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Abstract

The biopharmaceutical industry is constantly developing new recombinant Es-

cherichia coli strains to bring new products to market. In early stages of development,

small scale bioreactors are used to make the product and explore different growth pro-

tocols. Researchers spend significant time finding a feed rate profile that will give

fast growth and low byproduct accumulation. The objective for the controller pre-

sented in this work is to achieve fast growth and low acetate accumulation for an

E.coli fermentation. The controller does not rely on previous characterization data

or models but on fundamental metabolic relationships between oxygen and glucose

as dictated by the Crabtree effect. The controller senses metabolic state using an on-

line oxygen uptake rate (OUR) estimate and pushes the culture to the boundary of

oxidative and overflow metabolism (BOOM). A simulated E.coli culture and biore-

actor were constructed to test controller performance. Fermentation experiments

compared the BOOM controller to an Exponential feed and a DO-stat controller.

Using minimal knowledge about the strain, the BOOM controller kept an induced

E.coli MG1655 pTVP1GFP strain growing near the boundary of oxidative and over-

flow metabolism. The BOOM controller produced more recombinant protein than

the Exponential feed controller and the DO-stat controller, even though the growth

rate used by the Exponential feed controller was extensively researched by a previous

group. In another fermentation, the temperature was lowered to incur a fast change
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in the E.coli metabolism. In all experiments, the BOOM controller demonstrated it

could maintain fast growth and avoid inhibitory acetate concentrations while requir-

ing minimal knowledge of theE.coli MG1655 pTVP1GFP strain. For laboratories

which deal with many different strains and proteins, the BOOM controller would

maximize protein production and speed up protocol development.
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Chapter 1

Introduction

The commercialization of therapeutic products cultivated and harvested from

microorganisms began with pencillin in the late 1940s. The modern era of biotechnol-

ogy began in the late 1970s when the procedures of Stanley Cohen with Escherichia

coli (E.coli ) were translated into the industrial production of recombinant proteins.

Currently, the biopharmaceutical industry depends heavily on Saccharomyces cere-

visiae , E.coli , and Chinese hamster ovary (CHO) cells to produce recombinant

proteins. E.coli are used to produce over half the recombinant protein entities [Ja-

yaraj and Smooker, 2009]. E.coli is used for these products because it is easy to grow,

grows quickly, and scales up easily for large production [Jayaraj and Smooker, 2009].

Also E.coli can grow on a variety of feed stocks, can tolerate relatively large pH and

temperature ranges, and has a fully sequenced genome. E.coli is insensitive to shear

effects, in contrast to animal cells, which can be damaged at high speeds [Simon and

Karim, 2001].

In order to produce a biopharmaceutical, first researchers examine the growth

of the organism to be used in special vessels, known as bioreactors or fermenters. Re-

searchers interpret the behavior of the organism to different temperature, pH, oxygen
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and substrate concentrations. They also identify desired ranges of growth and de-

velop feeding procedures, a.k.a. protocols. These early fermentation studies, to date,

have focused on maintaining set conditions in the fermenter. Having the capability to

control cell behavior directly could reduce fermenter protocol development times. In

both yeast and E.coli fermentations where biopharmecutical production is the goal,

fast growth and low waste production is desired because waste product accumulation

can cause the culture to become inefficient at producing the biopharmaceutical. Fast

growth with low waste accumulation is the best way to maximize biomass, which max-

imizes overall recombinant protein production. Unfortunately, controlling a fermenter

is not straightforward because real-time measurement of biomass and metabolite con-

centrations in the culture is currently expensive and not possible for all metabolites.

The objective of this study was to design a controller that would control the

behavior of an E.coli culture in a fermenter. The controller guides the culture to fast

growth while avoiding waste concentrations which could hinder biopharmaceutical

production. The controller uses only real-time sensors which are low cost, publically

available, and industrially accepted. The controller does not depend explicitly on

a predefined culture growth model, but instead depends on the interaction of fun-

damental metabolic relationships, as seen in [Akesson et al., 1997]. The controller

depends heavily on the input of an oxygen uptake rate (OUR) estimator, which con-

structs a real-time OUR signal from the dissolved oyxgen (DO) probe and exhaust-gas

sensor. The controller applies periodic ramp functions to the feed rate in order to

detect metabolic state and drive the culture toward fast efficient growth. A simula-

tion of the E.coli culture and fermenation system was constructed in order to test

the controller. The controller was used to control both induced and uninduced E.coli

cultures. Experimental results show that the controller successfully achieved fast,

efficient growth in fermentations undergoing either fast (temperature) or slow (in-

2



duction) metabolic shifts. In experiments measuring the total recombinant protein

production, the controller was compared to an exponential and DO stat controller.

Protein production was 10% higher than the exponential feed rate protocol tuned

using past data. Protein production was 50% higher than the DO stat controller.

This dissertation is structured as follows. Chapter 2 reviews the relevant lit-

erature of E.coli metabolism, fermentation modelling and recombinant protein prod-

cution and advance control techniques. Chapter 3 describes the hardware-in-the-loop

models used for simulating and deploying the control algorithm. Chapter 4 describes

the online OUR estimator that eliminates measurement latency of the exhaust-gas

sensor. Chapter 5 describes the metabolic state sensing algorithm. Chapter 6 de-

scribes the materials and methods used to validate the algorithm. Chapter 7 assess

the algorithm under fed-batch fermentation conditions and compares the outcomes

to two more common use control algorithms used in E.coli recombinant protein pro-

duction. Chapter 8 summarizes this work and suggests future work.
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Chapter 2

Literature Review: E.coli

Metabolism, Fermenter Modelling,

and Advanced Control

In this chapter, a basic overview of E.coli metabolism will be presented. The

simulation models for growth rate and the mass-balance in the bioreactor are pre-

sented. Lastly, a review of the estimation and control algorithms found in literature

is presented.

2.1 Escherichia coli

The E.coli metabolism is the rate (µ) in which the cell takes in substrate and

produces biomass (X), modeled in (2.1). The rate at which the biomass grows (2.2)

is determined by the three phases of E.coli metabolism: oxidative (µ1), overflow (µ2),

4



and metabolite consumption (µ3).

X = X0 exp(µ t) (2.1)

µ = µ1 + µ2 + µ3 (2.2)

Glucose is processed during all three metabolic phases and it’s removal from the

culture represents the Glucose Uptake Rate (GUR). The reactions presented below

follow glucose as it is processed in the cell and reflect the understanding of E.coli

metabolism adapted from [Wolfe, 2005, Vemuri et al., 2006], see Figure 2.1. The

effects of protein production via induction are not included.

2.1.0.1 Oxidative Metabolism, µ1

The reactions in the oxidative metabolism represent the main source of glucose

processing and energy production for the cell. It is important to remember that the

rate of glucose absorption by the cell is driven by the glucose concentration in the

culture, S. As glucose is transported through the cell membrane, it enters glycolysis

and is converted into pyruvate; this occurs regardless of surrounding oxygen.

glucose→ 2 pyruvate + 2 H+ + 2 ATP + 2 H2O (2.3)

The pyruvate undergoes pyruvate decarboxylation and yields acetyl Coenzyme A

(Acetyl-CoA).

pyruvate + CoA→ Acetyl-CoA +H+ + CO2 (2.4)

5



Figure 2.1: Major reactions that involve the processing of glucose in E.coli
metabolism. The TCA cycle needs the products produced via oxidative phospho-
rylation to process the Acetyl-CoA.
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Acetyl-CoA is the main carbon input to the tricarboxylic acid (TCA) cycle.

Acetyl-CoA + 3 NAD+ PO−3
4 → CoA + 3 NADH + 3 H+ + 2 CO2 (2.5)

The TCA cycle indirectly uses oxygen to process Acetyl-CoA. Absorbed oxy-

gen is used in a parallel process called oxidative phosphorylation. Oxidative phos-

phorylation regulates the TCA cycle by accepting electrons from NADH, forming

NAD+, and releasing them later to help form ATP [Akesson et al., 1999a].

2.1.0.2 Overflow Metabolism, µ2

If the GUR exceeds the maximum rate of the TCA cycle and the oxidative

phosporylation process [Johnston et al., 2003], Acetyl-CoA concentration inside the

cell increases. When a certain threshold concentration of Acetyl-CoA is reached,

the cell begins to convert Acetyl-CoA to acetate by acetogenesis. Acetogenesis is a

reaction that does not require oxygen, decreases the pool of Acetyl-CoA, and provides

some ATP . The concentration of glucose which forces the E.coli into acetogenesis is

called the acetate threshold.

2.1.0.3 Metabolite Consumption Metabolism, µ3

As the glucose concentration outside the cell decreases, the GUR slows down.

When the excess Acetyl-CoA inside the cell is depleted by the TCA cycle and ace-

togenesis, extracellular acetate is absorbed along with glucose where it is converted

back into Acetyl-CoA. In this case, the TCA cycle is processing Acetyl-CoA derived

from both glucose and acetate.
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2.1.0.4 Metabolism and Biomass

Gycolysis and pyruvate decarboxylation are catabolic reactions, meaning these

reactions break down complex molecules into simpler ones. The TCA cycle is both

catabolic and anabolic; the intermediates produced catabolically by the TCA cycle

are used anabolically for the assembly of larger molecules, in this case, additional

biomass [Xu et al., 1999]. Oxidative metabolism contributes the most toward the

growth rate of a culture. Overflow metabolism and metabolite consumption only

generate a small amount of biomass while active. The most efficient use of glucose

and the best condition for fast growth is to drive the growth rate to the boundary of

oxidative and overflow metabolism (BOOM). When a culture is in the BOOM region,

it is maximizing oxidative metabolism and minimizing overflow metabolism.

2.2 E.coli Growth Rate Model Selection

It is important to choose a growth rate model representative of the microor-

ganism when modeling a bioreactor system. There are more than fifty different types

of growth rate models found in the literature. One of the most popular growth rate

models is the Monod model, developed in 1942 to describe microorganism growth

data [Bastin and Dochain, 1990]. One example of a Monod growth model is

µ(S) = S

Ks + S
(2.6)

where µ is the growth rate (1/h), S the substrate concentration (g/L), and Ks, the

saturation (or half growth-rate) constant. The saturation constant, Ks, represents

the substrate concentration at which growth is at half the maximum growth rate.

In (2.7), the growth rate is also a function of the substrate concentration, but here
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additional polynomials have be added to account for chemicals that cause growth

rate inhibition. In [Mohseni et al., 2009], the authors added a term which inhibits

the growth rate as the acetate concentration, A, increases.

µ(S,A) =
(

S

Ks + S

)(
Ki

Ki + A

)
(2.7)

The inhibition constant, Ki, represents the concentration of acetate which limits the

growth rate to half its maximum rate. Two other popular growth rate models are: 1)

the Haldane model, which describes inhibition due to high substrate concentration

2) the Contois model, which describes inhibition due to high biomass concentration

[Bastin and Dochain, 1990,Rahman et al., 2010].

The Monod model does not represent all the phases of E.coli metabolism.

There is no provision for the transition from oxidative to overflow metabolism, nor

the consumption of extracellular acetate. Several models in literature extend the

single Monod model to a series of Monod equations that control the fluxes of glucose,

oxygen, and acetate into the cell. Those fluxes are constrained by the current state

of the metabolism and combined to form the growth rate. These growth models are

not continuous like a single Monod expression, but piecewise continuous, meaning the

growth rate model changes based upon the current metabolic phase [Pomerleau and

Perrier, 1990,Bastin and Dochain, 1990,Akesson et al., 1997,Xu et al., 1999,Rocha

and Ferreira, 2002, Karakuzu et al., 2006]. These types of growth rate models are

more metabolically accurate.

2.2.1 The Xu Growth Rate Model

The growth rate model selected for this project is piecewise continuous and

taken from [Xu et al., 1999]. The metabolic parameters for this model were fitted
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based on experiments using the E.coli W3110 strain. This model was selected as the

growth rate model for the simulation and testing of control algorithms for this project

because it’s behavior is similar to the E.coli MG1655 pTVP1GFP strain. The growth

rate, µ, calculation for the Xu model begins with the glucose flux into the cell:

qS =
(

qSmax
1 + A/Ki,S

)(
S

S +Ks

)
(2.8)

The total substrate flux is limited by qSmax . This limit is scaled by the acetate

concentration, which has been shown to have an inhibitory affect at levels exceeding

2 g/L [Babaeipour et al., 2007]. As shown in Section 2.1, glycolysis and pyruvate

decarboxylation turn all glucose into Acetyl-CoA. Acetyl-CoA can follow two separate

metabolic paths: oxidative or overflow metabolism.

qS = qSox + qSof (2.9)

The processing rate of Acetyl-CoA due to the oxidative metabolism is qSox.

The processing rate of Acetyl-CoA due to overflow metabolism via acetogenesis is

qSof . Oxygen is used to process Acetyl-CoA in two ways, in the TCA cycle to make

energy and in the anabolism to make biomass. qSox is split into two parts, one part

representing the processing rate of Acetyl-CoA for anabolism, qSox,an, the other for

the TCA cycle, qSox,en.

qSox = qSox,an + qSox,en (2.10)

These magnitude of qSox,an is calculated by examining the carbon mass balance equa-
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tions:
carbon flux to anabolism = qSox,anCS

carbon flux converted to biomass = (qSox − qm)YX/SoxCX

(2.11)

where CS represents the carbon content of glucose (mol/g), YX/Sox the yield coeffi-

cient exclusive of maintenance (qm), and CX the carbon content of biomass (mol/g).

Equation 2.11 defines the same process in two different ways; qSox,an can be solved

for by setting the two equations equal to each other. The anabolic rate is:

qSox,an = (qSox − qm)YX/Sox

CX
CS

(2.12)

and the rate of the TCA cycle is calculated from the remainder.

qSox,en = qSox − qSox,an (2.13)

The total oxygen flux into the cell is

qO = qOS + qAc,enYO/A (2.14)

In oxidative metabolism, the rate of oxygen used by the TCA cycle is

qOS = qSox,enYO/S (2.15)

In low glucose concentrations this value stays below the maximum rate, limited by

qOmax:

qOS ≤
qOmax

(1 + A/Ki,O) (2.16)

Note the inhibition constant, Ki,O, tied to the acetate concentration in the criteria cal-

culation. It has been shown that as acetate concentration increases, OUR decreases,
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slowing down the TCA cycle [Xu et al., 1999]. As the producton of Acetyl-CoA rises

due to increasing glucose concentration, the amount of oxygen needed also increases.

When qO reaches qOmax, qSox cannot increase. When the rate of Acetyl-CoA produc-

tion exceeds the ability of the anabolism and the TCA cycle to process it, qS > qSox,

overflow metabolism begins. In order to calculate qS, Sox must be calculated using

the new criteria below:

qOS = qOmax

(1 + A/Ki,O)

(qSox,en)qOmax = qOmax

(1 + A/Ki,O)
1

YO/S

(2.17)

When the culture is not in overflow metabolism, it is assumed that the entire glucose

flux is processed oxidatively, qSox = qS. If qSox,en has a fixed size based on qOS, then

the qSox,an and qSox values must be resized. This is done by first calculating the qSox,en

assuming qSox = qS. A ratio is formed using this ideal flux value, (qSox,en)qS=qSox

and the value according to qOmax. This is then used to resize the other two fluxes:

ratio = (qSox,en)qOmax

(qSox,en)qS=qSox

(2.18)

(qSox,an)qOmax = ratio qSox,an (2.19)

(qSox)qOmax = (qSox,an)qOmax + (qSox,en)qOmax (2.20)

The value for qSof represents flux for the excess glucose and is now calculated:

qSof = qS − (qSox)qOmax (2.21)

The Acetyl-CoA flux in the overflow metabolism is calculated similarly to oxidative

metabolism, with a portion going to anabolism and the rest processed via acetogen-
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esis.

qSof,an = qSofYX/Sof

CX
CS

qSof,en = qSof − qSof,an
(2.22)

The acetate production rate (APR) is then:

qAp = qSof,enYA/S (2.23)

When the glucose concentration lowers, the excess Acetyl-CoA begins to deplete.

When qOS <
qOmax

(1+A/Ki,O) , overflow mtabolism ceases. The total consumption of acetate

is governed by

qAc = qAc
A

A+KA

(2.24)

where KA is the half-rate constant for acetate consumption. It is divided into two

parts.

qAc,an = qAcYX/A
CX
CA

qAc,en = qAc − qAc,an
(2.25)

The total oxygen flux into the cell is

qO = qOS + qAc,enYO/A

and qAc,en represents the portion of the TCA cycle that can process Acetyl-CoA
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converted from extracellular acetate.

qAc,enYO/A = qOmax

(1 + A/Ki,O) − qOs (2.26)

(qAc,en)qOmax = ( qOmax

(1 + A/Ki,O) − qOs)
1

YO/A
(2.27)

To ensure that the rate of acetate consumption is properly scaled to occupy the gap

between qOS and the boundary condition. qAc and qAc,an are rescaled similarly to

the substrate flux (2.18).

(qAc)qOmax = (qAc,en)qOmax + (qAc,en)qOmax (2.28)

The total oxygen consumption rate for all 3 metabolic regimes is shown in (2.29) and

the total growth rate is shown in (2.30), with the corresponding metabolic regimes.

qO = qOS + qAc,enYO/A (2.29)

µ = (qSox − qm) YX/S,ox︸ ︷︷ ︸
oxidative

+ qSof YX/S,of︸ ︷︷ ︸
overflow

+ qAc YX/A︸ ︷︷ ︸
metabolite consumption

(2.30)

2.3 Mass-balance Model

Once a form for µ is chosen, it is incorporated into a set of ordinary differential

equations defining the mass-balance dynamics of the bioreactor. Equation 2.31 rep-

resents the mass-balance equations for biomass, substrate, and acetate concentration
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Table 2.1: Parameter definitions and values for the Xu model

Symbol Parameter Value Units
CA mol C per g Acetate 1/30 mol g−1

CS mol C per g Glucose 1/30 mol/g
CX mol C per g Biomass 0.04 mol/g
KA Half rate Acetate Consumption 0.05 g/L
Ki,O OUR Inhibition by Acetate 4 g/L
Ki,S GUR Inhibition by Acetate 5 g/L
KS Half rate Glucose Uptake 0.05 g/L

qACmax max Acetate Consumption 0.2 g/(g · h)
qm maintenance 0.04 g/(g · h)

qOmax max OUR 0.429 g/(g · h)
qSmax max GUR 1.25 g/(g · h)
YA/S g A produced per g S 0.667 g/g
YO/A g O consumed per g A 1.067 g/g
YO/S g O consumed per g S 1.067 g/g
YX/A g X produced per g A 0.4 g/g
YX/Sof

g X produced per g S 0.15 g/g
YX/Sox g X produced per g S 0.51 g/g

dynamics in a fed-batch reactor:

d

dt


X

S

A

 =


1 0 0

−YS/X 0 0

YA/X 0 0

µX −
F

V


0

S − Sin

0

 (2.31)

with substrate yield coefficient YS/X (g/g) and acetate yield coefficient YA/X (g/g)

representing grams consumed per gram biomass. Acetate concentration A (g/L),

feed flow rate F (L/h), volume V (L), and glucose feed concentration Sin (g/L) are

also represented. The relationships between states are dictated by the growth rate

times the yield coefficients times the biomass. For this model, the growth rate is a
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simple Monod expression and affects every state equally:

µ(S,A) =
(

S

Ks + S

)(
Ki

Ki + A

)
(2.32)

The mass-balance model for a system with a piecewise continous growth rate

is structured slightly differently. As stated in Section 2.1, E.coli have 3 distinct

metabolic phases: oxidative (µ1), overflow (µ2), and metabolite consumption (µ3).

Santos shows how these reactions relate to the states [Santos et al., 2010]:

k1 S + k5 O
µ1→ X (2.33)

k2 A+ k6 O
µ2→ X +k3 A (2.34)

k4 A+ k7 O
µ3→ X (2.35)

where the ki’s represent the yield coefficients. The model in 2.36 is from [Santos et al.,

2010]:

d

dt



X

S

A

C


=



1 1 1

−k1 −k2 0

0 k3 −k4

−k5 −k6 −k7




µ1

µ2

µ3

X −
F

V



X

S − Sin

A

0


+



0

0

0

OTR


(2.36)

16



For this model, the growth rates are defined:

µ1 = min(qS, qS,crit)/k1 (2.37)

µ2 = max(0, qS − qS,crit)/k2 (2.38)

µ3 =


max(0, qA)/k4 if qSkOS + qAkOA ≤ qO.

max(0, (qO − qSkOS)/kOA)/k4 otherwise.
(2.39)

where qS is the glucose flux into the cell, qS,crit is the maximum glucose flux, qA is the

acetate flux in to the cell, and kOS is the oxygen substrate yield coefficient. Further

definitons can be found in (3) of [Santos et al., 2010]. In (2.36), note how µ1 and µ2

both consume substrate but µ2 produces acetate while µ3 consumes it. These growth

rates more accurately reflect the different metabolic phases. The different phases

affect the different states based on how they are multiplied with the different yield

coefficients.

For the growth rate model found in [Xu et al., 1999], the mass-balance model

is slightly different. Only the biomass is scaled by the growth rate while the other

states are affected by their corresponding fluxes:

d

dt



X

S

A

C


=



µ

−qS

(qAp − qAc)

−qO


X − F

V



X

S − Sin

A

0


+



0

0

0

OTR


dV

dt
= F − Fsample

µ = (qSox − qm)YX/S,ox + qSofYX/S,of + qAcYX/A

(2.40)
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The flux calculations were described in Section 2.2.1. All the fluxes (q, g/g-h) and

yield coefficients (Y , g/g) for the Xu model can be found in Table 2.1.

To completely model a bioreactor system, the hardware, software, and con-

straints of the physical system must be also studied. Depending on the states of the

mass-balance model, the administration of substrate and oxygen and even acid and

base need to be characterized. The methods and resolution in which these solutions

are added to the bioreactor affect how a control algorithm interacts with the mass-

balance and growth rate models. The full description of that work for this project

can be found in Section 3.1.

2.4 Advanced Bioreactor Controls

This section will describe the different types of on-line sensors, estimators and

controllers found in the literature.

2.4.1 Motivation

In 2004, the United States Food & Drug Administration (FDA) presented

their report, "‘Guidance for Industry Process Analytical Technology (PAT) - a Frame-

work for Innovative Pharmaceutical Development, Manufacturing, and Quality As-

surance"’, known as the PAT Initiative [Food and Association, 2004]. The purpose of

the PAT initiative was to present non-binding recommendations to the biopharmaceu-

tical industry. The PAT Initiative highlights the lack of technological advancement

in the biopharmaceutical industry with regards to its process development and man-

ufacturing methods; a state which was "undesirable from a public health standpoint".

The FDA urged the use of small-scale fermentation systems for process understanding

and the use of online sensors to monitor their processes more closely. The FDA stated
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that using both together would provide "increased insight and understanding for pro-

cess development, optimization, scale-up, technology transfer, and control" [Food and

Association, 2004]. Better online measurements improves growth rate control, which

leads to more biomass, and ultimately more product [Babaeipour et al., 2007].

The biopharmaceutical industry invests between 16 to 20% of its earnings back

into research and manufacturing changes for new products. Research and develop-

ment may cost from $800 million to $1.7 billion and take up to 10 years to bring a

new product to market [Mosier and Ladisch, 2009]. The product development process

goes hand-in-hand with process scale-up in the biopharmaceutical industry. One area

where the industry can be accelerated is the early stages of drug development. Due

to the lack of sensing or understanding, the current protocols for small scale systems

are predefined using no or simple feedback control. More accurate sensing solutions

coupled with new control algorithms could deliver fast, stable growth, which would

maximize protein production, speed up protocol development, and increase product

yield during this critical time.

2.4.2 Online Sensors

The FDA report urged companies to monitor their processes more closely

through the use of online sensors. Using online and offline sensors together would

provide "increased insight and understanding for process development, optimization,

scale-up, technology transfer, and control" [Food and Association, 2004]. The most

common on-line sensors for benchtop fermentation systems are pH, temperature, and

dissolved oxygen (DO) probes, and exhaust-gas sensors. These sensors provide control

algorithms with the real-time data necessary to control culture behavior.
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2.4.3 Software Sensors

Software sensors rely on known relationships between the measurable and the

unmeasurable states of mass-balance culture models. Software sensors take on-line

sensor measurements and generate signals that can be used by controller algorithms.

The two main types of software sensors found in literature are state estimators and

neural networks.

In a state estimator, the mass-balance model is used to relate unknown states,

such as the biomass, to known states, such as the oxygen. Models like (2.36) are used

to create observer-based estimates for both the growth rate and biomass using stan-

dard dissolved oxygen and exhaust gas sensors. The observer-based estimators are

usually formed around Luenberger observers. An observer-based estimator can even

estimate growth rate without assuming a growth rate model for the culture [Bastin

and Dochain, 1990]. This means it can be used for many different organisms. Con-

vergence properties and tuning rules have been thoroughly studied for these estima-

tors [Pomerleau and Perrier, 1992]. A different version of this estimator based on

OUR was studied extensively by Lubenova [Lubenova et al., 1993,V., 1996,Ljuben-

ova and Ignatova, 1994]. This estimator has performed well in many actual cul-

ture experiments, mostly involving bakers yeast and E.coli [Pomerleau and Perrier,

1992,Charbonnier and Cheruy, 1994,Montesinos et al., 1995,V., 1996,Tatiraju et al.,

1998,Levisauskas et al., 1999,Perrier et al., 2000,Simon and Karim, 2002,Rocha et al.,

2008,Veloso et al., 2009].

The major assumption for all observer-based estimators is that the yield coef-

ficients in the model are known and static. For many models in literature, the origin

of the yield coefficients is not stated or the yield coefficients are derived from sim-

ilar previous experiments [Montesinos et al., 1995, Dowd et al., 1999, Perrier et al.,
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2000, Oliveira et al., 2002, Jenzsch et al., 2006a, Pinsach et al., 2006, Rocha et al.,

2006,Hocalar and Turker, 2010]. Controllers depend on the estimates to make deci-

sions, but the quality of the estimation is dependent directly on the validity of the

model [Montesinos et al., 1995]. Observer-based estimators are adaptive and can

handle some parameter drift and process-model-mismatch, but any new organism or

strain would require new characterization experiments to be performed. In general,

observer-based estimators are not used in experiments involving induction. Induc-

tion produces a severe metabolic burden on the cells and drastically changes the

yield coefficients, making the estimator inaccurate [Akesson et al., 1999a,Babaeipour

et al., 2007]. There were two papers which did use these estimators on induced cul-

tures but in one the model coefficients came from post-induction experiments [Mon-

tesinos et al., 1995]and in the other the authors noted the organisms metabolism only

slightly changed with induction [Pinsach et al., 2006]. Overall, the implementation of

observer-based estimators would require months of characterization experiments to

find yield and model coefficents. This type of method would only be appropriate for a

known culture operating in a narrow set of conditions and would not be appropriate

for use with an unknown culture in which the cells change behavior.

Several groups have used neural networks (NN) to control cell cultures [Psi-

chogios and Ungar, 1992,Keulers, 1993, Levisauskas et al., 1999, Simon and Karim,

2002,Karakuzu et al., 2006,Jenzsch et al., 2006a,Kiran and Jana, 2009]. Neural net-

works try to establish complex relationships between the designated inputs-outputs

of a culture by analyzing training data and assigning weights between these relation-

ships. Just like observer-based estimators, NNs are used to determine the relation-

ships between on-line sensors like OUR and biomass concentration or growth rate.

In [Jenzsch et al., 2006a], the authors explore a variety of estimation techniques for

biomass estimation such as polynomial regression, auto-associative artificial neural
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networks (ANNs), and principle component analysis. They concluded that ANNs

worked the best in estimating biomass from OUR, CPR, BASE, and DO. In [Simon

and Karim, 2002], NNs are used to predict the amount of dead cells in the culture

in order that they would be minimized using a model predictive controller. In [Kiran

and Jana, 2009], they used NNs to estimate the specific growth rate combined with

a model predictive controller to keep the yeast cells in a specific metabolic state.

In [Jenzsch et al., 2006b], an ANN is used to estimate total biomass and a feedback

controller was used to keep the biomass on a set profile. Neural networks are very

effective but they require dozens of experiments to train for one particular set of con-

ditions [Kiran and Jana, 2009]. Collecting this data could take months. Also, Neural

networks tend to exhibit poor performance when the process exhibits off-nominal

behavior. Like observer-based estimators, neural networks would not be helpful to

implement in a research environment which studies a broad range of cells and culture

conditions.

2.4.4 Control Methods

Bioreactor control literature contains a wide variety of experimentally val-

idated control methods. Most of these experiments were performed on benchtop

systems with vessel sizes from 2 L up to 10 L, while a few used much larger tanks,

200 L in [Voisard et al., 2002] and 16000 L in [Hocalar and Turker, 2010]. The level

of sophistication ranged from P, PI, and PID feedback algorithms to heuristic control

to model predictive control algorithms. The standard sensor configuration found in

most bioreactor control papers consisted of exhaust gas, DO, pH, temperature, and

weight sensors. The set of sensors available to the system made a large difference as

to the type of control that was implemented. For example, there were a small number
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of papers which used systems with very specialized on-line sensors for biomass [Cor-

net et al., 1993,Dabros et al., 2010] or for metabolite concentration [Karakuzu et al.,

2006,Hocalar and Turker, 2010]. About half of the papers used software sensors to

create estimators for their controllers.

The control methods described in the literature break into two main method-

ologies. The first set presented controllers which forced the culture to follow some

predetermined setpoint or profile. The second set presented controllers which achieved

a certain goal, such as maximizing biomass or minimizing waste.

2.4.4.1 Setpoint Controllers

Most bioreactor controls papers use a setpoint control approach, where the

culture was supposed to follow a predetermined growth rate or sensor profile. The

objective of these setpoint based controllers was to reject disturbances and keep the

process growing stably. In [Rocha et al., 2008], DO and off-gas sensors were used

to estimate the biomass concentration used by an optimal controller to maintain a

set growth rate. In [Schaepe et al., 2011], the temperature profile of a well behaved

culture was used as a reference, and a reference tracking controller using only temper-

ature sensors varied the feed rate to achieve a similar temperature profile. In [Aehle

et al., 2011b], a similar approach was used but the controller was tracking an oxygen

consumption profile. Similar schemes have been used by other research groups [Vois-

ard et al., 2002,Jenzsch et al., 2006b]. The controller presented in [Aehle et al., 2012]

maintained a growth rate setpoint by refitting the the growth model at different points

throughout the experiment and then used the new model for future control decisions.

In most papers, growth rates are controlled within conservative ranges. In

[Pico-Marco and Pico, 2003], the growth rate was kept at 0.05 h−1 for yeast and

in [Pinsach et al., 2006] to 0.09 and 0.16 h−1 for E.coli . In [Dabros et al., 2010],
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baker’s yeast was held at a growth rate of 0.15 h−1 when it’s known maximum ox-

idative growth rate was 0.24 h−1. Selecting conservative growth rates maintains the

culture far from overflow metabolism and minimizes waste accumulation; however,

culture times are extended, which might be harmful to recombinant protein products

(1996Swartz) [Hocalar and Turker, 2010]. Conservative growth rates reflect the nar-

row set of conditions used to derive the models driving the controllers [Perrier et al.,

2000,Pinsach et al., 2006,Rocha et al., 2008,Aehle et al., 2011b]. Consistent behavior

is important for the accuracy of observer-based and neural network estimators. Only

one paper attempted setpoint control before and after induction, however the organ-

ism choice was fairly unique and the induction did not cause a significant metabolic

burden [Pinsach et al., 2006]. The metabolic burden due to induction has been shown

to reduce the growth rate by fifty percent [Akesson et al., 1999a] to ninety percent

in [Babaeipour et al., 2007]. There are several drawbacks to setpoint or profile con-

trollers: 1) the models require extensive characterization 2) conservative growth rate

setpoints require long fermentation times to reach high biomass levels 3) the control

algorithms are not amiable to changes in metabolism during the culture [Simon and

Karim, 2002,Levisauskas et al., 1999].

2.4.4.2 Adaptive Controllers

Adaptive controllers modify the feed rate based on changes in the culture

metabolism rather than force the culture to maintain an arbitrary growth rate. By

monitoring metabolism, adaptive controllers can drive the culture to fast growth with

low waste accumulation without requiring the researcher to spend time upfront char-

acterizing the culture around different operating ranges. In [Cornet et al., 1993], the

authors used an online sensor to detect waste concentration and adjust the feed rate

to keep the growth rate on the boundary between oxidative and overflow metabolism;
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ensuring high growth rate and the minimal waste. A similar method was followed

in [Hocalar and Turker, 2010]. In [Levisauskas et al., 1999], the authors used pre-

vious experiments to train an ANN and an evolutionary programming technique to

generate an optimal feed rate profile. In [Voisard et al., 2002], the authors derived an

optimal heat profile which the controller followed using calorimeters. In [Simon and

Karim, 2002], the authors used a neural network to estimate the number of apoptotic

(dead) cells in the culture of CHO cells making proteins and minimized them with

an MPC.

Some maximizing controllers were non-model based and did not assume a

model structure for the culture when adjusting the feed rate. Feed rate control deci-

sions were based on a heuristic set of rules based on the outcome of discrete inputs

to the system [Akesson et al., 1999a,Akesson et al., 1999b,Akesson and Hagander,

2000, Johnston et al., 2002,Mare et al., 2005]. When a feed rate pulse was admin-

istered to the system, the DO probe was monitored. If the oxygen level dropped,

the feed rate was increased according to the magnitude of the change using a PID

controller. If the oxygen level remained steady, the culture was in overflow, oxidative

metabolism was already maximized, and the feed rate was decreased. These model-

free controllers were able to control different strains of E.coli cultures before and

after induction achieving maximum bioreactor productivity [Akesson et al., 2001].

Model-free adaptive controllers have many advantages 1)there are no characteriza-

tion experiments to perform 2) the algorithms work on a wide range of different

organisms 3) they can handle different metabolic shifts during culture. Model-free

adaptive controllers present the best solution for keeping cultures near the boundary

of oxidative and overflow metabolism (BOOM). These controllers minimize proto-

col development time and maximize the protein production by maximizing biomass

through fast growth [Babaeipour et al., 2007].
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2.5 Industrial Controls

As stated by the PAT Initiative, the sophistication of controllers in industry

is low. This section will review two popular bioreactor control methods: Exponential

feed rate and DO/pH stat control.

2.5.1 Exponential Feed Rate Control

In the bipharmaceutical industry, predetermined feed rate control methods

are widely used for fed-batch cultures. The substrate feed rate is set prior to the

culture beginning. The feed rate (F) could be constant, exponential, or a series of

discrete additions at pre-determined times, evenly or unevenly spaced [Riesenberg

et al., 1990]. Exponential fed-batch strategies keep the culture at a growth rate high

enough to reach high cell densities quickly but sufficiently low enough to avoid overflow

metabolism [Korz et al., 1995]. In exponential feed rate control, the set growth rate

(µset) determines the substrate flow rate (F). The feed rate formula shown here is

from [Durany et al., 2005]:

F = µsetX0V0

SfYX/Sap

exp(µsett)

where X0 and V0 are the inital biomass and volumes, µset is the desired growth rate,

Sf is the feed glucose concentration, and YX/Sap is the subtrate to biomass yield co-

efficient. Based on the behavior of the dissolved oxygen, base flow rate, or off-line

biomass or substrate, the health of the culture can be assessed. Additionally, re-

sponses to substrate change can be monitored, if overflow metabolism was suspected,

the substrate feed can be cutoff, and the DO monitored. If it does not change, then

the culture was in overflow, and the substrate is left off until the DO begins to change.
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These intervening actions are common for setpoint control, especially following any

type of culture stress such as recombinant protein induction, suspected prophage

caused by cell lysis, or temperature changes.

2.5.2 DO/pH stat Control

DO/pH stat controllers are also used industrially for E.coli fermentations.

This feed rate method is characterized by conservative culture growth [Chen et al.,

1997]. The DO/pH stat control algorithm works by administering feed pulses based

on thresholds for the dissolved oxygen and pH probes. If the DO goes above the DO

threshold, the feed pulse turns on. When the DO goes below the DO threshold, the

feed pulse turns off. The algorithm works the same for the pH threshold. The height

of the feed rate pulse is set high and increases as the volume increases. The feed rate

pulse is set high enough to provide enough glucose even when the culture reaches

high cell densities. The DO/pH stat controller also has a custom dissolved oxygen

controller. Rather than using a setpoint PID controller to maintain the DO level,

the DO/pH stat DO controller stays constant unless the DO goes below a second

lower DO threshold. When the DO gets too low, the DO/pH stat DO controller

will increase the stir speed by a set percentage. The DO is only controlled to ensure

that some minimum DO level is maintained, else the stir speed is constant, ensuring

the OTR is also constant. By having a constant OTR, the DO/pH stat algorithm

uses the higher DO threshold for the glucose pulse to ensure the OUR stays at some

minimum level. The pH is controlled by base addition, but if the pH rises above some

threshold because the culture have consumed all acidic byproducts in the media, then

the glucose pulse is activated.
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Chapter 3

Fermentation System Control &

Simulation

In this chapter, the Hardware-In-the-Loop (HIL) design of the fermentation

system used in this work will be discussed. In an HIL system, a complex real-time

system is simulated for the purpose of testing control algorithms. A system’s actuators

and sensors are simulated as well as the control inputs. The control algorithms are

then used to control the actual system. For this project, the growth rate model and

mass-balance model were chosen from [Xu et al., 1999]. The fermenter is a BioStat B

Digital Control Unit (DCU) (Sartorius Stedim, Bohemia, NY) with 5 L glass vessel.

The physical constraints and resolution of systems in the DCU are modeled. The

communication delays and behavior associated with the DCU, exhaust-gas, balances,

and mass flow sensors are also modeled.

This following sections describe the development and implementation of two

Matlab Simulink models, FermCtrl and FermSim. The FermSim model simulated the

Biostat B fermentation system and was used to develop and refine different control

algorithms. The FermCtrl model ran the different control algorithms and controlled
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the Biostat B fermentation system during live culture experiments.

3.1 The BioStat B Fermentation System

The BioStat B Fermentation system is composed of a Digital Control Unit

(DCU) housing 4 peristaltic pumps with power and data connections for a temperea-

ture probe (Sartorius), a dissolved oxygen (DO) probe (OXYFERM 325, Hamilton

(Reno, NV)), a pH probe (EASYFERM+ K8 325, Hamilton), and an electric motor,

see Figure 3.1. The DCU communicates over RS-485 with the MFCS-win command

software (Sartorius) running on a Windows computer. Using the Open Platform

Communcations (OPC) standard, commands and data are sent and received every 15

seconds. The dissolved oxygen and pH PID control algorithms running on the DCU

read the DO and pH probes every second. Implementing external PID controls using

MFCS or Matlab reduces read times to 15 seconds. The motor for stir speed has a

range of 0 to 1200 RPM. For E.coli experiments, the lower limit is set to 200 RPM

to ensure homogeneity of the liquid. The stir speed also affects the oxygen transfer

rate into the liquid. The stir motor is run by a PID controller which accepts setpoint

commands directly from an outside source or from a dissolved oxygen controller on

the DCU. The perstaltic pumps are separated into two groups. The bottom pair of

pumps are controlled by the pH control system, one for base addition the other for

acid addition. These pumps are not able to be commanded by any other means except

by the pH PID controller. The top two pumps can be individually commanded. The

pumps work on a six second duty cycle and commands are sent in terms of percent-

age, for example a 50% setpoint command would cause the pump to run for three out

of every six seconds. The minimum resolution for these pumps is 2% and any whole

or decimal command is rounded up or down to the nearest even number. All four
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Table 3.1: Biostat B Fermenatation System Sensor Specifications

Name Resolution Range Ts Comm τ

DO probe < 0.5% 10 ppb - 40 ppm 15s DCU 10s
pH probe < 0.1 pH pH 0-14 15s DCU
Temp probe 15s DCU
Balance 0.1 g 4000g 5s RS-232 1s
Mass Flow meter ± 3.0% FS 1 - 5 LPM 5s DAQ < 30s
Mass Flow controller ± 3.0% FS 1 - 10 LPM 5s DAQ < 30s
Exhaust-gas sensor ± 2.0% FS 0-50% O2 15s RS-485 55s

0-25% CO2 OPC

pumps can be calibrated and their volumes tracked using the calibration pump rate

(mL/min); the internal totalizer has a resolution of 0.05mL. In order to achieve fine

resolution on substrate feeding, two pumps were used with different tubing diameters,

Masterflex (Cole-Parmer (Vernon Hills, IL)) LS 12 (ID:0.01 mm Flow:0.133 mL/min,

Mas) and LS14 (ID:0.06 mm Flow:5.6 mL/min), respectively. An exhaust-gas sen-

sor (BlueInOne, BlueSens GmbH (Herten, Germany)), Mass flow sensors (FLR1006,

Omega Eng Inc (Stamford, CT)) and balances (Scout Pro , Ohaus (Parsippany, NJ))

were added to track inputs and outputs to the bioreactor. The exhaust-gas sensor

reports the relative humidity and percent composition of CO2 and O2 inside a 35 mL

measurement chamber. In addition, the exhaust-gas sensor outputs chamber pressure

and temperature. See Table 3.1 for details on the resolution, limits, sample times,

and time constants for the Biostat B fermentation system and sensors.

3.2 Fermentation Control (FermCtrl) Model

The FermCtrl model is a Simulink (Matlab 2012a, Mathworks Inc (Natick,

MA)) model that controls the Biostat B Fermentation system during a culture exper-

iment. The Biostat B DCU has a ‘Remote Mode’, which allows an external program
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Figure 3.1: Biostat B Fermentation system setup, including an exhaust-gas sensor,
balances for the glucose input and base input bottles, and standard sensor set.
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to recieve data and issue commands through MFCS-win using the OPC protocol. Us-

ing this ’Remote’ mode, all command and control of the Biostat B system was done

externally using Matlab and the OPC toolbox. The FermCtrl contains three distinct

sections. There is the MONITOR section which contains displays of all the different

values coming from the estimator and controller as well as the DCU and its sensor

values. The MONITOR section has areas to define the start of fed-batch phase, the

initial volume of the fermenter, and to specify the names of the mat files, which save

all data.

The CONTROL section of the model contains the blocks that control the

fermentation system. This includes the feed rate controller as well as DO controller.

A user may also specify gas mixture (GASMX) or pH setpoints in this section. The

output of the feed rate blocks go to the ’Fs pump discretization’ block located at

the end of this section. The inputs into the ’Fs pump discretization’ block are the

two calibration values in mL/min for the L/S 14 and L/S 12 tubing based on a two

minute flow rate test. The calibration value for the larger tubing is updated every

experiment while the smaller tubing calibration is left static. It was measured once

using a 10 minute flow rate test. The L/S 12 tubing is replaced every experiment.

The COMMAND section of FermCtrl contains all the OPC, User Datagram

Protocol (UDP), and serial communcations blocks. The exhaust-gas sensor and the

BioStat B DCU communicate with Matlab over OPC. The OPC Read blocks connect

to the MFCS-win OPC servers and read the data from the DCU every 15 seconds. The

OPC Write blocks send commands to the DCU for the stir speed, GASMX, pH, and

substrate pumps. The balances send data over the COMM ports using RS-232 every

5 seconds. The mass flow sensors send data via UDP protocol after their voltages

are read by the Analog IN ports on a Quanser Q4 DAQ card (Quanser (Markham,

Ontario)). A mass flow controller (Omega FMA-A2409) accepts commands over
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UDP and outputs the data over the Quanser’s Analog OUT ports. The UDP data

is updated every 5 seconds. All the relevant data, such as sensor, setpoint, signal,

and command values are sent through rate transistion delays and recorded with the

’To File’ block in the MONITOR section. The rate transistion delays are set to 15

seconds, which is the slowest sample time in the model, to ensure that all data is

properly synced.

3.3 Fermentation Simulation (FermSim) Model

To test control algorithm theory and tunings, the COMMAND section of the

FermCtrl model can be replaced with a simulation of the sensors, vessel specific char-

acteristics, and the Xu culture model. The mass flow, balance, and exhaust-gas

sensors are modeled by adding white noise in accordance with each instruments reso-

lution and error specifications. An embedded simulink model acts as the fermentation

system model. It is designed to represent the culture in the vessel and the opera-

tion of the DCU. It takes in the same inputs as the DCU, i.e. substrate commands

and stir speed commands, and returns simulated outputs, such as DO percentage,

exhuast-gas data, volume measurements for base and substrate, balance data, and

mass flow data. In addition to simulating actual values, the embedded model re-

turns actual state values such as biomass, acetate, and OUR. The Xu growth rate

and mass-balance models were simulated and the performance verified by comparing

the simulation outputs to the simulation results presented in [Xu et al., 1999]. The

MONITOR section of the FermSim model still records the sim outputs into a mat

file. Therefore, it is possible to use the same scripts to examine both simulation data

and experiment data.
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Chapter 4

On-line Oxygen Uptake Rate

Estimator

Oxygen uptake rate (OUR) is an essential signal for tracking E.coli metabolism.

An estimate of the oxygen transfer coefficient can be used to calculate OUR. The out-

put from this estimator could be used by a control algorithm to estimate metabolic

state of an E.coli culture. This chapter will give a brief overview of bioreactor oxy-

gen transfer dynamics. The development of this estimator will be presented. This

OUR estimate was completed in large part by a Masters student, Li Wang, and has

been published [Pepper et al., 2013,Wang et al., 2014]. This work was rederived and

different gains used for this work.

4.1 Oxygen Transfer in a Bioreactor System

Oxygen transfer is essential to the successful growth of any aerobic organism.

The oxygen concentration dynamics are among the fastest in a bioreactor. Oxygen

is most often provided to a bioreactor as air through a sparger, shown in Figure
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4.1. If high oxygen content is needed, a mixture of air and oxygen can be used.

The gas enters the bioreactor with an initial concentration, b0. The gas exits the

liquid with concentration b1. The bubbles leaving the liquid mix with the gas in the

headspace, which has concentration b2. After leaving the bioreactor, the exhaust gas

concentration is read either by a mass spectrometer or a dedicated off-gas sensor as

b3.

Off-gas sensor

Figure 4.1: In a bioreactor, b0, b1, b2, and b3 correspond to oxygen gas concentrations
entering the vessel, exiting the liquid, exiting the headspace, and read by an off-gas
sensor.

The dynamics for oxygen in the the culture inside a bioreactor

d

dt
C = OTR−OUR (4.1)

where C is the dissolved oxygen concentration, and OTR is the oxygen transfer rate

of the input air into the liquid. In order to calculate OUR, OTR must be calculated

OTR = Mf (b0 − b1)ρo2

V1
, (4.2)
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where Mf is the mass flow rate (L/min), ρo2 is the oxygen density at 37oC, 1 atm

(g/Loxygen), and V1 is the liquid volume of the culture. The b1 concentration is un-

known and cannot be directly measured. The DO probe only measures the concentra-

tion inside the liquid. The only sensor available to measure the oxygen concentration

after that point is the off-gas sensor b3. It is generally assumed that b3 is equivalent to

b1; however, analysis of the mixing dynamics in the headspace and the measurement

delays of the exhaust gas sensor show this to be false. The oxygen concentration

dynamics for the bioreactor are

d

dt
b2 = Mf

V2
(b1 − b2) (4.3)

d

dt
b3 = 1

τ2
(b2 − b3) (4.4)

where the mixing in the headspace, b2, is a filtered version of b1 with a time constant

τ1 = V2/Mf , and V2 is the headspace volume (L). The measurement delay of the

off-gas sensor then filters the b2 signal with time constant, τ2. Any OUR signal using

b3 in the OTR calculation (4.2) would be heavily filtered. The response of this OUR

signal would not be suitable for feedback control.

The OTR can be physically modeled as

OTR = kLa (C∗ − C) (4.5)

where kLa is the oxygen transfer coefficient and represents the rate of diffusion of

oxygen into the liquid, and C∗ represents the saturation concentration. The diffusion

of oxygen into the liquid occurs across the liquid-gas interface of the sparged air

bubbles. Increasing the stir speed increases kLa. kLa is affected by numerous culture

parameters, such as viscosity, pressure, temperature, and salinity [Dorresteijn et al.,
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1994], some of which change during the course of a fermentation. The dependence of

kLa on stir speed is modeled as

kLa = α0 + α1 (N −N0) (4.6)

with α0 and α1 representing fitted parameters and N0 is a constant. Several sources

indicate that as the biomass grows, the coefficients of kLa change [Akesson et al.,

1997,Simon and Karim, 2001,Schaepe et al., 2011]. One of the most obvious changes

to the culture over time is its viscosity. Assuming constant values of α0 and α1 and

using Equations 4.1, 4.5, and 4.6 to estimate OUR would not be accurate over an

entire fermentation.

The input signal to Equation 4.4, b1, can be defined in terms of known variables

using Equations 4.2, 4.5, and 4.6

b1 = b0 −
V1(C∗ − C)
Mfρo2

α0 −
V1(C∗ − C)(N −N0)

Mfρo2

α1 (4.7)

In state space form with x̄ = [b2 b3]T , the oxygen concentration dynamics from (4.4)

and (4.4) are

˙̄x =

−
Mf

V2
0

1
τ2

− 1
τ2

 x̄ +


Mf

V2

0

 b1 (4.8)

After substituting in the value of b1 found in Equation 4.7, Equation 4.8 becomes

˙̄x = Āx̄ + B̄ū, (4.9)

y = C̄x̄
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where,

x̄ =

b2

b3

 , Ā =

−
Mf

V2
0

1
τ2

− 1
τ2

 , B̄ =

α0 α1 b0

0 0 0

 , C̄ = [0 1],

ū =


−V1(C∗−C)

V2ρo2

−V1(C∗−C)(N−N0)
V2ρo2

Mf

V2



An accurate b1 signal now only depends on the variation of α0 and α1 to be small. An

adaptive observer algorithm is used to estimate unknown parameters in the system

or input matrix [Kudva and Narendra, 1973]. The main requirement for convergence

is that input signals into the system be persistently exciting, i.e. rich in frequency

content. To formulate the observer, Equation 4.9 converted to observable canonical

form. The transfer function of (4.9) is

Ḡ(s) = C̄(sI − Ā)−1B̄ = 1
s2 + (Mf

V2
+ 1

τ2
)s+ Mf

V2τ2

[
α0 α1 b0

] 1
τ2

(4.10)

The observable canonical realization of transfer function (4.10) is

ẋ = Ax +Bu, (4.11)

y = Cx, (4.12)

x =

b3

b̄2

 , A =

−
Mf

V2
− 1

τ2
1

− Mf

V2τ2
0

 , B =

 0 0 0

α0 α1 b0

 , C = [1 0], u =


u0

u1

u2


1
τ2
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where the output of the system y is the off-gas sensor measurement b3, the input u to

the system is a vector of functions of the DO level and stir speed signals, as defined

in (4.9). The state b̄2 is a linear combination of b2 and b3.

Table 4.1: Parameters values for the kLa estimator

Parameter Value
τ2 55 s
Γ 0.5
Λ 50e−3

d1 1
d2 1/30

4.2 Adaptive kLa Estimator

The estimator equation is

˙̂x = Ax̂ + b̂(t)u+ w + r, (4.13)

ŷ = Cx̂, (4.14)

where x̂ is the estimate of [b3 b̄2], and b̂ is the unknown parameter estimates for the

input function u. For adaptive estimator stability, two feedback signals, w and r, are

added. w and r must tend to 0 as t→∞. The full system is shown below

˙̂x = Ax̂ +

 0

α̂0

 u1

τ2
+

 0

α̂1

 u2

τ2
+

 0

b0

 u3

τ2
+ w + r, (4.15)

ŷ = Cx̂, (4.16)

u1 = −V1(C∗ − C)
V2ρo2

, u2 = −V1(C∗ − C)(N −N0)
V2ρo2

, u3 = Mf

V2
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The auxiliary terms w and r are defined as

w = −e1

 0

vTΓA2v

 (4.17)

r = −e1

 0

qTΛA2q

 (4.18)

A2 =

0 d2

0 d1

 (4.19)

in terms of signals v and q, where v and q are constructed by passing u1 and u2

through two filters

v = G1(s)u1(t) (4.20)

q = G2(s)u2(t) (4.21)

G1(s) = s

d1s+ d2
(4.22)

G2(s) = 1
d1s+ d2

(4.23)

The estimated kLa parameters, α̂0 and α̂1, are updated according to

˙̂α0 = −Γe1v (4.24)

˙̂α1 = −Λe1q (4.25)

The estimated kLa parameters are used to generate

ˆOTR = (α̂0 + α̂1(N −N0))(C∗ − C) (4.26)

ˆOUR = ˆOTR− Ċ (4.27)
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Chapter 5

Controller

5.1 Algorithm Development

The goal for this work was to design a controller that was based on non-specific

organism knowledge. The control algorithm would keep an E.coli culture growing on

the boundary of oxidative and overflow metabolism (BOOM) using a minimum of

prior knowledge of the strain. This type of controller is needed in industry and

particularly in research laboratories. Research laboratories use a wide variety of cell

types, ranging from E.coli to yeasts to mammalian cells. A large knowledge base is

necessary to correctly run different protocols required by each organism and strain.

When a new strain needs to be grown, researchers have to rely on previous knowledge

as a starting point for developing a new protocol. This process can be slow and labor

intensive. Automatic culture control is one of the benefits of this proposed algorithm.

The BOOM controller would automatically change the feed rate to maximize the

oxidative metabolism, requiring less resources to monitor and manually adjust or

override setpoint feed rates. The BOOM controller will be able to handle off-nominal

situations such as shifts in metabolism due to expected and unexpected events.

41



Keeping the culture near the BOOM region will result in fast growth rate and

low waste accumulation of E.coli cultures from batch through fed-batch phases. The

BOOM controller is also capable of adjusting to the metbolic burden of recombinant

Protein production during induction. In order to develop the BOOM controller,

first the relationships between oxygen uptake and acetate production due to the

Crabtree effect , i.e. overflow metabolism, had to be sensed. By pulsing glucose, it

is theoretically possible to see if a culture is being underfed or overfed based on the

DO response and exhaust-gas levels. In practice, a pulsing controller using only the

DO probe works well in small volume tanks but is less stable in larger volume (>50L)

tanks [Velut et al., 2007].

In this study, a controller uses a real-time OUR estimate to sense the boundary

between oxidative and overflow metabolism using a series of periodic ramps in the

feed rate. During each ramp event, the OUR is recorded and used to set the feed

rate afterward. Throughout the experiment, the algorithm adjusts the ramp event

height and length to account for the exponential growth of the biomass. The full

designation for this controller is BOOM-OUR because it uses the OUR estimate, but

it will referred to as the BOOM controller for simplification.

5.1.1 Boundary of Oxidative and Overflow Metabolism

Akesson demonstrated that maximizing oxidative metabolism and keeping a

culture in the BOOM region depended on decoding the metabolic information hidden

in the oxygen sensor data. Identifying overflow metabolism depends on an accurate

assessment of the saturation of the TCA cycle and the oxidative phosphorylation

reaction. In [Xu et al., 1999], the OUR during oxidative metabolism is modeled as:

OUR = qOS X (5.1)
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where qOS represents the substrate dependent oxygen flux (gO consumed per gX per

hour) into the cells, and is defined as:

qOs = qSox,enYO/S (5.2)

where YO/S is the oxygen-to-substrate yield coefficient and qSox,en the flux of substrate

oxidized through the TCA cycle. When the E.coli enters overflow metabolism, the

magnitude of the qSox,en is dictacted by the qOmax, which is the maximum oxidation

rate of the TCA cycle or maximum carbon flux through the TCA cycle. When

qOS = qOmax, the carbon from glucose is redirected into overflow metabolism.

If it was possible to obtain a real-time measurement of the biomass concentra-

tion, then maintaining the culture near the BOOM region would be trivial. The qOS

signal would be found from OUR/X and a controller would be designed to track and

maximize qOS at all times. Since real-time biomass measurements are not reliably

available, the value of qOS must be determined dynamically. Akesson applied this

method; by using short pulses the change in OUR could be assumed to be due to a

change in qOS and not in X. Akesson kept OTR constant and the change in OUR

was determined from the change in the dissolved oxygen level, C:

d

dt
C = OTR−OUR (5.3)

.

As shown in [Velut et al., 2007], in larger volume tanks (>50L) the homogeneity

of oxygen cannot be assumed and different placements of the DO probe result in

different responses to feed rate pulses. These different responses require that the PID

feed rate controller using the DO pulse reponses be readjusted significantly depending
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on probe location. Also, dissolved oxygen PID controllers are not as stable in larger

volumes and are more sensitive to tuning errors. A stable DO environment is essential

to an algorithm based solely on the DO probe. Velut stated that integrating the OUR

calculation into the algorithm could increase stability [Velut et al., 2007]. Prior to

the development of the OUR estimator, which eliminated OUR measurement latency,

the OUR response from a glucose pulse using the exhaust-gas sensor would have been

too filtered to use in a real-time feedback controller.

In the BOOM controller, the OUR is used directly to track qOS. If a culture

in oxidative metabolism is subjected to a quick change in feed rate, the glucose

concentration will rise, causing a change in qSox,en. The qOS responds by changing

as well, which is reflected in OUR:

d

dt
qSox,en ≈

d

dt
qOS ≈

d

dt
OUR (5.4)

When the culture enters overflow metabolism, the oxidative metabolism is maximized

(qOS = qOmax). As the culture crosses into overflow, the OUR, currently d
dt
OUR > 0,

suddenly stops changing, d
dt
OUR = 0, due to saturation of the TCA cycle. To track

the maximum oxidative metabolism, an accurate and fast OUR signal is required.

The OUR estimator was constructed to eliminate latency by removing the filtering

effects due to the head-space and the exhaust gas measurement delay.

The BOOM controller uses a sensitivity ratio, SR, to make control decisions.

The SR is composed of two signals kO and kF . The kO term represents the rate

of change of the OUR estimate, d
dt
OURest, normalized by OURest. The kS term
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represents the rate of change of the FS normalized by FS. The equations are:

d

dt
OURest = kO OURest (5.5)

d

dt
FS = kF FS (5.6)

kO =
d
dt
OURest

OURest

(5.7)

kF =
d
dt
FS
FS

(5.8)

SR = k0

kF
(5.9)

The SR got its name from its similarity to the Bode’ sensitivity test, in which the rate

of change of the output is compared to the rate of change of the input. When a ramp

event occurs, the SR value represents how quickly OUR is able to change in relation

to the feed rate. An SR value of 0.4 would mean the OUR is changing at 40% the

rate of the feed rate. In simulation and in practice, the SR proved to be a more stable

measurement than using d
dt
OUR to maintain the culture near the BOOM region. By

examining simulation data, the oxidative threshold (SRthresh=0.2) was identified as

a good lower bound for the minimum change in OUR during oxidative metabolism.

If the culture never crosses the oxidative threshold during a ramp event, then the

culture is in overflow metabolism.

5.1.2 Algorithm Walk-through

The BOOM controller is activated at the end of the batch phase of the fer-

mentation. A ramp event will occur as often as dictated by the ramp frequency

parameter. Briefly, the algorithm checks to make sure a ramp isn’t already taking

place and starts a timer. The initial feed rate and current OUR values are captured,

Finit and OURinit respectively. For a set amount of time, the controller will increase
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the feed rate command by the initial slope, this value is multipled by a second term

named step, which is initially set to one. While the timer is running, the controller

is giving the system time to respond to the ramp and constantly monitoring rate of

change of the OUR of the culture through the SR variable. During the ramp, the

controller records the maximum OURest value and sets that value equal to OURmax.

The controller also checks to see if the SR reading has exceeded the oxidative thresh-

old If the threshold is breached, a ’goodRamp’ flag is set. The timer elapses when

the number of seconds is reached equal to ’OverflowCkTimer’. The controller checks

if the SR value is above the threshold. If the SR is below the threshold and the

’goodRamp’ flag is off, the controller decides the culture was in overflow. The feed

rate is changed according to the feed rate law,

Fnew = OURmax

OURinit

Finit (5.10)

and the ramp indicator is turned off. If the SR value is above the oxidative threshold,

then the ramp continues. During this extra time, the controller increases the ’step’

variable by some value ’stepDot’. Since ’slope’ and ’step’ are multiplied together, the

increase in ’step’ increases the overall ramp slope. The culture should enter overflow

more quickly and drive the SR value below the oxidative threshold, which will stop

the ramp. The feed rate will be set by the feed rate law (5.10). The controller resets

and waits for the next ramp time. Pseudocode for the controller can be found in the

Appendix in Section C.

5.1.2.1 OUR-driven Ramp Adaptation

Besides using the SR to detect the BOOM region, the controller also uses the

SR to dictate the steepness of the ramp slope. As stated above, if the SR ratio is
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above the oxidative threshold after ’OFckTimer’ seconds, then the controller begins to

increase the ’step’ variable by ’stepDot’, which was by the parameter ’deltaStep’. The

’step’ variable is initially set to 1, thus the initial ramp slope, defined as ’slope’ times

’step’, is just the ’slope’. As the ramp continues past ’OFckTimer’, the ramp slope

becomes steeper as ’step’ grows. When the SR detects that the culture has entered

overflow metabolism, SR < 0.2, the ramp is stopped. It is important that the value

of ’step’ is retained and the ramp slope for the next ramp event reflects the steeper

ramp slope. If the ’step’ value was reset to one, each ramp event would continue to

use the original ’slope’. Eventually the biomass would become large enough that the

amount of glucose administered during each ramp would not be enought to change

the OUR to detect the BOOM region. The SR would not be able to exceed the

oxidative threshold and the feed rate would stagnate. The slope adaptation allows

the ramp events to detect the BOOM region of an unknown amount of biomass. The

controller will operate successfully as long on the initial ’slope’ value is large enough

to perturb the OUR of the biomass at the end of batch phase.

5.1.2.2 Feed rate selection

Feed rate selection was originally set by capturing the current feed rate when-

ever SR would dip below the oxidative threshold during a ramp event. Examination

of experimental growth rate curves and acetate results (data not shown) revealed the

culture was still being overfed. The goal for the feed law in (5.10) was to choose a

feed rate which would immediately stop the rise in glucose concentration due to the

ramp event and prevent further growth of the overflow metabolism. The feed rate is

kept constant between ramp events to allow the culture to process the excess acetate

and come out of overflow metabolism, keeping the culture in the BOOM region. The

feed law was derived by reexamining the terms in the original Xu model.

47



Using the mass-balance model in Xu, the substrate dynamics at feed rate F0

and glucose concentration S0 would be:

d

dt
S = −qS(S0) X + F0

V
(SIN − S0) (5.11)

Before a ramp event, the feed rate is constant. Before the ramp starts, the rate of

change of glucose is negative, but is assumed to be approximately zero:

d

dt
S ≈ 0 = −qS(S0) X + F0

V
(SIN − S0) (5.12)

Equation 2.8 and 2.9 are repeated here as 5.13 and 5.14. Equation 5.13 shows

that the glucose flux has some maximum and (5.14) shows that qS is split up into

two terms:

qS =
(

qSmax
1 + A/Ki,S

)(
S

S +Ks

)
(5.13)

qS = qSox + qSof (5.14)

When not in overflow, qSof = 0. Using the assumption SIN � S0, (5.12) becomes:

qSox(S0) X = F0

V
SIN (5.15)

The oxidative glucose flux, qSox, seen in (2.10) is split into two parts:

qSox = qSox,an + qSox,en (5.16)

with the qSox,an representing glucose going toward anabolism or biomass creation and

qSox,en representing glucose going toward oxidation in the TCA cycle. From Xu in
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(2.17), the oxygen dynamics are:

qOS = qSox,enYO/S

qOS ≤
qOmax

(1 + A/Ki,O)

OUR = qOS X

(5.17)

Then using (5.16), its parameter values yield:

qSox,an ≈ 0.58 qSox

qSox,en ≈ 0.42 qSox
(5.18)

In (5.17)a, since YO/X ≈ 1, then the OUR at feed rate F0 and glucose concentration

S0 is:

OURS0 = 0.42 qSox(S0) X (5.19)

After the ramp, the feed rate is at some value F1, the culture is in overflow, and the

new substrate dynamics are:

Ṡ = −(qSox(S1) + qSof (S1)) X + F1

V
SIN (5.20)

The goal for the feed rate F2, is to select F2 < F1 which will appropriately set

Ṡ = 0, preventing qSof from growing and keeping qSox at the maximum for oxidative

metabolism.

Ṡ = 0 = −(qSox(S1) + qSof (S1)) X + F2

V
SIN (5.21)

As the ramp was running, qSox(S0) → qSox(S1) and qO → qOmax. With the culture
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in overflow, the OUR at the current substrate concentration, S1, using (5.19) is:

OURS1 = 0.42 qSox(S1) (5.22)

The amount which the oxidative metabolism (the TCA cycle) changed can be ap-

proximated by:
OURS1

OURS0

= 0.42 qSox(S1)
0.42 qSox(S0) (5.23)

qSox(S1) = OURS1

OURS0

qSox(S0) (5.24)

Substituting this result into (5.21) and rearranging yeilds:

Ṡ = 0, F2

V
SIN = (OURS1

OURS0

qSox(S0) + qSof (S1)) X (5.25)

Using the result from (5.15):

Ṡ = 0, F2

V
SIN = OURS1

OURS0

F0

V
SIN + qSof (S1) X (5.26)

Dropping the substrate flux due to overflow, qSof (S1),and solving for F2 forces Ṡ ≤ 0,

rearranged the equation becomes:

Ṡ ≤ 0, F2

V
SIN = OURS1

OURS0

F0

V
SIN (5.27)

Ṡ ≤ 0, F2 = OURS1

OURS0

F0 (5.28)

The new feed rate therefore should force the glucose concentration to immediately

start to decrease, minimizing qSof , and keeping the culture in the BOOM region. As
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described previously, the estimated OUR uses the exhaust-gas measurements to esti-

mate the kLa parameters and the DO probe for fast response. The adaptive controller

requires OUR estimates without time delays or filtering, which are possible due to

the OUR estimator, which addresses system latency and the inherently variability of

kLa.

5.2 Setting Controller Parameters

The FermSim model development and simulations were used to determined

starting values for the slope, deltaStep, and muGS:

1. slope - the initial slope used when the controller begins

2. deltaStep - the rate at which the controller is allowed to change the ’slope’

3. muGS - an exponential rate that continuously grows ’slope’ and ’deltaStep’

Table 5.1 lists the different values of ’slope’, ’deltaStep’, and ’muGs’ that were evalu-

ated using the BOOM controller and the FermSim model. Each simulation represents

a 24 hour fermentation, with the initial conditions set close to the actual experimental

conditions [Sharma et al., 2007]. The initial OD was 0.5 and batch phase ended around

5 hours. Each set of values was evaluated for overall ramp adaptation (Stepfinal), final

feed rate (Fsfinal), time to saturate the feed rate at 100% (tFsat), and final biomass

OD. The simulations in set A used a 15 minute ramp frequency for the BOOM con-

troller (BOOM15) and the culture grew according the Xu growth rate model, which

had a maximum growth rate of 0.5. The simulations in set B used BOOM15 and

an ’induced’ Xu growth rate model, in which the qOmax term was slowly decreased

to simulate the metabolic burden that recombinant protein production causes on the

growth rate. The ’induced’ growth rate decreased from 0.5 h−1 at 1 hour to below
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0.2 h−1after 24 hours. The simulations in set C used a 30 minute ramp frequency

(BOOM30) and the ’induced’ Xu growth rate model.

For the uninduced experiments, the BOOM controller was able to keep the

culture in the BOOM region and produce large amounts of biomass using a wide

range of values for ’slope’, ’deltaStep’, and ’muGS’. Analysis of these simulations

indicated that setting the ’slope’ value too high prevented proper ramp adaptation.

In simulations A7 and A8, the lack of ramp adaptation is seen in the Stepfinal value of

1, which indicated the initial slope was steep enough to drive the culture into overflow

in the first 3 minutes during every ramp event. The different values of ’muGS’ tested

in these simulations has less effect in these simulations because the maximum growth

rate of the culture was higher. The value of ’muGS’ did have some effect. In simulation

A1, the muGS was set very low, and the BOOM controller yielded low biomass. The

value was slightly increased in simulation A2 and the controller converged to the

BOOM region, yielding over twice the biomass of A1. The ’deltaStep’ variable is

the least sensitive parameter, but dictates how quickly the controller converges to

the BOOM region more than the other two. The ’deltaStep’ variable determines

the rate of increase for the ’step’ variable, which in turn increases the overall slope.

Increasing the slope of the ramp allows the controller to quickly accelerate the process

if the current growth rate and maximum growth rate are very different, such as right

after the batch phase. Therefore, a higher ’deltaStep’ value allows faster convergence

of the grow rate to the BOOM region, increasing the overall biomass. Simulations

A2 and A3, illustrate this effect, as the higher ’deltaStep’ value in A3 caused faster

convergence to the maximum oxidative metabolism and saturation of the feed rate 4

hours sooner than in A2.

For the induced simulations, the final biomass was more sensitive to the pa-

rameter values. Specifically, the ’slope’ or ’muGS’ variable slowed ramp adaptation
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and caused unstable growth when set too high. In simulations B4 and B5 (data not

shown), the ’slope’ value was low, but the ’muGS’ value was high. The ’muGS’ pre-

vented the adaptation of the ramp by passively increasing the slope at a rate close

to the maximum ’induced’ growth rate of the cells. In Figure 5.1, the results from

simulation B15 are shown. The ’slope’ selected was very aggressive, and ramp events

at hours 13, 15, and 16 caused massive acetate spikes in Figure 5.1D. The ramp events

were small enough that the culture processed the excess acetate and brought itself

back into the BOOM region. However, the large ’muGS’ value caused the ramp event

at hour 17 to generate so much acetate that the culture could not process it before

the next ramp event, and the culture failed due to acetate buildup. The ’muGS’

represents a continual exponential growth of the values of ’slope’ and ’deltaStep’. If

the the growth rate of the culture is descreasing as in these simulations, a large value

of ’muGS’ will cause the culture to go unstable. The ’muGS’ must be set far below

the theoretical max growth rate of the culture value. In B15, the ’muGS’ was 0.10

h−1 and the ’induced’ growth rate had dropped to 0.25 h−1 when the culture became

unstable. In Figure 5.2B, the SR threshold correctly identified overflow between the

hours of 13 and 16. The feed rate law (5.10) did not increase the feed rate while the

culture was in overflow in Figure 5.2D. The feed rate was increased accordingly when

the acetate was consumed, keeping the qO near qOmax and the culture in the BOOM

region, see Figure 5.2C. In simulation B16 (data not shown), the ’muGS’ variable

was set to half its B15 value; the BOOM controller did not generate excess acetate

and the culture achieved final biomass (ODfinal) numbers similar to the other well

performing simulations in B. In both B15 and B16, the ’slope’ variable was set too

high because the ramp never had to adapt (Stepfinal = 1).

In simulation B2, the effect of different values of the ’deltaStep’ variable were

examined. In B2, the slope, deltaStep, and muGS were set to low values. In this
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simulation, seen in Figure 5.3 and 5.4, the final biomass is lower than the other

simulations in B. The low value for ’deltaStep’ slowed the BOOM controller’s ability

to push the culture into the BOOM region and converge to the maximum growth rate.

The plot in Figure 5.4D indicates that the ramp events were able to keep the SR value

above the oxidative threshold long enough for the ’step’ variable to change, but the

small value of the ’deltaStep’ variable meant that the ’step’ could not change the ramp

slope very quickly. Smaller ramp events meant small changes in OUR and small ratios

of the OURmax/OURinit, resulting in small changes in feed rate, see Figure 5.4D. The

inability of the ramp event to increase the growth rate can be seen in Figure 5.4A.

Ideally, just one ramp event should be able to drive the growth rate to it’s maximum,

see Figure 5.2A. When there is a larger gap between the actual and maximum growth

rate, such as after batch phase, that may not be possible. The decreasing maximum

growth rate due to ’induction’ was the main reason the BOOM controller was able

to converge around hour 10, see Figure 5.4. A larger value of ’deltaStep’ allows the

ramp slope to grow steeper more quickly and drive the growth rate to its maximum

values. In simulations B6 through B9 in Table 5.1, the ’deltaStep’ value is gradually

increased, values of 60 and 100 yielded final biomass (ODfinal) results 13% higher

than B2.

The simulations in set C were conducted used the BOOM controller with a

half hour ramp frequency (BOOM30) instead of the quarter hour ramp frequency.

There was very little difference in the final biomass numbers using BOOM30 versus

BOOM15, see Table 5.1. BOOM30 was more sensitive to lower of values of ’deltaStep’.

With ramp events occuring less frequently, it is more important to adapt the ramp

slope quickly or the biomass could grow to large, as seen in B2. BOOM30 was more

tolerant of higher ’slope’ values than BOOM15, which is understable since a culture

controlled by BOOM30 has longer to process the acetate inbetween ramp events and
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prevent excess acetate buildup.

These simulations demonstrated the relationships between the three main tun-

ing variables for the ramp controller. The BOOM15 controller is preferrable to the

BOOM30 controller due to stability, faster ramp adjustment, and overall higher av-

erage growth rate. For the E.coli represented by the Xu model, the ’slope’ variable

should be set to a low value, between 0.1 to 0.3, any higher and it will impede the

ability of the ’deltaStep’ to adapt the ramp slope to the culture. The controller has

no way to decrease the ’slope’, and if the ’slope’ variable is too high, the stability can

be adversely effected. Based on the simulations, the deltaStep value can be set from

10 to 100 depending on the maximum growth rate. The exact value of the deltaStep

is much less important to overall stability, and setting it in the lower range will not

significantly impact the final biomass. The muGS should be 1/4 to 1/5th the esti-

mated maximum growth rate of the culture. muGS should be set conservatively if

the culture is induced and the induced growth rate is unknown.
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Table 5.1: Results of the simulated BOOM controller experiments

Sim slope deltaStep muGS Stepfinal Fsfinal tFssat ODfinal

A1 0.1 1 0.01 78
A2 0.1 1 0.05 5.1 19 177
A3 0.1 50 0.05 21 15.2 187
A4 0.1 100 0.05 26 15.2 187
A5 0.1 1 0.1 4.8 16.5 184
A6 0.9 30 0.1 2.5 14.5 187
A7 3 30 0.1 1 14.5 188
A8 5 50 0.1 1 14.3 188
B1 0.05 100 0.1 9 41 100
B2 0.1 1 0.05 2.45 56 112
B3 0.1 1 0.1 1.7 65 119
B4 0.1 1 0.2 1 76 127
B5 0.1 1 0.3 1 56 120
B6 0.1 10 0.05 4 63 118
B7 0.1 30 0.05 4.5 69 122
B8 0.1 60 0.05 5 75 125
B9 0.1 100 0.05 5.5 76 127
B10 0.1 100 0.1 5.8 75 126
B11 0.3 100 0.1 2.4 90 137
B12 0.5 10 0.05 1.14 87 135
B13 1 1 0.05 1 90 137
B14 0.9 30 0.1 1 91 138
B15 3 30 0.1 1 33 100
B16 3 30 0.05 1 84 137
C1 3 30 0.1 1 67 126
C2 0.1 1 0.05 2.2 34 95
C3 0.1 100 0.1 6 69 122
C4 0.9 30 0.1 1 72 125
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Figure 5.1: Profiles from simulated E.coli fermentation B15 using the BOOM15 con-
troller: A) Feed Rate B) Substrate C) Biomass D) Acetate and simulated overflow
indicator.
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Chapter 6

Materials & Methods

The E.coli cultured in the experiments in this study were MG1655 pTVP1GFP,

obtained from the American Type Culture Collection (ATCC). The plasmid pTVP1GFP

encodes the VP1 capsid of foot-and mouth disease [Liu et al., 2006] fused to green

fluorescent protein (GFP) [Garcia-Fruitos et al., 2007]. The E.coli MG1655 were

transformed with the pTVP1GFP plasmid. The plasmid including the pBR322 ori-

gin, lac I expression, ampicillin- resistance, and isopropyl β-D-1-thiogalactopyranoside

(IPTG) inducibility through a trc promoter.

E.coli MG1655 pTVP1GFP were cultured in a minimal medium described

previously [Korz et al., 1995]. Frozen stock (1 mL, stored at -80◦C) were thawed and

added to the minimal medium containing 100 mg/mL ampicillin (Sigma). Cells were

grown overnight in a shaker incubator (New Brunswick C24, Eppendorf AG, Ham-

burg, Germany) at 37◦CC and 250 rpm to approximately 2.5 OD. ODs were obtained

at 600nm with a spectrophotometer (Spectronic 20 Genesys, Thermo Scientific, Suwa-

nee, GA), where 1 OD is equivalent to 0.50 g dry cell weight per liter. Samples were

diluted with deionized water to obtain absorbance readings in the linear range (0– 0.5

OD). The overnight cultures were used to inoculate two experimental flasks, which
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contained 250 mL medium in a 1000mL shake flasks to obtain a final cell density of

2.5 OD. Before innoculating the bioreactor, a specific volume of the overnight cul-

ture (approximately 300 mL) was spun down at 8000g in a Beckman-Coulter Avanti

J-26XP ultra centrifuge using a JA-10 rotor. The cells were resuspended in 40 mL

of supernatent. The 1.5 L of minimal media in the bioreactor was innoculated and

the starting OD was approximately 0.5 OD. Induction was performed using 1.428 g

of IPTG suspended in 10 mL of deionized water, for a culture concentration of 4 mM

IPTG.

Hourly samples were drawn for off-line analysis. Optical density was measured

using the spectrophotometer. Acetate concentration was analyzed using a colorimetric

assay at 572 nm (EnzyChrom EOAC-100, BioAssay Systems, Hayward, CA). Samples

exceeding the acetate concentration range of 0.118 to 1.18 g/L were diluted and

reanalyzed. For protein analysis, each sample was analyzed using Bacterial Protein

Extraction Reagent (BPER) (Thermo Scientific, Rockford, IL) and measured by a

Tecan GeNiOS spectrophotometer (Tecan Group Ltd. Mannedorf, Switzerland). The

pTVP1GFP protein production was measured by the fluorescence signal using 485

nm excitation and 535 nm emission.

6.1 Controller Comparison Experiments

Three methods for fed-batch fermenation control were compared: Exponential

Feed Rate, DO-stat, and BOOM control. Each control method completed two fed-

batch fermentations of E.coli MG1655 pTVP1GFP, induced at 1 hour with 4mM

IPTG, and the results are shown for the first 13 hours. The total protein production

results of these experiments was compared.
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6.1.1 Exponential Feed Rate Control

In this study, the exponential feed rate control algorithm had the following

feed rate (F):
d

dt
F = µset F (6.1)

with a µset value of 0.3 h−1 and F0 value of approximately 0.003 L/h, which represents

1% of the coarse feed-pump capacity. After many different experiments, the authors

of [Sharma et al., 2007] chose this value of µset to achieve high biomass but prevent

overflow. Once the Exponential feed rate is started, no modification of the feed rate

was allowed. Dissolved oxygen for this experiment was controlled by the DO PID

controller on the DCU, which regulated the stir speed to maintain a setpoint of 40%.

6.1.2 DO-stat Control

The DO-stat control algorithm was derived from [Chen et al., 1997]. The

height of the feed rate pulse was set such that it can provide enough substrate even

at high cell densities; for these experiments, that value was approximately 0.058

L/h, which represents 17% of the coarse feed-pump capacity. The dissolved oxygen

threshold was chosen at 60%. If the DO probe signal rose above the threshold, the

substrate feed rate was activated. Once the signal fell below the threshold, the feed

rate was deactivated. The stir speed controller for this algorithm increased the current

stir speed by 2% when the DO went below 30%. The initial stir speed was 200 RPM.

6.1.3 BOOM15 Controller

The boundary of oxidative and overflow metabolism (BOOM) controller was

set to a 15 minute ramp frequency (BOOM15). The ’slope’ was set to 0.9%, the
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’deltaStep’ to 30%, and the ’muGS’ to 0.1 h−1. The BOOM15 controller used the

adaptive kLa estimator for OUR measurements and the gains on α0 and α1 were set

to 0.50 and 50e−6, respectively.
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Chapter 7

Results & Discussion

In order to validate the BOOM controller, duplicate E.coli fermentations were

conducted with the BOOM15 controller and two commonly used industrial controllers:

Exponential Feed and DO-stat. Figure 7.1A shows the biomass profiles for these

six fermentations. All six fermentations were started as batch cultures and lasted

approximately 5 hours. The cultures were induced with 4mM IPTG at 1 hour to

start the expression of the pTVP1GFP fusion protein. Due to the high innoculum of

0.5 OD, the E.coli processed the initial glucose in batch phase 4 to 7 hours sooner

than in previous experiments. The final biomass concentrations of 40 OD at 13 hours

were comparable to 17 to 20 hours in some papers [Akesson et al., 1997,Xu et al.,

1999,Sharma et al., 2007]. The BOOM15 and Exponental feed fermentations and the

DO-stat fermentations were run for a total of 15 and 17 hours, respectively. Due to

some lysing issues later on in some fermentations, only first 13 hours are shown for

all results.

An exponential model (X = X0 exp(µphase t)) was fit to the first 5 hours

of each experiment using SAS 9.3 (SAS Institute Inc.,Cary, NC) and the NLPROC

MIXED function. There was significant evidence to say that the exponential growth
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term, µphase, was not different for any of the experiments (p > 0.05). After 12 hours

of induction, the average final biomass for the BOOM15 and Exponential controller

fermentations were similar at 29 and 25 respectively, while the average final OD for

the DO-stat was 19 OD. The DO-stat had the lowest final biomass due to it having the

lowest growth rates, see Figure 7.1C. The growth rates for both DO-stat fermentations

were less than 0.2 h−1 after hour 10. Statistical analysis of the growth rate profiles of

DO-stat from hour 6 to hour 13 showed that the growth rates have a negative slope

(p ≤ 0.05). The analysis for growth trends was performed using JMP (SAS Institute)

and the Linear Fit for Bivarate Data. Using ANOVA, the growth rate was tested

against a null hypothesis of h0 : slope = 0. While the Exponential feed and BOOM15

fermentations had growth rates above 0.2; there was significant evidence to show that

the growth rates for the BOOM15 fermentations also had a negative slope (p ≤ 0.05).

There was sufficient evidence present to state that the Exponential feed growth rates

were constant, with a mean of [0.22, 0.235] for Exp 1 and 2, respectively. Neither

Exponential feed fermentation grew at the designated rate of the Exponential feed

controller (µset = 0.30 h−1). Therefore the fitted growth rates of 0.22 and 0.235 must

represent the maximum growth rate for this E.coli strain with 4mM induction. The

difference between the µset and actual growth rates indicates the Exponential feed

fermentations must be overfed.

Acetate production is considered a growth inhibitor and a strong inhibitor of

recombinant protein production. In Figure 7.1B, the acetate concentration profiles are

shown for all six fermentations. The apparently high growth rates of the Exponential

feed and BOOM15 controllers were very surprising given the extremely high acetate

concentrations. At hour 13, the Exponential feed fermentations 1 and 2 had acetate

concentrations are 8 and 18 g/L and growth rates of 0.24 and 0.21 h−1 respectively.

Combined with the BOOM15 data, acetate appears to begin to inhibit growth rate
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around 8 g/L. Other data (not shown) indicates that the acetate severely inhibits

growth rate for induced E.coli MG1655 pTVP1GFP above 25 g/L. The acetate levels

for the DO-stat fermentations did not rise as high as the other controllers, see Figure

7.1B. The initial rise in acetate was due to the ratio of the feed pulse to the biomass;

after hour 10 the culture demonstrated it was able to process all the glucose from the

pulse as well the extracellular acetate.

The recombinant protein expression measurements are shown in Figure 7.2.

As expected, the increase in protein expression during the batch phase was simi-

lar for all fermentations. The measurements show the expression of recombinant

protein increased in the cells at similar rates until eight hours. After eight hours,

the pTVP1GFP per cell level for all fermentations was not significantly different

(p > 0.05). Ultimately, what is important is the amount of recmobinant protein

produced. In this case the recombinant protein is a fusion protein pTVP1GFP that

fluoresces, so a single whole lysate assay was used to quantify the protein production

level per cell. Since all the BPER measurement profiles similar, an average profile

was created, see Figure 7.3A. In order to compare recombinant protein production,

the OD profiles are multipled by the average BPER profile and the total protein pro-

duction curves are shown in Figure 7.3B. The high levels of acetate did not appear to

affect the recombinant protein production in these fermentations. The average final

protein production after 12 hours of induction are shown in Figure 7.4; the BOOM15

fermentation protein production amount (428k) was 10% higher than the Exponential

feed (377k) and 50% higher than the DO-stat fermentations (281k).
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7.1 BOOM15 Controller Performance

The BOOM15 controller produced consistent growth rates as well as the highest

recombinant protein production at 13 hours. The most surprising result in these

fermentations was the acetate buildup. The fundamental assumption of the BOOM

algorithm was that the TCA cycle would be balanced with glycolysis thus OUR would

not be able to change. The feed rate law,

Fnew = OURmax

OURinit

Fold (7.1)

assumes that the OURest values would stay fairly constant if acetate was present

during a ramp event. This was not true for the induced E.coli MG1655 pTVP1GFP

strain. At 9 hours in the BOOM15 1 fermentation, Figure 7.5 B and D shows the SR

pushed over the oxidative threshold despite the presence of 4 g/L of acetate. The feed

law allowed the feed rate to increase 10% for the ramp events in hour 9. The rising

acetate concentration did eventually affect the OUR response to the ramp events.

By hour 10, the BOOM15 controller was unable to drive the SR above the oxidative

threshold. The controller correctly identified overflow metabolism; however, the feed

rate law still increased the feed rate because the OURmax/OURinit > 0. This response

was incorrect and similar behavior was seen in the BOOM15 2 fermentation. The feed

rate law needs to be modified to decrease the feed rate when the SR does not breach

the oxidative metabolism during a ramp event. This modification should help in

keeping acetate concentration in check, and would have been helpful in BOOM15 1 in

hours 7 and 10 - 13. Despite the high final acetate concentration for BOOM15 1 and 2,

the BOOM15 controller achieved fast growth, not allowing the acetate concentration

to rise to levels that significantly hindered growth rate or protein production.
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shown. The spike in the OURest at hour 12.5 was the result of antifoam addition and
did not affect BOOM15 performance.
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7.2 BOOM30 Controller Fermentation

The buildup of acetate in the BOOM15 1 and 2 did not inhibit the BOOM15

controller from achieving its goal of fast growth and maximum protein production.

However, if the BOOM15 fermentations had continued, the acetate may have reached

inhibitory concentrations. A separate fermentation was run in which the ramp fre-

quency of the BOOM controller from decreased from 15 minutes to 30 minutes

(BOOM30 ). The BOOM30 controller had slight changes to the Zig-zag DO control

range, from [40 70] to [33 70]. The BOOM30 controller also had a slightly different

the estimator gain for a1, which changed from [50e−3] to [100e−3]. The BOOM30

fermentation was conducted using the same methods as BOOM15 1 and 2. The E.coli

MG1655 pTVP1GFP strain induced was induced at 1 hour at 4mM IPTG and run

for 13 hours total. The BOOM30 controller was started at 5 hours after the batch

phase.

The biomass, growth rate, and acetate concentration of the BOOM30 fermen-

tation are compared to BOOM15 1 and 2 in Figure 7.6. The BOOM30 controller

achieved comparable biomass and growth rates to BOOM15 1 and 2, but had signifi-

cantly lower acetate concentrations, see Figure 7.6 C. The protein production profile

(not shown) was consistent with all other fermentations (p > 0.05). The total protein

production was similar to BOOM15 1 (455k vs 456k). The lower ramp frequency of

the BOOM30 controller prevented it from adapting as quickly to the end of batch

phase as BOOM15 . In Figure 7.6 B, the growth rate for BOOM30 was lower after

the batch phase but eventually rose by hour 10; the BOOM30 was not able to drive

the growth rate into the BOOM region as quickly as BOOM15 . The BOOM30 had

the lowest acetate concentrations of any induced fermentation, peaking in hour thir-

teen at only 1.2 g/L. The lower ramp frequency of BOOM30 was the major reason
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Figure 7.7: The off-gas measurements are compared for BOOM30 , BOOM15 1, and
BOOM15 2.

the acetate profile was much lower than BOOM15 1 and 2. In order to prevent ac-

etate buildup in a culture, the amount of time that S < Scrit in a culture must be

greater than the amount of time S > Scrit. The longer time betwen ramp events in

BOOM30 allowed the culture to consume excess acetate and maintain S < Scrit. The

effect of the lower acetate concentation had a direct effect on the OUR response in

BOOM30 versus BOOM15 , see Figure 7.7. The magnitude of the change in OUR

due to each ramp event is much more pronounced in BOOM30 . The ability of the

induced E.coli MG1655 pTVP1GFP strain to change OUR in the presence of acetate

caused the feed rate law to incorrectly raise the feed rate when BOOM15 1 and 2
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were in overflow. The shorter ramp frequency did not give the culture time to lower

S below Scrit and process all the acetate before the next ramp event occurred. In

Figure 7.8, the differences in the BOOM controller are examined for BOOM30 and

BOOM15 1. The BOOM30 controller was able to push SR above the oxidative thresh-

old and into the BOOM region more consistently than BOOM15 1. The difference

in SR response between BOOM30 and BOOM15 1 is due to differences in acetate

concentration. If the SR failed to breach the oxidative threshold, e.g in hours 7 and

11, the OURmax/OURinit ratio was small and the BOOM30 controller did not make

large adjustments in the feed rate. The largest adjustments in feed occured for both

controllers when the acetate was low. For BOOM30 , the larger adjustments in feed

at hours 8 and 10 were necessary to drive the growth rate into the BOOM region,

but did not result in a buildup of acetate. For BOOM15 , the controller made large

adjustments to drive up the growth rate after the end of batch phase. In the latter

half of the BOOM15 1 fermentation, the OURmax/OURinit ratio caused the BOOM15

controller to incorrectly increase the feed rate even when the SR ratio indicated the

culture was in overflow. Modifying the controller to hold or decrease the feed rate

when overflow is detected may have prevented the acetate buildup seen in BOOM15

1.

7.3 BOOM15,∆T Fermentation

In a separate fermentation, the BOOM15 controller was used to control an

uninduced E.coli MG1655 pTVP1GFP culture under varying temperature conditions.

Temperature can be changed quickly and can increase or decrease metabolism as it

rises and falls. Temperature is commonly used by researchers to slow metabolism

during induction allow for better protein expression. Varying temperature is good test
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Figure 7.8: The behavior of the BOOM30 and BOOM15 1 controllers are compared
by looking at the SR responses compared to the oxidative threshold at 0.2. The
OURmax/OURinit ratio used to make feed rate decisions is shown above the acetate
levels.
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of the responsiveness of the BOOM15 controller to quick changes in E.coli metabolism.

The fermentations with induced E.coli MG1655 pTVP1GFP were a test of gradual

growth suppression due to protein expression. In this fermentation, the metabolism

was changed rapidly by lowering temperature from 37◦C to 30◦C at the eighth hour.

The BOOM15 controller had to adapt the feed rate quickly to the new lower growth

rate. A set of shake flask experiments run at the same temperature levels established

baseline growthrates of µ37◦C = 0.61 h−1 and µ30◦C = 0.30 h−1. The fermentation was

prepared and run similarly to the induced E.coli MG1655 pTVP1GFP fermentations.

The biomass, growth rates, and acetate profiles are shown for the BOOM15,∆T

fermentation in Figure 7.9; the temperature profile is included as well. The fermen-

tation was at a temperature of 37◦C from the beginning of batch until hour 8. By

hour 8, the BOOM15 controller had driven the growth rate near to µ37◦C = 0.61 h−1,

which was the assumed maximum growth rate taken from the shake flask data, see

Figure 7.9 B. The bioreactor took 24 minutes to cool down the culture from 37◦C to

30◦C. The growth rate at hour 9 was 0.41 h−1, and the growth rate stayed near the

µ30◦C = 0.30 h−1 until hour 13. The BOOM15 controller quickly drove the culture

to the lower maximum growth rate of 0.30 h−1 at 30◦C without a significant rise

in the acetate. At hour 13, the temperature was lowered to 20◦C in an attempt to

maximize bioreactor OTR and lengthen the culture. The BOOM15 controller was un-

able to adapt to this temperature shift and the acetate rose to 10 g/L. The BOOM15

controller was more successful at minimizing acetate production in this fermentation

because the maximum growth rate was not being lowered by induction, see Figure

7.9 C. The metabolism of the E.coli at 30◦C and at 37◦C drove S < Scrit quickly

and processed the glucose and any acetate inbetween ramp events. Changing the

BOOM15 controller and allowing it to lower the feed rate when overflow was detected

might have prevented the acetate buildup at hour 13.
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7.4 BOOM Controller: Simulation & Experiment

Comparison

In this section the BOOM15 and BOOM30 controllers are evaluated in simula-

tion and their performance is discussed with relation to the actual fermentations. For

both BOOM15 and BOOM30 fermentations, the ’slope’ was 0.9, the ’stepRatio’ was 30,

and the ’muGS’ was 0.1. The BOOM15 fermentations are simulated and the profiles

shown in Figure 7.10 and 7.11. At 13 hours, the simulation biomass profile matches

the actual fermenation measurement, around 40 OD. In Figure 7.10 D, the acetate

concentration is kept low for the entire culture; this may indicate the simulated E.coli

W3110 have a higher maxmimum acetate consumption flux qAp,max or acetate yield

coefficient YA/X than the MG1655. With low acetate, the BOOM15 simulation is able

to drive the SR above the oxidative threshold with every ramp event, see Figure

7.11 B. The BOOM15 simulation and fermentantion controllers both converge to the

maximum growth rate quickly, around 7 hours. The BOOM30 simulation was also

well behaved, see Figure 7.12. In the simulation, the BOOM30 controller converged to

the maximum growth rate by hour 8. With the half the ramp frequency, the average

growth rate for BOOM30 was lower, yielding a slightly lower biomass than BOOM15

, 125 vs 138 OD. The BOOM30 controller had to take larger adjustments to the feed

rate with each ramp, see Figure 7.13 D. In Figure 7.11 D andFigure 7.13 D, neither

controller changed the ’step’ variable.

The BOOM30 and BOOM15 controllers do slightly adjust the step values in

the fermentations (Figure 7.14). The ’step’ variable was larger for BOOM30 , the

ramp slope needed to be steeper to compensate for the additional biomass growth

between each ramp event. The biomass difference was small between each ramp

event for BOOM15 . In the latter half of the BOOM15 1 fermentation, the gradual
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increase due to the ’muGS’ term was enough to drive the E.coli into overflow with

each ramp event. As seen in Table 5.1, the BOOM15 controller is more sensitive to

the ’slope’ variable than BOOM30 controller. When the ’slope’ variable is set too high

and the ramp frequency is also high, the BOOM controller cannot adapt the ’step’

value appropriately and possibility of pushing the culture into overflow metabolism

is greater. The BOOM30 controller performed well in its fermentation, adapted the

’step’ variable, and kept the acetate concentration low. The ’slope’ variable was set

too high for both fermentations and a recommended range of [0.2 to 0.5%] is more

appropriate. The ’muGS’ should also be lowered to 0.05 h−1 from 0.10 h−1 since the

final maximum growth rate for the 4mM induced E.coli MG1655 pTVP1GFP strain

was 0.20 to 0.25 h−1. Simulations have shown that allowing the feed rate to decrease

when overflow metabolism is detected would allow the BOOM15 controller to be less

sensitive to the ’slope’ variable and keep the acetate concentration low.

7.5 Algorithm Improvements

Examining the simulation and fermentation data, the ’slope’ value for the

BOOM controller should be lowered from 0.9% to [0.2 to 0.5%]. In all experiments

and simulations, the SR threshold of 0.2 appears to be fairly accurate in indicating

overflow metabolism. The reduced ramp frequency of the BOOM15 controller pushes

the culture into the BOOM region more quickly and adjusts to metabolism changes

faster than the BOOM30 controller. The E.coli MG1655 pTVP1GFP may have a

small YA/X coefficient and consume acetate too slowly for the quarter hour ramp

frequency. Another improvement to the algorithm logic would be to allow a negative

control input if overflow is detected. The feed law could be set either to Fnew = 0

or Fnew = m Fold where 0.9 ≤ m < 1.0. This change would allow the high ramp
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Figure 7.10: The BOOM15 controller was simulated using the ’slope’, ’step’, and
’muGS’ parameters used in the fermentations. The A) Feed rate, B) Substrate, C)
Biomass, and D) Acetate profiles for this simulation correspond with B14 in Table
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profiles are shown for a simulated BOOM15 controller. This controller used the ’slope’,
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profiles are shown for a simulated BOOM30 controller. This controller used the ’slope’,
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Figure 7.14: The step variable is compared for the BOOM15 1 and BOOM30 fermen-
tations.
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frequency to be kept, thereby improved responsiveness to changes in cell behavior,

while allowing the controller to keep lower the feed rate. Less glucose will drive down

S and lengthen the amount of time that S < Scrit between ramp events, reducing

acetate buildup.

7.6 Estimator Performance

The performance of the adaptive kLa estimator and it’s ability to provide real-

time OUR estimates was crucial for correct performance of the BOOM controller. In

Figure 7.15, the fast response of the OUR estimate and filtered response of the OUR

based on the off-gas are shown. In the ramp event at 12.5 hours, the change in slope of

the OUR estimate signal is clearly seen, indicating overflow metabolism. The BOOM

controller would not be able to detect any change in the OUR during the small ramp

time frame using only the exhaust-gas sensor.

The OUR estimator exhibited drift in the latter half of all fermentation exper-

iments. In Figure 7.16, the OURest begins to diverge from the OUR profile based on

the off-gas sensor. This behavior needs to studied to ensure that the estimated off-

gas measurement is correctly tracking the actual off-gas measurement after 12 hours.

Incorrect OUR estimates could lead to overfeeding by BOOM controller.

7.6.0.1 Antifoam addition

The OUR estimate demonstrated its ability to track quick changes in culture

kLa. After hour 13 in the Exponential feed 1 fermentation, the cells began to lyse and

antifoam was added, see Figure 7.16. The purpose of antifoam is to weaken surface

tension which inhibits bubble formation, temporarily lowering kLa, and shrinking

OTR. The effect is strong at first, but weakens as the solution is homogenized
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into the culture, see Figure 7.17 A. By shrinking OTR, the DCU dissolved oxygen

controller had to increase the stir speed to attempt to maintain the 40% DO setpoint,

see Figure 7.17 B. The OURest signal uses the off-gas sensor, DO probe (C), stir speed

(N), and mass flow to create an estimate for kLa by estimating parameters a0 and

a1. The sudden increase in stir speed caused the kLa estimate and OUR estimate to

increase in accordance with their definitions inside the estimator, seen in Equation

7.2 and 7.4.

ˆkLa = â0 + â1(N −N0) (7.2)

ˆOTR = ˆkLa(C∗ − C) (7.3)

OURest = ˆOTR− Ċ (7.4)

The estimator used the lack of change in the exhaust gas measurement (Figure 7.16,

OURoff−gas) to conclude that the kLa parameters needed to be adjusted. In Figure

7.18, the estimator quickly dropped the α0 and α1 values and brought the kLa es-

timate to a slightly lower value than before the antifoam addition. The lower kLa

estimate yielded a lower OTR estimate (1% loss in value) which was correct since

antifoam lowers OTR. The frequency content present in stir speed and DO signals,

as controlled by the PID DO control onboard the DCU, appears to be rich enough

for fast adaptation of the estimator.
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Figure 7.17: The reaction of the DCU dissolved oxygen controller to the antifoam
addition at hour 13 is captured in profiles of the A) dissolved oxygen and B) stir
speed profiles. The C) estimated kLa profile is also shown.

92



0 2 4 6 8 10 12 14
1

3

5

7

9

x 10
−3

 

 

Exponential feed 1, α
0

0 2 4 6 8 10 12 14
0

1

2

3

4

5
x 10

−4

 

 

Exponential feed 1, α
1

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

Time (hours)

k
L
a
, 
(1

/h
)

 

 

Exponential feed 1, k
L
a

Figure 7.18: The profiles for the estimated a0 and a1 parameters and kLa are shown
for Exponential feed 1.

93



Chapter 8

Conclusions and Future Work

8.1 Conclusions

A controller was presented that could drive E.coli culture to the boundary

of oxidative and overflow metabolism (BOOM). By keeping the growth rate in the

BOOM region, the fermentations yielded high levels of biomass and recombinant

protein while keeping acetate below inhibitory levels. The BOOM controller did not

require the E.coli to be characterized or need a model of the metabolic changes that

could occur during the fermentation. The BOOM controller was based on a basic

understanding of the E.coli metabolism and the relationships between oxygen and

glucose in the three different metabolic phases. The BOOM controller made control

decisions using a real-time OUR estimator driven by the DO probe and off-gas sensor.

The OUR estimator eliminated any latency in OUR measurement due to headspace

mixing or sensor delay.

A small-scale bench-top bioreactor was used to test the effectiveness of this

controller. The bioreactor system and sensors were characterized and a simulated

system was created to test controller performance. The BOOM control algorithm
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relied on a series of periodic ramp events to sense the metabolic state of the culture.

A sensitivity ratio, SR, was formed based on the OUR estimates and the feed rate.

The BOOM controller monitored the SR and OUR estimates during a ramp event

and changed the feed rate to drive the culture into the BOOM region. The controller

adapted the height and duration of the ramps events based on the response of the

culture. The feed rate was kept constant between ramps events to allow the culture

to come out of overflow metabolism, process acetate, and stay in the BOOM region.

The BOOM controller has four main parameters for adjusting its performance: ramp

frequency, slope, deltaStep, and muGS. In general, a higher ramp frequency allows

the BOOM controller to adjust more quickly to changes in metabolism; two ramp

frequencies were tested: 15 minutes and 30 minutes. The ’slope’ and ’muGS’ require

a minimum of prior knowledge about the organisms substrate uptake and maximum

growth rate. Good values for ’slope’ were determined to be between [0.1 0.5] and

0.05 for ’muGS’. Setting these parameters conservatively ensures the algorithm will

be able to properly adjust the ramp height during a fermentation. The ’deltaStep’

parameter determines how quickly the algorithm can adjust the ramp height and

drive the culture into the BOOM region, it can be set anywhere between [10 70].

The performance of the BOOM controller was examined in fermentations

with both fast (temperature) and slow (induction) metabolism changes. The E.coli

MG1655 pTVP1GFP strain was induced with 4mM IPTG after 1 hour and run for

13 hours total. The BOOM controller was compared to an Exponential feed and

DO-stat controller in terms of total amount of recombinant protein produced. The

Exponential feed rate controller was set at a growth rate found in literature to yield

high growth and low waste production. The DO-stat controller was adapted from

another paper. The BOOM15 controller produced 10% more protein than the Ex-

ponential feed controller and 50% more than the DO-stat controller. The BOOM15
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controller maintained fast growth and did not let the acetate reach inhibitory lev-

els. A second fermentation was run using the BOOM30 controller. The BOOM30

and BOOM15 controller produced exactly the same amount of protein. The BOOM30

controller maintained a lower acetate concentration than the BOOM15 fermentations

due to its lower ramp frequency. The BOOM15 controller also controlled a 13 hour

fermentation with uninduced E.coli MG1655 pTVP1GFP, in which the temperature

was dropped from 37◦C to 30◦C at hour 8. Growth rate targets were obtained using

shake flask experiments at the two temperatures. The BOOM15 controller drove the

culture growth rate to the µmax,37◦C value of 0.6 h−1 by hour 8. After the temperature

drop the BOOM15 controller correctly modified the feed rate to maintain the culture

slightly above the µmax,30◦C value of 0.3 h−1 without allowing acetate buildup.

The BOOM controller was able to to adapt to fast and slow metabolism

changes in an E.coli fermentation and consistently keep culture in the BOOM re-

gion, achieving fast growth and preventing acetate from inhibiting growth. The Ex-

ponential feed rate controller was set using knowledge gained from many previous

experiments. The BOOM controller was able to achieve better results requiring no

additional experimentation and only minimal-knowledge about the strain.

8.2 Future Work

The BOOM controller kept all E.coli in the BOOM region in all E.coli fer-

mentations. The only difference between the BOOM15 and BOOM30 performance

was acetate buildup. The induced E.coli MG1655 pTVP1GFP was able to change

the OUR during ramp events, which was unexpected. More literature needs to re-

viewed to understand this behavior. The BOOM controller is set up to change the

feed rate based on the difference in OUR readings at the beginnging and end of each
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ramp event. This setup led to slight overfeeding in the BOOM15 fermentations. The

SR ratio did correctly identify overflow metabolism. The BOOM controller needs to

be modified to decrease the feed rate when the SR ration fails to breach the oxida-

tive threshold during a ramp event. Simulations have shown that this modification

decreases acetate buildup even when the control parameters are set aggressively. The

BOOM parameters were set too high in the BOOM15 fermentations and should be

lowered in the future. The ramp event logic could also be modified to stop early if the

SR ratio rises then falls below the oxidative threshold within the set ramp period.

The feed rate law could be modified to use the OUR value when the SR peaks, rather

than the OURmax over the entire ramp event.

The Xu model growth rate, mass balance model, and simulated DCU inte-

grated in FermSim provided an accurate test bed for the BOOM controller. There

are many different types of microorganisms that exhibit the same type of metabolic

behavior as E.coli . Testing the BOOM controller again different microorganism

models in literature would provide further insight into its utility and robustness. If

the metabolism exhibits the Crabtree effect, the BOOM controller should be able to

control it.

The estimator performance needs to be examined closely to ensure the esti-

mated off-gas measurement is tracking the actual measurement. If the estimator is

performing correctly, the cause for the divergence of the OUR calculations for the

estimator and off-gas sensor needs to be found. Currently, the OUR estimator is not

used in fermentations where pure oxygen is added to the house air due to a unknown

error in the way OUR is being calculated. Using the OUR estimator for an entire 24

fermentation would allow for a more complete validation of the BOOM controller.

The FermCtrl model is setup to start the BOOM controller at a user specified

time for the end of batch phase. The DO signature for batch phase is prominent
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enough that it should be able to be automatically detected. The performance of the

estimator in adapting to the addition of antifoam indicates that the ZigZag DO algo-

rithm may not be needed and the simpler PID DO controller on the DCU is sufficient

to provide rich frequency content. The primary goal of the BOOM controller was to

automate the fermentation process and alleviate the need for manual adjustments if

the culture metabolism shifted. One area in which the FermCtrl model has no insight

is in the buildup of foam. Foam buildup leads to large amounts of the culture leaving

through the exhaust port. This event would be catastrophic for the off-gas sensor

and measures need to be taken to ensure a foam event would not go through off-gas

sensor. The FermCtrl model is running on a computer with battery backup, however,

there currently exists no quickly way to initialize the BOOM controller and estimator

states to a previous set of values should the model stop running.

Later fermentations exhibited sparger failure. Investigation was performed

into the cause and the sterile filter integrity was checked according to the manufacturer

protocol. A definitive root cause was not found but a sterile water trap was inserted

in the air path between the filter and the sparger which has prevented further failures.

The failures have not occured in fermentations without the off-gas sensor and the first

dozen fermentations with the off-gas sensor ran nominally.
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Appendix A Bioreactor Primer

This section was written to provide a background knowledge of bioreactors

and bioreactor protocol for students those not used to working in a fermentation lab.

A.1 Stirred-tank Bioreactors

Benchtop systems for culturing cells, such as stirred-tank bioreactors, are vi-

tally important to the biopharmaceautical industry for the research and development

of new products. This section will present the equipment used in benchtop culture

systems as well as the associated sensors and methods. The history and metabolism

of Escherichia coli are reviewed briefly.

There are two main types of benchtop culture systems. The first is the shake

flask, which consists of a flask filled with media and an innoculum of cells capped

by a stopper which allows gas flow. A shake flask is kept inside an incubator on a

plate that gently agitates back and forth. Stirred-tank bioreactors consist of a vessel

containing a stirrer, oxygen supply, and different probe sensors. Shake flasks are

widely used in research because setup is easy, complexity is low, and the results are

consistent; however, there is minimal sensing and cell density is limited by oxygen

transfer. The ability to achieve much higher density cell cultures gives stirred-tank

bioreactors a large advantage in terms of protein production.

This section will assume a generic set of sensors in its description of stirred-

tank bioreactors. This sensor set is consistent with the majority of literature and the

bioreactor used in this work. A stirred-tank bioreactor consists of three main parts:

a glass tank, a metal lid, and a control unit. The glass tank is usually double walled,

allowing for water to be circulated around the outside for temperature control. The

glass tank has a metal lid with gasket which forms a seal with the rim allowing for

100



the head pressure inside the bioreactor to be controlled. On top of the lid is a motor

which stirs the culture. The motor turns a rod with paddles which extends into the

culture. The paddle can have different designs based on the organism that is being

cultured. The purpose for the motorized stirrer is to constantly agitate the culture

and ensure homogeneity. The sparger is a hollow metal tube which extends from the

metal lid into the culture and ends near the bottom of the vessel in a ring containing

small holes. The input gas exits the holes in the ring in small bubbles. The paddle

works in conjunction with the sparger to break up the bubbles and diffuse the gas

throughout the liquid. Together, the sparger and the paddles are used to keep the

culture sufficiently oxygenated. Also in the lid are various ports for the insertion

of probes, such as dissolved oxygen, temperature, and pH. The digital control unit

(DCU) for a bioreactor monitors the various sensors in the culture and varies the

inputs into the culture, namely the substrate feed rate, the base addition rate, the

stir speed, and the flow of water through the water jacket. The DCU can be remotely

commmanded if desired, in which case, additional sensors can be employed to monitor

the culture.

A.2 Sensors

The purpose of sensors in a stirred-tank bioreactor is to monitor the bioprocess

and to keep the culture stable and growing. Shake flasks typically are not used

with any sensors; however, there are many types of sensors used with stirred-tank

bioreactors, see Figure 1. The sensors for monitoring the state of a culture growing

in a stirred-tank bioreactor are divided into two types: online and offline sensors.
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A.2.1 On-line Sensors

Online sensors are typically in direct contact with the culture culture and

provide almost immediate measurements of different properties of the culture, such

as dissolved oxygen concentration, pH, and temperature, see Figure 1. Probes for pH

are typically made of glass and contain two electrodes, The anode is kept at a certain

reference voltage and the cathode flucuates with the H+ concentration in the solution.

The potential difference between the two indicates the pH of the system. A dissolved

oxygen probe works in a similar fashion. An electrolyte solution covers the anode and

cathode inside the probe while also in contact with the outside solution through a gas

permeable membrane. The quantity of oxygen permeating the membrane determines

the magnitude of potential difference between the cathode and the anode. This

probe must be calibrated beforehand. One particularly useful sensor is the off-gas

sensor; this sensor measures the oxygen and/or carbon dioxide composition of the gas

leaving the top of the bioreactor. Off-gas sensors have only just recently transitioned

from being expensive units ($100,000) capable of monitoring multiple experiments to

cheaper single culture units ($6000) [Aehle et al., 2011a]. Another popular sensor

is a balance. A balance weighs the bottles containing the culture inputs such as

the substrate or base solution and provides increased accuracy when calculating the

amount of mass delivered to the system. Some very specialized online sensors can

measure cellular by-products such as acetate or ethanol directly, but implementation

of those is rare. Online biomass sensors are also available, but are prone to fouling

and rarely used.
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Figure 1: The bioreactor systen and standard sensor set are shown above. The system
includes additional online sensors, an Off-gas sensor and the balances for the glucose
input and base input bottles. The bioreactor vessel, DCU, and additional sensors
used for fermentations is shown below.
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A.2.2 Off-line Sensors

Offline sensors measure properties of a culture sample removed from a running

bioreactor experiment; unlike online measurements, offline measurements may take a

few minutes or a couple hours to calculate [Tatiraju et al., 1998]. The most popular

property to measure off-line is biomass concentration. This is done by measuring the

optical density (OD) of a culture sample with a spectrophotometer. The spectropho-

tometer measures the absorbance of the sample using a specific wavelength of light

(e.g. 600nm). As the density of the culture grows, the sample must be diluted for

accuracy. The procedure only takes a few minutes. The OD of a sample is propor-

tional to the biomass concentration in the culture. To establish the porportionality

constant, a more lengthy off-line measurement process is used to determine the dry

culture weight (DCW). To determine the DCW, the culture sample is spun down in

a centrifuge, the supernatent is poured out, and the wet cell pellet is weighed. This

pellet is dried in an oven or desiccator and then weighed again. The weight of the

dried sample is compared to weight of the wet sample and the ratio calculated, usually

0.5g DCW to 1 OD. The concentration of acetate can be read using a chemical assay

and an absorbance microplate reader. Enyzmes are added to a small volume of the

culture and that sample is then exposed to a particular wavelength of light by the

microplate reader. The strength of absorbance corresponds to the amount of acetate

in the sample. The measurement is compared to a set of controls to obtain the actual

concentration. The levels of the glucose, ammonia, lactate, and various other cell

by-products can be measured by instruments such as liquid/gas chromatographs or

biochemistry analyzers or chemical assays.
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Table 1: The available DCU control algorithms and corresponding culture variables.

Signal Name Sensor Control Input Controller Closed Loop
Dissolved Oxygen (DO) DO Probe Stir Speed PID x
Hydronium Level (pH) pH Probe Base Addition PID x
Temperature (T) Thermometer Water Bath PID x
Glucose Level (S) N/A Feed Pump Setpoint

A.2.3 Sensor Usage & Basic Bioreactor Control

A typical bioreactor setup will have on-line sensors for pH, DO, temperature,

and off-gas as well as off-line sensors for optical density and metabolite concentration.

The use of a balance is somewhat less common. On-line biomass or metabolite sensors

are very rare, not regarded as reliable, and thus rarely used in research or industry

[Johnston et al., 2002].

The online bioreactor sensors are usually connected to independent proportional-

integral-derivative (PID) controllers on the DCU, see Table 1. For example, the pH

probe indicates when the addition of a base solution is needed; the temperature probe

indicates when to circulate water from a water bath; the dissolved oxygen probe in-

dicates when increase or decrease the stir speed and when to change the composition

of the input gas. The substrate feed controller on the DCU is capable of changing

speeds based on a user-defined time-varying profile or of accepting commands from

an external source.

A.3 The Fed-batch protocol

The focus of this secton will be on the protocol for stirred-tank bioreactors

taken from a few papers in literature [Xu et al., 1999,Akesson et al., 2001,Voisard

et al., 2002,Pinsach et al., 2006]. The challenge of designing a fed-batch protocol will
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also be reviewed.

A frozen sample of bacteria is taken from a -80◦C freezer and grown to a certain

density in a shake flask in an incubator. After the cells have reached a desired density,

usually an OD of 0.4 to 1.0 [Voisard et al., 2002,Babaeipour et al., 2008], they are

harvested, spun down with a centrifuge, and resuspended in a much smaller volume.

The innoculum is then introduced into a bioreactor which has already been filled

with fresh media, heated to the proper temperature, and at the correct pH. There are

several different types of fermentation protocols: batch, fed-batch, and continuous.

In a batch culture, no additional glucose is added beyond what is initially present in

the growth media when it is innoculated with cells. After the cells grow and deplete

the surrounding glucose, the experiment is done. In a continuous culture, there is a

constant feed of fresh medium into the bioreactor and a certain volume of medium

and cells is removed in return to allow for more biomass growth.

Experiments focused on growing high density cell cultures use the fed-batch

culture protocol. A fed-batch culture has two phases: batch and fed-batch. The cul-

ture initially operates in batch mode, in which the cells grow rapidly and consume the

surrounding glucose. The amount of glucose needed in the batch phase is dependent

on the researcher to know the substrate-to-biomass coefficient of the cell, YX/S. The

YX/S represents how many grams of biomass are produced per gram of substrate. This

value is different for each strain. Adding the correct amount of glucose will ensure

the culture will reach some specific biomass density (OD). The cells need to reach a

certain minimium density in order for the bioreactor to be able to control the growth.

The feed rate for the fed-batch phase is usually set to follow some predetermined

time-varying profile using an equation like (1) found in [Durany et al., 2005]:

F = µsetX0V0

SfYX/S
exp(µset) (1)
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where µset represents the desired growth rate, X0 the initial biomass, V0 the initial

culture volume, Sf the input glucose concentration. Once again, the researcher must

know these different parameters for this strain in order to control it correctly. This

calculation assumes substrate-to-biomass yield coefficient stays constant for the entire

experiment.

The primary metabolism for the E.coli uses oxygen to process glucose and

create biomass. The sparger and paddle ensure the supply of oxygen into the culture

is greater than the culture requirements. With ample oxygen supply, the rate of the

E.coli metabolism is controlled by the external feed rate. The feed rate is the primary

control for the growth rate of the cells, and keeps them growing only as quickly as

substrate is avaliable; this is known as being substrate-limited. Cultures are controlled

in a substrate-limited fashion to prevent overflow metabolism and excess metabolite

production which can inhibit growth and/or protein production.

The DCU is uses its online sensors to control the environment variables of the

bioreactor. The pH is kept at a setpoint, usually 6.9 - 7.0, via the addition of a base.

The dissolved oxygen (DO) is kept constant by the stir speed and the composition

and flow of the input gas. The sparger is supplied with atmosphere, pure oxygen, or

a mixture of both. A typical flow rate is between 1 to 2 volume of air by volume of

liquid per minute (v.v.m) [Jobe et al., 2003,Durany et al., 2005]. In this work, the

mass flow rates were 3 liters per minute for 1.5L of media or 2 v.v.m . A fed-batch

experiment must end when the volume of the biomass, the added base, and the added

substrate have filled the tank; fed-batch experiments typically last no longer than 24

hours. The operator can also terminate the fed-batch culture if the oxygen uptake

rate (OUR) of the culture becomes too large. Careful attention must be paid to the

DO levels later in the culture as it is possible for the OUR of the cells to become

larger than the oxygen transfer rate (OTR) of the system, causing the DO to drop
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rapidly below acceptable levels, usually below 25%. Optional DO controllers can step

in and decrease the feed rate accordingly to stabilize the DO [Oliveira et al., 2005].

A.4 Protocol Development

Bioprocesses are very complex with thousands of reactions happening contin-

uously in the cells [Pomerleau and Perrier, 1990]. As the biopharmaceutical industry

continues to modify the genome of E.coli to increase its productivity or make new

products, current bioreactor protocols are modified to attain desired cell behavior.

Many variables can be changed in a fermentation protocol and these changes are

usually done incrementally in order to keep the culture stable. One of the most ba-

sic variables is definition of the cell growth medium. There are two main types of

growth medium, complex and defined [Akesson et al., 2001]. Complex media usually

contains extract from an animal, such as bovine growth serum, thus it’s chemical

composition is not exactly known. Defined media is composed of off-the-shelf growth

factors, antibiotics, fungicides, etc; it’s composition is exactly known and provides

the nutritional requirements for organism growth. Typically, defined media yields the

most consistent cell behavior.

The next variable to set is the feed rate. As previously mentioned, researchers

rely on previous experience and characterization of the strain to calculate how much

to feed a culture at any given time. However, these calculations are approximate at

best if the strain is not exactly that used in previous experiments. Different strains

of E.coli may behave differently with the same protocol. The differences stem from

slight differences in metabolism which affect the uptake rates of glucose and oxygen. A

conservative growth profile for one strain may send another into overflow metabolism.

The last major variable that can effect growth behavior is induction strength.
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Induction is the process by which a chemical is added to the culture and the E.coli

begins to transcibe a protein encoded by an inserted piece of foreign DNA. The frag-

ment of DNA is known as the plasmid. A plasmid contains a promotor, which is

the ’light switch’ for protein production. During a culture experiment, a chemical

known as an inducer is added, which activates the promotor, causing protein pro-

duction to begin [Harrison et al., 2003]. An example of a common inducing agent is

Isopropylthio-β-galactoside (IPTG). Induction strength refers to the molarity of the

inducing agent in the culture. Some strains require much less inducing agent, 100µM,

to grow stably and produce protein, while others require more, 1mM. By genetically

altering these organisms, changes have been introduced into their biochemical net-

work [Diaz et al., 1999] that can make their behavior unpredicatable. In [Durany

et al., 2005], they say that "depending on the fixed production system (recombinant

protein to be expressed, host strain and vector for recombinant production and oper-

ational mode), the metabolic burden associated to recombinant expression can affect

in a different manner culture growth, sometimes by drastically collapsing normal cell

metabolism and leading to quick culture growth interruption".

As previously mentioned, protocols are developed in order to tightly constrain

cells to a desired behavior. Finding the exact combination of culture variables that

yields the desired outcome is time consuming given the amount of variation that can

occur from only small changes [Durany et al., 2005]. In [Durany et al., 2005], they

present data from multiple experiments in which they analyze different inductions

times of a fed-batch experiment. Durany points out that this is work is connected to

a string of preceding papers in the which experiments were performed to find the best

media composition and the best induction strength [Durany et al., 2004]. Researchers

have to vary strains, culture media, and other conditions to find protocols that will

achieve desired behavior and stable growth. One of the main goals of a metabolic-
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state sensing controller is to deliver stable growth regardless of the unknown dynamics

imposed by a variable such as induction strength. The researcher can instead focus on

the other culture variables, hopefully minimizing the number of experiments necessary

to find an appropriate growth protocol.

Appendix B Fermentation Preparation

B.1 Solution Preparation

Some of the elements in the defined mimial media for the E.coli cannot be

autoclaved and thus it is prepared separately and is added the morning of the ex-

periment. The first set of elements are known as the batch additives and consist of

all elements needed in 1.5 L of mimimal media outside of water and the pH buffer,

these are glucose, magnesium sulfate, trace metals, and iron III citrate. In addition

to these, antifoam is also added as protein production can cause foaming in the re-

actor. The day of the experiment, the batch additives are added to the vessel before

the calibration of the DO probe. The next set of elements is the fed-batch additives

and these are added to 250 mL of 50% glucose solution used to feed the culture;

this consists of different concentrations of magnesium sulfate, trace metals, and iron

III citrate. This solution is known as the feed solution and is prepared in a sterile

1000mL bottle with a feeding tube cap. The last solution that is needed to culture

the E.coli is the 7% w/v (3.4M) Ammonia Hydroxide solution used as base addition

for pH control. This solution is placed in a 500mL bottle with feeding tube cap.

Both of these solutions are connected to the peristaltic pumps on the DCU

using #14 MasterFlex (R) Tygon tubing (Holland Applied Technologies, Chicago,

IL). This tubing has an average flow rate of 5.6 mL/min. Two sets of tubing are
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used for each solution. Each tubing is 150cm long and intended for three to four

uses. Each tubing is threaded into its respective pump, substrate and base, and

then dH2O is pumped through it for two minutes. The amount of water pumped is

measured using the balances and the mL/min value is input into the corresponding

’Calibration’ section on the DCU menu. The tubing for the vernier substrate pump

is #12 Masterflex tubing with an average flow rate of 0.133 mL/min. This tubing is

used in 100 cm lengths and a new section is prepared every experiment. The #12

tubing interfaces with normal luer lock hardware by being inserted into a section of

autoclaved #14 tubing.

B.2 System Preparation

This section will discuss the various systems including the Biostat B DCU, ves-

sel, probes, and sensors that need to be checked and readied for an E.coli experiment.

All experiments were performed using the BioStat B fermentation system, balances,

mass flow sensors, BlueSens off-gas sensor, and a computer running Matlab/Simulink

2012a. A more detailed checklist for the preparation of th reactor can be found in

the appendices.

B.2.1 Reactor

The glass vessel for Biostat B must be disinfected with bleach, scrubbed with

soap, and then rinsed thoroughly before each experiment. This typically happens

immediately following the previous experiment. If the stainless steel cage, stir shaft,

and paddles appear free of cell debris and the vessel had no appreciable odor, it is

assumed ready for preparation. The day before the experiment, Water and pH buffer

are added to the reactor in addition to the DO and pH probes. The headplate is
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tightened down and all ports are plugged. A set of four input lines is located on

the headplate for substrate, base, or antifoam. These lines are capped and wrapped

with blue cheesecloth and foil for the autoclave. One port is left open for emergency

pressure relief. The line to the sample port is also wrapped. The sparger input port

is clamped and the sterial filter line attached and wrapped. Lastly another sterile

filter is attached to the exhaust port line. All lines and hoses are coiled on top of the

headplate. The entire vessel is autoclaved using a liquid cycle which pressurizes the

autoclave chamber with 20 psi of steam and keeps the vessel at a temp of 121◦C for

45 minutes. The vessel is allowed to cool for 1.5 hours or to a temp of 65◦C before

water lines for the water jacket and exhaust cooling tower are connected. A water

bath supplies 12◦C water to the DCU for vessel temperature control. A previous

experiment showed the thermometers to be off by ≈ 1◦C, thus to achieve 37◦C,

the temperature controller on Purple is set to 35.9◦C and on Orange to 36◦C. The

temperature controller is activited the evening before to allow it to stabilize before

the experiment.

B.2.2 Sensor Calibration

There are a number of probes and sensors that are part of the bioreactor

system and must be recalibrated or at least checked every experiment. The pH probe

is connected to the DCU and two calibrating solutions at pH 4.0 and 7.0 are used

in conjunction with the temperature probe. Inserted the day before with the pH

probe, the DO probe is filled with 1.5mL of electrolyte solution and inserted into the

headplate. The DO probe must be connected to the DCU 2-4 hours before calibration

to allow the probe to polarize. The day of the experiment, with the bioreactor

heated to the correct temperature, N2 and dry house air are used to establish 0%

and 100% reference values for the DCU. The two-point calibration yields a slope
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which is recorded and compared to the nominal values (60-80 nA) to track probe

health. No calibration is performed on the Ohaus balances. The mass flow sensors

and controller need to be calibrated once every year or two and came with 3-point

calibration documents equating flow rate to voltage output. These calibrations were

input into ’Lookup Table’ blocks in Matlab. Additionally, the two mass flow sensors

were hooked up in serial and their ’Lookup Table’ blocks slightly modified to ensure

agreement between the two sensors. Relative accuracy is slightly more important that

overall accuracy. Finally, the exhaust-gas sensor is only calibrated as needed. When

the sensor is up to temperature and the bioreactor is fully pressurized and the flow

is ≈3.1 Lpm, it should read 0.2096 for O2 and 0.0034 for CO2. If the reading are off

by more than 1 thousandth, the BlueSens is recalibrated using the front two buttons

in a few minutes.

B.3 Software

For each experiment, a Matlab model controls the feed-rate and sometimes

the stir speed of the DCU. Before the experiment, the feed-rate and DO control

algorithms are developed using the FermSim model. Once the proper behavior is

achieved in simulation, them COMMAND portion of the FermSim model is replaced,

turning it into a FermCtrl model. The day before the experiment, the FermCtrl

model is run to test communication and stability of the model. All functionality is

checked before the experiment, especially off-gas sensor connectivity and mass flow

meter readings, which are checked to ensure they are around 3.1 LPM. During an

experiment, the Matlab model should run autonomously, starting after batch phase

(5 hours) and controlling the feed rates; no gains or other adjustments are made.
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Appendix C PseudoCode

This section contains the pseudocode for the BOOM control algorithm.

INPUTS:

time

batch end time

current feed rate command

current SR reading

step

OUTPUTS:

Fs - the feed rate assignment

Fdot - the rate of change for ’Fs’

stepDot - change in ’step’

Tuning Parameters:

frequency - desired ramp frequency, in hours

slope - initial slope defined as, desired pump change per minute

deltaStep - desired ’step’ change per minute

OverflowCkTimer - number of seconds allowed for culture to react

sensitivity - SR threshold for overflow determination

Fstart - initial pump value, used for starting the algorithm

muGS - a minimum growth rate that continually scales the ’slope’

1 ∗∗∗∗∗∗∗∗∗∗∗Algorithm Star t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 I f the time i s g r e a t e r than t_batch

3 s t a r t an i n i t i a l smal l f e ed ra t e with magnitude , Fstar t
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4

5 I f the time i s g r e a t e r than t_batch

6 s l ope equa l s a s l ow ly growing exponent i a l with rate , muGS

7 de l taStep equa l s a s l ow ly growing exponent i a l with rate , muGS

8

9 I f the time i s g r e a t e r than t_batch

10

11 % Star t Ramp

12 I f the time can be d iv ided evenly by the d e s i r e d ramping f r e q and a

ramp i s not in p rog r e s s

13 s e t the ’ rampStartTime ’ to the cur rent time

14 s e t the over f l ow i n d i c a t o r to o f f

15 capture the cur rent ’F_cmd’ and save i t to ’ F_init ’

16 s e t ramp length to 0

17 s e t the i n i t i a l OUR to the cur rent OUR

18 s e t the f i n a l OUR to the cur rent OUR

19

20 % Ramp Logic

21 i f the over f l ow i n d i c a t o r i s o f f and the ramp length i s 0

22 FDot_cmd equa l s the s l ope t imes the s tep

23 change the f e ed ra t e by the value FDot_cmd

24 turn on the ramp i n d i c a t o r v a r i a b l e

25 capture the max OUR

26 s e t OURf to the max OUR

27

28 % Good Ramp Test

29 i f the ramp i n d i c a t o r i s on and the SR i s g r e a t e r than s e n s i t i v i t y

30 s e t ’goodRamp ’ to on

31

32 % Overflow Test
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33 i f ’goodRamp ’ i s o f f and the rampIND i s on and ramp has been a c t i v e

f o r ’ OverflowCkTimer ’ seconds

34 s e t the over f l ow i n d i c a t o r to on

35 turn o f f the ramp i n d i c a t o r

36 s e t the ramp length to the ’ OverflowCkTimer ’ va lue

37 s e t the new feed ra t e to equal the r a t i o o f OURf/OURi t imes

the i n i t i a l f e ed ra t e

38

39 % I nc r ea s e Ramp Slope

40 i f the ramp i n d i c a t o r i s on and the ramp has been a c t i v e f o r l onge r

than ’ OverflowCkTimer ’

41 i n c r e a s e the value o f the ra t e o f change o f s tep from zero to

the de l taStep term

42 the s tep value w i l l begin to grow , which should change the

FDot_cmd value

43

44

45 % Stop Ramp event , c u l t u r e not in over f l ow

46 i f the SR i s l e s s than s e n s i t i v i t y and the goodRamp i n d i c a t o r i s on

and the ramp i n d i c a t o r i s on and at l e a s t OverflowCkTimer number

o f seconds has passed

47 turn the ramp i n d i c a t o r to zero ;

48 s e t the ramp length to the d i f f e r e n c e bewteen currentTime and

the rampStartTime

49 s e t the new feed ra t e to equal the r a t i o o f OURf/OURi t imes the

i n i t i a l f e ed ra t e

50 turn the good ramp i n d i c a t o r o f f
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Appendix D Acronyms

ANN - artificial neural networks

BAR - base addition rate

BOOM - boundary of oxidative and overflow metabolism

CER - carbon dioxide execretion rate

DCW - dry culture weight

DO - dissolved oxygen

DSD - DCU Serial Device

GUI - graphical user interface

GUR - glucose uptake rate

OBE - observer based estimator

OD - optical density

OTR - oxygen transfer rate

OUR - oxygen uptake rate

PID - proportional-integral-derivative

stb - stirred tank bioreactor

v.v.m - volume per volume per minute
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