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ABSTRACT 

 In transportation engineering, sufficient, reliable, and diverse traffic data is 

necessary for effective planning, operations, research, and professional practice. Using 

aerial imagery to achieve traffic surveillance and collect traffic data is one of the feasible 

ways that is facilitated by the advances of technologies in many related areas. A great deal 

of aerial imagery datasets are currently available and more datasets are collected every day 

for various applications. It will be beneficial to make full and efficient use of the attribute 

rich imagery as a resource for valid and useful traffic data for many applications in 

transportation research and practice. 

 In this dissertation, a traffic surveillance system that can collect valid and useful 

traffic data using quality-limited aerial imagery datasets with diverse characteristics is 

developed. Two novel approaches, which can achieve robust and accurate performance, 

are proposed and implemented for this system. The first one is a computer vision-based 

approach, which uses convolutional neural network (CNN) to detect vehicles in aerial 

imagery and uses features to track those detections. This approach is capable of detecting 

and tracking vehicles in the aerial imagery datasets with a very limited quality. 

Experimental results indicate the performance of this approach is very promising and it can 

achieve accurate measurements for macroscopic traffic data and is also potential for 

reliable microscopic traffic data. The second approach is a multiple hypothesis tracking 

(MHT) approach with innovative kinematics and appearance models (KAM). The 

implemented MHT module is designed to cooperate with the CNN module in order to 
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extend and improve the vehicle tracking system. Experiments are designed based on a 

meticulously established synthetic vehicle detection datasets, originally induced scale-

agonistic property of MHT, and comprehensively identified metrics for performance 

evaluation. The experimental results not only indicate that the performance of this approach 

can be very promising, but also provide solutions for some long-standing problems and 

reveal the impacts of frame rate, detection noise, and traffic configurations as well as the 

effects of vehicle appearance information on the performance. The experimental results of 

both approaches prove the feasibility of traffic surveillance and data collection by detecting 

and tracking vehicles in aerial video, and indicate the direction of further research as well 

as solutions to achieve satisfactory performance with existing aerial imagery datasets that 

have very limited quality and frame rates. 

 This traffic surveillance system has the potential to be transformational in how large 

area traffic data is collected in the future. Such a system will be capable of achieving wide 

area traffic surveillance and extracting valid and useful traffic data from wide area aerial 

video captured with a single platform. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Reliable and sufficient data is the foundation of research and professional practice in 

science and engineering. In transportation engineering, sufficient, reliable, and diverse 

traffic data is necessary for effective planning, operations, research, and professional 

practice related to transportation systems. Many technologies have been developed to 

collect different types of traffic data. Traditional data collection technologies include 

bending plates, pneumatic road tubes, piezoelectric sensors, inductive loop detectors, 

passive and active infrared sensors, magnetometers, microwave radar devices, ultrasonic 

acoustic devices, video detection systems, and even manual observations (Traffic 

Monitoring Guide, 2016). These technologies are used to monitor traffic and collect data 

throughout a traffic network, including traffic volume, time-mean speed, vehicles 

classification, occupancy, etc. While traditional traffic monitoring technologies have 

proven to be effective, a major drawback is that they can only collect certain types of traffic 

data at fixed locations. The traditional video detection systems using virtual detectors are 

also at fixed locations. With recent advancements of computer vision technology, field of 

view tracking of vehicles is now possible using specialized algorithms that process video 

collected from cameras mounted on poles on the side of roads (Kanhere, et al., 2010). 

Because cameras can cover much wider areas than traditional sensors and the captured 

video contains a variety of information from which various types of traffic data can be 
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extracted using specialized vehicle tracking algorithms, some video detection systems can 

provide traffic data for specialized transportation applications including monitoring driving 

behavior (Tsai, et al., 2011) and collision detection (Saunier & Sayed, 2007). Compared to 

most traditional technologies, the video-based systems have enlarged area coverage but 

this area is still limited to field of view and the performance is not uniform throughout field 

of view. 

 Can the coverage be wider, and can the data be even more informative? The answer 

is YES if the field of view is greatly expanded. High resolution satellite imagery can give 

a very wide field of view but continues video is impractical for traffic surveillance and data 

collection. With the advent of high performance optical sensors mounted on aircraft it is 

now possible to record high resolution video for a relatively wide field of view from aircraft 

overhead. Figure 1 shows such a camera array (HawkEye II from Persistent Surveillance 

Systems (PSS)) that is configurable for a variety of aircraft. The area of the coverage varies 

and depends on the specifications of the optical sensors and the altitude of the platform but 

wide area persistent coverage is now possible. For example, the aerial imagery in PSS 

dataset used in this research covers an area of approximately 5 mi by 5 mi, as shown in 

Figure 2. 
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Figure 1 HawkEye II aerial camera array (courtesy of PSS) 

 Another relatively recent development in platforms for aerial imagery is the 

proliferation of unmanned aerial vehicle (UAV) usage. The use of UAVs has become so 

popular that regulations are under development in many countries (Nex & Remondino, 

2014). In the United States, it is regulated in all fifty states and there are federal regulations 

as well. A primary benefit of UAVs is that they are cost-efficient. 

 Regardless of platform, aerial imagery contains more practical macroscopic traffic 

information than the output of fixed-location sensors and cameras. For example, density is 

one of the most important variables used in measuring the performance of roads. 

Traditional methods used to estimate density involve collecting occupancy, time-mean 

speed, and volume at discrete locations and then use these data to calculate density. A better 

estimate of density requires the use of space-mean speed rather than time-mean speed. 

Collecting accurate space-mean speed requires tracking all vehicles over a distance which 

cannot be collected by fixed-location sensors/cameras. In contrast to those methods, aerial 
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imagery can be used to directly determine density by counting the number of vehicles on a 

mile of roadway. Additionally, counting vehicles passing a point combined with space-

mean speed measurements by tracking vehicles over a distance can also give accurate 

density values. Besides macroscopic traffic data, aerial video also contains more 

informative microscopic traffic data than the outputs of fixed-location devices. By 

monitoring aerial image sequences of a wide area overhead, as shown in Figure 2, it is 

possible to extract accurate location, speed, acceleration/deceleration, travel time, origin 

and destination (O-D) data, and car-following data as well as other driver behavior 

characteristics. Some types of these data are difficult and costly to collect by traditional 

technologies; however, it can potentially be cost-efficient by tracking each vehicle in the 

network with aerial video. 

 

Figure 2 Wide area surveillance using aerial imagery (courtesy of PSS) 
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1.2 Motivation 

While optical sensing and UAV technologies have significantly improved in recent years, 

the capture of aerial imagery is neither unaffordable nor impractical. Obstacles that can 

make aerial surveillance impractical relate to challenges on how to extract reliable and 

sufficient information. Automating the extraction of useful information, such as traffic data, 

from captured aerial imagery can potentially be transformational with regard to how large 

amounts of traffic data can be collected in an efficient manner. 

 Until recently, people analyzed aerial photos with the assistance of digital image 

processing technology, using methods that were not automated. In recent years, many 

methods based on computer vision have been developed to monitor traffic by detecting and 

tracking vehicles in aerial videos but the feasibility of them is limited by the characteristics 

and the quality of imagery data. For example, feature detection/modeling methods (Moon, 

et al., 2002; Kim & Malik, 2003; Zhao & Nevatia, 2003; Hinz, 2005; Palaniappan, et al., 

2010; Pelapur, et al., 2012; Cao, et al., 2012) require high resolution imagery, while 

background subtraction/modeling methods (Xiao, et al., 2010; Shi, et al., 2013; Prokaj & 

Medioni, 2014; Saleemi & Shah, 2013; Chen & Medioni, 2015) require high quality 

preprocessing including stabilization, rectification, etc. Unfortunately, the characteristics 

and quality of most available datasets of aerial imagery cannot guarantee promising 

performance of existing vehicle detection and tracking methods for several reasons: 

1. One reason is that most aerial imagery datasets are not specifically collected for the 

purpose of traffic surveillance, but for their own purposes, such as law enforcement, 
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critical infrastructure protection, event security, and emergency response after 

natural disasters (Palaniappan, et al., 2011). Their characteristics and quality make 

it challenging to process for traffic surveillance. For example, the datasets provided 

by PSS used in this research were originally intended to “make our families and our 

neighborhoods safe places to live and work,” and the vehicles in each frame are 

very difficult to distinguish for algorithms, as shown in Figure 2. 

2. Another reason is most aerial imagery datasets are proprietary and only a few of 

them are public with varying characteristics and quality. Many researchers 

specifically developed their own algorithms to process certain datasets but the 

transferability of their algorithms to other datasets may not give good results. 

3. Furthermore, some vehicles detection and tracking algorithms are not specifically 

intended to track vehicles in aerial imagery (Kalal, et al., 2012). 

 In order to make it feasible to monitor traffic and extract traffic data from aerial 

imagery, a high quality dataset is always preferred. Normally, people use low altitude 

platforms to record high frame rate video for high resolution imagery data, with which the 

performance of their algorithms are acceptable. As a result, the area of coverage is 

inevitably limited. Of course, the advancement of optical sensor technology will 

continuously improve the quality of aerial imagery in the future which will make the 

processing for traffic surveillance and data extraction easier. However, numerous datasets 

of aerial imagery already exist, and more data is being produced and will continue to be 

produced. It will be beneficial to make full and efficient use of this attribute rich imagery 
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as a resource for reliable and useful traffic data for many applications in transportation 

research and practice. 

 Is it possible to develop an approach that is capable of monitoring traffic and extract 

traffic data, using aerial imagery of which the quality is limited or the imagery is not 

specifically collected for the purpose of traffic data collecting? How to automatically, 

accurately, and efficiently extract reliable and informative traffic data to support 

transportation research and practice? To answer these questions, this dissertation proposes 

in-depth research of traffic surveillance and data extraction approaches using quality-

limited aerial video. 

1.3 Goals and Objectives 

The overall goal of this dissertation is to research and implement a reliable, robust, and 

automated system that is capable of monitoring traffic and extracting a variety of traffic 

data from wide area aerial imagery datasets of limited quality and frame rate. More 

specifically, the goal is to design and implement vehicle detection and tracking approaches, 

evaluate their performance, and explore some critical factors to achieve satisfactory 

performance for existing aerial imagery datasets. This is a process that requires 

interdisciplinary literature review, extensive coding, in-depth research, and convincing 

experiments. 

 The first objective is to investigate existing research related to traffic surveillance 

approaches and data extraction from aerial imagery to help guide this research and 

determine its contributions. 
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 The second objective is to investigate challenges with automatically processing 

wide area aerial video and extracting useful traffic data. 

 The third objective is to implement, test, and evaluate computer vision-based 

vehicle detection and tracking approaches to monitor traffic and collect reliable traffic data 

using aerial imagery. 

 The fourth objective is to identify and refine the most promising approach and 

determine its capabilities, robustness, and limitations that may guide future research. 

 This research will potentially lead to a traffic surveillance and data collection 

system that will tap into a data source that has promising big data potential to support traffic 

monitoring applications as well as academic research. 

 This research will not address any detailed content about imagery capturing devices 

(optical sensor and platform), the process of capturing aerial imagery or the preprocessing 

of the imagery datasets accomplished by the data providers. They are only mentioned 

briefly in the literature review to provide background knowledge to readers for better 

understanding of existing research. 

1.4 Organization 

In Chapter II, a comprehensive and interdisciplinary literature review is conducted in 

several areas closely related to the traffic surveillance and traffic data collection using 

aerial imagery. The literature review starts with two most impacting emerging technologies 

in traffic surveillance: UAV and wide area persistent surveillance (WAPS), which 
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determine the characteristics and specifications of many existing aerial imagery datasets. 

Then, a comprehensive literature review of computer vision-based algorithms and 

approaches is conducted, including feature detection/modeling, background 

subtraction/modeling, and machine learning. Further, the existing applications of MHT and 

convolutional neural network (CNN) in related areas of traffic surveillance and vehicle 

detection and tracking are reviewed. 

 In Chapter III, several available commercial and public aerial imagery datasets that 

are potentially capable of providing sufficient visual information for the purpose of traffic 

surveillance are investigated and analyzed. The challenges identified and solved in this 

dissertation are not only caused by the limited accessibility of aerial imagery datasets, but 

also the diverse characteristics and the limited quality due to their specifications. 

 In Chapter IV, a feature-based tracking framework and a CNN-based detector are 

presented, and then a novel CNN approach with speeded up robust features (SURF) is 

proposed and implemented by combining them. The estimation methods of traffic data for 

different measurements are analyzed. Experiments are implemented to evaluate the 

performance of the implemented CNN approach, and experimental results are presented 

and discussed. 

 In Chapter V, a MHT approach with an innovative kinematics and appearance 

models (KAM) structure is proposed and implemented to extend and improve the vehicle 

tracking system by cooperating with the MHT approach presented in Chapter IV. To 

evaluate the performance of the MHT approach with KAM, explore concerned critical 
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factors, and solve long-standing problems, experiments are designed based on a 

meticulously established synthetic detection dataset, originally induced scale-agonistic 

property of MHT, and comprehensively identified metrics for performance evaluation. The 

experimental results are presented and discussed. 

 In Chapter VI, the dissertation goals and objectives are restated along with relevant 

findings and main contribution of this dissertation is summarized. Future research is 

proposed. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Aerial Surveillance Systems 

The most impacting emerging technologies in the field of aerial surveillance are UAV and 

WAPS that have drawn significant attention from many relevant fields in recent years. A 

large proportion of existing datasets investigated in this research were collected using these 

technologies. 

2.1.1 Traffic Surveillance Systems using UAVs 

Aerial imagery has been used to achieve a broad vision of a traffic network or a specific 

facility for decades in the field of remote sensing. Because of drawbacks for systems using 

manned aircraft, including low cost efficiency, etc., and lack of efficient methods to extract 

useful traffic data, traditional data collection technologies have been preferred by 

professionals for a long time. People commonly observe the static view overhead for static 

information, especially in the case that the public sources, like Google Earth/Map and Bing 

Maps are free for use. However, with the advent of UAVs in civilian applications, UAVs 

have demonstrated a great potential to be a feasible platform for traffic surveillance, data 

collection, and a part of intelligent transportation system (ITS) infrastructure because of 

easy maneuvering, great flexibility, and promising cost efficiency (McCormack & 

Trepanier, 2008). 
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 Many institutes and DOTs have presented a great interest in the application of 

UAVs in traffic surveillance. University of Florida introduced Airborne Traffic 

Surveillance Systems (ATSS) sponsored by Florida DOT. The research team used a UAV 

to collect timely video data for the purpose of traffic surveillance in rural areas in Florida, 

and to evaluate the feasibility of integration of ATSS with Florida DOT’s microwave 

communication system (Puri, 2005). Ohio DOT conducted research in cooperation with 

Ohio State University to study potential benefits of applications of UAVs in transportation 

surveillance by monitoring specific transportation facilities (Puri, 2005). A research team 

led by Research and Special Programs Administration (RSPA) of United States 

Department of Transportation (USDOT) used a UAV to collect and interpret real-time 

multi-modal traffic data using its road-following capabilities (Puri, 2005). Virginia DOT 

demonstrated the feasibility of Airborne Data Acquisition System (ADAS) for the purpose 

of traffic surveillance (Puri, 2005). Researchers at University of South Florida used a UAV 

to collect real-time temporal/spatial data for the purpose of monitoring traffic, counting 

vehicles, and evaluate and assess traffic patterns (Puri, et al., 2007). Researchers at 

University of Washington conducted research to explore the general capabilities of UAVs 

and evaluate their potential as an avalanche control tool (McCormack & Trepanier, 2008). 

This research, sponsored by Washington State DOT, found UAVs are suitable for traffic 

surveillance and data collection. In Europe, the project named COMETS (Real Time 

COordination and control of Multiple heterogeneous unmanned aerial vehiclES) focused 

on the design and implementation of distributed control system using heterogeneous UAVs 
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for the purpose of monitoring traffic situation, and to identify and track individual vehicles, 

etc. (Puri, et al., 2007). 

 Most research of traffic surveillance systems using UAVs focused on the feasibility, 

framework, or devices of the systems. Very few of them focused on the methods and 

algorithms of extracting traffic information from captured imagery. In recent years, more 

and more research explored the methods and algorithms of vehicles detection and tracking 

using the imagery data collected by UAVs. They will be reviewed in Chapter 2.2. A number 

of public imagery datasets available in Sensor Data Management System (SDMS) were 

collected by UAVs. Most of them present the following characteristics: single optical 

sensor and low altitude. The use of a single optical sensor makes it straight-forward to 

preprocess the imagery because image stitching is not necessary. Low altitude only allows 

a limited area of the coverage and the small pixel size makes objects easy to distinguish. 

2.1.2 Wide Area Persistent Surveillance 

WAPS by aerial imaging is a newly evolving technology that enables persistent coverage 

of a large geographical region (Palaniappan, et al., 2011). The use of camera arrays and the 

application of digital image processing and computer vision technologies enable the system 

to monitor a large region up to multiple square miles depending on the altitude of the 

platform and the configurations of the camera array. The platforms typically use a circular 

flight path to cruise at a constant altitude on the targeted region and the camera arrays are 

continuously adjusted to maintain the orientation fixed around the area of interest. The 

coverage of the surveillance can remain constant for a considerably long time depending 
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on the flight time of the platform. One of significant advantages of WAPS compared to 

conventional aerial surveillance is that the flight plan does not rely on concerned targets, 

which means the platform does not have to follow specified targets because of the large 

region of coverage. 

 A number of potential applications of WAPS exist in many fields. Currently, the 

most widely accepted applications include urban planning, ecological survey, agricultural 

survey, law enforcement, and event security. In the applications of law enforcement and 

event security, individuals of interest are manually tracked and the concerned information 

is relayed to ground personnel. Many potential applications of WAPS are promising even 

though numerous challenges exist for the WAPS system developers and users (Palaniappan, 

et al., 2011). These challenges include the need for improved sensors calibration, better 

estimation of platform dynamics, accounting for lighting variability, seamless image 

mosaicking, and image geo-registration. 

 In this research, several WAPS imagery datasets were investigated. These include 

the commercial dataset from PSS and public datasets available in SDMS, including 

Columbus Large Image Format (CLIF) 2006/2007. All of these datasets presented the 

following characteristics: seamed mosaicking/stitching, stabilization problems, low frame 

rate and large pixel size that make it extremely challenging to apply them for traffic 

surveillance, especially for microscopic traffic surveillance by tracking vehicles in the 

imagery. 
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2.2 Digital Image Processing/Computer Vision Algorithms 

In recent years, many researchers have shown a great interest in applying emerging 

technologies of digital image processing and computer vision for traffic surveillance and 

traffic data extraction. A considerable number of approaches and algorithms have been 

developed for the purpose of detecting and tracking vehicles in aerial imagery. For example, 

researchers at University of Arizona proposed an approach for collecting and analyzing 

aerial imagery and outlined the methods to estimate speed, travel time, density and queuing 

delay using background subtraction (Angel, et al., 2003). The imagery used in this research 

was captured by a single standard resolution camera (720×480 pixels) mounted on a 

helicopter flying at an altitude of under 305 m (1000 feet), which provided a field of view 

of less than 244 m (800 feet) In the following year, they presented an automated method to 

estimate intersection queue length in aerial imagery using connected component analysis 

of the region of interest (Agrawal & Hickman, 2004). Their method estimated the queue 

length by two techniques: counting individual vehicles in the queue and obtaining the area 

of the polygon containing vehicles in the queue. Their continued research led to the 

development of a software they named “Tracking and Registration of Airborne Video 

Image Sequences” (TRAVIS) which can extract vehicles positions by detecting and 

tracking vehicles through the image sequence to assist the analysis of microscopic traffic 

behavior (Hickman & Mirchandani, 2006). TRAVIS implemented an algorithm that 

consisted of image registration, background subtraction, and filtering and tracking blobs to 

output a sequence of pixel coordinates of vehicles through the image sequence. A follow-

up research was conducted to improve vehicle detection and reduce the probability of false 
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detection and computation time by masking the area outside roadways (Du & Hickman, 

2012). They also improved the tracking algorithms to better handle vehicles with little 

contrast relative to the pavement of roadways. The imagery data used in their recent work 

was captured by a single camera mounted on a helicopter that provide a coverage ranging 

from 500 to 1000 feet across and a pixel size ranging from 0.3 to 1.3 pixel/feet at the frame 

rate of 30 fps. 

 Most existing digital image processing and computer vision approaches for vehicle 

detections and tracking using aerial imagery datasets can be categorized in several classes: 

feature detection/modeling, background subtraction/modeling and machine learning, and 

they are reviewed in the following sections. 

2.2.1 Feature Detection/Modeling 

A large proportion of vehicle detection and tracking algorithms are based on 

distinguishable pixel information. Many feature-based techniques, including Kanade-

Lucas-Tomasi feature tracker (KLT) and histogram of oriented gradients (HOG), are 

widely used to either label or model vehicles for the purpose of vehicle detection or 

tracking in previous work. Moon et al. presented a vehicle detection algorithm by 

combining four elongated edge operators to search the sides of a vehicle (Moon, et al., 

2002). The performance of this model-based algorithm was affected by camera angles, 

illuminations, and site information. Kim and Malik presented a model-based 3D vehicle 

detection and description algorithm (Kim & Malik, 2003). This algorithm modeled vehicles 

by a probabilistic line features grouping, and the results indicated it outperformed the 
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algorithm presented by Zhao and Nevatia (Zhao & Nevatia, 2003). Hinz presented a vehicle 

detection approach by fusing the local model of cars with a 3D wireframe representation 

of individual vehicle and the global model of the grouping of cars within queues with 

ribbons (Hinz, 2005). The advantage of this algorithm was that it neither relied on external 

information nor was limited to very constrained environments. Palaniappa et al. presented 

a vehicle tracking system based on a set of feature detectors using appearance modeling, 

saliency estimation and motion prediction (Palaniappan, et al., 2010). The results indicated 

that fusing feature likelihood maps improved performance, but combining saliency 

information degraded the performance for low frame rate imagery. In follow-up research, 

Pelapur et al. presented a tracking system based on feature likelihood maps and adaptive 

appearance target update model (Pelapur, et al., 2012). The results indicate that this system 

outperformed other vehicle trackers with several wide area aerial imagery datasets 

including CLIF dataset. Cao et al. presented a framework for vehicles detection and 

tracking using aerial imagery collected by UAV platform (Cao, et al., 2012). This method 

was based on KLT features, and the result indicated that it was more accurate for detection, 

more efficient and robust to partial occlusion and computationally simpler than other 

algorithms. 

2.2.2 Background Subtraction/Modeling 

Background subtraction and modeling are widely used in many algorithms; however, those 

algorithms require either highly stabilized optic sensors or accurate image registration. 

Reinartz et al. used background subtraction to find vehicles and image patch correlation to 

match the vehicles between frames (Reinartz, et al., 2006). Their approach had issues with 
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mistakenly detecting pedestrians and grouping vehicles that were too close together. Xiao 

et al. presented a method of probabilistic relation graphing combining a vehicle behavior 

model with a road network for the purpose of vehicle detection and tracking in wide area 

aerial imagery (Xiao, et al., 2010). The experiments indicated the method can produce 

robust long time results. Shi et al. presented a spatio-temporal context model of maximum 

consistency context for multiple object tracking by leveraging the discriminative power 

and robustness in wide area traffic scenes (Shi, et al., 2013). Experimental results validated 

the effectiveness of this approach. Saleemi and Shah presented a framework capable of 

tracking thousands of vehicles in low frame rate aerial videos by maintaining multiple 

object-centric associations for each track, and using background subtraction and modeling 

(Saleemi & Shah, 2013). The results indicated that this method outperformed global, one 

to one data association methods. Prokaj and Medioni presented a multiple objects tracking 

approach using two trackers in parallel: one using background subtraction and the other 

using a regression tracker (Prokaj & Medioni, 2014). The results indicated this approach 

improved object detection rates and ID-switch rates with limited increases in false alarms 

comparing to its competitors. Chen and Medioni presented two methods to achieve more 

accurate background model (Chen & Medioni, 2015). The first methods predicted the 

image flow and perform pixel-level classification for detection using a dense 3D model of 

the landscape, and the second method used the epipolar flow constraint to distinguish 

object motion. The results indicated a significant improvement in detection rate and 

speedup. 
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2.2.3 Machine Learning 

Machine learning is usually applied in algorithms of vehicle detection and tracking in 

cooperation with either feature detection/modeling or background subtraction/modeling. 

Zhao and Nevatia presented a passenger car detection system by modeling passenger cars 

as 3D objects using a Bayesian network to integrate a set of features (Zhao & Nevatia, 

2003). The experiments indicated promising results. Nguyen et al. presented an automated 

car detection framework using online adaptive boosting (AdaBoost), which was trained 

with three types of features, and a mean shift clustering method (Nguyen, et al., 2007). 

Experimental results indicated this framework is superior and applicable for many 

applications. Tuermer et al. presented a detection approach using a fast preprocessing to 

limit the search space and Real AdaBoost trained with HOG features for detection (Türmer, 

et al., 2010). The results indicated high detection rate and reliability of this approach. 

Cheng et al. presented a pixelwise classification method in which a dynamic Bayesian 

network (DBN) was constructed based on color and edge detection for the classification 

purpose (Cheng, et al., 2012). The results indicated the flexibility and generalization 

capability of this method. 

 Most vehicle tracking approaches are based on vehicle detections, which use the 

visual information to initialize the tracker or support the tracking process by matching 

correspondences between adjacent frames. However, the tracking process and detection 

process are mutually dependent in some approaches. Kalal et al. proposed Tracking-

Learning-Detection (TLD) framework which combined tracking, learning, and detection 

(Kalal, et al., 2012). The tracker generates training data for improving the detector, and the 
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detector initializes and re-initializes the tracker simultaneously. Experimental results 

indicated the superiority of this approach compared to competitors for many different tasks. 

2.3 Multiple Hypothesis Tracking 

Multiple hypothesis tracking is an algorithm proposal by Reid in 1979 that has been widely 

preferred for data association in multiple target tracking (MTT) tasks (Reid, 1979). 

Practical implementation of MHT is very challenging because of its computational 

complexity. However, since the improved implementation methods (Cox & Hingorani, 

1996)and upgraded computing hardware, the practical real-time implementation was 

proven feasible (Blackman, et al., 2001). 

 Because most surveillance applications must be capable of tracking multiple targets, 

MTT is one of the most important tasks for those applications. In many frameworks, 

modules of sensors, including radar, infrared, and sonar, report measurements to MHT 

modules for sensor data association. MHT approach has been applied in many areas, 

including track confirmation, agile beam radar, missile defense systems and ground target 

tracking, which is probably the most challenging application (Blackman, 2004). 

 Security restrictions and proprietary policies greatly restrict MHT researchers to 

publish and share their work (Blackman, 2004), thus very little literature presenting details 

of applications of MHT were found. Arambel et al. presented a brief report that proposed 

an automated video-based ground targeting system for UAVs (Arambel, et al., 2004). This 

system used a module of background subtraction and site modeling to extract features and 
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report the measurements to a MHT module for tracking multiple ground targets 

simultaneously. 

2.4 Convolutional Neural Network 

Deep learning is the state-of-the-art reinvention of artificial neural network and there is 

clear evidence that for an off-line detection/classification problem no handcrafted 

techniques, including support vector machine (SVM), principal component analysis (PCA), 

scale-invariant feature transform (SIFT), HOG., can compete with deep learning. 

Convolutional neural network (CNN or ConvNet) is a class of multiple layers neural 

networks, which are specifically designed for two-dimensional data (LeCun, et al., 1998). 

It is the first truly successful deep learning approach (Arel, et al., 2010). 

 Few literatures were found about the application of CNN in vehicle detection or 

tracking using aerial imagery. Chen, et al. presented a hybrid deep CNN to extract variable-

scale features in high resolution satellite imagery (Chen, et al., 2014). The results indicated 

that this network outperformed other traditional machine learning approaches on vehicle 

detection. The static satellite imagery used in their work has higher resolution than many 

aerial imagery datasets investigated in this research. 
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CHAPTER III 

AERIAL IMAGERY DATA 

3.1 Characteristics and Specifications of Datasets 

Several commercial and public aerial imagery datasets from various sources, including PSS, 

Skycomp, and SDMS, were investigated in this research. These datasets were collected by 

different systems with differing preprocessing techniques. Thus, they present diverse 

characteristics and all of them have limited quality for some specifications which make 

them challenging for automated vehicle detection and tracking to extract reliable traffic 

data. Characteristics and specifications of these dataset are summarized in Table 1. 
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Table 1 Aerial imagery datasets and their characteristics 

Dataset Camera Type Image Type Coverage Frame Rate Resolution* Rectification Aligned Mosaicking Stabilized Luminance 

PSS Array Color Wide (5×5 mi2) 1 fps 0.5 m/pixel Yes Yes Seamed No Inconsistent 

Skycomp 18mm Single Color Moderate (1.8×1.2 mi2) 1 fps about 0.4 m/pixel No No NA No Consistent 

Skycomp 50mm Single Color Small (0.6×0.4 mi2) 1 fps about 0.2 m/pixel No No NA No Consistent 

Skycomp 1 aligned Singe Color Small 1 fps about 0.1 m/pixel No Yes NA Yes Consistent 

Skycomp 2 aligned Single Color Moderate 1 fps about 0.4 m/pixel No Yes NA Yes Consistent 

CLIF 2006 Array Grayscale Moderate 2 fps about 0.2 m/pixel No No Seamed No Inconsistent 

CLIF 2007 Array Grayscale Moderate 2 fps about 0.2 m/pixel No No Seamed No Inconsistent 

WPAFB 2009 Array Grayscale Moderate about 1.3 fps 0.5m /pixel Yes Yes Seamed No Inconsistent 

 

*Only rectified datasets have unified resolution. 
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3.2 Challenges for Quality-Limited Aerial Imagery 

In this research, multiple aerial imagery datasets were investigated and numerous 

challenges were identified that exist for all of them. These challenges are caused by the 

limited quality and diverse characteristics of those datasets. They have to be overcome for 

automated processing and reliable traffic data to be possible. These challenges are 

identified as follows: 

1. The imagery is not completely stabilized since shaking is inevitable during flight. 

Notice how the image in Figure 3 (b) is shifted to the left from Figure 3 (a), even 

though they were rectified and aligned in preprocessing. 

2. The sub-images from different cameras in the array are not exactly aligned in the 

case that the imagery is captured by camera arrays, and the stitched images are 

seamed, as shown in Figure 3 (b). 

3. The illumination of sub-images from different cameras in the array is not consistent, 

as shown in Figure 3 (d). Even the illumination in a single sub-image from a camera 

in the array is not consistent. 

4. Most imagery data used in this research was preprocessed by their providers. The 

details and the quality of the preprocessing vary depending on the dataset. For 

example, the dataset from PSS is well rectified but aligned poorly, while some 

datasets from Skycomp are well aligned but not rectified. The CLIF 2007 dataset 

is neither rectified nor stitched well but it provides the source code used for 
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stitching. The critical issue is that most datasets are proprietary and the author does 

not have access to the details how the datasets were preprocessed. 

5. Most datasets have low resolutions and the resolutions vary depending on the 

dataset. For example, the dataset from PSS is well rectified and the unified 

resolution is 0.5 m/pixel. Thus, there are very few distinguishable features available 

to detect vehicles from a static image as shown in Figure 3 (c). The resolution of 

the dataset from Skycomp is relatively high (approximately 0.2 m/pixel from a 50 

mm camera and 0.4 m/pixel from an 18mm camera). However, the imagery is not 

rectified, so it does not have a unified resolution and the approximate values cannot 

be applied to the whole image. 

6. On the other hand, all datasets have a large image size. For example, a frame from 

PPS is 16384×16384 pixels for 5×5 mi2. A frame from Skycomp is 5616×3744 for 

about 0.6×0.4 mi2 from a 50mm camera; and about 1.8×1.2 mi2 from an 18mm 

camera. Some processing toolkits cannot fully support imagery data of this 

resolution. 

7. All the datasets have low frame rates that make vehicle tracking very challenging. 

The dataset from PSS and Skycomp are only 1 Hertz, while the CLIF 2007 and 

2008 datasets are 2 Hertz. For the PSS dataset, a vehicle traveling at 60 mph on a 

freeway will travel 26.8 m in a second (53.6 pixels) making it very challenging to 

match correspondences between frames. 

8. The amount of data is huge. For the PSS dataset, a single compressed frame is 40-

50 MB and a single uncompressed frame is nearly 1 GB, thus proposed algorithms 
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require high computational and memory efficiency to achieve practical or near real-

time execution. 

  
(a) (b) 

  

 

non-vehicle vehicle 

  
non-vehicle vehicle 

(c) (d) 

Figure 3 (a) A section of an image frame; (b) the same section in the next frame, 

showing a seam; (c) zoomed portions of a frame showing vehicles and other objects; 

(d) a frame of the input data (courtesy of PSS) 
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CHAPTER IV 

COMPUTER VISION VEHICLE DETECTION AND 

TRACKING APPROACH 

4.1 Methodology 

To explore the possibility of vehicle detection and tracking for aerial imagery, the author 

tried several different heuristic and machine learning approaches of computer vison 

technology. Those approaches include a pixel-based approach, a feature-based approach, a 

SVM-based approach, and a CNN-based approach. Simple tests and comparisons were 

used to identify their basic performance to process wide area aerial imagery data and their 

potential capabilities to overcome the challenges identified in Chapter III. In this chapter, 

the author proposes and combines the two most promising approaches to achieve the 

computer vision-based approach for macroscopic traffic data extraction from wide area 

aerial video. The first approach is a feature-based vehicle tracking framework, whereas the 

second approach is a vehicle detector based on CNN. The implementation of both 

approaches was tested with the PSS dataset; however, the developed module combining 

them is scalable to other aerial imagery datasets. 

4.1.1 A Feature-Based Vehicle Tracking Framework 

The approach presented in this section is a general framework for vehicle tracking with a 

variety of handcrafted features that have been widely used in digital image processing and 

computer vision. 
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 This vehicle tracking framework is dependent on feature detection, and matching 

the corresponding features in consecutive frames in order to label the corresponding 

vehicles in a sequence of frames. It is a heuristic approach based on the fact that the cluster 

of features representing the tracked object does not significantly morph appearance 

between consecutive frames. Thus, the sample vehicle can be identified in a sequence of 

frames by explicitly matching the specific representative features of the vehicle with 

adequate methods (detection, matching and filtering). The basic procedure is shown in 

Figure 4 and as follows: 

1. Manually specify the vehicle to track in the initial frame. 

2. For each pair of consecutive frames: 

a. Create regions of interest (ROIs) in both frames. The size of ROI was 

predefined (100×100 pixels in the implementation).  

b. Extract background information in both ROIs. 

c. Detect (SURF) features in both ROIs. 

d. Identify the cluster of the features representing the tracked vehicle in the first 

frame. 

e. Extract descriptors for the representative features in both frames. 

f. Match descriptors between two ROIs. 

g. Filter matches based on background information and vehicle data. 

h. Identify the cluster of the features representing the tracked vehicle in the second 

frame. 

i. Collect and update the vehicle data. 
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j. Predict and update ROIs for the next frame pair using a constant acceleration 

model. 

3. Output vehicle data. 
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Figure 4 The basic procedure of the feature-based vehicle tracking framework 

 This framework was implemented in C/C++using OpenCV Version 3.0.0. The 

experimental results indicated that this approach was capable of tracking a specified 
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vehicle in the frame sequence of the PSS dataset. A simplified constant acceleration model 

was also employed in this implementation to estimate speed, acceleration and orientation 

for the purpose of predicting a vehicle’s future location and ROIs to reducing the feature 

search and matching range. This framework can apply different methods for the feature 

detector, the feature descriptor, the feature matcher and the feature matcher filter in the 

framework, detailed configurations of which are provided in Appendix B. The performance 

depended on the detailed methods applied in this framework.  

 The tracking examples illustrated in Figure 5 (a) and (b) were based on a SURF 

detector and descriptor. As shown in Figure 5 (a), the black car (marked by a magenta 

circle) was tracked in the traffic flow on a bridge. The tracking lost as the track lost at the 

frame (not included in the figure) when the car reached a segment with different pavement 

and incorrectly jumped on another car in the opposite direction with similar appearance. In 

Figure 5 (b), the white truck was also successfully tracked, and it lost for pavement change 

as well. The performance of this specific application depends on numerous factors, 

including the contrast of vehicles and disruptors, among which the occlusion and seams 

are still challenging. Using SURF, this approach is capable of tracking most vehicles with 

stable appearance and background in many instances. 
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(b) 

Figure 5 (a) Tracking a black car (8 adjacent frames are shown); (b) tracking a 

white truck (courtesy of PSS) 
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4.1.2 A Convolutional Neural Network Vehicle Detector 

A supervised deep learning approach using CNN is presented in this section. The state-of-

the-art CNN have already significantly outperformed existing handcrafted machine leaning 

approaches in many detection and classification problems. The purpose of this approach is 

to design and train a robust ConvNet that can accurately detect vehicles and output 

detections for tracking vehicles in aerial imagery. 

 The ConvNet was designed to detect whether an image patch contained a vehicle 

or not. The input image patches are 100×100 pixels. The ConvNet implemented in this 

research consists of eight layers, as shown in Figure 6: 

1. The first layer is a convolutional layer. The input of the layer is a three-channel 

image (100×100×3). 25 different kernels (7×7×3) are used for convolution, 

respectively, and stride is set to 1. The outputs are 25 feature maps. 

2. The second layer is a max-pooling layer. The kernel size is 3×3 and stride is 

set to 1, thus this layer doesn’t subsample the input. The outputs are 25 pooled 

feature maps. 

3. The third is a convolutional layer. 50 different kernels (5×5×25) are used to 

compute the convolution, respectively, and stride is set to 1. The outputs are 

50 feature maps. 

4. The fourth layer is a max-pooling layer. The kernel size is 4×4 and stride is set 

to 2, thus this layer subsamples the inputs. The outputs are 50 subsampled and 

pooled feature maps. 
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5. The fifth layer is a fully connected (inner product) layer. The output is a vector 

of 100 elements. 

6. The sixth layer is a leaky rectified-linear unit layer. 

7. The seventh layer is a fully connected (inner product) layer. The output a vector 

of 2 elements. One element represents the how likely the input image patch is 

a vehicle; and the other represents the how likely it is not a vehicle 

8. The eighth layer is a leaky rectified-linear unit layer. 

 



35 

 

100×100

100×100 100×100

25×25

100×100

100×1

2×1

3

25 25

50

50

Input

C1 S1

C2

S2

F1

F2

2×1

R2

100×1

R1

 

Figure 6 Design of the ConvNet used to detect vehicles in an image patch 
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 The designed ConvNet was implemented with the Caffe library developed at 

University of California, Berkeley. The detailed design of the ConvNet is provided in 

Appendix C. The implementation procedure of this supervised approach consists of four 

basic steps:  

1. Create training dataset. 1002 vehicle points and 604 non-vehicle points were 

manually labeled in the PSS dataset. The training data consisted of image patches 

generated from them. These image patches were randomly separated into training 

and test sets (80% training, 20% test). 

2. Train the network with a training dataset. The training of the network took about 1 

hour on an AMD 2.8 GHz processor, and resulted with the following performance 

on the test set: 95.7% accuracy, 94.5% precision, 96.0% recall (sensitivity), and 

95.5% specificity. 

3. Apply the trained ConvNet for vehicle detection. Each frame of the imagery data 

was split in multiple regions. The trained ConvNet run through each region and 

produce a score for each pixel indicating how likely a vehicle centered at the pixel. 

4. Compute detections for each frame. Non-maximum suppression was used to find 

the peak value in the output score map. The final detection was determined by 

scores which were calculated by the local maximum in the score map. For the 

example region shown in Figure 7, all eight vehicles were detected, with three false 

positives. These false positives are removed in the subsequent tracking. 
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Figure 7 Trained ConvNet detects vehicles in a region from aerial imagery (courtesy 

of PSS) 

4.1.3 Convolutional Neural Network with SURF 

By combining the CNN-based detection with the feature-based tracking, the computer 

vision-based approach can achieve promising performance for vehicle detection and 

tracking in aerial imagery. This novel approach uses the trained ConvNet to detect vehicles 

in each frame and matches corresponding vehicles in a sequence of consecutive frames 

using SURF. 

 Experimental results indicated this approach can maintain tracks even the vehicles 

crossed seams or luminance changes, as shown in Figure 8. The accuracy of this approach 

is promising if the scenario is not complicated. However, the performance is dependent on 

false positives and false negatives in each pair of consecutive frames. As shown in Figure 

9, the vehicles in blue circles were detected in a frame (top) but failed to be detected in the 

next frame (bottom), thus the tracks of these vehicles lost. On the other hand, false positives, 

like shadows or blots on pavement, were detected as moving vehicles so they lead to false 

tracks which are labeled with red circles. 
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Figure 8 Tracking two vehicles across the seams and luminance changes (courtesy of 

PSS) 
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Figure 9 Detections from a frame (top) are filtered using the next frame (bottom) 

(courtesy of PSS) 

4.2 Macroscopic Traffic Data Extraction 

Diverse traffic data can be extracted from adequately processed (rectified or geo-registered) 

aerial imagery datasets. Macroscopic traffic data, including density, volume, average speed, 

and travel time, can be extracted by explicitly detecting and tracking each vehicle in the 

traffic flow. Sampling is an acceptable alternative to approximate macroscopic traffic data 

for those traffic data following normal distribution because of the central limit theorem 

(CLT). Thus, the implemented computer vision-based approach can theoretically provide 

reasonable estimates for macroscopic traffic data even it cannot guarantee 100% accuracy. 

Microscopic traffic data, including location, speed, acceleration (or deceleration), and 

trajectory of individual vehicles, requires highly accurate vehicle detection and tracking. 

Some complex traffic data, like car-following data, requires identifying and recording the 
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associations of interacting vehicles. This section will discuss the estimation of three 

macroscopic traffic measurements: density, speed and volume by processing the PSS 

dataset with the computer vision-based approach. 

4.2.1 Density 

Density data of a road segment requires a mask where the segment is defined and attributed. 

Underlying vehicles are detected using the trained ConvNet in the segment, and then the 

density data can be achieved based on the amount of detections in each frame. The trained 

ConvNet is capable of identifying vehicles with a promising accuracy in a single frame; 

however, the characteristics and the limited quality of the imagery in the PSS dataset makes 

it impossible to correctly identify 100% vehicles. By matching SURF features of detections 

in adjacent frames, the influence of false positives and false negatives can be significantly 

reduced. An example of this is shown in Figure 9, the trained ConvNet detected the vehicles 

in this segment for the current frame (top) and all detections are labeled as circles. SURF 

features of the detections are used to match them with corresponding detections in the next 

frame (bottom). Not all detections are able to be matched with SURF features (labeled with 

blue circles). Many kinds of false positives like stationary objects on roadside or pavement 

blots can be identified by the movement of the corresponding tracks (labeled with red 

circles). True positives can be used to measure speed (labeled with green circles). For the 

small segment in Figure 9, the CNN outputs 12 detections; 6 of them were tracked for 

collecting traffic data and 4 of them were stationary and determined to be false positives. 

Since the vehicle counts are heavily affected by imagery noise and the noise varies through 
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the frame sequences, an average smooth density can be achieved by filtering over a 

predefined period (e.g. 1 minute, 5 minutes, etc.). 

4.2.2 Speed and Acceleration 

Speed data of each individual vehicle is achieved by locating the vehicle in each frame and 

calculating the Euclidean distance of its shifting in consecutive frames in the rectified 

imagery with known resolution and frame rate. Only adequately rectified imagery dataset 

has unified and accurate resolution; the resolution of un-rectified imagery dataset can only 

be approximately estimated. Acceleration is measured by differentiating the speed. Figure 

10 illustrates the sample speed and acceleration records of a tracked truck in the PSS dataset. 

The figure illustrates how the data are sensitive to the instability of the frame sequences. 

One-dimensional filters can be used for interpolation among neighbor frames and helping 

neutralize high-frequency vibration of the frame sequence. Improving preprocessing to 

better stabilize the imagery data with more accurate calibration and registration of the 

frames will smooth the speed over time and increase the accuracy of instantaneous speed 

with less of a need for filtering. Compared to speed, acceleration is even more sensitive to 

instability of the frame sequence. Thus, filtering is necessary in the case that the imagery 

is not perfectly stabilized and it can provide reliable and useful speed and acceleration for 

a time interval across multiple frames. 
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Figure 10 Sample speed and acceleration data of a randomly selected truck 

 The average speed of traffic flow on a road segment can be either calculated by 

averaging the speeds of all tracked vehicles in the traffic flow or approximately estimated 

by averaging the speeds of samples because of CLT. Since the detecting and tracking 

approaches cannot guarantee 100% accuracy, the former method is still a kind of sampling. 

For the segment in Figure 9, the average speed would be the average of the speeds of true 

positive detections in green circles. 

4.2.3 Volume 

Once average speed and density are determined, volume for a segment can be determined 

by simply multiplying density by speed. Theoretically, this method prefers space-mean 

speed, which is determined by travel time (number of frames) for each individual vehicle 

in the select segment, rather than time-mean speed. 
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 A typical method for determining the traffic volume passing a point is to use a 

sensor such as an inductive loop detector which counts vehicles that pass over it. Similarly, 

video detection systems that use cameras mounted on the roadside predefine a virtual 

detector and count vehicles that pass over it. There are multiple problems to measure traffic 

volume passing a point with this method if applied to aerial imagery. First, instability of 

the frame sequence will require continuous recalibration of the frames and repeated 

relocation of the virtual detectors. Second, because of the low frame rate, vehicles will skip 

detectors unless its length exceeds the distance vehicles can move in a single frame. 

However, virtual detectors with a long length can be touched by multiple closely-spaced 

vehicles simultaneously resulting in undercounting. Furthermore, because of the low 

resolution, using a single frame to identify vehicles passing over a virtual detector will lead 

to errors due to closely-spaced vehicles and false positives in many instances. 

4.3 Experimental Results and Evaluation 

Experiments were implemented to evaluate overall performance of the proposed approach 

of CNN with SURF. Eight uninterrupted flow segments were selected from PSS dataset 

(see Figure 11) and processed for density, speed, and volume measurements using only a 

single pair of consecutive frames. Additionally, two of these segments were selected and 

processed using 50 consecutive frames. As shown in Figure 11, road segments on OH-4 

(red/magenta), I75 (green), and US-35 (blue and cyan) were selected and manually masked.  
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Figure 11 Eight segments selected and masked in the PSS dataset (courtesy of PSS) 

 Automatically collected measurements and manually measured ground truth are 

shown in Table 2. The ground truth density was obtained by manually counting vehicles in 

each frame, and the ground truth speed was obtained by averaging the Euclidean distance 

of the movement across frames of randomly selected vehicles, and volume was obtained 

by multiplying density and speed. By comparison of the estimates and ground truth, the 
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result indicated the density and speed data were accurate, thus leading to accurate estimates 

of level of service (LOS) and volume data. 

Tracking across multiple frames produced reliable data. The performance of the 

proposed approach was powerful in counting vehicles, leading to accurate average density 

over time as shown in Figure 12. Similarly, other measurements were also accurate if 

averaged across multiple frames. 

 

Figure 12 Automatically collected data vs. manually measured ground truth for 

vehicle counts over 50 frames on OH-4 
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Table 2 Traffic data measurements and evaluations 

Road Segments 
No. of 
Lanes 

Length 
(mi) 

Count 

(veh) 

Speed 

(mph) 

Density 

(veh/mi/ln) 

Volume 

(veh/hr/ln) 
LOS Accuracy 

Aa Mb A M A M A M A M Speed Density 
Volum

e 

OH-4 (WB)c 2 3.05 30 36 66.9 69.8 4.9 5.9 329 412 A A 95.8% 83.3% 79.8% 

OH-4 (EB)d 2 3.04 33 36 62.8 66.8 5.4 5.9 341 396 A A 94.0% 91.7% 86.2% 

I75 (SB) 3 1.68 96 104 63.1 65.6 19.0 20.6 1202 1354 C C 96.2% 92.3% 88.8% 

I75 (NB) 3 1.68 60 76 58.8 68.2 11.9 15.1 700 1029 B B 86.2% 79.0% 68.1% 

US-35 (EB) [1] 4 0.83 23 30 57.3 50.0 6.9 9.0 397 452 A A 85.4% 76.7% 87.9% 

US-35 (WB) [1] 4 0.83 11 12 56.0 65.2 3.3 3.6 186 236 A A 85.9% 91.7% 78.9% 

US-35 (WB) [2] 3 0.88 54 54 61.5 65.7 20.5 20.5 1258 1345 C C 93.6% 100.0% 93.6% 

US-35 (EB) [2] 3 0.88 61 67 58.8 62.9 23.1 25.4 1359 1596 C C 93.5% 91.0% 85.2% 

 

OH-4 (WB)e 2 3.05 35 37 65.6 66.5 5.7 6.1 373 404 A A 98.7% 93.7% 92.6% 

OH-4 (EB)e 2 3.04 32 33 62.1 65.7 5.3 5.4 327 353 A A 94.5% 98.2% 92.5% 

 

a Automatically collected data 
b Westbound 

c Eastbound 

d Manually collected ground truth 
e Measurements based on 50 consecutive frames 
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4.3.1 Density 

The automatically collected density data was accurate. Ground truth density was calculated 

by meticulously manual counting vehicles along the segments for each frame and taking 

the average. With only a single pair of frames, the average accuracy of estimates of density 

were 88.2% for all eight segments. However, when the density was measured and averaged 

across 50 consecutive frames, the accuracy was as high as 98.2% for this time interval, as 

shown in Figure 13. This result indicated that the implementation of proposed approaches 

was very reliable on collecting density data with a sequence of frames. Density was used 

to determine LOS which was 100% accurate for all segments evaluated due to the reliable 

density estimates. 

 

Figure 13 Automatically collected data vs. manually collected ground truth for 

density 
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4.3.2 Speed 

Speed data was very sensitive to the instability of the aerial imagery. Ground truth speed 

was calculated by randomly sampling a subset of vehicles for each segment and manually 

tracking them over the frames and averaging the speeds of individual vehicles. The 

instantaneous speed based on the correspondence of a single pair of frames cannot always 

provide a useful result because of instability of the frame sequence (see Figure 9). However, 

the aforementioned discussion in Chapter 4.2.2 indicated the average speed for a time 

interval across multiple frames can be very accurate and useful with proper filtering. As 

shown in Figure 14, the accuracy of average speed across 50 frames was as high as 98.7%. 

 

Figure 14 Automatically collected data vs. manually collected ground truth for 

speed 
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4.3.3 Volume 

The estimates of volume data, calculated by density and speed, was found to be accurate. 

Even though the instantaneous speed was not reliable, the volume calculated with it still 

presented reasonable accuracy as shown in Figure 15. The average accuracy is 84.5% for 

all eight segments with a single pair of frames. The accuracy of volume was greatly 

improved and was as high as 92.6% with 50 frames. 

 

Figure 15 Automatically collected data vs. manually collected ground truth for 

volume 

4.4 Discussion 

Many of the challenges identified in Chapter III have been addressed in this chapter. This 

computer vision-based approach using CNN and SURF is robust enough to deal with the 
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accuracy of the collected macroscopic traffic data, including density, speed, and volume. 

Future work will significantly improve the accuracy with more sophisticated algorithms 

and by fine-tuning trained ConvNet. The resolution, image size and frame rate are 

particular challenges addressed by the approach. One remaining challenge is the 

computation time: It takes 640 seconds on average using a single GPU to process a 25-mi2 

frame which means 25.6 second for a 1-mi2 region. While this may seem slow, especially 

for the wide area aerial imagery from WAPS, there are seemingly endless applications for 

a dataset of this magnitude even if it takes days or weeks to process and create. For ITS 

applications, such as incident detection, more work is needed to make the computation 

efficient for real-time processing. 
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CHAPTER V 

MULTIPLE HYPOTHESIS TRACKING APPROACH 

5.1 Methodology 

In order to improve the performance of vehicle tracking using quality-limited aerial 

imagery datasets with diverse characteristics, the author proposed and implemented a novel 

MHT approach to cooperate with the computer vision-based approach presented in Chapter 

IV. In this chapter, this MHT approach employing an innovative KAM structure was 

implemented and tested for tracking multiple vehicles, especially for tracking closely-

spaced vehicles in saturated traffic flow. The research in this chapter also explored the 

impacts of frame rate, detection noise, number of lanes, and divided vs. undivided traffic 

flow on the performance of MHT as well as the effects of appearance information of 

vehicles and different weight functions. 

 The MHT approach was proposed and implemented as a module in the whole traffic 

surveillance system. The MHT module is designed to be a downstream component in the 

pipeline of vehicle detection and tracking (see Figure 16). This pipeline is very similar to 

the pipeline established in many existing radar systems. Those MHT modules receive 

detections from sensor (or detecting) modules as input and provide the tracks with highest 

probability (or score). Many existing radar systems have already proven the feasibility of 

MHT for data association in MTT tasks (Arambel, et al., 2004). However, the critical 

difference is that most radar systems are designed for detecting and tracking fewer targets 
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with much wider spacing between detections. Tracking vehicles in traffic flow is the long-

standing “closely-spaced targets” problem that justifies the necessity of this research to 

validate the application of MHT in a traffic surveillance system. 

Output ModuleMHT Module

Kinematics 

Model

Appearance 

Model

CNN Module

Location Coordinates

Appearance Vectors

Aerial 

Imagery Data
Frame Sequence

Visualization

Tracks

Frame Sequence

Tracking 

Data

 

Figure 16 The pipeline of vehicle detection and tracking 

5.1.1 Multiple Hypothesis Tracking 

Functions of the MHT approach proposed and implemented in this research are to read the 

output of the trained ConvNet presented in Chapter IV (Zhao, et al., 2016) as input, solve 

the data association problems with MHT, and provide the most likely results. As shown in 

Figure 17, the basic pipeline of the MHT approach is to create a hypothesis tree based on 

the input of vehicle detections, and then evaluate and prune branches to maintain and search 

for the most likely hypothesis. 

Hypothesis 

Pruning

Detection 

Gating

Hypothesis 

Creation

Hypothesis 
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Most Likely 

Hypothesis

Vehicle 

Detection

 

Figure 17 Basic pipeline of MHT for vehicle tracking 
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 The MHT approach maintains and updates tracks by associations of detections in 

each time step (or frame). A set of consistent associations is a hypothesis. To be a valid 

MTT system, associations obey the following rules: 

1. Each detection can only be associated with one track. 

2. Each track can only be associated with one detection at each time step.  

 An example of typical association for MTT tasks is shown in Figure 17. P1 and P2 

are predicted positions of two existing tracks, respectively; while D1, D2, and D3 are the 

vehicle detections in current frame. Detection gating restricts the acceptable area for 

associating detections with tracks. In this example, D1 can be associated with P1 but not 

P2, and D2/D3 can be associated with either P1 or P2. Thus, a possible hypothesis can be 

one where D1 is associated with P1, D2 is associated with P2, and D3 begins a new track. 

For the case shown in Figure 18, ten hypotheses are potentially feasible in total. All 

hypotheses are listed in Table 3 that illustrate all the possible association of tracks and 

detections. 
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D1
P1

P2

D2

D3

Gating

 

Figure 18 An example of typical data association 

Table 3 All potential hypotheses for the conflict situation in the example 

Hypothesis D1 D2 D3 

H1 P1 P2 New 

H2 P1 New P2 

H3 P1 New New 

H4 New P1 P2 

H5 New P1 New 

H6 New P2 P1 

H7 New P2 New 

H8 New New P1 

H9 New New P2 

H10 New New New 

 

 A hypothesis tree ideally consists of all feasible hypotheses in all frames. A feasible 

hypothesis is presented by a node in the tree, and the children of this node are the all 

feasible hypotheses in the next frame deriving from their parent hypothesis. The depth of 



55 

 

the tree indicates the total number of frames and the depth of each node indicates in which 

frame the corresponding hypothesis is. In a frame, the most likely hypothesis of the tracks 

is the hypothesis with highest probability (or score) for all associations, and all 

corresponding hypotheses in previous frames can be traced back by searching the parent 

nodes. The total number of hypotheses in a hypothesis tree increases exponentially when 

the number of detection or the number of frames increases. Thus, maintaining and tracing 

back all feasible hypotheses are not computationally practical. All existing MHT 

implementations only maintain a certain number of children for each node by pruning low 

probability (or score) hypotheses and limiting the depth of tracing back. An example of 

hypothesis tree is shown in Figure 19, the ten nodes at k+1 frame correspond to those ten 

hypotheses in the example shown in Figure 18. 
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H1(k)

H1(k+1) H2(k+1) H10(k+1)

H1(k+2) H2(k+2) Hn(k+2)

Pruned Pruned

Pruned

H2(k+3) H3(k+3)H1(k+3)H1(k+3)

 

Figure 19 A example of hypothesis tree 

 The MHT approach was implemented using Multiple Hypothesis Library (MHL) 

(Antunes, n.d.), which is a public library for basic MHT implementation. To fulfill the 

requirements in this research, besides extensive coding, many parameters were fine-tuned 

for satisfactory performance in cooperation with the Kalman filters for kinematics model 

and appearance model, which will be discussed in Chapter 5.1.2. Those critical parameters 

included the max number of leaves to maintain, the max depth to trace back, the undetected 

time limit to label a track undetected, and the max number of children to maintain for each 

node. The values used in this research were: number of leaves to maintain was set to 50, 
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max depth to trace back was set to 6, undetected time limit was set to 3, and max number 

of children for each node was set to 6. 

5.1.2 Kinematics and Appearance Models 

Many conventional MHT approaches employ a single Kalman filter for maintaining and 

updating tracks by estimating the states (typically the kinematic measurements like position, 

velocity, and acceleration) of tracks. A further technique interacting multiple model (IMM), 

which use multiple Kalman filters, was widely accepted for the performance on tracking 

maneuvered targets (Blackman, 2004). IMM applies different filter models parallelly and 

each of them are specifically selected for different types of maneuvers. The combined state 

estimates and covariance can be computed by either switching among the outputs of 

different Kalman filters or the weighted composition of them. 

 KAM proposed and implemented in this research is an innovative structure that 

takes the advantage of the visual information of detected vehicles in aerial imagery and the 

image classification capability of CNN. Compared to IMM in which multiple filter models 

share the same input of kinematics information, KAM contains an additional pipeline, by 

which the appearance model process the input of the appearance data of detected vehicles, 

parallel to the pipeline for the kinematics model (see Figure 20). Because the kinematics 

state of a vehicle is not correlated to its appearance state (except the limited influence from 

illumination, camera angle, shadow, etc., which is considered by the measurement noise in 

the model), kinematics vector and appearance vector can be processed by two pipelines 

separately. An additional reason for separated processing is to speed up the computation 
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by computing two small covariance matrices parallelly instead of one large covariance 

matrix. Of course, they can be combined in a single vector (either assuming correlated or 

not), and can be processed by a single combined pipeline, but the computational complexity 

will be increased for the combined large covariance matrix. 

Kinematics 
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Inputs

Appearance 
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Appearance Vectors

Malalanobis Distance
Hypothesis 
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Figure 20 Kinematics and appearance models 

5.1.3 Kalman Filters for KAM 

Both of kinematics model and appearance model use similar Kalman filters to predict state 

estimate, covariance estimate, and detections. 

 The prediction of state estimate, 

𝑥̂(𝑘|𝑘 − 1) = 𝐹𝑘𝑥̂(𝑘 − 1|𝑘 − 1) + 𝑤𝑘−1 (1) 

where 𝑥̂(𝑘|𝑘 − 1) is the state estimate of the ground truth 𝑥 at time step 𝑘 given detections 

up to and including at time step 𝑘 − 1; 𝐹𝑘  is the state transition model applied to the 

previous state estimate; and 𝑤𝑘−1 is process noise. 

 The prediction of covariance estimate, 

𝑃(𝑘|𝑘 − 1) = 𝐹𝑘𝑃(𝑘 − 1|𝑘 − 1)𝐹𝑘
𝑇 + 𝑄𝑘 (2) 
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where 𝑃(𝑘|𝑘 − 1)  is the error covariance matrix; and 𝑄𝑘  is the covariance matrix of 

process noise 𝑤𝑘. 

 The prediction of detection, 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (3) 

where 𝑧𝑘 is the predicted detection of ground truth 𝑥𝑘 at time step 𝑘; 𝐻𝑘 is the detection 

measurement model mapping state space to detection space; and 𝑣𝑘 is detection noise. 

 The Kalman filter for the kinematics model can use a constant velocity model 

because the duration of the time step of aerial video is short. Even for 1 Hz imagery data, 

the variation of velocity in the duration of a time step is very limited. The prediction of 

state estimate, the prediction of covariance estimate, and the prediction of detection follow 

Equation (1), (2), and (3), respectively. In this kinematics model, the ground truth 

kinematics state 𝑥𝑘 and its estimate 𝑥̂𝑘 are in the form of a vector (length of 4) containing 

x and y positions, and x and y velocities; the predicted detection 𝑧𝑘 is a vector (length of 

2) containing x and y positions. The transition model, 

𝐹𝑘 = [

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

] (4) 

where Δ𝑡 is the interval of time step; and process noise 

𝑤𝑘−1 = [

Δ𝑡2 2⁄

Δ𝑡2 2⁄
Δ𝑡
Δ𝑡

] 𝑎𝑘 (5) 



60 

 

where 𝑎𝑘 is a random Gaussian acceleration with a standard deviation of 3.28 ft/s2 and a 

mean of 0 ft/s2. The measurement model, 

𝐻𝑘 = [
1 0 0 0
0 1 0 0

] (6) 

; and  𝑣𝑘 is a 2×2 identity matrix where elements are scaled by random Gaussian variables 

with a standard deviation of 1.64 ft and a mean of 0 ft. 

 The Kalman filter for appearance model can use a consistent appearance model 

because the variation of appearance is very limited in the duration of a time step. The 

prediction of state estimate, the prediction of covariance estimate, and the prediction of 

detection follow also Equation (1), (2), and (3), respectively. In this appearance model, the 

ground truth appearance state 𝑥𝑘, its estimate 𝑥̂𝑘, and predicted detection 𝑧𝑘 are in the form 

of a vector describing an image patch centered at the corresponding vehicle in the aerial 

imagery. The input appearance data can be the output of a ConvNet similar to the ConvNet 

designed in Chapter IV. They were designed to be in the exactly same format for the 

compatibility. Additionally, 𝐹𝑘 and 𝐻𝑘 are identity matrices; 𝑤𝑘−1 is aero matrix; and 𝑣𝑘 

is an identity matrix where elements are random Gaussian variables with a standard 

deviation of 0.55 and a mean of 0. 

 Control-input model was not included in KAM because the information is not 

available from aerial imagery data. The Kalman filters in KAM provides a vehicle’s state 

estimate as a Gaussian distribution; in other words, it not only provides the predicted 

position, velocity, and appearance of each tracked vehicle, but also the certainty of those 
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predictions in the form of a covariance matrix. The Apache Commons Mathematics Library 

was used to implemented Kalman filters in KAM 

5.1.4 Mahalanobis distance-based Scoring 

KAM uses Mahalanobis distance (Mahalanobis, 1936) to measure the variation between 

the distribution of a predicted detection and the actual detections from inputs for kinematics 

model and appearance model, separately. The Mahalanobis distance 𝐷 follows: 

𝐷(𝑦, 𝑧) = √(𝑧 − 𝑦)𝑇𝑃−1(𝑧 − 𝑦) (7) 

where 𝑦 is the actual detection from inputs. Then, KAM processes a gating based on the 

weighted sum of Mahalanobis distance from both models to remove outliers. The 

probability (or score) 𝑝 of an association follows: 

𝑝 = 𝑒−(𝑤1𝐷1
2+𝑤2𝐷2

2) (8) 

where 𝐷1 and 𝐷2 are the Mahalanobis distances from kinematics model and appearance 

model, respectively; and 𝑤1 and 𝑤2 are corresponding weights. The probability (or score) 

of an association indicates the likelihood of the association regarding both kinematics and 

appearance. 

 The design of weight functions can be various. In this research, two weight 

functions were implemented and tested. The first function was a normalized weight 

function. In this function,  𝑤1 and 𝑤2 were dependent on the appearance weight ratio  𝑟𝐴: 

𝑤1 = 1 (1 + 𝑟𝐴)⁄  (9) 
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and 

𝑤2 = 𝑟𝐴 (1 + 𝑟𝐴)⁄  (10) 

 The second function was an unnormalized weight function. In this function, 𝑤1 and 

𝑤2 were also dependent on the appearance weight ratio  𝑟𝐴: 

𝑤1 = {
1, 𝑖𝑓 𝑟𝐴 < 1

1 𝑟𝐴⁄ , 𝑖𝑓 𝑟𝐴 ≥ 1
 (11) 

and 

𝑤2 = {
𝑟𝐴, 𝑖𝑓 𝑟𝐴 < 1
1, 𝑖𝑓 𝑟𝐴 ≥ 1

 (12) 

 The probability (or score) of a hypothesis, which indicates the likelihood of this 

hypothesis, can be achieved by averaging the probabilities (or scores) of all valid 

associations contained in this hypothesis. It is used to evaluate and prune the nodes in the 

hypothesis tree in order to maintain and search for the most likely hypothesis. 

5.2 Experiments 

The experiments designed and implemented in this chapter consisted of two parts. The first 

experiment was to apply the MHT approach with kinematics model only (appearance 

weight ratio was set to 0) to numerous datasets of vehicle detection generated with different 

frame rates (1 Hz, 5 Hz, and 10 Hz), different detection noise (0%, 5%, and 10%), and 

different scenarios (2-lane and 4 lanes; divided and undivided traffic flow), respectively, 

for the purpose of evaluating the MHT approach with kinematics model only and revealing 

the impacts of frame rate, detection noise, number of lanes, and divided vs. undivided 
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traffic flow on the performance. The second experiment was to apply the MHT approach 

with KAM to numerous datasets of vehicle detection generated with different frame rates 

and detection noise using different appearance weight ratios (0, 0.1, 0.5, 1, 2, and 10) and 

weight functions (normalized vs. unnormalized), for the purpose of evaluating the MHT 

approach with KAM and revealing the effects of appearance information on the 

performance. 

5.2.1 Synthetic Data 

Although the PSS dataset was used in the experiments in Chapter IV (Zhao, et al., 2016) 

and successfully proved the promising accuracy of macroscopic traffic data collection 

using aerial video, aerial imagery datasets (see Table 1) are not ideal for the experiments 

in this chapter. The experiments focused on MHT require saturated traffic flow to study 

the “closely-spaced targets” problem, as well as controllable frame rate, detection noise, 

and traffic configurations for the analysis of those concerned factors. 

 To comprehensively study all concerned factors, experiments were implemented 

with synthetic vehicle detection data. VISSIM (a microscopic traffic simulation software) 

was employed to generate the vehicle detection data as it has one of the most accepted 

driving behavior models. Using synthetic data generated by VISSIM instead of 

precomputed data generated by the CNN module in the experiments is sensible for several 

reasons: 

1. The MHT module is designed to read vehicle detection data (coordinates of the 

location of each detected vehicle in each frame) as input and the CNN module is 
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designed to provide vehicle detection data in exact same format, both of which are 

compatible with vehicle records (coordinates of the location of each simulated 

vehicle in each time step) that VISSIM can generate. Detailed information about 

the format and parsing vehicle records are provided in Appendix D. 

2. Two datasets (no matter generated by simulation or by processing aerial imagery) 

can be equivalent in term of MHT computation due to the scale-agnostic property 

of MHT, which will be discussed in Chapter 5.2.2. 

3. Synthetic data can provide valid traffic information for MHT computation as far as 

VISSIM can produce valid traffic simulation. 

4. Simulation parameters can be manipulated to generate specific synthetic data for 

various requirements; while precomputed data determined by processing aerial 

imagery cannot be manipulated. 

5. VISSIM can record vehicle ID, which can provide the ground truth information for 

reliable evaluation; while it is impractical to manually label ground truth in aerial 

video. 

 Four 1-mile uninterrupted urban road segments were created. Two have one lane in 

each direction, and the other two have two lanes in each direction. Both pairs contain a 

road with a median and a road without a median. The width of the lanes was set to 12 ft 

and the width of the median was set to 12 ft. The volume of vehicle input was set to 1300 

veh/hr/ln. The duration of the simulation was set to 300 seconds.  

 The frame rates of investigated public and commercial aerial imagery dataset are at 

least 1 fps (see Table 1), and few high frame rate imagery datasets are available. However, 
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more high frame rate imagery datasets will be available with the advancement of optical 

sensor and data storage technologies. Thus, to generate vehicle records simulating the 

vehicle detection data extracted from aerial imagery with different frame rates, the 

simulation time step was set to 1, 5, and 10 steps per second to correspond to 1, 5, and 10 

frames per second, respectively. The detection performance of the trained ConvNet 

presented in Chapter IV is: 95.7% accuracy, 94.5% precision, 96.0% recall (sensitivity), 

and 95.5% specificity (Zhao, et al., 2016). Thus, to generate the detection noise caused by 

the inaccuracy of the detector, 0%, 5%, and 10% false positive were created by randomly 

adding detections near existing the ground truth, and the same percentage of false negative 

were created by randomly removing ground truth from the detection data. 

 To apply and evaluate the MHT approach with KAM, a vector of float values was 

appended to each vehicle detection record as its appearance information since a trained 

ConvNet can output a vector as the descriptor of the input image. The vector length can be 

flexible based on detailed implementation, and 5 was used in these experiments. Based on 

the investigation on the imagery datasets listed in Table 1, 10 classifications were defined 

for the fact that many vehicles have similar appearance, and then corresponding appearance 

vectors were attached in the synthetic data. A uniformly distributed random float number 

within the range from -1 to -1 was initialized in each element in the appearance vector to 

define the appearance of the vehicle. The appearance variation following a normal 

distribution with a mean of 0 and a standard deviation of 0.1 was added to each element in 

the appearance vector to simulate the instability of the appearance of the same vehicle in 

different frames. Additionally, the measurement noise following a normal distribution with 
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a mean of 0 and a standard deviation of 0.3 was added to each element in the appearance 

vector to simulate the detection inaccuracy. To explore the effects of appearance 

information of vehicles on the performance of the MHT approach with KAM, the 

appearance weight ratios (the weight of the output of appearance model over the weight of 

the output of kinematics model) were set to 0, 0.1, 0.5, 1, 2, and 10. 

5.2.2 Scale-Agnostic Property of MHT 

In order to comprehensively research, test, and evaluate the MHT approach, the scale-

agnostic property of MHT was originally induced. To study the “closely-spaced targets” 

problem of tracking vehicles in traffic flow, only one of the following parameters has to be 

varied: frame rate, vehicle density, or vehicle speed. In terms of MHT computation, varying 

any one parameter can be equivalent to varying other parameters. The reason is that MHT 

is scale-agnostic. Mathematically, two datasets are equivalent to MHT computation if they 

satisfy 

(𝐷1 ⊘ 𝑆1)𝑓1 = 𝐶 = (𝐷2 ⊘ 𝑆2)𝑓2 (13) 

for each time step, where ⊘ is the element-wise division (Hadamard division); 𝐷 is the 

density matrix consists of the distance 𝑑𝑖𝑗 between each pair of objects 𝑖 and 𝑗 for all 𝑛 

objects in a time step, 

𝐷 = (
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑛

) (14) 

and 𝑆 is the speed matrix consists of the speed 𝑠𝑖 of each object 𝑖 in a time step, 
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𝑆 = (

𝑠1 ⋯ 𝑠1

⋮ ⋱ ⋮
𝑠𝑛 ⋯ 𝑠𝑛

) (15) 

Additionally, 𝑓 is the sample rate and 𝐶  is a constant matrix. Briefly, two datasets are 

equivalent regarding MHT computation if they can get the same matrix 𝐶. The unit of 

elements in 𝐶 is dimensionless. 

 For example, tracking two ants, 5 inches apart, moving 1 in/s is exactly the same 

as tracking two cars, 500 feet apart, moving 100 ft/s; and tracking an ant moving 1 mi/hr 

at 60 frames/hr is equivalent to tracking a car moving 1 mi/min at 60 frames/min. Because 

of this scale-agnostic property, a frame rate change is equivalent to changing either vehicle 

speeds or traffic density. To demonstrate, suppose there are two cars, 100 feet apart, 

moving 100 ft/s, with a sample rate of 1 frame/s. Doubling just the frame rate would result 

in the cars still going 100 ft/s and separated by 100 feet, but with a sampling rate of 2 

frames/s. However, if one looks at the situation in units of "half seconds" (hs, 2 hs = 1 s), 

then we have the cars going 50ft/hs separated by 100ft at a frame rate of 1 frame/hs. So, in 

terms of MHT computation, it is equivalent to halving the vehicle speed. In addition to 

using "half seconds", one could use "half feet" (hft, 2 hft = 1ft). This would mean the cars 

are going 100 hft/hs, separated by 200 hft, with a sample rate of 1 frame/hs. In terms of 

MHT computation, doubling frame rate speed is equivalent to halving the vehicle density. 

To study the “closely-spaced targets” problem of tracking vehicles in traffic flow, only one 

of the following parameters has to be varied: frame rate, vehicle density, or vehicle speed. 

In this research, frame rate was chosen as the parameter to vary because it can be easily 

manipulated. 
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5.2.3 Metrics and Statistics 

For any MTT problem, performance evaluation is critical, but not straight forward (Gorji, 

et al., 2011). It is not possible to estimate the performance of a tracker based on a single 

metrics. A tracker can provide inaccurate results while some metrics indicate satisfactory 

performance (Coraluppi, et al., 2006). Thus, five metrics were specifically selected in this 

research: percentage of valid associations (NVA%), percentage of false associations 

(NFA%), percentage of missed detections (NMD%), average number of swaps (ANST), 

and average track continuity (ATC). Since percent metrics can provide clear comparison 

for detection data generated with different frame rates, they were used for evaluation but 

actual value of them, which is used in many research (Gorji, et al., 2011). Three other 

statistics were also collected for overall information: number of vehicles (NV), number of 

detections (ND), and number of tracks (NT). Table 4 provides detailed definitions of them. 

Table 4 Three statistics and five metrics selected 

NV Total number of ground truth vehicles (or target). 

ND Total number of ground truth detections (one for each vehicle in every frame it was in). 

NT Total number of tracks produced by the MHT. A track is an estimated trajectory of a ground truth vehicle. 

NVA% 

Number of valid associations over total number of ground truth detections (NVA/ND). An association is valid if the 

prediction is assigned to one and only one ground truth detection and that assigned ground truth detection is not 

associated with any other prediction. 

NFA% 
Number of false associations over total number of ground truth detections (NFA/ND). An association is false if the 

prediction is not assigned to any ground truth detection. 

NMD% 
Number of missed detections over total number of ground truth detections (NMD/ND). A missed detection is a 

ground truth detection that is not associated to any prediction. 

ANST 
Average number of swaps target per ground truth vehicles (NST/NV). This is the average number of swaps between 

different tracks on what should be a single ground truth vehicle. 
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ATC 
Average track continuity per ground truth vehicle (TC/NV). Track continuity is a metric for each ground truth 
vehicle that measures the average proportion of its trajectory is covered by each associated track (Gorji, et al., 2011). 

 

 The computation of these metrics and statistics involves extensive coding and is 

not real-time. The performance evaluation of MHT is dependent on the ground truth 

information provided by vehicle ID recorded by VISSIM. 

5.3 Experimental Results and Analysis 

Experiments were implemented to evaluate the performance of implemented MHT 

approach, and reveal the impacts of frame rate, detection noise, number of lanes, and 

divided vs. undivided traffic flow as well as the effects of appearance information of 

vehicles. 

 For the first experiment, five metrics and three statistics are shown in Table A1 for 

the experimental results of MHT with kinematics model only (appearance weight ratio was 

set to 0) using a Mahalanobis distance-based gating of 3×std (three times the standard 

deviation derived from the error covariance matrix). The metrics and statistics are also 

shown in Table A2 for the results using a gating of 7×std. 

 Since the MHT approach presented best overall performance for the 2-lane divided 

road segment in the first experiment, this scenario was selected for the second experiment. 

Five metrics are shown in Table A3 for the experimental results of MHT with KAM using 

a Mahalanobis distance-based gating of 3×std and the unnormalized weight function. The 

metrics are also shown in Table A4 for the results using a gating of 7×std and the 
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unnormalized weight function. Additionally, the metrics are shown in Table A5 for the 

results using a gating of 7×std and the normalized weight function. 

5.3.1 MHT with kinematics model only 

From the metrics and statistics shown in Table A1 and A2, the following conclusions can 

be drawn for the performance of the MHT approach with kinematics model only: 

1. High frame rate can significantly reduce the negative impact of noise on the 

performance. Even though the amount of noise is proportional to the number of 

frames or detections, the performance is significantly improved with high frame 

rate data for all metrics (see Figure 21). Regarding scale-agnostic property, 

increasing frame rate is equivalent to enlarging the spacing between targets or 

reducing the speed of targets which can avoid the “closely-spaced targets” problem. 

 

Figure 21 ATC for MHT (2-lane, divided, 7×std gating) 
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2. High percent noise can lead to significant negative impact for 1 Hz data, while the 

impact is less significant for 5 Hz and 10 Hz data. The vulnerability of low frame 

rate data to noise is consistent with previous conclusion that high frame rate data is 

robust regarding noise (see Figure 21). 

3. The performance with divided traffic flow does not present significant differences 

compared with undivided traffic flow for both 2-lane road and 4-lane road (see 

Figure 22). 

 

Figure 22 Divided vs. undivided (2-lane, 7×std gating) 
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Figure 23 2-lane vs. 4-lane (divided, 7×std gating) 
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Figure 24 3×std vs. 7×std (2-lane, divided) 
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Figure 25 Effects of appearance weight ratio (2-lane, divided, 0% noise, 7×std, 

normalized) 
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Figure 26 Effects of appearance weight ratio (2-lane, divided, 10% noise, 7×std, 

normalized) 
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of combined Mahalanobis distance reaches the peak of 2 where the appearance 

weight ratio is 1. The Mahalanobis distance-based gating using the scaled value 

reserves extra predications with higher variation. Those extra predications degrade 

the performance in most conditions but improve the performance with the data of 

low frame rate and high percent noise, which is consistent with the previous 

conclusions.  

 

Figure 27 Normalized vs. unnormalized (2-lane, divided, 10% noise, 7×std) 
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formats of the vehicle detection data delivered between them were meticulously designed. 

To comprehensively research, test, and evaluate this MHT approach, the scale-agnostic 

property of MHT was originally induced. Since lack of ideal aerial imagery data for those 

experiments, a specialized method was applied to establish the synthetic dataset using 

VISSIM. Several metrics and statistics were identified and implemented for 

comprehensive evaluation. 

 The experimental results corresponded to the author’s expectations regarding frame 

rate, detection noise and appearance weight ratio. However, the insignificant impacts of 

traffic configurations were unexpected. The KAM structure with the unnormalized weight 

function performed like the switching between the “credibility” of kinematics information 

and appearance information, which is unexpected and interesting; however, it was 

outperformed by the normalized weight function in most instances. 

 Based on the experimental results presented in this chapter, very promising 

performance can be achieved and the “closely-spaced targets” problem can be solved using 

high frame rate aerial video. Unfortunately, most existing aerial imagery datasets have low 

frame rates, thus the primary challenge for the usage of existing datasets involves how to 

improve the performance to enable the system to effectively process low frame rate 

imagery data. In this chapter, the experimental results provided three solutions for this 

challenge:  

1. Improving the computer vision-based approach to achieve low percent detection 

noise. 
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2. Applying high appearance weight ratio in KAM. 

3. Using large Mahalanobis distance or gating. 
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CHAPTER VI 

CONCLUSION 

In recent years, there has been tremendous interest in collecting diverse traffic data in a 

wide area by traffic surveillance technologies. Using wide area aerial video to achieve 

traffic surveillance by detecting and tracking vehicles in the network is one of the feasible 

ways that is facilitated by the advances in many related areas, including high performance 

optical sensor technology, persistent surveillance with camera arrays, advanced computer 

vision, reinvented deep learning, high performance computing units, and affordable 

platforms like UAV. 

 A great deal of aerial imagery datasets are currently available and more datasets are 

collected every day for various applications. There is great potential to make full and 

efficient use of these datasets to automatically extract useful traffic data. In order to achieve 

automated traffic surveillance for reliable and diverse traffic data collection, this in-depth 

research was focused on traffic surveillance and data extraction by detecting and tracking 

vehicles using wide area aerial video. 

 To achieve the first objective: investigating existing research related to traffic 

surveillance approaches and data extraction from aerial imagery to help guide this research 

and determine its contributions, the author reviewed and identified many existing research 

in several areas closely related to this research including: aerial surveillance systems, 

computer vision, deep learning, and MHT approaches. It is clear from the literature review 
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that this research is unique and that there is a need for a system that can automatically 

extract useful traffic data using WAPS. This system can lead to many potential applications 

to support and improve transportation planning, operations, research, and professional 

practice. 

 To achieve the second objective: investigating challenges with automatically 

processing wide area aerial video and extracting useful traffic data, the author investigated 

many exiting commercial and public aerial imagery datasets. Based on the investigation, 

most available imagery datasets have limited quality and frame rates and each of them have 

different characteristics and specifications, which make it very challenge to develop a 

system that can automatically possess those datasets. Numerous challenges were identified 

and analyzed to guide this research, and used to test implemented approaches in this 

research. 

 To achieve the third objective: implementing, testing, and evaluating computer 

vision-based vehicle detection and tracking approaches to monitor traffic and collect 

reliable traffic data using aerial imagery, the author implemented and tested several 

heuristic and machining learning approaches for vehicle detection and tracking using aerial 

imagery. A feature-based tracker and a CNN-based detector presented most the promising 

performance in the tests. 

 To achieve the fourth objective: identifying and refining the most promising 

approach and determining its capabilities, robustness, and limitations that may guide future 

research, the author combined a feature-based tracker and a CNN-based detector to achieve 
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a novel computer vision-based approach that presented very promising performance in 

detecting and tracking vehicles in wide area aerial video. The evaluation indicated this 

approach can achieve very accurate measurements for macroscopic traffic data for the 

traffic on road segments and has the potential to collect accurate microscopic data for 

individual vehicles. The author also implemented a MHT-based approach with an 

innovative KAM structure that cooperated with the computer vision-based approach to 

improve the tracking performance of the traffic surveillance system. The evaluation not 

only indicated this approach can achieve very promising results but also revealed the 

influences of some concerned factors and the solutions for some long-standing problems. 

 By accomplishing all four objectives, the author believes the overall goal of this 

dissertation was achieved. The author believes that the computer vision-based approach 

can extract reliable macroscopic traffic data from wide area aerial video and is practice 

ready. With future improvement by integrating the computer vison-based approach with 

the MHT-based approach, robust microscopic data extraction will be achieved. 

6.1 Contribution 

In this dissertation, the author researched and developed a traffic surveillance system that 

can successfully extract reliable and useful traffic data from wide area aerial video. This 

system can achieve accurate measurements for macroscopic traffic data and has the 

potential to collect robust microscopic traffic data. 

 A novel computer vision-based approach was proposed and implemented to 

achieve automated traffic surveillance by detecting and tracking vehicles in wide area 
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aerial video. This approach innovatively combined an emerging deep learning approach 

with handcrafted techniques. The successful research and development of the CNN 

approach with SURF achieved accurate measurement for macroscopic traffic data 

(including density, speed, and volume) and identified the need for more robust tracking to 

extract reliable microscopic data for individual vehicles. 

 A MHT-based approach with an innovative KAM structure was proposed and 

implemented to extend and improve the vehicle tracking system by cooperating with the 

computer vision-based approach. The innovative KAM structure took the advantage of the 

visual information contained in aerial imagery and the classification capability of emerging 

CNN. The scale-agonistic property of MHT was originally induced to comprehensively 

research, test, and evaluate the MHT approach. The successful research and development 

of the MHT approach with KAM indicated this approach can achieve very promising 

performance for tracking each individual vehicle and revealed the impacts of frame rate, 

detection noise, and traffic configurations on the performance, as well as the effects of 

appearance information of each vehicle on the performance. This research also provided 

solutions for the long-standing “closely-spaced targets” problem and solutions to achieve 

satisfactory performance for processing existing aerial imagery datasets that have limited 

quality and frame rates. 

6.2 Further Research 

In future research, approaches implemented in this dissertation will be integrated and 

improved for better accuracy, robustness, and efficiency. The computer vison-based 
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approach will be integrated with the MHT-based approach; and the trained ConvNet will 

be tuned for better performance. New approaches will be researched for potential 

applications to extend and improve the computer vision-based system. Joint probabilistic 

data association (JPDA) will be applied to improve the MHT approach; Siamese network 

and region-based CNN series will be applied to the computer vision-based approach. 
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APPENDIX A MHT EXPERIMENTAL RESULTS 

Table A1 MHT with kinematics model only (3×std gating) 

Frame Rate Noise 
2-Lane Divided 2-Lane Undivided 

NV ND NT NVA% NMD% NFA% ANST ATC NV ND NT NVA% NMD% NFA% ANST ATC 

1 Hz 

0% 188 17479 313 99.977 0.023 0.446 1.340 0.688 188 17478 301 99.983 0.017 0.401 1.324 0.717 

5% 188 16606 763 99.801 0.199 11.430 4.548 0.432 188 16605 797 99.874 0.126 11.382 5.495 0.409 

10% 188 15732 379 50.121 49.879 8.708 3.027 0.253 188 15731 392 49.018 50.982 9.268 4.032 0.210 

5 Hz 

0% 189 87092 245 99.993 0.007 0.001 0.296 0.876 189 87092 247 99.991 0.009 0.001 0.323 0.861 

5% 189 82738 401 99.885 0.115 5.527 0.741 0.789 189 82738 397 99.900 0.100 5.532 0.688 0.782 

10% 189 78383 686 99.745 0.255 11.871 1.095 0.723 189 78383 669 99.740 0.260 11.811 1.074 0.720 

10 Hz 

0% 189 174173 239 99.996 0.004 0.001 0.265 0.883 189 174173 244 99.995 0.005 0.000 0.302 0.871 

5% 189 165465 325 99.951 0.049 5.246 0.550 0.799 189 165465 329 99.926 0.074 5.204 0.635 0.789 

10% 189 156756 542 99.849 0.151 10.991 1.127 0.697 189 156756 510 99.887 0.113 11.066 1.021 0.725 

  4-Lane Divided 4-Lane Undivided 

1 Hz 

0% 394 35248 1236 99.997 0.003 2.726 6.500 0.316 394 35249 1258 99.989 0.011 3.132 7.272 0.288 

5% 394 33486 2722 99.961 0.039 16.034 12.886 0.175 394 33487 2662 99.970 0.030 16.514 13.165 0.187 

10% 394 31724 234 9.296 90.704 2.433 1.315 0.067 394 31725 392 12.643 87.357 3.984 3.157 0.072 

5 Hz 

0% 396 175793 553 99.976 0.024 0.015 0.503 0.791 396 175796 556 99.975 0.025 0.019 0.482 0.799 

5% 396 167004 1350 99.916 0.084 6.254 1.775 0.625 396 167007 1389 99.912 0.088 6.351 1.995 0.609 

10% 396 158214 1986 99.694 0.306 12.862 2.111 0.562 396 158217 2003 99.674 0.326 12.958 2.025 0.586 

10 Hz 

0% 396 351650 552 99.995 0.005 0.002 0.449 0.805 396 351658 557 99.992 0.008 0.002 0.449 0.802 

5% 396 334068 853 99.929 0.071 5.358 0.864 0.714 396 334076 841 99.930 0.070 5.373 0.846 0.712 

10% 396 316485 1435 99.838 0.162 11.404 1.437 0.627 396 316493 1480 99.823 0.177 11.414 1.487 0.630 
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Table A2 MHT with kinematics model only (7×std gating) 

Frame Rate Noise 
2-Lane Divided 2-Lane Undivided 

NV ND NT NVA% NMD% NFA% ANST ATC NV ND NT NVA% NMD% NFA% ANST ATC 

1 Hz 

0% 188 17479 291 99.983 0.017 0.223 1.027 0.741 188 17478 306 99.971 0.029 0.452 1.441 0.693 

5% 188 16606 751 99.880 0.120 11.056 4.420 0.456 188 16605 758 99.849 0.151 11.316 4.819 0.425 

10% 188 15732 382 64.779 35.221 9.770 2.463 0.348 188 15731 352 49.476 50.524 8.741 3.505 0.218 

5 Hz 

0% 189 87092 246 99.989 0.011 0.001 0.302 0.873 189 87092 246 99.993 0.007 0.000 0.333 0.858 

5% 189 82738 385 99.857 0.143 5.389 0.656 0.802 188 82738 397 99.915 0.085 5.496 0.755 0.767 

10% 189 78383 627 99.770 0.230 11.723 1.021 0.743 189 78383 690 99.774 0.226 11.824 1.270 0.676 

10 Hz 

0% 189 174173 242 99.996 0.004 0.002 0.280 0.880 189 174173 240 99.998 0.002 0.001 0.275 0.880 

5% 189 165465 343 99.942 0.058 5.232 0.635 0.780 189 165465 339 99.952 0.048 5.262 0.571 0.798 

10% 189 156756 538 99.848 0.152 10.953 1.095 0.716 189 156756 526 99.872 0.128 11.004 1.079 0.708 

  4-Lane Divided 4-Lane Undivided 

1 Hz 

0% 394 35248 1162 100.000 0.000 2.678 6.038 0.339 394 35249 949 99.994 0.006 1.614 3.995 0.396 

5% 394 33486 2586 99.967 0.033 15.828 12.069 0.211 394 33487 2581 99.937 0.063 16.851 12.728 0.187 

10% 394 31724 233 8.602 91.398 2.418 1.244 0.059 394 31725 241 11.099 88.901 2.623 1.312 0.067 

5 Hz 

0% 396 175793 564 99.983 0.017 0.013 0.518 0.788 396 175796 558 99.986 0.014 0.009 0.495 0.797 

5% 396 167004 1267 99.932 0.068 6.142 1.601 0.637 396 167007 1308 99.906 0.094 6.148 1.652 0.628 

10% 396 158214 1970 99.724 0.276 12.769 1.990 0.588 396 158217 1993 99.716 0.284 12.836 1.944 0.566 

10 Hz 

0% 396 351650 557 99.996 0.004 0.001 0.449 0.803 396 351658 557 99.998 0.002 0.001 0.447 0.807 

5% 396 334068 843 99.947 0.053 5.351 0.768 0.716 396 334076 876 99.931 0.069 5.328 0.854 0.707 

10% 396 316485 1408 99.851 0.149 11.344 1.288 0.648 396 316493 1409 99.842 0.158 11.333 1.386 0.636 
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Table A3 MHT with KAM (2-lane, divided, 3×std gating, unnormalized weights) 

Frame Rate Weight Ratio 
0% Noise 5% Noise 10% Noise 

NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC 

1 Hz 

0 99.977 0.023 0.423 1.404 0.687 99.861 0.139 11.634 5.229 0.448 48.144 51.856 8.696 2.995 0.258 

0.1 99.994 0.006 0.446 1.612 0.685 99.855 0.145 10.683 4.197 0.473 44.819 55.181 8.009 2.867 0.203 

0.5 99.994 0.006 0.303 1.553 0.683 99.880 0.120 11.038 5.160 0.395 48.354 51.646 7.456 2.069 0.282 

1 99.983 0.017 0.646 2.245 0.604 99.874 0.126 12.568 7.745 0.291 40.383 59.617 6.681 2.133 0.233 

2 99.977 0.023 0.309 0.979 0.773 99.831 0.169 12.255 6.138 0.360 55.670 44.330 8.664 2.032 0.307 

10 99.949 0.051 0.109 0.383 0.894 99.819 0.181 11.695 4.457 0.429 82.011 17.989 11.473 2.309 0.464 

5 Hz 

0 99.995 0.005 0.000 0.302 0.874 99.906 0.094 5.532 0.693 0.793 99.791 0.209 11.924 0.979 0.735 

0.1 99.992 0.008 0.001 0.307 0.869 99.882 0.118 5.475 0.720 0.780 99.779 0.221 11.847 1.090 0.716 

0.5 99.984 0.016 0.002 0.312 0.873 99.851 0.149 5.623 1.349 0.703 99.698 0.302 11.801 1.360 0.656 

1 99.867 0.133 0.008 0.370 0.851 99.703 0.297 6.063 2.963 0.525 99.380 0.620 12.033 2.381 0.581 

2 99.944 0.056 0.008 0.233 0.897 99.769 0.231 5.975 2.201 0.601 99.594 0.406 12.096 1.725 0.641 

10 99.962 0.038 0.006 0.095 0.962 99.836 0.164 5.857 1.312 0.704 99.666 0.334 12.082 1.132 0.717 

10 Hz 

0 99.994 0.006 0.001 0.286 0.876 99.952 0.048 5.240 0.593 0.787 99.849 0.151 11.011 1.079 0.713 

0.1 99.994 0.006 0.001 0.286 0.877 99.937 0.063 5.213 0.566 0.798 99.827 0.173 10.990 1.085 0.718 

0.5 99.982 0.018 0.002 0.296 0.871 99.918 0.082 5.189 0.640 0.783 99.825 0.175 10.868 1.159 0.716 

1 99.907 0.093 0.002 0.323 0.861 99.781 0.219 5.256 0.878 0.725 99.494 0.506 11.062 1.788 0.614 

2 99.959 0.041 0.003 0.190 0.912 99.830 0.170 5.326 0.598 0.789 99.605 0.395 11.005 1.434 0.660 

10 99.975 0.025 0.003 0.090 0.964 99.857 0.143 5.359 0.608 0.814 99.682 0.318 11.228 1.180 0.730 
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Table A4 MHT with KAM (2-lane, divided, 7×std gating, unnormalized weights) 

Frame Rate Weight Ratio 
0% Noise 5% Noise 10% Noise 

NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC 

1 Hz 

0 99.960 0.040 0.269 0.809 0.781 99.843 0.157 11.321 4.968 0.392 59.757 40.243 9.630 2.628 0.298 

0.1 99.977 0.023 0.326 1.191 0.736 99.874 0.126 11.014 4.314 0.446 61.404 38.596 8.689 2.213 0.336 

0.5 99.983 0.017 0.195 1.197 0.722 99.904 0.096 11.568 5.027 0.419 68.453 31.547 9.751 2.532 0.376 

1 99.983 0.017 0.749 2.473 0.574 99.843 0.157 12.128 6.793 0.333 49.956 50.044 8.041 2.106 0.283 

2 99.983 0.017 0.383 1.319 0.707 99.904 0.096 11.833 5.346 0.412 54.977 45.023 8.677 2.229 0.303 

10 99.966 0.034 0.063 0.303 0.911 99.861 0.139 11.803 4.266 0.425 85.857 14.143 11.836 1.707 0.510 

5 Hz 

0 99.991 0.009 0.000 0.296 0.875 99.879 0.121 5.493 0.683 0.781 99.789 0.211 11.643 1.111 0.689 

0.1 99.983 0.017 0.000 0.296 0.876 99.884 0.116 5.438 0.571 0.799 99.745 0.255 11.559 1.111 0.705 

0.5 99.985 0.015 0.001 0.317 0.870 99.885 0.115 5.565 0.984 0.736 99.791 0.209 11.705 0.979 0.738 

1 99.866 0.134 0.016 0.397 0.848 99.762 0.238 6.009 2.635 0.570 99.492 0.508 11.946 2.254 0.569 

2 99.924 0.076 0.008 0.238 0.896 99.820 0.180 5.841 1.841 0.631 99.584 0.416 11.874 1.513 0.653 

10 99.960 0.040 0.003 0.095 0.961 99.851 0.149 5.845 1.280 0.692 99.673 0.327 11.954 1.164 0.740 

10 Hz 

0 99.997 0.003 0.001 0.275 0.880 99.949 0.051 5.241 0.630 0.790 99.874 0.126 11.066 1.079 0.711 

0.1 99.999 0.001 0.000 0.280 0.877 99.958 0.042 5.234 0.582 0.791 99.848 0.152 10.940 1.074 0.716 

0.5 99.984 0.016 0.001 0.296 0.872 99.921 0.079 5.230 0.656 0.786 99.830 0.170 10.944 1.138 0.688 

1 99.906 0.094 0.002 0.323 0.861 99.784 0.216 5.293 0.942 0.723 99.589 0.411 10.983 1.746 0.600 

2 99.964 0.036 0.002 0.185 0.915 99.854 0.146 5.308 0.841 0.763 99.682 0.318 11.013 1.212 0.705 

10 99.972 0.028 0.005 0.101 0.959 99.845 0.155 5.382 0.508 0.837 99.686 0.314 11.265 0.963 0.744 
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Table A5 MHT with KAM (2-lane, divided, 7×std gating, normalized weights) 

Frame Rate Weight Ratio 
0% Noise 5% Noise 10% Noise 

NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC NVA% NMD% NFA% ANST ATC 

1 Hz 

0 99.989 0.011 0.172 0.867 0.759 99.813 0.187 11.327 4.718 0.410 55.734 44.266 8.804 2.809 0.289 

0.1 99.977 0.023 0.217 1.021 0.740 99.861 0.139 10.629 4.282 0.467 63.012 36.988 9.547 3.250 0.283 

0.5 100.000 0.000 0.080 0.686 0.813 99.898 0.102 10.870 3.931 0.498 62.096 37.904 9.090 2.862 0.315 

1 99.983 0.017 0.051 0.521 0.837 99.886 0.114 11.291 4.261 0.425 60.221 39.779 9.408 2.521 0.328 

2 99.971 0.029 0.046 0.335 0.881 99.886 0.114 11.393 4.255 0.455 83.835 16.165 11.238 1.590 0.536 

10 99.983 0.017 0.063 0.287 0.910 99.849 0.151 11.321 4.016 0.449 92.817 7.183 13.279 1.654 0.593 

5 Hz 

0 99.994 0.006 0.001 0.307 0.871 99.919 0.081 5.457 0.608 0.789 99.767 0.233 11.739 1.116 0.724 

0.1 99.992 0.008 0.000 0.286 0.878 99.901 0.099 5.442 0.714 0.771 99.775 0.225 11.533 1.090 0.709 

0.5 99.986 0.014 0.002 0.233 0.898 99.905 0.095 5.515 0.651 0.797 99.842 0.158 11.710 0.894 0.739 

1 99.984 0.016 0.000 0.196 0.915 99.894 0.106 5.498 0.741 0.786 99.777 0.223 11.545 0.884 0.761 

2 99.977 0.023 0.001 0.159 0.930 99.894 0.106 5.610 0.646 0.803 99.833 0.167 11.795 0.873 0.749 

10 99.966 0.034 0.005 0.106 0.956 99.883 0.117 5.814 0.899 0.778 99.700 0.300 11.946 1.005 0.743 

10 Hz 

0 99.999 0.001 0.000 0.286 0.877 99.944 0.056 5.242 0.630 0.783 99.837 0.163 11.027 0.989 0.749 

0.1 99.998 0.002 0.001 0.265 0.884 99.954 0.046 5.249 0.540 0.810 99.870 0.130 10.987 0.974 0.719 

0.5 99.997 0.003 0.001 0.228 0.898 99.948 0.052 5.227 0.503 0.821 99.858 0.142 10.997 0.989 0.726 

1 99.997 0.003 0.000 0.185 0.916 99.936 0.064 5.230 0.455 0.835 99.828 0.172 10.968 0.910 0.742 

2 99.992 0.008 0.001 0.153 0.928 99.927 0.073 5.283 0.402 0.850 99.865 0.135 11.090 0.852 0.751 

10 99.982 0.018 0.001 0.074 0.967 99.891 0.109 5.344 0.434 0.854 99.722 0.278 11.205 0.968 0.768 
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APPENDIX B CONFIGURATIONS OF FEATURE-

BASED VEHICLE TRACKING FRAMEWORK  

Appendix B provides the information of available methods for feature detector, feature 

descriptor, feature matcher, and feature matcher filter that can be applied in the feature-

based vehicle tracking framework. The following codes show the configuration used in the 

experiments. 

  /* 
  "FAST"       – FastFeatureDetector 
  "STAR"       – StarFeatureDetector 
  "SIFT"       – SIFT (nonfree module) 
  "SURF"       – SURF (nonfree module) 
  "ORB"        – ORB 
  "BRISK"      – BRISK 
  "MSER"       – MSER 
  "GFTT"       – GoodFeaturesToTrackDetector 
  "HARRIS"     – GoodFeaturesToTrackDetector with Harris detector 

enabled 
  "Dense"      – DenseFeatureDetector 
  "SimpleBlob" – SimpleBlobDetector 
  */ 
const string detector_type = "SURF"; 
 

  /* 
  "SIFT"  – SIFT 
  "SURF"  – SURF 
  "BRIEF" – BriefDescriptorExtractor 
  "BRISK" – BRISK 
  "ORB"   – ORB 
  "FREAK" – FREAK 
  */ 
const string descriptor_type = "SURF"; 
 

  /* 
  "BruteForce" (it uses L2) 
  "BruteForce-L1" 
  "BruteForce-Hamming" 
  "BruteForce-Hamming(2)" 
  "FlannBased" 
  */ 
const string matcher_type = "FlannBased"; 
 

  /* 
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  0 - NoneFilter 
  1 - CrossCheckFilter 
  */ 
const int matcher_filter_type = 1;  
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APPENDIX C DESIGN OF THE CONVNET FOR 

VEHICLE DETECTION 

Appendix C provides the information of the ConvNet designed for vehicle detection in the 

PSS dataset using Caffe. Three design files (.prototxt) of the network are shown in this 

appendix. Weights (.caffemodel) of the network are not included in this appendix. 

 vehicleDetectorSolver.prototxt is the configuration file used to determine how the 

network is trained. 

test_iter: 200 

test_interval: 1000 

base_lr: 0.005 

display: 20 

max_iter: 4000 

lr_policy: "step" 

gamma: 0.1 

momentum: 0.9 

weight_decay: 0.0005 

stepsize: 1000 

snapshot: 1000 

snapshot_prefix: "vehicle_detector_train" 

solver_mode: GPU 

net: "detectorNetTraining.prototxt" 
 

 detectorNetTraining.prototxt is the model definition file used to determine the 

architecture of the network for training. 

name: "VehicleDetectorNetTraining" 

layer { 

  name: "data" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    scale: 0.00390625 
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    mirror: false 

    crop_size: 0 

    mean_value: 139.569 

    mean_value: 132.106 

    mean_value: 130.663 

  } 

  data_param { 

    source: 

"/local_scratch/pbs.7461837.pbs02/vehicleTracking/build/src/caffe/train

.leveldb" 

    batch_size: 256 

  } 

} 

layer { 

  name: "data" 

  type: "Data" 

  top: "data" 

  top: "label" 

  include { 

    phase: TEST 

  } 

  transform_param { 

    scale: 0.00390625 

    mirror: false 

    crop_size: 0 

    mean_value: 139.569 

    mean_value: 132.106 

    mean_value: 130.663 

  } 

  data_param { 

    source: 

"/local_scratch/pbs.7461837.pbs02/vehicleTracking/build/src/caffe/test.

leveldb" 

    batch_size: 256 

  } 

} 

layer { 

  name: "conv1" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv1" 

  param { 

    lr_mult: 1.0 

    decay_mult: 1.0 

  } 

  param { 

    lr_mult: 2.0 

    decay_mult: 0.0 

  } 

  convolution_param { 

    num_output: 25 

    pad: 3 

    kernel_size: 7 

    stride: 1 
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    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool1" 

  type: "Pooling" 

  bottom: "conv1" 

  top: "pool1" 

  pooling_param { 

    pool: MAX 

    kernel_size: 3 

    stride: 1 

    pad: 1 

  } 

} 

layer { 

  name: "conv2" 

  type: "Convolution" 

  bottom: "pool1" 

  top: "conv2" 

  param { 

    lr_mult: 1.0 

    decay_mult: 1.0 

  } 

  param { 

    lr_mult: 2.0 

    decay_mult: 0.0 

  } 

  convolution_param { 

    num_output: 50 

    pad: 2 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool2" 

  type: "Pooling" 

  bottom: "conv2" 

  top: "pool2" 

  pooling_param { 

    pool: MAX 

    kernel_size: 4 
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    stride: 2 

  } 

} 

layer { 

  name: "fc1" 

  type: "InnerProduct" 

  bottom: "pool2" 

  top: "fc1" 

  inner_product_param { 

    num_output: 100 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "relu1" 

  type: "ReLU" 

  bottom: "fc1" 

  top: "fc1" 

} 

layer { 

  name: "fc2" 

  type: "InnerProduct" 

  bottom: "fc1" 

  top: "fc2" 

  inner_product_param { 

    num_output: 2 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "relu2" 

  type: "ReLU" 

  bottom: "fc2" 

  top: "fc2" 

} 

layer { 

  name: "accuracy" 

  type: "Accuracy" 

  bottom: "fc2" 

  bottom: "label" 

  top: "accuracy" 

  include { 

    phase: TEST 

  } 
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} 

layer { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "fc2" 

  bottom: "label" 

  top: "loss" 

} 

 detectorNetDeploy.prototxt is the deployment file used to determine the 

architecture of trained network for deployment. 

name: "VehicleDetectorNetDeploy" 

layer { 

  name: "memData" 

  type: "MemoryData" 

  top: "data" 

  top: "label" 

  transform_param { 

    scale: 0.00390625 

    mirror: false 

    crop_size: 0 

    mean_value: 139.569 

    mean_value: 132.106 

    mean_value: 130.663 

  } 

  memory_data_param { 

    batch_size: 1 

    channels: 3 

    height: 100 

    width: 100 

  } 

} 

layer { 

  name: "conv1" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv1" 

  param { 

    lr_mult: 1.0 

    decay_mult: 1.0 

  } 

  param { 

    lr_mult: 2.0 

    decay_mult: 0.0 

  } 

  convolution_param { 

    num_output: 25 

    pad: 3 

    kernel_size: 7 

    stride: 1 

    weight_filler { 
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      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool1" 

  type: "Pooling" 

  bottom: "conv1" 

  top: "pool1" 

  pooling_param { 

    pool: MAX 

    kernel_size: 3 

    stride: 1 

    pad: 1 

  } 

} 

layer { 

  name: "conv2" 

  type: "Convolution" 

  bottom: "pool1" 

  top: "conv2" 

  param { 

    lr_mult: 1.0 

    decay_mult: 1.0 

  } 

  param { 

    lr_mult: 2.0 

    decay_mult: 0.0 

  } 

  convolution_param { 

    num_output: 50 

    pad: 2 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "pool2" 

  type: "Pooling" 

  bottom: "conv2" 

  top: "pool2" 

  pooling_param { 

    pool: MAX 

    kernel_size: 4 

    stride: 2 
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  } 

} 

layer { 

  name: "fc1" 

  type: "InnerProduct" 

  bottom: "pool2" 

  top: "fc1" 

  inner_product_param { 

    num_output: 100 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "relu1" 

  type: "ReLU" 

  bottom: "fc1" 

  top: "fc1" 

} 

layer { 

  name: "fc2" 

  type: "InnerProduct" 

  bottom: "fc1" 

  top: "fc2" 

  inner_product_param { 

    num_output: 2 

    weight_filler { 

      type: "xavier" 

    } 

    bias_filler { 

      type: "constant" 

    } 

  } 

} 

layer { 

  name: "relu2" 

  type: "ReLU" 

  bottom: "fc2" 

  top: "fc2" 

}  
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APPENDIX D SYNTHETIC VEHICLE DETECTION 

DATA 

Appendix D provides the detailed information about synthetic vehicle detection data. 

 The CNN module outputs kinematics vehicle detection data, which consists of two 

variables: frame index and location of the detected vehicle. The kinematics model in MHT 

module only requires these two variables to track vehicles. The kinematics vector consists 

of 4 elements:  

 x and y positions, which are provided by the kinematics vehicle detection data; 

 x and y velocities, which can be easily computed by differencing x and y positions. 

 The appearance vector, which consists of a flexible number of float values, is the 

description of an image patch. The image patch of a detected vehicle can be created with 

the location of the detected vehicle and the aerial imagery. A trained ConvNet can process 

the image patch and encode it into the form of appearance vector as the description of the 

image patch. 

 VISSIM can record a variety of vehicle information generated during simulation. 

To establish reliable synthetic data for those specific requirements of the experiments, 

several types of simulation data were selected for recording vehicle information. An 

example of output vehicle record is shown: 



103 

 

Vehicle Record 

 

File:     c:\users\xiz\desktop\mht\1 lane divided\1 lane divided.inp 

Comment:   

Date:     Monday, August 01, 2016 11:01:24 AM 

VISSIM:   5.40-08 [38878] 

 

t       : Simulation Time [s] 

tTot    : Total Time in Network [s] 

VehNr   : Number of the Vehicle 

Type    : Number of the Vehicle Type 

WorldX  : World coordinate x (vehicle front end at the end of the simulation step) 

WorldY  : World coordinate y (vehicle front end at the end of the simulation step) 

WorldZ  : World coordinate z (vehicle front end at the end of the simulation step) 

RWorldX : World coordinate x (vehicle rear end at the end of the time step) 

RWorldY : World coordinate y (vehicle rear end at the end of the time step) 

RWorldZ : World coordinate z (vehicle rear end at the end of the time step) 

 

      t; tTot;     VehNr; Type;    WorldX;    WorldY;    WorldZ;   RWorldX;   RWorldY;   RWorldZ;  

    4.4;    0;         1;  100; 1706.0531;  107.7911;    0.0000; 1710.4531;  107.7915;    0.0000;  

    4.6;    0;         1;  100; 1703.1693;  107.7909;    0.0000; 1707.5693;  107.7913;    0.0000;  

    4.8;    0;         1;  100; 1700.2725;  107.7907;    0.0000; 1704.6725;  107.7910;    0.0000;  

    5.0;    0;         1;  100; 1697.3626;  107.7905;    0.0000; 1701.7626;  107.7908;    0.0000;  

    5.2;    0;         1;  100; 1694.4396;  107.7903;    0.0000; 1698.8396;  107.7906;    0.0000;  

    5.4;    0;         2;  100;  100.1276;   99.9451;    0.0000;   95.3676;   99.9447;    0.0000;  

    5.4;    0;         1;  100; 1691.5036;  107.7900;    0.0000; 1695.9036;  107.7904;    0.0000;  

    5.6;    0;         2;  100;  102.9705;   99.9453;    0.0000;   98.2105;   99.9449;    0.0000;  

    5.6;    0;         1;  100; 1688.5545;  107.7898;    0.0000; 1692.9545;  107.7901;    0.0000;  

    5.8;    0;         2;  100;  105.8259;   99.9455;    0.0000;  101.0659;   99.9451;    0.0000;  

    5.8;    0;         1;  100; 1685.5976;  107.7896;    0.0000; 1689.9976;  107.7899;    0.0000;  

    6.0;    0;         2;  100;  108.6940;   99.9458;    0.0000;  103.9340;   99.9454;    0.0000;  

    6.0;    0;         1;  100; 1682.6420;  107.7894;    0.0000; 1687.0420;  107.7897;    0.0000;  

    6.2;    0;         2;  100;  111.5746;   99.9460;    0.0000;  106.8146;   99.9456;    0.0000;  

    6.2;    0;         1;  100; 1679.6957;  107.7891;    0.0000; 1684.0957;  107.7895;    0.0000;  

    6.4;    0;         2;  100;  114.4678;   99.9462;    0.0000;  109.7078;   99.9459;    0.0000;  

    6.4;    0;         1;  100; 1676.7625;  107.7889;    0.0000; 1681.1625;  107.7892;    0.0000;  

    6.6;    0;         2;  100;  117.3735;   99.9465;    0.0000;  112.6135;   99.9461;    0.0000;  

    6.6;    0;         1;  100; 1673.8423;  107.7887;    0.0000; 1678.2423;  107.7890;    0.0000;  

    6.8;    0;         3;  100;   99.6792;   99.9450;    0.0000;   94.9192;   99.9446;    0.0000;  

    6.8;    0;         2;  100;  120.2918;   99.9467;    0.0000;  115.5318;   99.9463;    0.0000;  

    6.8;    0;         1;  100; 1670.9351;  107.7885;    0.0000; 1675.3351;  107.7888;    0.0000;  

    7.0;    0;         3;  100;  102.5578;   99.9453;    0.0000;   97.7978;   99.9449;    0.0000;  

    7.0;    0;         2;  100;  123.2227;   99.9470;    0.0000;  118.4627;   99.9466;    0.0000;  

    7.0;    0;         1;  100; 1668.0411;  107.7882;    0.0000; 1672.4411;  107.7886;    0.0000;  

    7.2;    0;         3;  100;  105.4335;   99.9455;    0.0000;  100.6735;   99.9451;    0.0000;  

    7.2;    0;         2;  100;  126.1661;   99.9472;    0.0000;  121.4061;   99.9468;    0.0000;  

    7.2;    0;         1;  100; 1665.1601;  107.7880;    0.0000; 1669.5601;  107.7884;    0.0000;  

    7.4;    0;         3;  100;  108.3064;   99.9457;    0.0000;  103.5464;   99.9453;    0.0000;  

    7.4;    0;         2;  100;  129.1222;   99.9474;    0.0000;  124.3622;   99.9471;    0.0000;  

    7.4;    0;         1;  100; 1662.2921;  107.7878;    0.0000; 1666.6921;  107.7881;    0.0000;  

    7.6;    0;         3;  100;  111.1766;   99.9460;    0.0000;  106.4166;   99.9456;    0.0000;  

    7.6;    0;         2;  100;  132.0907;   99.9477;    0.0000;  127.3308;   99.9473;    0.0000;  

    7.6;    0;         1;  100; 1659.4372;  107.7876;    0.0000; 1663.8372;  107.7879;    0.0000;  

    7.8;    0;         3;  100;  114.0441;   99.9462;    0.0000;  109.2841;   99.9458;    0.0000;  

    7.8;    0;         2;  100;  135.0719;   99.9479;    0.0000;  130.3119;   99.9475;    0.0000;  

    7.8;    0;         1;  100; 1656.5954;  107.7874;    0.0000; 1660.9954;  107.7877;    0.0000;  

    8.0;    0;         3;  100;  116.9091;   99.9464;    0.0000;  112.1491;   99.9461;    0.0000;  

    8.0;    0;         2;  100;  138.0606;   99.9482;    0.0000;  133.3006;   99.9478;    0.0000;  

    8.0;    0;         1;  100; 1653.7666;  107.7872;    0.0000; 1658.1666;  107.7875;    0.0000;  

    8.2;    0;         3;  100;  119.7717;   99.9467;    0.0000;  115.0117;   99.9463;    0.0000;  

    8.2;    0;         2;  100;  141.0478;   99.9484;    0.0000;  136.2878;   99.9480;    0.0000;  

    8.2;    0;         1;  100; 1650.9509;  107.7869;    0.0000; 1655.3509;  107.7873;    0.0000;  

    8.4;    0;         3;  100;  122.6293;   99.9469;    0.0000;  117.8693;   99.9465;    0.0000;  

    8.4;    0;         2;  100;  144.0260;   99.9487;    0.0000;  139.2660;   99.9483;    0.0000;  

    8.4;    0;         1;  100; 1648.1483;  107.7867;    0.0000; 1652.5483;  107.7871;    0.0000;  

    8.6;    0;         3;  100;  125.4757;   99.9471;    0.0000;  120.7157;   99.9468;    0.0000;  

    8.6;    0;         2;  100;  146.9916;   99.9489;    0.0000;  142.2316;   99.9485;    0.0000;  

    8.6;    0;         1;  100; 1645.3587;  107.7865;    0.0000; 1649.7587;  107.7869;    0.0000;  

    8.8;    0;         4;  100;  101.0277;   99.9451;    0.0000;   96.4177;   99.9448;    0.0000;  

    8.8;    0;         3;  100;  128.3076;   99.9474;    0.0000;  123.5476;   99.9470;    0.0000;  

    8.8;    0;         2;  100;  149.9446;   99.9492;    0.0000;  145.1846;   99.9488;    0.0000;  

    8.8;    0;         1;  100; 1642.5770;  107.7863;    0.0000; 1646.9770;  107.7866;    0.0000;  

    9.0;    0;         4;  100;  103.9084;   99.9454;    0.0000;   99.2984;   99.9450;    0.0000;  

    9.0;    0;         3;  100;  131.1250;   99.9476;    0.0000;  126.3650;   99.9472;    0.0000;  

    9.0;    0;         2;  100;  152.8851;   99.9494;    0.0000;  148.1251;   99.9490;    0.0000;  

    9.0;    0;         1;  100; 1639.7938;  107.7861;    0.0000; 1644.1938;  107.7864;    0.0000;  

    9.2;    0;         4;  100;  106.7890;   99.9456;    0.0000;  102.1790;   99.9452;    0.0000;  

    9.2;    0;         3;  100;  133.9282;   99.9478;    0.0000;  129.1682;   99.9474;    0.0000;  

    9.2;    0;         2;  100;  155.8130;   99.9496;    0.0000;  151.0530;   99.9492;    0.0000;  

    9.2;    0;         1;  100; 1637.0015;  107.7859;    0.0000; 1641.4015;  107.7862;    0.0000;  

    9.4;    0;         4;  100;  109.6692;   99.9458;    0.0000;  105.0592;   99.9455;    0.0000;    
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 The information contained in vehicle record can provide the frame index and 

location for each individual simulated vehicle: 

 the frame index can be created by the simulation time; 

 the location of a simulated vehicle can be calculated by the location of vehicle front 

and rear. 

Besides, vehicle record also contains number of vehicle, which can provide the ground 

truth information for reliable evaluation. Total time in network and vehicle type were not 

used in the experiments in this research but they can be potentially useful for testing and 

evaluation. 

 To generate appearance information in synthetic vehicle detection data, a vector of 

float values was appended to each vehicle detection record as its appearance information. 

The vector length can be flexible based on detailed implementation, and 5 was used in 

these experiments. 10 classifications were defined for the fact that many vehicles have 

similar appearance, and then corresponding appearance vectors were attached in the 

synthetic data. A uniformly distributed random float number within the range from -1 to -

1 was initialized in each element in the appearance vector to define the appearance of the 

vehicle. The appearance variation following a normal distribution with a mean of 0 and a 

standard deviation of 0.1 was added to each element in the appearance vector to simulate 

the instability of the appearance of the same vehicle in different frames. Additionally, the 

measurement noise following a normal distribution with a mean of 0 and a standard 
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deviation of 0.3 was added to each element in the appearance vector to simulate the 

detection inaccuracy. The implementation is shown: 

# create 10 random 5 element vectors to represent typical car types: 

appearanceVecLen = 5 

numberCarModels = 10 

 

appearanceVecLow = -1.0 

appearanceVecHigh = 1.0 

 

carModels = [] 

for i in range(numberCarModels): 

    carModels.append(np.random.uniform(appearanceVecLow, 

appearanceVecHigh, appearanceVecLen)) 

 

# generate samples 

carVariationStdDev = 0.1 

measurmentStdDev = 0.3 

vehicles = {} 

 

# generates a sample given a car index: 

def getAppModel(vId): 

    if not vId in vehicles: 

        modelId = np.random.randint(numberCarModels) 

        vehicles[vId] = carModels[modelId] + np.random.normal(0, 

carVariationStdDev, appearanceVecLen) 

 

    return vehicles[vId] + np.random.normal(0, measurmentStdDev, 

appearanceVecLen) 

 To generate the detection noise caused by the inaccuracy of the detector, false 

positive were created by randomly adding detections near existing the ground truth from 

synthetic vehicle detection data, and the same percentage of false negative were created by 

randomly removing ground truth from the detection data. The implantation is shown: 

public void addFalsePositives(Map<Double, List<Detection>> allFrames, 

int numberToAdd) { 

  List<List<Detection>> allFramesList = new 

ArrayList<List<Detection>>(allFrames.values()); 

  for (int i = 0; i < numberToAdd; i++) { 

    List<Detection> randFrame = allFramesList.get( 

        ThreadLocalRandom.current().nextInt(allFrames.size())); 

    Detection randDetection = randFrame.get( 

        ThreadLocalRandom.current().nextInt(randFrame.size())); 
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    double randDirection = ThreadLocalRandom.current() 

        .nextDouble(2.0*Math.PI); 

    double randDistance = ThreadLocalRandom.current() 

        .nextDouble(4.0, 24.0)*.3048; 

    Detection fp = new Detection(); 

    fp.x = randDetection.x +  

        Math.cos(randDirection)*randDistance; 

    fp.y = randDetection.y +  

        Math.sin(randDirection)*randDistance; 

    fp.vehicleNumber = -1; 

    fp.vehicleType = -1; 

    fp.t = randDetection.t; 

    if (this.appearanceVectorLength > 0) { 

      Detection randDetection2 = randFrame.get( 

          ThreadLocalRandom.current().nextInt(randFrame.size())); 

      fp.appearance = randDetection2.appearance.clone(); 

    } 

    allFrames.get(fp.t).add(fp); 

  } 

} 

 

public void addFalseNegatives(Map<Double, List<Detection>> allFrames, 

int numberToRemove) { 

  List<List<Detection>> allFramesList = new 

ArrayList<List<Detection>>(allFrames.values()); 

  while (numberToRemove > 0) { 

    List<Detection> randFrame = allFramesList.get( 

        ThreadLocalRandom.current().nextInt(allFrames.size())); 

    if (randFrame.size() <= 0) 

      continue; 

    int randDetectionIdx =  

        ThreadLocalRandom.current().nextInt(randFrame.size()); 

    Detection randDetection = randFrame.get(randDetectionIdx); 

    if (randDetection.vehicleNumber >= 0) { 

      randFrame.remove(randDetectionIdx); 

      numberToRemove--; 

    } 

  } 

} 
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