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ABSTRACT 

The Bicycle Sharing System (BSS), a public service system operated by the 

government or a private company, provides the convenient use of a bicycle as a 

temporary method of transportation. More specifically, this system allows people to rent 

a bike from one location, use it for a short time period and then return it to either to the 

same or a different location for an inexpensive fee. With the development of IT 

technology in the 1990s, it became possible to balance the bicycle inventory among the 

various destinations. In fact, a critical aspect to maintaining a satisfactory BSS is 

effectively rebalancing bicycle inventory across the various stations. In this research, we 

focus on the static bicycle repositioning problem with a single vehicle which is abstracted 

from the operation issue in the bicycle sharing system. The mathematical model for the 

static bicycle reposition problem had been created and several variations had been 

analyzed. This research starts to solve the problem from a very restrictive and constrained 

model and relaxes the constraints step by step to approach the real world case scenario. 

Several realistic assumptions have been considered in our research, such as a limited 

working time horizon, multiple visit limitation for the same station, multiple trips used 

for the vehicle, etc. In this research, we use the variable neighborhood search heuristic 

algorithm as the basic structure to find the solution for the static bicycle reposition 

problem. The numeric results indicate that our algorithms can provide good quality result 

within short solving time. By solving such a problem well, in comparison to benchmark 

algorithms, this research provides a starting place for dynamic bicycle repositioning and 

multiple vehicle repositioning. 
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CHAPTER ONE 

INTRODUCTION 

The Bicycle Sharing System (BSS), a public service system operated by the 

government or a private company, provides the convenient use of a bicycle as a 

temporary method of transportation. More specifically, this system allows people to rent 

a bike from one location, use it for a short time period and then return it to either to the 

same or a different location for an inexpensive fee.  It has been in use for several decades, 

the earliest on record in Amsterdam in 1965 (Shaheen and Guzman, 2011) where 

approximately fifty white bicycles were placed around the inner city for use for free. 

Because many of these bicycles were stolen or became damaged, this bicycle sharing 

system, called the White Bikes, was terminated shortly after it was initiated.  This free 

BSS, referred to as the first generation bicycle sharing system, was replaced with a 

second generation which implemented changes to prevent theft and damage. The first 

organized large-scale BBS, the Bycykler København, which involved one thousand 

bicycles and began in Copenhagen, Denmark, in 1995 (Shaheen et al., 2010), represents a 

typical 2nd generation BSS. With a refundable deposit, a specially designed bike with 

non-standard parts, and fixed stations and lockers, the Bycykler København reduced the 

theft of and damage to the bicycles and is still in operation today.   

With the development of IT technology in the 1990s, the 3rd generation BSS 

integrated the smart card and other technology into the system, offering such new options 

as the collection of real-time information about the operator and the station. In addition, 

using this technology, it became possible to balance the bicycle inventory among the 
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various destinations. The latest generation, the fourth, of the BSS system, integrated 

advanced information system and network technology as well as GPS tracking and real-

time mobile communication technology. As a result, the centralized control center has 

real-time data on the status of the station as well as the capability to track the location of 

each bicycle and to send this information to an interested customer through an internet 

connection or a mobile device. All of this new technology integrates the bicycle sharing 

system more fully, enhancing its usability in today’s society.     

In addition to this low-cost, short-distance transportation service, the BSS brings 

other benefits to the public. Daily commuters can save the time and the stress of traveling 

through congested traffic and avoid the pressure and cost of finding parking. In addition, 

those using this service for short-distance travel can enjoy the benefits of physical 

exercise. Further, tourists can enjoy the city without having to deal with multiple bus 

transfers, taxi fares and sore feet. Finally, the public is subjected to fewer traffic jams, 

less pollution and improved air quality.  

Since the BSS not only provides individual users with a convenient, affordable 

mode of transportation but also can benefit the city and the public, this system is 

becoming increasingly more popular in modern cities as evidenced by the number of such 

systems that have been implemented around the world. According to Larsen (2013), in 

April 2013, more than 500 cities in 49 countries have BSS’s. Even though the BSS is 

based on self-service, it requires significant routine maintenance for the system to run 

smoothly, including regular equipment and bicycle checks and repairs. Of these various 

maintenance jobs, perhaps the most important is to balance the available bicycles among 
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the different rental stations, especially critical as it impacts customer satisfaction. An 

empty station prevents a customer from renting a bike, while at the same time; a full 

station blocks a customer from returning one. According to the research conducted by 

Shaheen and Guzman (2011), most BSS complaints are triggered by the unavailability of 

bicycles and/or the unavailability of vacant lockers at a destination.  

The number of bikes at each station should be maintained at a certain level. 

Usually, the process of rebalancing the number of bicycles is done using a fleet of 

vehicles to move bicycles among stations. In general, this bike repositioning problem can 

be classified as either static or dynamic. The dynamic balancing problem refers to the 

balancing process that occurs when the system is in operation and the number of bicycles 

at any given station may change significantly, affecting the need for and the result of a 

repositioning process. This type of problem, referred to as the dynamic bicycle 

repositioning problem (DBRP). The static balancing problem refers to the night 

repositioning operation. Since during the night, the number of bikes at each station either 

remains the same or experiences only small changes, it does not affect the result of the 

repositioning event. This type of repositioning problem, referred to as the static bicycle 

repositioning problem (SBRP), is the focus of this research. 
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CHAPTER TWO 

LITERATURE REVIEW 

 
The static bicycle rebalancing problem, the topic of this research, is an aspect of 

the vehicle routing problem with pickup and delivery (VRPPD). An extension of the 

classic vehicle routing problem (VRP), VRPPD has been investigated from many 

perspectives; review papers, such as those by Berbeglia et al. (2007) and Parragh, 

Doerner, and Hartl (2008), provide summaries of this research.  The VRPPD involves 

three types, the first one being the One-to-Many-to-One (1–M–1) problem. In this type, 

the commodities are delivered from one depot to many customers and then are collected 

from the customers and delivered back to the depot, a problem similar to the classic VRP. 

Real-world scenarios exemplifying this problem include the soft drink delivery problem, 

new and used appliances delivery / collection problem, and the full and empty pallets 

delivery problem. The second type of the VRPPD is the One-to-One (1–1) problem in 

which each commodity has a specified origination and destination. The situations 

researched concerning this type include the courier service problem, the less than a 

truckload transportation problem, the maritime shipping problem, and the dial-a-ride 

problem.  In the third type, the Many-to-Many (M-M) problem, each commodity may 

have multiple originations and destinations, each location in the system can be the 

origination or the destination, or both situations can be present simultaneously. This type 

includes several variants such as the SWAP problem, the K-delivery problem, and the 1-

commondity pickup and delivery problem.  The static bicycle rebalancing problem 

(SBRP) investigated is the latter, a 1-commondity pickup and delivery problem. 
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Previous research primarily used two general approaches (models) to address the 

SBRP problem, the first solving it with the classic traveling salesman problem with 

pickup and delivery, an approach that includes a visiting limitation in the model. The key 

feature of this approach is that the entire pickup / delivery event for each station is limited 

to at most one visit. The second approach, an extended model of the first with more 

realistic assumptions, relaxes the visiting limitation by allowing the same station to be 

visited multiple times throughout the route.  When one or more stations are large and the 

number of bikes requiring delivery or pickup exceeds the vehicle capacity, a station’s 

inventory cannot be repositioned to the target station in only one visit. If repositioning 

each station to its target inventory level is a hard constraint, it may not even be possible 

to provide a feasible solution using the first approach. While the second approach is more 

realistic than the first, the realistic assumption makes it more complex from both the 

modeling and resolving perspective. On the other hand, even though the first approach 

includes unrealistic assumptions, it has the advantage of being well researched and many 

inequalities and methodologies can be applied directly.  

Hernández-Pérez & Salazar-González (2004a) first proposed the one-commodity 

pickup-and-delivery traveling salesman problem (1-PDTSP), extending the classic TSP 

problem by considering both pickup and delivery customers. Their objective was to 

determine the most cost-effect solution by visiting the depot and each customer once and 

once only while at the same time collecting all commodities from the pickup customer 

and satisfying all requests from the delivery customers. They proposed a branch-and-cut 

algorithm to solve this problem.  In a subsequent study, they (2004b) refined their 
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research, developing two heuristic algorithms to address this problem with up to 500 

customers in the system.  Extending this research further, Hernández-Pérez & Salazar-

González (2010) found a close relationship between the 1-PDTSP and the Capacitated 

Vehicle Routing Problem and applied the inequalities recently developed for the 1-

PDTSP problem with the branch-and-cut framework, successfully solving this 1-PDTSP 

problem with more than 100 customers optimally. 

Because of the lack of realism in the first approach to the SBRP problem, 

Benchimol et al. (2011) proposed a second approach in their research,  providing an 

integer programming model that defined a static rebalancing problem referred to as the 

single vehicle one-commodity capacitated pickup and delivery problem. This problem 

considers the network as built on one complete graph, with the depot being a special 

vertex representing the garage or parking lots of the operation vehicles. All routes start 

and end at this location, with every other vertex in the network being a bike rental station 

where consumers can rent or return a bike. Only one capacitated vehicle is used to 

redistribute the bikes among the various stations, each having a target number. The 

objective is to find the most cost-effect route for achieving the target number at all 

stations.  However, unlike for the classic TSP problem, the vehicle route can visit the 

same station multiple times. 

Chemla, Meunier, and Calvo (2013) investigated  the problem proposed in 

Benchimol et al. (2011)’s research, providing an exact mathematical model including the  

relaxations for the algorithm. An upper bound of the optimal solution for the problem is 

obtained through a Tabu search that only considers the visiting order in the solution and 
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obtains the loading instructions using an auxiliary algorithm which reduces the search 

space significantly. The research reported here provides an auxiliary algorithm based on 

the max flow problem to find the optimal bicycle loading / unloading quantity for each 

station of a given routing sequence. It appears to be the first research to implement a 

heuristic method to solve the SBRP problem. 

More recently, Rainer-Harbach, Papazek, Hu, and Raidl (2013) extended the 

model proposed by Chemla et al. (2013). However, in contrast to the  solution proposed 

by Benchimol et al. (2011) and Chemla et al. (2013), multiple vehicles with different 

capacities are used to balance bikes among the various stations, with the vehicles in the 

fleet beginning and ending at separate locations with no storage space for bikes. Each 

vehicle has a fixed capacity and a total time limitation for the operation, e.g. work shift 

length.  An additional improvement included in this research was the relaxation of the 

system balancing constraint. Unlike in previous work, the system balancing was not a 

hard constraint in this paper; rather any deviation from the target number was considered 

as an input for a penalty function, its objective being to minimize the combination of 

these 3 aspects: (1) the total deviation from the target number at each location, (2) the 

total number of handled bikes (total loaded/unloaded), and (3) the total operation time 

which is linear related to vehicle operational cost. This relaxation of the station target 

status constraint expands the solution space for the SBRP problem, bringing the solution 

closer to the real-world situation.  Further, it can also help the first approach provide a 

feasible solution when the SBRP problem includes such special cases as the station’s 

pickup / delivery quantity is larger than the vehicle capacity. Furthermore, this research 
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provided a general structure for solving the SBRP problem, proposing a two-step strategy 

to decompose its complexity of the problem.  It first creates the vehicle routing schedule, 

then uses the integer programming model to solve the loading / unloading plan for each 

station visited based on the vehicle routing schedule generated in the first step. This 

method addresses the complexity of the overall problem by solving two smaller ones in 

sequence. 

In further research, Raidl, Hu, Rainer-Harbach, Papazek (2013) improved  the 

second step of their initial strategy, which was based on the integer programming model, 

a time-consuming process. In this more recent research, they provided a new, more 

efficient method for calculating the optimal loading operations based on two maximum 

flow computations. The result of their computations supported their new algorithm, 

reducing the time needed significantly.   

Raviv, Tzur, and Forma (2013) used a general model approach, proposing a two 

mixed integer programming (MIP) formulation. Both MIP formulations use the total 

operation cost as the objective. The first MIP formulation, the arc-index formulation, was 

constrained by the number to times a station could be visited per trip as in the first 

approach, while the second MIP formulation, the time-index formulation, was constructed 

without any visiting limitations as in the second approach. Several inequalities and 

dominance rules were applied in these 2 models, ones that solved both MIP models with 

CPLEX. The computational results found that typically the arc-index formulation can 

yield a solution with better solution (i.e. smaller objective) than time-index formulation in 

2 hours running time even though the arc-index formulation has smaller feasible set of 
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solution; however, the time-index formulation was found to have a better solution than 

the arc-index formulation when given a longer running time.  

In more recent research, Li et al. (2016) developed a model considering multiple 

types of bicycles in the system. In their research, each station had specific lockers for the 

different types of bicycles, whereas other studies did not include this constraint, allowing 

any type of bicycle to occupy any empty locker.  In addition, they introduced two types 

of strategies, substitution and occupancy. The substitution strategy allowed users to rent a 

substitute type of bicycle when the type they requested was out of stock, while the 

occupancy strategy allowed the users to return the bicycle to a substitutable locker type. 

Their model, based on the first SBRP model with a station visit limitation constraint, 

includes a traveling and penalty costs for each station. They also used the 2-step method 

to solve the problem, first generating the vehicle route through a hybrid generic search, 

then using a greed heuristic algorithm to determine the loading operation at each station. 

Ho and Szeto (2014) implemented the station target status constraint relaxation in 

the Traveling Salesman Pickup and Delivery model (first structure model) and proposed 

an Integer Programming model and a heuristic algorithm for solving the problem for a 

single vehicle scenario, using  the classical Travel Salesman problem with delivery to 

solve it.  Applying the findings from Chemla et al. (2013),  it explicitly defined  the 

pickup and drop-off location based on the target number to reduce the solving time. In 

addition, while it used the penalty cost to replace the station target status constraint, in 

this research, this cost is the only component in the objective function, with neither 

routing cost nor total traveling time being included. By doing so, this problem attempts to 
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only find a feasible routing schedule and related loading / unloading plan at each station 

to meet the target inventory level without considering any operational costs.  This means 

that the proposed model cannot tell the difference between two solutions giving the same 

bicycle inventory level at each station even if their routing costs differ by a large margin.   

This research reported here focused on the static bicycle reposition problem with 

a single vehicle. According to Chemla et al. (2013), usually one district is covered by 

only one vehicle in the real world.  However, the multiple vehicle problems can be 

decomposed into a single vehicle problem through clustering. Furthermore, this research 

considered the SBRP problem using both the first and second approaches. 

The next chapter, Chapter 3, provides both the integer programming model and 

the heuristic algorithm for the problem proposed by Ho and Szeto (2014). In contrast to 

previous research, this research included both the routing and penalty costs in the 

objective function to enable finding the solution with the minimal operational cost. 

Furthermore, a new heuristic algorithm was developed to solve the problem. Even 

through this algorithm uses the two-step (routing first, loading assignment second) 

method to obtain the heuristic solution, it improves the method for solving the second 

step by using an auxiliary algorithm to find the loading / unloading plan for the routing 

schedule under consideration.  This improved auxiliary algorithm constructs a special 

graph and finds the shortest distance from its beginning to its end point, thus, resulting in 

determining the optimal operation plan for a given routing schedule. 

Chapter 4 uses the same basic single vehicle SBRP model but relaxes the station 

visiting constraint and vehicle routing trip limitation. In this new research, the vehicle can 
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use multiple trips (i.e. visit the depot multiple times) to complete the reposition event. 

Although the limitation that each station can be visited at most once each trip is kept, the 

same station is allowed to be visited multiple times in different trips. In other words, the 

station visiting limitation is partially relaxed, and each can be visited multiple times in 

one solution. A VNS-based 1-step heuristic algorithm is proposed to solve this problem. 

In contrast to the 2-step method, the 1-step algorithm can modify the vehicle routing 

schedule and the loading / unloading plan at the same time.  

In Chapter 5, the visiting limit constraint is further relaxed by being removed 

from the model. The vehicle can visit any station any number of times without any 

limitation. In addition, unlike previous research which allowed multiple station visits, this 

research also allowed multiple trips in the solution, meaning that the vehicle also can visit 

the depot as well as each station multiple times.  Furthermore, it used the 1-step method 

to solve the problem rather than the 2-step method. Based on our knowledge, this 

research is the first using a 1-step method for the multiple station visit SBRP problem. 
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CHAPTER THREE 

STATIC BICYCLE REPOSITION PROBLEM WITH SINGLE VEHICLE 

AND SINGLE TRIP  

 
 

One of the critical issues in BSS operation is balancing the bicycle inventory level 

among the various stations in the system. This static bicycle repositioning problem is an 

extension of the classic VRP problem with one commodity pickup and delivery. This 

chapter investigates this problem with a single vehicle with three restriction assumptions: 

the vehicle only can use one trip for the repositioning, meaning means it can visit the 

depot only twice, at the beginning and at the end; all the repositioning must be finished 

within the given time horizon, meaning no overtime is allowed, and each station can be 

visited at most once in the repositioning event to balance its bicycle inventory level. To 

solve the problem, this research provides a mathematical model for the abstracted 

problem and includes a variable neighborhood search algorithm that has been created to 

solve it. 

 

Introduction 

 

A bicycle sharing system in a city allows consumers to rent a bicycle from the 

system, use it for a short time period, and then return it to the system. All the bicycles 

used in the system are kept in stations at various locations across the city.  Each of these 

stations includes a centralized self-service machine for the renting and return of the 
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bicycles. Real-time information for each station, which is uploaded into the data center 

through this self-service machine, includes the detailed records for each bicycle and the 

stations, such as the number of available bicycles, the empty lockers, and the bicycle 

usage at each. The key to the success of this system is to ensure customers can rent / 

return a bicycle to the station when they want to. In other words, the bicycle inventory 

level at each station should keep a certain level, neither too full nor too empty, which can 

satisfy both the rent and return needs of the customers. Because of the unbalanced 

demand for rent and return at each station as well as other factors, the BSS system 

operator needs to manually rebalance the bicycle inventory level among the various 

stations to meet that target. This is the problem addressed in this research. 

 

Problem Description 

 

The BSS considered here refers to a self-service rental and return system for 

bicycles, one that allows consumers to rent a bicycle at any station in the system, use it 

for a short time or distance, and return it to any station in the system. These stations, 

which are located at various places in the city, have a constant number of fixed lockers 

for storing a specified number of bicycles at any given time.  The number of bicycles at 

each station is limited to the number of lockers, and a customer can rent a bicycle if there 

is at least one available in one of the lockers. Similarly, they also can return a bicycle 

when there is at least one vacant locker. Based on past research, two critical issues 

challenging the BSS system are (1) no bicycle is available at the station when the 
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customer wants to rent one and (2) no vacant locker is available when the customer wants 

to return one. Both of these issues generate customer dissatisfaction, and a few such 

disappointments might result in losing customers. Thus, for this system to run effectively, 

the operator needs to rebalance / reposition the number of bicycles at each station to 

avoid these two issues, the focus of the SBRP problem considered in this research. This 

repositioning process occurs at night when there is little or no activity to affect the 

repositioning process. The entire repositioning process needs to be finished within a 

given time horizon (e.g. 8 hours’ work schedule). For the purposes of this study, three 

additional constraints have been added to reduce the complexity of the problem: (1) 

during the repositioning process, each station can be visited no more than once; (2) only 

one vehicle is used for the repositioning event; (3) there is only one depot in the system, 

and it has unlimited bicycle inventory and storage space.  

 

Notation and Integer Programming Model 

 

This section abstracts the SBRP problem with mathematical notations. For 

clarification, vehicle is defined here as the transporter used to reposition bicycles among 

the various stations. The depot is defined as the parking lot or distribution center where 

the vehicle will be parked when it is not in operation. Based on this definition, this 

research specifies that all vehicle trips start or end at the depot. A station is the location 

where customers can rent or return bicycles. Even though the depot and the stations are 
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separated by definition, the depot location may be the same as one of the stations. The 

station capacity is defined as the total number of fixed lockers at that station. 

In contrast to the research conducted by Ho and Szeto (2014), this study 

incorporates several realistic considerations in the model. First, Ho and Szeto’s objective 

function considers only the penalty cost, which is the cost related to the difference 

between the numbers of bicycles after repositioning to the target value at each station. 

However, the daily operational costs, such as for fuel and labor, are not considered in 

their objective function. This research includes these operational costs in the objective 

function in order to obtain a more accurate estimate of the total cost. Second, Ho and 

Szeto (2014) use a Tabu search to solve the problem. While within the algorithm, the 

routing schedule for the vehicle is controlled by this search, the associated loading / 

unloading plan for each routing schedule are reassigned by a group of simple heuristics to 

adjust the previous existing loading / unloading plan to create a feasible one for the 

current routing schedule. To improve the second step of the heuristic algorithm, this 

research uses an auxiliary algorithm to find the optimal loading / unloading plan for each 

station for any given routing schedule. 

Based on the number of vehicles and the number of trips used in solving the 

problem, Ho and Szeto’s (2014) and this research can be defined as the one vehicle, one 

trip case (SBRP-11). Subsequent work may consider a one vehicle, multiple trip case 

(SBRP-1M), a multiple vehicle, one trip case (SBRP-M1), and / or a multiple vehicle, 

multiple trip case (SBRP-MM). 

Below are the notations used to describe the SBRP-11 problem. 
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Sets: 

N  : the set of all stations. {1,2,..., }N n= . 

0N : the set of all nodes, including both the stations and the depot. Since the routing both 

starts and ends at the depot 0, we define 0+  as start point, and 0−  as end point, meaning 

0 {0 ,0 ,1,2,..., }N n+ −=  

 
Parameters: 

b
il : the number of bicycles at station i before the repositioning event. 

is : the number of lockers installed at station i, a.k.a. the capacity of station i.  

it : the target number of bicycles planned to be located at station i.  

c :  the capacity of the vehicle. 

( )a
i ig I : the convex penalty function at station i with a

iI  bicycles remaining at the station 

after the repositioning event.  

ijd : the distance between node i and j. 

ije : the total travel time from node i to node j. 

ijf : the total cost to travel from node i to node j. 

h : the time horizon length for the whole repositioning event. 

α : the weight of the penalty cost in the objective function.  

β : the weight of the regular operational cost in the objective function. 

 
Decision variables: 
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ijX : 1 if the vehicle visits station j immediately after visiting station i, otherwise 0. 

ijQ : the number of bicycles carried on the vehicle when it travels from station i to station 

j. 

L
iQ : the number of bicycles loaded into the vehicle at station i. 

U
iQ : the number of bicycles unloaded from the vehicle at station i.  

iW : the sub-tour elimination variable for station i. 

a
iI :  the number of bicycles at station i after the repositioning process. 

 
Objective: 

Minimize   
0 0

( )a
i i ij ij

i N i N j N

g I f Xα β
∈ ∈ ∈

⋅ + ⋅ ⋅∑ ∑ ∑     (3.1) 

 

Subject to: 

a b U L
i i i iI l Q Q= + −    0i N∀ ∈     (3.2) 

0 0

L U
i i ij ji

j N j N

Q Q Q Q
∈ ∈

− = −∑ ∑   0i N∀ ∈     (3.3) 

0 0
L

j
j N

Q Q+ +

∈

= ∑          (3.4a) 

0
0UQ + =          (3.4b) 

0 0
U

i
i N

Q Q− −

∈

=∑          (3.5a) 

0
0LQ − =          (3.5b) 
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ij ijQ c X≤ ⋅     0 0,i N j N∀ ∈ ∀ ∈    (3.6) 

0
1

j
j N

X +

∈

=∑          (3.7) 

0
1

i
i N

X −

∈

=∑          (3.8) 

0 0

ij jl
i N l N

X X
∈ ∈

=∑ ∑    j N∀ ∈     (3.9) 

0

1ij
j N

x
∈

≤∑     i N∀ ∈     (3.10) 

0 0

L U
i i

i N i N
Q Q

∈ ∈

=∑ ∑         (3.11) 

0 0

ij ij
i N j N

e X h
∈ ∈

⋅ ≤∑ ∑         (3.12)  

( 1)i j ijW W n X n− + + ⋅ ≤   0, ,i j N i j∀ ∈ ≠    (3.13) 

{0,1}ijX ∈     0,i j N∀ ∈     (3.14) 

0,ijQ integer≥    0,i j N∀ ∈     (3.15) 

0L
iQ integer≥    0i N∀ ∈     (3.16) 

0U
iQ integer≥    0i N∀ ∈     (3.17) 

0iW integer≥    0i N∀ ∈     (3.18) 

0A
iI integer≥    0i N∀ ∈     (3.19) 
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The objective function (3.1) is defined as the sum of the penalty cost and regular 

operational cost for the SBRP repositioning event. Each category of cost is associated 

with a weight which can be scaled based on the priority between these two cost 

categories. 

Constraint set (3.2) defines the bicycle inventory level for each node after the 

repositioning event. The inventory level for each station node visited during a trip is 

equal to the initial inventory minus the number of bicycles picked up or the initial 

inventory plus the number of bicycles delivered.  For each station (except for the depot 

node), the vehicle stops at most once. Thus, the pickup and drop off event are exclusive, 

meaning only one event happens at a time. Based on the definition used here, the depot is 

divided into 2 points, depot start 0+  and depot end 0− , meaning constraint 3.2 is also 

applicable for these split depot points. 

Constraint sets (3.3~3.5) define the balancing of the flow of the delivery. For each 

station in the trip, the total loading/unloading bicycle number at the station equals the 

difference between the number of bicycles on the vehicle before entering and after 

leaving the station. As depot start 0+ is the beginning of the route, it will only load 

bicycles. On the same principle, depot end 0- will only unload bicycles.  

Constraint set (3.6) ensures that at any time during the repositioning event, the 

vehicle does not carry more bicycles than its capacity. 

Constraint sets (3.7~3.9) form the connection constraint, which ensures the trip is 

linked.  The trip must have the outflow from the depot, the inflow back to the depot and 

all other visits to the stations connected by the trip. 
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  Constraint set (3.10) ensures that each station will be visited at most once during 

the trip. 

Constraint set (3.11) defines the balancing of the numbers of bicycles loaded and 

unloaded.  During the repositioning event, the total number of bicycles loaded into the 

vehicle equals the total number of bicycles unloaded from the vehicle. 

Constraint set (3.12) defines the time limit for the total repositioning event. The 

total repositioning event should take no longer than h.  

The constraint set (3.13) eliminates any sub-tours in each trip, ensuring every trip 

includes the depot as the starting and ending point.  

The constraints (3.14~3.19) are the sign restrictions for the decision variables in 

this model. 

 

Limitation of the Integer Programming Model 

 

The SBRP problem is a NP hard problem, meaning solving it with Integer 

Programming models with large datasets is time-consuming. This section explores 

determining the capacity or tolerable limit for solving this problem with the proposed IP 

model. The formulated model is implemented in ILOG OPL find solutions within a 

specified time frame by applying the IP to a small set of data. Due to the complexity of 

the problem, it was anticipated that the IP could not find the explicit solution given 329 

stations and one depot, the typical size of a city BSS. 
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The testing instances are solved by a Dell notebook with an Intel Core i5-2520M 

CPU @ 2.5 GHz. The solution time using ILOG with 7, 8, 9 and 10 stations are shown in 

Table 3.1 : 

Table 3.1: Solving Time Using ILOG for Different Numbers of Stations  
 # of Stations 
 7  8 9 10  

Vehicle Capacity 8 10 10 20 10 20 10 20 
Time for solution ( in seconds) 88 103 2865 1858 1773 714 >24hrs >24hrs 

 
 

As this table shows, an increase in the number of stations results in a longer time needed 

to find the optimal solution. When the number of stations is more than 10, the running 

times are longer than 24 hours. In these cases, a different approach such as a new 

heuristic algorithm to determine the optimal routing solution is needed.  

 

Heuristic Algorithm 

 

As the previous analysis indicated, it is time-consuming to use optimization 

software such as CPLEX or GUROBI to solve the IP model for the SBRP problem 

involving more than 15 stations as in these cases, a feasible solution cannot be found 

within a reasonable amount of time (e.g. several hours). To address this issue, it is 

necessary to develop an efficient heuristic method to obtain the solutions. 

In this research, each station can be visited at most once during the entire 

repositioning process; however, fulfilling the station’s request was not maintained as a 

hard constraint, with the total number of bicycles picked up/dropped off being driven by 
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balancing the penalty function and the routing cost. For example, if one station exhibited 

a low penalty cost but was located far from the depot, the optimal solution might allow 

this station’s request to remain unfulfilled to reduce the total routing cost rather than 

reducing the total penalty cost. Because of such issues, using the routing schedule may 

not represent the solution to this problem as it not only includes the routing schedule for 

the vehicle but also the loading / unloading plan for each station visited. The heuristic 

algorithm for this research used the “routing first, loading assignment second” method to 

find the heuristic solution. Based on the VNS algorithm, one random routing schedule 

was generated by the algorithm, and then based on this schedule, the auxiliary algorithm 

generated a loading / unloading plan for each station visited.  

Similar to Ho and Szeto’s (2014) work, each solution in this research consisted of 

two parts: (1) a routing sequence, and (2) a loading / unloading plan based on the routing 

sequence generated. For clarification, the solution for this problem is defined as 

,x r a=< > , where r  represents the routing schedule and a  the loading / unloading plan 

for each station. For the routing sequence, 1 2( , ,..., )r r r rr= , where ir  is the station ID for 

the ith stop in the vehicle routing sequence, {0,1,..., }ir n∈ , based on the definition, 

1 0r rr= = ,  the routing sequence starts and ends at the depot. Since repositioning every 

station’s bicycle inventory to its target was not a hard constraint, the routing sequence 

does not have to cover every station in the network, meaning the length of the routing 

sequence, r , is not  fixed.  The loading / unloading plan for each station, referred to as 

the assignment sequence and applied only to the those having this event, is defined as 
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1 2( , ,..., )a a a ar= , where ia  is the loading / unloading bicycle quantity at station ir  in the 

ith stop position in the vehicle routing sequence and { ,..., }ia c c∈ − , where c is the capacity 

of the vehicle. The positive sign of ia  represents the loading of bicycles from the station 

into the vehicle while the negative sign represents the unloading of bicycles from the 

vehicle to the station. By definition, the assignment sequence is highly bonded with the 

routing sequence, meaning the combination of routing sequence and assignment sequence 

can be used to represent the solution 1 1, ( , ,..., , )x r a r a r ar r=< >= < > < > . The tuple 

,i ir a< > , {1,..., }i r∈  means the ith stop of vehicle route is station ir , and its loading or 

unloading bicycle number is ia  at this station. 

This research proposes a Variable Neighborhood Search (VNS) based heuristic 

algorithm in conjunction with an auxiliary algorithm to determine the solution for the 

SBRP problem. The algorithm will first determine the vehicle routing schedule, and then 

generate an assignment plan for each station visited in this schedule. The following 

sections detail both of these algorithms. 

 

Initial Solution Construction 

 

The initial solution is the starting point for the VNS algorithm. A good initial 

solution, one close to the optimal solution, can help the algorithm reduce the solving 

time, meaning the quality of the one selected will affect the performance of the algorithm.  

Since this research is looking for the optimal global solution with no knowledge of where 
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it is in the solution space, finding a good quality initial solution is a challenge. In general, 

two basic rules guide the selection of the initial solution: (1) randomness, which ensures 

that the initial solution is scattered across the solution space. (2) A better objective value 

which results in an initial solution close to the optimal one.   

In this research, the total cost is composed of two parts: (1) the vehicle routing 

cost and (2) the station inventory penalty cost. As it is difficult to control the former in 

the construction solution, the initial solution is generated by minimizing the total penalty 

cost without considering the routing cost. For each station, this research assumes its 

loading / unloading quantity satisfies its request, meaning that its inventory will be 

adjusted to its target inventory level after the repositioning event, resulting in a minimal 

penalty cost. Based on this assumption, we can determine the loading / unloading 

quantity for every station. For example, at station i, the delivery quantity is b
i il t− . If 

b
i il t> , station i is considered to be a pickup station, but if b

i il t< , it is categorized as a 

drop off station. All stations with b
i il t=  will be considered as ignorable stations and 

excluded from the initial solution. In this way, all stations are categorized into 2 groups: 

pickup stations or drop off stations.  

The following sections propose two methods for constructing the initial solutions: 

Random Selection and Penalty Cost Selection.  

 

Random Selection Method 
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The first, the random selection method, alternatively selects the pickup and drop 

off process in creating the initial solution. For each trip, it includes one pickup and one 

drop off process. Initially, it begins with an empty route. The pickup process randomly 

selects stations from the pickup group to add to the end of the route until the total pickup 

quantity is accumulated. The pickup process ends when the newly added station, for 

example station g, violates the vehicle capacity, meaning it is not included in the route. 

The drop off process repeats the same process, replacing pickup stations with drop off 

ones, the only difference being that the vehicle bicycle inventory decreases as new 

stations are added. When the next drop off station added violates the vehicle inventory 

constraint, the drop off process stops and the pickup process resumes. This entire process 

repeats until the route fills the total time horizon limit or all stations have been covered. 

Once this process stops, the vehicle routing schedule is determined, and the order in 

which the stations will be visited is assigned.   

 

Penalty Cost Selection Method 

 

The penalty cost based selection method uses the same procedure as the random 

selection method to create the initial solution, the only difference being that the selection 

of the stations during the pickup / drop off process is based on their penalty rather than 

being randomly done. The stations with higher penalty costs are selected earlier than 

those with lower penalty costs. 



 26 

Both methods will be applied to get candidate initial solutions for the VNS 

algorithm, one candidate initial solution will be randomly selected to be passed to VNS 

algorithm as the initial solution. But all candidate initial solutions’ objective value will be 

recorded and the best one will be saved as the current best solution to the VNS algorithm. 

 

Variable Neighborhood Search 

 

The VNS algorithm, a recent heuristic algorithm proposed by Mladenović and 

Hansen (1997), has been used to solve several combinational optimization and global 

optimization problems efficiently. Specific to the research here, it has been used to solve 

both multi-depot (Polacek, Hartl, Doerner, and Reimann, 2004; Polacek, Benkner, 

Doerner, and Hartl, 2008; and Kuo and Wang, 2012) and periodic vehicle routing 

problems (Pirkwieser and Raidl, 2008; Hemmelmayr, Doerner, and Hartl, 2009; 

Pirkwieser and Raidl, 2009; and Pirkwieser and Raidl, 2010). 

 The VNS algorithm is generally constructed based on the local search principle, 

which uses an efficient algorithm to find a local optimum. Based on its search rule, the 

local search only makes a change when the new solution is better than the current one.  

This search criterion helps the algorithm find the local optimum efficiently but at the 

same time, creates the flaw that it may become stuck in a local valley and not able to find 

the global optimum. To avoid this flaw, the VNS algorithm uses the neighborhood 

function to create an incumbent solution in order to escape the local valley. For a given 

solution x, its neighbor solution, ' ( )x N x= , is the new solution created based on x with 
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some simple modification. The transformation function ( )N ⋅ , which generates the 

neighbor solution x’ from solution x, is called the neighborhood function. The simple 

modification, for example a swap station A with station B delivery sequence in the 

routing sequence, is a neighborhood function. In the iteration, the algorithm will apply 

different neighborhood functions to explore different incumbent solutions. The local 

search method is then applied to each of these to find its local optimum. Once the 

improved solution has been found, the incumbent is updated by the better solution, and 

the algorithm begins the next iteration. In this structure, the neighborhood exploration 

helps VNS avoid being stuck in the local optimum valley and the local search helps it to 

find a better solution. 

The following pseudo code provides the steps of the general VNS algorithm: 

Repeat following sequence until the stopping condition is met: 
(1) Set k  1; 
(2) Repeat the following steps until k = kmax 

(a) Shaking. Generate a solution x’ at random from the kth Neighborhood function 
' ( )S

kx N x=  
(b) Local search  

(b1) Set l  1; 
(b2) Repeat following steps until l = lmax 

• Exploration of neighborhood. Find the best neighbor '' ( ')L
lx N x=  

• Move or not. If f(x”) < f(x’), set x’  x’’ and l  1; otherwise set 
ll+1 

(c) Move or not. If this local optimum is better than the incumbent, move there (x 
 x”), and continue the search with 1 ( 1)N k ← ; otherwise, set k  k + 1 

 

There are 2 types of neighborhood functions used in the VNS algorithm. The first, 

( )S
kN x , max1,...,k k= , is used in the shaking phase, which can help the solution escape the 

local valley, while the second, ( )L
lN x , max1,...,l l= , is used in the local search phase to 
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find the local optimum. As seen in the pseudo code of the VNS algorithm, these 

neighborhood functions are important elements of this method.  

 

Neighborhood Functions 

The following sections detail the shaking neighborhood functions and the local 

search neighborhood functions in the VNS pseudo code. The function N(x) creates the 

new solution by including a small modification made to solution x. To differentiate 

between the two types of neighborhood functions, more details about the solution for the 

problem are needed.  In general, the solution for this research includes the following 

information: 

1. The stations that are visited in the vehicle routing schedule 

2. The station visiting sequence in the vehicle routing schedule  

3. The loading / unloading quantity at each station in the vehicle routing schedule 

The first point limits the structure of the solution which constrains the outcome 

range of the solution. For example, let’s assume the problem involves 10 stations with 

only one optimal solution, and its routing sequence covers 8 stations. Solutions with 

routing sequences that do not cover these 8 stations have no chance to transform to the 

optimal solution if the neighborhood function changes only the delivery sequence and 

related delivery assignment. The second and third points affect the routing cost and 

penalty cost under certain solution structures. When the structure of the solution is fixed, 

changing elements in points 2 and 3 will provide changes that may reach the best 

solution. 
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This research incorporates neighborhood functions which change the structure of 

the solution into the shaking neighborhood function set (i.e. point 1), while neighborhood 

functions which change the performance of the solution are classified as the local search 

neighborhood function (points 2 and 3).     

The shaking neighborhood function will change the total number of stations or the 

stations visited in each trip. The following neighborhoods were created for this research: 

1. (D) Delete one station from the routing sequence 

2. (A) Add one station to the routing sequence 

3. (R) Replace one station in the routing sequence with another station. 

4. (D2) Perform the deleting one station neighbor function twice. 

5. (A2) Perform the adding one station neighbor function twice. 

6. (R2) Perform the replacing one station neighbor function twice. 

7. (D3) Perform the deleting one station neighbor function three times. 

8. (A3) Perform the adding one station neighbor function three times. 

9. (R3) Perform the replacing one station neighbor function three times. 

 

The local search neighborhood function will not improve the performance of the 

current solution without changing the current solution structure. We construct the 

following local search neighborhoods: 

1. (Swap) Swap 2 stations in a trip 

2. (Move) In one trip, move one station to another visiting schedule 

3. (2Opt) Perform the 2-Opt cross for the visiting schedule 
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4. (Swap2) Perform Swap twice  

5. (Swap3) Perform Swap three times 

6. (Swap4) Perform Swap four times 

7. (Swap5) Perform Swap five times 

8. (Move2) Perform Move twice  

9. (Move3) Perform Move three times 

10. (Move4) Perform Move four times 

11. (Move5) Perform Move five times 

10. (2Opt2) Perform 2Opt twice. 

12. (2Opt3) Perform 2Opt three times 

13. (2Opt4) Perform 2Opt four times 

14. (2Opt5) Perform 2Opt five times 

 

Processing the two types of neighborhoods can modify the key content points 1 

and 2 for the solution, i.e. the stations covered in routing sequence and the delivery 

schedule. However, the VNS method provided here does not include the method for 

changing the number of bicycles loaded / unloaded at each station, meaning that the VNS 

algorithm only provides a solution for the routing sequence 1 2, ,...,r r r rr=< > , but makes 

no contribution towards finding an assignment sequence 1 2, ,...,a a a ar=< > . Without 

changing the loading / unloading number at each station, it is impossible to obtain the 

optimal solution. To address this issue, this research introduces an auxiliary algorithm to 

generate the assignment sequence based on the vehicle routing sequence created in the 
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previous step. By embedding this auxiliary algorithm in the current VNS algorithm, all 

aspects of the solution can be fully modified. 

 

Auxiliary Algorithm for Assignment Sequence 

The first step in the heuristic uses the VNS algorithm to generate a vehicle routing 

schedule for the problem. Based on this vehicle routing schedule, the vehicle routing cost 

and total delivery time can be determined. However, there is no loading / unloading plan 

for each station visited. As this research uses the penalty cost for each station, satisfying 

the request for each (i.e. repositioning each station inventory to the target level) becomes 

an optional constraint. As a result, the number of bicycles loaded / unloaded at each 

station visited cannot be determined uniquely, meaning many loading / unloading plans 

can be associated with the same vehicle routing schedule. The auxiliary algorithm 

proposed here can provide the optimal loading / unloading plan for a given vehicle 

routing. Even though it is not the optimal solution for the entire problem, it will guarantee 

an optimal solution when the VNS algorithm determines the optimal vehicle routing 

schedule. 

As mentioned previously, the solution can be represented by 

1 1, ( , ,..., , )x r a r a r ar r=< >= < > < > . The VNS neighborhood functions change only the 

vehicle routing sequence 1 2, ,...,r r r rr=< > , but not the associated assignment sequence 

1 2, ,...,a a a ar=< > . In order to know the penalty cost for each station, we must know the 

status of each station after repositioning. Since the stations not included in the vehicle 
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routing schedule will not change their status, their penalty cost can be easily calculated, 

meaning, only the stations in the vehicle routing schedule need to be considered.   

Before introducing the auxiliary algorithm, the following are defined for clarity: 

for the vehicle routing sequence 1 2, ,...,r r r rr=< > , the status of the station after 

repositioning is defined by , ,i ii p q< > , where ip  is  the inventory level at station ir  after 

the repositioning event and iq  is the number of bicycles on the vehicle after it leaves the 

station. By definition, it is known that the number of bicycles loaded / unloaded at each 

station visited is equal to its initial inventory minus the inventory after repositioning, i.e. 

i i i

b a b
i r r r ia l I l p= − = − . Because each station is visited only once in the routing schedule, its 

inventory status changes only once. Considering the balancing of bicycle on the vehicle 

leads to the equation, 
1 1 1i

b
i r i iq l p q

+ + ++ = + , which is used to generate all possible status 

options for the next station visited. For instance, assume a routing schedule 

0,3, 2,1,0r =< > , a vehicle capacity c=3, an initial inventory at station 2 of 4, 
32 4b b

rl l= = , 

and a capacity at station 2 of 5, 
32 5rs s= = .  In addition, suppose currently we have one 

status , , 2,5, 2i ii p q< >=< > , meaning that after the repositioning for station r2=3, there 

are 5 bicycles left at station 3 and 2 bicycles on the vehicle when it leaves this station.  

Using the equation 
1 1 1i

b
i r i iq l p q

+ + ++ = + , we know that 3 32 4 p q+ = + , meaning all 

possible status options for station r3=2, are <3,0,6>, <3,1,5>, <3,2,4>, <3,3,3>, <3,4,2>, 

<3,5,1>, <3,6,0>. Because of the station capacity limitation, it is impossible to obtain 

status <3,6,0>. The vehicle capacity constraint excludes status options <3,0,6>, <3,1,5>, 
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and <3,2,4>. Therefore, all possible status options which begin from <2,5,2> are <3,3,3>, 

<3,4,2> and <3,5,1>. 

The auxiliary algorithm creates an optimal assignment sequence 

1 2, ,...,a a a ar=< > for a given vehicle routing schedule 1 2, ,...,r r r rr=< > . We define the 

graph ( , )sp sp spG V A=  with given routing sequence 1 2( , ,..., )r r r rr= . The node set 

sp start end rV V V V= + +  includes two dummy nodes for the starting and ending points 

{ , , | 1,..., , 1,..., , 1,..., }
ir i i i r iV i p q p s q c i r= < > = = = where ip  is the inventory level at 

station ir  after the repositioning event and iq  is the number of bicycles on the vehicle 

after its leaves station ir . Let 1,0,0startV =< − >  and 1,0,0endV r=< + > . For depot 0, 

since we assume it has enough capacity and inventory, its inventory always shows 

infinity. Each node in the graph represents a transit status of the system during the 

repositioning process. For clarification, the nodes are divided into different groups based 

on their visiting sequence. For instance, node , ,i ii p q< >  is categorized into group i. 

Based on this definition, it is known that startV  belongs to group -1 and endV  belongs to 

group 1r + . In the graph designed, only the nodes in adjacent groups have an arc 

connection. By checking the vehicle capacity constraint, the station capacity constraint, 

the flow balancing constraints and the time horizon constraint, we can determine whether 

an arc exists between nodes in adjacent groups. If one exists between node , ,i a b< >  

and 1, ,i c d< + > , its weight is the penalty cost for station 1ir+ . In general, the graph looks 

like following: 
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<-1,0,0>

<0, ∞, 0>

<0, ∞, 1>

<ρ-1, 0, 0>

<ρ-1, pρ , qρ>

<ρ-1, 1, 0>
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Figure 3.1: General Graph Constructed by a Given Vehicle Routing Schedule 

More details about this method can be seen in Example 3.1. Consider the problem 

with 2 stations. The capacity for the vehicle is 2c = . The locker capacity and initial 

bicycle inventory for station 1 and station 2 are 1 3s = , 2 4s =  and. 1 1bl = , 2 2bl = . Its 

related inventory target and penalty cost coefficient are 1 2t = , 2 3t =  and 

1 ( ) 2g x x= − , 2 ( ) 3g x x= − .  A given routing sequence 1 0,1, 2,0r =< >  results in the 

following graph: 
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Figure 3.2: Graph Constructed for Vehicle Routing Schedule in Example 3.1 

By find the shortest path from the beginning to the end point, we could get the 

assignment sequence for each station. The shortest path from start point to end point is 

<-1,0,0>  <0,∞,2>  <1,2,1>  <2,3,0>  <3,∞,0>  <4,0,0> with the total value of 

0. The vehicle will pick up 2 bicycles at the depot and drop 1 bicycle at station 1 and drop

1 bicycle at station 2. 

Numerical Result 

This section evaluates the performance of the algorithm proposed in this research 

by solving the SBRP problem using datasets of different sizes. In general, two sizes are 

considered:  (1) a small size dataset for which an optimal solution can be found using the 

IP model, for which we compare the final results provided by the proposed heuristic 
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algorithm to determine if the proposed heuristic can provide an optimal solution or one 

close to it. (2) a large dataset for which there is no guarantee that an optimal solution can 

be found, so we instead compare to the results presented in Ho and Szeto (2014). All tests 

were conducted using a Dell notebook with an Intel Core i5-2520M CPU @ 2.5 GHz.  

1. Small dataset group testing

For the testing of the small datasets, both the heuristic algorithm and the IP model 

were used to solve the test cases from this set. The IP model was solved using ILOG OPL 

with CPLEX as the solver. The heuristic algorithm was coded in C++.  All the datasets in 

this group were randomly generated, with the stations being randomly scattered through 

an area of 100 x 100 and the depot located at (50, 50). The vehicle capacity was fixed at 

10. Each station’s capacity and target values were also randomly generated. The

parameters are listed in Table 1 below:  

Table 3.2: Parameters for Datasets Used in the First Testing Group 
Parameters Values 
Station location X ~ U(0,100), Y ~ U(0,100) 
Depot location (50, 50) 
Vehicle capacity 10 
Station capacity and Target value U (0, 10) 

Table 3.2 shows the results from this group, a total of 12 test cases being listed. 

The number of stations used in the datasets ranged from 5 to 8. The time horizon used in 

these datasets ranged from 200 to 350 units. All instances were solved with both the IP 

model and H1 heuristic algorithms. As the H1 algorithm includes the randomness, each 

testing instance will be run 30 replications to get the median value as the result for the H1 

algorithm.   
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Table 3.3: All Testing Instances Major Parameters and Results in 1st Testing Group 

No. N H IP Gap 
IP 

Time 
(s) 

H1 
H1 

Time 
(s) 

STD 
H1 

Min 
H1 

Max 
H1 

OPT 
Time 

1 5 200 229.87 0 23 229.87 2 0 229.87 229.87 30/30 
2 5 200 255.88 0 25 255.88 2 0 255.88 255.88 30/30 
3 5 200 107.47 0 21 107.47 2 0 107.47 107.47 30/30 
4 6 250 403.08 0 30 403.08 6 0 403.08 403.08 30/30 
5 6 250 637.37 0 34 637.37 7 0 637.37 637.37 30/30 
6 6 250 246.26 0 29 246.26 6 0 246.26 246.26 30/30 
7 7 300 403.11 0 95 403.11 10 0 403.11 403.11 30/30 
8 7 300 691.50 0 102 691.50 11 0 691.50 691.50 30/30 
9 7 300 723.56 0 105 723.56 10 0 723.56 723.56 30/30 
10 8 350 671.87 0 1856 671.87 12 0 671.87 683.45 30/30 
11 8 350 577.91 0 2048 577.91 13 0 577.91 577.91 30/30 
12 8 350 681.97 0 1778 681.97 13 0.65 681.97 689.51 29/30 

The “|N|”, “H”, “IP”, “GAP”, “IP Time” represent number of stations, time 

horizon, integer programming model solved result, gap between result and Lower bound, 

the solving time for integer programming model. The “H1”, “H1 Time”, “STD H1”, 

“MIN H1”, “Max H1”, “OPT Time” represent median of H1 result of 30 replications, 

standard deviation of 30 replication results, minimal H1 result of 30 replications, 

maximal H1 result of 30 replications, time to get optimal solution in 30 replications. 

Comparing the best results found by both the IP model and the heuristic algorithm 

indicates that for all datasets in the first group, the heuristic algorithm found the optimal 

solutions for the problems in a solving time much shorter than that for the IP model. 

Thus, it appears, based on these results, that the heuristic algorithm proposed here 

performs well when the dataset is small (e.g. the dataset is less than or equal to 8 

stations).  
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2. Large dataset group testing

The dataset used in the second testing group are all large size datasets. According 

to the results earlier in this chapter, it is unlikely that any particular data set will yield to 

the IP model within reasonable time (i.e. within in 1 day). So, all test cases are tested by 2 

heuristic algorithms: the heuristic algorithm proposed in this research (H1), and Ho and 

Szeto’s algorithm (H0). All the test cases come from the Ho and Szeto (2014) research.  

The Ho and Szeto (2014) research’s datasets includes 13 instances with different 

number of stations in it with the range from 100 to 400. In their research, they use 2 

levels of time horizon: 9000 and 18000, and 2 levels of vehicle capacity: 10 and 20. By 

the combination of the time horizon, vehicle capacity and number of stations in the 

instance, they have 52 testing scenarios. 

In this analysis, we run these 52 testing scenarios to get the results for 

comparison. Because of the randomness in the heuristic algorithm, it is possible to get 

different outputs result with the same input and testing scenario. It brings the uncertainty 

for the comparison. To reduce that uncertainty, we run H1 m=30 replications for each 

testing scenario. Five measure criteria are achieved from these m iterations: Maximal 

Objective Value (MaxObj), Minimal Objective Value (MinOjb), Average Objective 

Value (AvgObj), Standard Deviation of Objective Value (StdObj), and Average Solving 

Time (AvgTime). Ho and Szeto (2014) research does not report whether the objective 

value shown in their results is the mean value, or the best value of their testing, so we 

assume it is the average value. 
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All the testing instances are categorized into 4 sets shown in table 3.4~3.7. 

Table 3.4: Test Cases with Time horizon = 9000, and vehicle capacity = 10 

N H0 
Obj 

H0 
Time 

(s) 

H1 
MinObj 

H1 
AvgObj 

H1 
MaxObj 

H1 
StdObj GAP 

H1 
AvgTime 

(s) 
100 772.20 0.759 749.55 752.93 754.57 1.32 2.5% 153 
125 1027.86 1.444 1004.22 1004.40 1007.33 0.93 2.3% 142 
150 1254.57 1.438 1222.93 1223.36 1229.67 1.94 2.5% 169 
175 1416.83 1.986 1372.59 1375.04 1378.88 1.74 2.9% 184 
200 1640.84 2.334 1615.07 1616.67 1617.58 0.71 1.5% 150 
225 1897.30 2.989 1874.07 1884.95 1890.18 4.97 0.7% 192 
250 2124.02 3.281 2102.83 2112.81 2119.14 4.15 0.5% 160 
275 2286.06 3.764 2236.80 2239.73 2243.39 1.89 2.0% 195 
300 2513.06 3.703 2497.61 2507.68 2508.53 2.93 0.2% 169 
325 2777.69 4.195 2740.33 2741.55 2742.82 0.95 1.3% 202 
350 2996.27 3.577 2972.82 2973.85 2976.69 1.05 0.7% 264 
375 3161.19 6.195 3118.88 3121.26 3126.68 1.89 1.3% 258 
400 3397.68 8.186 3385.16 3385.82 3397.86 3.97 0.3% 289 

* These objective values do not include the transportation cost.

Table 3.5: Test Cases with Time horizon = 18000 and vehicle capacity = 10 

N H0 
Obj 

H0 
Time 

(s) 

H1 
MinObj 

H1 
AvgObj 

H1 
MaxObj 

H1 
StdObj GAP 

H1 
AvgTime 

(s) 
100 688.12 1.250 680.87 666.62 684.14 0.63 3.1% 331 
125 940.66 1.675 920.47 891.05 923.55 1.72 5.3% 304 
150 1155.42 2.213 1136.79 1116.36 1149.17 0.58 3.4% 207 
175 1315.08 3.330 1283.49 1245.74 1287.44 5.05 5.3% 317 
200 1536.21 2.737 1511.91 1502.54 1524.32 1.33 2.2% 285 
225 1795.81 3.917 1790.20 1732.37 1790.68 2.12 3.5% 293 
250 2016.59 6.995 2014.33 1962.53 2020.62 2.48 2.7% 306 
275 2178.06 5.947 2118.69 2150.98 2127.75 1.98 1.2% 376 
300 2410.37 5.899 2403.37 2376.20 2408.72 4.72 1.4% 325 
325 2663.54 9.975 2628.67 2616.55 2643.30 6.45 1.8% 362 
350 2890.89 6.619 2864.07 2853.08 2868.33 0.20 1.3% 343 
375 3056.93 7.876 2993.41 3028.46 3006.80 1.91 0.9% 382 
400 3287.34 10.052 3262.27 3265.17 3270.82 4.02 0.7% 421 

* These objective values do not include the transportation cost.
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Table 3.6: Test Cases with Time horizon = 9000 and vehicle capacity = 20 

N H0 
Obj 

H0 
Time 

(s) 

H1 
MinObj 

H1 
AvgObj 

H1 
MaxObj 

H1 
StdObj GAP 

H1 
AvgTime 

(s) 
100 764.13 0.476 680.87 682.53 684.14 0.83 10.7% 684 
125 1022.72 0.968 920.47 923.45 923.55 0.95 9.7% 613 
150 1248.85 1.249 1136.79 1144.94 1149.17 3.35 8.3% 723 
175 1409.79 1.557 1283.49 1285.51 1287.44 1.00 8.8% 789 
200 1634.81 1.791 1511.91 1515.11 1524.32 2.95 7.3% 898 
225 1892.47 2.865 1790.20 1790.21 1790.68 0.11 5.4% 921 
250 2115.55 2.708 2014.33 2019.06 2020.62 1.58 4.6% 969 
275 2280.87 2.652 2118.69 2127.05 2127.75 2.80 6.7% 1123 
300 2505.99 3.948 2403.37 2406.82 2408.72 1.39 4.0% 1266 
325 2763.36 3.315 2628.67 2632.90 2643.30 5.10 4.7% 1607 
350 2992.52 2.871 2864.07 2866.38 2868.33 1.22 4.2% 1772 
375 3149.95 4.851 2993.41 3005.69 3006.80 4.41 4.6% 1764 
400 3393.38 3.642 3262.27 3280.16 3270.82 2.50 3.3% 2215 

* These objective values do not include the transportation cost.

Table 3.7: Test Cases with Time horizon = 18000 and vehicle capacity = 20 

N H0 
Obj 

H0 
Time 

(s) 

H1 
MinObj 

H1 
AvgObj 

H1 
MaxObj 

H1 
StdObj GAP 

H1 
AvgTime 

(s) 
100 667.51 0.961 578.71 580.85 584.60 1.64 13.0% 2029 
125 924.07 1.273 790.03 790.33 795.29 1.57 14.5% 1903 
150 1143.04 2.797 1000.75 1001.73 1003.05 0.73 12.4% 2362 
175 1300.92 1.570 1115.40 1118.4 1119.34 1.17 14.0% 2851 
200 1523.18 2.877 1361.36 1368.17 1373.38 3.08 10.2% 2938 
225 1779.22 2.443 1584.76 1585.32 1595.78 3.37 10.9% 2186 
250 1999.98 3.872 1799.85 1801.90 1808.87 2.69 9.9% 2293 
275 2167.81 4.134 1990.56 1991.34 1992.27 0.55 8.1% 2153 
300 2393.41 6.962 2192.24 2207.07 2209.12 4.47 7.8% 2694 
325 2644.56 6.417 2427.51 2431.69 2431.73 1.27 8.0% 3270 
350 2869.10 4.612 2677.72 2678.84 2681.58 1.17 6.6% 3565 
375 3028.17 6.594 2849.78 2855.03 2856.35 1.79 5.7% 3503 
400 3261.30 5.554 3071.32 3074.26 3085.55 3.91 5.7% 3009 

* These objective values do not include the transportation cost.
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In these tables, the “|N|”, “H0 Obj” and “H0 Time” columns were copied from Ho 

and Szeto (2014)’s research, representing the total station number, Ho and Szeto’s 

heuristic result, and Ho and Szeto’s heuristic running time, respectively. When we use the 

H1 algorithm to solve the same problem, each testing scenario had been run 30 

duplications. The “H1 MinObj”, “H1 AvgObj”, “H1 MaxObj”, “H1 AvgTime” columns 

represent the minimal objective result,  the average objective result, the maximal 

objective result, and the average running time calculated from the 30 duplication results. 

The “GAP” shows the improvement gap between the H1 and H0 algorithms using the 

formula GAP = (H0 – H1 AvgObj) / H0. Since in Ho and Szeto (2014)’s research, the 

vehicle distribution cost was not included in the objective, this research set α = 1, β = 0 to 

exclude the vehicle distribution cost in the objective when running the test cases.   

From a glance view of the result shown in the tables above, the new heuristic we 

proposed in this research provides better solution than Ho and Szeto (2014)’s research. 

To support that finding, we will use statistical testing. At first, we use the Anderson-

Darling test to check the normality of the raw data. Based on the test result which is 

illustrated in the probably plots of Tables A.1, A.2, A.3 and A4, the GAP data does not 

follow a normal distribution. As such, nonparametric statistical tests are required. In this 

research, the 1-Sample Wilcoxon test was selected to test if the medians of GAP are 

equal to zero. The hypotheses tested are defined as following: 

H0: median of the GAP is equal to zero 

H1: median of the objective value is greater than zero 
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Minitab was used for testing and the results are shown in Figures A.5, A.6, A.7 and A.8. 

The p-values of all tests are less than 0.001 which means that there is sufficient evidence 

to reject the null hypothesis and conclude that the median of the GAP is greater than 0. 

By the definition of GAP = (H0 – H1 AvgObj) / H0 and conclusion of the 1-Sample 

Wilcoxon test, we conclude that the H0 algorithm always provide larger objective value 

than the H1 algorithm. Since we prefer the minimal objective value, the H1 algorithm can 

provide better quality solution than the H0 algorithm.  

On the other hand, the running time for H1 algorithm is much longer than Ho and 

Szeto’s algorithm. Because we proposed auxiliary algorithm to provide the optimal 

solution for the given vehicle routing schedule, it consumes a lots of time when the 

number of station and vehicle capacity increased in the testing scenario. Even through the 

running time increased a lot, but total solving time is still within a reasonable range (the 

max running time for a scenario with 400 stations is within 1 hour). The Ho and Szeto 

(2014)’s research has much shorter running time (less than 10 seconds). 

 These results suggest, in general, the new heuristic algorithm can provide better 

solution but will take longer time.  

 

Conclusion and Future Work 

 

This research presented a VNS-based heuristic algorithm with an auxiliary 

algorithm to solve the static bike repositioning problem, one using the routing first, 

loading assignment second approach to find the heuristic solution for the problem. 
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Computational results show that this heuristic performs well when the dataset is small. It 

also gives a good solution when the dataset size is large but takes a long time to solve the 

problem. The contributions of this research are the following: (1) It includes the operation 

cost in the objective function; (2) It proposes an auxiliary algorithm to find the optimal 

assignment plan for a given vehicle routing. Future work will extend this research by 

developing a heuristic to allow the vehicle to visit the station more than once and 

developing one for multiple vehicles. Furthermore, we will try to improve the efficiency 

of the auxiliary algorithm with new technic, such as using the mixed integer 

programming model to solve the assignment plan for the algorithm.  
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CHAPTER FOUR 

STATIC BICYCLE REPOSITIONING PROBLEM WITH A SINGLE  

VEHICLE AND MULTIPLE TRIPS  

 

This chapter approaches the bicycling repositioning problem by relaxing the 

constraint concerning the number of trips made by the vehicle, investigating the realistic 

assumption that it can visit both the depot and each station multiple times to complete the 

repositioning process. A VNS based algorithm was developed to solve the problem. As 

opposed to the previous chapter, we proposed a 1 step strategy to construct the routing 

schedule and loading assignment at the same time rather than using the 2 step “routing 

first, loading assignment second” strategy.  

 

Introduction 

 

The previous chapter solved a static bicycle rebalancing problem with a single 

vehicle, developing both an MIP model and a VNS algorithm to do so. The research 

presented in this chapter extends previous studies in several aspects, relaxing the 

constraints to make the research problem more realistic. As before, the static bicycle 

rebalance problem with a single vehicle for a bicycle sharing system is used here. In 

general, the bicycle sharing system allows customers to rent a bicycle, use it for a short 

time period, and then return it to the system. These bicycles are kept in stations located 

throughout the city, which use a centralized self-service machine that, in addition to 
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facilitating the business transaction, uploads real-time, detailed information to the data 

center on the number of available bicycles, the number of empty lockers, and the bicycle 

usage at each. One of the most important elements of this system is ensuring that 

customers can rent / return a bicycle to a station, meaning the bicycle inventory level at 

each should be kept at a level that is neither too full nor too empty to satisfy the needs of 

the users. Because of the unbalanced demand for rentals and returns as well as other 

factors, the BSS system operator manually rebalances the bicycle inventory level among 

the stations to meet this target level. This situation is the focus of this research. 

 

Problem Descriptions and Terms 

 

This research investigates repositioning the bicycle inventory level among various 

stations to their target values using a single vehicle within a specified working time 

horizon. If a station has not been repositioned to its target inventory level by the end of 

this horizon, it will be assessed a penalty cost. The operation cost, which is composed of 

the fuel and labor expenses, is highly related to the vehicle traveling time. The entire 

repositioning event should be completed within a given time horizon, meaning no 

overtime is allowed. The objective for this problem is to create a solution for 

repositioning the bicycle sharing system with minimal total operation and penalty costs.  

To clarify this problem, we define the terms and delimitations for this research.   

The Vehicle is defined as the mode of transportation used to carry the bicycles among the 

various stations with the capacity to carry at most c units. A station is defined as the place 
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where the customers can rent or return bicycles, and the total number of lockers at a 

station is defined as the station capacity. Each station has a finite bicycle inventory and 

station capacity. The depot is the distribution center and warehouse for both the vehicle 

and the bicycles; the vehicle begins and ends delivery from the depot which has an 

unlimited bicycle inventory and station capacity. In addition, a trip is defined as the 

vehicle routing sequence beginning at the depot and continuing through several stations 

before returning to the depot. The visit point represents the station or depot visited in the 

vehicle routing sequence. The target value is the designated inventory level for each 

station where the bicycles are repositioned. A visit point is a pickup station when the 

current inventory on at the time of visit is greater than its target value, while a visit point 

is a drop off station when its current inventory is less than its target value. If the station 

receives multiple visits, it could be both a pickup station (its inventory is greater than the 

target) and a drop off station (its inventory is less than the target) a different times in the 

solution. Furthermore, if a station is visited multiple times in the solution, it is defined as 

a complex station in the solution; if not, it is a simple station in the solution.  

In previous research, the SBRP solved included several constraints. It allowed 

only one trip, and further, each station could be visited no more than once. With these 

maximal one-time visit constraints, it was impossible to remove the penalty cost 

completely when stations experienced a large number drop off or pick up requests even 

when the time and inventory were available. In this research, the vehicle is allowed 

multiple trips to reposition the bicycles among the stations; however, for each trip, the 

maximal one-time visit constraint for each station remains, but the same station can be 



 47 

visited multiple times in different trips. With this relaxation, the station is allowed 

multiple visits in the solution.  

 

Heuristic Algorithm 

 

As pointed out by the Ting and Liao (2013) and Ho and Szeto (2014) research, the 

SBRP problem is a NP hard problem. It is unreasonable to solve the large scale, realistic 

SBRP problem with exact algorithm, such as the mixed integer programming model. 

These exact algorithms will cause the solving time increased exponentially as the station 

size increases, meaning it is difficult to find an optimal solution within a reasonable time 

for an SBRP problem involving a large number of stations using this model. This 

situation is addressed by using a heuristic algorithm; this research proposes using a VNS 

algorithm to find the solution for a SBRP problem. This chapter first analyzes the 

structure of the solution for the SBRP problem, including defining the appropriate 

symbols; then it provides the pseudo code for the VNS algorithm to introduce the 

structure of the heuristic algorithm, and finally it discusses the details of the algorithm 

and related terms such as initial solution and neighborhood functions, among others.  

 

Analysis of the SBRP Problem Solution  

 

Before the heuristic algorithm is introduced, it is necessary to understand the 

solution structure of the SBRP problem. In general, this solution contains the vehicle 
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routing sequence and the loading / unloading plan for each station visited. In this research, 

the solution is composed of two parts: (1) a qualified vehicle routing sequence, the travel 

time of which does not violate the time horizon limitation, and (2) the associated loading 

/ unloading plan for each station for this routing sequence. For consistency, the same 

symbols ,x r a=< >  used in the previous chapter to define a solution are also used here. 

The r  represents the routing schedule; and a  the loading / unloading plan (i.e. the 

assignment plan) for each station for routing sequence r . The routing sequence is defined 

as 
1

11 10 ,1 1 0 ,1 0 , 0 ,
( , ,..., , ,..., , ,..., , )

k
kk k k

r r r r r r r r r
r r+ − + −= , where the ,p kr  is the station ID for the p 

th stop in the k th trip, and kr  is the total number of stations visited in k th trip. The 
0

r +  

and 
0

r −  represent the depot start point and end point, respectively. Since no limitation is 

set for the max number of trips used in one solution, the variable k, i.e. the total number 

of trips used in the solution, is uncertain; however, we could get the upper bound for the 

number of trips in the solution by the time horizon limitation. Suppose µ  is the travel 

time from the depot to the closest station, the shortest travel time for a trip will be 2µ , i.e. 

the trip just visit one station. By the time horizon limitation, we can get upper bound for 

trip number in solution, max / (2 )k T µ=    , where T  is the time limit horizon.  

The loading / unloading plan associated for routing sequence r, referred to as the 

assignment plan, is
1

11 10 ,1 1 0 ,1 0 , 0 ,
( , ,..., , ,..., , ,..., , )

k
kk k k

a a a a a a a a a
r r+ − + −= , where ,p ka  is the 

number of bicycles loaded at station ,p kr  at the p th stop in the k th trip. By using the 

routing sequence r and its related assignment plan a, it is easy to calculate the inventory 
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level on the vehicle / at the station when the vehicle departs from each location.  We 

define ,p kv  as the inventory level on the vehicle when it leaves station ,p kr  on p th stop in 

the k th trip and 
, ,p kr kI  as the inventory level at station ,p kr  when vehicle has left. All 

values are calculated with the formulas , 1, ,p k p k p kv v a−= + , and 
, ,

,, , 1p k p k
p kr k r k

I I a
−

= − , while 

special cases use
0 ,1 0 ,1

v a+ += , ,0
b

i iI l= , i=0,1,2,…,n;  

The routing sequence r and the assignment plan a are critical elements in the 

solution as well as being highly connected. Although the inventory level on the vehicle 

and at the station can be calculated from the solution ,x r a=< > , it is easier to check the 

feasibility of the solution with these 2 variables. Thus, the inventory level on the vehicle 

and at the station is included in the solution, resulting in a new formula, called the full 

solution: 

0 ,1 0 ,
,1 ,0 ,1 0 ,1 0 ,1 0 , 0 , 0 ,

, , , ( , , , ,..., , , , )
k

r r kk k k
x r a v I r a v I r a v I+ + + − − −

+ −
=< >= < > < >

 

The tuple 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
indicates that the p th stop on the k th trip is station ,p kr , 

and the number of bicycles for loading / unloading is ,p ka ; the inventory level on the 

vehicle after this repositioning is ,p kv , and the inventory level left at the station is 
, ,p kr kI .  

 

Variable Neighborhood Search Algorithm  
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The variable neighborhood search algorithm, developed by Mladenovic in 1997, 

is a meta-heuristic algorithm based on a local search algorithm used to solve global 

optimization problems. Below are the pseudo code steps of the general VNS algorithm: 

Repeat following sequence until the stopping condition is met: 
Set k  1; 
Repeat the following steps until k = kmax 

Shaking. Generate a solution x’ at random from the kth Neighborhood function 
' ( )kx N x=  

Local search  
(b1) Set l  1; 
(b2) Repeat following steps until l = lmax 

• Exploration of neighborhood. Find the best neighbor '' ( ')lx N x=  
• Move or not. If f(x”) < f(x’), set x’  x’’ and l  1; otherwise set 

ll+1 
Move or not. If this local optimum is better than the incumbent, move there (x 
 x”), and continue the search with 1 ( 1)N k ← ; otherwise, set k  k + 1 

 

In this research, we use the combination of the insert point function I(x) and the 

delete function D(x) to generate the shaking neighborhood function, while the  

improvement function P(x) is used to create the local search neighborhood function. All 

three functions will be discussed in detail in later sections.   

 

The Initial Solution  

 

Analyzing the pseudo code indicates that the initial solution is a good starting 

point the start point for the VNS algorithm. Even using the same search algorithm, a good 

initial solution can help the algorithm reduce the total search time. However, without 

sophisticated knowledge of the system and a deep understanding of the research issue, it 
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is very difficult to determine good suggestions for these starting points. Furthermore, this 

research is providing a general method for all SBRP problems rather than only for a 

certain case. Thus, two basic principles are used here to generate the initial solutions: (1) 

Randomness principles. The randomness property makes the initial solution randomly 

scattered throughout the solution space, thereby increasing the robustness of the 

algorithm. (2) Quality principle. In general, good solutions (i.e. those with better 

objective values) should share some property that makes them able to obtain better 

objective values. An initial solution with better objective values should be close to the 

global optimum. In this research, the stations are divided into 2 categories: (1) Pickup 

Station, which reduces the penalty cost because bicycles are picked up here (i.e. the 

current inventory level is greater than its target inventory level). (2) Drop off Station, 

which reduces the penalty cost because bicycles are dropped off here (i.e. the current 

inventory level is less than its target inventory level). 

 

In this research, the following five methods are used to generate the candidate 

initial solutions, and one of them (selected at random in each run) are selected to pass to 

the VNS algorithm as the initial solutions, also, the best of all these candidate solution are 

saved as the current best solution for VNS algorithm: 

1. Randomly Single Alternative Selection:  

This method selects the pickup and drop off stations alternately. Initially, a pickup 

station 1,1r  is selected and added to the routing sequence. The loading quality at the 

selected station is defined as 
1,11,1 min{ , }b
ra c l= . If the 

1,1

b
rl c> , then 1,1v c= , and the station 
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1,1r  remains on the selection list and its current inventory level is updated. If 
1,1

b
rl c≤ , then 

1,11,1
b
rv l= , and the station 1,1r  is removed from the selection list. Next, a drop off station 

2,1r  is randomly selected and added to the routing sequence. The unloading quality at 

station 2,1r  is defined as 
2,1 2,12,1 1,1min{ , }b

r ra v s l= − . The inventory level on vehicle 2,1v  is 

updated after 2,1a  has been determined. If the inventory level meets the target level, 

station 2,1r  is removed from the selection list; otherwise, it remains, and its current 

inventory level is updated. Repeating these two steps generates a routing sequence and a 

related loading / unloading plan for the trip. If the newly selected station 1,2r  remains for 

current trip, depot 
0 ,1

r − ,
0 ,2

r +  is added to the current routing sequence. All inventories on 

the vehicle are unloaded at the depot, and the next trip is started following the process 

just described. However, the 1,2r  is not added into routing sequence but is used as the sign 

to add the depot. The entire process ends when the total travel time violates the time 

horizon limitation. 

 

2. Randomly Full Load Alternative Selection: 

This method selects full load pickup and drop off stations alternately using a 

strategy similar to the Randomly Single Alternative Selection method. The only 

difference is that pickup stations are continually added until the inventory level on the 

vehicle is full. Then drop off stations are selected until the entire inventory on vehicle is 

dropped off.  
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3. Penalty Cost Priority Selection: 

This method selects and adds the station which gives the best penalty cost 

reduction to the routing sequence. It calculates this value for each station based on the 

current inventory level on the vehicle ,p kv , the vehicle capacity c, the station capacities si 

and their current inventory level , 1i kI − . If station i is a drop off station, its best reduction 

is 
, , 1

, 1 , 11,...,min{ , }
min { ( ) ( )}

k i i kk
i i k i i kq v s I

g I q g I
r

δ
−

− −= −
= + − . If station i is a pickup station, its 

best reduction is 
, , 1

, 1 , 11,...,min{ , }
min { ( ) ( )}

k i kk
i i k i i kq c v I

g I q g I
r

δ
−

− −= −
= − − . The station with the 

largest penalty cost reduction is added to the routing sequence. The station first selected 

for each trip is a special case. Since infinite capacity and inventory are assumed at the 

depot, either a pickup or drop off station can be selected as the first station in the trip 

route. If it is a pickup station, no action is done at the depot; if a drop off station, the 

required number will be picked up at the depot starting point. Similar to the strategy used 

in previous method, once the selected station is added to the current trip, the depot is also 

added, and the process is repeated until the time horizon limitation is reached. 

 

4. Travel Cost Priority Selection: 

This method selects the station which adds the smallest travelling cost to the 

routing sequence. It uses the same steps as the Penalty Cost Priority Selection, with one 

difference: the criterion for choosing the station changes from the largest penalty cost 

reduction to the smallest travelling cost increase.  



 54 

 

5. Cost Ratio Priority Selection: 

This method selects and adds the station with the best ratio between the penalty 

cost reduction and the travelling cost increase to the routing sequence. If the current 

status is , , ,, ,
k k kk k kr a vr r r< > , the cost ratio for each qualified station is obtained by 

dividing the best penalty cost reduction by the travel time. If station i is a drop off station, 

its cost ratio is 
,, , 1

, 1 , 1 ,1,...,min{ , }
min { ( ) ( )} /

kkk i i kk
i i i k i i k r iq v s I

ratio g I q g I e
rr −

− −= −
= + − . If it is a 

pickup station, then it is represented by 

,, , 1
, 1 , 1 ,1,...,min{ , }

min { ( ) ( )} /
kkk i kk

i i i k i i k r iq c v I
ratio g I q g I e

rr −
− −= −

= − − . The station with the largest 

ratio will be selected and added to the routing sequence. Except for this selection 

criterion (i.e. best ratio rather than the best penalty cost reduction), the remaining steps in 

this method are the same as for the Penalty Cost Priority Selection method. 

 

The Removal Neighborhood Function 

 

The removal neighborhood function R(x), which is the set of the feasible neighbor 

solutions obtained by applying removal moves to the current solution x=<r,a,v,I>, 

removes points visited (either station or depot) from the vehicle routing sequence r, as 

well as its loading / unloading plan from a at the same time. The remaining routing 

sequence r’ and loading / unloading plan a’ are the new generated removal neighborhood 

x’=R(x). However, the new on vehicle inventory level v’ may not be feasible because it 
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violates the vehicle capacity limitation (remove a drop off station or the depot) or non-

negative sign limitation (remove a pickup station or the depot). This function only 

changes the loading / unloading plan for the predecessor station, the successor station and 

relative depot of the station removed to generate a new feasible solution x” = <r’,a”,v”>. 

If the removed point is a station, a maximum of four feasible solutions are generated with 

the same routing sequence r’ but with different loading / unloading plan a”. If the 

removed point is a depot, a maximum of three feasible solutions are generated. A more 

detailed description of this method can be found in the next section. To be consistent, the 

removed point is assumed to be 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  in solution x. 

In this research, even though each station can be visited only once in each trip, the 

same station can be visited multiple times in different trips. So the station can be visited 

multiple times across the solution level. In order to distinguish the multiple visited 

stations and once visited station in the solution, we define simple station as one that is 

visited only once in the solution, while a complex station is one visited more than once. 

 

Neighborhood function for simple stations 

 

This neighborhood function is applied when the stations affected are all simple 

stations. This section discusses the simple remove function SR(x) and simple insert 

function SI(x). 

 

Removed station is a pickup station   
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If the removed point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a pickup station, a maximum of 

three feasible solutions can be generated. The number of bicycles picked up at the station 

can be instead picked up and carried from the depot, the previous station or the successor 

station as long as the total vehicle capacity is not violated.  

1. Pickup from the Depot - Adjust 
0 ,k

a + : 

Denote 1η  as the residual vehicle capacity for the k th trip before visiting station 

,p kr . Thus, 1 ,0 ,1,..., 1
min { }t kt p

c vη += −
= − . For , 1p ka η≤ , the ,p ka  bicycle can be picked at the 

depot at the beginning of k th trip, '
,0 , 0 , p kk k

a a a+ += +  as shown in Example 1 below.  

Example 1: Suppose one solution includes only one trip which visits 3 stations, 

1 2 2 8s s s= = = , 1 2 2 3b b bl l l= = = . The vehicle c=10, and the depot is assumed to have 

infinite capacity. This feasible solution x includes the routing sequence 

0 ,3,2,1,0r + −=< >  and loading / unloading plan 1, 2, 2, 5,0a =< + + + − > . Station 2 (the 

third entry) in this solution is removed. The new generated solution x’ is shown in Figure 

4.1. 
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9xample 1

Figure 4.1: Removal neighborhood function, remove pickup station and adjust at depot 
start point 

2. Adjust the amount from the previous station - Adjust 1,p ka −

If the predecessor station 1,p kr −  has enough vehicle capacity to pick up the 

quantity removed (i.e. 1, ,p k p kv a c− + ≤ ) and has enough bicycles stored at the station 1,p kr −

(i.e. 1, , 1, 1p k p k p ka a I− − −+ ≤ ), then the vehicle can pick up more / drop off fewer bicycles at 

station 1,p kr −  to cover the removed number (i.e. '
1, 1, ,p k p k p ka a a− −= + ). Examples 2 and 3

illustrate the case when the predecessor is a pickup and drop off station. 

Example 2: Suppose one solution includes one trip that visits 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 
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0 ,3,2,1,0r + −=< >  and loading / unloading plan 0, 1, 2, 3,0a =< + + − > . Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.2. 
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9xample 2

Figure 4.2: Removal neighborhood function, remove pickup station and adjust 
predecessor pickup station  

Example 3: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,2,1,0r + −=< >  and loading / unloading plan 3, 1, 2, 4,0a =< + − + − > .  Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.3. 



59 

0+ 3

0 ,1 0 ,1

0 ,1 0 ,1

0, 3,

3, 47

r a

v I

+ +

+ +

< = =

= = >

2 1 0-

1,1 1,1

1,1 3,1

3, 1,

2, 4

r a

v I

< = = −

= = >
2,1 2,1

2,1 2,1

2, 2,

4, 1

r a

v I

< = =

= = >
3,1 3,1

3,1 1,1

1, 4,

0, 7

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 47

r a

v I

− −

−

< = =

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= = 2 2{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

0+ 3

0 ,1 0 ,1

0,10 ,1

0, 3,

3, 47

r a

v I

+ +

+

< = =

= = >

1 0-

1,1 1,1

1,1 3,1

3, 1 2 1,

4, 2

r a

v I

< = = − + =

= = >
3,1 3,1

3,1 1,1

1, 4,

0, 7

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 47

r a

v I

− −

−

< = =

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

x =

'x =

9xample 3

Figure 4.3: Removal neighborhood function, remove pickup station and adjust 
predecessor drop off station  

3. Adjust the amount from the successor station - Adjust 1,p ka + : 

Because we know that the previous solution is feasible, the vehicle capacity 

limitation should be automatically qualified if station 1,p kr −  picks up the quantity removed. 

If the successor station has enough inventory capacity to cover this number (i.e. 

, 1, 1, 1p k p k p ka a I+ + −+ ≤ ), then station 1,p kr +   can pick up fewer to  cover the number removed 

(i.e. '
1, 1, ,p k p k p ka a a+ += + ). Examples 4 and 5 illustrate the case when the successor is a

pickup and drop off station. 

Example 4: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. The feasible solution x includes routing sequence 
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0 ,3, 2,1,0r + −=< >  and loading / unloading plan 0, 1, 2, 1, 4a =< + + + − >   Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.4. 
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Figure 4.4: Removal neighborhood function, remove pickup station and adjust successor 
pickup station  

Example 5: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3, 2,1,0r + −=< >  and loading / unloading plan 0, 1, 2, 1, 2a =< + + − − > .  Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.5. 
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Figure 4.5: Removal neighborhood function, remove pickup station and adjust successor 
drop off station  

Removed point is a drop off station 

If the removed point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >   is a drop off station, a maximum of 

three feasible solutions may be generated. The number of bicycles dropped off up at the 

station can be instead dropped off at the depot, the previous station or the successor 

station as long as the total vehicle capacity is not violated. 

1. Adjust the amount at the Depot - Adjust 
0 ,k

a − : 

Denote 2η  as the residual vehicle capacity for the k th trip after visiting station 

,p kr . Thus, 2 ,1,...,
min { }

k
t kt p

c v
r

η
= +

= − . If , 2p ka η≤ , then the ,p ka  extra bicycles can be 
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dropped at the depot at the end of k th trip, '
0 , 0 , k kk k

a a ar− −= + . Example 6 below shows

this case. 

Example 6: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10, and the depot have enough capacity, for example 

0
50bl + = . This feasible solution x includes routing sequence 0 ,3,2,1,0r + −=< >  and

loading / unloading plan 1, 2, 2, 1,0a =< + + − − > .  Station 2 is removed from this solution. 

The new generated solution x’ is shown in Figure 4.6. 
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Figure 4.6: Removal neighborhood function, remove drop off station and adjust depot 
end point  

2. Adjust the amount at previous station - Adjust 1,p ka − :
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If the predecessor station 1,p kr −  has enough bicycles stored at station 1,p kr −  (i.e. 

1, , 1, 1p k p k p ka a I− − −+ ≤ ), then  station 1,p kr −   can drop off more / pick up fewer to cover the 

number removed (i.e. '
1, 1, ,p k p k p ka a a− −= + ). Examples 7 and 8 illustrate the case when the

predecessor is a pickup and drop off station. 

Example 7: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10 and the depot have enough capacity, for example 

0
50bl + = . This feasible solution x includes routing sequence 0 ,3,2,1,0r + −=< >  and

loading / unloading plan 0, 3, 2, 1,0a =< + − − > . Station 2 is removed from this solution. 

The new generated solution x’ is shown in Figure 4.7. 

0+ 3

0 ,1 0 ,1

0 ,1 0 ,1

0, 0,

0, 50

r a

v I

+ +

+ +

< = =

= = >

2 1 0-

1,1 1,1

1,1 3,1

3, 3,

3, 0

r a

v I

< = =

= = >
2,1 2,1

2,1 2,1

2, 2,

1, 5

r a

v I

< = = −

= = >
3,1 3,1

3,1 1,1

1, 1,

0, 4

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 49

r a

v I

− −

−

< = =

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= = 2 2{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

0+ 3

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 50

r a

v I

+ +

+

< = =

= = >

1 0-

1,1 1,1

1,1 3,1

3, 3 2 1,

1, 2

r a

v I

< = = − =

= = >
3,1 3,1

3,1 1,1

1, 1,

0, 4

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 50

r a

v I

− −

−

< = =

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

x =

'x =

9xample 7



64 

Figure 4.7: Removal neighborhood function, remove drop off station and adjust 
predecessor pickup station  

Example 8: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10.. This feasible solution x includes routing sequence 

0 ,3,2,1,0r + −=< >  and loading / unloading plan 4, 1, 2, 1,0a =< + − − − > . Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.8. 
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Figure 4.8: Removal neighborhood function, remove drop off station and adjust 
predecessor drop off station  

3. Adjust the amount at the succeeding station - Adjust 1,p ka + :

If the successor station has enough inventory to cover the number removed (i.e. 

, 1, 1, 1p k p k p ka a I+ + −+ ≤ ), station 1,p kr +  can pick up fewer bicycles to cover the number 
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removed (i.e. '
1, 1, ,p k p k p ka a a+ += + ). Examples 9 and 10 illustrate the case when the

successor is a pickup and drop off station. 

Example 9: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,2,1,0r + −=< >  and loading / unloading plan 0, 3, 2, 1, 2a =< + − + − > . Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.9. 
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Figure 4.9: Removal neighborhood function, remove drop off station and adjust successor 

pickup station  
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Example 10: Suppose one solution includes one trip visiting 3 stations, 1 2 2 8s s s= = = , 

1 2 2 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,2,1,0r + −=< >  and loading / unloading plan 0, 3, 2, 1,0a =< + − − > . Station 2 is 

removed from this solution. The new generated solution x’ is shown in Figure 4.10. 
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Figure 4.10: Removal neighborhood function, remove drop off station and adjust 
successor drop off station  

Removed point is a depot 

In this research, any point in the vehicle routing schedule except for the beginning 

and ending point can be removed, meaning that not only a station but also the depot 

within a routing sequence can be removed. According to the definition of the vehicle 

routing sequence, the depot points visited during the vehicle routing sequence are used as 
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the delimiter to separate trips in the routing. Once the depot point is removed, the 

adjacent two trips in the routing sequence will be merged into one large trip. Since each 

station can be visited at most once in each trip, it is necessary to check whether this 

change violates this constraint, reversing the remove depot action if needed. If the new 

trip does not violate the visit constraint, the depot visited is considered as a station, and 

the remove station method is used to generate 3 solutions. The only difference between a 

station and a depot visit is that the latter generates 2 visit points in the vehicle routing 

sequence (
0 , 0 , 1

,
k k

r r− + +
). By merging these 2 depot points in assignment plan

0 , 0 , 1
'k k k

a a a− + +
= + , the depot can be removed using the same method as for stations.

The Insert Neighborhood Function 

The insert neighborhood function I(x) is the set of feasible neighbor solutions 

obtained by applying the insert moves to the current solution x=<r,a,v,I>. This move 

inserts a target station into the current vehicle routing sequence r and creates a related 

loading / unloading quantity for this inserted station. The new generated routing sequence 

r” and assignment plan a” become the inserted neighborhood x”=R(x). Similar to the 

remove neighborhood function, the insert move can also result in a solution that is not 

feasible. Using a strategy similar to the one in the remove neighborhood function, a 

maximum of 3 feasible solutions can be generated by adjusting the loading / unloading 

quantity for the depot and the predecessor and successor stations. To be consistent, it is 
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assumed that the insert point is 
,, , , ,, , ,

p kp k p k p k r kr a v I< > and that its position is before point

1,1, 1, 1, ,, , ,
p kp k p k p k r kr a v I
++ + +< >  in solution x. 

Insert point is a pickup station 

If the inserted point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > is a pickup station, a maximum of 3

feasible solutions can be generated. 

1. Adjust the amount at the ending depot visit - Adjust
0 ,k

a − : 

First, the residual vehicle capacity 2 ,,...,
min { }

k
t kt p

c v
r

η
=

= −  is calculated. If 

, 2p ka η≤ , then the ,p ka  extra bicycles can be dropped at the depot at the end of the k th 

trip, '
0 , 0 , k kk k

a a ar− −= − . Example 11 below shows this case. 

Example 11: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 0, 3, 3,0a =< + − > . The point 2,1 2,12, 2r a< = = + >

is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.11. 



69 

0+ 3

0 ,1 0 ,1

0 ,1 0 ,1

0, 0,

0, 50

r a

v I

+ +

+ +

< = =

= = >

2 1 0-

1,1 1,1

1,1 3,1

3, 3,

3, 0

r a

v I

< = =

= = >
2,1 2,1

2,1 2,1

2, 2,

5, 1

r a

v I

< = =

= = >
3,1 3,1

3,1 1,1

1, 3,

2, 6

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0 2 2,

0, 52

r a

v I

− −

−

< = = − = −

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= = 2 2{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

0+ 3

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 50

r a

v I

+ +

+

< = =

= = >

1 0-

1,1 1,1

1,1 3,1

3, 3,

3, 0

r a

v I

< = =

= = >
2,1 2,1

2,1 1,1

1, 3

0, 6

r a

v I

< = = −

= = >

0 ,1 0 ,1

0,10 ,1

0, 0,

0, 50

r a

v I

− −

−

< = =

= = >

0 0
{ , 50,}bs l+ += ∞ =

3 3{ 8, 3}bs l= =
1 1{ 8, 3}bs l= =

'x =

x =
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Figure 4.11: Insert neighborhood function, insert pickup station and adjust depot end 
point 

2. Adjust the amount at the previous station - Adjust 1,p ka − : 

If the predecessor station 1,p kr −  has enough bicycles (i.e. 

1, 1,
1, ,, 1p k p k

p k p kr k r
I a a s

− −
−−

− + ≤ ), then station 1,p kr −  can drop off more / pick up fewer to 

cover the inserted number (i.e. '
1, 1, ,p k p k p ka a a− −= − ). Examples 12 and 13 illustrate the 

case when the predecessor is a pickup and drop off station. 

Example 12: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x incudes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 0, 3, 3,0a =< + − > . The point 2,1 2,12, 2r a< = = + >
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is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.12. 
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Figure 4.12: Insert neighborhood function, insert pickup station and adjust predecessor 
pickup station 

Example 13: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 4, 1, 3,0a =< − − > . The point 2,1 2,12, 2r a< = = + >

is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.13. 
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Figure 4.13: Insert neighborhood function, insert pickup station and adjust predecessor 
drop off station 

3. Adjust the amount at the succeeding station - Adjust 1,p ka + : 

If the successor station has enough empty lockers to cover the number of bicycles 

inserted (i.e. 
1, 1,

1, ,, 1p k p k
p k p kr k r

I a a s
+ +

+−
− + ≤ ), then station 1,p kr +  can drop off more to cover 

the inserted quantity (i.e. '
1, 1, ,p k p k p ka a a+ += − ). Examples 14 and 15 show the case when 

the successor is a pickup and drop off station. 

Example 14: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 1, 1,1, 1a =< − − > . The point 2,1 2,12, 2r a< = = + >  is 
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inserted into the current solution (i.e. insert station 2 into the second position of the first 

trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.14. 
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9xample 14

Figure 4.14: Insert neighborhood function, insert pickup station and adjust successor 
pickup station 

Example 15: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 0, 1, 1,0a =< + − > . The point 2,1 2,12, 2r a< = = + >

is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.15. 
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Figure 4.15: Insert neighborhood function, insert pickup station and adjust successor drop 
off station 

Insert point is a drop off station 

If the inserted point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > is a drop off station, a maximum of 3

feasible solutions can also be generated. 

1. Adjust the amount at the starting depot - Adjust
0 ,k

a + :

First, the residual vehicle capacity is calculated 1 ,0 ,1,..., 1
min { }t kt p

c vη += −
= − . If 

, 1p ka η≤ , then the ,p ka  bicycle can be picked at the depot at the beginning of k th trip, 

'
,0 , 0 , p kk k

a a a+ += − . Example 16 shows this situation. 
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Example 16: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 0, 1, 1,0a =< + − > . The point 2,1 2,12, 2r a< = = − >

is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.16. 
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Figure 4.16: Insert neighborhood function, insert drop off station and adjust depot start 
point  

2. Adjust the amount at the previous station - Adjust 1,p ka − : 

If the predecessor station 1,p kr −  has enough bicycles 1,p kr −  (i.e. 

1,
1, , , 1p k

p k p k r k
a a I

−
− −

− ≤ ), then station 1,p kr −  can pick up enough to cover the inserted 

quantity (i.e. '
1, 1, ,p k p k p ka a a− −= − ). Examples 17 and 18 show the case when the 

predecessor is a pickup and drop off station. 
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Example 17: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 0, 1, 1,0a =< + − > . The point 2,1 2,12, 2r a< = = − >

is inserted into the current solution (i.e. insert station 2 into the second position of the 

first trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.17. 
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Figure 4.17: Insert neighborhood function, insert drop off station and adjust predecessor 
pickup station 

Example 18: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 2, 1, 1,0a =< − − > . The point 2,1 2,12, 2r a< = = − >
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is inserted into the current solution (i.e. insert station 2 into the second position of the 1st 

trip, picking up 2 bicycles). The new generated solution x’ is shown in Figure 4.18. 
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Figure 4.18: Insert neighborhood function, insert drop off station and adjust predecessor 
drop off station 

3. Adjust the amount at the successor station - Adjust 1,p ka + : 

If the successor station has enough inventory capacity to cover the number 

removed (i.e. 
1,

1, , , 1p k
p k p k r k

a a I
+

+ −
− ≤ ), then station 1,p kr +  can pick up more bicycles to 

cover the inserted number (i.e. '
1, 1, ,p k p k p ka a a+ += − ). Examples 19 and 20 show the case 

when the successor is a pickup and drop off station. 

Example 19: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes the routing sequence 
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0 ,3,1,0r + −=< >  and the assignment plan 3, 1, 1, 3a =< + − + − > . The point 

2,1 2,12, 2r a< = = − >  is inserted into the current solution (i.e. insert station 2 into the 

second position of the first trip, picking up 2 bicycles). The new generated solution x’ is 

shown in Figure 4.19. 
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Figure 4.19: Insert neighborhood function, insert drop off station and adjust successor 
pickup station 

Example 20: Suppose one solution includes one trip visiting 2 stations, 1 2 3 8s s s= = = , 

1 2 3 3b b bl l l= = = . The vehicle c=10. This feasible solution x includes routing sequence 

0 ,3,1,0r + −=< >  and assignment plan 3, 1, 1, 1a =< + − − − > . The point 

2,1 2,12, 2r a< = = − >  is inserted into the current solution (i.e. insert station 2 into the 
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second position of the first trip, picking up 2 bicycles). The new generated solution x’ is 

shown in Figure 4.20. 
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Figure 4.20: Insert neighborhood function, insert drop off station and adjust successor 
drop off station 

Insert point is a depot 

As mentioned earlier, visiting the depot in the vehicle routing sequence is a 

delimiter specifying only one trip, meaning inserting the depot into the current vehicle 

routing sequence divides one trip into two separate trips.  Since it is known that the depot 

has enough bicycle and locker capacity, this insert action always generates a feasible 

solution if the new solution does not violate the time horizon constraint. Furthermore, 

because it is assumed that all bicycles are left at the depot end point and the required 

bicycles are picked up at the depot start point, it is not necessary to adjust the assignment 
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plan of other visit points to generate a new feasible solution. As a result, only 1 possible 

solution is generated when a depot is inserted in the vehicle routing sequence.  

The neighborhood functions for complex station 

Similar to the neighborhood function for a simple station, the neighborhood 

function for complex stations includes 2 basic functions: (1) Remove complex station 

CR(x), and (2) Insert complex stations CI(x). As opposed to the simple station, the 

complex station is visited multiple times in the solution. If the remove / insert visit point 

is not the last visit to the complex station in the vehicle routing, this action will affect the 

feasibility of its following trips, consequently also affecting the solution’s feasibility. 

Proposition 4.1: 

Suppose station i has been visited a total of n times in solution x. These n visiting 

points in the solution are 
, , , ,

, , ,
l l l l l l lt k t k t k i k

r a v I< >  where 
,l lt k

r i=  and 1,2,...,l n= . To 

obtain the sequence of these points, we assume 1j jk k +<  where 1,2,..., 1j n= −  so that 

, , , ,
, , ,

l l l l l l lt k t k t k i k
r a v I< >  is the l th time to visit station i. If only 

, li k
I  is changed, the 

inventory at station i for the lk th trip becomes 
, , ,

'
l l li k i k i k

I I τ= +  while the rest of the 

routing sequence and assignment plans remain unchanged for solution x, where 
, li k

τ  is 

the additional increased / decreased inventory for station i. Only the inventory level at 

station i for current and later trips is affected, nothing else. For all trips greater than or 
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equal to the lk  th trip, the initial inventory level at station i increases 
, li k

τ  units. Based 

on the station inventory constraint, the inventory level should between 0 and si, for each 

trip, , , ,
0 '

l
i q i q ii k

I I sτ≤ = + ≤  with 1 2,
[ , ]

li k
τ α α∈ where 1 ,..., ,max { }

l nq k k i qIα == − , 

2 ,..., ,min { }
l nq k k i i qs Iα == − , 

Remove a multiple visited station 

The previous section provided 3 possible ways to generate feasible solutions 

when removing a station from the vehicle routing sequence: (1) adjust the depot 

assignment plan, (2) adjust the predecessor assignment plan, and (3) adjust the successor 

assignment plan. The combination of the removed station and predecessor / successor 

station with pickup / drop off actions resulted in 10 possible ways to manage the 

assignment plan in the trip affected to obtain a feasible solution. 

As opposed to the simple station remove function, removing a complex station 

not only affects the current trip but also later ones scheduled for the removed complex 

station. The following discussion separates the complex station remove function into two 

cases: (1) only the removed point is a complex station, and (2) the removed station and 

adjusted adjacent station are both complex stations. 

(1) Only the removed point is complex station
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Suppose the removed visit point is 
, , , ,

, , ,
l l l l l l lt k t k t k i k

r a v I< >  , where 
,l lt k

r i=  which 

has been defined earlier in this chapter. For the lk th trip, the simple station remove 

function is used to obtain the feasible trip route. Originally, the initial inventory at station 

i for 1lk +  th trip was 
, li k

I . However, 
, , , ,

, , ,
l l l l l l lt k t k t k i k

r a v I< >  has been removed, meaning 

the initial inventory at station i for 1lk +  th trip is now 
1, , ,l l l li k i k t k

I I a
−
= + . Based on 

Proposition 4.1, the feasible solution must satisfy the following constraints: 

1 2,
[ , ]

l lt k
a α α∈ where 1 ,..., ,max { }

l nq k k i qIα == − and 2 ,..., ,min { }
l nq k k i i qs Iα == −  to ensure the 

remaining trips are feasible. Satisfying both constraints results in a new feasibility 

constraint for the new solution generated. 

(2) Removed point and adjusted adjacent point (predecessor / successor) both are

complex station 

Suppose the removed visit point is 
, , , ,

, , ,
l l l l l l lt k t k t k i k

r a v I< > (station i), and the 

predecessor point is 
1, 1, 1, ,

, , ,
l l l l l l lt k t k t k j k

r a v I
− − −

< >  (station j), both being complex stations. 

For the lk  th trip, the simple station remove function is used to obtain the feasible trip 

route for the lk th trip. The assignment plan for station i has been merged to station j, 

meaning that for the 1lk +  th trip, the initial inventory for station i is increased 
,l lt k

a  units 

and the initial inventory for station j is increased 
,l lt k

a−  units. Based on Proposition 4.1, 

for the remaining trip to be feasible, the following constraints need to be satisfied: 
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1 2,
[ , ]

l lt k
a α α∈ where 

11 ,..., ,max { }
l nq k k i qIα
+== − , 

12 ,..., ,min { }
l nq k k i i qs Iα
+== −  

1 2,
[ , ]

l lt k
a β β− ∈ where 

11 ,..., ,max { }
l nq k k j qIβ
+== − , 

12 ,..., ,min { }
l nq k k j j qs Iβ
+== −  

Satisfying all constraints results in a new feasibility constraint for the new solution 

generated. 

The improvement method 

Once the VNS method has been applied, it is necessary to use improvement 

function P(x) to determine whether the current assignment plan can be improved.  

Improvement neighborhood function 

1. Improvement function by changing one station’s assignment plan

 This improvement function attempts to improve the penalty cost by changing 

only one station’s assignment plan without changing the vehicle routing schedule. As 

constrained by the flow balance on the vehicle, the total number of bicycle loaded into 

the vehicle should be equal to the total number of bicycle unloaded from the vehicle for 

each trip and the entire repositioning process. When the assignment plan for one point is 

changed, at least one other point’s assignment plan is also changed. Since this method 

changes only one station’s assignment plan, the other changed assignment plan points are 

the depot. Suppose station i can be improved ( a
i iI t≠ ), and point 

,, , , ,, , ,
p kp k p k p k r kr a v I< >
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visits station i (i.e. ,p kr i= ). This point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
can be split into 2 points: 

,, , , ,, , ,
p kp k p k p k r kr a v I< + ∆ + ∆ −∆ >  and 

,, , ,, , ,
p kp k p k r kr v I< −∆ > , where 0,..., a

i iI t∆ = − . By 

using the remove function to remove point 
,, , ,, , ,

p kp k p k r kr v I< −∆ > , solution x’ which 

changes only the assignment plan for station i is obtained. Then the best penalty cost can 

be determined using these feasible solutions to obtain an improved solution for the 

current solution x.  

2. Improvement function by changing the assignment plan of two stations

 This improvement function attempts to improve the current solution by changing 

the assignment plan for two stations in the same trip to reduce the penalty cost while not 

changing the vehicle routing schedule. Because of the different sizes of, locations of and 

customer demands for each station, the penalty cost function for each is different as is the 

target inventory level. For each station, any change in its target inventory level causes a 

penalty cost.  

Suppose improvement in the k th trip is considered using the two visit points 

,, , , ,, , ,
p kp k p k p k r kr a v I< >

 
and 

,, , , ,, , ,
q kq k q k q k r kr a v I< > , where p q< . Assume ,p kr i=  and 

,q kr j= ; both station i and j can be either a single station or complex stations. There are 

two ways to make the adjustment: (1) a forward adjustment loading 0∆ ≥ more bicycle 

units at station i, and loading ∆  fewer bicycle units at station j. (2) a backward 

adjustment loading 0∆ ≥ fewer bicycle units at the station i, and loading ∆ more bicycle 

units at station j.  
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(1) The forward adjustment:

In this case, the new solution will pick up more (drop off fewer) bicycles at the 

first visit point and pick up fewer (drop off more) bicycles at the second visit point. These 

2 new adjusted visit points are , , ,, , ,p k p k i ki a v I< + ∆ + ∆ −∆ >  and 

, , ,, , ,q k q k j kj a v I< −∆ + ∆ > . All visit points between these two are modified to 

,, , , ,, , ,
s ks k s k s k r kr a v I< + ∆ >  where p s q< < . To have this adjustment lead to a feasible 

solution requires the following constraints: ,0 i k iI s≤ −∆ ≤ , ,0 j k jI s≤ + ∆ ≤ , 

,0 p kv c≤ + ∆ ≤ , and ,0 s kv c≤ + ∆ ≤  where p s q< < . Merging these constraints results in 

1γ∆∈  where 1 , 1, , ,[0,min{ ,..., , , }]p k q k j j k i kc v c v s I Iγ −= − − − . If station i or station j is the 

complex station, the solution includes a total of r  trips. For each station i and j, the 

change in the inventory levels in the k th trip will affect all of the initial inventory levels 

for later trips, meaning that for all visit points after the k th trip, the initial inventory level 

for station i will be decreased ∆ . To maintain feasibility, all constraints ,0 i t iI s≤ −∆ ≤ , 

where [ , ]t k r∈  need to be satisfied. Thus, 2γ∆∈ , where 2 , ,[0,min{ ,..., }]i k iI I rγ = . 

Applying the same method to station j leads to a similar group of constraints for 

maintaining the feasibility, resulting in 3γ∆∈ , where 3 , ,[0,min{ ,..., }j j k j is I s I rγ = − − . 

Merging the limited ranges results in γ∆∈ , where 

, 1, , , , ,[0,min{ ,..., , ,..., , ,..., }]p k q k j j k j j i k ic v c v s I s I I Ir rγ −= − − − − . Finding the new solution 

improves the current solution by picking up * arg min ( ) ( )a a
i i j jf I f Iγ∆∈∆ = −∆ + + ∆  more 

bicycles at station i and dropping off *∆  more units at station j. 
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(2) The backward adjustment:

In this case, the new solution will pick up fewer (drop off more) bicycles at the 

first visit point and pick up more (drop off fewer) bicycles at the second visit point. These 

2 new adjusted visit points are , , ,, , ,p k p k i ki a v I< −∆ −∆ + ∆ >  and 

, , ,, , ,q k q k j kj a v I< + ∆ −∆ > .  All visit points between these two are modified to 

,, , , ,, , ,
s ks k s k s k r kr a v I< −∆ >  where p s q< < . To make this adjustment lead to a feasible 

solution requires satisfying the following constraints: ,0 i k iI s≤ + ∆ ≤ , ,0 j k jI s≤ −∆ ≤ , 

,0 p kv c≤ −∆ ≤ , and ,0 s kv c≤ −∆ ≤  where p s q< < . Merging these constraints results in 

1ϕ∆∈  where 1 , 1, , ,[0,min{ ,..., , , }]p k q k j k i i kv v I s Iϕ −= − . If station i or station j are a

complex station, the solution includes a total of r  trips. For station i and j, the change in 

the inventory level in the k th trip will affect the initial inventory levels for all later trips. 

For all visit points after the k th trip, the initial inventory level for station i will be 

decreased ∆ . To maintain the feasibility, all constraints ,0 i t iI s≤ + ∆ ≤ , where [ , ]t k r∈  

need to be met, meaning 2ϕ∆∈ , where 2 , ,[0,min{ ,..., }]i i k i is I s I rϕ = − − . Applying the 

same method for station j results in a similar group of constraints for maintaining the 

feasibility, 3γ∆∈ , where 3 , ,[0,min{ ,..., }j k iI I rϕ = . Merging the limited range results in 

ϕ∆∈ , where , 1, , , , ,[0,min{ ,..., , ,..., , ,..., }]p k q k j k j i i k i iv v I I s I s Ir rϕ −= − − . Finding the new 

solution improves the objective by dropping off * arg min ( ) ( )a a
i i j jf I f Iϕ∆∈∆ = −∆ + + ∆

more bicycles at station i and picking up *∆  more units at station j. 
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Numeric Experiment 

This section use the results of numeric experiments to test the performance of the 

heuristic algorithm (H2) proposed in this research to solve the SBRP problem with 

multiple trips. Unlike the heuristic algorithm (H1) proposed in Chapter 3 for solving the 

SBRP problem with a single trip, the H2 algorithm uses a 1-step strategy to solve the 

problem. While the H1 algorithm uses a routing first, loading plan second strategy, the 

H2 algorithm creates / modifies the routing schedule and loading plan at the same time. 

Making two decisions (vehicle routing schedule and loading plan) simultaneously makes 

the H2 algorithm more complex than the H1. This research runs the test on the data 

instances found in Ho and Szeto’s (2014) research, the same datasets used to test the H1 

algorithm. This section then compares the solving time and the objective results of the 

two algorithms.   

All tests were conducted on a Dell notebook with an Intel Core i5-2520M CPU @ 

2.5 GHz with 2GB RAM. The heuristic algorithm was coded using C++ in Microsoft 

Visual Studio 2013. 

Testing Scenarios 

All the testing scenarios used in this analysis come from Ho and Szeto’s (2014) 

research. In total 13 instances involving different numbers of stations were tested. The 
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first instance includes 100 stations and the second instances include 125 stations. Each 

instance includes 25 more stations than the previous one, and the last instance includes 

400 stations. In addition, 2 levels of time horizon, 9000 and 18000 time units were used, 

and the vehicle capacity was also tested at 2 levels, 10 and 20. Table 4.1 lists the 

parameters for all testing scenarios. The combination of the instance, time horizon and 

vehicle capacity resulted in a total of 13*2*2=52 testing scenarios classified in 4 group 

sets. 

  

Table 4.1: Parameter Table for instances in Ho and Szeto (2014)’s research 
Parameters Values 
Station Number  U(100,400) 
Time Horizon {9000,18000} 
Vehicle capacity {10,20} 

 

 

Testing Results 

 

Since both H1 and H2 algorithm includes the randomness, it is possible to get the 

different results with the same testing scenario and input parameters. To reduce the 

randomness in the comparison, we run m=30 iterations for each algorithm with each 

testing scenario. We summarized two measure criteria from these m=30 iterations for 

each test scenario: Objective Value and Solving Time. These two values are used to 

represent the performance of the algorithm in the testing scenario.  

In order to consistent with previous analysis, we still just use the penalty cost to 

be the objective. All the resting results are shown in the following table 4.2~4.5. 
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Table 4.2: Test Cases with Time horizon = 9000, and vehicle capacity = 10 
 

N  
H1 algorithm H2 algorithm 

Min  Avg Max Std Time 
(s) Min  Avg Max Std Time 

(s) GAP 

100 749.6 752.9 754.6 1.32 153 650.3 656.8 657.2 1.96 2.08 12.8% 
125 1004.2 1004.4 1007.3 0.93 142 886.5 889.5 889.6 0.85 2.14 11.4% 
150 1222.9 1223.4 1229.7 1.94 169 1079.8 1084.7 1092.2 3.50 2.86 11.3% 
175 1372.6 1375.0 1378.9 1.74 184 1177.3 1192.4 1193.4 4.34 3.47 13.3% 
200 1615.1 1616.7 1617.6 0.71 150 1217.9 1229.8 1242.4 7.72 3.70 23.9% 
225 1874.1 1885.0 1890.2 4.97 192 1631.4 1635.2 1635.6 1.23 6.86 13.2% 
250 2102.8 2112.8 2119.1 4.15 160 1896.7 1897.0 1898.8 0.66 5.18 10.2% 
275 2236.8 2239.7 2243.4 1.89 195 1940.2 1946.4 1949.4 2.85 5.28 13.1% 
300 2497.6 2507.7 2508.5 2.93 169 2149.2 2155.4 2163.3 4.09 6.77 14.0% 
325 2740.3 2741.6 2742.8 0.95 202 2354.8 2361.3 2364.0 2.41 5.91 13.9% 
350 2972.8 2973.9 2976.7 1.05 264 2673.7 2678.9 2683.1 2.79 6.46 9.9% 
375 3118.9 3121.3 3126.7 1.89 258 2750.0 2752.6 2762.7 3.78 6.48 11.8% 
400 3385.2 3385.8 3397.9 3.97 289 2823.5 2836.2 2849.8 6.94 7.41 16.2% 

* The objective value does not include the transportation cost. 
 

 

Table 4.3: Test Cases with Time horizon = 18000 and vehicle capacity = 10 
 

N  
H1 algorithm H2 algorithm 

Min  Avg Max Std Time 
(s) Min  Avg Max Std Time 

(s) GAP 

100 680.9 666.6 684.1 0.63 331 587.4 589.6 602.4 4.85 2.85 11.6% 

125 920.5 891.1 923.6 1.72 304 790.5 790.6 791.6 0.35 3.1 11.3% 

150 1136.8 1116.4 1149.2 0.58 207 977.3 981.7 981.8 1.21 3.3 12.1% 

175 1283.5 1245.7 1287.4 5.05 317 1117.2 1123.8 1124.5 1.83 2.77 9.8% 

200 1511.9 1502.5 1524.3 1.33 285 1202.8 1203.0 1207.4 1.17 3.81 19.9% 

225 1790.2 1732.4 1790.7 2.12 293 1535.6 1540.6 1541.9 2.12 4.07 11.1% 

250 2014.3 1962.5 2020.6 2.48 306 1638.9 1641.5 1647.9 2.59 6.9 16.4% 

275 2118.7 2151.0 2127.8 1.98 376 1848.5 1849.0 1859.6 3.09 7.53 14.0% 

300 2403.4 2376.2 2408.7 4.72 325 1995.3 2010.3 2017.0 5.9 9.8 15.4% 

325 2628.7 2616.6 2643.3 6.45 362 2234.1 2240.6 2246.3 3.8 10.42 14.4% 

350 2864.1 2853.1 2868.3 0.2 343 2418.3 2434.2 2434.5 4.47 12.1 14.7% 

375 2993.4 3028.5 3006.8 1.91 382 2576.2 2577.0 2583.0 1.72 12.73 14.9% 

400 3262.3 3265.2 3270.8 4.02 421 2778.2 2789.3 2791.2 3.85 14.56 14.6% 

* The objective value does not include the transportation cost. 
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Table 4.4: Test Cases with Time horizon = 9000 and vehicle capacity = 20 
 

N  
H1 algorithm H2 algorithm 

Min  Avg Max Std Time 
(s) Min  Avg Max Std Time 

(s) GAP 

100 680.9 682.5 684.1 0.83 684 563.4 565.4 567.3 2.96 2.37 17.2% 

125 920.5 923.5 923.6 0.95 613 735.2 744.4 753.6 2.25 2.58 19.4% 

150 1136.8 1144.9 1149.2 3.35 723 884.9 885.1 886.3 2.2 3.47 22.7% 

175 1283.5 1285.5 1287.4 1 789 1048.6 1050.7 1051.5 2.79 3.97 18.3% 

200 1511.9 1515.1 1524.3 2.95 898 1135.0 1144.8 1146.2 2.32 5.09 24.4% 

225 1790.2 1790.2 1790.7 0.11 921 1468.8 1474.2 1487.8 1.78 5.12 17.7% 

250 2014.3 2019.1 2020.6 1.58 969 1622.3 1634.4 1636.0 3.11 5.28 19.0% 

275 2118.7 2127.1 2127.8 2.8 1123 1767.9 1775.0 1775.0 1.53 6.92 16.6% 

300 2403.4 2406.8 2408.7 1.39 1266 1927.8 1928.1 1930.8 1.24 7.16 19.9% 

325 2628.7 2632.9 2643.3 5.1 1607 2157.4 2164.0 2169.1 1.31 9.04 17.8% 

350 2864.1 2866.4 2868.3 1.22 1772 2334.5 2353.9 2361.9 2.11 9.37 17.9% 

375 2993.4 3005.7 3006.8 4.41 1764 2478.4 2480.3 2480.4 4.04 9.6 17.5% 

400 3262.3 3280.2 3270.8 2.5 2215 2605.4 2617.7 2622.8 4.48 10.96 20.2% 

* The objective value does not include the transportation cost. 
 

Table 4.5: Test Cases with Time horizon = 18000 and vehicle capacity = 20 
 

N  
H1 algorithm H2 algorithm 

Min  Avg Max Std Time 
(s) Min  Avg Max Std Time 

(s) GAP 

100 578.7 580.9 584.6 1.64 2029 500.3 501.6 512.2 3.7 3.10 13.6% 

125 790.0 790.3 795.3 1.57 1903 640.3 642.1 652.8 3.63 5.83 18.8% 

150 1000.8 1001.7 1003.1 0.73 2362 822.8 826.1 841.7 5.74 3.93 17.5% 

175 1115.4 1118.4 1119.3 1.17 2851 969.6 977.6 988.5 5.82 4.87 12.6% 

200 1361.4 1368.2 1373.4 3.08 2938 1139.0 1139.7 1139.8 0.27 6.60 16.7% 

225 1584.8 1585.3 1595.8 3.37 2186 1283.4 1284.1 1287.8 1.27 7.80 19.0% 

250 1799.9 1801.9 1808.9 2.69 2293 1510.8 1517.4 1520.1 2.75 8.71 15.8% 

275 1990.6 1991.3 1992.3 0.55 2153 1641.5 1641.6 1642.7 0.31 10.19 17.6% 

300 2192.2 2207.1 2209.1 4.47 2694 1780.1 1788.4 1792.0 3.64 10.32 19.0% 

325 2427.5 2431.7 2431.7 1.27 3270 1837.8 1861.6 1866.1 8.23 11.46 23.4% 

350 2677.7 2678.8 2681.6 1.17 3565 2132.7 2134.4 2135.9 1.04 15.08 20.3% 

375 2849.8 2855.0 2856.4 1.79 3503 2138.5 2152.2 2154.8 4.61 15.13 24.6% 

400 3071.3 3074.3 3085.6 3.91 3009 2315.8 2323.5 2330.9 4.32 16.14 24.4% 

* The objective value does not include the transportation cost. 
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The “|N|”, “Min”, “Avg”, “Max”, “Std” and “Time” columns for H1 algorithm are 

all copied from chapter 3 research which represent “the total station number”, “Minimal 

objective value of H1 algorithm with m iterations”, “Average objective value of H1 

algorithm with m iterations”, “Maximal objective value of H1 algorithm with m 

iterations”, “Standard Deviation of m iterations objective value” and “Average solving 

time of H1 with m iterations”. Since the H2 algorithm also include the randomness, we 

use the same testing method to measure H2 as we did to H1 in chapter 3, i.e. run 30 

duplications for each testing scenario to get the summary result. The column “Min”, 

“Avg”, “Max”, “Std”, “Time” column for H2 algorithm represent the minimal objective 

value, average objective value, maximal objective value, standard deviation of objective 

value, and average running time for 30 duplication running results, respectively. The 

“GAP” is the improvement gap between the “H1 algorithm” and “H2 algorithm”, 

determined using the formula GAP = (H1 – H2) / H1. 

As shown in the tables above, the H2 algorithm provides a smaller objective value 

for the same testing scenario, with the improvement gap ranging from 9.8% to 24.6%, 

with an average value of 16.3%. All these observation shows that the H2 algorithm can 

provide better solution than H1 algorithm. At first, the Anderson-Darling test was used to 

check the normality of the raw data. The results shown in Figures B.1~B.4 indicate that 

the average objective values for H2 do not follow a normal distribution, meaning 

nonparametric statistical tests were required.  

This analysis used the Freidman test, a nonparametric statistical tool similar to a 

two-way ANOVA, to explore these observations. The three algorithms served as the 
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treatment and the testing scenarios as the blocks. In general, the Freidman test ranks the 

average objective values from each algorithm for each testing scenario, with the 

algorithm with the lowest value being assigned rank 1, the second best rank 2, and so on 

until all are ranked. In the case of a tie, average ranks are assigned. For example, if 2 

algorithms are tied for rank 1, they are both ranked 1.5 and next rank is 3. The hypotheses 

for Freidman test are listed below:  

H0: the median of the average objective values is equal for two algorithms. 

H1: medians of the average objective values for two algorithms are equal. 

Appendix Tables B.1, B.2, B.3 and B.4 present the statistical results from the 

Freidman tests obtained using MINITAB. All tests results provide very small p-values 

(<0.001), meaning that there is sufficient evidence to reject the null hypothesis and 

conclude that not all medians of the average values of all algorithms are equal. 

Combined with previous observation, we can say that the H2 algorithm can 

provide higher quality solution for the SBRP problem than the H1 algorithm. The reason 

for this improvement is the relaxation of the visit limitation for the SBRP problem. The 

H1 algorithm includes a full visit limitation, with each station being visited only once in 

the solution. The H2 algorithm, on the other hand, partially relaxed this visit limitation, 

allowing a station to be visited multiple times in different trips. This relaxation allowed 

the station with a large demand / inventory to be fulfilled if a large deviation from the 

target value causes a larger penalty cost. At the same time, multiple trips are used in this 

solution, meaning that the vehicle can visit a station multiple times. Because the depot is 

assumed to have infinite locker and bicycle inventory capacity, the penalty cost can be 
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reduced by visiting the depot to unload / pick up extra bicycles if the station is close to 

the depot. Thus, the change in the performance between the  H1 algorithm and the H2 

algorithm is not only caused by the improvement in the algorithm but also  by the 

relaxing of the constraint in  the research problem.  

Furthermore, the H2 algorithm uses much less solving time than the H1 algorithm 

to obtain the results for the same instance. The H2 algorithm solving time is fairly stable, 

not changing when the time horizon and vehicle capacity is increased. In general, the H2 

algorithm performed much better than the H1 algorithm in relation to solving time, 

providing feedback in a very short time.  In relation to the objective value, the H2 

algorithm also performed better, providing a better solution than the H1 algorithm. This 

improvement is not only caused by the new design of the heuristic algorithm but also by 

partially removed the station visit limitation. Allowing the same station to be visited 

multiple times within different trips increases the lower bound of the problem.  

 

 

 

Conclusion and Future Work 

 

This research proposed a VNS heuristic to solve the static bicycle repositioning 

problem using a single vehicle and multiple trips to complete the event. In addition, the 

visit limitation was partially relaxed by allowing the same station to be visited multiple 

times in different trips. The multiple trip assumption and visit limitation relaxation 
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improved the basic model, making it reflect the real-world more closely. Furthermore, 

rather than using the two-step routing first, loading assignment second strategy, a one-

step approached was proposed, meaning the routing schedule and the loading assignment 

were constructed at the same time.  

The experimental results using the instances from Ho and Szeto’s (2014) research 

indicate the new heuristic algorithm H2 provides a good quality solution within a short 

solving time. In addition, it provides a better solution than the H1 algorithm, with an 

average improvement of 0.23%. This improvement is caused by the one-step structure of 

the H2 and the relaxation of the visit limitation constraint. 

Future work will extend this research in several aspects: (1) Developing the 

heuristic to fully remove the visit limitation constraint and allowing the vehicle to use any 

schedule to complete the repositioning event. (2) Extending the current SBRP problem to 

include multiple vehicles scenarios.  
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CHAPTER FIVE 

STATIC BICYCLE REPOSITIONING PROBLEM WITH A SINGLE VEHICLE, 

MULTIPLE TRIPS AND MULTIPLE VISITS  

 

Previous chapters developed mathematical models for solving the static bicycle 

repositioning problem with a single vehicle. The solution for the model in Chapter 3 was 

limited to only one trip, and no station could be visited more than once. The model in 

Chapter 4 relaxed this constraint to allow the vehicle to use multiple trips in the solution 

and to allow the same station to be visited multiple times in different trips, while 

maintaining the constraint that each station could be visited at most once in one trip. In 

this chapter the visit limit constraint is completely relaxed to make the model realistic. In 

this research, the vehicle can use multiple trips in the solution and each station can be 

visited as many times as needed within the working time horizon. In other words, the 

vehicle can use any route without considering the visiting limitation, making this model 

equivalent to a realistic situation. A VNS-based algorithm was developed to solve the 

problem.  

 

Introduction 

 

Similar to the previous chapters, the issue addressed in this research remains 

focused on solving the static bicycle rebalance problem with a single vehicle. As 

explained earlier, one of the critical issues for maintaining a bicycle sharing system is to 
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ensure customers can rent / return bicycles to the station at their convenience. To address 

this objective, the bicycle sharing system needs to maintain the bicycle inventory level at 

each station at the target value on a daily basis. The static bicycle rebalance problem 

describes the model used to redistribute the bicycle inventory levels among these various 

stations with a single vehicle. In this research, we provide the method for addressing the 

static bicycle rebalance problem with a single vehicle using multiple trips and multiple 

visit. 

 

Problem Descriptions and Terms 

 

As in the other two studies, this one also is concerned with repositioning the 

bicycle inventory level among different stations to its target value with a single vehicle 

within the working time horizon. More specifically, the objective is to create a solution 

minimizing the total system cost. The operation cost for a repositioning event is linearly 

dependent on the total operation time. The penalty cost at each station is generated by the 

convex penalty function when the station’s inventory level deviates from its target 

inventory level. During the repositioning, the vehicle can use multiple trips to fulfill the 

reposition event, and more importantly, for this study, there is no visit limitation for each 

station in the trip, meaning that the vehicle can choose any route it wants to fulfill the 

repositioning. Thus, this scenario is a realistic one.  

To clarify this scenario, this study defines the following terms and delimitations 

using the same definitions as in previous chapters. The vehicle is defined as the 
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transportation equipment used to carry the bicycles among the different stations with the 

capacity to carry at most c units, while station is the place where customers can rent or 

return bicycles; the total number of lockers in the station is defined as the station 

capacity. The depot is defined as the distribution center and warehouse for the vehicle 

and the bicycles; it has the same function as the station, the only difference being that the 

station has a finite bicycle inventory and station capacity while it is assumed the depot 

has an infinite bicycle inventory and station capacity. Trip is defined as the vehicle 

routing sequence that starts at the depot and goes to several stations before returning to 

the depot. The visit point represents the visited station or depot in the vehicle routing 

sequence, while the target value is the inventory level designated for each station that is 

repositioned to. A visit point is a pickup station when its current inventory is greater than 

its target value, while a visit point is a drop off station when its current inventory is less 

than its target value. If a station has been visited multiple times in the solution, it is 

referred to as a complex station for the solution; otherwise, it is defined as a simple 

station for the solution.  

The most important contribution of this research is that the same station could be 

visited multiple times in the same trip. This assumption relaxes the visit limit constraint, 

making the model more closely resemble the real world. However, with this relaxation, 

using only the station type visited (simple station or complex station) based on the visit 

point cannot identify its status. To address this issue, a visit point is categorized as 3 

types: (1) pure simple visit point: the visit point which visits a simple station, (2) simple 

complex visit point: the visit point which visits a complex station only once in the current 
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trip, (3) multi-complex visit point: the visit point which visits a complex station more than 

once in the current trip.  

 

Heuristic Algorithm 

 

This research uses a VNS based algorithm to find the heuristic solution for the 

SBRP problem. Similar to the algorithm used in Chapter 4, the one here also uses the one 

step neighborhood function (changing both the number loaded / unloaded and the vehicle 

routing sequence at the same time) to generate new solutions. The primary difference 

between the current and previous algorithms is that the current one includes the 

modification for the scenario when the same station is visited multiple times during the 

same trip.  

The rest of this section is structured as follows: first, the structure of the solution 

for the SBRP problem is analyzed and symbols representing the solutions defined; then 

the pseudo code for the VNS algorithm introducing the structure of the heuristic 

algorithm is given, and finally the algorithm and its related terms and details, such as the 

initial solution and neighborhood functions, are explained.  

 

Analysis of the SBRP problem solution  

 

In general, the solution for the SBRP problem involves a vehicle routing sequence 

and loading / unloading plan for each station visited. More specifically, for this research, 
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the solution is composed of two parts: (1) a qualified vehicle routing sequence whose 

total traveling time does not violate the time horizon limitation and (2) the associated 

loading / unloading plan for each station for the routing sequence generated in part (1). 

For consistency, the same symbol ,x r a=< >  used in the previous chapters is used here 

to define a solution. The r  represents the routing schedule and a  the loading / unloading 

plan at each station for the routing sequence r . For this routing sequence, 

1
11 10 ,1 1 0 ,1 0 , 0 ,

( , ,..., , ,..., , ,..., , )
k

kk k k
r r r r r r r r r

r r+ − + −= , where ,p kr  is the station ID for the p th 

stop in the k th trip, and kr  is the total number of stations visited in k th trip. The 
0

r +  and 

0
r −  represent the depot start and end point, respectively. Since no limitation for the 

maximum number of trips used in one solution is set, the variable k, i.e. the total number 

of trips used in the solution, is an uncertain number; as described in chapter 4, we can get 

the upper bound for number of trips in the solution, max / (2 )k T µ=    , where the µ  is the 

travel time from the depot to the closest station and T is the limit time horizon.  

The associated loading / unloading plan for routing sequence r, referred to as the 

assignment plan, is 
1

11 10 ,1 1 0 ,1 0 , 0 ,
( , ,..., , ,..., , ,..., , )

k
kk k k

a a a a a a a a a
r r+ − + −= , where ,p ka  is the 

number of bicycles loaded / unloaded at station ,p kr  at the p th stop in the k th trip. Using 

the routing sequence r and its related assignment plan a, the inventory level on the 

vehicle / at the station when the vehicle departures from each station can be calculated: 

,p kv  is defined as the inventory level on the vehicle when it leaves station ,p kr  on p th 

stop in the k th trip and 
, ,p kr kI  as the corresponding inventory level. All values can be 
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calculated using the formulas , 1, ,p k p k p kv v a−= +  and 
, ,

,, , 1p k p k
p kr k r k

I I a
−

= − . For special 

cases, 
0 ,1 0 ,1

v a+ += , ,0
b

i iI l= , i=0,1,2,…,n is used.  

The routing sequence r and the assignment plan a must have elements in the 

solution that are highly connected. Although the inventory level on the vehicle and at the 

station can be calculated from the solution ,x r a=< > , it is easier to check the feasibility 

of solution using these 2 variables. Thus, the inventory level on the vehicle and the 

station are included in solution in a new formula, called the full solution: 

0 ,1 0 ,
,1 ,0 ,1 0 ,1 0 ,1 0 , 0 , 0 ,

, , , ( , , , ,..., , , , )
k

r r kk k k
x r a v I r a v I r a v I+ + + − − −

+ −
=< >= < > < >

 

The tuple 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
represents the p th stop in the k th trip for station ,p kr  

and the number of bicycles loaded / unloaded ,p ka , with the inventory level on vehicle 

after this repositioning being ,p kv  and the inventory level left at the station 
, ,p kr kI .  

 

Variable Neighborhood Search Algorithm  

 

The variable neighborhood search algorithm, a meta-heuristic algorithm created 

by Mladenovic and Hansen in 1997, is based on the local search algorithm combined 

with the distant neighborhood search to solve the global optimization. Listed below are 

the pseudo code steps of the general VNS algorithm: 

Repeat following sequence until the stopping condition is met: 
Set k  1; 
Repeat the following steps until k = kmax 
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Shaking. Generate a solution x’ at random from the kth Neighborhood function 
' ( )kx N x=  

Local search  
(b1) Set l  1; 
(b2) Repeat following steps until l = lmax 

• Exploration of neighborhood. Find the best neighbor '' ( ')lx N x=  
• Move or not. If f(x”) < f(x’), set x’  x’’ and l  1; otherwise set 

ll+1 
Move or not. If this local optimum is better than the incumbent, move there (x 
 x”), and continue the search with 1 ( 1)N k ← ; otherwise, set k  k + 1 

 

In this research, the combination of the insert point function I(x) and the delete 

function D(x) are used to generate the sharking neighborhood function, while the 

improvement function P(x) is used to create the local search neighborhood function. 

These three functions will be discussed in detail in later sections.  

 

The Initial Solution  

 

The initial solution is the start search point for the algorithm, with a good initial 

solution reducing the total search time. This section details several methods based on 

various rules for providing the initial solutions. In general, these initial solutions are 

based on two principles: (1) Randomness principles. The randomness property makes the 

initial solution randomly scattered in the solution space, potentially increasing the 

robustness of the algorithm. (2) Quality principle. In general, good solutions should share 

some property that results in a better objective value. The initial solution with a better 

objective should be close to the global optimum. Similar to the concept in the previous 

chapter, a pickup station is one which can reduce the penalty cost because it has bicycles 
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available for pickup (i.e. the current inventory level is greater than its target inventory 

level). On the other hand, a drop off station is one which can reduce the penalty cost 

because it can accept additional bicycles (i.e. the current inventory level is less than its 

target inventory level). 

In this research, we use the following method to generate the initial solutions, 

randomly selecting in each run which method is used: 

1. Randomly Single Alternative Selection: 

Based on the current inventory level and target value, all stations can be 

categorized into two large sets: a pickup set and a drop off set. This method alternately 

selects stations from the pickup set and drop off set, inserting the station selected into the 

vehicle routing sequence. The number of bicycles loaded / unloaded quantity for this 

station is the number which provides the minimal penalty cost without violating the 

vehicle capacity constraint and station capacity constraint. Once a station selected is 

repositioned to its target value, it is removed from the pickup / drop off set; otherwise, it 

remains in the pickup / drop off set. The selection continues until the total traveling time 

violates the working time horizon constraint. 

 

2. Randomly Full Load Alternative Selection: 

Similar to the Randomly Single Alternative Selection method, this method selects 

pickup stations and drop off stations full vehicle load alternately, the only difference 

being when to change the selection between the two sets. If the pickup station selected 

(drop off station) does not fulfill (empty) the vehicle capacity, then the next station 
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selected is again from the pickup set (drop off set) until the vehicle had been fulfilled 

(emptied); then, a station from the drop off set (pickup set) is selected next.  

 

3. Penalty Cost Priority Selection: 

This method selects the station which gives the best penalty cost reduction, 

adding it to the routing sequence. In this method, the selection principle is based solely 

on the reduction of the penalty cost without considering whether the station is a pickup or 

drop off station.  

 

4. Travel Cost Priority Selection: 

This method selects the station which gives the smallest travelling cost increase, 

adding it to the routing sequence. It uses the same steps as the Penalty Cost Priority 

Selection, with the only difference being that the selection is changed from the largest 

penalty cost reduction to smallest travelling cost increase.  

 

5. Cost Ratio Priority Selection: 

This method selects the station which gives the best ratio of penalty cost reduction 

over travelling cost; thus, it not only considers the reduction in the penalty cost but also 

the total traveling time. Since this research includes a working time horizon constraint, 

this method has the potential to use the time more efficiently.  

 

The Neighborhood Function 
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The neighborhood N(x) is the new solution generated from the current solution x 

with a small modification. This research uses two basic neighborhood functions: (1) the 

insert neighborhood function I(x), and (2) the removal neighborhood function R(x). All 

the other neighborhood functions used here are created by combining these two. As 

explained earlier, the solution for the SBRP problem includes not only the vehicle routing 

sequence but also the assignment plan associated with each station visited on the route. 

The insert and removal neighborhoods change both the vehicle routing sequence and its 

associated assignment plan to generate a new solution.  

Both the insert and removal neighborhood functions modify the solution based on 

a visit point in the solution, defined here as three types: (1) pure simple visit point, (2) 

simple complex visit point, and (3) multi-complex visit point. The pure simple visit point 

involves a simple station, which is a unique visit point in the solution. The remaining two 

types are complex visit points involving visits to complex stations. More specifically, the 

simple complex visit point only visits a complex station once in a current trip, while the 

multi-complex visit point visits a complex station more than once in a current trip. For 

example, if 3 visit points visit station i, and visit point 1 and visit point 2 are both in the 

first trip and visit point 3 is in the second, by definition both visit point 1 and 2 are multi-

complex visit points and visit point 3 is a simple complex visit point. As we can see, 

because of the at most once visit limitation constraint, all visit points in Chapter 3 are 

pure single visit points, with the visit points in Chapter 4 including both pure single visit 

points and single complex visit points. The research in this chapter includes all 3 types of 

visit points.  
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To be consistent, it is assumed that the modified (inserted or removed) visit point 

is 
,, , , ,, , ,

p kp k p k p k r kr a v I< > , which visits station i in the p th position in the k th trip 

( ,p kr i= ). Simplifying the notation results in visit point , , ,, , ,p k p k i ki a v I< > . If the visit 

point , , ,, , ,p k p k i ki a v I< >  is a single complex visit point, and there are r  visit points 

visiting station i after this visit point, then the remaining visit points are 

, , ,, , ,
l l l l lp k p k i ki a v I< > , where lk k> , 1,...,l r= . If the visit point , , ,, , ,p k p k i ki a v I< >  is a 

multi-complex visit point and there are lr  visit points visiting station i after this visit 

point in the l th trip, then the remaining visit points in the current trip are 

,, ,
, , ,k k

j j
i kq k q k

i a v I< > , where k
jq p> , 1, 2,..., ij r=  and all in the later trips are 

,, ,
, , ,l l

j j
i lq l q l

i a v I< > , where l k> . 

 

Proposition 5.1: 

Suppose a complex visit point (i.e. either a single complex visit point or a multi-

complex visit point) visits complex station i and there are r  visit points visiting station i 

after this visit point. Assume all of the remaining visit points are 
, , ,

, , ,
l l l l lt k t k i k

i a v I< > , 

where lk k≤ , 1,...,l r= . To obtain the sequence of these points, we assume 1j jk k +≤ . For 

visit point 
, , ,

, , ,
l l l l lt k t k i k

i a v I< > , if only its inventory level is changed, 
, ,

'
l li k i k

I I= + ∆  and 

the assignment plan remains unchanged, the changed inventory must be within the range 

1 2[ , ]α α∆∈ ,where 1 ,..., ,max { }
l nq k k i qIα == − and 2 ,..., ,min { }

l nq k k i i qs Iα == −  to ensure the new 

solution is feasible. 
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Proof: 

If visit point 
, , ,

, , ,
l l l l lt k t k i k

i a v I< >  increases its inventory level with ∆  units, then 

, ,
'

l li k i k
I I= + ∆ . If all assignment plans are not changed, the inventory level at station i 

increases ∆  units for all visit points after 
, , ,

, , ,
l l l l lt k t k i k

i a v I< > , meaning all visit points 

after 
, , ,

, , ,
q q q q qt k t k i k

i a v I< >  have 
,

0
q

ii k
I s≤ + ∆ ≤ . Solving this inequality results in 

1 2[ , ]α α∆∈
 
where 1 ,..., ,max { }

l nq k k i qIα == − , 2 ,..., ,min { }
l nq k k i i qs Iα == −  

 

Proposition 5.2: 

Assume two visit points: 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
and 

,, , , ,, , ,
q kq k q k q k r kr a v I< >

 
in the 

k th trip where p q<
 
and the change , ,'p k p ka a= + ∆ , , ,'q k q ka a= −∆  to obtain a new trip. 

The new trip is feasible only when the modified bicycle units satisfy 1 2[ , ]β β∆∈ , where 

, , ,1 [ , ) , , ,max { , , }
p k p k q kt p q t k r k r r kv I s Iβ ∈= − − − , 

, , ,2 [ , ) , , ,min { , , }
q k q k p kt p q t k r r k r kc v s I Iβ ∈= − − . 

Proof: 

At visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > , ∆  more bicycle units are loaded into the 

vehicle. This modification changes the assignment plan , ,'p k p ka a= + ∆ , the on-vehicle 

inventory level , ,'p k p kv v= + ∆ , and the inventory level at station 
, ,, ,'

p k p kr k r kI I= −∆ . All 

the visit points between these 2 visit points 
,, , , ,, , ,

t kt k t k t k r kr a v I< > , where p t q< <  only 

realize a change in the on-vehicle inventory level , ,'t k t kv v= + ∆ , where p t q< < . At visit 

point 
,, , , ,, , ,

q kq k q k q k r kr a v I< > , ∆  less bicycle units are loaded into the vehicle. So, only the 
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assignment plan , ,'q k q ka a= −∆  and inventory level at station 
, ,, ,'

q k q kr k r kI I= + ∆ are 

changed. To maintain the feasibility of this trip, these updated parameters need to satisfy 

the constraints, resulting in 1 2[ , ]β β∆∈ , where 
, , ,1 [ , ) , , ,max { , , }

p k p k q kt p q t k r k r r kv I s Iβ ∈= − − −  

and 
, , ,2 [ , ) , , ,min { , , }

q k q k p kt p q t k r r k r kc v s I Iβ ∈= − − . 

 

The Removal Neighborhood Function 

 

The removal neighborhood function R(x), a basic neighborhood function, 

generates a new solution x’=R(x) by removing one visit point from the current solution. 

This visit point can either be visiting a station or visiting the depot, and then the 

assignment plan is adjusted to try to make the new solution feasible by making as small a 

change as possible. This research focuses on 3 types of assignment plan modifications for 

the removal neighborhood function: (1) changing the predecessor visit point’s assignment 

plan, (2) changing the successor visit point’s assignment plan, and (3) changing the 

depot’s assignment plan. If the visit point removed is a station, a maximum of four 

feasible solutions are generated with the same routing sequence but with different loading 

/ unloading plans. If the visit point removed is a depot, a maximum of three feasible 

solutions are generated. The method is detailed in the following section. To be consistent, 

it is assumed the point removed is 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  in solution x. 

 

1. Remove the pure simple visit point 
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 The pure simple visit point visits a simple station, which is visited only once in 

the entire solution, meaning removing it affects only the current trip. For the new solution 

to be feasible, it is necessary only to ensure that the current trip is feasible after the 

removal event. In total, there are 3 ways to change the assignment plan when the pure 

simple visit point is removed. 

 

a. Adjust a depot - Adjust the 
0 ,k

a +  or 
0 ,k

a −  

In this method, the assignment plan at the depot is adjusted by changing the 

number of bicycles loaded / unloaded to cover the units needed to be loaded / unloaded at 

the visit point removed. Denote 1η  as the residual vehicle capacity for k th trip before 

visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > . Denote 2η  as the residual vehicle capacity for k th trip 

after visit station ,p kr . Thus, 1 ,0 ,1,..., 1
min { }t kt p

c vη += −
= −

 
and 2 ,1,...,

min { }
k

t kt p
c v

r
η

= +
= − . If 

, 10 p ka η< ≤ , then ,p ka  bicycle units can be picked at the depot at the beginning of k th 

trip without violating the vehicle capacity constraint. If 2 , 0p kaη− ≤ < , then the ,p ka  

extra bicycles units can be dropped off at the depot at the end of k th trip without 

violating the vehicle capacity constraint. Combining these 2 conditions results in the 

conclusion that if , 2 1[ , ]p ka η η∈ − , then the visit point at the depot can be adjusted, making 

'
,0 , 0 , p kk k

a a a+ += +
 
or '

,0 , 0 , p kk k
a a a− −= +  to obtain a new feasible solution.  
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b. Adjust the previous visit point - Adjust 1,p ka −  

In this method, the assignment plan at the predecessor visit point is adjusted to 

cover the extra bicycles loaded / unloaded when visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
is 

removed. Moving the loaded / unloaded bicycle units to the predecessor visit point results 

in 1, 1, ,'p k p k p ka a a− −= + . The new inventory level at this visit point after the repositioning 

is 1, 1, 1 1, 1, 1 ,' 'p k p k p k p k p kI I a I a− − − − − −= − = − .  

Suppose the predecessor visit point 1, 1, ,, , ,p k p k j kj a v I− −< >
 
visits station j; the 

station capacity constraint needs to be checked to ensure the new trip generated is 

feasible. If the predecessor visit point 1, 1, ,, , ,p k p k j kj a v I− −< >  is a pure simple visit point, 

then , 1 ,0 j k p k jI a s−≤ − ≤ (i.e. , , 1 , 1[ , ]p k j k j j ka I s I− −∈ − ), and the new solution is feasible 

when , , 1 , 1[ , ]p k j k j j ka I s I− −∈ − . If the predecessor visit point is a complex visit point and 

later visit points which visit station j will be affected, based on proposition 5.1, the new 

generated solution is feasible when , 1 2[ , ]p ka α α∈
 
where 1 ,..., ,max { }

l nq k k j qIα == − and 

2 ,..., ,min { }
l nq k k j j qs Iα == − . Combining these 2 ranges, the new generated solution is 

feasible when , 1 , 1 2 , 1[max{ , },min{ , }]p k j k j j ka I s Iα α− −∈ − . 

 

c. Adjust the successor visit point - Adjust 1,p ka +  

In this method, the assignment plan at the successor visit point is adjusted to 

cover the extra bicycles loaded / unloaded when visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
is 

removed. Moving the loaded / unloaded bicycle units to the successor visit point results 
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in 1, 1, ,'p k p k p ka a a+ += + . The new inventory level at the predecessor after the repositioning 

is 1, 1, 1 1, 1, 1 ,' 'p k p k p k p k p kI I a I a+ + − + + −= − = − .  

Suppose the successor visit point 1, 1, ,, , ,p k p k j kj a v I+ +< >
 
visits station j; the station 

capacity constraint needs to be checked to ensure the new trip generated is feasible. If the 

successor visit point 1, 1, ,, , ,p k p k j kj a v I+ +< >  is a pure simple visit point, then 

, 1 ,0 j k p k jI a s−≤ − ≤  (i.e. , , 1 , 1[ , ]p k j k j j ka I s I− −∈ − ), and the new solution is feasible when 

, , 1 , 1[ , ]p k j k j j ka I s I− −∈ − . If the successor visit point is a complex visit point and later visit 

points which visit station j will be affected, based on proposition 5.1, the new solution 

generated is feasible when , 1 2[ , ]p ka α α∈
 
where 1 ,..., ,max { }

l nq k k j qIα == −  and 

2 ,..., ,min { }
l nq k k j j qs Iα == − . Combining these 2 ranges, the new solution generated is 

feasible when , 1 , 1 2 , 1[max{ , },min{ , }]p k j k j j ka I s Iα α− −∈ − . 

 

2. Remove the simple complex visit point 

As stipulated in the model, a vehicle can make multiple trips to complete the 

repositioning event. For a station, for example station i, the inventory level at station i in 

the k th trip, ,i kI , after the repositioning is the initial inventory level at station i for the 

k+1 th trip. If visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a simple complex visit point, it is the 

only visit point visiting station i in the k th trip. If visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is 

removed, the inventory level at station i after repositioning is changed 
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, , 1 , ,'i k i k i k p kI I I a−= = + . Removing a simple complex visit point might affect the 

feasibility of the current and all successive trips.  

Based on proposition 5.1, the feasibility of all trips after the k th trip is guaranteed 

by satisfying constraint , 1 2[ , ]p ka α α∈ where 1 ,..., ,max { }
l nq k k i qIα == −  and 

2 ,..., ,min { }
l nq k k i i qs Iα == − . Using the method for removing a pure simple visit point makes 

the current trip feasible. Thus, to remove a simple complex visit point, then the remove a 

pure simple visit point method could be used while at the same time checking the 

constraint , 1 2[ , ]p ka α α∈
 
where 1 ,..., ,max { }

l nq k k i qIα == − , 2 ,..., ,min { }
l nq k k i i qs Iα == − . If the 

,p ka  is within this range, the new solution generated is feasible. 

 

3. Remove the multi-complex visit point 

If visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a multi-complex visit point and it visits 

station i, by definition, this solution will include multiple visit points visiting station i in 

the k th trip, meaning the inventory level at station i can change multiple times in the k th 

trip. The 3 methods for removing a multi-complex visit point proposed in this research 

can generate a maximum of 5 possible new solutions.  

 

a. Using the remove a simple complex visit point method 

This method follows the same procedure as the remove a simple complex visit 

point method. First, the remove a pure simple visit point method is used to generate the 

new solution x’, while at the same time creating a feasibility constraint for ,p ka  called 
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constraint 1. Then proposition 5.1 is used to create a second feasibility constraint for ,p ka , 

called constraint 2. Constraint 1 guarantees the feasibility of the k th trip, while constraint 

2 guarantees the feasibility of the successive trips after the k th trip. If the value of ,p ka  

can satisfy both constraint 1 and 2, then the new solution x’ is feasible. Using this method 

can result in a maximum of 3 possible new solutions. 

  

b. Adjust prior multi-complex visit point 

If the visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  removed is a multi-complex visit point 

and it visits station i ( ,p kr i= ), by definition, there is at least has one more visit point 

visiting station i in the k th trip. If the solution includes a visit point which visits station i 

prior to the removed visit point, for example 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  where q p< , then the 

assignment plan at visit point 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  can be adjusted and the predecessor 

multi-complex visit point takes the extra units , , ,'q k q k p ka a a= + . In this way, the 

inventory level for station i do not change for the current trip after the adjustment. The 

feasibility of the current trip after the adjustment guarantees the feasibility of the new 

solution. Based on proposition 5.2, the trip after the adjustment is feasible when 

, 1 2[ , ]p ka β β∈ , where 
, , ,1 [ , ) , , ,max { , , }

q k q k p kt p q t k r k r r kv c I s Iβ ∈= − − −  and 

, , ,2 [ , ) , , ,min { , , }
p k p k q kt p q t k r r k r kv s I Iβ ∈= − . When these constraints are satisfied, the adjusted 

solution is feasible. 
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c. Adjust successor multi-complex visit point 

If the removed visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a multi-complex visit point 

and it visits station i ( ,p kr i= ), by definition, there is at least one more visit point visiting 

station i in the k th trip. If the solution includes a visit point which visits station i prior to 

the removed visit point, for example 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  where p q< , then the 

assignment plan at visit point 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  is adjusted; the predecessor multi-

complex visit point can take the extra units , , ,'q k q k p ka a a= + . In this way, the inventory 

level for station i do not change for the current trip after the adjustment. The feasibility of 

the current trip after the adjustment can guarantee the feasibility of the new solution. 

Based on proposition 5.2, the trip after the adjustment is feasible when , 1 2[ , ]p ka β β∈ , 

where 
, , ,1 [ , ) , , ,max { , , }

p k p k q kt p q t k r k r r kv I s Iβ ∈= − − − and
, , ,2 [ , ) , , ,min { , , }

q k q k p kt p q t k r r k r kc v s I Iβ ∈= − − . 

Once these constraints are satisfied, the adjusted solution is feasible.  

 

4. Visit point removed is the depot 

A visit point that is a depot can also be removed from the solution. Since there is 

no visiting limitation for stations in this research, any routing schedule is allowed as long 

as the total travelling time is within the time horizon. In this research, the depot visit 

point comes in pairs, i.e. always loading at 0+ depot and unloading at 0– depot, except for 

the beginning and ending visit points. The end of the k th trip is the beginning of the k+1 

th trip, i.e. 
0 , 0 , 1

,
k k

r r− + +
, meaning paired depot visit points must be removed at the same 
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time, with these paired depot visit points being considered as one visit point. Except for 

this change, the method for removing a depot visit point is the same as for removing a 

pure simple visit point. 

 

The Insert Neighborhood Function 

 

Like the removal neighborhood function, the insert neighborhood function I(x) is 

a basic neighborhood function which generates a new solution x’=I(x), except by 

inserting into rather than removing one visit point from the current solution. The visit 

point to be inserted can be either visiting a station or visiting the depot. The assignment 

plan is then adjusted to try to make the new solution feasible by making as a small 

change as possible. Similar to the method used in the removal neighborhood function, 

this research focuses on 3 types of assignment plan change: (1) changing the assignment 

plan of the predecessor visit point, (2) changing the assignment plan of the successor visit 

point, and (3) changing the depot’s assignment plan. To be consistent, it is assumed that 

the point removed is 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  in solution x. 

 

1. Insert a pure simple visit point 

 Since a pure simple visit point is visited only once in the solution, the insert 

adjustment affects the feasibility of only the current trip. This research proposes 3 ways 

to adjust the assignment plan and possibly maintain the feasibility of the solution.  
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a. Adjust a depot assignment - Adjust the 
0 ,k

a +  or 
0 ,k

a −  

In this method, the assignment plan at the depot is adjusted to load / unload more 

bicycle units to cover the units needed to be loaded / unloaded at the visit point inserted. 

The definition of residual vehicle capacity before and after the visit point is the same as 

the one used previously, 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  in the k th trip, where 

1 ,0 ,1,..., 1
min { }t kt p

c vη += −
= − , 2 ,1,...,

min { }
k

t kt p
c v

r
η

= +
= − . If , 20 p ka η≤ ≤ , then the ,p ka  extra 

bicycles can be dropped at the depot in the end of the k th trip, '
0 , 0 , k kk k

a a ar− −= − . 

However, if 1 , 0p kaη− ≤ ≤ , then the ,p ka  bicycle can be picked at the depot at the 

beginning of k th trip, '
,0 , 0 , p kk k

a a a+ += − . Combining these 2 conditions results in a new 

feasible solution when , 1 2[ , ]p ka η η∈ − , where 1 ,0 ,1,..., 1
min { }t kt p

c vη += −
= − and 

2 ,1,...,
min { }

k
t kt p

c v
r

η
= +

= − . 

 

b. Adjust the previous visit point - Adjust 1,p ka −  

In this method, the assignment plan at the predecessor visit point is adjusted to 

cover the extra loaded / unloaded bicycle units when visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
is 

inserted. The predecessor visit point is adjusted 1, 1, ,'p k p k p ka a a− −= − . The new inventory 

level at the predecessor after the repositioning is 1, 1, 1 ,'p k p k p kI I a− − −= + , and the inventory 

level on vehicle is 1, 1, ,'p k p k p kv v a− −= − . For the inserted visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > , 
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the on-vehicle inventory level and station inventory level are 

, 1, , , 1,p k p k p k p k p kv v a a v− −= − + =  and 
, ,, , 1 ,p k p kr k r k p kI I a−= − , respectively.  

Suppose the predecessor visit point visits station j, and the inserted visit point 

visits station i, the predecessor visit point can be rewritten as 1, 1, ,, , ,p k p k j kj a v I− −< >
 
and 

the inserted visit point as 1, 1, ,, , ,p k p k i ki a v I− −< > . If the predecessor visit point
 
is also a 

pure simple visit point, the feasibility of the predecessor and inserted visit points needs to 

be guaranteed. Satisfying the vehicle capacity and station capacity constraint results in 

, 1 ,0 j k p k jI a s−≤ + ≤ , 1, ,0 p k p kv a c−≤ − ≤  and , 1 ,0 i k p k iI a s−≤ − ≤ . The new solution is 

feasible when , 1 2[ , ]p ka χ χ∈  where 1 , 1 , 1 1,max{ , , }i k i j k p kI s I c vχ − − −= − − −  and 

2 , 1 , 1 1,min{ , , }i k j j k p kI s I vχ − − −= − .  

If the predecessor visit point is a complex visit point, the feasibility not only of 

the current trip but also of all trips after the current trip needs to be guaranteed. The 

previous analysis provides the feasible range of ,p ka  for the current trip. Based on 

proposition 5.1, all the rest of the trips are feasible when , 1 2[ , ]p ka α α∈
 
where 

1 ,..., ,max { }
l nq k k j qIα == −  and 2 ,..., ,min { }

l nq k k j j qs Iα == − . By combining these two 

conditions, the new solution is feasible when , 1 2[ , ]p ka φ φ∈  where
 1 1 1max{ , }φ α χ= , 

2 2 2min{ , }φ α χ= . 

 

c. Adjust the successor visit point - Adjust 1,p ka +  
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Similar to the adjust predecessor visit point method, this method adjusts the 

successor visit point to cover the extra loaded / unloaded bicycle units when the visit 

point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
is inserted. The inserted visit point is represented as 

, 1, ,p k p k p kv v a−= +  and 
, ,, , 1 ,p k p kr k r k p kI I a−= − , and the successor visit point is adjusted to 

1, 1, ,'p k p k p ka a a− −= − . The new inventory level at the predecessor after the repositioning is 

1, 1, 1 ,'p k p k p kI I a− − −= + , and the inventory level on the vehicle is 

1, 1, , , 1,'p k p k p k p k p kv v a a v− − −= + − = . 

Suppose the successor visit point visits station j, and the inserted visit point visits 

station i, the successor visit point is rewritten as 1, 1, ,, , ,p k p k j kj a v I− −< >  and the inserted 

visit point as 1, 1, ,, , ,p k p k i ki a v I− −< > . If the predecessor visit point is a pure simple visit 

point, the feasibility of these inserted and successor visit points needs to be guaranteed. 

Satisfying the vehicle capacity and station capacity constraint results in 

, 1 ,0 i k p k iI a s−≤ − ≤ , 1, ,0 p k p kv a c−≤ + ≤  and , 1 ,0 j k p k jI a s−≤ + ≤ . The new solution 

generated is feasible when , 1 2[ , ]p ka χ χ∈  where 1 , 1 , 1 1,max{ , , }i k i j k p kI s I vχ − − −= − − −  and 

2 , 1 , 1 1,min{ , , }i k j j k p kI s I c vχ − − −= − − . If the successor visit point is a complex visit point, 

the feasibility not only of the current trip but also of all successive trips must be 

guaranteed. The previous analysis provides the feasible range of ,p ka  for the current trip. 

Based on proposition 5.1, the remaining trips are feasible when , 1 2[ , ]p ka α α∈
 
where 
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1 ,..., ,max { }
l nq k k j qIα == −  and 2 ,..., ,min { }

l nq k k j j qs Iα == − . By combining these 2 conditions, 

the new solution is feasible when , 1 2[ , ]p ka φ φ∈  where
 1 1 1max{ , }φ α χ= , 2 2 2min{ , }φ α χ= . 

 

2. Insert a simple complex visit point 

As stipulated in the model, the vehicle can use multiple trips to complete the 

repositioning event. For a station, for example station i, the inventory level after 

repositioning at station i in the k th trip, ,i kI , is the initial inventory level at station i for 

the k+1 th trip. If the visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a simple complex visit point in 

current trip, it is the only visit point that visits station i in the k th trip. By inserting visit 

point 
,, , , ,, , ,

p kp k p k p k r kr a v I< > , the inventory level at station i after repositioning becomes 

, , 1 , ,'i k i k i k p kI I I a−= = − . Inserting this simple complex visit point may affect the feasibility 

of the current and all successive trips. 

Based on proposition 5.1, the feasibility of all trips after k th trip is guaranteed by 

satisfying constraint , 1 2[ , ]p ka α α∈ where 1 ,..., ,max { }
l nq k k i qIα == − and 

2 ,..., ,min { }
l nq k k i i qs Iα == − . Using the method for inserting a pure simple visit point makes 

the current trip feasible. Thus, to insert a simple complex visit point, the “remove a pure 

simple visit point” method are applied at the same time to check the constraint 

, 1 2[ , ]p ka α α∈
 
where 1 ,..., ,max { }

l nq k k i qIα == −  and 2 ,..., ,min { }
l nq k k i i qs Iα == − . If ,p ka  is 

within this range, the new generated solution is feasible. 
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3. Insert the multi-complex visit point 

If visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a multi-complex visit point and it visits the 

station i, by definition, this solution includes multiple visit points visiting station i in the k 

th trip, meaning that the inventory level at station i is changed multiple times during this 

trip. This research proposes three methods for inserting a multi-complex visit point, 

generating a maximum of five possible new solutions.  

 

a. The same method as insert simple complex visit point 

This method uses the same steps as the inserting simple complex visit point 

method. First, the insert simple complex visit point method is used to generate a new 

solution x’, while at the same time creating a feasibility constraint for ,p ka , called 

constraint 1. Then, proposition 5.1 is used to create a second feasibility constraint for 

,p ka , called constraint 2. Constraint 1 guarantees the feasibility of the k th trip, while 

constraint 2 guarantees the feasibility of the trips after the k th trip. If the value of ,p ka  

satisfies both constraint 1 and 2, then the new solution x’ is feasible. Using this method 

results in a maximum of three possible new solutions. 

  

b. Adjust prior multi-complex visit point 

If the removed visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a multi-complex visit point 

and it visits station i ( ,p kr i= ), by definition, there is at least one more visit point visiting 

station i in the k th trip. If the solution includes a visit point which visits station i prior to 
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the removed visit point, for example 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  where q p< , then the 

assignment plan is adjusted at visit point 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  and the predecessor 

multi-complex visit point takes the extra units , , ,'q k q k p ka a a= − . Thus, the inventory level 

at station i do not change for the current trip after the adjustment. The feasibility of the 

current trip after the adjustment can guarantee the feasibility of the new solution. Based 

on proposition 5.2, the trip after the adjustment is feasible when , 1 2[ , ]p ka β β∈ , where 

, , ,1 [ , ) , , ,max { , , }
p k p k q kt p q t k r k r r kv I s Iβ ∈= − − −  and 

, , ,2 [ , ) , , ,min { , , }
q k q k p kt p q t k r r k r kc v s I Iβ ∈= − − . 

Once these constraints are satisfied, the adjusted solution is feasible. 

 

c. Adjust successor multi-complex visit point 

If the removed visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >  is a multi-complex visit point 

and it visits station i ( ,p kr i= ), by definition, there is at least one more visit point visiting 

station i in the k th trip. If the solution includes a visit point which visits station i after the 

removed visit point, for example 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  where p q< , then the assignment 

plan is adjusted at visit point 
,, , , ,, , ,

q kq k q k q k r kr a v I< >  and the predecessor multi-complex 

visit point takes the extra units , , ,'q k q k p ka a a= − . The inventory level for station i, then, 

do not change for current trip after the adjustment. The feasibility of the current trip after 

the adjustment guarantees the feasibility of the new solution. Based on Proposition 5.2, 

the trip after the adjustment is feasible when , 1 2[ , ]p ka β β∈ , where 
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, , ,1 [ , ) , , ,max { , , }
q k q k p kt p q t k r k r r kv c I s Iβ ∈= − − −  and 

, , ,2 [ , ) , , ,min { , , }
p k p k q kt p q t k r r k r kv s I Iβ ∈= − . Once 

these constraints are satisfied, the adjusted solution is feasible.  

 

4. Insert the depot 

If the inserted visit point is a depot, it can also be inserted into the solution. Since 

there is infinite capacity and inventory at a depot, any inserted event for a depot is 

feasible.  

 

The improvement method 

 

In addition to the insert and removal neighborhood function, other improvement 

functions P(x) to modify the current solution to obtain a better objective value can be 

applied. These improvement methods change only the assignment plan, not the vehicle 

routing schedule, meaning they improve the solution by reducing the total penalty cost.  

 

Improvement neighborhood function 

 

1. Change one visit point’s assignment plan 

In this improvement function, we try to reduce the penalty cost by only changing 

one station’s assignment plan. As the total number of bicycles loaded into and unloaded 

from the vehicle should be balanced for each trip, when the assignment plan in one visit 

point is changed, at least one other visit point’s assignment plan must be changed. In this 
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method, both the visit point’s assignment plan and the depot’s assignment plan are 

changed at the same time. 

Suppose visit point 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
visits station i (i.e. ,p kr i= ) whose 

penalty cost can be reduced (i.e. a
i iI t≠ ). This visit point can be separated into 2 visit 

points: 
,, , , ,, , ,

p kp k p k p k r kr a v I< + ∆ + ∆ −∆ >
 
and 

,, , ,, , ,
p kp k p k r kr v I< −∆ > , 

where 0,..., a
i iI t∆ = − . Using the remove function to remove visit point 

,, , ,, , ,
p kp k p k r kr v I< −∆ >  results in a maximum of three possible new solutions x’ which 

change only the assignment plan for current solution. Choosing the solution which 

reduces the highest amount of the penalty cost results in improving the current solution x.  

 

2. Change two visit point’s assignment plan 

 This improvement function is used to try to improve the current solution by 

changing the assignment plan of two visit points in the same trip to reduce the penalty 

cost. Since each station has a unique penalty cost function, correctly assigning the loaded 

/ unloaded units between visit points will reduce the total penalty cost.  

Suppose two visit points 
,, , , ,, , ,

p kp k p k p k r kr a v I< >
 
and 

,, , , ,, , ,
q kq k q k q k r kr a v I< >

 
in the 

the k th trip, where p q<  visit station i and station j, i.e. ,p kr i=  and ,q kr j= . Though the 

total number loaded / unloaded for these two visit points is fixed , ,p k q ka a+ , adjusting the 

balance between these two can reduce the total penalty cost. 
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Assume the adjustment amount is ∆ , and these two new adjusted visit points are 

, , ,, , ,p k p k i ki a v I< + ∆ + ∆ −∆ >  and , , ,, , ,q k q k j kj a v I< −∆ + ∆ > . Because the on-vehicle 

inventory level changes at station i, all the on-vehicle inventory levels for the remaining 

visit points between these two automatically change to 
,, , , ,, , ,

s ks k s k s k r kr a v I< + ∆ >  where 

p s q< < . To ensure the feasibility of this new solution, constraints ,0 i k iI s≤ −∆ ≤ , 

,0 j k jI s≤ + ∆ ≤ , ,0 p kv c≤ + ∆ ≤ , and ,0 s kv c≤ + ∆ ≤  where p s q< <  need to be satisfied. 

Combining the constraints results in 1 2[ , ]γ γ∆∈ , where 

1 [ , ) , , ,max { , , }]t p q t k j k i k iv I I sγ ∈= − − −  and 2 [ , ) , , ,min { , , }]t p q t k j j k i kc v s I Iγ ∈= − − . By 

searching for ∆  within this available range, the *∆  that will maximize the total penalty 

cost reduction is found. When station i or station j are the complex stations, Proposition 

5.1 is applied to determine the suitable range for the ∆  to ensure the feasibility of the 

trips after the current trip.  

 

Numeric Experiment 

 

This research proposes a new heuristic (H3) to solve the SBRP problem with 

single vehicle, multiple trips and no visit limitation. To check the performance of the new 

heuristic (H3) proposed here, it is compared to the other two algorithms introduced in this 

research: (1) the H1 algorithm proposed in Chapter 3 for solving the SBRP problem with 

a single vehicle and a single trip with station visit limitation and (2) the H2 algorithm 
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proposed in Chapter 4 solving the SBRP problem with a single vehicle, multiple trips and 

partial station visit limitation. 

This analysis uses the 52 testing scenarios from Ho and Szeto’s (2014) research. 

To be consistent, the penalty cost is again used as the objective value. In addition, the 

same testing scenarios used for the H1 and H2 numeric experiments are again used here. 

Running the same testing scenario but with different algorithms allows for a comparison 

of their performances (i.e. solving time and quality of the solution). The following 

analysis compares the solving times and the objective values of the H1, H2 and H3 

algorithms across the 52 testing scenarios.  

All testing was conducted on a Dell notebook with an Intel Core i5-2520M CPU 

@ 2.5 GHz with 2GB RAM. The heuristic algorithms were coded in C++ with Microsoft 

Visual Studio 2013. 

 

Testing Scenarios 

 

The dataset from Ho and Szeto’s (2014) research includes 52 testing scenarios 

encompassing a total of 13 different instances, which include a different number of 

stations, station penalty costs and station capacities. The number of stations begins at 

100, increasing by 25 for each instances until reaching 400. There are two levels of time 

horizon, 9000 and 18000, and two levels of vehicle capacity, 10 and 20. The Table 5.1 

lists the basic parameters for all of the testing scenarios. Based on the number of stations, 
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the time horizon and the vehicle capacity, these 52 testing scenarios were classified into 4 

sets. 

 

Table 5.1: Basic Parameters for the Instances in Ho and Szeto’s (2014) Research 

Parameters Values 
Station Number  U(100,400) 
Time Horizon {9000,18000} 
Vehicle capacity {10,20} 

 

 

Testing Results 

 

Because of the randomness embedded in H1, H2 and H3, the results for an 

algorithm may differ among the iterations even if the input parameters are the same. To 

reduce the randomness in the comparison, m=30 iterations were run for each algorithm in 

each testing scenario. After running these iterations, five measurement criteria were 

averaged from these m=30 iterations for each test scenario, the Minimal Objective Value 

(Min), the Maximal Objective Value (Max), the Average Objective Value (Avg), the 

Standard Deviation of the Objective Value for 30 iterations (Std) and the Average 

Solving Time (Time). These values were used to represent the performance of the 

algorithm in the testing scenarios. All testing results are shown in Tables 5.2~5.5. The |N| 

column represents the number of stations used in the instance, for each testing scenario, 

the five measurement criteria (i.e. Min, Max, Avg, Std and Time) were collected for H1, 

H2 and H3 algorithms and the results are saved in the tables. The GAP2 and GAP3 
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columns show the improvement / decrease based on the results from the H1 algorithm, 

using the formula GAP2 = (H1 – H2) / H1, GAP3 = (H1 – H3) / H1.  
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Table 5.2: Test Cases with Time Horizon = 9000, and Vehicle Capacity = 10 
 

N  
H1 H2 H3 

Max Avg Min Std Time 
(s) Max Avg Min Std Time 

(s) GAP2 Max Avg Min Std Time 
(s) GAP3 

100 749.6 752.9 754.6 1.32 153 650.3 656.8 657.2 1.96 2.08 12.8% 565.4 564.0 557.6 2.18 2.27 25.1% 
125 1004.2 1004.4 1007.3 0.93 142 886.5 889.5 889.6 0.85 2.14 11.4% 786.0 781.7 770.3 4.73 3.22 22.2% 
150 1222.9 1223.4 1229.7 1.94 169 1079.8 1084.7 1092.2 3.50 2.86 11.3% 965.8 964.0 951.9 3.54 3.97 21.2% 
175 1372.6 1375.0 1378.9 1.74 184 1177.3 1192.4 1193.4 4.34 3.47 13.3% 1096.3 1094.9 1089.9 1.82 2.93 20.4% 
200 1615.1 1616.7 1617.6 0.71 150 1217.9 1229.8 1242.4 7.72 3.70 23.9% 1306.5 1301.4 1298.6 2.29 3.64 19.5% 
225 1874.1 1885.0 1890.2 4.97 192 1631.4 1635.2 1635.6 1.23 6.86 13.2% 1535.5 1532.8 1527.0 2.73 4.14 18.7% 
250 2102.8 2112.8 2119.1 4.15 160 1896.7 1897.0 1898.8 0.66 5.18 10.2% 1693.9 1680.4 1675.9 4.66 5.85 20.5% 
275 2236.8 2239.7 2243.4 1.89 195 1940.2 1946.4 1949.4 2.85 5.28 13.1% 1829.5 1826.4 1818.1 3.70 6.56 18.5% 
300 2497.6 2507.7 2508.5 2.93 169 2149.2 2155.4 2163.3 4.09 6.77 14.0% 2036.6 2033.7 2026.4 2.61 6.02 18.9% 
325 2740.3 2741.6 2742.8 0.95 202 2354.8 2361.3 2364.0 2.41 5.91 13.9% 2270.1 2253.9 2252.0 6.09 6.38 17.8% 
350 2972.8 2973.9 2976.7 1.05 264 2673.7 2678.9 2683.1 2.79 6.46 9.9% 2576.0 2574.8 2570.8 1.70 6.83 13.4% 
375 3118.9 3121.3 3126.7 1.89 258 2750.0 2752.6 2762.7 3.78 6.48 11.8% 2738.6 2727.7 2723.6 5.18 7.37 12.6% 
400 3385.2 3385.8 3397.9 3.97 289 2823.5 2836.2 2849.8 6.94 7.41 16.2% 2737.1 2734.8 2725.5 3.32 7.55 19.2% 

  
* The objective value does not include the transportation cost 
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Table 5.3: Test Cases with Time Horizon = 18000 and Vehicle Capacity = 10 
 

N  
H1 H2 H3 

Max Avg Min Std Time 
(s) Max Avg Min Std Time 

(s) GAP2 Max Avg Min Std Time 
(s) GAP3 

100 680.9 666.6 684.1 0.63 331 587.4 589.6 602.4 4.85 2.85 11.6% 454.2 450.8 450.7 1.04 2.77 32.4% 
125 920.5 891.1 923.6 1.72 304 790.5 790.6 791.6 0.35 3.10 11.3% 628.8 628.5 624.3 1.07 4.51 29.5% 
150 1136.8 1116.4 1149.2 0.58 207 977.3 981.7 981.8 1.21 3.30 12.1% 767.1 759.1 759.0 2.16 4.86 32.0% 
175 1283.5 1245.7 1287.4 5.05 317 1117.2 1123.8 1124.5 1.83 2.77 9.8% 925.3 922.2 909.2 3.99 5.59 26.0% 
200 1511.9 1502.5 1524.3 1.33 285 1202.8 1203.0 1207.4 1.17 3.81 19.9% 1056.7 1055.7 1044.5 3.74 8.26 29.7% 
225 1790.2 1732.4 1790.7 2.12 293 1535.6 1540.6 1541.9 2.12 4.07 11.1% 1278.5 1269.0 1266.9 2.45 9.39 26.7% 
250 2014.3 1962.5 2020.6 2.48 306 1638.9 1641.5 1647.9 2.59 6.90 16.4% 1425.9 1419.3 1417.9 2.17 9.85 27.7% 
275 2118.7 2151.0 2127.8 1.98 376 1848.5 1849.0 1859.6 3.09 7.53 14.0% 1541.7 1539.1 1537.8 0.92 9.88 28.4% 
300 2403.4 2376.2 2408.7 4.72 325 1995.3 2010.3 2017.0 5.9 9.80 15.4% 1661.0 1652.9 1650.5 3.16 10.11 30.4% 
325 2628.7 2616.6 2643.3 6.45 362 2234.1 2240.6 2246.3 3.8 10.42 14.4% 1835.3 1834.5 1820.5 4.45 12.45 29.9% 
350 2864.1 2853.1 2868.3 0.20 343 2418.3 2434.2 2434.5 4.47 12.10 14.7% 2046.6 2034.7 2029.3 4.73 11.61 28.7% 
375 2993.4 3028.5 3006.8 1.91 382 2576.2 2577.0 2583.0 1.72 12.73 14.9% 2151.4 2147.7 2147.2 1.27 12.69 29.1% 
400 3262.3 3265.2 3270.8 4.02 421 2778.2 2789.3 2791.2 3.85 14.56 14.6% 2311.7 2305.7 2296.3 4.37 14.35 29.4% 

 
* The objective value does not include the transportation cost 
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Table 5.4: Test Cases with Time Horizon = 9000, and Vehicle Capacity = 20 
 

N  
H1 H2 H3 

Max Avg Min Std Time 
(s) Max Avg Min Std Time 

(s) GAP2 Max Avg Min Std Time 
(s) GAP3 

100 680.9 682.5 684.1 0.83 684 563.4 565.4 567.3 2.96 2.37 17.2% 536.9 534.5 534.4 0.67 2.34 21.7% 
125 920.5 923.5 923.6 0.95 613 735.2 744.4 753.6 2.25 2.58 19.4% 719.0 715.8 713.6 1.66 3.62 22.5% 
150 1136.8 1144.9 1149.2 3.35 723 884.9 885.1 886.3 2.2 3.47 22.7% 872.4 860.7 857.8 3.89 2.06 24.8% 
175 1283.5 1285.5 1287.4 1 789 1048.6 1050.7 1051.5 2.79 3.97 18.3% 1051.5 1047.6 1041.7 2.95 4.67 18.5% 
200 1511.9 1515.1 1524.3 2.95 898 1135.0 1144.8 1146.2 2.32 5.09 24.4% 1108.9 1106.8 1105.7 0.91 5.42 26.9% 
225 1790.2 1790.2 1790.7 0.11 921 1468.8 1474.2 1487.8 1.78 5.12 17.7% 1422.1 1421.0 1406.1 4.25 5.78 20.6% 
250 2014.3 2019.1 2020.6 1.58 969 1622.3 1634.4 1636.0 3.11 5.28 19.0% 1561.2 1560.6 1551.6 2.91 5.99 22.7% 
275 2118.7 2127.1 2127.8 2.8 1123 1767.9 1775.0 1775.0 1.53 6.92 16.6% 1751.5 1743.5 1743.4 2.33 6.56 18.0% 
300 2403.4 2406.8 2408.7 1.39 1266 1927.8 1928.1 1930.8 1.24 7.16 19.9% 1905.9 1902.7 1891.0 3.97 7.06 20.9% 
325 2628.7 2632.9 2643.3 5.1 1607 2157.4 2164.0 2169.1 1.31 9.04 17.8% 2136.2 2135.7 2134.3 0.53 10.18 18.9% 
350 2864.1 2866.4 2868.3 1.22 1772 2334.5 2353.9 2361.9 2.11 9.37 17.9% 2298.5 2298.3 2296.1 0.62 12.36 19.8% 
375 2993.4 3005.7 3006.8 4.41 1764 2478.4 2480.3 2480.4 4.04 9.6 17.5% 2434.6 2430.2 2428.4 1.45 10.90 19.1% 
400 3262.3 3280.2 3270.8 2.5 2215 2605.4 2617.7 2622.8 4.48 10.96 20.2% 2614.4 2614.2 2614.0 0.12 13.72 20.3% 

  * The objective value does not include the transportation cost 
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Table 5.5: Test Cases with Time Horizon = 18000, and Vehicle Capacity = 20 
 

N  
H1 H2 H3 

Max Avg Min Std Time 
(s) Max Avg Min Std Time 

(s) GAP2 Max Avg Min Std Time 
(s) GAP3 

100 578.7 580.9 584.6 1.64 2029 500.3 501.6 512.2 3.7 3.10 13.6% 427.4 420.4 409.2 4.53 2.96 27.6% 
125 790.0 790.3 795.3 1.57 1903 640.3 642.1 652.8 3.63 5.83 18.8% 569.1 565.1 562.4 1.86 3.08 28.5% 
150 1000.8 1001.7 1003.1 0.73 2362 822.8 826.1 841.7 5.74 3.93 17.5% 695.1 690.5 682.8 3.22 5.76 31.1% 
175 1115.4 1118.4 1119.3 1.17 2851 969.6 977.6 988.5 5.82 4.87 12.6% 832.1 829.8 828.4 0.85 5.98 25.8% 
200 1361.4 1368.2 1373.4 3.08 2938 1139.0 1139.7 1139.8 0.27 6.60 16.7% 989.1 981.5 978.9 2.72 4.06 28.3% 
225 1584.8 1585.3 1595.8 3.37 2186 1283.4 1284.1 1287.8 1.27 7.80 19.0% 1180.3 1173.2 1164.5 4.44 8.37 26.0% 
250 1799.9 1801.9 1808.9 2.69 2293 1510.8 1517.4 1520.1 2.75 8.71 15.8% 1322.0 1310.9 1310.6 3.11 9.12 27.2% 
275 1990.6 1991.3 1992.3 0.55 2153 1641.5 1641.6 1642.7 0.31 10.19 17.6% 1446.9 1439.6 1438.4 2.22 12.27 27.7% 
300 2192.2 2207.1 2209.1 4.47 2694 1780.1 1788.4 1792.0 3.64 10.32 19.0% 1579.3 1572.6 1567.2 3.33 13.22 28.7% 
325 2427.5 2431.7 2431.7 1.27 3270 1837.8 1861.6 1866.1 8.23 11.46 23.4% 1753.8 1753.5 1742.8 3.11 16.01 27.9% 
350 2677.7 2678.8 2681.6 1.17 3565 2132.7 2134.4 2135.9 1.04 15.08 20.3% 1879.1 1878.1 1866.0 3.30 16.31 29.9% 
375 2849.8 2855.0 2856.4 1.79 3503 2138.5 2152.2 2154.8 4.61 15.13 24.6% 2027.7 2016.7 2010.6 4.94 16.34 29.4% 
400 3071.3 3074.3 3085.6 3.91 3009 2315.8 2323.5 2330.9 4.32 16.14 24.4% 2195.4 2192.9 2190.6 1.46 19.72 28.7% 

 
* The objective value does not include the transportation cost 
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A quick reading of the results in the tables indicates that the H3 algorithm usually 

had the smallest objective value and the H1 the largest objective value. The objective 

value for the same testing scenario usually followed the pattern of H1 > H2 > H3, 

meaning that the H3 algorithm provides the best quality solution of the three. Since it is 

difficult to check the differences among the three algorithms by manually reading the 

values in the tables, a statistical tool was used to help find them. 

Similar to previous testing, first the Anderson-Darling test was used to check the 

normality of the raw data. The test results are shown in Appendix A, B and C. The 

Figures A.1~A.4, B.1~B.4, C.1~C.4 indicate that the average objective values for H1, H2 

and H3 do not follow a normal distribution, meaning nonparametric statistical tests were 

required.  

This analysis used the Freidman test, a nonparametric statistical tool similar to a 

two-way ANOVA, to explore these observations. The three algorithms served as the 

treatment and the testing scenarios as the blocks. In general, the Freidman test ranks the 

average objective values from each algorithm for each testing scenario, with the 

algorithm with the lowest (best) value being assigned rank 1, the second best rank 2, and 

so on until all are ranked. In the case of a tie, average ranks are assigned. For example, if 

2 algorithms are tied for rank 1, they are both ranked 1.5 and next rank is 3. The 

hypotheses for Freidman test are listed below:  

H0: the median of the average objective values is equal for all algorithms. 

H1: not all medians of the average objective values for all algorithms are equal. 
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Appendix Tables C.1, C.2, C.3 and C.4 present the statistical results from the 

Freidman tests obtained using MINITAB. All tests results provide very small p-values 

(<0.001), meaning that there is sufficient evidence to reject the null hypothesis and 

conclude that not all medians of the average values of all algorithms are equal. Figure 5.1 

shows the sums of the ranks for all three algorithms for all 52 testing scenarios. The H3 

algorithm has a sum rank of 53 out of 52 testing scenarios, meaning that the H3 algorithm 

was ranked second once and ranked first 51 times for all 52 testing scenarios, results 

suggesting that in general it performed than the H2 and H1 algorithms across all of these 

testing scenarios. The H1 algorithm has a sum rank of 156, indicating that it ranked third 

for all 52 testing scenarios. Based on the results from the Freidman test and the post-hoc 

analysis, it can be concluded that the performance of three algorithms follows the pattern 

H3 > H2 > H1. 

 

 

Figure 5.1: Three algorithms Sum Rank for all 52 Testing Scenario in Freidman Test 
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Similar to the analysis of the H2 algorithm in Chapter 4, the H3 algorithm 

performed better because of the relaxation of the visit limitation in the SBRP problem. 

The H1 algorithm is fully restricted by the visit limitation as each station can be visited at 

most once in each solution. The H2 algorithm partially relaxed this visit limitation as the 

same station could be visited multiple times in different trips. With this relaxation, the 

station with a large demand / inventory can be visited multiple times to have its requests 

fulfilled. However, this algorithm uses multiple trips to fulfill the repositioning, meaning 

this routing schedule allowed the vehicle to visit the depot multiple times. Because the 

depot maintains infinite locker capacity and bicycle inventory capacity, it creates the 

opportunity to reduce the penalty cost by visiting it to unload / pick up extra bicycles 

when the station is close to the depot. The H3 algorithm removed the visit limitation 

completely, allowing any vehicle schedule for the repositioning event. Thus, it further 

helps to reduce the transportation time by provide more selection options for determining 

the repositioning routing schedule. This improvement from H1 to H2 and finally to the 

H3 algorithm was not only caused by the improvement in the algorithm but also by the 

relaxing of constraint of the research problem. The solution for the H3 algorithm is more 

closely related to a real-world scenario, giving the highest quality solution among the 3 

algorithms. Furthermore, comparing the solving time for the H2 and H3 algorithms 

indicates that both provide solutions within a short time period, meaning in general, the 

H3 algorithm provides the best quality solution of the three algorithms in a short solving 

time. 
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Conclusion and Future Work 

 

We proposed a VNS heuristic to solve the static bicycle repositioning problem 

with a single vehicle, multiple trips and no station visit limitation. In this research, we use 

multiple trips to fulfill the repositioning event and fully relaxed the station visit 

limitation, meaning that the vehicle can use any schedule to fulfill the repositioning 

event. These assumptions make this research is similar to real-world situations.  

The experimental results using the instances from Ho and Szeto’s (2014) research 

indicate the new heuristic algorithm H3 provides the best quality solution within a short 

solving time compared to the other 2 algorithms (H1 and H2). The H3 algorithm provides 

a better solution than the H1 algorithm with an average improvement of 0.45%, and a 

0.22% improvement over the H2 algorithm. This improvement is caused by its structure 

of the heuristic algorithm and the relaxation of the visit limitation constraint. 

In the future, this research will extend the current SBRP problem with single 

vehicle into multiple vehicles scenarios. In addition, currently we consider only a single 

type of the bicycle at the station. However, in the real-world, multiple types of bicycles 

such as 2-man bicycles or 3-man bicycles could be located at one station. The SBRP 

problem could be extended to include these various types of bicycles. 
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CHAPTER SIX 
 

CONCLUSION AND FUTURE WORK  
 
 

In this research, we studied the static bicycle repositioning problem with a single 

vehicle. We first focused on the very basic SBRP problem with a single vehicle; the first 

study fully implemented the station visit limitation which only allowed the station to be 

visited once in the solution, and we proposed a 2-step algorithm to solve the problem. A 

new auxiliary method was developed to solve the 2nd step optimally by a given routing 

schedule. Then we partially relaxed the station visit limitation and use multiple trips to 

fulfill the reposition event. A new heuristic is constructed by using the 1-step algorithm 

to modify the routing schedule and assignment plan at the same time. The third study 

fully relaxed the station visit limitation and allowed the vehicle to use any schedule to 

complete the repositioning event. Also, a new heuristic was proposed to solve the 

problem with this scenario. 

As we can see our studies try to relax the SBRP model constraints and make it 

more similar with the real world scenario. The numeric experiments indicate our 

algorithm can provide a good solution for the SBRP problem. The solving time for the 

model is also short. We could use the result of this research to provide the SBRP problem 

with up to 400 station nodes a good quality result within 15 seconds. 

In the future, we want to extend our research in several aspects: (1) since we 

already create a near real world scenario model for the SBRP problem with a single 

vehicle, we want to extend this model into multiple vehicles scenarios.  In this scenario, 

vehicles with identical or different capacities would be considered.  For multiple vehicles, 
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the partition of different areas will be a good idea. For vehicles with different capacities, 

how to reduce the waste of transportation capacity could be an important topic. 

(2) A study of design station locations in order to reduce rebalancing is also an interesting 

aspect. With analysis of historical data of bicycle trends, changing the price charged if the 

customer returns a bicycle to a less preferred location is a kind of intentional guide to let 

customers balance the bicycle quantities without the company engaging in repositioning.  

This kind of price leverage will help reduce the overall cost of repositioning.  

(3) Currently we only consider a single type of bicycle in the station. But in the real 

world, there could be multiple different types of bicycles in the same station, such as 2 

man bicycle or various qualities of bicycles. We could extend our SBRP problem with 

multiple types of bicycles. In part due to the reasonable solving time, the results of 

chapter five can be extended to the dynamic bicycle repositioning problem as well.  

(4)  Dynamic bicycle sharing system is another popular topic and it reflects the real world 

scenario. Based on price leverage and historical bicycle trends data, we may develop a 

simulation model to predict the vacancy rate of stations and encourage customers to 

return bicycles to the empty stations, which will be helpful to minimize reposition cost 

and reposition time interval. 

(5) This paper used a routing first and assignment second sequence, while, in future 

research, an assignment first and routing second could be considered to see if it can 

approach better results. In that case, Fisher and Kaikumar algorithm, the Petal algorithm, 

the Sweep algorithm and the Taillard algorithm should be compared to find out which 

one is a better solution for bicycle sharing problem. 
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Appendix A 
Statistical Results for Chapter 3 Numerical Experiment 
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Figure A.1: Normality test for GAP, time horizon = 9000, capacity = 10 
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Figure A.2: Normality test for GAP, time horizon = 18000, capacity = 10 
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Figure A.3: Normality test for GAP, time horizon = 9000, capacity = 20 
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Figure A.4: Normality test for GAP, time horizon = 18000, capacity = 20 
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Table A.1: Wilcoxon Signed Rank Test for GAP, time horizon=9000, capacity=10 

Wilcoxon Signed Rank Test: Gap H=9000 C=10  
 
Test of median = 0.000000 versus median > 0.000000 
 
         N for   Wilcoxon         Estimated 
      N   Test  Statistic      P     Median 
Gap  13     13       91.0  0.001    0.01400 

 

 

Table A.2: Wilcoxon Signed Rank Test for GAP, time horizon=18000, capacity=10 

Wilcoxon Signed Rank Test: Gap H=18000 C=10 
 
Test of median = 0.000000 versus median > 0.000000 
 
         N for   Wilcoxon         Estimated 
      N   Test  Statistic      P     Median 
Gap  13     13       91.0  0.001    0.02350 

 

 

Table A.3: Wilcoxon Signed Rank Test for GAP, time horizon=9000, capacity=20 

Wilcoxon Signed Rank Test: Gap H=9000 C=20 
 
Test of median = 0.000000 versus median > 0.000000 
 
         N for   Wilcoxon         Estimated 
      N   Test  Statistic      P     Median 
Gap  13     13       91.0  0.001    0.06350 

 

 

Table A.4: Wilcoxon Signed Rank Test for GAP, time horizon=18000, capacity=20 

Wilcoxon Signed Rank Test: Gap H=18000 C=20 
 
Test of median = 0.000000 versus median > 0.000000 
 
         N for   Wilcoxon         Estimated 
      N   Test  Statistic      P     Median 
Gap  13     13       91.0  0.001    0.09850 
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Appendix B 
Statistical Results for Chapter 4 Numerical Experiment 
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Figure B.1: Normality test for H2 AvgObj, time horizon = 9000, capacity = 10 
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Figure B.2: Normality test for H2 AvgObj, time horizon = 18000, capacity = 10 
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Figure B.3: Normality test for H2 AvgObj, time horizon = 9000, capacity = 20 
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Figure B.4: Normality test for H2 AvgObj, time horizon = 18000, capacity = 20 
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Table B.1: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 9000, capacity = 10 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 13.00  DF = 1  P = 0.000 

 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      2151.6    26.0 
H2         13      1858.3    13.0 

 
 
 
 
 

Table B.2: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 18000, capacity = 10 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 13.00  DF = 1  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      1953.0    26.0 
H2         13      1651.0    13.0 
 
Grand median = 1802.0 
 

 
 
 
 
 
Table B.3: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 9000, capacity = 20 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 13.00  DF = 1  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      2011.9    26.0 
H2         13      1641.6    13.0 
 
Grand median = 1826.8 
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Table B.4: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 18000, capacity = 20 
 

Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 13.00  DF = 1  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      1810.3    26.0 
H2         13      1509.1    13.0 
 
Grand median = 1659.7 
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Appendix C 

Statistical Results for Chapter 5 Numerical Experiment 
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Figure C.1: Normality test for H3 AvgObj, time horizon = 9000, capacity = 10 
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Figure C.2: Normality test for H3 AvgObj, time horizon = 18000, capacity = 10 
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Figure C.3: Normality test for H3 AvgObj, time horizon = 9000, capacity = 20 
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Figure C.4: Normality test for H3 AvgObj, time horizon = 18000, capacity = 10 
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Table C.1: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 9000, capacity = 10 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 24.15  DF = 2  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      2112.8    39.0 
H2         13      1820.8    25.0 
H3         13      1718.0    14.0 
 
Grand median = 1883.8 
 

 
 
 
 
Table C.2: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 18000, capacity = 10 
 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 26.00  DF = 2  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      1962.5    39.0 
H2         13      1670.7    26.0 
H3         13      1409.2    13.0 
 
Grand median = 1680.8 

 
 
 
Table C.3: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 9000, capacity = 20 
 
Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 26.00  DF = 2  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      2007.1    39.0 
H2         13      1634.4    26.0 
H3         13      1601.2    13.0 
 
Grand median = 1747.6 
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Table C.4: Friedman Test result, objective vs Algorithm blocked by Testing scenarios, 
time horizon = 18000, capacity = 20 
 

Friedman Test: Objective versus Algorithm blocked by Testing Scenario  
 
S = 26.00  DF = 2  P = 0.000 
 
                           Sum of 
Algorithm   N  Est Median   Ranks 
H1         13      1801.9    39.0 
H2         13      1482.6    26.0 
H3         13      1329.0    13.0 
 
Grand median = 1537.8 
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