
Clemson University
TigerPrints

All Theses Theses

12-2016

Predicting Culvert Deterioration Using Physical
and Environmental Time-Independent Variables
Michael Wallace Stoner
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Stoner, Michael Wallace, "Predicting Culvert Deterioration Using Physical and Environmental Time-Independent Variables" (2016).
All Theses. 2543.
https://tigerprints.clemson.edu/all_theses/2543

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2543?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2543&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


PREDICTING CULVERT DETERIORATION USING PHYSICAL AND 
ENVIRONMENTAL TIME-INDEPENDENT VARIABLES  

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science
Civil Engineering 

by 
Michael Wallace Stoner 

December 2016 

Accepted by: 
Dr. Weichiang Pang, Committee Chair 

Dr. Kalyan Piratla 
Dr. Brandon Ross 



ii 

ABSTRACT 

Given a database of approximately 8,000 culverts in South Carolina with varying 

sizes, types, configurations, and the associated ratings of different output categories, a 

predictive deterioration model was produced in an attempt to match the ratings of these 

output categories.  These models used the physical culvert information given in the 

database of culverts and associated environmental characteristics including historical 

temperature, precipitation, pH, and estimated runoff coefficient as inputs for the model.  

The models used combinations of inputs that produced the model with the best 

performance measures.  In addition, a separate group of models was created for each of 

the six culvert types commonly found in South Carolina.  These models used different 

combinations of the input variables to produce a model that rated a culvert in ten 

categories: cracking, separation, corrosion, alignment, scour, sedimentation, vegetation, 

erosion, blockage, and piping.  The scores for each of these categories were combined to 

give an overall composite score for each of the culverts. 

Two types of models were used for each of the culvert types and output 

categories, a logistic regression model and an artificial neural network model.   The 

purpose of this model was to allow the user of the model to input a culvert or group of 

culverts and receive their expected culvert ratings in accordance with the SCDOT Field 

Inventory and Inspections Guidelines.  The model also produced a composite rating, 

consisting of a combination of the ten input categories predicted by the model.  There 

were several preset composite weights for these categories, but the model also adapted 

for a user input combination of output categories. 
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The models produced were shown to have a coefficient of determination of 

between 0.25 for poorly correlated models to a coefficient of determination 0.80 for 

better correlated models when comparing the predicted culvert score with the actual 

culvert score.  The models that were produced were meant to serve as both a tool to 

determine the approximate health of a group of culverts, and to compare the scores of a 

group of culverts allowing the SCDOT to make decisions about rehabilitation and repair 

without physically inspecting a culvert.  
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CHAPTER ONE 
 

Introduction 
 
 Culverts can be defined as pipes which are typically located under a roadway and 

help to direct the flow of water.  Culverts differ from bridges in that they are smaller and 

often hidden below the roadway.  Because culverts are often concealed and can be 

difficult to access, their condition can be hard to determine through traditional inspection 

techniques.  In South Carolina alone, there are tens of thousands of culverts that were 

installed over 50 years ago and are in varying states of deterioration (SCFOR 2015).  

With such a large infrastructure of culverts, it is important to be able to prioritize the 

repair and rehabilitation efforts.  The failure mechanisms of culverts can vary 

extensively, and the condition of a culvert can be the combination of many different 

criteria.  In addition, there are many factors that affect the condition of a culvert that 

include both physical and environmental characteristics.  The behavior of a culvert is 

largely effected by its material type.  In South Carolina, six primary types of culverts are 

used: reinforced concrete pipe (RCP), corrugated metal pipe (CMP), corrugated 

aluminum pipe (CAP), high density polyethylene pipe (HDPE), masonry pipe, and 

culverts classified as mixed or other culverts.  Of these six types of culverts, RCP 

culverts are by far the most common in the state of South Carolina.  The combination of 

these characteristics and their relationship with the condition of the culvert is complex in 

nature.   
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 Previous researchers have used Markov models as well as multiple discriminant 

analysis (MDA) to predict the structural deterioration of culverts.  This study will focus 

primarily on creating multinomial logistic regression (MLR) and artificial neural network 

(ANN) models that can be used to predict the condition of a culvert without on-site 

investigations or assessments.  These models will serve to predict a variety of output 

characteristics for each culvert as well as provide different models for each culvert type.  

The output predicted by the model will be combined using a weighted average of these 

output categories.  These weights can be determined by the model’s user or by previous 

data collected from various state Departments of Transportation and attempt to give the 

user an idea of the overall health of a culvert as well as the variability that exists within 

the model’s output prediction.  The goal of these models is to give an estimate of a 

culvert’s state of deterioration using physical and environmental characteristics that allow 

the user to prioritize those culverts that need further assessment and ultimately repair and 

replacement. 
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CHAPTER TWO 

Objectives 

 
 The primary objective of this study was to create and verify a model that could be 

used to predict the condition of culverts in South Carolina.  This model was based on a 

database of historical data that was used to pair a culvert’s physical and environmental 

characteristics with the condition assessment of the culvert.  Two different model type 

were used to probabilistically predict a set of inspection criteria in an attempt to 

maximize the efficiency of the repair and assessment techniques.  The multinomial 

logistic regression (MLR) and artificial neural network (ANN) models attempted to 

predict the condition all six culvert types and all required assessment variables defined by 

the SCDOT Field Inventory and Inspections Guidelines. 

 The probabilistic model was not a deterioration model, because a time-dependent 

variable associated with each culvert was absent from the database of culvert 

information.  Using other physical and environmental parameters in combination with 

physical characteristics associated with each culvert, the model was used to identify the 

effects of these parameters and determine a culvert overall condition.  The accurate 

mapping and assignment of the site specific parameters not included in the database of 

information was also an important objective in this study.  In addition to creating the two 

models, regression techniques were used to post-process the output produced by these 

models in an effort to correct for any present bias and quantify the variability that exists 

in the population of culverts in South Carolina.  The neural network models were also 

dependent on several factors including the number of neurons in each layer, the training 
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algorithms used to create the network, and the combinations of input variables.  These 

variants were manipulated to give the most accurate neural network model.  The final 

models will allow the user to determine the output rating of any of the criteria used in the 

SCDOT Field Inventory and Inspection Guidelines as well as determine a composite 

score for each of the culverts.  Using regression analysis, a final composite score would 

be calculated and the standard deviation would be presented.  These efforts were made in 

order to accurately identify the culverts in South Carolina in need of assessment or repair 

without performing any physical testing or on-site investigation.   
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CHAPTER THREE 

Literature Review 

 Researchers have created many models that predict the deterioration of culverts 

across the United States.  Some of these models focus on the overall structural 

deterioration, while others focus on one or more aspects of the deterioration such as 

corrosion or scour.  In addition, many of the models utilize different sets of input 

variables and implement different statistical models to predict the condition of culverts to 

different levels of effectiveness.  

Model Types 

 There have been several types of statistical models that are used to determine 

deterioration in complex infrastructure systems.  Some simple are single parameter fitted 

distributions typically using age as the primarily independent variable (Verma et al 

2013).  Other models employ the Markov models which utilizes rates of deterioration in 

terms of the probability of changing condition state or transitional probabilities (Baik et 

al. 2006).  Most often, both the fitted distribution models and Markov deterioration 

models have single variable inputs.  In the case where more information on the physical 

or environmental characteristics exist, multi-variable probability models are suitable for 

the prediction of various output criteria.  The most applicable multi-variable models for 

this study are neural network models and logistic regression models.   

Neural Networks 

Neural network models are based on three distinct functional operations that 

determine the output given a vector of inputs.  In the case where there is only one input, 
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the first of these functions is a weighting function in which an input is multiplied by a 

scalar weight.  The second function adds a scalar bias term to the scalar weight and scalar 

input multiplication.  Finally, a transfer function is used to produce a scalar output, 

shown in Figure 3.1 as a simple neuron (MATLAB 2015a).  There are three choices for 

the transfer function using the MATLAB 2015a Neural Network Toolbox, a log-sigmoid 

function, a tan-sigmoid function, and a linear transfer function.   Often, the sigmoid 

transfer functions are used in problems with pattern recognition applications, while the 

linear transfer function is used in function fitting applications.  

Figure 3.1: Layout of Simple Neuron 

 For culvert deterioration models, there a several input variables that are used, so 

the scalar inputs and weighting functions become vectors that are added to a bias term 

used in a transfer function producing a scalar output (Figure 3.2).  The network can 

become more complex as multiple neurons can be used in a single layer.  These neurons 

now produce a vector of outputs and the weighting functions become a matrix.  Finally, 
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multiple layers can be used in a neural network to create networks that can approximate 

complex relationships between multiple inputs and outputs (Figure 3.3).   

Figure 3.2:  Combination of Multiple Inputs in a Simple Neuron 

Figure 3.3: Multiple Inputs Producing Multiple Outputs in Complex Neurons 

 Previous neural network models used to predict the condition of storm-water 

pipes used three layers of neurons with the number of neurons. These three layers 

correspond the number of inputs, the number of patterns in the total number of output 

options, and finally the number of output options respectively (Tran et al. 2009).  The 
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number of neurons in the second layer, associated with the number of patterns in the 

output options, are also known as hidden neurons.  Determining the number of neurons to 

use can cause problems of overfitting or underfitting.  Ultimately the convergence 

principle was applied to achieve the most accurate results when neural networks are used 

(Sheela and Deepa 2013).  In addition, the amount of data that is used to train and 

validate the neural network model can have an impact on the accuracy of the model.  It is 

common to use the mean-square error to determine the accuracy of the model and select 

the best model based on the least error (Tatari et al. 2013). 

 Besides the construction of the network, the parameters used to train the network 

have an impact of the final model.  Previous research has used 80% of the data to train 

the network and 20% of the data to test the network (Tatari et al. 2013) or 75% for 

training and 25% for testing (Ariaratnam et al. 2001).  MATLAB’s built-in Neural 

Network Toolbox uses a default setting of 70% of the data to train the network, 15% of 

the data to validate the network, and 15% of the data to test the network.  The validation 

checks are defined as the number of iterations performed during which the performance 

function of the neural network fails to decrease.  The primary training algorithm used to 

train the neural network is called the Levenberg-Marquardt method.  This method is 

especially adept at solving nonlinear problems with multiple inputs and utilizes two 

minimization techniques: the gradient descent method and the Gauss-Newton method. 

(Marquardt 1963).  These two methods are used based on the scalar value of the update 

parameter, λ.  When values of λ are large, the Gauss-Newton method is used to determine 

λ, and when λ values are relatively small, the gradient descent method is used to calculate 
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λ.  Based on previous research, the Levenberg-Marquardt method for training neural 

networks has proven to be both accurate and computationally manageable for similar 

types of problems (Aimin et al. 2011). 

Logistic Regressions 

        Logistic regression models give another option in efforts to solve complex problems 

with multiple inputs.  Common types of logistic regressions include linear regressions 

and logistic regressions.  Linear regressions can be used to determine the relative 

probability of a desired output as the linear addition of the input variables, (X1, X2, … , 

Xn) and a weighting factor (β1, β2, … , βn).  The logarithmic logistic regression uses the 

same principles as a linear logistic regression but incorporates the logarithmic function 

(Eqn. 3.2). 

ln
PሺOutput=1ሻ

PሺOutput=0ሻ
=β0+β1X1+β2X2+…+βnXn                             (Eq 3.1)   

   

Furthermore, the logistic regression model can be broken down into binary and 

multinomial logistic regression.  Binary logistic regressions predict the probability of an 

event that is binary (it either occurs or does not), while multinomial logistic regression 

allows for a larger breakdown in the output of the model.  In the case of predicting a 

rating of a culvert, the logistic regression can predict the relative likelihood of a specific 

output score being less than or equal to the threshold value (Eq 3.3).  The value of k in 

Equation 3.3 varies from the lowest possible score to one value less than the highest 

possible score.  These output scores need to be integer values for the log-likelihood 

algorithm to create a best-fit model. 
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ln
PሺOutput≤kሻ

PሺOutput>kሻ
=β0+β1X1+β2X2+…+βnXn                          (Eq 3.2) 

   Multinomial logistic regression is applicable when the output is a scaled rating of 

the desired variable.  In the case of culvert deterioration multinomial logistic regressions, 

this allows for the output variables to be an integer scaling. 

Results of Regression and Neural Network Models 

 Logistic regression models have been created with varying degrees of success.  

Because the primary performance objectives can change between different models, it can 

be difficult to compare the results of various models.  For linear regressions, a coefficient 

of determination of 0.823 was achieved using various combinations of input variables 

relying primarily on age and pH (J., Colorado 2014).  Other models reported their 

accuracy as a percent of culverts correctly identified in each condition state.  The logistic 

regression model produced an overall accuracy of 68.7% with 83.1% percent of culverts 

in need of repair being correctly identified (Salem).  A neural network model created in 

2006 achieved similar results with a 71.5% success rate in the calibration set and a 66.9% 

success rate in the validation set (Tran et al. 2006).  Using 39 culverts in Ohio, a neural 

network was created that proved to be 100% successful in identifying culverts in need of 

inspection; however, it must be noted that when a given data set had less than three data 

points, the accuracy could not be tested (Tatari et al 2013).  Furthermore, a model created 

to predict restrain in culverts achieved a coefficient of determination of greater than 0.95 

when comparing the predicted output versus the actual output (Al-Gburi et al 2015). 
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Model Performance Measures         

 Multinomial logistic regressions can be verified using several methods.  Like 

neural networks, the mean-squared error term can be an indication of the accuracy of the 

model.  Another way of verifying logistic regressions and neural networks is through 

receiver operating characteristic (ROC) curves.  These curves are a plot of the ratio of 

true positive data predicted against the ratio of false positive that are predicted.  The 

threshold dividing positive and negative data is varied to achieve a curve that ranges from 

0 to 1 on both the x and y axis (Figure 3.4).  The measure of accuracy is the area beneath 

the curve and can range from 0.5 to 1.0.  A ROC curve with an area under the curve of 

1.0 perfectly separates positive and negative responses while an area under the curve of 

0.5 or less is caused by a model that is as effective as randomly determining the positive 

and negative responses of each data point (Figure 3.5).  While ROC curves are a good 

way of measuring the models ability to separate data, they only are applicable for binary 

logistic regression models.  They can be applied to multinomial logistic regressions and 

neural networks with more than one possible output on a term by term basis be creating a 

curve that represents each possible output.   
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Figure 3.4: Sample ROC Curve (Fawcett 2006) 

Figure 3.5: ROC Curve Showing Model with no Prediction Power 

Using ROC curves to validate the logistic regression models and neural network 

models also allows the user to determine the amount of false positives and true positives 

are to be expected at a given threshold level (Fawcett 2006).  By changing the threshold 

values appropriately, a model can be created that may capture more of the false positives 
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at the expense of identifying all true positives.  Typically, the threshold value is set by the 

output of the maximum log-likelihood function. 

 Another popular and simpler technique for determining the accuracy and 

performance of a model is the coefficient of determination between the predicted data set 

and the observed data set.  When the coefficient of determination is high, it means the 

model can minimize the error of each culvert’s predicted output and the observed output.  

While this measure may be a good thing in some cases where a very accurate prediction 

of the output is required, it may prioritize fitting the majority of the data at the expense of 

the outliers. In the case of culvert deterioration, these outliers often indicate the culverts 

in most need of assessment and repair.  The error term can be expressed by Eq. 3.4 and 

provides the user with a model that can increase a model’s accuracy and robustness in 

comparison to a typical least-square regression (Monographs on Statistic and Applied 

Probability).  In this equation the output becomes a fit of the relationship between the 

model output and observed output including the error term. 

y = Ax + b +  ε                                               (Eq 3.3) 
 

Input Variables 

        The variety and number of input variables used in previous culvert prediction 

models vary depending on the type of culvert and desired output variables.  In all studies 

summarized in Table 3.1, age was considered to be an important factor in the 

deterioration and condition estimation models.  In order to be considered a deterioration 

model, one or more of the input variables must be considered time-dependent.    The 

other main physical characteristics that were used in most models were the culverts size 
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(most often diameter) and slope. Of the other previous deterioration models, the physical 

culvert characteristics that were used to predict culvert health were depth of cover over 

the culvert, culvert protection (for metal culverts), and thickness of the culvert.  In 

addition to the physical culvert characteristics, several site specific environmental 

characteristics were considered to be significant.  The most commonly used 

environmental characteristics included the soil abrasion characteristics, the water pH, and 

flow characteristics of the water source. 

Table 3.1: Distribution of Relevant Input Variables 

 

             These variables were found to have varying effects on the deterioration 

model.  Because most of the input variables (outside of age) are time-independent, their 

REFERENCE
Tran et 
al. 2009

Meegoda 
and Juliano 

2009

Wyant 
2002

Urrea 
2014

Thompson 
et al. 2012

Ariaratnam 
et al. 2001

Ana and 
Bauwens 2009

Najifi & 
Kulandaiv

el 2005

Micevski et 
al. 2002

Age x x x x x x x x x
Thickness x x

Size x x x x x x x x
Depth x x x
Slope x x x x x x

Tree Count x x
Hydraulic 
Conditions x
Exposure x x

Soil Abrasion x x x x x x
Thornweite 

Moisture Index x
pH x x x

Flow Parameters x x x
Flooding 
Potential x

Traffic Load x
Culvert 

Protection Type x x
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effect on the deterioration curves can range from heavily to not at all depending of the 

other available data, culvert type and failure modes. 

 While a large range of input variables may allow for a broader logistic regression 

model, there are several assumptions that govern the use of input variables in a logistic 

regression.  Theoretically accurate logistic regressions assume neither underfitting nor 

overfitting, that is all necessary input variables are used in the model’s creation and no 

unnecessary input variables are used.  In the case of culvert deterioration, it is not 

possible to include all input variables, but it is equally important to exclude variables that 

have no impact on a culvert’s condition.  To determine whether a given input variable has 

an effect on the model’s ability to accurately predict a culvert’s condition previous 

research has used the Wald statistic and the likelihood-ratio test to determine a given 

input variables effect on the model (Ariaratnam et al. 2001).  The Wald statistic is the 

square of the z-statistic when comparing the coefficient of the input variable, β, to 0.  As 

the statistic approaches 0, the influence of the input on the model reduces.  The 

likelihood-ratio test compares the ratio of the outputs from the likelihood function for a 

model with and without the input variable.  As the ratio approaches zero, the importance 

of the input variable increases.  Another important assumption of logistic regressions is 

the lack of multicollinearity, or that all input variables are statistically independent.  This 

assumption can be checked by determining the correlation coefficients for any two input 

variables.  

 The assumptions of logistic regressions that apply to input variables are not 

necessarily required for neural networks. In order to allow for the best comparison 
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between model types it is advisable to use the same input variable criteria to evaluate the 

inputs of neural networks as logistic regressions. 

Output Variables 

 Many deterioration models are used to predict a single output rating.  This rating 

can be defined in many ways including the probability of failure, the overall assessment 

condition, or remaining service life.  Some deterioration models differentiate structural 

performance from hydraulic performance in the output of the models (Beaver et al. 

2004).  There are not many existing models that use the variety of the input variables to 

predict the failure modes or causes of deterioration like cracking, joint misalignment, and 

corrosion.  A summary of the value given to the predicted output variable for culvert 

models is shown in Table 3.2. 

Table 3.2: Summary of Output Variables Predicted in Culvert Models 

 

 While the deterioration models do not predict the various causes of deterioration 

individually, most culvert assessment and management practices measure these 

conditions.  The deterioration causes that were measured most frequently in culvert 

assessment strategies were culvert cracking, joint separation or damage, and corrosion 

with a total summary shown in Table 3.3.  The SCDOT Field Inventory and Inspections 

REFERENCE
Verma et 
al. 2013

Meegoda 
et al. 2004

Beaver et 
al. 2004

Kleiner et 
al. 2006

Kleiner & 
Rajani 2001

Micevski 
et al. 2002

Ariaratnam 
et al. 2001

Najifi & 
Kulandaiv

el 2005

Tran et al. 
2009

Ana and 
Bauwens 

2009

Salem et al. 
2012

Tatari et al. 
2013

Remaining 
Service Life x x
Structural 

Performance x x
Hydraulic 

Performance x
Probaility of 

Failure x x x x
Cracking of 

Pipe x
Overall 

"Condition" x x x
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Guidelines requires the inspection and rating of culvert cracking, separation, corrosion, 

alignment, sedimentation, scour, vegetation, erosion, blockage, and piping.  All of the 

desired assessment variables play a role in a culverts overall condition, deterioration 

state, and need for repair. 

Table 3.3: Distribution of Assessment Categories Used to Describe Culverts 

 

Conclusion 

 There exists a great diversity of models used to predict the deterioration or 

condition state of culverts.  The most applicable multi-variable models for this study are 

neural network models and logistic regression models.  Both of these types of models can 

REFERENCE
SCDOT Culvert 

Inspection Guide
Wyant 

2002
Ariaratnam 
et al. 2001

Yang & 
Allouche 2009

Cracking x x x x
Joint 

Separation x x x x
Corrosion x x x x
Alignment x x

Scour x x
Sedimentation x

Vegetation x
Erosion x x x

Blockage x x
Piping x x

Hydraulic 
Capacity x

Deflection x x x
Spalls x

Delamination x
Abrasion x
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be successful in determining the relationships between multiple inputs and a single 

output.  In addition to the type of model used to predict a culvert’s condition, the number 

of input variables and their relevance can play a large role in the accuracy of the final 

model.  Determining which input variables are important to the model is essential in 

creating a model that does not overfit or underfit the desired output.  Most often the 

desired output is a single indicator of the culvert’s overall condition; however, this 

indicator is often a combination of many failure modes or conditions.  The successful 

combination of the essential input variables into models that accurately predict the 

deterioration characteristics that describe the state of a culvert will produce the most 

useful model for the desired objectives. 
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CHAPTER FOUR 

SCDOT Culvert Database 

Database Inventory and Assessment Information 

 The information that was provided by the South Carolina Department of 

Transportation followed the format of the SCDOT Pipe & Culvert Field Inventory and 

Inspection Guidelines.  This document outlined the information that was required during 

field assessments as well as the scale for which these assessment categories are to be 

measured.  The database of information was split into two sections, culvert inventory and 

culvert assessment.  The culvert inventory included information shown in Table 4.1.  

These characteristics largely describe the physical properties of the culverts in South 

Carolina.  Important characteristics from the inventory database include Culvert ID and 

Number, Culvert Type, culvert dimensions, and latitude and longitude coordinates.  The 

culvert assessment database contained all the information in regards to an assessment of 

the culverts listed in the culvert inventory.  The categories provided in the assessment 

database is shown in Table 4.2.  The culverts were mapped to a specific assessment input 

through the associated culvert ID number. 
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Table 4.1: Inventory Information provided by SCDOT Pipe & Culvert Field Inventory 

and Inspection Guidelines 

  

The information from the assessment criteria outlined in the SCDOT Pipe & 

Culvert Field Inventory and Inspection Guidelines was meant to address three main areas 

of each culvert, the inlet, the outlet, and the culvert barrel (Figure 4.1).  In total, 35 

assessment categories were ranked in order to give a condition of the culvert.  A total of 

13 categories addressed the inlet, another 13 addressed the outlet, 7 addressed the barrel 

condition, and 2 addressed the condition of the channel. 

District Liner Diameter

County Liner Width

Route Type Liner Height

Route Num Liner Notes

AUX Inlet Pipe End Type

Beg MP Inlet End Treatment

End MP Inlet Apron Type

Culvert ID Outlet Pipe End Type

Culvert Num Outlet End Treatment

Num Barrells Outlet Apron Type

Culvert Type Date Inventoried

Culvert Shape Inventoried By

Diameter Date Modified

Width Modified By

Height Lat

Length Long

Liner Type Geo Accuracy

Inventory Information
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Table 4.2: Assessment Information provided by SCDOT Pipe & Culvert Field Inventory 

and Inspection Guidelines 

 

Figure 4.1: Distribution of the Variables Addressed in the SCDOT Pipe & Culvert Field 

Inventory and Inspection Guidelines 

Culvert ID Inlet End Section Separation Outlet End Section Blockage

Channel Alignment Inlet End Section Scour Outlet End Section Corrosion

Channel Scour Inlet End Section Vegetation Barrel Corrosion

Channel Sediment Inlet End Section Blockage Barrel Cracked

Channel Vegetation Inlet End Section Corrosion Barrel Alignment

Channel Erosion Oulet Headwall (Y/N) Barrel Sedimentation

Outlet Channel Alignment Oulet Headwall Cracked Barrel Joint Separation

Outlet Channel Erosion Oulet Headwall Separatation Barrel Piping

Inlet Headwall (Y/N) Oulet Headwall Sour Barrel Blockage

Inlet Headwall Cracked Outlet Apron (Y/N)

Inlet Headwall Separation Outlet Apron Cracked

Inlet Headwall Scour Outlet Apron Separation

Inlet Apron (Y/N) Outlet Apron Scour

Inlet Apron Cracked Outlet End Section Cracked

Inlet Apron Separation Outlet End Section Separation

Inlet Apron Scour Outlet End Section Scour

Inlet End Section Cracked Outlet End Section Vegetation

Assessment Information
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SCDOT Culvert Inspection Explanations 

Each of the assessment ratings were assigned a condition state between 1 (worst 

condition) and 5 (best condition).  The 35 assessment categories were subdivided based 

on the defect that they described.  In total, 10 categories of defects or condition states 

were addressed by the culvert assessment.  For each of these condition states, the SCDOT 

Pipe & Culvert Field Inventory and Inspection Guidelines gave clear indication to the 

definition of each condition states 1-5.  The summary of these guidelines are shown 

below.  The total number of assessment values that are related to the category are shown 

in parenthesis. 

CRACKING (7) 

1. Cracks greater than 1”, exposed rebar and extensive spalling of concrete surface 

2. Large cracks are evident greater than 1/4”, extensive cracking, exposed rebar 

3. Some cracks in excess of 1/8” efflorescence is evident; some rust streaks may be 

evident 

4. Some minor cracking less than 1/8” 

5. No cracks in structure 

SEPARATION (7) 

1. Total separation in excess of 3” 

2. Major separation in excess of 1 1/2" 

3. Medium separation less than 1/2" 

4. Minor separation less than 1/8” 

5. No separation between barrel and/or structure 
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CORROSION (3) 

1. Large areas of material are missing, complete deterioration, full or partial collapse 

has occurred 

2. Extensive perforations due to corrosion 

3. Extensive corrosion, heavy pitting and some perforations of the material 

4. Moderate to fairly heavy corrosion and/or deep pitting but very little to no 

thinning of material 

5. Appears new or very close to new.  There may be some minor pitting, slight 

corrosion 

ALIGNMENT (3) 

1. Channel is parallel to road or undermining embankment or road. 

2. Channel and culvert are greater than 45 Degrees misaligned. 

3. Channel and culvert are greater than 15 degrees and less than 45 Degrees 

misaligned 

4. Channel and culvert are within plus or minus 15 Degrees alignment. 

5. Channel and culvert are aligned. 

SCOUR (6) 

1. Scour or erosion at base of structure extending underneath structure in excess of 

24”. 

2. Scour or erosion at base of structure extending underneath structure up to 24”. 

3. Scour or erosion at base of structure extending underneath structure up to 12”. 

4. Minor scour or erosion at base of structure but not extending under structure. 
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5. No undermining or scour. 

SEDIMENTATION (1) 

1. Sediment is greater than 75% of the area of the barrel. 

2. Sediment is greater than 50% of the area of the barrel. 

3. Sediment is greater than 25% of the area of the barrel. 

4. There is sediment but less than 25% of the area of the barrel. 

5. There is no sediment. 

VEGETATION (2) 

1. Vegetation severely blocking the inlet or outlet 

2. Heavy vegetation at inlet or outlet impeding flow and gathering other debris. 

3. Some vegetation at inlet or outlet, potential to impede flow. 

4. A little vegetation at inlet or outlet no impediment to flow. 

5. No vegetation at inlet or outlet. 

EROSION (2) 

1. Erosion threatening roadway. 

2. Heavy erosion to stream bank or fill. 

3. Moderate erosion to stream bank or fill. 

4. Some erosion to stream bank or fill. 

5. No erosion evident. 

BLOCKAGE (3) 

1. Totally blocked no flow culvert acting as a dam 

2. Debris blocking flow. Water backing up due to blockage 



25 
 

3. Debris blocking flow little or moderate water back up 

4. Some debris blocking flow. 

5. There is no Blockage. 

PIPING (1) 

1. The majority of flow is occurring outside of the barrel. 

2. Some of the flow is occurring outside of barrel. 

3. Some water appears to be seeping around outside of barrel. 

4. Piping may be occurring. 

5. No piping is occurring. 

 An important assumption that was made was the linear relationship of the output 

scale for each of the categories.  If this assumption was not made, the predictive models 

would need to predict an integer value for each of the scales.  With this assumption, a 

continuous output scale can be used allowing for the prediction of ratings between each 

of the integer values.  This means that the threshold for the assignment of these categories 

can be manipulated to correct the models over prediction or under prediction.  Using 

logistic regressions, this value is still bounded by a lower bound of 1.0 and an upper 

bound of 5.0; however, an artificial neural network model can produce models with 

values above and below those bounds which were corrected using post processing.  Once 

the model has predicted a value for each of the output categories and these predictions are 

combined into a single output variable, the model is corrected using a linear regression 

technique.  Once the regression technique is applied, neither the logistic regression nor 

the artificial neural network are bounded by the lower limit of 1.0 or the upper limit of 
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5.0, though the models should not predict an output of significantly more or less than the 

prescribed limits. 

Combining Outputs in Culvert Inspection Guide 

 A predictive model’s ability to accurately determine the condition of a culvert is 

dependent on the amount of available and meaningful data and the desired assessment 

condition that is desired.  For most culvert condition models, a single output is the 

product of the model.  Given the various condition states that have been predicted and the 

variety in severity between the 10 condition states, a separate model would be used to 

predict each of these categories.  For example, a culvert that has received an outlet end 

section vegetation rating of 2 may not be as critical as a culvert with a barrel corrosion 

rating of 2.  By creating more models that are used to predict the well-defined assessment 

variables, the relationships between input variables and output variables can be linked 

with different condition states (Figure 4.2). 
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Figure 4.2: Conceptual Reasoning for Separate Output Models 

 In order to create as many diverse models as possible, while still presenting 

unique and meaningful models, the 35 assessment categories were combined into the 10 

categories listed previously.  Two methods for combining this information were 

originally used.  The first method used the average values of the assessment variables to 

determine an overall rating for each of the ten categories.  Because it is especially 

important for the predictive model to capture the culverts in poor condition, the second 

method used the minimum value of the assessment variables that make up each category.  

This method was ultimately used in the creation of the models as it served to capture the 

worst state of the culvert.  For example, a culvert’s inlet cracking rating could be a 5 (no 
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cracking), while its outlet cracking rating could be a 1 (severe cracking).  It is unlikely 

that a predictive model could determine the difference in the culvert inlet and outlet 

condition. It was most advantageous to attempt to predict the minimum value as it served 

to emphasize the culverts in most need of rehabilitation. 

 After inspection of the database of assessment information, it became apparent 

that the same assessment guide was used for all culvert types.  Because the deterioration 

of each culvert varies significantly, rating a culvert on all of the possible output 

categories would not be necessary.  For example, cracking is not to be expected in 

corrugated metal pipe (CMP) culverts just as corrosion is not likely to be visible in 

reinforced concrete pipe (RCP) culverts.  Despite this fact, there was information in the 

culvert database for each of the culvert types and output categories.  Understanding that 

some of this information may be useless, a model was created for each of the output 

categories regardless of the culvert type.  It then became important for the user of the 

model to determine which output categories would be considered useful and which output 

categories would not apply to a specific type of culverts. 

SCDOT Culvert Database Statistics 

 While the culvert inspection guide is fairly exhaustive in its ability to describe the 

condition of the culvert, the database does not require a complete entry for a given 

assessment log.  That is, the inventory and the assessment of the culvert do not need to be 

entirely completed.  A total of 5,196 or 58% of all culverts contained all of the necessary 

information including culvert ID, culvert number with matching assessment, culvert type, 

and valid latitude and longitude.  Another advantage of using different models to predict 
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each of the 10 condition states is that is allows for incomplete assessment information.  

Some culverts only had a few assessment areas complete.  For example, this process 

allowed for some of the culverts to be rated in an output of cracked without having data 

on erosion, broadening the database of culverts.  In total 5,181 culverts were able to be 

used in the creation of a predictive model. 

 The pre-processing of the SCDOT culvert database resulted in a matrix of culvert 

information where culverts without information on the type of culvert, a matching 

assessment for a culvert inventory ID, and valid latitude and longitude were removed.  

The distribution of culverts was observed after the pre-processing was complete.  Some 

of the statistics regarding the distribution of culvert types is shown in Table 4.3.   This 

distribution is important as the ability of both the logistic regression and the artificial 

neural network to accurately fit their parameters is based on the size and variability in the 

data set.  For example, the accuracy of the models predicting the outputs of CAP and 

HDPE culverts may be significantly skewed as there are fewer than 20 culverts used to 

predict each output.  The effect of the lack of data may appear to be both positive and 

negative as fewer culverts may allow for a predictive model to easily separate the data 

into categories without capturing the true meaning of the data. 

Table 4.3: Distribution of Culvert Types in SCDOT Database 

 

 It was important to recognize and catalog these trends in the original culvert 

database as it would allow for easier interpretation of the results once the models were 

Type RCP CMP CAP HDPE Masonry Mixed/Other
Total 4059 193 17 14 634 264
Percent 78.34% 3.73% 0.33% 0.27% 12.24% 5.10%
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derived.  In addition to the disparity among culvert types, the ratings for each of the 

output categories were significantly skewed towards the higher rated culverts.  Table 4.4 

shows the average rating for each of the culvert types and each of the culvert output 

categories.  With such a large portion of the data rated at 4 and 5, any model’s ability to 

define relationships between the input variables and a culvert in poor health become 

difficult to determine and a bias towards the higher rated culverts may exist. 

Table 4.4: Average Rating for Each Culvert Type and Each Output Category 

 In some cases, the combination between a lack of culverts in the database and the 

large number of culverts that are highly rated created a situation where specific classes of 

culverts have empty data sets.  In these cases, where no culverts have a rating of 1 or 2, it 

becomes impossible for an analytical model to predict an output rating of 1 or 2.  In these 

cases, the lack of diverse data was highlighted to prevent the user misinterpreting the 

information produced by the model.  In these cases, a hierarchy of models can still be 

created.  The culverts for which an output rating is desired can be ranked in terms of their 

relative need of inspection.  A complete breakdown of the SCDOT culvert database and 

the amount of culverts that fall into each category is shown in Table 4.5.  Of the 60 

Culvert Type Average Rating

RCP 4.53
CMP 4.39
CAP 4.61

HDPE 4.64
Masonry 4.63

Mixed/Other 4.42

Output Category Average Rating

Cracked 4.55
Separated 4.74
Corrosion 4.49
Alignment 4.58

Scour 4.48
Sedimentation 4.53

Vegetation 4.11
Erosion 4.88

Blockage 4.35
Piping 4.62
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models, each with 5 different assessment possibilities, there were 50 categories that had 

no culverts (16.67%).  

 

Table 4.5: Breakdown of SCDOT Culvert Database 

1 2 3 4 5
Cracked 40 45 133 930 2758

Separated 177 102 190 340 3124
Corrosion 49 71 325 1035 2459
Alignment 81 93 253 537 2954

Scour 77 61 212 827 2721
Sedimentation 16 14 36 106 563

Vegetation 196 188 734 1125 1692
Erosion 14 20 39 204 3429

Blockage 134 217 444 940 2218
Piping 11 12 101 669 2908

Cracked 8 5 14 31 119
Separated 3 2 18 25 133
Corrosion 3 10 20 46 106
Alignment 1 9 19 26 123

Scour 8 14 18 45 91
Sedimentation 0 1 2 2 19

Vegetation 2 2 22 57 99
Erosion 1 5 5 24 134

Blockage 8 7 17 50 107
Piping 10 14 17 58 87

Cracked 1 0 2 3 10
Separated 0 0 0 3 14
Corrosion 0 0 0 3 14
Alignment 0 0 1 1 15

Scour 1 0 3 3 10
Sedimentation 0 0 1 1 1

Vegetation 1 0 3 3 10
Erosion 0 0 0 0 16

Blockage 0 0 0 1 16
Piping 0 0 0 1 16

Cracked 0 0 1 3 9
Separated 0 0 1 0 12
Corrosion 1 0 0 2 10
Alignment 1 0 1 0 12

Scour 0 0 1 1 9
Sedimentation 0 0 0 0 0

Vegetation 1 0 3 1 9
Erosion 0 0 0 0 10

Blockage 0 0 1 3 9
Piping 0 0 1 2 8

Cracked 9 3 9 57 552
Separated 8 2 4 16 600
Corrosion 7 5 32 164 419
Alignment 2 11 40 85 491

Scour 5 5 21 118 481
Sedimentation 1 1 8 41 378

Vegetation 31 31 139 128 301
Erosion 2 1 2 10 540

Blockage 29 35 64 170 330
Piping 2 2 12 155 457

Cracked 5 3 6 66 166
Separated 6 4 5 23 208
Corrosion 6 9 29 82 124
Alignment 8 9 9 77 147

Scour 5 4 11 52 173
Sedimentation 2 1 6 25 79

Vegetation 8 20 64 79 91
Erosion 1 0 3 42 165

Blockage 6 21 66 63 97
Piping 4 1 6 16 114

AMOUNT OF CULVERTS WITH RATING:

RCP

CMP

CAP

HDPE

Masonry

Mixed
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Composite Ratings 

 While the current procedure gives an indication of the output rating for each 

output category it does not give an overall composite score for the health of a culvert.  

Using information that was received from a survey sent to state DOTs, the relative 

importance of each of the output categories was collected.  Using these weights for the 

output ratings, a composite score could be assigned for each culvert.   

 The survey and the output variables ranked by the SCDOT Pipe & Culvert Field 

Inventory and Inspection Guidelines showed differences in the categorization of defects.  

The raw results of the survey are shown in Table 4.6.  Some of the defects match well 

with the ten output categories classified by the inspection guide such as cracking, 

corrosion, and joint alignment.  Other defects are not as well related to those defects 

described in the Inspection Guide like shape deformation.  For the mapping of each of the 

defects addressed in the survey, the associated Inspection Guide defect is shown in Table 

4.7. 

Table 4.6: Results of Survey to State DOTs 

 

 

 

RCP CMP
Crack 22.78% --

Joint Misalignment 20.51% 16.14%
Joint In/Exfiltration 23.36% 18.08%

Invert Deterioration 20.00% 17.68%
Bedding Voids 13.35% 9.53%

Corrosion -- 21.22%
Shape Deformation -- 17.35%
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Table 4.7: Defect Matching Between DOT Survey and Culvert Inspection Guide 

  

 Only two sets of weights were received from the survey addressing reinforced 

concrete pipe culverts (RCP) and corrugated metal pipe culverts (CMP).  Using these 

classifications, a composite score could be determined for each culvert that was ranked 

for the outputs that were given weights by the DOTs (Table 4.8) 

Table 4.8: Relative Importance of Output Ratings 

 

 The precision from the DOT surveys is not realistic, so less precise estimate of 

these weights will be used to determine the composite score for each culvert.  In addition, 

a composite score that finds the average of all output variables was used as a control.  

RCP CMP Estimate (RCP) Estimate (CMP) All Equal
Cracked 22.78% 17.35% 22.50% 17.00% 16.67%

Separated 23.36% 18.08% 22.50% 18.00% 16.67%
Alignment 20.51% 16.14% 20.00% 16.00% 16.67%
Corrosion 0.00% 21.22% 0.00% 21.00% 16.67%

Scour 20.00% 17.68% 20.00% 18.00% 16.67%
Sedimentation 0.00% 0.00% 0.00% 0.00% 0.00%

Vegetation 0.00% 0.00% 0.00% 0.00% 0.00%
Erosion 0.00% 0.00% 0.00% 0.00% 0.00%

Blockage 0.00% 0.00% 0.00% 0.00% 0.00%
Piping 13.35% 9.53% 15.00% 10.00% 16.67%

DOT Survey SCDOT Inspection Guide

Crack Cracking
Joint Misalignment Alignment
Joint In/Exfiltration Separation
Invert Deterioration Scour

Bedding Voids Piping
Corrosion Corrosion

Shape Deformation Cracking
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This composite rating provides a benefit to the user as it gives them a single value to 

handle, but it also gives a more continuous variation in the database of culverts.  Without 

a composite score, there is no way to differentiate two culverts with an specific output 

category of 4; however, with the composite rating, other categories can separate culverts 

with equal ratings in some areas.  It also allows the model to be corrected for a single 

output using an error term that made the predicted model more accurate. 
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CHAPTER FIVE 

Logistic Regression and Artificial Neural Network Inputs 

  There were two types of input variables that combine to create the most accurate 

and effective model.  The first group of variables are the variables that were documented 

during the culvert assessment.  Of all the information documented in the culvert 

assessment, only some categorical information was determined to be useful based on 

previous deterioration models and the desired output variables.  The culvert type was 

used to categorize each of the assessments into a different model used to predict the 

output criteria.  The culvert dimensions, culvert shape, and number of barrels were also 

tracked in case they played a significant role in the predictive model. 

 Categorical variables including the inlet and outlet end type, end treatment, and 

apron type were all converted into dummy variables that could be used in the logistic 

regression models.  These dummy variables created a binary system for each of the 

possible responses for each of the categorical variables.  For example, the inlet end type 

could be flat, flared, beveled, or have no entry.  Because there were four possibilities for 

this variable, the inlet end type was converted into four variables with a value of 0 or 1 

(Table 5.1).  It is important to note that these variables are not independent as required by 

the assumption built into a logistic regression. 
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Table 5.1: Dummy Variable Creation 

  

The South Carolina Department of Transportation culvert database gives an 

indication of the physical characteristics of a culvert, but gives no indication of the 

environment characteristics impacting a given culvert aside from the location of the 

culvert (latitude, and longitude).  Consequently, an effort was made to map site specific 

parameters to each culvert using given latitude and longitude information.  The latitude 

and longitude information from each culvert can be used to map data on some of the site 

specific parameters that can be useful in predicting the deterioration of culverts.  Among 

the parameters that were mapped to each culvert with valid latitude and longitude inputs 

were temperature, precipitation, pH, and approximate surrounding runoff coefficient. 

Temperature 

 Historical temperature information is available through the National Oceanic and 

Atmospheric Administration (NOAA) for weather stations across the United States.  In 

South Carolina a total of 84 weather stations across the state had available annual average 

temperature information between 1981 and 2010.  Some of the stations had information 

for many of the years between 1981 and 2010, while others had only one year of 

information.  In each case, the average of the recorded years was used along with the 

latitude and longitude of each of the stations to create a contour of the average annual 

Flat Flared Beveled No Entry
Flat 1 0 0 0

Flared 0 1 0 0
Beveled 0 0 1 0
No Entry 0 0 0 1

INLET END TYPE
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temperature across the state of South Carolina.  This contour was created using a 2-D 

interpolation function using linear interpolation to estimate the temperature a given 

culvert and a nearest neighbor extrapolation function to prevent the temperature contour 

from extrapolating to unreasonable levels.  In addition, the temperature data was bounded 

by a minimum average annual temperature of 50̊F and a maximum annual average 

temperature of 70̊F.   The distribution of the stations providing average annual 

temperature is shown in Figure 5.1.  The distribution of temperature follows the expected 

variation across the state of South Carolina with higher temperatures occurring in the 

lowest part of the state and the coldest annual average temperatures occurring in the 

upper part of the state.  The blue colors indicate the lower annual average temperatures 

while the yellow colors represent the highest annual average temperatures.   
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Figure 5.1: Temperature distribution across South Carolina 

 

Precipitation 

 Like the annual average temperature data, annual average rainfall data was 

available through the NOAA in the state of South Carolina.  A total of 95 weather 

stations across the state have annual rainfall data from 1981-2010.  Again, the average 

annual average rainfall was used to create a contour of the rainfall across South Carolina 

using a 2-D interpolation function with nearest neighbor extrapolation.  The data was also 

bounded by a minimum of 40 inches and maximum of 80 inches of annual average 

rainfall.  The distribution of average annual rainfall across South Carolina is shown in 
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Figure 5.2.   Like the distribution of average annual temperature, the distribution of 

precipitation follows the expectation that the upper portion of the state would have more 

precipitation than the lower part of the state.  In fact, the variation of the precipitation is 

relatively uniform across most of the state of South Carolina until approximately 

Greenville, SC when the average annual precipitation increases significantly. 

 The average annual precipitation may give some indication as to the yearly 

demand on the culvert relative to other culverts, but it is limited to the fact that the 

floodplain controls the amount of rainfall that a culvert must funnel downstream.  In 

addition, the average annual precipitation is not the best estimate of the expected demand, 

because the intensity of the rainfall and the site parameters that govern the speed at which 

the rainfall becomes demand on the culvert are the key factors in determining how much 

water a culvert must handle.  Without a more detailed information, the average annual 

rainfall was determined to be the best proxy to estimate the demand on the culverts. 

 



40 
 

Figure 5.2: Precipitation distribution across South Carolina 

pH 

 Similar to the temperature and precipitation information available through 

NOAA, statewide data on the pH of rivers and streams across South Carolina was 

available through the United States Geological Survey (USGS).  This information 

corresponded to both field and lab measurements between 1997 and 2010 of 881 stations 

across the state in various rivers and streams at different points along these bodies of 

water.  Using the same techniques as the temperature and precipitation data, a contour of 

the average measured pH was created for South Carolina using linear interpolation and 

nearest neighbor extrapolation.  Unlike temperature and precipitation, whose effects can 
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be assumed to linearly vary across space, pH is linked to the body of water the feeds the 

specific culvert.  Despite the fact that pH does not exactly correlate spatially, it could 

serve to show the general distributions of pH across the state.  In addition, larger rivers 

and streams may dilute the more extreme data collected from smaller bodies of water 

nearby.  Despite this flattening effect, it is likely that the linear spatial interpolation can 

give some indication of the surrounding pH. 

 The spatial variation of pH across South Carolina can be shown in Figure 5.3.  

The predicted values of the pH of each culvert were capped at a minimum of 5 and a 

maximum value of 8.  

Figure 5.3: pH distribution across South Carolina 
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 The distribution of pH values across the state of South Carolina was harder to 

compare to expected distributions like the distribution of temperature and precipitation.  

According to the values produced by the USGS there are bands of high and low pH 

running across the state.  The first band begins at the coast and runs parallel to the coast 

until about halfway between Columbia, SC and Charleston, SC.  This band consists of 

higher and more basic values of pH (>7.5).  The second band contains lower more acidic 

values of pH (<6) and runs from the first band to approximately Columbia, SC.  The rest 

of the state to the north and west contain relatively neutral pH values (6<pH<7.5). 

Runoff Coefficient 

 In addition to the available online information regarding the temperature, 

precipitation, and pH data, the National Land Cover Database (NLCD) provides 

information regarding the types of land that cover the United States from 2011.  Another 

group of site characteristics used by previous predictive models regarded the surrounding 

land cover.  Some quantified this information as flooding potential or exposure, while 

others referred to it as hydraulic conditions.  The NLCD provided the information in 

terms of a classification of each pixel for the continental United States.  Each of these 

pixels corresponds to an approximately 10,000 square foot area.  Each of these areas was 

assigned one of the 21 categorical land cover distinctions.  These classifications were 

based on the Anderson Land Cover Classification System (ALCCS) (Table 5.2 and 

Figure 5.4). 
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Table 5.2: ALCCS Classifications used to describe the NLCD Maps 

 

  

 

 

 

 

 

 

 

Figure 5.4: Distribution of South Carolina Land Cover (NLCD) 
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 Because the identification number given to each pixel had no quantifiable 

meaning, it was converted into a scale that gave meaning to each of the land 

classifications.  The ALCCS used to describe the pixels from the NLCD was matched to 

the South Carolina Requirements for Hydraulic Design guides for the runoff coefficient 

used in the rational method.  The rational method is shown by the following equation: 

Q = C * I * A * Cf    (Eq. 5.1) 

where: Q = discharge (cfs) 

C = runoff coefficient 

I = rainfall intensity (in/hr) 

A = drainage area (acres) 

Cf = recurrence interval coefficient 

 This equation is used to determine the required discharge capacity of various 

drainage infrastructure across South Carolina.  The recurrence interval coefficient is 

arbitrary as it is the same for each culvert, and the mapped precipitation from the NOAA 

database can be an estimate to the relative rainfall intensity; however, the drainage area 

was difficult to estimate.  With no indication of the size of the basin or body of water 

which feeds a specific culvert, the full equation cannot be predicted.  The runoff 

coefficients used to estimate required discharge from the SCDOT Requirements for 

Hydraulic Design are shown in Table 5.3 and the corresponding runoff coefficient 

assigned to the ALCCS designations shown in Table 5.4. 
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Table 5.3: South Carolina Runoff Coefficients Used in Hydraulic Design 

 

Table 5.4: ALCCS Pixel Data and Corresponding Runoff Coefficient from SCDOT 

Description (SCDOT) Runoff Coefficient Description (SCDOT) Runoff Coefficient
Pavements & Roofs 0.90 Side Slopes, Earth 0.60

Earth shoulders 0.50 Side Slopes, Turf 0.30
Drives & Walks 0.75 Median Areas, Turf 0.25

Gravel Pavements 0.50 Cultivated Land, Clay & Loam 0.50
City Business Areas 0.80 Cultivated Land, Sand & Gravel 0.25

Unpaved Road, Sandy Soils 0.34 Industrial Areas, Light 0.50
Unpaved Road, Silty Soils 0.35 Industrial Areas, Heavy 0.60
Unpaved Road, Clay Soils 0.40 Parks & Cemeteries 0.10
Aparment Dwelling Areas 0.50 Playgrounds 0.20

Suburban, Normal Residential 0.45 Woodland & Forest 0.10
Dense Residential Sections 0.60 Meadows & Pasture Land 0.25

Lawns, Sandy Soils 0.10 Unimproved Areas 0.10
Lawns, Heavy Soils 0.17 Rail Yards 0.25

Grass Shoulders 0.25 Expressways & Freeways 0.00

Pixel ID Description (NLCD) Runoff Coefficient SCDOT Description
11 Open Water 0.00 --
12 Perennial Ice/Snow 0.00 --
21 Developed, Open 0.45 Suburban, Normal Residential
22 Developed, Low 0.50 Aparment Dwelling Areas

23 Developed, Medium 0.55
Aparment Dwelling Areas/ 
Dense Residential Sections

24 Developed, High 0.60 Dense Residential Sections

31
Barren Land 

(Rock/Sand/Clay)
0.40 Unpaved Road, Clay Soils

41 Deciduous Forest 0.10 Woodland & Forest
42 Evergreen Forest 0.10 Woodland & Forest
43 Mixed Forest 0.10 Woodland & Forest
51 Dwarf Scrub 0.10 Woodland & Forest
52 Shrub/Scrub 0.10 Woodland & Forest
71 Grassland/Herbaceous 0.25 Meadows & Pasture Land
72 Sedge/Herbaceous 0.25 Meadows & Pasture Land
73 Lichens 0.25 Meadows & Pasture Land
74 Moss 0.25 Meadows & Pasture Land
81 Pasture/Hay 0.30 Side Slopes, Turf
82 Cultivated Crops 0.40 Unpaved Road, Clay Soils
90 Woody Wetlands 0.00 --

95
Emergent Herbaceous 

Wetlands
0.00

--
0 No Description 0.00 --



46 
 

 Once the parameters were mapped and converted into a quantifiable and 

meaningful value, the pixel data could be consolidated into larger areas that could be 

applied to a culvert.  With each pixel only covering an average of 9,000 square feet 

(0.000325 square miles), mapping the runoff coefficient of a single pixel to each culvert 

would likely result in some significant error and would not capture the effect of the 

surrounding area as each culvert’s runoff coefficient would be the average of the drainage 

area supplying the associated stream or river.  Consequently, a square area of 25 pixels 

by 25 pixels was averaged to give a more representative sample of the average runoff 

coefficient.  The new area covered by each data point corresponds to approximately 

5,575,000 square feet, 0.20 square miles, or 128 acres.  These data points were then used 

to assign a culvert an average runoff coefficient for the surrounding 0.20 square miles 

using the nearest pixel associated with the culvert’s latitude and longitude. 

Input Variable Combinations 

 In producing the most effective model, it is important to determine which 

combinations of input variables are most effective at predicting various output variables.  

Certain outputs may be better predicted using a more diverse or complex combination of 

input variables.  In order to organize the testing of these models and to limit the number 

of trials for each model, a table of the available input variable was created (Table 5.5).  

These inputs were then combined to form trial models that would be evaluated to 

determine which models produced the best results as far as predicting the ten associated 

output variables (Table 5.6).  The first ten combinations of inputs contain only variables 

that are linearly added to give the final prediction.  The last three combinations of 
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variables have a special that is a multiplicative combination of two or more variables.  In 

an attempt to capture a variable estimating the demand on a culvert, the precipitation and 

the runoff coefficient estimate were multiplied together.  Furthermore, this value was 

divided by characteristics of height and width to estimate the area of a culvert to give an 

estimation of the ratio between demand and capacity.  A neural network’s hidden neuron 

layer can be used to determine some of the more complex relationships between input 

variables; however, a logistic regression model requires the manipulation of such inputs 

by the user.  After the 13 original combinations had been evaluated, the most accurate 

predictive model was used for each culvert type and output.  

Table 5.5: Possible Input Variables and Assumed Importance 

 

 

Variable Name ID # Assigned Importance

Age 1 1
pH 2 1

Runoff Coefficient 3 1
Temperature 4 1
Precipitation 5 1
Num Barrels 6 2
Culvert Shape 7 2

Width 8 2
Height 9 2
Length 10 2

Inlet End Type 11 3
Inlet End Treatment 12 3

Inlet Apron Type 13 3
Outlet End Type 14 3

Outlet End Treatment 15 3
Outlet Apron Type 16 3

INPUT VARIABLES
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Table 5.6: Combinations of Input Variables Tested

Combination ID Input Variables Combined Inputs

1 1,2,3,4,5 --
2 1,2,3,4 --
3 1,2,3,5 --
4 1,2,4,5 --
5 1,3,4,5 --
6 1-5,8,9,10 --
7 1-5,6 --
8 1-5,7 --
9 1-5,11-16 --
10 1,2,4 3 x 5
11 1,2,4 3 x 5 / 8
12 1,2,4 (3 x 5)/(8 x 9)
13 1-5,6-10 --

COMBINATIONS
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CHAPTER SIX 

Model Creation and Discussion 

Logistic Regression Model Creation 

 In order to create the logistic regression models for each of the 13 combinations, 

the MATLAB built-in function ‘mnrfit’ was used.  The function creates the coefficients 

of a multinomial logistic regression for a set of given inputs and corresponding outputs 

using the maximum log-likelihood function.  These coefficients follow the form of Eq. 

3.3.   The coefficients that were returned from the fitting function were used in the built-

in MATLAB function, ‘mnrval’ which created a probabilistic estimate based on the 

inputs of an associated culvert and the coefficients of the model that had been created.  

The result of this function is a probability distribution for each culvert giving an 

indication of the likelihood that a culvert is rated 1-5.  Assuming a linear relationship 

between the culvert ratings means that a non-integer estimate was produced using the 

probability distribution and the value of the associated output, 1-5.  This predicted value 

can be compared to the measured output value and the statistical indicators of the 

effectiveness of the model can be calculated.  In the case of each of the 13 combinations, 

the area under the ROC curve that was produced for each model was used as the primary 

indicator of the accuracy of the model.  The selection of this criteria was based largely on 

the versatility of the ROC curve in determining a model’s ability to separate the data in 

categories outlined by the SCDOT. 

 The 13 combinations of input variables were used to create 13 models, each 

addressing 6 culvert types and 10 output variables for a total of 780 models.  For each of 
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the models four ROC curves were created to address the model’s ability to separate an 

output rating of 1 from 2-5, 1-2 from 3-5, 1-3 from 4-5, and 1-4 from 5.  The area 

underneath these curves can range from 0.5 to 1.0, with a higher score indicating a more 

accurate model.  An ROC curve can produce an area under the curve of 0.0 usually 

indicating that the model cannot predict that specific value, because there is not a culvert 

with that specific rating.  For some of the culverts with fewer responses, this became an 

issue in determining the effectiveness of a model.  Because this problem is independent 

of the combination of input variables used to create this model, the ROC curves could 

still be used as a measure of accuracy.  In other cases, where the number of observed 

culverts remained low, a large number of input variables can make it impossible to 

produce a model whose log-likelihood function converges.  Similarly, when too few or 

insignificant input variables were used, the log-likelihood function would not converge.  

In these cases, an area under the ROC curve of 0.0 could be possible and understood to 

indicate a category where fewer responses were available.   

 The results of the 13 models addressing the 6 culvert types and 10 output 

variables is shown were Table 6.1.  The values corresponding to the maximum area 

under the 4 ROC curves for each model is highlighted indicating the best combination of 

input variables. 
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Table 6.1: Area Under Curve Results (Logistic Regression) 

1 10 11 12 13 2 3 4 5 6 7 8 9 Max Area
Cracked 2.592 2.439 2.421 2.363 2.672 2.428 2.313 2.560 2.550 2.656 2.601 2.633 2.723 9

Separated 2.457 2.382 2.356 2.583 2.924 2.377 2.244 2.457 2.464 2.827 2.466 2.728 2.732 13
Corrosion 2.702 2.541 2.526 2.444 2.781 2.546 2.500 2.672 2.687 2.791 2.701 2.737 2.845 9
Alignment 2.762 2.604 2.585 2.544 2.822 2.593 2.409 2.753 2.752 2.781 2.773 2.845 2.938 9

Scour 2.941 2.671 2.655 2.686 2.904 2.652 2.638 2.945 2.940 2.924 2.946 2.945 2.993 9
Sedimentation 2.807 2.754 2.732 2.758 2.945 2.751 2.416 2.791 2.810 2.921 2.834 0.000 2.956 9

Vegetation 2.391 2.229 2.314 2.271 2.458 2.244 2.296 2.373 2.358 2.494 2.400 2.400 2.572 9
Erosion 2.838 2.735 2.720 2.856 3.101 2.724 2.287 2.838 2.827 3.038 2.856 2.907 3.081 13

Blockage 2.367 2.268 2.271 2.229 2.455 2.260 2.240 2.352 2.324 2.459 2.366 2.371 2.611 9
Piping 2.478 2.378 2.408 2.375 2.729 2.378 2.312 2.431 2.474 2.682 2.539 2.530 2.826 9

Cracked 2.615 2.431 2.412 2.523 2.977 2.472 2.399 2.600 2.582 2.940 2.683 2.674 0.000 13
Separated 2.873 2.716 2.755 2.850 2.955 2.784 2.646 2.745 2.732 3.202 2.935 2.840 0.000 6
Corrosion 2.798 2.560 2.488 2.808 3.147 2.577 2.765 2.751 2.606 3.157 2.806 2.866 0.000 6
Alignment 3.295 2.899 2.859 3.080 3.226 2.931 3.054 3.265 3.258 3.171 3.299 3.328 0.000 8

Scour 3.136 2.449 2.491 2.706 2.807 2.476 2.829 3.106 3.161 2.911 3.162 3.118 0.000 7
Sedimentation 2.731 2.594 2.689 2.708 2.174 2.552 2.631 2.444 2.684 2.687 2.731 0.000 0.000 1

Vegetation 3.283 2.966 2.915 3.013 3.029 2.959 3.244 3.293 3.298 3.114 3.311 3.183 0.000 7
Erosion 3.320 2.950 2.980 2.266 2.633 3.033 3.180 3.316 3.183 2.583 3.324 3.296 0.000 7

Blockage 2.818 2.455 2.460 2.443 2.667 2.456 2.506 2.777 2.594 2.745 2.803 2.661 0.000 1
Piping 2.776 2.247 2.371 2.627 2.950 2.241 2.581 2.775 2.788 2.898 2.801 2.839 0.000 13

Cracked 2.954 2.954 2.371 1.125 1.667 3.004 2.614 2.521 3.190 2.000 2.987 0.000 0.000 5
Separated 1.000 0.810 0.857 1.000 1.000 0.810 0.905 1.000 1.000 1.000 1.000 0.000 0.000 1
Corrosion 1.000 0.929 1.000 1.000 1.000 0.929 0.667 0.976 1.000 1.000 1.000 0.000 0.000 1
Alignment 1.633 1.467 1.667 1.000 1.000 1.467 1.500 1.900 1.500 1.000 1.700 0.000 0.000 4

Scour 3.598 3.326 2.974 1.750 1.667 3.306 3.411 3.233 3.507 1.833 3.598 0.000 0.000 1
Sedimentation 1.500 2.000 2.000 0.000 0.000 2.000 2.000 2.000 1.500 0.000 2.000 0.000 0.000 10

Vegetation 3.072 2.856 3.296 1.000 1.667 2.837 2.986 2.861 2.942 1.750 2.534 0.000 0.000 11
Erosion 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --

Blockage 1.000 0.938 0.875 1.000 1.000 0.938 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1
Piping 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 1.000 0.000 0.000 1

Cracked 2.000 1.722 1.625 1.800 2.000 1.639 1.611 1.861 1.528 0.000 1.972 0.000 0.000 1
Separated 1.417 1.000 1.000 1.000 1.000 1.167 1.000 1.000 1.417 0.000 1.583 0.000 0.000 7
Corrosion 2.133 3.717 3.360 2.433 2.111 3.450 2.317 1.867 2.617 0.000 1.767 0.000 0.000 10
Alignment 1.875 3.263 3.068 1.891 1.656 3.436 2.824 1.667 2.788 0.000 2.196 0.000 0.000 2

Scour 1.889 1.833 1.750 1.643 1.500 1.389 1.944 1.467 1.622 1.643 1.889 0.000 0.000 3
Sedimentation 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --

Vegetation 2.761 3.194 3.289 2.677 2.700 3.271 3.114 2.936 3.154 0.000 3.171 0.000 0.000 11
Erosion 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 --

Blockage 1.889 1.889 1.781 1.679 1.000 1.833 1.889 1.528 1.722 0.000 1.889 0.000 0.000 1
Piping 1.958 1.958 1.857 1.444 1.000 1.917 1.958 1.483 1.875 1.889 1.958 0.000 0.000 1

Cracked 2.586 2.336 2.275 2.280 2.943 2.341 2.552 2.454 2.571 2.880 2.617 2.636 0.000 13
Separated 2.530 2.536 2.504 2.391 2.881 2.525 2.436 2.486 2.512 2.850 2.567 2.575 0.000 13
Corrosion 2.754 2.562 2.405 2.499 3.085 2.602 2.721 2.664 2.711 3.066 2.751 2.790 0.000 13
Alignment 3.510 3.337 3.339 3.303 3.585 3.330 3.445 3.504 3.492 3.601 3.539 3.513 0.000 6

Scour 2.984 2.799 2.796 2.691 3.022 2.797 2.949 2.898 3.032 3.038 3.063 3.010 0.000 7
Sedimentation 3.370 3.156 3.168 3.160 3.123 3.174 2.921 3.378 3.298 3.474 3.401 3.372 0.000 6

Vegetation 2.804 2.753 2.782 2.673 2.754 2.754 2.702 2.783 2.806 2.842 2.768 2.820 0.000 6
Erosion 2.818 2.852 2.864 2.817 3.170 2.819 2.912 2.806 2.705 3.220 2.853 2.838 0.000 6

Blockage 2.298 2.384 2.371 2.218 2.575 2.385 2.286 2.214 2.334 2.514 2.417 2.321 0.000 13
Piping 3.347 3.257 3.318 3.179 3.435 3.270 3.148 3.445 3.224 3.477 3.344 3.357 0.000 6

Cracked 2.947 2.897 2.675 2.859 3.323 2.890 2.878 2.540 2.786 3.270 2.904 0.000 0.000 13
Separated 2.458 2.480 2.508 2.635 2.961 2.474 2.474 2.196 2.407 2.815 2.438 0.000 0.000 13
Corrosion 2.811 2.662 2.565 2.693 3.015 2.674 2.750 2.641 2.557 2.950 2.931 0.000 0.000 13
Alignment 2.608 2.646 2.708 2.272 2.714 2.651 2.619 2.550 2.226 2.824 2.646 0.000 0.000 6

Scour 2.647 2.442 2.416 2.636 2.892 2.420 2.561 2.712 2.611 2.874 2.663 0.000 0.000 13
Sedimentation 3.030 3.124 3.063 3.107 3.105 3.124 2.635 3.016 2.643 3.153 3.058 0.000 0.000 6

Vegetation 2.512 2.534 2.502 2.431 2.785 2.527 2.448 2.433 2.315 2.681 2.582 0.000 0.000 13
Erosion 2.149 2.593 2.366 1.322 1.617 2.319 2.103 3.256 2.038 1.448 2.358 0.000 0.000 4

Blockage 2.756 2.740 2.741 2.692 2.740 2.772 2.735 2.636 2.505 2.988 2.743 0.000 0.000 6
Piping 2.602 2.801 2.600 2.366 2.474 2.773 2.785 2.453 2.391 3.319 2.586 0.000 0.000 6

Total Models 10 2 2 0 13 1 1 2 1 11 5 1 8 57

Mixed

COMBINATION NUMBER

RCP

CMP

CAP

HDPE

Masonry
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Artificial Neural Network Model Creation 

 Like the logistic regression, the 13 combinations of input variables were used to 

create a total of 780 total neural network models.  The three general functions governing 

the behavior of the neural network model are the weighting function, the bias function, 

and the transfer function.  The transfer function is effected by the number of neurons used 

to model the relationships between both the input variables and each other and the input 

variables and the output variables.  Because these relationships can often be complex, the 

number of neurons used in the transfer was varied from 1 neuron to 10 neurons.  The 

creation of the neural network is based on the MATLAB built-in Neural Network 

toolbox.  The toolbox allows the user to specify the performance function (mean-squared 

error and mean-absolute error); however, in an attempt to stay consistent with the 

measure of the success of the predictive models between logistic regression and neural 

network models, the ROC curves were created with each of the models.  The associated 

total area under the four ROC curves was used as the measure of the performance of the 

models.  In each case, the maximum area under the curve was used to determine how 

many neurons created the best model.  Similarly, the best of the 13 combinations of input 

variables was used to determine the optimal input variable combination (Table 6.2).   
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Table 6.2: Area Under Curve Results (Artificial Neural Network) 

1 10 11 12 13 2 3 4 5 6 7 8 9 Max Area
Cracked 2.865 2.747 2.696 2.647 2.806 2.750 2.608 2.834 2.881 2.836 2.897 2.883 2.772 7

Separated 2.583 2.441 2.485 2.591 2.954 2.462 2.472 2.540 2.499 2.904 2.570 2.874 2.874 13
Corrosion 2.948 2.807 2.768 2.755 2.882 2.813 2.749 2.862 2.877 2.940 2.905 2.940 2.850 1
Alignment 3.102 2.970 2.968 2.801 2.992 3.006 2.797 3.186 3.041 3.030 3.113 3.123 3.096 4

Scour 3.086 2.917 2.954 2.890 3.078 2.906 2.854 3.054 3.057 3.017 3.102 3.087 3.118 9
Sedimentation 2.817 2.820 2.735 2.764 2.862 2.885 2.633 2.824 2.801 3.012 2.810 2.871 3.112 9

Vegetation 2.780 2.646 2.665 2.607 2.695 2.705 2.549 2.761 2.716 2.717 2.731 2.747 2.706 1
Erosion 3.075 2.834 2.862 3.009 2.972 2.893 2.775 2.967 2.984 3.067 3.097 3.025 2.941 7

Blockage 2.685 2.580 2.571 2.447 2.650 2.560 2.495 2.615 2.573 2.590 2.610 2.597 2.724 9
Piping 2.859 2.821 2.710 2.685 2.831 2.842 2.711 3.004 2.766 2.759 3.056 2.912 2.995 7

Cracked 3.117 3.077 3.095 3.119 3.130 3.048 2.884 3.156 3.070 3.286 3.068 3.061 3.118 6
Separated 3.126 3.125 3.174 3.368 3.307 3.284 3.238 3.059 3.205 3.651 2.965 3.290 3.307 6
Corrosion 3.307 3.138 3.268 3.040 3.213 3.181 2.948 3.421 3.105 3.234 3.219 3.299 3.168 4
Alignment 3.259 3.139 3.118 3.186 3.127 3.279 3.206 3.332 3.304 3.266 3.309 3.420 3.462 9

Scour 3.272 3.225 2.783 2.750 2.890 3.004 3.146 3.121 3.110 3.130 3.189 3.234 3.214 1
Sedimentation 2.863 2.789 2.894 2.830 2.496 2.678 2.772 2.552 2.800 2.544 2.762 2.592 2.822 11

Vegetation 3.280 3.344 3.185 2.911 3.458 3.000 3.176 3.330 3.103 3.218 3.304 3.422 3.199 13
Erosion 3.441 3.454 3.377 2.376 2.477 3.267 3.423 3.450 3.245 2.472 3.503 3.307 3.364 7

Blockage 2.980 2.762 2.749 2.620 3.071 2.724 2.678 3.014 2.723 2.988 3.000 2.837 3.084 9
Piping 3.179 3.012 3.141 3.208 3.161 3.108 3.037 2.953 3.061 3.140 3.030 3.142 3.083 12

Cracked 2.981 3.059 3.104 2.153 2.250 3.110 3.031 3.187 2.851 2.500 3.071 2.995 3.068 4
Separated 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Corrosion 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.976 1.000 1.000 1
Alignment 2.000 1.933 2.000 1.000 1.000 1.967 2.000 1.933 1.933 1.000 1.933 2.000 1.833 1

Scour 3.233 2.924 3.098 2.417 2.417 3.117 2.992 3.098 3.209 2.333 3.077 3.136 3.016 1
Sedimentation 2.000 2.000 2.000 0.000 0.000 2.000 2.000 2.000 2.000 0.000 2.000 2.000 2.000 1

Vegetation 2.802 2.988 2.892 2.000 2.417 2.912 2.679 3.123 3.089 2.500 2.995 2.980 3.183 9
Erosion -- -- -- -- -- -- -- -- -- -- -- -- -- --

Blockage 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1
Piping 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1

Cracked 1.889 1.889 1.784 1.900 2.000 1.806 1.806 1.861 1.778 2.000 1.972 1.889 1.806 13
Separated 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1
Corrosion 2.867 2.883 2.707 2.833 2.952 2.867 2.933 2.967 2.717 2.952 2.717 2.867 2.900 4
Alignment 2.923 2.917 3.000 3.000 3.000 2.958 2.833 2.583 2.798 2.833 2.833 2.923 2.881 11

Scour 2.000 2.000 1.715 1.571 1.589 2.000 2.000 1.422 1.611 2.000 1.722 2.000 1.889 1
Sedimentation 0.956 1.122 1.153 1.571 1.536 2.000 1.778 1.367 1.611 1.643 1.178 0.956 1.300 2

Vegetation 2.699 3.067 2.919 2.894 3.000 2.917 2.765 3.169 2.969 2.967 2.889 2.699 3.030 4
Erosion -- -- -- -- -- -- -- -- -- -- -- -- -- --

Blockage 1.722 1.944 1.628 1.750 1.889 1.917 1.861 1.417 1.833 2.000 1.611 1.722 1.889 6
Piping 1.958 2.000 1.651 1.417 1.944 2.000 1.958 1.733 1.817 2.000 1.958 1.958 1.833 10

Cracked 2.901 3.028 2.791 2.744 3.045 2.887 2.947 2.830 3.020 3.080 3.191 2.890 3.106 7
Separated 2.841 2.774 2.829 2.759 3.014 2.800 2.720 2.869 2.652 2.916 2.705 2.787 3.036 9
Corrosion 3.418 3.162 3.081 3.125 3.127 3.044 3.387 3.230 3.022 3.213 3.546 2.837 3.308 7
Alignment 3.716 3.680 3.664 3.674 3.730 3.660 3.521 3.645 3.700 3.733 3.683 3.647 3.651 6

Scour 3.255 3.174 3.138 3.156 3.504 3.175 3.202 3.367 3.382 3.402 3.233 3.399 3.464 13
Sedimentation 3.411 3.293 3.458 3.387 3.189 3.402 3.121 3.521 3.321 3.672 3.541 3.446 3.786 9

Vegetation 3.137 3.149 3.170 3.224 3.040 3.067 3.017 3.126 3.224 3.122 3.169 3.232 3.199 8
Erosion 3.195 3.069 2.791 3.105 3.285 2.776 3.279 3.000 3.343 3.514 3.214 3.514 3.121 8

Blockage 3.093 2.986 3.013 2.920 3.025 2.987 2.867 2.935 3.038 3.030 2.987 2.965 2.949 1
Piping 3.547 3.540 3.534 3.614 3.376 3.499 3.384 3.695 3.552 3.548 3.588 3.477 3.714 9

Cracked 2.953 2.689 2.630 3.021 2.828 2.981 2.851 2.634 3.234 3.344 2.848 3.174 3.521 9
Separated 2.900 2.686 2.630 2.472 2.637 2.729 2.714 2.671 2.698 2.915 2.781 2.897 3.265 9
Corrosion 3.024 3.071 3.051 3.226 2.950 3.063 2.774 3.085 3.064 3.060 3.053 3.071 3.431 9
Alignment 3.097 3.001 2.960 3.072 3.170 2.931 2.722 3.069 3.118 3.114 2.972 3.055 3.110 13

Scour 2.602 2.690 2.658 2.965 2.724 2.629 2.717 2.842 2.981 3.104 2.752 2.860 3.265 9
Sedimentation 3.361 3.185 3.194 3.308 3.137 3.138 3.006 3.302 2.897 3.225 3.086 2.939 3.308 1

Vegetation 2.728 2.645 2.818 2.777 2.956 2.704 2.633 2.748 2.638 2.723 2.609 2.640 3.028 9
Erosion 3.044 2.998 2.942 2.023 2.132 2.876 2.993 3.043 3.039 2.311 3.057 3.276 3.235 8

Blockage 2.989 2.886 2.906 2.891 3.018 2.978 2.739 2.997 3.013 3.090 2.964 3.065 2.948 6
Piping 3.046 2.929 3.023 2.622 3.545 2.858 3.158 2.866 2.668 3.530 2.783 3.423 3.174 13

Total Models 14 2 2 1 6 0 0 5 0 5 6 3 14 58

Mixed

COMBINATION NUMBER

RCP

CMP

CAP

HDPE

Masonry
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Example of ROC Curve Analysis  

 In order to compare a model’s ability to separate date visually, the ROC plots 

were created for each of the models whose AUC proved to be the largest (Appendix A).  

The plots of the ROC curves provided information regarding a model’s ability to separate 

the data into each of the five categories (1, 2, 3, 4, and 5).  For example purposes models 

which showed a strong ability to differentiate these categories, and a model which 

showed strong and weak abilities to separate such information are shown in Figure 6.1 

and Figure 6.2 respectively. 

Figure 6.1: ROC Curve Describing Masonry Alignment Model 

 

0.12 
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Figure 6.2: ROC Curve Describing Masonry Blockage Model 

 In examining Figure 6.1 describing the Masonry Alignment model it is seen that 

the total area under the four curves is relatively high (3.733 for Artificial Neural Network 

and 3.601 for Logistic Regression).  The number of true positives that are predicted by 

the model are accompanied by very few false positives.  For the line labeled ANN-4, a 

true positive is a culvert that is labeled with a predicted alignment rating of 4 or less 

whose actual rating is four or less.  A false positive is a culvert labeled with a predicted 

alignment rating of greater than four whose actual rating is less than four.  For the other 

models, 3, 2, and 1 we can also examine their ability to maximize the culverts correctly 

identified as in poor condition; however, it may be of more interest to determine how 

many culverts with a poor rating are missed by the model.  To perform this calculation, 

0.53 

0.12 
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you must take the difference between 1 and the true positives.  This value is the number 

of true positives that have been missed by the model.  It can be seen that in the case of the 

indicated point along the line of the ANN-4 ROC curve that 10% of the data predicted by 

the model will be falsely identified as less than or equal to four.  Furthermore, 88% of the 

data with an actual score of less than or equal to four will be predicted as such, with 12% 

of these data points missing.   

In examining Figure 6.2¸we see a model that does a poor job of identifying the 

separation of data as compared to the model shown in Figure 6.1. The corresponding 

area under the four curves total to 3.093 for the Artificial Neural Network model and 

2.575 for the Logistic Regression Model for the model predicting masonry blockage.  

When examining the same point on the ANN-4 ROC curve, the model predicts 10% of 

the data as a false positive, but it only correctly identifies 47% of the data as having a 

score of less than or equal to four.  This corresponds to a total of 53% of the data that is 

misidentified as having a score higher than their true score.  As the number of false 

positives increases, the amount of correctly identified culverts also increase but 

significantly slower than the model predicting masonry alignment.  In order to achieve 

the same amount of correctly identified culverts as Figure 6.1 (88%) nearly 65% of the 

culverts with an true rating higher than 4 would receive a false positive rating. 

A final observation that can be made by the models is the comparison between the 

Artificial Neural Network model and Logistic Regression model.  In terms of the 

performance of a model in regards to the area under the curve, it is visually easy to 

determine which model performs better and in which situations.  For the examples shown 
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in Figure 6.1, the ANN model performs better in most cases.  For the presented ROC 

curves, the only case where the Logistic Regression model shows an advantage is in the 

differentiation of the culverts rated 1.   

Additional Model Modifications 

 Using the best model input combinations for both the logistic regression and the 

artificial neural network two final models addressing the six different culvert types and 

ten different output variables.  These two models can, at this stage, give a prediction of 

the desired output on a continuous sale from 1.0-5.0.  In order to further develop the 

model as an efficient tool to determining the culverts in need of physical assessment, it is 

important to determine the optimal threshold of allowable falsely identified good 

condition and poor condition culverts.  For example, the cost of examining a large 

percentage of culverts that may be in good condition needs to be limited; however, the 

fewer culverts that are marked as poorly rated culverts, the more culverts in need of 

inspection may be missed.  When using ROC curves as an indication of a model’s 

accuracy, it is important to note that the ROC curve denotes the ability for the model to 

separate the data into groups while showing the tradeoff between true positive results and 

false positive results.  Using an ROC curve allows the user to select a threshold value 

after the model is created that indicates the approximate amount of false positive results 

to be expected by the model. 

 Selecting the appropriate threshold can be done through two primary methods.  

The first weights the cost of a false positive and false negatives in a cost matrix.  The cost 
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matrix that is used to determine the optimal threshold point on the ROC curve is shown 

by Table 6.3. 

Table 6.3: Cost Emphasis Matrix 

  

In this matrix, the positive classification represents culverts that are less than or 

equal to a given output (1-4).   Conversely, the negative category represents culverts that 

are greater than a given output rating.  For example, at an output rating of 3, positive 

culverts are denoted as culverts less than or equal to 3, while negative culverts are shown 

as those culverts greater than 3.  The ratio of these scores gave an indication of the 

consequence of falsely identifying culverts with better ratings as having a poor rating, as 

well as denoting culverts that are in need of inspection and repair as in good condition.  

In the case of the South Carolina Department of Transportation, the consequence of 

failing it identify a culvert in need of repair (N|P) would be much greater than the 

consequence of identifying a culvert that is in good condition as one in need of repair 

(P|N).  Typically, there is no cost associated with correctly identifying good condition or 

poor condition culverts; however, the model can account for situations that would require 

these values to be non-zero. 

For the case of culvert prediction, a sample cost matrix is given as the following: 

 

Actual\Model Positive Negative
Positive P|P N|P
Negative P|N N|N

Actual/Model Positive Negative
Positive 0 10
Negative 1 0
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This matrix indicates that the cost of missing a culvert in poor condition is 10 times 

worse than accidentally identifying a culvert as in worse condition than it is in reality.  

Using this arbitrary threshold limit, the optimal point on the ROC curve could be 

discovered and the threshold for these culverts could be set to optimize the ‘cost’ of 

falsely identifying the culvert’s rating.  In an example showing the threshold values 

calculated for the model describing RCP culverts and their separation output, the optimal 

values of each the four thresholds is shown in Table 6.4.  These points are plotted on the 

associated ROC curves in Figure 6.3.  

Table 6.4: Optimal Points for RCP Separation Model 

 

 

 

 

 

 

 

Threshold False Postive True Positive Threshold False Postive True Positive
1 0.165 0.588 1 0.141 0.495
2 0.338 0.697 2 0.250 0.607
3 0.573 0.863 3 0.263 0.613
4 0.687 0.942 4 0.675 0.933

Logistic Regression Artificial Neural Network
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Figure 6.3: Optimal Values shown on ROC Curve Describing RCP Separated 

The representation of the optimal points shows a large variety in the location of 

the points where the model is found to have the least cost. The model differentiating 

culverts rated as 5 from other culverts captures more than 90% of the culverts with a 

rating of 4 or less; whereas, the model differentiating culverts rated as 1 from other 

culverts only captures approximately 50% of these culverts.  Ultimately, for the cost 

analysis to have any significance, actual information on the ratio of cost between 

incorrectly identifying culverts in good condition and missing culverts in poor condition.  

Because of the large variation of the percentage of culverts, it would be advantageous to 

use a method for selecting the threshold limit that provides a more consistent amount of 

culverts that are prescribed for inspection or rehabilitation. 
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The second method used to determine the threshold point attempts to maximize 

the percentage of culverts that were placed in the correct category.  By using the cost 

matrix, the output of the model may categorize all culverts for inspection rendering the 

model useless.  In the case of the logistic regression model and the artificial neural 

network model, attempting to use the cost matrix as a method for determining the optimal 

threshold point was ineffective as the model set the threshold point at 0 false positives 

and 0 true positives.  Because each of the models behave differently, setting a single 

threshold in terms of a percent of culverts is unlikely to serve each of the culvert types 

and output categories well.  Imposing realistic limits on the amount of culverts prescribed 

for inspection was important to the feasibility of the model.  These final model 

modifications and thresholds are set for each of the six culvert types and ten output 

categories by using the results of the likelihood function.  Using this result allows for the 

best separation of the data and is equivalent to employing a cost matrix valuing the false 

positive and false negative terms equally.  The overestimation of a culvert’s output rating 

can be corrected for by fitting the observed output versus the predicted output to a 

regression.  This step was most easily done after the composite score was calculated as it 

meant the user only has to deal with a single value.   

Preliminary Conclusions 

 The distribution of most effective models clearly follows the general rule that 

more data points (culverts) requires a model with more input variables.  In cases where 

the number of observed culverts were smaller, models that utilized fewer input variables 

were more successful.  This trend, illustrated in Figure 6.4, can be shown with a 
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logarithmic relationship for logistic regression models.  This conclusion helped to 

minimize the time spent testing future combinations of input variables for logistic 

regressions.  Future combinations with more input variables could only be tested on RCP 

culverts, while combinations with fewer inputs could be tested on HDPE and CAP 

culverts.  CMP, masonry, and mixed/other culverts would likely be tested for all 

additional models as their dependence on the amount of input variables varied more with 

the type of output that was being predicted.  There were no such relationships present in 

the results of the artificial neural network models.  In addition, there were no 

relationships found between the number of neurons used to determine the final output 

ratings and the number of inputs in the final model. 

Figure 6.4: Relationship between Observed Culverts and Average Number of Inputs 

 In a comparison of the performance measures, there was almost no matches in the 

best combinations between the mean squared error performance indicator and the area 

under the ROC curve indicator.  Only two of the sixty models (3.33%) found the same 
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combinations of input variables to have combination of inputs yield the best model for 

both mean squared error and area under the ROC curve, because the two performance 

measures are based on fundamentally different principles.  The mean squared error 

attempts to find the model that creates the closest error for each individual culvert based 

on a continuous scale.  Because the data represented by the SCDOT database has culverts 

with average ratings above four, the data is skewed toward the higher rated culverts.  

With this information, the mean squared error performance based models are more likely 

to predict higher ratings in an effort to reduce overall error.  Models based on the area 

under the ROC curve are viewed as more effective when they can sort the culverts into 

discrete categories 1-5.  The purpose of these models is more in line with the 

performance characteristics of ROC curves.  Ranking the culverts and identifying those 

culverts in most need of assessment was more important than correctly predicting the 

rating of culverts, especially those culverts in better condition. 
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CHAPTER SEVEN 

Model Analysis 

 General Effect of Input Variables  

 Despite the complexities in determining the assessment rating of culverts using 

logistic regressions and artificial neural networks, conclusions can be made from the 

coefficients of the model.  In the case of the logistic regression, the influence of each 

input variable, whether positive or negative can be tracked through these coefficients.  In 

total, 15 unique input variables in the various combinations for each of the logistic 

regression and artificial neural network models.  For each of the inputs their impact on a 

specific output variable can be either positive, negative, or neutral.  The complexity of 

the problem increases in that each input variable can have a defined impact over only 

portion of the spectrum of assessment values 1-5.  A specific input may significantly 

impact the decline of a culvert from a rating of 5 to 4, but it may have no effect on the 

deterioration from 2 to 1.  In the case of the dummy variables, this becomes problematic 

as each coefficient only addresses the binary nature of a single quantifier.  Once all of the 

beta values were determined for each of the six culvert types, it could be used to draw 

conclusions about each variables contribution to the output variables.  For example, a 

coefficient value of 1.25 for the input variable pH would correspond to an increase in the 

culvert rating of exp(1.25) or 3.49 for each unit increase in pH with all else equal. 

 From this information, there were several trends that could be observed for each 

of the logistic regression models.  Each of the trends fell into one of four categories.  

These trends are also illustrated in Figure 7.1. 
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 Trend 1: As culvert deteriorates, impact of variable decreases* 

 Trend 2: As culvert deteriorates, impact of variable increases* 

 Trend 3: Input has little effect on variable** 

 Trend 4: Impact of variable remains constant as culvert deteriorates 

*These trends can have a positive or negative effect on variables 

**Because input range changes based on the type of input, a lower value may be 

misleading (a unit increase may be more significant in pH as compared to a unit increase 

in precipitation) 

Figure 7.1: Trend Types for Input Coefficients of Logistic Regression Models 

 The trend of each input variable was assigned for all inputs of each model.  There 

were a total of 10 trend classifications for each input variable as trends 1, 2, and 3 could 

be considered positive or negative based on the value of the coefficient.  With each 

variable categorized, the general effect of the input variables could be shown to be 

positive, negative, or having small effects on the output.  An attempt was then made to 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
oe

ff
ic

ie
nt

 V
al

ue

Output Classification Divide

Trend 1

Trend 2

Trend 3

Trend 4



66 
 

understand these effects and determine if they are in line with assumptions and practices 

common to design and maintenance of culverts. 

 The four primary variables that were mapped to each culvert and used in most 

models were pH, runoff coefficient, temperature, and precipitation.  Figure 7.2 captures 

the general effect of these variables on the outputs of the model.  In these figures, which 

aim to capture the generalized effect of an input variable on all output variables, the 

positive and negative effects must be interpreted in terms of the equation that governs the 

prediction of the output variable. 

ln
PሺOutput≤kሻ

PሺOutput>kሻ
=β0+β1X1+β2X2+…+βnXn      for k=1,2,3,4         (Eq 7.1) 

 
 In this equation a positive value of β increases the relative probability of the 

output variable being less than the classification in question (1, 2, 3 or 4).  Through this 

example, a variable indicated as having a negative beta value increases the probability 

that a given output variable is greater than the threshold.  In examining the 

generalizations of the impacts of the primary variables, most of these variables are shown 

to have a negative value.  Consequently, a decrease in the value for these variables would 
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correspond to an increase in the probability that the culvert is in better condition than the 

indication point.   

Figure 7.2: Distribution of Effect of Primary Input Variables 

 It is important to determine if the negative values for pH, runoff coefficient, 

temperature, and precipitation follow the general logic of the effects of these variables.  

Proving that an increase in the pH would help a culverts rating, especially its corrosion 

rating, follows the logic that more acidic water is worse for a culvert’s health.  Similarly, 

a negative value associated with the temperature coefficient, particularly in structural 

related models indicates that the places in South Carolina that are colder and more 

susceptible to freeze and thaw cycles, would have a negative effect on the culvert’s 
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output ratings.  These trends can also be observed in a graph of the predicted outputs as a 

function of the primary input variables.  

 The negative values associated with the input variables of runoff coefficient and 

precipitation are not as easily explained with intuition.  In the case of both runoff 

coefficient and precipitation, an increase in these inputs would mean an increase in 

demand on the culvert.  While this effect can be explained for some output variables like 

blockage and vegetation where an increase in the amount of water would decrease the 

likelihood for excess vegetation, sedimentation, and culvert blockage, other output 

variables would not logically benefit from an increased amount of water.  Alignment, 

cracking, and erosion would logically see a reduction in output rating with an increase in 

the precipitation and runoff coefficient when examined in a global sense.  It was 

important to note that the life cycle of a culvert is dependent on the localized conditions 

that effect the demand, and the input variables used to predict the output capture a 

localized effect of each input variable on the culvert. 

 These general effect were confirmed with graphs isolating a culvert’s predicted 

output score were plotting against each primary variable.  To give reference, the actual 

distribution of ratings was shown in red, while the predicted rating was shown in red 

(Figure 7.3). 
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(a)                 (b)             

      (c)             (d) 

Figure 7.3: Demonstration of Negative Coefficients and Positive Impact  

Composite Output Rating Analysis 

 Once the ten output categories had been calculated based on the logistic 

regression and the artificial neural network models, they could be compiled into one 

rating based on surveys conducted to state Departments of Transportation (DOT).  The 

composite ratings for the RCP-like and CMP-like culverts could then be compared to the 
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similarly calculated observed ratings through the SCDOT assessments.  Using the relative 

importance of each of the six defects considered to be important gives a final composite 

score.  This composite score could be compared to a calculated composite score for each 

culvert in the SCDOT culvert assessment database and corrected using an error term.  For 

each model type and each of the three possible composite score methods (Table 7.1).  

The primary performance measure of the model’s accuracy was the coefficient of 

determination (R2).  The figures illustrating the calculation of these coefficients is shown 

in Appendix B. 

Table 7.1: Coefficient of Determination (R2) 

 

 The first observation from the composite score analysis was that each culvert type 

had a significant advantage using one model type versus another.  For RCP, CMP, 

masonry, and mixed/other culverts, the artificial neural network model proved to produce 

better results.  For the CAP and HDPE models, the logistic regression model proved to 

explain more of the variation.  A possible reason for this occurrence is the lack of data 

that can be found in the CAP and HDPE categories.  When the amount of information 

was less, the simplest model did the best job of explaining the causes and effects of the 

input variables.  The linear addition of the input variables proved to be the best way to 

describe the condition of the culvert when only a few culverts were available.  This 

phenomenon may also have been the case because all of the data was used to create the 

RCP CMP CAP HDPE Masonry Mixed
Average 0.252 0.562 0.090 0.687 0.569 0.519

DOT Est 1 0.217 0.550 0.100 0.668 0.476 0.490
DOT Est 2 0.246 0.566 0.071 0.656 0.551 0.509

Average 0.132 0.334 0.612 0.753 0.344 0.279
DOT Est 1 0.132 0.349 0.536 0.856 0.280 0.373
DOT Est 2 0.135 0.340 0.613 0.711 0.340 0.250

Neural 
Network

Logistic 
Regression



71 
 

logistic regression models.  Without any validation of the model with unused data, a 

significant bias can be introduced when only a few data points exist. 

 The second observation was that there was no clear method of developing a 

composite score that proved to be better than the others.  For all culvert types except 

HDPE, the top two methods for determining composite score were within 10% of each 

other.  This could be partially due to the fact that the two DOT estimates for the relative 

severity of defects showed only slight differences for RCP and CMP culverts.  

Furthermore, the differences between the DOT estimates and a simple average of the six 

output variables assumed to be significant were relatively small as well.  Moving 

forward, all three models will be available for the user to select.  The user could also 

input their own set of weighting criteria.  In addition, other combinations of the output 

variables could prove to do a better job at estimating the overall ratings of the culverts, 

but they may not accurately represent the health of the culvert in question.  

 A final observation of the composite score analysis was the relatively low 

magnitude of the coefficient of determination in comparison to previous research.  For 

the culvert type with the most available information, RCP, the coefficient of 

determination was the worst (0.252).  This means that only 25.2% of the variability in the 

data for RCP culverts is captured by the current model.  A possible reason for this poor 

model could be too much data used to create the model.  Because the distribution of the 

data from the SCDOT Culvert Assessment Database was significantly skewed to the 

culverts with ratings of 4 and 5, and the model attempts to reduce the amount of total 

error produced by the regression, the model is biased towards the higher rated culverts.  



72 
 

In models where the distribution of culverts had closer to equal amounts of culverts in 

each category, the coefficient of determination was higher.  

 Using the tools available in a regression analysis allows for the error term to be 

included in the model.  When the user inputs a culvert’s information, the logistic 

regression or artificial neural network model will produce an estimate based on the 

functions that define that particular model.  The prediction will then be used in the linear 

regression analysis to produce a final prediction of the culvert’s composite score.  In 

addition to this prediction, the variability in the data will allow for a range of predictions 

to be made.  This range deals with the variability at a specific point in the regression 

analysis.  As shown in Figure 7.4 representing CMP culverts and a composite scored 

determined by the DOT defect weighting estimate for CMP culverts, the boundary for the 

culverts can be seen.  The upper and lower boundary look to capture one standard 

deviation from the mean value predicted by the regression.  This additional parameter can 

serve to allow the user to have an estimate as to the lower and upper bound of the 

composite score. 

Variability in the Models 

 The distribution of the standard deviation for each model can serve to help 

understand how well the model captures the data with the single prediction.  The larger 

the standard deviation, the less the single prediction accounts for more of the data.  For 

most of the models and composite score weights the average standard deviation across 

the spectrum of possible answers (1-5) was between 0.3 and 0.6.  In a case where the 

standard deviation is 0.5, approximately half of the variation is captured in a range of 1.0.  
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A complete breakdown of the standard deviation associated with each of the composite 

scores and culvert types is shown in Table 7.2.  The average standard deviation was 

determined by finding the standard deviation of equally spaced points from a predicted 

output of 3 to a predicted output of 5.  Because there was much more variability in the 

model below an estimation of 3 and very few entries, an average of equally spaced points 

between 1 and 5 would not give an accurate indication of the average standard deviation.  

The increased variability can be seen where the lines indicating the standard deviation 

grow farther apart as the predicted value decreases.  This is to be expected as there are 

fewer data points lower on the scale and the models ability to predict them has decreased. 

Figure 7.4: CMP Composite Score DOT Estimate 2 with Error Term 
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Table 7.2: Standard Deviation for Each Model Type and Composite Weight 

 

 

ANN LogReg
DOT Est 1 - RCP 0.479 0.500
DOT Est 2 - CMP 0.503 0.515

All Equal 0.497 0.514
DOT Est 1 - RCP 0.524 0.630
DOT Est 2 - CMP 0.549 0.639

All Equal 0.512 0.621
DOT Est 1 - RCP 0.504 0.388
DOT Est 2 - CMP 0.561 0.483

All Equal 0.526 0.396
DOT Est 1 - RCP 0.643 0.422
DOT Est 2 - CMP 0.617 0.252

All Equal 0.697 0.483
DOT Est 1 - RCP 0.314 0.376
DOT Est 2 - CMP 0.339 0.390

All Equal 0.323 0.379
DOT Est 1 - RCP 0.421 0.533
DOT Est 2 - CMP 0.457 0.529

All Equal 0.422 0.540

Masonry

Mixed

RCP

CMP

CAP

HDPE
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CHAPTER EIGHT 

Model Conclusions 

Weaknesses of Models 

 When considering the finalized models, it was important to understand the 

limitations and weaknesses of its prediction capabilities.  The first major weakness of the 

model was the spatial bias that was created when the mapped input variables were 

assigned to the culverts.  Because these mapped inputs varied spatially using linear 

interpolation, two culverts that were located very close together could receive nearly 

identical values for temperature, precipitation, pH, and estimated runoff coefficient.  

With all other physical properties like culvert type, culvert shape, and dimensions equal, 

these culverts would likely receive a nearly equal estimate for the output variables.  With 

no additional way to differentiate these culverts such as age, any variation in the ratings 

of these culverts would not be captured by the model.   

 In addition to the localized spatial bias, the model may be affected by spatial bias 

in the global sense.  Where models were created with fewer culverts (HDPE and CAP) 

the model could separate these culverts and assign ratings based entirely on spatial 

variation illustrated in Figure 8.1. In this case, the model would predict the culvert rating 

based on this spatial bias.  Any validation performed on this model shows that the 

predition capabilities for the model are very poor.  This was underscored by the neural 

network’s poor performance on culvert types with fewer data points as the neural 

network process includes validation. 
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Figure 8.1: Spatial Bias Potential in Models with Fewer Input Culverts 

 In addition to the spatial bias, there is a bias in the model towards the highly rated 

culverts.  Because the distribution of culvert output ratings was significantly skewed 

towards the higher rated culverts (Table 8.1).  When using models that incorporate all 

data or a percent of the entire data, the model sought to maximize the performance 

indicators.   With more of the data receiving higher rating, the model prioritizes 

accurately estimating these data points at the expense of over-predicting the lower rated 

culverts.  Some of this bias is removed by emphasizing the ROC curves and the models 

ability to separate these culverts from the higher rated culverts, but the bias is clearly still 

evident in the analysis of the composite score comparisons (Figures in Appendix B).   
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Table 8.1: Distribution of Culvert Ratings in SCDOT Culvert Database 

 

 As previously documeted some of the output categories have no rankings.  

Because the model has not been exposed to a culvert with an output rating in these 

categories, unless significant values for the major input variables are achieved, it is 

unlikely that the model will ever produce a culvert with an output rating equivalent to the 

missing culvert output ratings.  Futhermore, the values for the site specific variables are 

capped at a minimum and maximum value, making the likelihood that the model would 

produce a rating outside the range of those currently seen in the culvert database even 

smaller. 

 Another weakness to the model that needs to be addressed is the method for 

which the value of the output variable was determined.  Because all of the output 

categories were taken into account to produce the final output score for each of the ten 

categories, each of the outputs were considered to have equal weight with respect to the 

health of the culvert.  For example, the cracked output score for each culvert was a 

combination of seven different categories; three addressed the inlet, three addressed the 

outlet, and one addressed the rating of the barrel.  For this case, a poor cracking rating for 

the inlet and outlet are significantly less severe than a poor rating for the barrel of the 

culvert.  Because the minimum output rating for all seven of these categories was taken to 

Output Rating Percent

1 2.2%
2 2.3%
3 6.9%
4 18.7%
5 69.8%
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be the respresentation of the cracking output for the entire culvert, a bias could be placed 

on certain culverts in the existing database.  If the defects ranked by the culvert database 

were given a significance based on the area of the culvert that they addressed, a more 

accurate representation of the culvert’s output ratings could be produced and a potentially 

more accurate model could be used.  It is important to note that the accuracy of the model 

is significantly dependent on the accuracy of the database used to create the models.  In 

addition, the defects predicted by the model may be misleading as all culvert types 

receive a predicted score for each of the output categories.  This means that CMP culverts 

will receive a cracking score despite the fact that cracking is not likely to occur in these 

types of culverts.  This weakness in the model is overcome by a knowledgable user that 

interprets the model’s output to best serve their purpose. 

 A final significant weakness to the model in its current state is the lack of a time-

dependent variable.  Because the input variables all remain constant, the model produces 

a prediction that would remain the same if the model was used again later.  Without an 

input variable that gives some indication of time, the model is not a deterioration model, 

it is simply a predictive model.  Limited age information was provided for 29 total 

culverts and the associated analysis of this information is presented in Appendix C.  This 

weakness could be corrected if the model was updated in the future for a similar database 

of culverts.  If historical data on the rainfall, temperature, pH, and land cover were 

updated periodically, it may give the model a chance to predict these variables more 

accurately. In addition, if the same culvert was rated more than once over a period of 

time, a measure of the deterioroation over time could be achieved. 
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Strengths and Benefits of Models 

 Both the logistic regression and artificial neural network models aimed to predict 

the ratings of each of the output categories. Because the model was separated into 

individual models aimed at capturing the response of culvert to a single output score, it 

can be used to assess what culverts in the state of South Carolina have a poor prediction 

rating for only specific output categories.  For example, it may be of concern only those 

culverts in South Carolina that have blockage, sedimentation, or vegetation issues.  Using 

the model may allow for the SCDOT to identify those culverts that may be in need of 

simple repair so that further problems do not develop and decrease the rating of the 

culvert.  In addition, the model can be used to determine where in South Carolina, certain 

defects are more common or predicted to be more of a concern.   

 Another advantage of the culvert prediction model is that it only requires 

information about the physical characteristics and location of the culvert.  Using only 

these characteristics allows the user to predict a rating for the culvert without any field 

inspection or knowledge of the site specific characteristics of the culvert.  The model 

allows the user to rank culverts in terms of importance using only these parameters. 

In the final model, both the artificial neural network model and the logistic 

regression model will be available for the user to select and use.  However, based solely 

on the coefficient of determination performance measure, one model is clearly better than 

the other for each of the culvert type (Table 8.2).  The flexibility of using one set of 

models versus another for a given culvert type also allows for some of the error 
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introduced by spatial bias or a lack of complexity in the logistic regression model to be 

handled by the other model type.  

Table 8.2: Breakdown of More Accurate Model 

 

Modifications to Future Models 

 For the model to continue to improve in its capabilities to predict the output of 

culverts, modifications and updates are necessary.  A continued analysis to the impact of 

the age of a culvert would allow for these models to be applied to all culvert types and 

likely produce more accurate models.  Implementing the model would only be possible if 

the age of future culverts whose condition was desired also had a known installation date.  

With these models would come an expected increase in accuracy as well as a prolonged 

useful life of the model.  If the model could take into account a time-dependent variable, 

the model is no longer static and could produce more meaningful results in the future 

without an update in the parameters of each individual model. 

 Another important modification to the current model that could bring about an 

increase in the performance would be using different portions of the data to train the 

original estimates for the model coefficients.  This would apply mostly to the models 

with a large amount of data.  In these cases it may be advantageous to use equal or nearly 

equal amounts of data from each output category.  Because nearly 90% of the data has an 

Model Type More Accurate Model
RCP ANN
CMP ANN
CAP LogReg

HDPE LogReg
Masonry ANN

Mixed/Other ANN
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output score of either 4 or 5, the bias towards this data is significant, but likely 

correctable.  By forcing the model to treat each output equally, it may be more likely to 

capture the true trends in the data and deterioration of culverts. 
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Appendix A 

ROC Curves for Each Model 

Figure A-1: ROC Curve for RCP Cracking 

 Figure A-2: ROC Curve for RCP Separated 
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 Figure A-3: ROC Curve for RCP Corrosion 

 Figure A-4: ROC Curve for RCP Alignment 
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 Figure A-5: ROC Curve for RCP Scour 

 Figure A-6: ROC Curve for RCP Sedimentation 
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 Figure A-7: ROC Curve for RCP Vegetation 

Figure A-8: ROC Curve for RCP Erosion 
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 Figure A-9: ROC Curve for RCP Blockage 

 Figure A-10: ROC Curve for RCP Piping 
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Figure A-11: ROC Curve for CMP Cracking 

 

Figure A-12: ROC Curve for CMP Separated 
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Figure A-13: ROC Curve for CMP Corrosion 

 

Figure A-14: ROC Curve for CMP Alignment 
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Figure A-15: ROC Curve for CMP Scour 

Figure A-16: ROC Curve for CMP Sedimentation 
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Figure A-17: ROC Curve for CMP Vegetation 

Figure A-18: ROC Curve for CMP Erosion 
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Figure A-19: ROC Curve for CMP Blockage 

Figure A-20: ROC Curve for CMP Piping 
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Figure A-21: ROC Curve for CAP Cracked 

Figure A-22: ROC Curve for CAP Separated 
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Figure A-23: ROC Curve for CAP Corrosion 

Figure A-24: ROC Curve for CAP Alignment 
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Figure A-25: ROC Curve for CAP Scour 

Figure A-26: ROC Curve for CAP Sedimentation 
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Figure A-27: ROC Curve for CAP Vegetation 

Figure A-28: ROC Curve for CAP Erosion 
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Figure A-29: ROC Curve for CAP Blockage 

Figure A-30: ROC Curve for CAP Piping 
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Figure A-31: ROC Curve for HDPE Cracked 

Figure A-32: ROC Curve for HDPE Separated 
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Figure A-33: ROC Curve for HDPE Corrosion 

Figure A-34: ROC Curve for HDPE Alignment 
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Figure A-35: ROC Curve for HDPE Scour 

Figure A-36: ROC Curve for HDPE Vegetation 
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Figure A-37: ROC Curve for HDPE Erosion 

Figure A-38: ROC Curve for HDPE Blockage 
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Figure A-39: ROC Curve for HDPE Piping 
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 Figure A-40: ROC Curve for Masonry Cracked 

 Figure A-41: ROC Curve for Masonry Separated 



104 
 

Figure A-42: ROC Curve for Masonry Corrosion 

Figure A-43: ROC Curve for Masonry Alignment 



105 
 

Figure A-44: ROC Curve for Masonry Scour 

Figure A-45: ROC Curve for Masonry Sedimentation 
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Figure A-46: ROC Curve for Masonry Vegetation 

Figure A-47: ROC Curve for Masonry Erosion 
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Figure A-48: ROC Curve for Masonry Blockage 

 Figure A-49: ROC Curve for Masonry Piping 

 



108 
 

 

Figure A-50: ROC Curve for Mixed/Other Cracked 

Figure A-51: ROC Curve for Mixed/Other Separated 
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Figure A-52: ROC Curve for Mixed/Other Corrosion 

Figure A-53: ROC Curve for Mixed/Other Alignment 
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Figure A-54: ROC Curve for Mixed/Other Scour 

Figure A-55: ROC Curve for Mixed/Other Sedimentation 
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Figure A-56: ROC Curve for Mixed/Other Vegetation 

Figure A-57: ROC Curve for Mixed/Other Erosion 
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Figure A-58: ROC Curve for Mixed/Other Blockage 

Figure A-59: ROC Curve for Mixed/Other Piping 



113 
 

Appendix B 

Figures Using Composite Score to Post-Process the Model 

Figure B-1: RCP Average Composite Score 

Figure B-2: RCP DOT Estimate 1 Composite Score 
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Figure B-3: RCP DOT Estimate 2 Composite Score 

Figure B-4: CMP Average Composite Score 
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Figure B-5: CMP DOT Estimate 1 Composite Score 

 

Figure B-6: CMP DOT Estimate 2 Composite Score 
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Figure B-7: CAP Average Composite Score 

Figure B-8: CAP DOT Estimate 1 Composite Score 
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Figure B-9: CAP DOT Estimate 2 Composite Score 

Figure B-10: HDPE Average Composite Score 
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Figure B-11: HDPE DOT Estimate 1 Composite Score 

 

Figure B-12: HDPE DOT Estimate 2 Composite Score 
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Figure B-13: Masonry Average Composite Score 

Figure B-14: Masonry DOT Estimate 1 Composite Score 
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Figure B-15: Masonry DOT Estimate 2 Composite Score 

Figure B-16: Mixed Average Composite Score 
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Figure B-17: Mixed DOT Estimate 1 Composite Score 

Figure B-18: Mixed DOT Estimate 2 Composite Score 
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Appendix C 

Age Information Analysis 

 In every culvert prediction model surveyed, culvert age played a significant role 

in the model.  Without this information, or any time-dependent information, the model 

remains a predictive model and does not change over time.  The only factors that would 

change over time for the proposed model are the annual average temperature, 

precipitation, and pH values.  Even these values are relatively resistant to change as they 

are the average of the past 30 years of measured data.  Given this weakness and 

constraint in the proposed model, time information was requested for a number of the 

culverts shown in the SCDOT database.  The installation data was determined for a total 

of 29 corrugated metal pipe (CMP) culverts were provided. The distribution of this data 

in terms of the amount of culverts in each age category is shown in Figure C-1. 

Figure C-1: Distribution of Ages for Specified Culverts 
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 The distribution of age information is not ideal as over half of the given 

information shows culverts over 60 years old.  If this distribution proved to be 

representative of the distribution of culvert ages across the state of South Carolina, then 

the data could be used to create models for CMP culverts.  Table C-1 shows the 

distribution of ratings for the culverts for which the installation date was given.  This 

distribution follows relatively the same distribution as the overall culvert database 

meaning the data could produce results applicable to all CMP culverts. 

Table C-1: Distribution of Culvert Ratings Compared to Overall Database 

  

The same procedure used to create a logistic regression and artificial neural 

network using the entire database was applied to the 29 data points with age information.  

The results of this procedure were compared to those of the procedure without age 

information (Table C-2).  These results showed that two of the ten output variables were 

better explained with age as an additional input (scour and piping) in both the logistic 

regression and neural network models.  The neural network model addressing cracking 

was also improved by adding the installation date as an input. 

 

 

 

Rating Total Percent Percent of Total Database

5 386 58.9% 69.84%
4 170 26.0% 18.74%
3 71 10.8% 6.93%
2 21 3.2% 2.32%
1 7 1.1% 2.17%



124 
 

 

  

Table C-2: Comparison of AUC for Models with and without Age 

 

 

1 10 11 12 13 2 3 4 5 6 7 8 9 Max Area
Cracked 2.615 2.431 2.412 2.523 2.977 2.472 2.399 2.600 2.582 2.940 2.683 2.674 0.000 13

Separated 2.873 2.716 2.755 2.850 2.955 2.784 2.646 2.745 2.732 3.202 2.935 2.840 0.000 6
Corrosion 2.798 2.560 2.488 2.808 3.147 2.577 2.765 2.751 2.606 3.157 2.806 2.866 0.000 6
Alignment 3.295 2.899 2.859 3.080 3.226 2.931 3.054 3.265 3.258 3.171 3.299 3.328 0.000 8

Scour 3.136 2.449 2.491 2.706 2.807 2.476 2.829 3.106 3.161 2.911 3.162 3.118 0.000 7
Sedimentation 2.731 2.594 2.689 2.708 2.174 2.552 2.631 2.444 2.684 2.687 2.731 0.000 0.000 1

Vegetation 3.283 2.966 2.915 3.013 3.029 2.959 3.244 3.293 3.298 3.114 3.311 3.183 0.000 7
Erosion 3.320 2.950 2.980 2.266 2.633 3.033 3.180 3.316 3.183 2.583 3.324 3.296 0.000 7

Blockage 2.818 2.455 2.460 2.443 2.667 2.456 2.506 2.777 2.594 2.745 2.803 2.661 0.000 1
Piping 2.776 2.247 2.371 2.627 2.950 2.241 2.581 2.775 2.788 2.898 2.801 2.839 0.000 13

Cracked 3.117 3.077 3.095 3.119 3.130 3.048 2.884 3.156 3.070 3.286 3.068 3.061 3.118 6
Separated 3.126 3.125 3.174 3.368 3.307 3.284 3.238 3.059 3.205 3.651 2.965 3.290 3.307 6
Corrosion 3.307 3.138 3.268 3.040 3.213 3.181 2.948 3.421 3.105 3.234 3.219 3.299 3.168 4
Alignment 3.259 3.139 3.118 3.186 3.127 3.279 3.206 3.332 3.304 3.266 3.309 3.420 3.462 9

Scour 3.272 3.225 2.783 2.750 2.890 3.004 3.146 3.121 3.110 3.130 3.189 3.234 3.214 1
Sedimentation 2.863 2.789 2.894 2.830 2.496 2.678 2.772 2.552 2.800 2.544 2.762 2.592 2.822 11

Vegetation 3.280 3.344 3.185 2.911 3.458 3.000 3.176 3.330 3.103 3.218 3.304 3.422 3.199 13
Erosion 3.441 3.454 3.377 2.376 2.477 3.267 3.423 3.450 3.245 2.472 3.503 3.307 3.364 7

Blockage 2.980 2.762 2.749 2.620 3.071 2.724 2.678 3.014 2.723 2.988 3.000 2.837 3.084 9
Piping 3.179 3.012 3.141 3.208 3.161 3.108 3.037 2.953 3.061 3.140 3.030 3.142 3.083 12

Cracked 1.962 2.886 2.911 2.536 2.078 1.975 2.927 2.541 2.689 2.890 2.078 2.098 2.001 3
Separated 2.122 2.140 2.242 2.170 2.225 2.109 2.246 2.098 2.184 2.091 2.225 2.345 2.495 9
Corrosion 2.735 2.582 2.156 1.255 2.217 2.730 2.502 2.789 2.426 2.365 2.217 2.330 1.206 4
Alignment 1.705 1.747 1.786 1.289 1.297 1.712 1.649 1.309 1.303 1.211 1.297 1.227 1.434 11

Scour 3.296 3.359 2.961 2.663 2.633 3.288 2.989 3.122 3.157 3.285 2.633 2.846 1.619 10
Sedimentation 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1

Vegetation 1.329 1.510 1.542 1.719 1.371 1.303 1.535 1.392 1.586 1.756 1.371 1.374 1.556 6
Erosion 2.407 2.413 1.176 2.122 1.606 2.437 2.333 1.641 2.631 2.200 1.606 1.606 2.188 5

Blockage 1.441 1.542 1.503 1.371 1.547 1.467 1.637 1.584 1.673 1.369 1.547 1.490 1.472 5
Piping 2.229 1.867 2.078 2.906 2.110 1.649 3.142 2.969 2.207 2.876 2.110 1.964 2.984 3

Cracked 3.131 3.279 3.064 3.132 3.088 3.153 3.223 3.151 3.286 3.092 3.088 2.950 3.345 9
Separated 3.200 3.223 3.144 3.075 3.241 3.229 3.016 3.227 3.084 3.105 3.241 3.099 3.112 13
Corrosion 2.693 2.862 2.719 2.613 2.685 2.841 2.578 2.795 2.728 2.750 2.685 2.618 2.581 10
Alignment 1.771 1.906 1.772 1.761 1.769 1.793 1.754 1.791 1.750 1.798 1.769 1.875 1.759 10

Scour 3.389 3.254 3.317 3.095 3.411 3.183 3.267 3.578 3.214 3.385 3.411 3.300 3.416 4
Sedimentation 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1

Vegetation 1.691 1.501 1.630 1.786 1.790 1.695 1.746 1.644 1.856 1.722 1.790 1.875 1.833 8
Erosion 2.553 2.586 2.676 2.363 2.789 2.403 2.667 2.716 2.439 2.617 2.789 2.787 2.776 13

Blockage 1.692 1.725 1.780 1.662 1.840 1.784 1.694 1.855 1.781 1.789 1.840 1.856 1.767 8
Piping 3.556 3.514 3.428 3.646 3.492 3.558 3.134 3.679 3.563 3.554 3.492 3.573 3.305 4

COMBINATION NUMBER

CMP - 
Logistic 

Regression

CMP - 
Neural 

Network

CMP-AGE 
Logistic 

Regression

CMP-AGE 
Neural 

Network
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 A comparison of the best models reveals that the change in the model in terms of 

area under the ROC curve shows an increase of less than 7% in the cases where logistic 

regression models were improved.  The neural network was slightly more improved with 

close to 15% improvement in the piping model and nearly 10% improvement in the scour 

model.  The full breakdown of the comparison between the best models with and without 

age as an input is shown in Table C-3.  

Table C-3: Comparison of Change of Models with Age Information 

 

 To follow the pattern of the calculations of the previous models, the best models 

were taken and a composite score was calculating using the two detailed DOT methods 

and the overall average method (Figure C-2, C-3, and C-4).  Using these methods, the 

neural network models showed a significant increase in the coefficient of determination 

(Table C-4). 

 

 

 

LogReg LogReg-Age % Change ANN ANN-Age % Change
Cracked 2.977 2.911 -2.2% 3.286 3.345 1.8%

Separated 3.202 2.495 -22.1% 3.651 3.241 -11.2%
Corrosion 3.157 2.789 -11.7% 3.421 2.862 -16.4%
Alignment 3.328 1.786 -46.3% 3.462 1.906 -44.9%

Scour 3.162 3.359 6.2% 3.272 3.578 9.4%
Sedimentation 2.731 1.000 -63.4% 2.894 1.500 -48.2%

Vegetation 3.311 1.756 -47.0% 3.458 1.875 -45.8%
Erosion 3.324 2.631 -20.9% 3.503 2.789 -20.4%

Blockage 2.818 1.673 -40.6% 3.084 1.856 -39.8%
Piping 2.950 3.142 6.5% 3.208 3.679 14.7%

Best AUC
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Table C-4:  Coefficient of Determination (R2) 

 

Figure C-2: CMP Average Composite Score 

Figure C-3: CMP DOT Estimate 1 Composite Score 

ANN ANN-Age % Change LogReg LogReg-Age % Change
DOT Est 1 0.562 0.772 37.2% 0.334 0.627 88.0%
DOT Est 2 0.550 0.728 32.4% 0.349 0.628 79.8%

Average 0.566 0.767 35.4% 0.340 0.628 85.0%
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Figure C-4: CMP DOT Estimate 2 Composite Score 

 The improvement in the coefficient of determination for the models with and 

without age as an additional input is clear.  In all cases for both the neural network model 

and the logistic regression saw a significant improvement in the value of the coefficient 

of determination.  The reason for this increase could be attributed to two reasons.  The 

first reason could be the significant impact of the age information as an input for the 

model.  Because it is the only time-dependent variable used in the model, it is likely that 

the installation date of the culvert would significantly impact the model.  In the logistic 

regression models where it was easy to determine the coefficients for the model, it was 

discovered that the coefficient associated with age did not have significantly more impact 

on the model.  That is to say that the absolute value of these coefficients were not much 

larger than the other inputs even normalized to the range over which the installation age 

varies (a unit increase in installation date is less significant than a unit increase in pH).  

The second reason is that the reduced amount of data would lead to a less biased model 
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(explained in weaknesses of model).  This is unlikely due to the fact that the distribution 

of culvert ratings for the culverts with installation date as an input matches the 

distribution of culvert ratings for the entire database. 

 The mentioned benefits of the model that included an indication of the age came 

with some noted weaknesses.  The difficulty with which the age information was 

produced meant that only age information for CMP culverts could be determined.  

Applying this model to different types of culverts could be suitable, but without 

additional age information, there would be no way of verifying the model.  In addition, it 

would mean that each model would be useless unless the age of the culvert was produced.  

With these weaknesses in mind, the final model only incorporates the models produced 

without age as an input.  Further information could produce a model that utilizes age and 

represents a true deterioration model. 
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