 12. The coordinates of the points are not repeated, they are

identified by the indices used.

If the VRML file is imported as a string, then the coordinates of the vertices and

the coordinate index denoting the vertices chosen for each triangle can be identified by

character spacing. The only problem with the VRML file is that there is no data for

normals. Which implies that normals if required, have to be manually calculated. But

from the coordinate index matrix we know the order of the vertices. The sides of the

triangle formed are by vertex 1 and 2, vertex 2 and 3 and vertex 3 and 1. Thus a cross

product can be formed by two vectors identified by their extremities. Once computed, the

obtained vector from the cross product has to be converted into unit vector by dividing by

its magnitude. This is explained in detail in chapter 2.

1.6 Research Objectives

The thesis has following primary objectives:

1. Create a micro-pattern of points with uniform pitch of 'd' at a micro level on any

arbitrary surface.

2. Calculate the X,Y,Z translations and A & B (Machine) angles required by the

machine for each point

3. Test the micro-patterning algorithm with different designs having various

complexities

13

1.6 Thesis Organization

The thesis is organized into five chapters. The current chapter includes

motivation, literature review and research objective.

Chapter 2 explains the different approaches to obtain the uniform patterning of

points on any arbitrary surface. Three different approaches are attempted: The Direct

Interpolation approach, the slicing approach and the slicing-chain approach.

Chapter 3 focuses on obtaining X, Y, Z translations and A,B angles for a 5-axis

machine.

Chapter 4 focuses on the testing, results and discussion of the algorithm for

different complexities of geometry. Planar surface, uniform curved surface and non-

uniform curved surface are the three types of surface complexities tested.

Chapter 5 presents the conclusions and the future possible extensions of the work.

14

2. PATTERNING ALGORITHMS

To obtain a uniform pattern of points on a surface, different approaches are

attempted. Both the STL and VRML file formats are considered as an input format since

they both can be generated by most CAD software programs. The research objective is to

obtain X, Y, Z translations and A & B angle rotations for a 5-axis machine to drill micro-

sized holes perpendicular to the surface at regular intervals. Using an STL or VRML file

provides either directly or by a cross product of vectors, the normals for each and every

triangle. The STL/VRML formats are of lower size for storing than the original surface

model. A CAD file can be converted quickly into these tessellated formats. The STL

format is a widely accepted format, which is commonly used for 3D printing and rapid

proto-typing. 3D printing is a method, in which an object is built in less time from the 3D

printer, compared with the traditional machining methods. The 3D printing has gained

more attention in recent as producing the models using rapid-prototyping has become

much easier. Thus the STL format has its importance increased with the increasing usage

of rapid prototyping.

15

Figure 2.1: Flowchart for creating a Micro-patterning

The flowchart shown in figure 2.1 explains the process for creating a micro-

pattern on any arbitrary surface. This is a general flowchart and does not vary with the

type of algorithm used. It involves various steps from extracting a surface for micro-

patterning, assigning a coordinate system, then converting the geometry into a tessellated

surface. The extraction of the surface of interested and its conversion into a tessellated

surface is done using Solidworks 2014, a CAD package. A code has been created to read

the STL/VRML file from the CAD and to create a micro-pattern of points. Matlab 2014a

has been used to write the code and execute it. Different approaches for micro-pattering

are discussed in this chapter after a literature review describing the state of the art.

16

Further obtaining X,Y,Z translations and A & B angles for a 5-axis CNC machine is

another part of the algorithm.

Suppose there is a surface of a solid component on which a micro-pattern is to be

created. The algorithm for the micro-patterning only needs the surface on which the

patterning has to be done. Therefore, the specific component is opened in any CAD

application. Solidworks 2014 has been used in this work to import the component.

Figure 2.2: Extracting surface for micro-patterning

The highlighted surface in figure 2.2 is extracted for micro-patterning. This figure

shows that out of the entire model, only the surface highlighted is the area of interest for

applying a micro-pattern. Therefore only the highlighted surface is extracted for

tessellation. As a result a tessellated surface would be obtained.

17

Figure 2.3: Assigning User Co-ordinate System

A user desired coordinate system is set for the part as shown in figure 2.3. Thus

only this surface will be converted into the STL or VRML format. The STL file has an

option for the user to set export settings for adjusting how fine or how accurate an

approximation to the surface the tessellated surface is desired to be.

18

2.1 Reading STL format

Figure 2.4: Flowchart for reading STL

The flowchart shown in figure 2.4 illustrates the basic steps needed to read the

STL file. The first step is to identify whether it is in an ASCII or Binary format. The STL

file is imported as a string in MATLAB 2014a. The string is split using delimiters. Every

ASCII file has the word 'facet' in it. A program loops through the records to search for the

string 'facet'. If it results in a match, then the file is considered to be in the ASCII format,

otherwise it is in the Binary format.

 The STL file contains data for vertices and normals for every triangle. Thus to

read STL, it would be easy to identify where data of a triangle ends and another triangle

begins. Then each triangle would have same format of data of vertices and normals in it.

Thus it is a repetition of the same logic to read the vertex and normals from each triangles

19

for all the triangles in the STL file. For designing a code it would be just a loop with

varying the triangle number and the same algorithm inside the loop for reading data from

each triangle. Variables have to be defined a code to repeat the iterative process. Consider

a variable 'loop' as the triangle number in an STL file. Thus, a loop being equal to 10

corresponds to the data for the 10th triangle in the STL file. Consider 'i' as a variable

representing the vertex number for a triangle which varies from 1 to 3 in every triangle.

Thus values of 1,2 and 3 for 'i' represent the three vertices of each triangle.. Consider 'j'

as the variable ranging from 1 to 3 which represents coordinates for x, y and z values for

each triangle.

solid plane1

 facet normal 0.000000e+000 1.000000e+000 0.000000e+000

 outer loop

 vertex 2.500000e+001 0.000000e+000 -1.000000e+001

 vertex -2.500000e+001 0.000000e+000 -1.000000e+001

 vertex 2.500000e+001 0.000000e+000 1.000000e+001

 endloop

 endfacet

 facet normal 0.000000e+000 1.000000e+000 0.000000e+000

 outer loop

 vertex 2.500000e+001 0.000000e+000 1.000000e+001

 vertex -2.500000e+001 0.000000e+000 -1.000000e+001

 vertex -2.500000e+001 0.000000e+000 1.000000e+001

endloop

 endfacet

endsolid

Figure 2.5: Sample STL file

20

Refer to the above figure 2.5 for the description of an STL file. To read and store

the details of the STL file, it is read as a string and split using delimiters. When the STL

file is read, it is stored as a complete string in 1 X 1 matrix. In the next step, it is split

using delimiters space and tab. The resulting data will be an matrix of size 1 X Total

number of separate entities words obtained in STL. Thus each number or word after the

delimiter will be stored in a different cell in the matrix. Thus for a matrix 1 X n, each

cell will have a rank from 1 to n. Consider 'C' being equal to rank of cell containing the

word 'facet' in the matrix created after splitting the string of the STL file. Thus in the

above example, the rank of word 'facet', first found in the matrix is three. The words

'solid' and 'plane1' form the first two cells of the matrix. The data of interest from the

STL are three numbers representing �̂, �̂ and �� coordinates for vector representing the

normals in 3D and three numbers each for the three vertices representing the x, y, z

coordinates.

Observing the figure 2.5 When the STL string is split using delimiters, there is a

space delimiter between words 'facet' and 'normal' and another space between the word

'normal' value for i-coordinate for normal. Thus the string after splitting will have 'facet',

'normal' and '0.000000e+000'as consecutive cells in the matrix. Thus, the i-coordinate

for normal, being '0.000000e+000'is at two ranks next to facet. There are total 21 entities

present in each and every loop of a triangle. The loop of the triangle represents all the

entities starting from the 'facet' occurring before normal and the 'endfacet'

21

���		
, � = � + 2 + 21 ∗ ��		
 − 1 + �� − 1

��3 ∗ ��		
 − 1 + �, � = � + 8 + 4 ∗ �� − 1 + 21 ∗ ��		
 − 1 + �� − 1 (1.1)

where,

N = Matrix for storing normals data, with size = number of triangles x 3

V = Matrix for storing x, y, z Coordinates for each vertex with size = 3 * (Number of

Triangles - 1) x 3

loop = Triangle Number in STL file,

i = Vertex number for each triangle, varying from 1 to 3

j = Co-ordinate number i.e. 1,2 and 3 representing x, y, z coordinates.

C = rank of 'facet' in the string of STL after splitting.

Therefore, in the string split using delimiters the position of the data for the normals and

vertices for identifying which cell in the matrix it belongs, has been parameterized. The

rank of the cell representing the normals data and the vertices data in the matrix is a

function in terms of variables loop, i, j and C as mentioned in the equation 1.1 above

Similarly, for the Binary format, the position of normals data and vertices data is a

function in terms of variables loop, i, j and constant is C'.

22

���		
, � = 22 + 25 ∗ ��		
 − 1 + �� − 1

��3 ∗ ��		
 − 1 + �, � = 22 + 25 ∗ ��		
 − 1 + 3 ∗ �� − 1 + �� − 1 (1.2)

where,

N= Matrix for storing normals data, with size = number of triangles * 3

V = Matrix for storing x, y, z Coordinates for each vertex with size

= 3 * (Number of Triangles - 1) x 3

loop = Triangle Number in STL file,

i = Vertex number for each triangle, varying from 1 to 3

j = Co-ordinate number i.e. 1,2 and 3 representing x, y, z coordinates.

23

2.2 Reading VRML formatted files

#VRML V1.0 ascii

Separator {

MaterialBinding {

value OVERALL

}

Material {

ambientColor [

 0.792157 0.819608 0.933333

]

diffuseColor [

 0.792157 0.819608 0.933333

]

emissiveColor [

 0.000000 0.000000 0.000000

]

specularColor [

 0.396078 0.409804 0.466667

]

shininess [

 0.400000

]

transparency [

 0.000000

]

}

Coordinate3 {

point [

 -25.000000 0.000000 -10.000000, -25.000000 0.000000 10.000000,

25.000000 0.000000 -10.000000, 25.000000 0.000000 10.000000

]

}

IndexedFaceSet {

coordIndex [

 2, 0, 3, -1, 3, 0, 1, -1

]

Figure 2.6: Sample VRML file

24

Figure 2.7: Flowchart for reading VRML format

 For a VRML format, instead of having repeated data of vertices for each

and every triangle, a matrix represents all vertex numbers and their coordinates.

Another matrix represents the Coordinate index linking triangles to vertices as

explained in section 1.4.

 To read the VRML formatted file, a similar logic to that of reading an STL

format file is applied. The difference lays in the linking of triangles with the vertex

number. Also, as explained in section 1.4, VRML does not contain normals data, but

such a direction can be obtained by computing the cross product of two ordered vectors

according to the right hand rule.

The first x-coordinate of the first point in the VRML file from the figure 2.6, was

found to be at 50
th

 rank of matrix, formed when the string containing VRML file is split

25

by delimiters. After the first x coordinate, the y and the z coordinates are placed in the

VRML file with a space between. The same x, y and z coordinate for the second point

is placed with a comma ending at z coordinate of the first point. On observing from the

figure 2.6 the data representing the coordinates of points ends with a character ']'. Thus

searching the character ']', the end of the set containing the coordinates can be found.

Constant 'C1' was defined as ,

�1 = ����		�	 ℎ��� "#�	′]′	��"#�	���&"	50	#�"�"�#&	��	"ℎ#	&
��"	&"���(�	�)*+

− 1

As the first x-coordinate is placed in the cell of 50th rank in the matrix of split

string and the C1 represents the rank of the cell, the number of coordinates is the number

of cells between them. Adding further the vertices is one third of the number of cells

obtained with coordinates data.

,	"��	�-./#�		�	�#�"� #& = ��1 − 49/3 (1.3)

Similarly from the end of the matrix of the coordinates the character ']' is searched

again to obtain the end of the Coordinate Index matrix. The coordinate matrix is the set

of coordinates of the points and the Coordinate Index matrix has data for each triangle

referring to points from the Coordinate matrix. Thus the searching of ']' here will figure

out where the Coordinate Index matrix ends in the matrix for split string data of the

VRML.

26

�2 = 	����		�	 ℎ��� "#�	′]′	��"#�	"ℎ#	�		�2���"#&	*�"��3	��	"ℎ#	

 &
��"	&"���(�	�)*+ − 1 (1.4)

From the figure 2.6, the first triangle data in the coordinate index matrix is ' 2, 0,

3, -1,' when the string is split the comma is a delimiter. Thus there are four entities in the

set here. '}', 'IndexedFaceSet', '{', 'coordIndex' and '[' are the five cells between the ']'

ending for the coodinate matrix and the first point data from the coordinate matrix which

is '2'. Thus the number of cells between both the ']' will be difference between the C2 and

C1 and then subtracting (5+1). If a cell rank is 1 and another cell rank is 3, then there

exists only 1 cell between them. But the difference between 3 and 1 is 2. Thus 1 is

subtracted more.

Total number of triangles obtained,

 ,��"	" = ��2 − �1 − 6/4 (1.5)

Normals in the VRML can be obtained by following formula

 �	�.�� = 56777778	9	6:777778
|56|	9	|6:| (1.6)

where,

<=777778	>	=�777778are the vectors representing the sides AB & BC of ∆ ABC,

|AB| is the magnitude of vector <=777778

27

|BC| is the magnitude of the vector=�777778

.

=�	7777778 = �8 − =78

<=	7777778 = =78 − <8

where,

<8, =78, ��2	�8 are the position vectors of the vertices A, B and C of ∆ ABC

2.3 Direct Interpolation Approach

2.3.1 Methodology

 After processing the input files in STL or VRML formats, the data representing

the vertices and normals for each triangle is stored in a matrix. Each triangle has a

number associated with it. Three vertices and three direction vectors of normals are also

associated with each triangle. Thus, the vertices or normals of any triangle can be

accessed using the triangle number.

This approach enables the treatment of each and every triangle as a separate entity

to obtain the regularly positioned points sought. The idea of this approach is to have an

interpolation of points done on the interior of the triangle at equal intervals. A linear

interpolation would be done with a uniform distance 'd'. This process would be repeated

for each and every triangle from the STL/VRML file

28

For the interpolation of points for every triangle of the geometry file, two edges of

the triangle are selected. From the common vertex of both edges of the triangle, points

are placed on the longest edge at a distance 'd' from the previous point. Corresponding

points on the other edge are obtained by drawing a line parallel to the third edge. This is

followed by the interpolation of points on each of the parallel lines obtained. This

interpolation is done with the same increment 'd'. Thus in a triangle, points are plotted at

uniform distance in at least one direction.

Figure 2.8: Direct Interpolation Approach with starting distance 'd'

29

While interpolating points on the line, all the points are placed at uniform

distances from the previous vertex as shown in figure 2.8. A problem does occur if the

first point is also placed at distance 'd' from the edge. The neighboring triangle will also

have a point placed at distance 'd' from the edge. Thus the distance between the two

points of the neighboring triangles would be '2d' instead of 'd' unless the point on the edge

is also considered. Instead, the first point is taken at half of the pitch i.e. 'd/2' from the

edge. This maintains an approximate distance of 'd' between two points of neighboring

triangles on the same plane. The reason for this is that the normal on each triangle is

defined over the whole triangle, and thus, on the edge, there would be two normals, and

identifying which is the appropriate one is problematic.

Figure 2.9: Direct Interpolation Approach with starting distance as 'd/2'

30

Furthermore, for the same triangle, introducing a distance of 'd/2' instead of 'd' at

the first point on each plane increases the number of pattern points from 13 to 20 in this

specific case when comparing figures 2.9 with 2.8. The distance at the end of the

interpolation is also maintained by same distance 'd/2' if possible. This ensures that the

first and the last points on any line are at d/2 distance from the edge of the triangle.

Therefore, a patterning distance of 'd' can be targeted between points of neighboring

triangles. This process is repeated for each and every triangle. The result is a set of points

representing the pattern. Each triangle has a specified number and its normal associated

with it. As a result, each point in this triangle has the same normal which is identified by

its triangle number.

2.3.2 Flowchart for Direct Interpolation Approach

Figure 2.10 Flowchart for Direct Interpolation Approach

31

The flowchart shown in figure 2.10 explains the algorithm for Direct Interpolation

approach for creating a micro-pattern on any arbitrary surface. This is a general flowchart

and involves various steps obtaining vertices and normals data from a tessellated surface,

followed by interpolation of points on the edge of triangles and within the triangles for

micro-patterning. Further obtaining X, Y, Z translations and A & B angles for the 5-axis

are also obtained in this algorithm.

2.3.3 Testing

Figures 2.11 and 2.12 show two views of the points generated using this first

algorithm and applied to figure 2.3. The figure clearly shows some areas without any

points, and some areas with a much higher density of points. This clearly shows that the

approach used falls short in producing equally spaced points on an arbitrary surface.

Note that the geometry considered was tessellated into a VRML format. This resulted in

4706 triangles.

32

Figure 2.11: 3D plot of obtained points by micro-patterning Direct Interpolation

Approach

The Figure 2.11 contains all the patterning points, which are displayed on a 3D

plot. Time required for this execution was 79.409 s

Figure 2.12: 2D -XY plot of obtained points by micro-patterning Direct

Interpolation Approach

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

75

80

85

90

95

100

105

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

33

The total number of micro-patterning points obtained is 5280. From figure 2.11

and figure 2.12 several areas in the pattern are observed to be empty spaces. These are

mostly the regions of higher curvature with finer triangles.

2.3.4 Limitation

Upon examining the figure, several limitations are identified. Studying the STL

file shows that there are several triangles where the length of the side itself is less than

the pitch 'd' selected. If the length is less than 'd', then the interpolation of points or the

setting of points at distance 'd' from each other is not possible. This results in a triangle

with no points inside it. Typically, triangles are finer in the regions of high curvature,

where there is an appreciable change in the normal to the surface. Thus this problem of

triangles with no points inside them will occur at critical regions of the geometry. This

explains the existence of several blank regions in the figures.

This will therefore result in non-uniform patterning, not a desired result. These

limitations lead us to attempt a different approach to generate the patterns. This is

discussed next.

34

2.4 Slicing Approach

2.4.1 Methodology

Instead of handling the patterning one triangle at a time, this approach deals with

slicing of the overall geometry with parallel planes. The STL/VRML file consists of

triangles forming the complete geometry to pattern. A normal for the plane is chosen. The

idea is to offset the plane and obtain intersections of each offset plane with the triangles

forming the object to pattern. A starting point is chosen as the lowest point in the normal

to the plane direction. Then the first plane is chosen at a distance of 'd/2' from that point.

This distance is chosen to have more number of design points. This is a variable and can

be changed according to the requirement.

The intersection of any plane and a triangle can have four cases. The intersection

can either be a null set, a point, a line or an entire triangle. For few cases when there may

be an entire triangle parallel to the plane and therefore an intersection or the side of a

triangle can be aligned with a plane and be considered as the intersection. For this

approach if an intersection is a point, it will not be considered in the patterning, as the

same point will be common with the intersection formed with another triangle. If the

point is not common with any triangle then it is just a sharp corner of the part and there

cannot be a feature on it. There also exists number of cases where the intersections area

complete triangle. The slicing algorithm will only find intersections as a line segment. So

in such cases, these triangles are noted and another slicing on these triangles can be done

using different slicing direction. this approach will not create any intersections by slicing.

Points are interpolated on the intersecting line. Intersections of the plane are checked with

35

every triangle representing the object under consideration. Then, the plane is shifted in

the normal direction by the uniform patterning distance. The intersections for the next

plane are checked and new points are formed. This process is carried out until the plane

has coordinate in the slicing direction higher than the highest coordinate of the points of

intersections formed.

Figure 2.13: Demonstration of slicing the geometry by plane offsets

A demonstration of slicing planes is shown in figure 2.13. The default slicing

direction for the geometry is the X direction. The user is prompted in advanced options to

switch the slicing direction to another axis of the co-ordinate system defined by the user

if so desired.

36

This approach is different from the earlier direct interpolation approach. In the

earlier approach, the points were interpolated within each and every triangle. In this

approach the geometry is sliced by a plane. Thus the line intersections formed are taken

into consideration.

Figure 2.14 Interpolation-Slicing Approach

Figure 2.14 explains how the points are interpolated in the slicing approach. There

will exist many line intersections when the plane is intersected with the geometry. This

figure explains the slicing algorithm observing two line intersections which are formed

from the intersection of the plane with two different triangles. Line segments AB and BC

are formed from the two triangles. This model has slicing direction in the Z direction.

37

When obtaining intersections of the plane with the triangle, each side is checked

for intersection.

"1 = 	 ? − ?1
?2 − ?1

"2 = 	 ? − ?2
?3 − ?2

"3 = 	 ? − ?3
?1 − ?3

 (2.8)

where,

t1: Intersection checking parameter for side 1 of the triangle formed by vertex 1

 and vertex 2

t2: Intersection checking parameter for side 2 of the triangle formed by vertex 2

 and vertex 3

t3: Intersection checking parameter for side 3 of the triangle formed by vertex 3

 and vertex 1

z: z-coordinate for slicing plane

z1: z-coordinate for first vertex of triangle

z2: z-coordinate for second vertex of triangle

z3: z-coordinate for point third vertex of triangle

The order of the vertices are according to the order defined in the tessellated

 format.

38

Case 1:

@�	0 < "1 < 1	&	0 < "2 < 1

If t1 is greater than zero it implies that 'point 1 to point z' and 'point 1 to point 2'

have the same sign positive or negative. Point z represents the point at the intersection of

the plane with the line. This means that both vectors are point to same direction. This can

result in two scenarios. The first scenario is point z lies between point 1 and point 2,

which means it lies on the line segment from point 1 to 2. Second scenario is point z lies

ahead of point 2 in the direction of vector representing point 1 to point 2. Which means

the point z lies on the extrapolated line segment of 1 to 2, implying that it does not lie on

line segment 1 to 2.

Now it is known that point 1 to point z and point 1 to point 2 are the same

directions from 0 < t1. Further adding t1 < 1, it implies that the magnitude of vector from

point 1 to point z is less than that of vector from point 1 to point 2. Therefore point z lies

between point 1 and point 2 representing the side 1 of the triangle. Similarly if 0 < t2 <1,

then the point z lies on side 2 representing point 2 to 3.

Thus, the plane has intersections with side 1 and side 2 of the triangle, where side

1 represents the side of the triangle joining the point 1 and point 2 and side 2 represents

the side joining the point 2 and point 3.

39

Case 2:

@�	0 < "2 < 1	&	0 < "3 < 1

Then, the plane has intersection with side 2 and side 3 of the triangle, where side

2 represents the side of the triangle joining the point 2 and point 3 and side 3 represents

the side joining the point 3 and point 1.

Case 2:

@�	0 < "3 < 1	&	0 < "1 < 1

Then, the plane has intersection with side 3 and side 1 of the triangle, where side

3 represents the side of the triangle joining the point 3 and point 1 and side 1 represents

the side joining the point 1 and point 2.

Once the two sides of the triangle on which the plane intersects are found out, the

x and y coordinates of the point of intersection is found by the following equation which

represents the equation of a line in 3D.

CDCE
CFDCE	 =	 GDGE

GFDGE 	= 	 HDHE
HFDHE (2.9)

40

2.4.2 Verification of the Intersection Logic

A study is done for different cases to verify the logic for the intersection of the

planes. Let us assume the slicing direction is in the Z direction. z1 and z2 will represent

the z-coordinates of the point 1 and 2.

Case 1: z1 < z < z2

Figure 2.15 Intersection Case 1: z1 < z < z2

Figure 2.15 shows a line segment from point 1 to point 2 with z-coordinates z1

and z2. The intersection point of the slicing plane and the line is the point with 'z' as the

z-coordinate. The value z is lies between z1 and z2. Thus the point of intersection lies on

segment point 1 to point 2.

? > ?1

	?2 > ?1	

?2 − ?1 > ? − ?1

 ,ℎ-&, 0 < "1 = 	 HDHE
HFDHE < 1 (2.10)

Thus the intersection is found in this case, where the point formed by intersection

of the line connecting point 1 to point 2 and the slicing plane lies between the two points

of the edge of the triangle.

41

Case 2: z1 < z2 < z

Figure 2.16 Intersection Case 1: z1 < z2 < z

Figure 2.16 shows a line segment from point 1 to point 2 with z-coordinates z1

and z2. The intersection point of the slicing plane and the line is the point with 'z' as the

z-coordinate. The value z is greater than z2 and z1. Thus the point of intersection lies on

segment point 1 to point 2, extrapolated from the point 2.

? > ?1

	?2 > ?1	

?2 − ?1 < ? − ?1

Therefore, 	"1 = 	 HDHE
HFDHE > 1 (2.11)

Thus no intersection is found. This is correct as where the point formed by

intersection of the line connecting point 1 to point 2 and the slicing plane lies is outside

the line segment.

42

Case 3: z < z1< z2

Figure 2.17 Intersection Case 1: z < z1< z2

Figure 2.17 shows a line segment from point 1 to point 2 with z-coordinates z1

and z2. The intersection point of the slicing plane and the line is the point with 'z' as the

z-coordinate. The value z is less than z1 and z2. Thus the point of intersection lies on the

segment point 1 to point 2, extrapolated from the point 1.

? < ?1

	?2 > ?1	

?2 − ?1 > ? − ?1

 ,ℎ-&, "1 = 	 HDHE
HFDHE < 0 (2.12)

Thus no intersection is found. In this case the slicing plane is below both the

points of the edge in Z direction. Thus, it will have no point for intersection.

43

2.4.3 Interpolating the points

Consider that the intersecting segment is formed between side 1 and side 2 of the

triangle. The coordinates of the intersection points are obtained by the previous formulas.

Thus the line segment formed by intersection represents a line segment joining the

intersection point on side 1 and intersection point on side 2 of the triangle. Let P & Q be

the intersection points on side 1 and side 2 respectively.

Therefore, the equation of the line is given by:

CDCJ
CKDCJ

=	 GDGJ
GKDGJ

	= 	 HDHJ
HKDHJ

 (2.13)

The following equation determines the next interpolating point of the line

segment starting from point P.

)1	7777778= 	L	7778 + M�N	7778	D	O	7778
|ON	77777778| P ∗ 2/2 (2.14)

where,

d: Patterning distance

)	7778: Position vector for Point R

L	7778: Position vector for Point P

Q	7778: Position vector for Point Q

From the first point onwards, the points will be interpolated with a patterning

distance of 'd'.

)2	7777778= 	L	7778 + M(N	7778	D	O	7778)
|ON	77777778| P ∗ 2 (2.13)

44

This process of adding interpolation points is continued until the distance between

the last patterning point obtained and the point Q on side 2 is less than 'd/2'. The next

connected intersection will have a point on 'd/2' distance from the starting point and an

approximate distance of 'd' can be aimed.

2.4.4 Flowchart for Slicing Approach

Figure 2.18 Flowchart for Slicing Approach

The flowchart shown in figure 2.18 explains the Slicing algorithm for creating a

micro-pattern on any arbitrary surface. This is a general flowchart and involves various

steps such as obtaining vertices and normals data from a tessellated surface, slicing the

tessellated surface with he a plane and with offsets to the plane at regular intervals. It is

followed by interpolation of points on the intersections of the planes and triangles

obtained as line segments for micro-patterning. Further, obtaining X, Y, Z translations

and A & B angles for the 5-axis are also obtained in this algorithm.

45

2.4.5 Testing of Slicing Approach

Figure 2.19: 3D plot of obtained points by micro-patterning Slicing Approach

Figure 2.20: 2D-XY plot of obtained points by micro-patterning Slicing Approach

The same geometry from figure 2.3 is considered for testing of this slicing

algorithm. This geometry is considered as it is a non-uniform curved surface. It is an

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

75

80

85

90

95

100

105

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

46

arbitrary surface with no uniform extrusion in a single direction. The total number of

micro-patterning points obtained is 7307.

 Figures 2.19 and 2.20 indicate that the points distribution is better in the

slicing algorithm when compared with the direct interpolation approach presented earlier.

But there are still few empty spaces with a need for improvement in the slicing algorithm

for a better distribution of the points.

2.4.6 Limitations

Figure 2.21: Limitation 1 of Slicing Approach

47

For the five connected line segments shown in figure 2.21 and obtained by finding

the intersection of the cutting plane with several adjacent triangles, the total length of the

curve is the sum of their individual lengths, which are 0.9, 0.9, 0.5, 2.5 and 0.8. Thus the

total length comes out to be 5.6 units. Thus say for a unit distance of patterning over five

connected line segments of total length 5.6, only one point is obtained using the

algorithm that treats each segment independently. On the other hand, consider the five

connected line segments to be a single curve. In a single curve of 5.6 length, 5 points at a

unit distance from each other can be plotted over the total interval.

Figure 2.22: Limitation 2 of Slicing Approach

Figure 2.22 shows another limitation in the methodology of the slicing algorithm

described. Consider a surface generated by a curve extruded into the direction normal to

the sketch. Slicing Planes 1 and 2 are parallel to the ZX plane. Slicing Plane 2 is obtained

by offsetting the slicing plane 1 by 0.35 mm. But the arc length within the two planes is

48

0.42 mm. Thus although the points are patterned with a uniform distance in each slicing

plane, there exists an error in the method to offset the slicing plane. This error will be

zero for a case where the line is perpendicular to the slicing direction. But it will increase

as the angle of the line increases with the slicing direction.

2.5 Slicing-chain Approach

2.5.1 Methodology

In order to remedy the shortcomings of the previous two approaches, a slicing

chain approach is implemented. It is an improved algorithm based on the slicing

approach. The intersections are obtained similarly for each cutting plane given an offset

of patterning distance 'd'. In the prior slicing approach, the points were interpolated on the

line intersections for a given plane between the two sides of each intersecting triangle.

Several line segments formed from the intersection of the plane with the triangles may

have a length which is less than that of the patterning distance 'd'. In such cases, the set of

points formed from the interpolation is a null set and regions void of the patterns are

created on the surface. Further, there exists several remainders or the line segments

formed by intersections after interpolation. Remainders are the distance on the line

segment left after patterning of points. It is the distance measured between the last

patterning point on the line segment and the endpoint of the line segment. A line segment

with length 1 unit and applied a patterning distance of 0.35 on it leaves a remainder of 0.3

49

units. These occurrences are expected in every intersection and need to be addressed. The

next improved algorithm addresses this issue.

The algorithm to obtain the intersections of the plane with the tessellated surface

for this approach is the same as in the previous slicing approach. This algorithm differs in

the method of interpolating points for patterning on the line segments formed. The idea is

to form a chain of line segments. Forming a chain would provide a way to interpolate

points on a chain of line segments, similar to interpolating points on any continuous line.

From the slicing algorithm, the intersection points between the plane and the

triangles are obtained. Thus, a set of all intersection points for a single plane and all

triangles are obtained. To form a chain from the line segments, the common points

between the line segments need to be identified. Therefore, a search is carried out to find

if any two points in the set of intersection points obtained are equal. As STL is a

tessellated surface, though the points are equal may not have exact same value for the

coordinate. Thus a tolerance must be assigned to find the points having a difference less

than the specified tolerance.

If the tessellated surface is sliced in the z direction, this implies that the z-

coordinate must be equal for the obtained intersection points. Thus a check needs to be

done on the other two coordinates. The process remains the same even if the slicing

direction is different.

50

@�	|R1 − R2| < ,S+	&|32 − 31| < ,S+, ,ℎ#�	L	��"	1 = L	��"	2 (2.14)

where,

Slicing is done in Z-direction,

y1: Y coordinate of Point1

y2: Y coordinate of Point2

x1: X coordinate of Point1

x2: X coordinate of Point2

,S+	 = 10DET..

The patterning is done in microns, which is 10DU... Thus for measuring in

microns, the tolerance is 10DVW. . The points can be considered to be same if the

condition 2.14 is satisfied.

The intersection points so obtained, represent the line segments of intersection. To

apply patterning of the points on these segments, sorting of the of the points with respect

to its coordinates is required. The set of intersection points is sorted in one of the two

remaining directions, i.e. for slicing in the Z direction, the set of points is sorted in the X

direction. For slicing in the Y direction, sorting is done in the Z direction and for slicing

in X direction the sorting is done in Y direction. This sorting then determines the

direction to go along the line segments for patterning.

51

The search is started from the point having the lowest coordinate in the sorted

direction. The point will also have the reference to which triangle it belongs from the

matrix created from the STL file data. Line segments formed as an intersection of the

triangles with the plane are considered for patterning of points. Each line segment has

two points. The point with lowest coordinate considered will point out to the other point

on the same line segment formed as intersection. Thus, this is the first line segment

considered for starting the chain. The idea is to have two chains from this segment.

Forward chain will start from the lowest point and will search for formation of chains.

The chain will break when no point is obtained after searching for points with equal

coordinates. Then the chain will again start from the other end of the first line segment.

This will be a reverse chain, following the same process.

Figure 2.23 Chain Formation

52

@�	L	��"	1		�	&#(.#�"	1	 = L	��"	1		�	&#(.#�"	2

Then the point 2 (point 1 on segment 2) will give a link to the triangle it belongs

and the line segment of intersection formed. As the intersection points and line segments

so formed are stored in the matrix, obtaining one point, the triangle number is known. For

each triangle there exist only two points of intersection. So the second point on the new

line segment 2 is determined forming chain between first and second segment adding the

segment 2 to the chain with segment 1. Consequently the other point on the second line

segment i.e. Point 2 in segment 2 will be the new end point of the chain.

Similarly,

@�	L	��"	2		�	&#(.#�"	2 = L	��"	1		�	&#(.#�"	3,		

Then segment 3 is added to the chain and the point 2 on segment 3 is the new end

point of the chain. The point 2 on segment 3 will be now be the new point for searching

the chain formation.

The tessellated surface many have more than one loop of chain formation. The

forward chain starting from the 1st point on the first line segment ends when no further

points are matched to be the same. It is then followed by the reverse chain starting from

the 2nd point on the same first line segment as shown in figure 2.24.

53

The result is a chain formation done on both ends of the first line segment

considered and the chain breaks at both ends. Further, in the set of points of intersection,

which is sorted, the next point with lowest coordinate in the slicing direction is

considered. The chain formation is again started from this point. This continues until

there is no point in the set of intersection points obtained. Also there can be segments

with no chain formed, these can be considered as a chain with only one line segment.

Interpolation within a chain is discussed in detail as follows.

Figure 2.24 Interpolation in Slicing Chain

54

The figure 2.24 explains the algorithm for the slicing chain approach.

where,

d: Distance of patterning

di: Initial Distance remainder from last segment

The first point on the chain is plotted with a distance of d/2 from the starting

point. This is done to have the first point on this intersection plane at a distance of d/2

from the boundary of the geometry. This starting distance can be changed according to

requirement.

The general rule to obtain distance for interpolation for the second point on the

chain is:

 X�&"�� #	�	�	��"#�
	��"�	�	�	�	"ℎ#	&# 	�2	
	��" = 2� + 2 (2.15)

where,

di = 0 is the initial value set.

55

Between a segment PQ, to obtain a point of pattern R

)	7778= 	L	7778 + M(N	7778	D	O	7778)
|ON	77777778| P ∗ (2 − 2�) (2.16)

2� = 0	(&#"	"		?#�		�(���)

where,

d: Patterning distance

di: Initial Distance remainder from last segment (Initial value zero)

R	7778: Position vector for Point R

P	7778: Position vector for Point P

Q	7778: Position vector for Point Q

The interpolation will stop on the segment when the distance between the point of

pattern R and Q is less than 'd'.

 @�	\Q	7778 	−)	7778\ < 2, "ℎ#�	2� = \Q	7778 	−)	7778\ (2.17)

Thus, now the interpolation will carry on to the other connected segment in the

chain formed. The same formula for obtaining the point of pattern 'R' will be used. When

di is used, it will be set to zero again.

56

Figure2.25: Before implementation of chain structure for slicing

Figure 2.26: After implementation of chain structure for slicing

57

Figure 2.27: Interpolation on shorter segments before implementation of chain structure

for slicing

Figure 2.28: Interpolation on shorter segments after implementation of chain structure for

slicing

Consider a simple case, refer to figure 2.25. This figure shows the intersection

formed by the plane with four adjacent triangles as an example. The following study does

58

not depend on the number four. Two segments are also sufficient to explain improvement

of patterning algorithm in chain slicing approach. This leads to the formation of

connected line segments. The figure shows a small part of the total intersections formed

by the plane. In this case, for demonstration and ease of understanding, a unit dimension

patterning distance is considered. The aim is to study what happens to the when the line

segments are longer or shorter than a multiple of the patterning distance ‘d’. For instance,

in the figure drawn, the first segment formed by the intersection of the cutting plane with

the triangulated representation has a length of 1.4 units, but the patterning distance is 1

units. Thus, after the initial point, only one point is obtained on the line segment. If the

previous algorithm is used, the next segment is considered, and points are identified at a

distance of 1 unit from the beginning. So the distance between the previous point on the

last segment and the new generated point is obtained as 1.4. The new slicing chain

approach eliminates this problem. Points obtained in figure 2.26 are four, where as in

figure 2.27 three points are identified. Figure 2.27 represents the slicing chain approach.

Similarly, the improvement in the algorithm can be seen from figure 2.27 and 2.28. This

approach eliminates this error as the points are interpolated continuous on a chain of line

segments.

59

2.5.2 Flowchart For Slicing - Chain Approach

Figure 2.29: Flowchart For Slicing - Chain Approach

The flowchart shown in figure 2.29 explains the algorithm for Slicing-Chain

approach for creating a micro-pattern on any arbitrary surface. This is a general flowchart

and involves various steps such as obtaining vertices and normals data from a tessellated

surface, slicing the tessellated surface with plane and providing the offset to plane. It is

then followed by creating intersections by slicing the tessellated surface with a plane. In

this approach forming chains of the line segment intersections formed is an important

improvement. Further, obtaining X, Y, Z translations and A & B angles for the 5-axis are

also obtained in this algorithm.

60

2.5.3 Testing of Slicing - Chain Approach

Figure 2.30: 3D plot of obtained points by micro-patterning Slicing-Chain

Approach

Figure 2.31: 2D-XY plot of obtained points by micro-patterning Slicing-Chain

Approach

-25 -20 -15 -10 -5 0 5 10 15 20 25
-30

-20

-10

0

10

20

30

61

Note that the geometry considered was tessellated into a STL format with an

accuracy of 0.0038881mm. This resulted in 47290 triangles. The capability of the

algorithm to handle finer triangles allowed the use of a fine tessellated STL file.

The same geometry from figure 2.3 is considered for testing of this slicing-chain

algorithm. This geometry is considered as it is a non-uniform curved surface. It is an

arbitrary surface with no uniform extrusion in a single direction.

The number of points generated and shown in figure 2.31 is 17982 micro-

patterning points. An approximate number of expected points can be calculated by

dividing the surface area of the geometry by the area of a square of side equal to the

distance of patterning. Thus the expected number of points come out to be 21628. Thus

83% of the points theoretically obtainable are identified. Time required for the execution

was 122.134s.

2.5.4 Limitations

The Slicing-Chain approach is effective for obtaining a micro-pattern of points.

The approach has a slight shortcoming in that two segments at some angle from each

other will have two points that are not located at a distance equal to the sum of the two

line segments on the individual intersecting lines. This will therefore introduce some

level of inaccuracy in the distance between the points, although it should be minimal

except at very high curvature points. The points are interpolated with desired patterning

62

distance when interpolation is done within a chain. But giving the plane offset of the

patterning distance will introduce a slicing error as mention is section 2.2.4, where the

distance along the surface from points interpolated in the consecutive planes may not be

accurate. Due to this for a non-uniform surface, the micro-patterning will not be able to

capture 100% of the patterning points.

2.5.5 Slicing-chain Approach - Modified

For uniform curved surfaces, the Slicing-chain Approach can be modified to

obtain better results. The slicing Direction can be modified along a curve instead of x, y,

z directions as done earlier.

Figure 2.32: Direction Curve for Slicing - Uniform Curved Surface 1

63

As shown in figure 2.32, the glass surface can be split by the YZ plane to obtain

the intersection curve. Thus the code is executed to obtain the intersection points along

the YZ plane and the resultant set of points represent the curve for direction of slicing.

The points are patterned along the curve highlighted in figure 2.33. Hence, the Slicing

will be done by the XZ plane as done in the Slicing chain Approach. But instead of

shifting by the patterning distance along Y axis, the slicing plane will pass through each

obtained patterning point on the curve, thus obtaining exact uniform pattern.

Figure 2.33: Direction Curve for Slicing - Uniform Curved Surface 2

Similarly for the figure 2.33, the points are patterned along the highlighted curve

using slicing chain approach and the slicing is done at each patterning point on the curve.

The testing and results for this Slicing-Chain approach and modified approach will be

discussed in chapter four.

64

3. OBTAINING X, Y, Z TRANSLATIONS AND A,B ANGLES FOR THE 5-AXIS

MACHINE

To obtain the X, Y, Z translations and A,B angles for the 5-axis machine, the

normal representing the point comes into play. The normal for any point is represented by

following equation. This is obtained as explained in sections 2.1 and 2.2 for STL and

VRML formats.

 � = �	�8+ /	�8+ 	� (3.1)

The normal needs to align with the tool of the machine, which is assumed to be

vertical. Thus normal first needs to be aligned with the YZ plane first and then with the z

axis.

The B angle represents the angle for rotation of the normal in XY plane to align

with the YZ plane. Whereas the A angle represents the angle for rotation in YZ plane to

align with the z axis.

65

Figure 3.1 A and B angle orientation

To obtain B angle, the angle between the normal and the YZ plane measured

along the XY plane is needed. This angle will can be calculated by measuring the angle

between the 'normal projected onto the XY plane' and the 'YZ plane'.

Therefore, first the normal is projected onto the XY plane

 �O]^_`abc^d	9e = �	�8 + /	�8+ 0	�78 (3.2)

66

The B angle can be calculated by measuring the angle between the normal

projected on XY plane and the y axis. The vectors representing the normal projected onto

the XY plane and the y axis, both normal lie on XY plane. Thus, just a rotation in XY

plane has to be calculated.

 =	��(�# = �O]^_`abc^d	9e	.		(0	�8+	�8+ 	0	�78) (3.3)

Similarly, to obtain the A angle, the angle between the normal projected onto the

YZ plane and the XY plane is needed. It can be calculated by measuring the angle with

the x axis as the normal is projected onto the YZ plane and both vectors representing x

axis and projected normal lie on the YZ plane.

 �O]^_`abc^d	eg = 0	�8+ /	�8+ 	�78 (3.4)

The A angle for the machine is defined as rotation angle in the YZ plane. Thus, to

obtain the A angle, the angle between the normal projected onto the YZ axis and the z

axis is needed.

 <	��(�# = �O]^_`abc^d	eg	.		(0	�8+ 0	�8+	�78) (3.5)

67

The origin in the CAD file is set to the origin of the machine. But certain axis of

machine and the rotation angles A and B may be different from the coordinate system

assigned in the CAD. Positive X translation obtained according to CAD coordinate

system may be negative with respect to the machine X axis. Therefore, the modifications

for obtaining results according to machine has been done in the code. Thus taking care of

X, Y, Z axis orientation of the machine, the X, Y, Z translations are determined.

Observing the figure 3.1, angles are considered looking from the top of plane XY

in the negative direction of Z axis for angle B and looking from the right in the direction

of negative X axis on the YZ plane for A angle.

The position vector in the positive 'i' direction will have an anticlockwise rotation

to align with the YZ axis. Similarly, a position vector in the negative 'i' direction will

have a clockwise rotation to align with the YZ axis. If the co-efficient of the 'i' coordinate

is positive, the B angle is considered positive. The anticlockwise rotation for B angle is

considered as positive as shown in figure 3.1. Similarly if 'i' coordinate is negative, the B

angle is considered to be negative.

 Applying the same logic for calculating the sign of the A angle, the position

vector in the positive 'j' direction will have an anticlockwise rotation to align with the YZ

axis. Similarly, a position vector in the negative 'j' direction will have a clockwise

rotation to align with the YZ axis. If the co-efficient of the 'j' coordinate is positive the A

angle is considered positive.

68

New position vector is obtained after Rotation with B angle.

 h36R6?6i = hcos	(=) − sin(=) 0sin	(=) cos(=) 00 0 1i 	∗ 	 o
3R?p (3.6)

This Position vector is again rotated by A angle, new position vector is obtained

after Rotation with A angle.

 h35R5?5i = h 0 0 1sin	(=) cos(=) 0cos	(=) − sin(=) 0i 	∗ 	 h
36R6?6i (3.7)

The 35	, R5?5 , thus obtained will represent the x, y and z translations. It is

assumed that the co-ordinate axis of the machine aligns with the co-ordinate system

assumed for the algorithm. If there is any change in the co-ordinate system of the

machine, then related transformations or rotations can be obtained easily.

69

4. TESTING RESULTS AND DISCUSSION

The Slicing-Chain Algorithm was found to be the most effective among the three

approaches discussed. Note that other approaches can certainly be identified, however,

there were several constraints to consider.

1. We were to be able to consider any object issued from any CAD software.

The STL/VRML solution is CAD neutral and will work in all cases. Second,

there is the issue of efficiency of computing the points.

2. Identifying points on line segments and identifying intersections of planes and

triangles is the most efficient and therefore the fastest to process.

3. It was important to the client to have a pattern of points that looks as uniform

as possible. The approach proposed satisfied the client.

The Testing of this algorithm is done with different types of surfaces.

For checking the number of micro-patterning points with expected, an

approximate calculation is performed, where surface area of the geometry is calculated.

Assuming it as a square with respective surface area, the number of points expected are

approximately.

70

4.1 Planar Surface

Figure 4.1: Plane Surface with Patterning pitch: 0.35mm

Total number of micro-patterning points obtained are 8094. The rectangle has an

area of 1000 sq. mm. Thus approximately expected points is 1000 divided by area of unit

square with length equal to patterning distance 0.35 mm which is 0.1225 sq. mm. Thus

the number of expected points come out to be approximately 8163.To perform accurate

calculation, the rectangle is 20 x 50. Therefore the number of points along both edges are

20/0.35 and 50/0.35, which comes out to be 57 and 142 as integer value for patterning.

57 x 142 is 8094, which implies this method is accurate for planar surfaces when

appropriate slicing direction is selected. Time required for the algorithm is 11.256s.

-25
-20

-15
-10

-5
0

5
10

15
20

25

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10

-8

-6

-4

-2

0

2

4

6

8

10

71

To plot the patterning points using CAD software-Solidworks, following table 4.1

shows time required by Designer. Thus it is observed that it depends upon the expertise

of the Designer to plot points. Moreover time taken ranges over from 25-60 for different

Designers just to plot the points. Three Designers were chosen for study. The results

proves that it does depend on the Designer and also the result obtained is just a partial

output of what the algorithm delivers.

Table 4.1 Time Required using CAD-Planar Surface

Designer

Time required

(s)

1 30

2 60

3 25

The algorithm designed, reduces human efforts in plotting the points. Adding

further it not only plots the points, but also calculates the X, Y, Z translations and the A,

B angles required for a 5-axis machine at those points. The algorithm takes only 8-9 s to

achieve all together, implying huge benefit of the algorithm.

72

4.2 Uniform Curved Surface

Figure 4.2: Uniform Curved Surface with Patterning pitch: 0.35mm

Total number of micro-patterning points obtained are 3976. This is obtained by

slicing direction of x axis, which were 87% of the expected points.

Table 4.2 Analysis for different slicing directions for uniform curved surface

Slicing

Direction

No. of Micro -

Patterning

Points

Surface

Area

Patterning

Distance

Expected

Points

% Points

Obtained

Time

Required

(s)

X 3976 562.12 0.35 4588.734694 87% 8.61

Y 2792 562.12 0.35 4588.734694 61% 8.24

Z 4480 562.12 0.35 4588.734694 98% 8.92

05101520253035404550

-20

-15

-10

-5

0

5

0

2

4

6

8

10

73

Table 4.3 Time Required using CAD-Uniform Curved Surface

Designer

Time required

(s)

1 900

2 755

3 600

Table 4.3 proves that the average time required by the three Designers is much

more than the 8-9 s taken by the Algorithm. The CAD software also takes more time as

the complexity of the problem increases. Whereas the algorithm works in similar manner

for any geometry.

Figure 4.3 Effect of Slicing Direction on micro-patterning for uniform curved

surface

Figure 4.3 shows the plot of percentage of micro-pattering points obtained when

compared to expected points.

74

From Table 4.2 it can be observed that the slicing-chain algorithm works efficient

if correct slicing direction is selected. Slicing as z direction is the direction of extrusion of

the sketch to form a surface. Thus this slicing direction yields maximum number of

micro-patterning points.

But for this type of uniform curved surface, which is generated from a curved

sketch extruded in a single direction, accurate results can be obtained. Thus this method

is readily applicable for these types of surfaces.

4.3 Non- Uniform Curved Surface

Figure 4.4: Non-Uniform Curved Surface with Patterning pitch: 1mm

Figure 4.4 shows the 3D plot of the patterning points for the glass. Total number

of micro-patterning points obtained in the figure 3.4 are 10455, which are 87% of the

total approximate expected points.

-40

-30

-20

-10

0

10

20
30

40

0

10

20

30

40

50

60

70

80

90

100

-40

-30

-20

-10

0

10

20

30

40

75

Figure 4.5: Non-Uniform Curved Surface with Patterning pitch: 5mm

Total number of micro-patterning points obtained in the figure 4.5 are 396, which

are 82% of the total approximate expected points.

Table 4.4 Analysis for different slicing directions for non-uniform curved surface

Slicing

Direction

No. of Micro

-Patterning

Points

Surface

Area

Patterning

Distance

Expected

Points

% Points

Obtained

Time

Required

(s)

X 35871 12075 0.5 48300 74% 141.227

Y 42168 12075 0.5 48300 87% 153.684

Z 35881 12075 0.5 48300 74% 141.573

Varying the slicing direction affects the points obtained by micro-patterning. For

this non-uniform curved surface, the slicing in Y direction gives more accurate. It is

because it is perpendicular to the shaft axis for the glass. For given any arbitrary surface,

the results can be checked for different slicing directions and the most accurate of them

can be selected.

-40

-30

-20

-10

0

10

20
30

40

0

10

20

30

40

50

60

70

80

90

100

-40

-30

-20

-10

0

10

20

30

40

76

Table 4.5 Time Required using CAD-Non- uniform Curved Surface

Designer

Time required

(s)

1 865

2 720

3 480

Table 4.5 proves that the average time required by the three Designers is much

more than the 8-9 s taken by the Algorithm. The CAD software also takes more time as

the complexity of the problem increases. Whereas the algorithm works in similar manner

for any geometry.

Figure 4.6 Effect of Slicing Direction on micro-patterning for non-uniform curved

surface

77

Table 4.6 Analysis for varying patterning distance for non-uniform curved surface

Slicing

Direction

No. of

Micro -

Patterning

Points

Surface

Area

Patterning

Distance

Expected

Points

% Points

Obtained

Time

Required

(s)

Y 42168 12075 0.5 48300 87% 153.684

Y 10455 12075 1 12075 87% 68.085

Y 396 12075 5 483 82% 19.508

It can be observed that this method is more accurate for micro-patterning, and as

the patterning distance is increased after 1mm, lesser percentage of expected points

would be obtained.

Figure 4.7: Effect Patterning distance on micro-patterning for non-uniform curved

surface

79%

80%

81%

82%

83%

84%

85%

86%

87%

88%

0.5 1 5

Patterning Distance (mm)

% Points Obtained

% Points Obtained

78

Table 4.7 Analysis for varying patterning distance for non-uniform curved surface

modifying slicing direction

Slicing

Direction

No. of

Micro -

Patterning

Points

Surface

Area

Patterning

Distance

Expected

Points

% Points

Obtained

Time

Required

(s)

Y 47368 12075 0.5 48300 98% 221.89

Y 23902 12075 0.7 24642 96% 212.64

Y 11652 12075 1 12075 96% 201.56

Table 4.7 shows results modifying the slicing direction along the curve as shown

in the figure 2.32 for the slicing chain approach. The points are patterned with a uniform

distance 'd' along the curve line shown in figure 2.32. It is followed by offsetting the ZX

planes in y direction at the points of the pattern obtained along the curve. As a result this

has eliminated the slicing error mentioned in figure 2.22. Hence, the accuracy obtained in

table 4.7 is higher than that of table 4.6, where slicing error existed.

For the direct interpolation approach, it fails mostly when the patterning distance

is more than the length of the sides of the triangles obtained. This can be rectified by

decimating the STL mesh specified in [10]. But this will increase more approximation of

the geometry. Thus, even if the pattern can be plotted on the decimated STL file, it will

be less accurate when compared to the actual surface data.

There has been much research done in field of NURBS [8,9]. Offsetting curves by

uniform distance, then interpolating points on the curves can be an approach to obtain

patterning on any surface. The offset of NURBS have intersections with each other.

Method has been proposed in [8] for rectifying the intersections. AS the profile changes

or at the extreme inner curves, the distance of one curve with the nearby does not

79

maintain itself at the offset distance. This can also be an area of interest for applying

micro-patterns.

A triangular meshed model from an FEA software will also function in same way

as an STL file for inputting the coordinates and normals data to the algorithm.

The Slicing approach fails when the intersections have length less than the

patterning distance. Also error occurs when there is remainder of the intersection after

interpolation is done.

The Slicing-Chain approach has so far proven to be applicable method for use of

micro-patterning. For planar surfaces, it is accurate when correct slicing direction is

chosen. For uniform curved surfaces which have a sketch extruded in a single direction,

the Slicing-Chain approach will be provide more accurate results if the slicing direction is

chosen as the extrusion direction. For any arbitrary surface, varying the slicing direction

affects the number of points generated in the micro-pattern.

80

5. CONCLUSION AND FUTURE WORK

5.1 Conclusions

It can be concluded that the method proposed by the Slicing-chain algorithm is a

good method for micro-patterning. In addition, the slicing direction can be modified for

better results. The previous approaches of direct interpolation and direct slicing fail when

the patterning distance is more than the geometric parameters of a triangle.

If a material removal process (micro-drilling) has to be carried out at the pattern

locations, then the X, Y, Z translations and the A, B angles for a 5-axis machine are

obtained by the algorithm. Also if there are any CAD operations on those points

generated by the micro pattern, then these points can be imported into any CAD package.

The limitation for this approach is the slicing error caused, when the distance of

the pattern points have an error when measured along geometry as discussed earlier for

figure 2.22. But the slicing chain approach can be modified as shown in section 2.6 to

improve the patterning of the points.

5.2 Future Work

Investigation can be done on how to reduce the slicing error and then interpolate

points for patterning. Effective ordering of the points for machining can be studied.

Research can be done on how to incorporate the use of offset of NURBS for the micro-

patterning algorithm. New approaches can be attempted such as whereby a pattern is

created by a point-to-point approach starting from a base point on the geometry. This can

81

be done using a 2D mesh starting from a point and obtaining each point at a patterning

distance from the neighboring points.

82

REFERENCES

1. J.L. Huertas-Talon, C. Garcia-Hernandez, L. Berges-Muro, and R. Gella-

Marin, “Obtaining a spiral path for machining STL surface using non-

deterministic techniques and spherical tool”, Computer Aided Design, vol. 50,

2014, pp. 41-50

2. M. Szilvasi-Nagy, G. Matyasi, Analysis of STL filesMath. Comput.

Modelling, 38 (2003), pp. 945–960

3. StereoLithography Interface Specification, 3D Systems, Inc., July 1988

4. H. Baerten, F. Van Reeth, Using VRML and Java to visualize 3D algorithms

in computer graphics education, in: Proc. Edugraphics 97, Grasp Queluz,

1997, pp. 269–274.

5. A. Ramesh, W. Akram, S.P. Mishra, A.H. Cannon, A.A. Polycarpou, W.P.

King, Friction characteristics of microtextured surfaces under mixed and

hydrodynamic lubrication, Tribol Int, 57 (2013), pp. 170–176

6. D. Braun, C. Greiner, J. Schneider, P. Gumbsch, Efficiency of laser surface

texturing in the reduction of friction under mixed lubrication, Tribol Int, 77

(2014), pp. 142–147

7. L. Ventola, M. Dialameh, M. Fasano, E. Chiavazzo, P. Asinari, Convective

heat transfer enhancement by diamond shaped micro-protruded patterns for

heat sinks: thermal fluid dynamic investigation and novel optimization

methodology, Appl Therm Eng, 93 (2016), pp. 1254–1263

8. J.-L. Shih, S.-H. Frank Chuang, One-sided offset approximation of freeform

curves for interference-free NURBS machining, Computer Aided Design, 40

(9) (2008), pp. 931–937

9. G.V.V. Ravi Kumar, K.G. Shastry, B.G. Prakash, Computing constant offsets

of a NURBS B-Rep, Computer-Aided Design, 35 (2003), pp. 935–944

10. William J. Schroeder, Jonathan A. Zarge, and William E.Lorensen.

Decimation of triangle meshes. Computer Graphics, (SIGGRAPH ’92 Proc.),

26(2):65–70, July 1992.

11. H. Pottmann, C. Jiang, M. Höbinger, J. Wang, P. Bompas, J. Wallner, Cell

packing structures, Comput-Aided Des, 60 (2015), pp. 70–83

12. Efficient slicing for layered manufacturing. / Tata, Kamesh; Fadel, Georges;

Bagchi, Amit; Aziz, Nadim. In: Rapid Prototyping Journal, Vol. 4, No. 2-4,

01.12.2098, p. 151-167.

13. Xu Xiduo, Li Jijun and Zheng Hong, “A new NURBS Offset curves and

surfaces Algorithm based on different Geometry Shape”, IEEE 10th

83

International Conference on Computer-Aided Industrial Design &Conceptual

Design, 2009, pp 2384-2390

14. Les A. Piegl and Wayne Tiller, “Computing Offsets of NURBS curves and

surfaces”, Computer-Aided Design, 1999, Vol.31, pp 147-156

15. MATLAB R2014, The MathWorks Inc.

16. Solidworks 2014, Dassault Systems

17. Hyperworks 2013, Altair

84

APPENDICES

85

APPENDIX A. STL FILE OF PLANAR SURFACE

solid plane1

 facet normal 0.000000e+000 1.000000e+000 0.000000e+000

 outer loop

 vertex 2.500000e+001 0.000000e+000 -1.000000e+001

 vertex -2.500000e+001 0.000000e+000 -1.000000e+001

 vertex 2.500000e+001 0.000000e+000 1.000000e+001

 endloop

 endfacet

 facet normal 0.000000e+000 1.000000e+000 0.000000e+000

 outer loop

 vertex 2.500000e+001 0.000000e+000 1.000000e+001

 vertex -2.500000e+001 0.000000e+000 -1.000000e+001

 vertex -2.500000e+001 0.000000e+000 1.000000e+001

endloop

 endfacet

endsolid

86

APPENDIX B. STL FILE OF UNIFORM CURVED SURFACE

solid curved surf1

 facet normal -3.700537e-002 -9.993151e-001 0.000000e+000

 outer loop

 vertex 5.000000e+001 -2.000000e+001 0.000000e+000

 vertex 5.000000e+001 -2.000000e+001 1.000000e+001

 vertex 4.969327e+001 -1.998837e+001 1.000000e+001

 endloop

 endfacet

 facet normal -3.875547e-002 -9.992487e-001 0.000000e+000

 outer loop

 vertex 5.000000e+001 -2.000000e+001 0.000000e+000

 vertex 4.969327e+001 -1.998837e+001 1.000000e+001

 vertex 4.969327e+001 -1.998837e+001 0.000000e+000

 endloop

 endfacet

 facet normal -4.591546e-002 -9.989453e-001 0.000000e+000

 outer loop

 vertex 4.969327e+001 -1.998837e+001 0.000000e+000

 vertex 4.969327e+001 -1.998837e+001 1.000000e+001

 vertex 4.877059e+001 -1.994351e+001 1.000000e+001

 endloop

 endfacet

 .

.

.

.

.

 facet normal 5.087036e-001 -8.609417e-001 0.000000e+000

 outer loop

 vertex 3.520512e-001 2.051629e-001 0.000000e+000

 vertex 0.000000e+000 0.000000e+000 1.000000e+001

 vertex 0.000000e+000 0.000000e+000 0.000000e+000

endloop

 endfacet

endsolid

87

APPENDIX C. VRML FILE FOR PLANAR SURFACE

#VRML V1.0 ascii

Separator {

MaterialBinding {

value OVERALL

}

Material {

ambientColor [

 0.792157 0.819608 0.933333

]

diffuseColor [

 0.792157 0.819608 0.933333

]

emissiveColor [

 0.000000 0.000000 0.000000

]

specularColor [

 0.396078 0.409804 0.466667

]

shininess [

 0.400000

]

transparency [

 0.000000

]

}

Coordinate3 {

point [

 -25.000000 0.000000 -10.000000, -25.000000 0.000000 10.000000, 25.000000

0.000000 -10.000000, 25.000000 0.000000 10.000000

]

}

IndexedFaceSet {

coordIndex [

 2, 0, 3, -1, 3, 0, 1, -1

]

}

}

88

APPENDIX D. PROGRAM MANUAL

Program To Read STL File And Create Micro-Pattern of Points

Obtains Points, Normals, X,Y,Z Translations, B & A Angles

Developers:

Viraj Kulkarni

Graduate Student

Department of Mechanical

Engineering

Clemson University

Clemson, SC 29634-0921 USA

Dr. Georges Fadel

Professor and ExxonMobil Employees Chair in

Engineering

Department of Mechanical Engineering

Clemson University

Clemson, SC 29634-0921 USA

Introduction:

The aim of the program is to apply a pattern on a surface on the micro-scale. Matlab

and Solidworks are used in the process. CAD file is imported into Solidworks. After

assigning the new Co-ordinate system, the CAD file is converted into a STL format. A

Program has been coded using Matlab to read the STL file, store the data and obtain the

micro-pattern of the points. The result is a spreadsheet which contains the X,Y,Z

translational values for the machine, the B and A angles for the machine, the actual

X,Y,Z Coordinates and the normals of the obtained points for CAD file.

Following are the steps to run the program

I. Create a STL(.stl) file using Solidworks

II. Run the Program using Matlab

89

(I) Steps for creating a STL file:

1. Open the CAD file in Solidworks.

2. Verify that the units used for the CAD file are in mm

Go to Tools - Options

Click Document Properties and select MMGS.

3. Draw a sketch (In proposed XY plane or Top view) to mark the projection of the new

origin.

Draw a centre line and plot the midpoint on it.

90

4. Insert Vertical Plane (proposed ZX plane) passing through that point

Go to Insert - Reference Geometry - Plane

Select the parallel plane to proposed ZX plane and select the point created.

(In absence of a parallel plane, a plane has to be created before)

91

5. Draw a sketch to mark the point for proposed Origin at the appropriate position.

6. Insert New Co-Ordinate System

Always assign the Co-ordinate system as assigned in the following figure.

(X positive towards right and Y positive towards top in the top view and Z upwards

positive)

Note: The X,Y and Z axis of the machine are reverse of the CAD system to be

followed in Solidworks, The co-ordinate system of the machine cannot be followed

in Solidworks due to its axis orientations. The program interprets the values in co-

ordinate system of the machine)

92

Select the New point for Origin and Select X,Y,Z axes accordingly.

93

7. Extract the Surfaces on which pattern has to be created.

Go to Insert - Surface - Offset

Enter Offset distance as zero

94

8. Delete the Body to obtain just the surface in the CAD file.

Go to Insert - Features - Delete Body

Select the Body to delete

95

Following will be displayed as result:

96

9. Save as STL file (.stl)

Go to File - Save as - Select STL format and click options

Select Version: STL and Units: millimeters. Select new 'Co-ordinate System 1' in

Output Co-ordinate system.

10. Again Click save as Solidworks part file also to have main file back up.

97

(II) Run the Program using Matlab

1. Make sure that the STL file and the program are saved into a same folder or

location.

2. Open Matlab

The default location path for running a program in Matlab is:

C:\Users\'Username'\Documents\Matlab

3. Change the location of the current folder to the location where the program and the

STL file is saved.

The folder location will be displayed.

98

4. Type the name of the program: Magic, and press enter

5. The program will be started.

Enter the file name of the STL file and click enter.

In this case it is 'Prototype_SingleCavityv1'

99

6. After reading the STL file, 'Reading STL file successful' will be displayed.

Enter Y or N for the advanced options.

7. The first option is to Invert the Normal

100

The normal is outward, where the material is not present. But as this is a surface, it

can have normal on either sides. Generally the normal generated is at the concave

side

For this example the patterning is to be done on the inner or the concave side, so no

inverting of the normals is necessary. The surface on which patterning has to be

done on the convex side, normals have to be inverted. Even if the normals are not

inverted, it can be noticed from the high A angle values or checking a point on the

machine that the wrong side of the part is obtained. Then the program can be

restarted inverting the normals.

8. The next option is to assign Maximum allowed limit on the A angle.

Enter 'y' if the limit has to be imposed.

Normal Convex Side Concave Side

101

9. Enter the value for Maximum allowed value of A angle

10. Enter Y for assigning direction of slicing or N for default 'X Axis'

102

11. Enter X, Y, Z for assigning X-axis, Y-axis or Z-axis respectively for Slicing Direction

12. Enter the distance of applying the pattern in mm

103

13. The program will start computing and will display its status till the results are

obtained.

14. The Result file will be created in the same location.

For the Result file:-

Columns 1,2,3: X,Y,Z Translational values for the machine (Machine Co-ordinate

system)

Columns 4,5: B and A angle (deg)(Machine Co-ordinate system)

Columns 6,7,8: X,Y,Z coordinates of the points for CAD file (CAD Co-ordinate system)

Columns 9,10,11: i,j,k values of the normals of the points (CAD Co-ordinate system)

(CAD file has a different Co-ordinate system than the machine)

	Clemson University
	TigerPrints
	12-2016

	Uniform Micro-Patterning of an Arbitrary Surface
	Viraj Rajendra Kulkarni
	Recommended Citation

	Microsoft Word - Uniform Micro-Patterning of an Arbitrary Surface

