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ABSTRACT 

 

 

There are special situations where specification limits on a process are 

implemented externally, and the product is typically reworked or scrapped if its 

performance does not fall in the range. As such, the actual distribution after inspection is 

truncated. Despite the practical importance of the role of a truncated distribution, there 

has been little work on the theoretical foundation of standardization, inference theory, 

and convolution. The objective of this research is three-fold. First, we derive a standard 

truncated normal distribution and develop its cumulative probability table by 

standardizing a truncated normal distribution as a set of guidelines for engineers and 

scientists. We believe that the proposed standard truncated normal distribution by 

standardizing a truncated normal distribution makes more sense than the traditionally-

known truncated standard normal distribution by truncating a standard normal 

distribution. Second, we develop the new one-sided and two-sided z-test and t-test 

procedures under such special situations, including their associated test statistics, 

confidence intervals, and P-values, using appropriate truncated statistics. We then 

provide the mathematical justifications that the Central Limit Theorem works quite well 

for a large sample size, given samples taken from a truncated normal distribution. The 

proposed hypothesis testing procedures have a wide range of application areas such as 

statistical process control, process capability analysis, design of experiments, life testing, 

and reliability engineering. Finally, the convolutions of the combinations of truncated 

normal and truncated skew normal random variables on double and triple truncations are 

developed. The proposed convolution framework has not been fully explored in the 
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literature despite practical importance in engineering areas. It is believed that the 

particular research task on convolution will help obtain a better understanding of 

integrated effects of multistage production processes, statistical tolerance analysis and 

gap analysis  in engineering design, ultimately leading to process and quality 

improvement. We also believe that overall the results from this entire research work may 

have the potential to impact a wide range of many other engineering and science 

problems. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

The purposes of this research are to reanalyze the theoretical foundations of a 

truncated normal distribution and to extend new findings to the body of knowledge.  

More specifically, we develop a new set of hypothesis testing procedures under a 

truncated normal distribution and derive the sum of a number of types of truncated 

normal random variables including truncated skew normal random variables based on 

convolution. To the best of our knowledge, these important questions have remained 

unanswered in the research community. In Section 1.1, different types of a truncated 

distribution are introduced with some examples. Based on the concepts of the truncated 

distribution, the sum of the truncated random variables is then discussed in Section 1.2. 

In Section 1.3, research significance and questions are posed and the dissertation 

structure follows in Section 1.4.  

1.1       A Truncated Distribution  

           When a distribution is truncated, the domain of the truncated random variable is 

restricted based on the truncation points of interest and thus the shape of the distribution 

changes. A truncated distribution was first introduced by Galton (1898) to analyze speeds 

of trotting horses for eliminating records which was less than a specific known time. 

Applications of a truncated distribution can be found in many settings. Khasawneh et al. 

(2004) illustrated examples in quality control. Final products are often subject to 

screening before being sent to the customer. The usual practice is that if a product’s 
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performance falls within certain tolerance limits, it is judged to be conforming and sent to 

the customer. If the product fails, it is rejected and thus scrapped or reworked. In this 

case, the distribution of the performance to the customer is truncated. Another example 

can be found in a multistage production process in which inspection is performed at each 

production stage. If only conforming items are passed on to the next stage, the 

distribution of performance of the conforming items is truncated. Accelerated life testing 

with samples censored is another example of applying a truncated distribution. In fact, 

the concept of a truncated distribution plays a significant role in analyzing a variety of 

production processes. 

In addition, Lai and Chew (2000) explained the role of a truncated distribution in 

the gauge repeatability and reproducibility to quantify measurement errors, and illustrated 

that the distributions of errors associated with measurement data collected from 

instruments are typically truncated. Field et al. (2004) studied truncated distributions 

associated with measured traffic from different locations in relation to high-performance 

Ethernet. They experimented with various truncated distributions which were divided 

into three types: left, right, and doubly truncated distributions. Parsa et al. (2009) studied 

a truncated distribution as the distribution of a noise factor which masks data in data 

security. 

Three types of a truncated distribution were studied in Parsa et al. (2009); 

however, this dissertation categorizes the truncated normal distribution into four different 

types, such as symmetric double, asymmetric double, left and right truncated 

distributions. Each type of a truncated normal distribution, where ( )Xf x  and ( )
TXf x  
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represent a normal distribution and its truncated normal distribution, respectively, is 

shown in Figure 1.1, where plots (a) and (b) show symmetric and asymmetric double 

truncations, respectively. Left and right truncated normal distributions are shown in plots 

(c) and (d), respectively. The shapes of a truncated distribution vary based on its 

truncation point(s) (
lx  or 

ux ), mean ( ), and variance ( 2 ).  It is noted that a truncated 

variance after implementing a truncation will be no longer be the same as the original 

variance associated with the untruncated normal distribution ( )Xf x . Similarly, unless 

symmetric double truncations are used, a truncated mean is not the same as the original 

mean of an untruncated normal distribution. 

    

(a)   (b)   (c) (d) 

 

Figure 1.1. Plots of four different types of a truncated normal distribution 

 

As discussed, the application of the truncated distribution can also be found in a 

multistage production process in which an inspection is performed at each production 

stage, as shown in Figure 1. Notice that the actual distribution, which moves on to each 

of the next stage, is a truncated distribution. 
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Stage 1  Stage 2  Stage 3    Stage m 

 

 

 

 

 
 

 

 

 

 

 

 
 

… 

 

 
 

Figure 1.2. Inspections in multistage production process 

1.2       Sum of Truncated Random Variables 

In this section, the distribution of a sum of the truncated random variables 

associated with convolution is briefly discussed. Convolution is a mathematical way 

combining two distributions to form a new distribution. Dominguez-Torres (2010) 

mentioned that the earliest convolution theorem, ( ) ( ) ,
b

a
f u g x u du  was introduced by 

Euler in the middle of the 18th century based on the theories of Taylor series and Beta 

function. Note that f  and g  are two real or complex valued functions of real variable 

   and x . In the truncated environment, Francis (1946) first used convolution to obtain a 

density function of a sum of the truncated random variables as follows: 

( ) ( ) ( ) ( ) ( )
T T T TZ Y X Y Xh z g y f x dx g z x f x dx

 

 
     where T TZ X Y   and TX  and TY  

are truncated random variables.  

It is our observation that convolution may give the closed form of a probability 

density function of the sum of truncated random variables, when the number of truncated 

random variables are up to three. Figure 1.2 illustrates the plots of the distribution of the 

sum of two truncated normal random variables. Plots (a) and (b) show the distributions of 

two independently, identically distributed symmetric doubly truncated normal random 
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variables, respectively. The distribution of the sum of the truncated normal random 

variables which is obtained by convolution is shown in plot (c). Note that its probability 

density function ( )Zf z  is different from the density of a traditional normal distribution. d 

 

 

 

 

 

 

(a)  (b)  (c) 

 

Figure 1.2. Plots of the sum of two truncated normal random variables 

 

Unfortunately, when the number of truncated random variables are four or larger, 

the closed form of density of the sum of the truncated random variables may not be 

acquired. However, we have proved that the sum of truncated random variables 

converges to a normal distribution, when the number of the truncated random variables 

are large enough. The accuracy of this approximation depends on the number of truncated 

random variables, truncation point(s), and mean and variance of an untruncated original 

distribution.   

1.3       Research Significance and Questions    

As mentioned in Section 1.1, truncated distributions have been used in many 

areas. In addition to the examples in manufacturing, reliability, quality and data security 

illustrated in Section 1.1, the application areas of the truncated distribution are also found 

in economics (Xu et al., 1994), electronics (Dixit and Phal, 2005), biology (Schork et al., 

1990), social and behavior science (Cao et al., 2014), physics (Baker, 2008) and  
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education (Hartley, 2010). Although truncated distributions were introduced more than 

one hundred years ago, there is still ample room for theoretical enhancement.  

In my dissertation, there are three research goals: (1) standardization of truncated 

normal random variables, (2) statistical inference on the mean for truncated samples, and 

(3) densities of the sum of truncated normal and truncated skew normal random variables.  

First, only a few papers have studied the underlying theory associated with the 

standardization of a truncated distribution. The currently-used traditional truncated 

standard normal distribution (TSND), derived from truncation of the standard normal 

distribution, has varying mean and variance, depending on the location of truncation 

points. As a result, its statistical analysis may not be done on a consistent basis. In order 

to lay out the theoretical foundation in a more consistent way, we develop the standard 

truncated normal distribution (STND) which has zero mean and unit variance, regardless 

of the location of the truncation points. We also develop its properties in this dissertation. 

In the first part of the dissertation, we answer the following two research questions:  

      Research question 1: Can we further develop the properties of the proposed standard   

                                         truncated normal distribution? 

      Research question 2: Can we develop the cumulative probability table of the  

                                         truncated normal distribution which might be useful for   

                                         practitioners? 

Second, statistical hypothesis testing is helpful for controlling and improving 

processes, products, and services. This most fundamental, yet powerful, continuous 

improvement tool has a wide range of applications in quality and reliability engineering. 
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Some application areas include statistical process control, process capability analysis, 

design of experiments, life testing, and reliability analysis. It is well known that most 

parametric hypothesis tests on a population mean, such as the z-test and t-test, require a 

random sample from the population under study. There are special situations in 

engineering, where the specification limits, such as the lower and upper specification 

limits, on the process are implemented externally, and the product is typically reworked 

or scrapped if the performance of a product does not fall in the range. As such, a random 

sample needs to be taken from a truncated distribution. However, there has been little 

work on the theoretical foundation of statistical hypothesis procedures under these special 

situations. In the second part of this research, we pose the following primary research 

questions: 

      Research question 3: Can we develop the new statistical inference theory within the  

                                         truncated normal environment when the sample size is large? 

           - Research question 3.1: Can we obtain the confidence intervals? 

           - Research question 3.2: Can we obtain the hypothesis testing? 

Finally, this research lays out the theoretical foundation of sum of truncated 

normal and skew normal random variables. Specifically, exploring two and three stage 

screening procedures can substantially reduce errors by understanding the mean and 

variance of process output. This can be better conceptualized with truncated normal 

random variables. This paper presents a mathematical framework that exemplifies 

modeling complex systems. Closed-form expressions of probability density functions are 

developed for the sums of truncated normal random variables when the number of 
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truncated random variables are two. This is unique in the fact that many types of 

convolutions of truncated normal random variables were explored. To the authors’ 

knowledge there is no known literature that explores anything other than the convolutions 

of the same types of singly and doubly truncated normal random variables. This paper 

adds convolutions of different types of singly and doubly truncated normal random 

variables, which include S-type, N-type and L-type quality characteristics that include 

both the symmetric and asymmetric types of normal distributions. A successful 

completion of the research work will result in a better understanding in gap analysis and 

tolerance design. Specially, these closed form probability density functions can readily be 

applied to manufacturing design on the assembly line for rectangular types of sums of 

truncated normal random variables. Other possible applications include applications in 

aerospace assembly and watch making for circle types of sums of truncated normal 

random variables.  Consequently, we pose the following primary research questions:  

      Research question 4: Can we develop the properties of the sums of two     

                                         truncated skew normal random variables by the convolution? 

      Research question 5: Can we develop the properties of the sums of three     

                                         truncated skew normal random variables by the convolution?    

The goal of the literature review was to support this thesis' effort to enhance the 

understanding of the cross-ambiguity function by integrating a wide range of mathematical 

concepts into an engineering framework. 
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1.4       Overview and Strategy for the Dissertation      

Figures 1.3 and 1.4 show the overall strategy and roadmap of the dissertation. 

Chapter 2 reviews the literature and support the validity of the research questions. In 

Chapter 3, we extend our research effort to achieve associated the properties of the 

standard truncated normal distribution which is different from the truncated standard 

normal distribution we normally see in the literature. We then develop the cumulative 

probability tables based on the proposed standard truncated normal distribution. Chaper 4 

develops statistical inference for hypothesis testing and confidence intervals in the 

trucated normal enviroment, when the sample size is large. In Chapers 5, twenty-one 

cases of convolutions of truncated normal and truncated skew normal random variables 

are highlighted. The cases presented here represent all the possible types of convolutions 

of double truncations (i.e., the sum of all the possible combinations, containing two 

truncated random variables, of normal and skew normal probability distributions). Fifty-

six cases of the convolutions of triple truncations (i.e., the sums of all the possible 

combinations, containing three truncated random variables, of normal and skew normal 

probability distributions) are then illustrated. Numerical examples illustrate the 

application of convolutions of truncated normal random variables and truncated skew 

normal random variables to highlight the improved accuracy of tolerance analysis and 

gap analysis techniques. 
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Figure 1.3. Strategy of the dissertation 
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Figure 1.4. Dissertation overview and roadmap 
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CHAPTER TWO 

LITERATURE REVIEW  

This chapter comprises three sections. Section 2.1 reviews discrete and 

continuous truncated distributions and several estimation methods such as maximum 

likelihood estimation and goodness-fit-tests in the truncated environment. Section 2.2 

discusses well-known properties of a truncated normal distribution and the 

standardization of a truncated normal random variable. Section 2.3 examines the Central 

Limit Theorem and the sum of random variables incorporating the convolution concept.  

2.1      Truncated Distributions, Samples and Estimations  

In this section, we review fifteen truncated distributions, examine truncated and 

censored samples, and investigate five estimation methods. In particular, twelve 

continuous and three discrete truncated distributions are studied in Section 2.1.1. We then 

discuss truncated and censored samples in Section 2.1.2. Five different estimation 

methods based on these samples are investigated in Section 2.1.3. 

2.1.1    Truncated Distributions 

Since Galton (1898) and Pearson and Lee (1908) introduced the basic concepts of 

left and right truncated distributions, several types of truncated distributions have been 

developed. For discrete distributions, David and Johnson (1952), and Moore (1954) 

implemented a truncated Poisson distribution to examine the number of accidents per 

worker. Finney (1949) and Sampford (1955) discussed the doubly truncated binomial and 

negative-binomial distributions with examples in biology with respect to the number of 

abnormals in sibships of specified size. 



13 

 

Truncated gamma, Pareto, exponential, Cauchy, t, F, normal, Weibull, skew and 

Beta distributions have also been studied by researchers. Chapman (1956) discussed a 

truncated gamma distribution with right truncation to analyze an animal migration 

pattern. A truncated Pareto distribution was considered to find the appropriate 

distribution due to the lack of the Pareto distribution, in which the whole range of income 

and tax is not rarely fitted over, in income-tax statistics by Bhattacharya (1963). 

Cosentino et al. (1977) investigated the frequency magnitude relationship to solve a 

problem concerning the statistical analysis of earthquakes with a truncated exponential 

distribution. A truncated Cauchy distribution was introduced to overcome the weakness 

of the Cauchy distribution by Nadarajah and Kotz (2006). Kotz and Nadarajah (2004) 

also introduced the truncated t and F distributions to inspect the moments and estimation 

procedures by the method of moments and the method of maximum likelihood. A 

truncated Weibull distribution was studied to solve the problem of nonexistence of the 

maximum likelihood estimators by Mittal and Dahiya (1989). Jamalizadeh et al. (2009) 

examined the cumulative density function and the moment generating function of a 

truncated skew normal distribution. Zaninetti (2013), recently, found that a left truncated 

beta distribution fits to the initial mass function for stars better than the lognormal 

distribution which has been commonly used in astrophysics.  

2.1.2    Truncated and Censured Samples 

Before Hald (1949) had the meaning of ‘censored’ in writing, truncated and 

censored samples had not been used without any separation. Hald (1949) used two papers 

(Fisher; 1931, Stevens; 1937) to explain truncated and censored samples. According to 
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the examples of the paper of Hald (1949), samples in the case in which all record is 

eliminated of observations below a given value are truncated samples. In this case, the 

observations make a random sample taken from a truncated distribution. Instead, samples 

in the case in which the frequency of observations below a given value is recorded but the 

individual values of these observations are not specified, are censored samples. The 

samples, in this case, are drawn from an untruncated distribution in which the obtainable 

information in a sense has been censored.   

For lifetime testing, most researchers have examined truncated distributions based 

on censored samples which are classified into types I and II. In type I samples, censoring 

points are known, whereas the number of censored samples is unknown. Thus, the size of 

the censored samples is the observed value of a random variable. In contrast, in type II 

samples, the size of the censored samples is known, whereas a censoring point is an 

unknown random variable.  

2.1.3    Estimations of Truncated and Censored Means  

 

We review the maximum likelihood estimation and moment generating estimation 

for truncated and censored samples in Section 2.1.3.1 and 2.1.3.2, respectively. Then, we 

discuss the goodness fit test followed by the inferences, including hypothesis testing for 

censored samples and their confidence intervals.  

2.1.3.1    Methods of Maximum Likelihood and Moments  

 For the estimation of the parameters of a truncated normal distribution, Cohen 

(1941, 1955, 1961), Cochran (1946), Gupta (1952), and Saw (1961) studied the method 

of moments with singly or doubly truncated normal distributions. Stevens (1937), Hald 
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(1949), and Halperin (1952) examined the method of maximum likelihood with singly or 

doubly truncated normal distributions. Accordingly, Shah and Jaiswal (1966) showed that 

the results from the likelihood estimators were similar to the results from the first four 

moments for a doubly truncated case. Later, Schneider (1986) and Cohen (1991) 

investigated the methods of maximum likelihood and moments for left and right 

truncated cases. However, Schneider (1986) and Cohen (1991) found that there were 

sampling errors for the odd number of moment estimators. They calculated that the 

sampling errors of the odd number of moment estimators were greater than those of 

relevant maximum likelihood estimators. Along the same line, Jawitz (2004) revealed the 

way to reduce the errors by using the order statistics. 

2.1.3.2 Goodness Fit Test 

In terms of goodness of fit tests for censored samples, Barr and Davidson (1973) 

developed the modified Kolmogorov–Smirnov test statistic, which is invariant under the 

probability integral transformation of the underlying data for types I and II censored 

samples. Pettitt and Stephens (1976) modified the Cramer–von Mises test statistics for 

singly censored samples, which may not depend on the specific form of the distribution, 

and developed tables of asymptotic percentage points. Mihalko and Moore (1980) 

showed that the vector of standardized cell probabilities is asymptotically normally 

distributed for type II singly or doubly censored samples based on the Chi-square test of 

fit. The Shapiro–Wilk test was applied to the normality test for censored samples by 

Verril and Johnson (1987). Monte Carlo simulation was then used to find the critical 

values such as the total number of samples, the number of censored samples, and the 
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significant level. Chernobai et al. (2006) compared the results of the goodness of fit test 

using the modified Anderson–Darling test statistic they developed from six different 

censored data sets.  

2.1.3.3 Confidence Interval 

Halperin (1952), Nadarajah (1978), Schneider (1986), and Schneider and 

Weissfeld (1986) studied the confidence intervals for the mean   of random variable X , 

which is normally distributed with mean   and variance 2 , both unknown, in type II 

censoring. Especially, Schneider (1986) studied the effect of symmetric and asymmetrical 

censoring on the probability of type I error for a t-test and on the confidence level of a 

confidence interval and concluded that the t-statistic is only reliable for symmetrical 

censoring. In addition, Schneider and Weissfeld (1986) analyzed that the confidence 

intervals are unreliable even for the sample size as large as 100 and then obtained more 

accurate confidence intervals by using bias correction methods for the computation of ̂  

and ̂  in small samples.  

For the confidence limits of   and 2  from types I and II censored samples, 

Dumonceaux (1969) developed the tables based on the maximum likelihood estimators 

by Monte Carlo simulation. Later, Schmee et al. (1985) found that the confidence limits 

are valid only for type II censored samples where the sample size is less than 20. Clarke 

(1998) investigated the confidence limits for type II censored samples under less than 10 

sample sizes among 500 samples using simulation. 
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2.1.3.4 Hypothesis Testing 

Aggarwal and Guttman (1959) examined a one-sided hypothesis testing for the 

truncated mean of a symmetric doubly truncated normal distribution (DTND) based on 

the small sample size, which is less than 4. They investigated the loss of power, which is 

the difference of power functions between a normal distribution and its truncated normal 

distribution and found that the loss of power decreases very rapidly with the distance of 

the alternative value of the mean from the test and also with the distance of the truncation 

from the mean.  

Later, Williams (1965) extended a one-sided hypothesis testing to asymmetric 

single or double truncations and arbitrary sample size. The author then discovered that 

the loss of power is very little when the sample size is greater than 10 and the true value 

of the mean is more than 0.5 standard deviations away from the hypothesized value 

specified in the null hypothesis. Tiku et al. (2000) derived the modified maximum 

likelihood estimators, which showed that they are highly efficient, and then developed 

hypothesis testing procedures for censored samples with the estimators. However, the 

testing procedures developed by Aggarwal and Guttman (1959), Williams (1965), and 

Tiku et al. (2000) focused on a hypothesis testing for censored samples from a normal 

distribution, rendering a limited applicability. 

2.2      A Truncated Normal Distribution  

Section 2.2.1 discusses the properties of a truncated normal distribution such as 

the probability density function, cumulative distribution function, mean and variance. 

The truncated standard normal distribution is then reviewed in Section 2.2.2.  
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2.2.1    Properties of a TND  

If a random variable X  is normally distributed with mean   and variance 2 , its 

well-known probability density function is defined as 

2
1

21
( ) exp

2

x

Xf x





 

 
  

   where 

x  . When the random variable  2~ ,X N    is transformed by  Z X   

, the random variable Z  follows a  0,1N  distribution, known as the standard normal 

distribution. The probability density function of Z  is written as 

21
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Zf z
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  

where x  .  

When the distribution of X  is truncated at the lower and/or upper truncation 

point(s), its truncated distribution is called a truncated normal distribution. There are four 

types of truncated normal distributions such as symmetric doubly truncated normal 

distribution (symmetric DTND), asymmetric doubly truncated normal distribution 

(asymmetric DTND), left truncated normal distribution (LTND), and right truncated 

normal distribution (RTND). LTND or RTND is often called a singly truncated normal 

distribution. Furthermore, a DTND can be symmetric or asymmetric, depending on the 

location of the lower and upper truncation points. 

When the distribution of X  is doubly truncated at the lower and upper truncation 

points, lx  and ux , the probability density function of the DTND is expressed as 

( )
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X
X x

X
x

f x
f x

f y dy



 where l ux x x   and its cumulative distribution function is written 
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as  
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 where l ux h x  . Based on the probability density 

function of the DTND, the probability density functions of the LTND and RTND are then 

obtained as 
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 where

ux x  , respectively, because the left (right) truncated distribution has only a lower 

(upper) truncation point, lx  ux .  

The mean and variance of the truncated normal random variable TX  are derived 

from the formulas ( )
TT Xx f x dx




   and  

2
2 2 ( ) ( )

T TT X Xx f x dx x f x dx
 

 
     .  

Table 2.1 shows the formulas of means and variances of the DTND, LTND, and RTND 

(see Johnson et al., 1998), where     and     are the probability density function and 

the cumulative distribution function, respectively, of a standard normal random variable

Z , respectively. Detailed proofs for the mean and variance of the DTND can be found in 

Cha et al. (2014). Table 2.1 shows that both lx 




 
 
 

 and lx 



 
 
 

 converge to zero 

in the mean and variance of the DTND as the lower truncation point, lx , goes negative 

infinity. On the contrary, ux 




 
 
 

 and ux 



 
 
 

 converge to zero and one, 

respectively, as the upper truncation point, ux , goes positive infinity. 
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Table 2.1. Mean T  and variance 
2

T  of doubly, left and right truncated normal 

distributions (Johnson et al., 1998) 

 

DTND 

 
LTND 

 
RTND 

 
 

2.2.2    Standardization of a TNRVs  

In previous studies, a random variable  TX    was used to estimate the 

mean and variance of a truncated normal random variable TX . For example, Cohen 

(1991), Barr and Sherrill (1999), and Khasawneh et al. (2004, 2005) defined 

 TT X     as a truncated standard normal random variable. Even though various 

truncated distributions have been introduced, only a few papers investigated the 

standardization of a truncated normal random variable. Cohen (1991) denoted the random 

variable,  TT X     as the standardized truncated normal random variable for the 

method of moment estimation. Barr and Sherrill (1999) also defined the random variable, 

 TT X     as the truncated standard normal random variable for maximum 

likelihood estimators. Khasawneh et al. (2004, 2005) used the same truncated standard 
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normal random variable, developed by Cohen (1991) and Barr and Sherrill (1999), to 

build tables of the distribution’s cumulative probability, mean, and variance.  

2.2.3    A truncated skew NRV  

A skew normal distribution represents a parametric class of probability 

distributions, reflecting varying degrees of skewness, which includes the standard normal 

distribution as a special case. The skewness parameter makes it possible for probabilistic 

modeling of the data obtained from skewed population. The skew normal distributions 

are also useful in the study of the robustness and as priors in Bayesian analysis of the 

data. Birnbaum (1950) first explored skew normal distributions while investigating 

educational testing using truncated normal random variables. Roberts (1966) was another 

early pioneer in skew normal distributions by studying correlation models of twins. The 

term, the skew normal distribution, was formally introduced by Azzalini (1985, 1986), 

who explored the distribution in depth. Gupta et al. (2004) classified several multivariate 

skew-normal models. Nadarajah and Kotz (2006) showed skewed distributions from 

different families of distributions, whereas Azzalini (2005, 2006) discussed the skew 

normal distribution and related multivariate families. Jamalizadeh, et al. (2008) and 

Kazemi et al. (2011) discussed generalizations of the skew normal distribution based on 

various families. Multivariate versions of the skew normal distribution have also been 

proposed. Among them Azzalini and Valle (1996), Azzalini and Capitanio (1999), 

Arellano-Valle et al. (2002), Gupta and Chen (2004), and Vernic (2006) are notable. In 

many applications, the probability distribution function of some observed variables can 

be skewed and their values restricted to a fixed interval, as shown in Fletcher et al. (2010) 
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where the skew normal distribution was used to represent daily relative humidity 

measurements. As mentioned earlier, convolutions play an important role in statistical 

tolerance analysis. Most of the research work, however, considered untruncated normal 

distributions. See, for example, Gilson (1951), Mansoor (1963), Fortini (1967), Wade 

(1967), Evans (1975), Cox (1986), Greenwood and Chase (1987), Kirschling (1988), 

Bjorke (1989), Henzold (1995), and Nigam and Turner (1995), and Scholz (1995). 

If a random variable Y  is distributed with its location parameter  , scale 

parameter  , and shape parameter , its probability density function is defined as 
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  , where -∞ < y <∞.                      

It is noted that the probability density function of Y  becomes a normal distribution when 

the shape parameter  is zero. When the skew normal distribution of Y  is truncated with 

the lower and upper truncation points, ly  and uy , the probability density function of the 

truncated skew normal distribution is then expressed as  
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truncated mean TS  and truncated variance 
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2.3      Central Limit Theorem and Sums of Random Variables 

  In this dissertation, the Central Limit Theorem is the key developing statistical 

inference in Chapter 3, when the sample size is large. In addition, the Central Limit 

Theorem might also pave the way to support that the distribution of the sum of 

independent random variables converges a normal distribution as the number of random 

variables increase. Thus, we first review the Central Limit Theorem in Section 2.3.1 and 

then discuss the ways to obtain the sums of truncated random variables in Section 2.3.2.      

2.3.1    Central Limit Theorem 

According to Fischer (2010), the fundamental foundation of the Central Limit 

Theorem was built in the middle of 1950s. De Morvre (1733) examined the sums of the 

independent binomial random variables, and Bernoulli (1778) showed that the 

distribution of the sum of the binomial random variables converge as the number of trials 

are getting large. Later, many researchers including Laplace (1810), Poission (1829), 

Dirichlet (1846), Cauchy (1853) and Lyapunov (1901) attempted to prove the Central 

Limit Theorem. Von Mises (1919) contributed to developing the local limit theorems for 

sums of continuous random variables based on the characteristic function. Meanwhile, 

Polya (1919, 1920) devoted to developing the theory of numbers associated with the Law 

of Large Number depending on the moment generating function, and first coined the 

term, Central Limit Theorem.   

Lindeberg (1922) fundamentally generalized the proof of the Central Limit 

Theorem under the “Lindeberg condition” which is called a very weak condition. Levy 
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(1922, 1935, 1937) proved the Central Limit Theorem with the characteristic function by 

considering limit distributions for sums of independent, but not identically distributed 

random variables and developed the generalization of Fourier’s integral formula to the 

case of Fourier transforms expressed by Stieltjes integrals. Furthermore, Donsker (1949) 

examined the Central Limit Theorem for sums of independent random elements in a 

Hilbert space. In terms of stochastic point of view, Gnedenko and Kolmogorov (1954) 

inspected limit distributions of sums of independent random variables with regard to the 

Central Limit Theorem. Fortet and Mourier (1955) developed the limit theorem 

associating the Central Limit Theorem in Banach spaces.  

In Chapter 4, we provide two proposed theorems to prove the Central Limit 

Theorem with the moment generating and characteristic functions for a truncated normal 

distribution. In the future research, the proposed theorems are utilized to assume that the 

distribution of the sum of the truncated normal random variables has an approximate 

normal distribution, when the number of random variables are sufficiently large.  

2.3.2    Sums of Truncated Random Variables 

As discussed in Section 1.2, convolution is the composition of two distributions for 

deriving the combined distribution. In this section, we first review the sums of truncated 

normal random variables based on convolution where the number of truncated random 

variables are generally less than four. When the number of random variables are larger than 

four, approximation methods might need to be applied. Two of the most popular methods 

are the Laplace and Fourier transforms.  
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To be more specific, Francis (1946) and Aggarwal and Guttman (1959) examined 

the probability density functions of the sums of singly and doubly truncated normal 

random variables and developed their cumulative probability tables under the assumption 

that the random variables are independently and identically distributed. Lipow et al. 

(1964) then investigated the density functions of the sums of a standard normal random 

variable and a left truncated normal random variable. Francis (1946), Aggarwal and 

Guttman (1959), and Lipow et al. (1964)  have not been able to obtain the closed density 

functions of the sums, when the number of truncated normal random variables are equal 

and greater than five due to the computational complexity.  

For the sum of more than four truncated normal random variables, Kratuengarn 

(1973) compared the means and variances of the sums of left truncated normal random 

variables numerically through Laplace and Fourier transforms. Although the Laplace and 

Fourier transforms allowed the consideration of the sum of the large number of variables, 

the results of the transformations included some errors. Recently, Fletcher et al. (2010) 

examined an expression of the moments an expression of the moments based on a 

truncated skew normal distribution. Tsai and Kuo (2012) applied the Monte Carlo 

method to obtain the densities of the sums of truncated normal random variables with 

1,000,000 samples.  

However, most studies focused on which are identically truncated normal 

distributions. In this research, we consider both identical and non-identical truncated 

normal distributions. Furthermore, we extend our research to a truncated skew normal 

distribution which has not been studied in the research community.   
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2.3.3    Multistage convolutions 

Multistage convolutions may also be common in linear systems used in the 

electronics industry. Note that a system’s impulse response specifies a linear system’s 

characteristics, which are governed by the mathematics of convolution. This is the key 

support in many signal processing methods. For example, echo suppression in long 

distance phone calls is achieved by utilizing an impulse response that counteracts the 

impulse response of reverberation. Aircraft are detected by radar through analyzing a 

measured impulse response and digital filters are created by designing an appropriate 

impulse response (Smith, 1997). In Digital Signal Processing (DSP), the convolution the 

input signal function with the impulse response function yields a linear time-invariant 

system (LTI) as an output. The LTI output is an accumulated effect of all the prior values 

of the input function, with the most recent values typically having the most influence on 

the output. Using exact two and three stage truncated normal random variables in this 

model can result in heightened accuracy of DSP algorithms. This may result in faster 

processing times for common DSP algorithms. Note that multistage signal processing 

convolution methods are common when they are used in two dimensional Gaussian 

functions for Gaussian blurs of images (Hummel et al. 1987). Gaussian blur can be used 

in order to create a smoother digital image of halftone prints. Convolutions of functions 

and similar functional operators in general have several important applications in 

engineering, science and mathematics. Several important applications of convolutions are 
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prominent in digital signal processing. For example, in digital image processing, 

convolutional filtering plays an important role in many important algorithms in edge 

detection and related processes. See Ieng, et al. (2014), Fournier (2011), and Reddy and 

Reddy (1979) for more examples. 

2.3.4    Simulation Algorithms 

Another research approach to the truncated normal distribution comes from the 

development of algorithms in computer software. Chou (1981) introduced the Markov 

Chain Monte Carlo algorithm using Gibbs-sampler from singly truncated bivariate 

normal distributions. Breslaw (1994), Robert (1995), Foulley (2000), Fernandez et al. 

(2007) and Yu et al. (2011) developed algorithms using Gibbs-sampler for singly and 

doubly truncated multivariate normal distributions. 

2.4    Justification of Research Questions 

First, based on the previous literature reviews, this research provides additional 

proposed theorems, in which variance of a normal distribution is compared with and 

variances of four different types of its truncated normal distribution, to solve Research 

questions 1 and 2. Second, for illustration of the Central Limit Theorem for a truncated 

normal distribution with respect to Research questions 3, this dissertation examines how 

the normal quantile–quantile (Q–Q) plots change according to four different sample sizes 

based on the four types of a truncated normal distribution and diagnoses the normality by 

applying the Shapiro–Wilk test (Shapiro and Wilk; 1968, Shapiro; 1990). Third, sums of 

truncated normal and truncated skew normal random variables are extended by double 

and triple truncations for examples of two application areas. To solve Research question 
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4, three different generalized probability density functions under double truncation and 

four different generalized probability density functions under triple truncation are 

developed on convolution that have not been explored previously.  By using those seven 

probability density functions, sixty five cases are investigated based on double 

truncations while two hundred twenty cases are examined triple truncations. Density, 

mean and variance of the sum in each case are obtained and those results are analyzed to 

draw the critical concepts in multistage production process, statistical tolerance analysis, 

and gap analysis. 



CHAPTER THREE

DEVELOPMENT OF STANDARDIZATION OF A TND

As indicated in Chapters 1 and 2, the traditional truncated standard normal

distribution, derived from the truncation of a standard normal distribution (TSND),

has varying mean and variance, depending on the location of truncation points. In

contrast, we develop a standard truncated normal distribution (STND) by

standardizing a truncated normal distribution in this chapter. In Section 3.1, to

ensure the validity of the development of the STND, we compare the variance of a

normal distribution and its truncated normal distribution by proposing three

theorems. Within the properties of the STND which are developed in Sections 3.2,

we develop the cumulative probability table of the STND as a set of guidelines for

engineers and scientists in Section 3.3. A numerical example and conclusions are

followed by Sections 3.4 and 3.5, respectively.

3.1 Comparison of Variances between an NRV and its TNRV

In Section 3.1.1, the variance of a doubly truncated normal distribution is

examined to compare the one of its original normal distribution. Then, the variance

of normal distribution is compared to ones of its left and right truncated normal

distributions in Sections 3.1.2 and 3.1.3, respectively.

3.1.1 Case of a DTNRV

Once a normal distribution is truncated, its variance changes. Intuitively, the

variance of the truncated normal random variable is smaller than the variance of the

original normal random variable. In this section, we provide a proposed theorem to
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compare the variances between a normal random variable and its doubly truncated

normal random variable.

Proposed Theorem 1 Let X ∼ N(µ, σ2) where σ > 0 and let XT be its doubly

truncated normal random variable where E(XT ) = µT , V (XT ) = σ2
T , and the lower

and upper truncation points are denoted by xl and xu, respectively. Then, σ2
T is

always less than σ2. That is, σ2
T < σ2.

Proof

We will show σ2 − σ2
T > 0. From Table 2.1, the difference of variances,

σ2 − σ2
T , is written as

σ2


(
−xl−µ

σ
φ
(
xl−µ
σ

)
+ xu−µ

σ
φ
(
xu−µ
σ

))
·
(
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

))
(
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

))2

+

(
φ
(
xl−µ
σ

)
− φ

(
xu−µ
σ

))2

(
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

))2

 . (1)

By the properties of the standard normal distribution, φ
(
xl−µ
σ

)
> 0, φ

(
xu−µ
σ

)
> 0,

and Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

)
> 0.

Since the second term inside the brackets in Eq. (1) is always greater than or equal

to zero, the first term inside the brackets should be investigated.

There are three cases associated with the first term we need to consider. Fig.

3.1 shows the plots of the three cases which can occur from the double truncations.

To prove σ2 − σ2
T > 0, we need to check whether

(
−xl−µ

σ
φ
(
xl−µ
σ

)
+

xu−µ
σ
φ
(
xu−µ
σ

))
> 0 since Φ

(
xu−µ
σ

)
− Φ

(
xl−µ
σ

)
> 0.
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Case 1 Case 2 Case 3

lx 




0 ux 





  

lx 




0 ux 





  

lx 



 0 ux 





  

Figure 3.1. Plots of three cases under double truncations

Case 1: Consider a symmetric case. Note that xl−µ
σ

< 0, xu−µ
σ

> 0, and

xl−µ
σ

= −xu−µ
σ

. Since xl−µ
σ

= −xu−µ
σ

, φ
(
xl−µ
σ

)
is equal to φ

(
xu−µ
σ

)
. Thus, the first

term indicates that −xl−µ
σ
φ
(
xl−µ
σ

)
+ xu−µ

σ
φ
(
xu−µ
σ

)
= 2 xu−µ

σ
φ
(
xu−µ
σ

)
> 0. Therefore,

σ2 − σ2
T > 0.

Case 2: Consider an asymmetric case in which −xl−µ
σ
≤ 0, xu−µ

σ
> 0, and∣∣∣xl−µ

σ

∣∣∣ < ∣∣∣xu−µ
σ

∣∣∣. φ (xl−µ
σ

)
is greater than φ

(
xu−µ
σ

)
since

∣∣∣xl−µ
σ

∣∣∣ < ∣∣∣xu−µ
σ

∣∣∣. Hence,
−xl−µ

σ
φ
(
xl−µ
σ

)
+ xu−µ

σ
φ
(
xu−µ
σ

)
> 0. Therefore, σ2 − σ2

T > 0.

Case 3: Now, consider an aymmetric case in which xl−µ
σ

< 0, xu−µ
σ
≥

0, and
∣∣∣xl−µ

σ

∣∣∣ > ∣∣∣xu−µ
σ

∣∣∣. Since ∣∣∣xl−µ
σ

∣∣∣ > ∣∣∣xu−µ
σ

∣∣∣, φ (xl−µ
σ

)
is less than φ

(
xu−µ
σ

)
and

xu−µ
σ
φ
(
xu−µ
σ

)
> xl−µ

σ
φ
(
xl−µ
σ

)
. Therefore, σ2 − σ2

T > 0,

Q. E. D.

We have demonstrated that the variance of a normal random variable is

always greater than the variance of its doubly truncated normal random variable.

This indicates that the variance of its doubly truncated standard normal

distribution is always less than the one of the standard normal distribution.
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3.1.2 Cases of an LTNRV

The variances of a normal distribution and its left truncated normal

distribution are compared by a proposed theorem in this section.

Proposed Theorem 2 Let X ∼ N(µ, σ2) where σ > 0 and let XT be its left

truncated normal random variable (mean µT , variance σ2
T , the lower truncation

point xl). Then, σ2
T is always less than σ2. That is, σ2

T < σ2.

Proof

Based on Table 2.1, the difference of variances, σ2 − σ2
T , is expressed as

σ2

− xl−µ
σ
φ
(
xl−µ
σ

)
1− Φ

(
xl−µ
σ

) +
 φ

(
xl−µ
σ

)
1− Φ

(
xl−µ
σ

)
2 . (2)

Since σ > 0, we will show −
xl−µ
σ

φ(xl−µσ )
1−Φ(xl−µσ ) +

(
φ(xl−µσ )

1−Φ(xl−µσ )

)2
> 0. A plot of the case

under left truncation is shown in Fig. 3.2.

lx 




0

  

Figure 3.2. A plot of the case under left truncation

Let t = xl−µ
σ

and g(t) = − tφ(t)
1−Φ(t) +

(
φ(t)

1−Φ(t)

)2
= φ(t)

1−Φ(t)

(
φ(t)

1−Φ(t) − t
)
where

−∞ ≤ t ≤ 0. Since σ2
T = σ2 (1− g(t)), σ2 − σ2

T is written as σ2 − σ2
T = σ2 · g(t).
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Again, let h(t) = φ(t)
1−Φ(t) . Then, g(t) is obtained as g(t) = h(t) · (h(t)− t) where

−∞ ≤ t ≤ 0 since the value of h(t) is greater than zero. It is noted that the

derivative of h(t) is given by h′(t) = d
dt
h(t) = d

dt

(
φ(t)

1−Φ(t)

)
. Since d

dt
φ(t) = −tφ(t) and

d
dt

(
1

1−Φ(t)

)
= φ(t)

(1−Φ(t))2 , we have h′(t) = −tφ(t)
1−Φ(t) +

(
φ(t)

1−Φ(t)

)2
= φ(t)

1−Φ(t)

(
φ(t)

1−Φ(t) − t
)
. Thus,

h
′(t) is expressed as h′(t) = g(t) = h(t) (h(t)− t). Based on h′(t), g′(t) is obtained

as g′(t) =h′(t) (h(t)− t) + h(t)
(
h
′(t)− 1

)
h(t)

[
(h(t)− t)2 + h(t) (h(t)− t)− 1

]
.

Let t∗ ∈ (−∞, 0] which makes g′(t∗) = 0. Then,

(h(t∗)− t∗)2 + h(t∗) (h(t∗)− t∗)− 1 = 0 since h(t∗) > 0 for ∀ t∗ ∈ (−∞, 0]. Hence,

g(t∗) is written as g(t∗) = h(t∗) (h(t∗)− t∗) = 1−
(
h
′(t∗)− t∗

)2
. Since

(h(t∗)− t∗)2 > 0, we find g(t∗) < 1. In addition, since lim
t→−∞

h(t) = φ(t)
1−Φ(t) = 0 and

lim
t→−∞

t h(t) = t φ(t)
1−Φ(t) = 0, we have lim

t→−∞
g(t) = 0. Note that 1− Φ(t) and tφ(t)

converge to one and zero, respectively, as t goes negative infinity. Thus,

0 < g(t) < 1. Therefore, σ2 − σ2
T = σ2 · g(t) is always greater than zero and

0 < σ2 − σ2
T < σ2,

Q. E. D.

3.1.3 Case of an RTNRV

In this section, we provide a proposed theorem to compare the variances of a

normal distribution and its right truncated normal distribution.

Proposed Theorem 3 Let X ∼ N(µ, σ2) where σ > 0 and let XT be its right

truncated normal random variable where E(XT ) = µT , V (XT ) = σ2
T , and the upper

truncation point is denoted by and xu, respectively. Then, σ2
T is always less than σ2.

That is, σ2
T < σ2.
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Proof

According to Table 2.1,σ2 − σ2
T is written as

σ2

 xU−µ
σ
φ
(
xU−µ
σ

)
Φ
(
xU−µ
σ

) +
φ

(
xU−µ
σ

)
Φ
(
xU−µ
σ

)
2 (3)

A plot of the case under right truncation is illustrated in Fig. 3.3.

0 ux 





  

Figure 3.3. A plot of the case under right truncation

Let g(t) = tφ(t)
Φ(t) +

(
φ(t)
Φ(t)

)2
= φ(t)

Φ(t)

(
φ(t)
Φ(t) + t

)
where 0 ≤ t ≤ ∞. Eq. (3) is

expressed as σ2 · g(t). Since σ > 0, we will show g(t) > 0. Let h(t) = φ(t)
Φ(t) . It is

noted that h(t) > 0. Based on we obtain h(t), g(t) is obtained as

g(t) = h(t) · (h(t) + t) where 0 ≤ t ≤ ∞. Notice that h′(t) = d
dt
h(t) = d

dt

(
φ(t)
Φ(t)

)
.

Since d
dt
φ(t) = −tφ(t) and d

dt

(
1

1−Φ(t)

)
= φ(t)

(1−Φ(t))2 , h
′(t) is given by

h
′(t) =−tφ(t)

Φ(t) −
(
φ(t)
Φ(t)

)2
= φ(t)

Φ(t)

(
φ(t)
Φ(t) + t

)
=−g(t) = −h(t) (h(t) + t). Thus, g′(t) is

written as h′(t) (h(t) + t) + h(t)
(
h
′(t) + 1

)
= h(t)

[
− (h(t) + t)2 + h(t) (−h(t)− t)

+1].

Let t∗ ∈ (−∞, 0] which leads to g′(t∗) = 0. Then,

− (h(t∗)− t∗)2 + h(t∗) (−h(t∗)− t) + 1 = 0 for ∀ t ∈ [0,∞). Thus, we have
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.h(t∗) (h(t∗) + t∗) = 1−
(
h
′(t∗) + t∗

)2
. Therefore, g(t∗) is expressed as

g(t∗) = h(t∗) (h(t∗) + t∗) = 1−
(
h
′(t∗) + t∗

)2
. Since (h(t∗) + t∗)2 > 0, g(t∗) is less

than one. It is noted that lim
t→∞

h(t) = φ(t)
Φ(t) = 0. As t converges to ∞, g(t) becomes

zero since lim
t→∞

h(t) = φ(t)
Φ(t) = 0 and lim

t→∞
t h(t) = t φ(t)

Φ(t) = 0. Note that Φ(t) and tφ(t)

converge to 1 and zero, respectively, as t goes infinity. Thus, we find 0 < g(t) < 1.

Therefore, 0 < σ2 − σ2
T < σ2,

Q. E. D.

3.2 Rethinking Standardization of a TND

The development of the properties of the STNRV is discussed with respect to

Research Question 1. In Section 3.2.1, the terms associated with the STNRV is

explained by comparing the terms of the traditional truncated standard normal

random variable. In Section 3.2.2, we develop the probability density functions of

the standard singly and doubly truncated normal distributions. Within those

distributions, we concentrate on the standard doubly truncated normal distribution,

which is symmetric, in order to obtain the simplified forms of its probability density

function and cumulative distribution function in Section 3.3.3. Based on the results,

we develop the cumulative probability table in Section 3.3.4.

3.2.1 Standardized TNRVs

In this research, we propose a standard truncated normal random variable as

ZT = XT−µT
σT

, whose mean and variance are zero and one, respectively. Table 3.1

shows the terms for the standardization of the truncated normal distribution where

its random variable is XT , and xl and xu are its lower and upper truncation points,
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respectively. Furthermore, T denotes a truncated standard normal random variable,

and zl = (xl − µ)/σ and zu = (xu − µ)/σ denote the lower and upper truncation

points of T , respectively. In contrast, we define zTl = (xl − µT )/σT and

zTu = (xu − µT )/σT .

Table 3.1. The terms for the standardization of a truncated normal random variable

Truncated standard normal Standard truncated normal

Random variable T = XT−µ
σ ZXT = XT−µT

σT

Lower truncation point zl = xl−µ
σ zTl = xl−µT

σT

Upper truncation point z = xl−µ
σ zTu = xu−µT

σT

Khasawneh et al. (2005) introduced tables of cumulative probability, mean,

and variance of the doubly truncated standard normal distribution. The plot of

variance of the symmetric doubly truncated standard normal distribution is shown

in Fig. 3.4. It is noted that the values of variance are less than one and that the

mean of a doubly truncated standard normal distribution is zero in a symmetric

case. If the distribution is asymmetric, its mean values are not constant. That is,

the values of mean and variance vary, depending on zl and zu.
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l uz z

Figure 3.4. A plot of variance for doubly truncated standard normal distribution in
a symmetric case by Khasawneh et al.(2005)

Fig. 3.5 shows a portion of the mean and variance tables from Khasewneh et

al. (2005). It is noted that the truncated mean and variance are changed by the

lower and upper truncation points. When |zl| 6= zu, the values of mean and variance

are not zero and one, respectively.

Mean Variance

lz uz lz uz

Figure 3.5. A portion of the tables of mean and variance in an asymmetric case for
the truncated standard normal distributions by Khasawneh et al. (2005)
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3.2.2 Development of the Properties of Standardization of a TND

In Section 3.2.2.1, we provide a proposed theorem to develop the probability

density function of the standard doubly truncated normal distribution (SDTND).

Based on the proposed theorem, the probability density functions of standard left

and right truncated normal distributions are developed in Section 3.3.2.2.

3.2.2.1 Standardization of a DTND

In this section, we propose the probability density function of a random

variable ZT = XT−µT
σT

with mean zero and variance one.

Proposed Theorem 4 Let XT be a random variable with mean µT and variance

σ2
T which has a doubly truncated normal distribution with the probability density

function

fXT (x) =
1

σ
√

2π
e
− 1

2(x−µσ )2

´ xu
xl

1
σ
√

2π
e
− 1

2( y−µσ )2

dy

, xl ≤ x ≤ xu .

A random variable ZT = XT−µT
σT

has a standard doubly truncated normal

distribution with the probability density function

fZT (z) =
1

(σ/σT )
√

2π
e

− 1
2

(
z−(µ−µTσT

)
σ/σT

)2

´ zTu
zTl

1
(σ/σT )

√
2π
e

− 1
2

(
p−(µ−µTσT

)
σ/σT

)2

dp

where zTl ≤ z ≤ zTu , zTl = xl−uT
σT

, and zTu = xu−uT
σT

. We then have E(ZT ) = 0 and

V ar(ZT ) = 1.

Proof
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We first obtain the probability density function of ZT and then show

E(ZT ) = 0 and V ar(ZT ) = 1. Let ZT = g(XT ) = XT−µT
σT

. For the sample space of

XT and ZT , let X = {x : fXT (x) > 0} and Z = {z: z = g(x) for some x ∈ X} . Since

d
dx
g(x) = d

dt

(
x−µT
σT

)
= 1

σT
> 0 for −∞ < xl < x < xu <∞, g(x) is an increasing

function. Note that XT ∈ [xl, xu] and XT−µT
σT

∈
[
xl−µT
σT

, xu−µT
σT

]
. Also note that

fXT (x) is continuous on X and g−1(z) has a continuous derivative on Z. If we let

z = g(x), then g−1(z) = zσT + µT and d
dz
g−1(z) = σT since z = x−µT

σT
implies

x = zσT + µT . By the chain rule, we have fZT (z) = fXT (g−1(z)) d
dz
g−1(z). Thus, the

probability density function of ZT is written as

fZT (z) = fXT (g−1(z)) d
dz
g−1(z) = fXT (zσT + µT ) σT

=
1

σ
√

2π e
− 1

2( zσT+µT−µ
σ )2

´ xu
xl

1
σ
√

2π e
− 1

2( y−µσ )2

dy
σT , xl ≤ zσT + µT ≤ xu

=
1

(σ/σT )
√

2π e
− 1

2

(
z−(µ−µTσT

)
σ/σT

)2

´ xu
xl

1
σ
√

2π e
− 1

2( y−µσ )2

dy
,
xl − uT
σT

≤ z ≤ xu − uT
σT

. (4)

It is observed that the numerator of fZT (z) has a normal distribution whose mean

and variance are µ−µT
σT

and σ
σT

, respectively, and that the denominator of fZT (z) is

constant since xl and xu are given. Let zTl = xl−uT
σT

, zTu = xu−uT
σT

and

fY (y) = 1
σ
√

2π e
− 1

2( y−µσ )2

. Then, the denominator of fZT (z) is obtained as

´ xu
xl
fY (y)dy. If we let P = q(Y ) = Y−µT

σT
, then Y = {y: xl < y < xu} and

P = {p: p = q(y) for some y ∈ Y} . Since d
dy
q(y) = d

dy

(
y−µT
σT

)
= 1

σT
> 0 for
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xl < y < xu, q(y) is an increasing function. Consequently, Y ∈ [xl, xu] and

Y−µT
σT
∈
[
xl−µT
σT

, xu−µT
σT

]
. Similarly, fY (y) is continuous on Y and q−1(p) has a

continuous derivative on P . By letting p =q(y), we have q−1(p) = pσT + µT and

d
dp
q−1(p)= σT since p = y−µT

σT
implies y = pσT + µT . Using the chain rule, we have

fP (p)=fY (q−1(p)) d
dp
q−1(p). Then, the probability density function of P is expressed

as

fP (p) = fY (q−1(p)) d
dp
q−1(p) = fY (pσT + µT ) σT

= 1
σ
√

2π
e−

1
2( pσT+µT−µ

σ )2

= 1
(σ/σT )

√
2π

e
− 1

2

(
p−(µ−µTσT

)
σ/σT

)2

. (5)

Since q(y) is an increasing function, the denominator of ZT is expressed as

ˆ xu

xl

fY (y)dy =
ˆ q(xu)

q(xl)
fP (p)dp

=
ˆ zTu

zTl

1
(σ/σT )

√
2π

e
− 1

2

(
p−(µ−µTσT

)
σ/σT

)2

dp. (6)

Therefore, based on Eqs. (5) and (6), the probability density function of ZT

is obtained as

fZT (z) =
1

(σ/σT )
√

2π e
− 1

2

(
z−(u−µTσT

)
σ/σT

)2

´ zTu
zTl

1
(σ/σT )

√
2π e

− 1
2

(
p−(u−µTσT

)
σ/σT

)2

dp

, zTl ≤ z ≤ zTu . (7)
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Finally, E(ZT ) = 0 and V (ZT ) = 1 as follows: E(ZT ) = E
(
XT−µT
σT

)
=

1
σT

(E(XT )− µT )= 1
σT

(µT − µT ) = 0 and

V ar(ZT ) =V ar
(
XT−µT
σT

)
= 1

σ2
T
V ar (XT − µT ) = 1

σ2
T

(σ2
T + 0) = 1,

Q. E. D.

The results shown in this section are now consistent with the ones of the

well-known standard normal distribution, and support the theoretical foundations of

the standard truncated normal random variable which we propose in this

dissertation.

3.2.2.2 Standardization of Left and Right TNDs

The probability density functions of standard left and right truncated

normal distributions are shown in Table 3.2. It is noted that means and variances of

the SLTND and SRTND are also zero and one, respectively.

Table 3.2. Probability density functions of standard left and right truncated normal
distributions

Probability Density Function

LTND fZT (z) =
1

(σ/σT )
√

2π
e

− 1
2

(
z−(u−µTσT

)
σ/σT

)2

´∞
zTl

1
(σ/σT )

√
2π
e

− 1
2

(
p−(u−µTσT

)
σ/σT

)2

dp

where zTl ≤ z ≤ ∞

RTND fZT (z) =
1

(σ/σT )
√

2π
e

− 1
2

(
z−(u−µTσT

)
σ/σT

)2

´ zTu
−∞

1
(σ/σT )

√
2π
e

− 1
2

(
p−(u−µTσT

)
σ/σT

)2

dp

where −∞ ≤ z ≤ zTu
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3.2.3 Simplifying PDF of the SDTND

In this section, a table of cumulative probabilities of the standard symmetric

doubly truncated normal distribution is developed. When a random variable XT

with mean µT and variance σ2
T is doubly truncated and symmetric, its probability

density function of XT is expressed as fXT (x) =
1√

2π·σ
e
− 1

2(x−µσ )2

´ xu
xl

1√
2π·σ

e
− 1

2(x−µσ )2

dx

where

xl ≤ x ≤ xu. Since the distribution of XT is symmetric,

µT = µ, xu − µ = µ− xl, φ
(
xl−µ
σ

)
= φ

(
xu−µ
σ

)
and Φ

(
xl−µ
σ

)
= 1− Φ

(
xu−µ
σ

)
.

Fig. 3.6 shows a symmetric doubly truncated normal distribution where

xu − µ = ∆.

lx  

 

ux   
T 

( )
TX
f x

Figure 3.6. A plot of the symmetric doubly truncated normal distribution

Based on σ2
T in Table 2.1, the variance of XT is expressed as

σ2
T = σ2

1 +
xl−µ
σ
· φ
(
xl−µ
σ

)
− xu−µ

σ
· φ
(
xu−µ
σ

)
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

) −

 φ
(
xl−µ
σ

)
− φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

)
2

= σ2

1 +
−∆

σ
· φ
(
−∆

σ

)
− ∆

σ
· φ
(

∆
σ

)
Φ
(

∆
σ

)
−
[
1− Φ

(
∆
σ

)] −

 φ
(
−∆

σ

)
− φ

(
∆
σ

)
Φ
(

∆
σ

)
−
[
1− Φ

(
∆
σ

)]
2

σ2

1−
2∆
σ
φ
(

∆
σ

)
2Φ

(
∆
σ

)
− 1

 . (8)
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The upper truncation point, zTu , of ZT = XT−µT
σT

is written as

zTu = xu − uT
σT

= ∆

σ

√
1− 2 ∆

σ
φ(∆

σ )
2Φ(∆

σ )−1

(9)

and zTu = −zTl . Therefore, the probability density function of ZT is represented as

fZT (z) =
1

(σ/σT )
√

2π e
− 1

2

(
z−(u−µTσT

)
σ/σT

)2

´ zTu
−zTu

1
(σ/σT )

√
2π e

− 1
2

(
z−(u−µTσT

)
σ/σT

)2

dz

where -zTu ≤z≤ zTu , zTu=xu−uT
σT

=
A√
2π e

− 1
2 (A·z)2

´ ∆
σ·A
− ∆
σ·A

A√
2π e

− 1
2 (A·z)2

dz

where - ∆
σ·A ≤z≤ ∆

σ·A , A=
√

1− 2 ∆
σ
φ(∆

σ )
2Φ(∆

σ )−1
. (10)

By denoting k = ∆
σ
, the probability density function of ZT is expressed as

fZT (z) =
B√
2π e

− 1
2 (B·z)2

´ k
B

− k
B

B√
2π e

− 1
2 (B·z)2

dz

where − k

B
≤ z ≤ k

B
, B =

√√√√1− 2kφ (k)
2Φ (k)− 1 (11)
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and the variance of XT is given by

σ2
T = σ2

[
1− 2kφ (k)

2Φ (k)− 1

]
. (12)

Hence, the cumulative distribution function of ZT is written as

FZT (z) =
ˆ z

−∞
fZT (y)dy

where zl ≤ y ≤ zu, zl = xl − uT
σT

, zu = xu − uT
σT

=
ˆ z

−∞

B√
2π e

− 1
2 (B·y)2

´ k
B

− k
B

B√
2π e

− 1
2 (B·z)2

dz
dy

where − k

B
≤ y ≤ k

B
, B =

√√√√1− 2kφ (k)
2Φ (k)− 1 . (13)

3.3 Development of a Cumulative Probability Table of the SDTND
in a Symmetric Case

We are now ready to develop a table of cumulative probabilities of the

standard doubly truncated normal distribution in a symmetric case. Once the

values of ∆ and σ are chosen, k can be determined since k =∆
σ
; this relationship

implies that we only need to consider k to decide its probability density function of

ZT . For example, consider a symmetric doubly truncated random normal variable

XT1 with ∆1 = 1 and σ1 = 5. Also, consider a symmetric doubly truncated random

normal variable XT2 with ∆2 = 1/2 and σ2 = 2/5. Then, both XT1 and XT2 have
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the same probability density function with k = 1.5.

The table of cumulative probabilities of ZT based on Eq. (13) is shown in

Table 3.7, where k values range between 0 and 6. When the value of k is greater

than 6, the cumulative probability of ZT is close to 1. It is noted that zTu increases

as k increases, and zTu = 6 when k = 6. When the k values are 3 and 6, the zTu

values become 3.041 and 6, respectively. The cumulative probabilities of the

standard symmetric doubly truncated normal distribution shown in Table 3 are

worked out numerically by the Maple software.

The cumulative probabilities for the doubly symmetric standard normal

distribution are shown in Fig. 3.7.
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Figure 3.7. Cumulative area of the truncated standard normal distribution in a
symmetric doubly truncated case
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3.4 Numerical Example

As an example, Table 3.4 shows the procedure to develop the standard

doubly truncated normal distribution. If µ = 2, σ = 2, xl = 2 and xu = 4, the

probability function of XT is obtained as

fXT (x) =
1

2
√

2π e
− 1

2(x−2
2 )2

´ 4
2

1
2
√

2π e
− 1

2( y−2
2 )2

dy
, 2 ≤ x ≤ 4.

From Table 1, µT = 2 and σT = 1.079, and consequently, µ−µT
σT

= 0 and σ
σT

= 1.853.

Moreover, the lower and upper truncation points of ZT are calculated and obtained

as zTl = xl−µT
σT

= −1.853 and zTu = xu−µT
σT

= 1.853. Then, we obtain the probability

density function of ZT fZT (z) =
1

1.853
√

2π
e
− 1

2( z
1.853)2

´ 1.853
−1.853

1
1.853

√
2π
e
− 1

2( p
1.853)2

dp

where −1.853 ≤ z ≤ 1.853.

E(ZT ) and V ar(ZT ) are then obtained as E(ZT ) =
´∞
−∞ z fZT (z)dz = 0 and

V ar(ZT ) =
´∞
−∞ z

2 fZT (z)dz−
(´∞
−∞ z fZT (z)dz

)2
= 1.

Fig. 3.8. shows the density plots of the random variables XT and ZT defined

in Table 3.4 for the numerical example.

XT (before standardization) → ZT (after standardization)

Figure 3.8. Density plots of XT and ZT
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Table 3.4. The procedure to develop the standard doubly truncated normal
distribution and its mean and variance

Given µ = 2, σ = 2, xl = 0, xu = 4

PDF of XT fXT (x) =
1

σ
√

2π
e
− 1

2(x−µσ )2

´ xu
xl

1
σ
√

2π
e
− 1

2( p−µσ )2

dp

, xl ≤ x ≤ xu

=
1

2
√

2π
e
− 1

2(x−2
2 )2

´ 4
0

1
2
√

2π
e
− 1

2( p−2
2 )2

dp

, 0 ≤ x ≤ 4.

Find µT = µ+ φ(xl−µσ )−φ(xu−µσ )
Φ(xu−µσ )−Φ(xl−µσ )σ = 2,

σT = σ ·

√√√√[1 +
xl−µ
σ

φ(xl−µσ )−xu−µσ
φ(xu−µσ )

Φ(xu−µσ )−Φ(xl−µσ ) −
(
φ(xl−µσ )−φ(xu−µσ )
Φ(xu−µσ )−Φ(xl−µσ )

)2]
= 1.079,

u−µT
σT

= 0, σ
σT

= 1.853, zTl = xl−uT
σT

= −1.853, and zTu = xu−uT
σT

= 1.853.

PDF of ZT fZT (z) =
1

(σ/σT )
√

2π
e

− 1
2

(
z−(µ−µTσT

)
σ/σT

)2

´ zTu
zTl

1
(σ/σT )

√
2π
e

− 1
2

(
z−(µ−µTσT

)
σ/σT

)2

dz

where zTl ≤ z ≤ zTu , zTl = xl−uT
σT

, and zTu = xu−uT
σT

=
1

1.853
√

2π
e
− 1

2( z
1.853)2

´ 1.853
−1.853

1
1.853

√
2π
e
− 1

2( z
1.853)2

dz

, −1.853 ≤ z ≤ 1.853.

E(ZT ) E(ZT ) =
´∞
−∞ z fZT (z)dz

=
´ 1.853
−1.853 z

1
1.853

√
2π
e
− 1

2( z
1.853)2

´ 1.853
−1.853

1
1.853

√
2π
e
− 1

2( p
1.853)2

dp

dz

= 0.

V ar(ZT ) V ar(ZT ) =
´∞
−∞ z

2 fZT (z)dz −
(´∞
−∞ z fZT (z)dz

)2

=
´ 1.853
−1.853 z

2
1

1.853
√

2π
e
− 1

2( z
1.853)2

´ 1.853
−1.853

1
1.853

√
2π
e
− 1

2( p
1.853)2

dp

dz

−

´ 3.358
−3.358 z

1
1.853

√
2π
e
− 1

2( z
1.853)2

´ 1.853
−1.853

1
1.853

√
2π
e
− 1

2( p
1.853)2

dp

dz

2

= 1.
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3.5 Conclusions and Future Work

There are practical necessities in which a truncated normal distribution is

required to be considered. This dissertation developed the probability density

function of a standard doubly truncated normal distribution, and showed that the

mean and variance of the standard truncated normal distribution are always zero

and one regardless of its truncation points. Based on the cumulative distribution

function of a standard truncated random variable, we also developed the cumulative

probability table of the standard truncated normal distribution in a symmetric case,

which might be useful for practitioners.

One interesting fact we observed is that the standard truncated normal

distribution is the same probability density function once two different truncated

normal distributions have the same k values where k = ∆
σ
. Mathematical proofs

were performed in order to compare the variances between the normal distribution

and its truncated normal distributions. We then verified that the variance of the

truncated normal distribution is always smaller than the one of its original normal

distribution. As a future study, the cumulative probability tables of standard left

and right truncated normal distributions need to be developed. Due to the fact that

both left and right truncated normal distributions are not symmetric, it is believed

that one mathematical hurdle we need to overcome would be the curse of

dimensionality associated with the conditions of k. Note that the function of k is

the expression of the ratio of the difference between the truncation point of interest

in the asymmetric case, such as lower and upper truncation points, and its

untruncated standard deviation. In other words, the simple condition associated
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with k we derived in Section 3.2.3, cannot be applied to the cases of the standard

asymmetric doubly truncated normal distributions. We encourage researchers to

develop the simplified conditions associated with k in the asymmetric cases which

can map into one set of the cumulative probability tables.
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CHAPTER FOUR

DEVELOPMENT OF STATISTICAL INFERENCE FROM A TND

In this chapter, statistical inference for a truncated normal distribution

associated with Research Question 3 is developed. Note that we consider large

truncated samples to assure the appropriate use of the Central Limit Theorem

throughout this chapter. In Section 4.1, two proposed theorems are provided to

prove the Central Limit Theorem within the truncated normal environment. Section

4.2 examines how the Central Limit Theorem works based on different sample sizes

from four types of a truncated normal distribution by performing simulations. We

then identify the methodologies for the new statistical inference theory in Section

4.3. The confidence intervals and hypothesis tests which are of critical importance

in order to give the direct answers to Research Question 3, are developed in Sections

4.4, 4.5 and 4.6, respectively. A numerical example follows in Section 4.7. Finally,

we discuss the conclusions and future work in Section 4.8.

4.1 Mathematical Proofs of the Central Limit Theorem for a TND

It is well known that the limiting form of the distribution of a sample mean,

X, is the standard normal distribution as the sample size goes infinity, if

X1, X2, . . . , Xn is an independently, identically distributed random sample from a

normal population with a finite variance. The Central Limit Theorem says that the

distribution of the mean of a random sample taken from any population with a

finite variance converges to the standard normal distribution as the sample size

becomes large. As discussed in Cha et al. (2014), the variance of its truncated

normal distribution, σT , becomes finite if the variance of the normal distribution is
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finite. Sections 4.1.1 and 4.1.2 provide proposed theorems which prove the Central

Limit Theorem for a truncated normal distribution by using the moment generating

function and characteristic function, respectively.

4.1.1 Moment Generating Function

For the mathematical proof, we assume the finiteness of the moment

generating function of XT which implies the finiteness of all the moments.

Proposed Theorem 5 Let XT1 , XT2 , . . . , XTn be independent and identically

distributed truncated normal random variables with mean, µT , variance, σ2
T , where

σ2
T <∞, and the probability density function fXTi (x) =
1

σ
√

2π e
− 1

2(x−µσ )2

/
´ xu
xl

1
σ
√

2π e
− 1

2( y−µσ )2

dy where xl ≤ x ≤ xu for i = 1, 2, . . . , n. Suppose

that all of the moments are finite. That is, MXT (t) converges for |t| < δ for some

positive δ. Then, the random variable
√
n
(
XT − µT

)
/σT where

XT = (XT1 + · · ·+XTn) /n is approximately normally distributed when n is large.

That is,
√
n
(
XT − µT

)
/σT → N (0, 1).

Proof

We define the kth moment of XT as µ′Tk . By the definition of moment, the

kth moment is written as µ′Tk = E[Xk
T ] =

´∞
−∞ x

kfXT (x)dx. It is noted that µT = µ′T1

since µ′T1 =
´∞
−∞ x

kfXT (x)dx = µT . By definition, the moment generating function of

XT is written as MXT (t) = E
[
etXT

]
for t ∈ R.The random variable,

√
n
(
XT − µT

)
/σT , is expressed as
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√
n
(
XT − µT

)
/σT =

√
n

[
XT1+···+XTn

n
−µT

]
σT

=XT1+···+XTn−nµT√
nσT

= ∑n
i=1 [(XTi − µT ) /σT

√
n].

Thus, the moment generating function of
√
n
(
XTn − µT

)
/σT is obtained as

MXT−µT
σT /
√
n

(t) = M n∑
i=1

(
XTi−µT
σT
√
n

)(t) = MXT1−µT
σT
√
n

+
XT2−µT
σT
√
n

+···+
XTn−µT
σT
√
n

(t)

= E

[
e
t·
(
XT1−µT
σT
√
n

+
XT2−µT
σT
√
n

+···+
XTn−µT
σT
√
n

)]
= E

[
e
t·
XT1−µT
σT
√
n e

t·
XT2−µT
σT
√
n · · · et·

XTn−µT
σT
√
n

]

= E

[
e
t·
XT1−µT
σT
√
n

]
E

[
e
t·
XT2−µT
σT
√
n

]
· · ·E

[
e
t·
XTn−µT
σT
√
n

]

=
n∏
i=1
E

[
e
t·
XTi−µT
σT
√
n

]
=

n∏
i=1
e
−µT t
σT
√
nE

[
e
t·

XTi
σT
√
n

]
=

n∏
i=1
e
−µT t
σT
√
nM XTi

σT
√
n

(t)

=
n∏
i=1
e
−µT t
σT
√
nMXTi

(
t

σT
√
n

)
= e

−µT t
√
n

σT MXT

(
t

σT
√
n

)n
. (14)

Note that MXTi
(t/σT

√
n) is written as MXT (t/σT

√
n)n since each MXTi

(t/σT
√
n) is

identically distributed for i = 1, 2, · · · , n. Additionally, since the logarithm of a

product is the sum of the logarithms, Eq. (14) is expressed as

logMXT−µT
σT /
√
n

(t) = −µT t
√
n

σT
+ n logMXT

(
t

σT
√
n

)
. (15)

By using the Talyor series expansion using the exponential function

etx = ∑∞
j=0(tx)j/j! and the convergence of the moments where MXT (t) converges for

|t| < δ for some positive δ, we have

MXT (t) = E
[
etXT

]
=
ˆ ∞
−∞

∞∑
j=0

xjtj

j! fXT (x)dx =
∞∑
j=0

tj

j!

ˆ ∞
−∞

xjfXT (x)dx. (16)
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Since
´∞
−∞ x

jfXT (x)dx is µ′Tj , MXT (t) is obtained as

MXT (t) =
∞∑
j=0

tj

j!

ˆ ∞
−∞

xjfXT (x)dx =
∞∑
j=0

tj

j!µ
′
Tj

= 1 + µ′T1t+
µ′T2t

2

2! +
µ′T3t

3

3! + · · ·

= 1 + µT t+
µ′T2t

2

2! +
µ′T3t

3

3! + · · ·

= 1 + t

(
µT +

µ′T2t

2! +
µ′T3t

2

3! + · · ·
)
. (17)

Expanding log (1 + a) into a Taylor series where

log (1 + a) = a− a2/2! + a3/3!− a4/4! + · · · , we have

logMXT (t) = log
[
1 + t

(
µT +

µ′T2t

2! +
µ′T3t

2

3! + · · ·
)]

= t

(
µT +

µ′T2t

2! +
µ′T3t

2

3! + · · ·
)
−
t2
(
µT + µ′T2

t

2! + µ′T3
t2

3! + · · ·
)2

2! + · · ·

= µT t+
µ′T2 − µ

2
T

2 t2 +O
(
t3
)

(18)

where O (t3) represents higher-order terms in t. Thus, logMXT (t/σT
√
n) is

expressed as

logMXT

(
t

σT
√
n

)
= µT t

σT
√
n

+
µ′T2 − µ

2
T

2
t2

σ2
Tn

+O
(
1/n3/2

)
(19)

where O
(
1/n3/2

)
represents lower-order terms in n. Eq. (15) is then written as
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logMXT−µT
σT /
√
n

(t) = −µT t
√
n

σT
+ n logMXT

(
t

σT
√
n

)

= −µT t
√
n

σT
+ n

[
µT t

σT
√
n

+
µ′T2 − µ

2
T

2
t2

σ2
Tn

+O
(
n−3/2

)]

= −µT t
√
n

σT
+ µT t

√
n

σT
+
µ′T2 − µ

2
T

2
t2

σ2
T

+O
(
n−1/2

)
=

µ′T2 − µ
2
T

2
t2

σ2
T

+O
(
n−1/2

)
= σ2

T

2
t2

σ2
T

+O
(
n−1/2

)
= t2

2 +O
(
n−1/2

)
. (20)

Note that µ′T2 − µ
2
T = E[X2

T ]− E[XT ]2 = σ2
T . Thus, we have

logMXT−µT
σT /
√
n

(t) =
µ′T2 − µ

2
T

2
t2

σ2
T

+O
(
n−1/2

)
= σ2

T

2
t2

σ2
T

+O
(
n−1/2

)
= t2

2 +O
(
n−1/2

)
. (21)

Therefore, Eq. (21) can be expressed as

MXT−µT
σT /
√
n

(t) = e
t2
2 +O(n−1/2). (22)

Meanwhile, according to the definition of MXT (t), the moment generating

function of the standard normal random variable, Z, whose probability density
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function fZ(z) = 1
σ
√

2π e
− 1

2 z
2 where −∞ ≤ z ≤ ∞, is expressed as

MZ(t) = E
[
etZ
]

=
ˆ ∞
−∞

etzfZ(z)dz =
ˆ ∞
−∞

etz
1√
2π

e−
1
2 z

2
dz

=
ˆ ∞
−∞

1√
2π

etz−
1
2 z

2
dz =

ˆ ∞
−∞

1√
2π

e
2tz−z2

2 dz =
ˆ ∞
−∞

1√
2π

e
t2−t2+2tz−z2

2 dz

=
ˆ ∞
−∞

1√
2π

e
t2
2 −

(z−t)2
2 dz = e

t2
2

ˆ ∞
−∞

1√
2π

e−
(z−t)2

2 dz = e
t2
2 . (23)

Finally, based on Eqs. (22) and (23), we conclude
√
n
(
XT − µT

)
/σT → N (0, 1) ,

Q. E. D.

Notice that the limiting form of the distribution of XT as n→∞ is the normal

distribution with mean, µT , and variance, σ2
T/n. That is, XT ∼ N(µT , σ2

T/n).

4.1.2 Characteristic Function

The characteristic function, which is always in existence for any real-valued

random variable, is considered in this section.

Proposed Theorem 6 Let XT1 , XT2 , . . . , XTn be independent and identically

distributed truncated normal random variables with mean µT where µT <∞,

variance σ2
T where σ2

T <∞, and probability density function fXT (x) =
1

σ
√

2π e
− 1

2(x−µσ )2

/
´ xu
xl

1
σ
√

2π e
− 1

2( y−µσ )2

dy where xl ≤ x ≤ xu. Then, the random variable
√
n
(
XTn − µT

)
/σT where XTn = (XT1 +XT2 + · · ·+XTn) /n is approximately

normally distributed when n is large. That is,
√
n
(
XTn − µT

)
/σT → N (0, 1).

Proof

61



Let ZTi and be (XTi − µT ) /σT and let ZTn= (ZT1 + ZT2 · · ·+ ZTn) /n. It is

noted that
√
nZTn =

√
n (ZT1 + ZT2 · · ·+ ZTn) /n =

√
n (XT1 +XT2 + · · ·+XTn − nµT ) /nσT =

√
n {(XT1 +XT2 + · · ·+XTn) /n

−µT/σT} =
√
n
(
XTn − µT

)
/σT .

We first show E
[√
n
(
XTn − µT

)
/σT

]
= 0 and

V ar
[√
n
(
XTn − µT

)
/σT

]
) = 1. Since E(ZTi) = E [(XTi − µT ) /σT ] = 0 and

V ar(ZTi) = V ar [(XTi − µT ) /σT ] = 1, the mean and variance of
√
n
(
XTn − µT

)
/σT =

√
nZTn are given by

E(
√
nZTn)= E [

√
n (ZT1 + ZT2 · · ·+ ZTn) /n]= E [(ZT1 + ZT2 · · ·+ ZTn)] /

√
n = 0

and V ar(
√
nZTn)= V ar [

√
n (ZT1 + ZT2 · · ·+ ZTn) /n]=

V ar [(ZT1 + ZT2 · · ·+ ZTn)] /n = 1.

Now we show that
√
n
(
XTn − µT

)
/σT has an approximate normal

distribution. By definition, the characteristic function of ZT is written as

ϕZT (t) = E
[
eitZT

]
=
´
eitZT dF for t ∈ R. So, when t = 0, we have

ϕZT (0) = E (1) = 1. Meanwhile, the derivative of ϕZT (t) is given by

ϕ′ZT (t) = d
dt
E
(
eitZT

)
= E

(
d
dt
eitZT

)
= E

(
iZT e

itZT
)
and thus

ϕ′ZT (0) = E (iZT ) = iE (ZT ) = 0. Moreover, the second derivative of ϕZT (t) is

obtained as ϕ′′ZT (t) = d
dt
ϕ′ZT (t) = d

dt
E
(
iZT e

itZT
)

= d
dt
E
(
i2Z2

T e
itZT

)
and hence

ϕ′′ZT (0) = E (i2Z2
T ) = i2E (Z2

T ) = i2
[
V ar(ZT ) + E (ZT )2

]
= i2 (1 + 0) = −1.

Let g(t)= logϕZT (t). Then, we have ϕZT (t) = eg(t). Based on ϕZT (t) =

eg(t), the first and second derivatives are given by g′(t) = d
dt

logϕZT (t) =
ϕ′ZT

(t)
ϕZT (t) and

g′′(t) = d
dt
g′(t) = d

dt

ϕ′ZT
(t)

ϕZT (t) =
ϕ′′ZT

(t)
ϕZT (t) −

[
ϕ′ZT

(t)
ϕZT (t)

]2
, respectively. Therefore, when the
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value of t is zero, g(0) = logϕZT (0) = 0, g′(0) = d
dt

logϕZT (0) =
ϕ′ZT

(0)
ϕZT (0) = 0 and

g′′(0) = −1
1 −

(
0
1

)2
= −1.

By using the Maclaurin expansion of g(t), g(t) is obtained as

g(t)= g(0) + tg′(0) + t2

2!g
′′(0) +O(t2)0 + 0− 1

2t
2 +O(t2) = −1

2t
2 +O(t2) for t near

zero. Hence, the characteristic function of
√
n
(
XTn − µT

)
=
√
nZTn is written as

ϕ√nZTn (t) = ϕZT1+ZT2+···+ZTn√
n

(t) = ϕZT1√
n

(t) · ϕZT2√
n

(t) · · · · · ϕZTn√
n

(t)

= ϕZT√
n

(t) · ϕZT√
n

(t) · · · · · ϕZT√
n

(t)

= E
(
e
it
ZT√
n

)
· E

(
e
it
ZT√
n

)
· · · · · E

(
e
it
ZT√
n

)

= E
(
e
i t√

n
ZT
)
· E

(
e
i t√

n
ZT
)
· · · · · E

(
e
i t√

n
ZT
)

= ϕZT ( t√
n

) · ϕZT ( t√
n

) · · · · · ϕZT ( t√
n

)

=
[
ϕZT ( t√

n
)
]n

=
[
e
g

(
t√
n

)]n
= e

ng

(
t√
n

)
= e

n

{
− 1

2

(
t√
n

)2
+O
[(

t√
n

)2
]}

= e
− 1

2 t
2+nO

(
t2
n

)
= e−

1
2 t

2+O(t2) ≈ e−
1
2 t

2
. (24)

We proved that the random variable
√
n
(
XTn − µT

)
/σT has an approximate

normal distribution when n is large. Therefore, we conclude
√
n
(
XTn − µT

)
/σT → N (0, 1) ,

Q. E. D.
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4.2 Simulation

In Section 4.1, we examined the Central Limit Theorem within the truncated

normal environment. In this section, the results of simulation are presented for a

verification purpose.

4.2.1 Sampling Distribution

The probability distribution of XT = (XT1 +XT2 + · · ·+XTn)/n, which is

the sampling distribution of the mean from a truncated normal population, is

depicted in Fig. 4.1. It is noted that xT and sT are the truncated sample mean and

truncated sample standard deviation from the truncated normal population,

respectively. Based on the Central Limit Theorem (CLT) discussed in Section 4.1,

the sampling distribution of XT is approximately normal with mean µT and

variance σ2
T/n when the sample size is large.

,T T 

truncated normal  
population 

( )n

sampling 

sampling 

sampling  
distribution 

of a truncated 
mean 

  

sampling 

2~ ( , / )T T TX N n 

CLT 

( )n

( )n

Figure 4.1. Samples from normal and truncated normal distributions

Plots of samples from the normal and truncated normal populations are

shown in Fig. 4.2. Plot (a) shows samples, which are denoted by ×, from the
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normal population, while in plot (b), the samples denoted by • are truncated

samples from the truncated normal population.

         

( )Xf x

The number of samples (   ):   m

( )Xf x

The number of truncated samples (   ):  n

 

( )Xf x

( )
TXf x

The number of untruncated samples (   ):  


m n

     

(a) (b)
Figure 4.2. Samples from normal and truncated normal distributions

4.2.2 Four Types of TDs

To verify numerically that the distribution for the truncated sample mean

follows the Central Limit Theorem, simulation is performed using R software. We

consider four different truncated normal distributions as shown in Table 4.1 and

Fig. 4.3 where plots (a) and (b) represent symmetric and asymmetric doubly

truncated normal distributions (symmetric DTND and asymmetric DTND),

respectively, while plots (c) and (d) represent left and right truncated normal

distributions (LTND and RTND), respectively. The truncated mean, µT , and

truncated variance, σ2
T , are calculated by using the formulas shown in Table 4.1.
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Table 4.1. Truncated normal population distributions for simulation

Probability density function Mean µT SD σT Var σ2
T

(a) fXT (x) =
1

4
√

2π
e
− 1

2(x−10
4 )2

´ 14
6

1
4
√

2π
e
− 1

2( y−10
4 )2

dy

, 6 ≤ x ≤ 14 10 2.158 4.658

(b) fXT (x) =
1

4
√

2π
e
− 1

2(x−10
4 )2

´ 16
8

1
4
√

2π
e
− 1

2( y−10
4 )2

dy

, 8 ≤ x ≤ 16 11.425 2.118 4.484

(c) fXT (x) =
1

4
√

2π
e
− 1

2(x−10
4 )2

´∞
6

1
4
√

2π
e
− 1

2( y−10
4 )2

dy

, 6 ≤ x ≤ ∞ 11.150 3.174 10.075

(d) fXT (x) =
1

4
√

2π
e
− 1

2(x−10
4 )2

´ 14
−∞

1
4
√

2π
e
− 1

2( y−10
4 )2

dy

, −∞ ≤ x ≤ 14 8.847 3.174 10.075

(a) (b) (c) (d)

Figure 4.3. Plots of the truncated population distributions illustrated in Table 4.1

4.2.3 Normality Tests

Based on the truncated normal population distributions in Table 4.1, we

generated 1,000 random samples of sample size 30, with truncated sample means

denoted by XT 30,1, XT 30,2, . . . , XT 30,1000. We show the simulation results for the CLT

depicted in Fig. 5. In each truncated normal distribution, plot (1) represents a

histogram for truncated samples from the truncated normal distribution. It is noted

that the histogram in each plot (1) is similar to the population distribution in Fig.

66



4.4. In each truncated normal distribution, plots (2), (3), and (4) represent

histogram, cumulative density curve and normal quantile-quantile (Q-Q) plot for

the sampling distribution of the truncated mean under the CLT, respectively. Based

on plots (2), (3), and (4), we see that the sampling distribution for the mean from

four different types of a truncated normal distribution is normally distributed when

the sample size is large.
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Figure 4.4. Simulation for the Central Limit Theorem by samples from the
truncated normal distributions with n=30

Fig. 4.5 shows different normal Q-Q plots for the sampling distributions with

four different sample sizes where n = 10, 20, 30, 50. As the sample size increases, it

is observed that the curves come closer to a straight line in each truncated

distribution.

To support the normality of the sampling distribution of the mean more

analytically, the Shapiro-Wilk normality test will be used.

67



−1.5 −0.5 0.5 1.5

−2
.5

−1
.0

0.
0

sample size 10

−2 −1 0 1 2

−1
0

1
2

sample size 20

−2 −1 0 1 2

−3
−1

0
1

2

sample size 30

−2 −1 0 1 2

−2
0

1
2

sample size 50

−1.5 −0.5 0.5 1.5

−1
.0

0.
0

1.
0

sample size 10

−2 −1 0 1 2

−1
.0

0.
0

1.
0

sample size 20

−2 −1 0 1 2

−2
.0

−0
.5

0.
5

sample size 30

−2 −1 0 1 2

−2
−1

0
1

2

sample size 50

(a) Symmetric DTND (b) Asymmetric DTND

−1.5 −0.5 0.5 1.5

−1
.0

0.
0

1.
0

sample size 10

−2 −1 0 1 2

−1
.5

0.
0

1.
0

sample size 20

−2 −1 0 1 2

−1
0

1
2

sample size 30

−2 −1 0 1 2

−2
0

1
2

sample size 50

−1.5 −0.5 0.5 1.5

−1
.5

−0
.5

0.
5

sample size 10

−2 −1 0 1 2

−1
.0

0.
0

1.
0

2.
0

sample size 20

−2 −1 0 1 2

−1
.5

0.
0

1.
0

sample size 30

−2 −1 0 1 2
−2

−1
0

1
2

sample size 50

(c) LTND (d) RTND

Figure 4.5. Simulation for the CLT from the truncated normal distributions (four
different sample sizes: 10, 20, 30, 50)

Shapiro and Wilk (1968) noted that the Shapiro-Wilk test is comparatively

sensitive to a wide range of non-normality, even for small samples (n < 20) or with

outliers. Pearson et al. (1977) explained that the Shapiro-Wilk test is a very

sensitive omnibus test against skewed alternatives, and that it is the most powerful

for many skewed alternatives. Royston (1982) also noted that the Shapiro-Wilk’s W

test statistic provides the best omnibus test of normality when the sample sizes are
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less than 50. The Shapiro-Wilk W test statistic is defined as

W =
{

h∑
i=1
ain(x(n−i+1) − x(i))

}2

�
n∑
i=1

(xi − x)2, x(1) ≤ · · · ≤ x(n) (25)

where h = n/2 when n is even or h = (n− 1)/2 when n is odd, and ain is a constant

which is obtained by the expected values of the order statistics of independent and

identically distributed random variables and the covariance matrix of those order

statistics. When the P -value of the test statistic, W , is greater than 0.05, it is

assumed that the sampling distribution is normally distributed. Five iterations are

performed to acquire the average of the P -values, as shown in Table 4.2. Based on

the Central Limit Theorem, we expect that P -value increases as the sample size

increases. As shown in Table 4.2 and Fig. 4.6, the average of the P -values shows

that the Central Limit Theorem works fairly well, regardless of a truncation type.

Table 4.2. P -values of the Shapiro-Wilk test for the sampling distribution of the
sample means from truncated normal distributions

Sample size Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average
Symmetric n = 10 0.1676 0.1030 0.2028 0.1112 0.1112 0.1837
DTND n = 20 0.5978 0.1639 0.2109 0.4641 0.4101 0.3694

n = 30 0.6069 0.2058 0.2176 0.7890 0.4837 0.4606
n = 50 0.9223 0.4705 0.3683 0.8440 0.8397 0.6890

Asymmetric n = 10 0.0887 0.0824 0.0590 0.0074 0.0157 0.0506
DTND n = 20 0.3398 0.1651 0.1444 0.1121 0.2087 0.1940

n = 30 0.4283 0.4848 0.1149 0.1193 0.5812 0.3457
n = 50 0.7782 0.6213 0.9985 0.1586 0.9154 0.6944

LTND n = 10 0.0002 0.0001 0.0007 0.0006 0.0002 0.0004
n = 20 0.0110 0.0627 0.0040 0.0024 0.0021 0.0164
n = 30 0.0291 0.1664 0.1062 0.1301 0.0435 0.0951
n = 50 0.3233 0.2453 0.1069 0.5223 0.1180 0.2632

RTND n = 10 0.0001 0.0005 0.0002 0.0001 0.0008 0.0004
n = 20 0.0013 0.0107 0.0016 0.0085 0.0873 0.0219
n = 30 0.0646 0.0284 0.1386 0.0214 0.0232 0.0632
n = 50 0.3983 0.3070 0.1465 0.4048 0.1230 0.2759
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Figure 4.6. Average P -values of the Shapiro-Wilk test for the sampling distribution
of the sample mean from a truncated normal distribution

4.3 Methodology Development for Statistical Inferences
on the Mean of a TND

In Section 4.2.2, we learned that the CLT for the truncated sample mean

works properly regardless of a shape of the population distribution and its

truncation type. That is, the distributions of sample means with known and

unknown variance are assumed to be normally distributed when those sampling

sizes are large. Shown in Fig. 4.7 is the methodology, which shows the way to

choose appropriate test statistics from a truncated normal population, to develop

the statistical inferences on the mean for truncated samples. Two test statistics,
√
n
(
XT − µT

)
/σT and

√
n
(
XT − µT

)
/sT where sT represents the truncated

sample standard deviation, are applied.
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Figure 4.7. Decision diagram for statistical inferences based on a truncated normal
population

4.4 Development of Confidence Intervals for the Mean of a TND

In this section, confidence intervals for the truncated mean are developed. In

Sections 4.4.1 and 4.4.2, the z and t confidence intervals with known variances are

developed. The z and t confidence intervals with unknown variances are then

developed in Sections 4.4.3.
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4.4.1 Variance Known under a DTND

In Section 4.4.1.1, a 100(1-α)% two-sided confidence interval for µT is

discussed, and in Sections 4.4.1.2 and 4.4.1.3, the 100(1-α)% one-sided confidence

intervals with lower and upper bounds for µT are examined, respectively. It should

be noted that the truncated variance can be easily obtained when the variance of

the original untruncated normal distribution with truncation point(s) are known.

4.4.1.1 Two-Sided Confidence Intervals

The distribution of XT , a sampling distribution of the truncated mean, is

getting close to a normal distribution based on the Central Limit Theorem as the

sample size n increases. Hence, the random variable
√
n
(
XT − µT

)
/σT

approximately becomes a standard normal distribution for large n. The probability

1-α, called a confidence coefficient, is then expressed as

P
(
−zα/2 ≤

√
n
(
XT − µT

)
/σT ≤ zα/2

)
which is written as

1− α = P

(
−zα/2 ≤

xT − µT
σT/
√
n
≤ zα/2

)

= P

(
−zα/2

σT√
n
≤ xT − µT ≤ zα/2

σT√
n

)

= P

(
−zα/2

σT√
n
≤ µT − xT ≤ zα/2

σT√
n

)

= P

(
xT − zα/2

σT√
n
≤ µT ≤ xT + zα/2

σT√
n

)
. (26)

Based on the doubly truncated normal distribution shown in Table 2.1, the

confidence coefficient is obtained as
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1− α = P

xT − zα/2σ
√√√√√√1 + −xl−µ

σ
φ(xl−µσ )+xu−µ

σ
φ(xu−µσ )

Φ(xu−µσ )−Φ(xl−µσ ) −
(
φ(xl−µσ )−φ(xu−µσ )
Φ(xu−µσ )−Φ(xl−µσ )

)2

n
≤ µT

≤ xT + zα/2σ

√√√√√√1 + −xl−µ
σ

φ(xl−µσ )+xu−µ
σ

φ(xu−µσ )
Φ(xu−µσ )−Φ(xl−µσ ) −

(
φ(xl−µσ )−φ(xu−µσ )
Φ(xu−µσ )−Φ(xl−µσ )

)2

n

 . (27)

Therefore, the 100(1-α)% confidence interval for µT is written as

xT − zα/2σ
√√√√√1 +

xl−µ
σ
·φ(xl−µ

σ
)−xu−µ

σ
·φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)
−
[
φ(xl−µ

σ
)−φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)

]2

n
,

xT + zα/2σ

√√√√√1 +
xl−µ
σ
·φ(xl−µ

σ
)−xu−µ

σ
·φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)
−
[
φ(xl−µ

σ
)−φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)

]2

n

 . (28)

4.4.1.2 One-Sided Confidence Intervals for Lower Bound

Under the scheme of lower confidence bound for µT , we have that

1− α = P
(√

n
(
XT − µT

)
/σT ≤ zα

)
when n is large. By noting xl ≤ µT ≤ xu, the

confidence coefficient 1-α is obtained as

1− α = P

(
xT − µT
σT/
√
n
≤ zα

)
= P

(
xT − µT ≤ zα

σT√
n

)
= P

(
−zα

σT√
n
≤ µT − xT

)

= P

(
xT − zα

σT√
n
≤ µT

)
= P

(
xT − zα

σT√
n
≤ µT ≤ xu

)
.
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Since the truncated mean should be less than the upper truncation point xu, the

100(1-α)% confidence interval with the lower bound for µT is then written as

xT − zασ
√√√√√1 +

xl−µ
σ
·φ(xl−µ

σ
)−xu−µ

σ
·φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)
−
[
φ(xl−µ

σ
)−φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)

]2

n
, xu

 . (29)

4.4.1.3 One-Sided Confidence Intervals for Upper Bound

For a 100(1-α)% upper confidence bound for µT , the confidence coefficient is

expressed as 1− α = P
(√

n
(
XT − µT

)
/σT ≥ −zα

)
when the sample size is large.

The probability of 1-α is then defined as

1− α = P

(
−zα ≤

xT − µT
σT/
√
n

)
= P

(
−zα

σT√
n
≤ xT − µT

)

= P

(
µT − xT ≤ zα

σT√
n

)
= P

(
xl ≤ µT ≤ xT + zα

σT√
n

)
.

Thus, the 100(1-α)% confidence interval with the upper bound for µT is given by

xl, xT + zασ

√√√√√1 +
xl−µ
σ
·φ(xl−µ

σ
)−xu−µ

σ
·φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)
−
[
φ(xl−µ

σ
)−φ(xu−µ

σ
)

Φ(xu−µ
σ

)−Φ(xl−µ
σ

)

]2

n

 . (30)

4.4.2 Variance Known under Singly TNDs

Based on Table 2.1 and the results of Section 4.4.1, we develop the confidence

intervals for mean µT from left and right truncated normal distributions as shown in

Table 4.3, where CI, LCI and UCI stand for the confidence intervals for lower and
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upper bounds, the confidence interval for a lower bound, and the confidence interval

for an upper bound, respectively.

Table 4.3. CIs for mean of left and right truncated normal distributions

LTND a two-sided CI

xT − zα/2σ
√√√√√1+

xl−µ
σ φ(xl−µσ )

1−Φ(xl−µσ ) −
(

φ(xl−µσ )
1−(xl−µσ )

)2

n
,

xT + zα/2σ

√√√√√1+
xl−µ
σ φ(xl−µσ )

1−Φ(xl−µσ ) −
(

φ(xl−µσ )
1−(xl−µσ )

)2

n



a one-sided LCI

xT − zασ
√√√√√1+

xl−µ
σ φ(xl−µσ )

1−Φ(xl−µσ ) −
(

φ(xl−µσ )
1−(xl−µσ )

)2

n
, xu



a one-sided UCI

xl, xT + zασ

√√√√√1+
xl−µ
σ φ(xl−µσ )

1−Φ(xl−µσ ) −
(

φ(xl−µσ )
1−(xl−µσ )

)2

n



RTND a two-sided CI

xT − zα/2σ
√√√√1−

xu−µ
σ φ(xu−µσ )
Φ(xu−µσ ) −

(
φ(xu−µσ )
Φ(xu−µσ )

)2

n
,

xT + zα/2σ

√√√√1−
xu−µ
σ φ(xu−µσ )
Φ(xu−µσ ) −

(
φ(xu−µσ )
Φ(xu−µσ )

)2

n



a one-sided LCI

xT − zασ
√√√√1−

xu−µ
σ φ(xu−µσ )
Φ(xu−µσ ) −

(
φ(xu−µσ )
Φ(xu−µσ )

)2

n
, xu



a one-sided UCI

xl, xT + zασ

√√√√1−
xu−µ
σ φ(xu−µσ )
Φ(xu−µσ ) −

(
φ(xu−µσ )
Φ(xu−µσ )

)2

n


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4.4.3 Variance Unknown

When the variance σT is unknown and the sample size is large, σT is replaced

with the truncated sample standard deviation,

ST =
√

[1/(n− 1)]∑n
i=1

(
XTi −XT

)2
. Accordingly, the random variable

√
n
(
XT − µT

)
/ST has an approximately standard normal distribution which leads

to the confidence intervals shown in Table 4.4. It is suggested that the sample size

required is at least 40 (see Montgomery and Runger, 2011) as shown in Fig. 4.7.

Table 4.4. z CIs for mean of a truncated normal distribution when n is large

a two-sided CI
[
xT − zα/2

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n , xT + zα/2

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n

]

a one-sided LCI
[
xT − zα

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n , xu

]

a one-sided UCI
[
xl, xT + zα

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n

]

Similarly, we can develop the t confidence intervals with the random

variables by incorporating
√
n
(
XT − µT

)
/ST which follows a t distribution with

n− 1 degrees of freedom, as shown in Table 4.5.
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Table 4.5. t CIs for mean of a truncated normal distribution when n is small

a two-sided CI
[
xT − tα/2,n−1

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n
, xT + tα/2,n−1

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n

]

a one-sided LCI
[
xT − tα,n−1

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n
, xu

]

a one-sided UCI
[
xl, xT + tα,n−1

√
[1/(n−1)]

∑n

i=1(xTi−xT )2

n

]

4.5 Development of Hypothesis Tests on the Mean of a TND

The hypothesis tests on a truncated mean are developed with known and

unknown variances based on the CLT in this section. For the hypothesis tests, the

random variables
√
n
(
XT − µT

)
/σT and

√
n
(
XT − µT

)
/ST are used as a test

statistics developed in Sections 4.5.1 and 4.5.2, respectively.

4.5.1 Variance Known

The sample mean XT is an unbiased point estimator of µT with variance

σ2
T/n. When the sampling distribution of the truncated mean is approximately

normally distributed, the test statistic, ZT0 =
√
n
(
XT − θ

)
/σT , has a standard

normal distribution with mean 0 and variance 1, when n is large. Three types of

test statistics are developed and shown in Table 4.6. When the alternative

hypothesis is H1: µT 6= θ, H0 will be rejected if the observed value of the test

statistic zT0 =
√
n (xT − θ) /σT is either zT0>−zα/2 or zT0<zα/2. If the value of

zT0>zα, H0 will be rejected under H1: µT > θ. In contrast, the value of zT0<-zα, H0

will be rejected under H1: µT < θ.
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Table 4.6. Hypothesis tests with known variance

Null hypothesis H0: µT = θ

Test statistics

DTND ZT0 = XT−θ
σT /
√
n

ZT0 = XT−θ

σ

√[
1+
−
xl−µ
σ

φ

(
xl−µ
σ

)
+ xu−µ

σ
φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
−φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

))2]
/n

LTND ZT0 = XT−θ
σT /
√
n

ZT0 = XT−θ

σ

√[
1+

xl−µ
σ

φ

(
xl−µ
σ

)
1−Φ
(
xl−µ
σ

) −( φ

(
xl−µ
σ

)
1−
(
xl−µ
σ

))2]
/n

RTND ZT0 = XT−θ
σT /
√
n

ZT0 = XT−θ

σ

√[
1−

xu−µ
σ

φ( xu−µσ )
Φ( xu−µσ ) −

(
φ( xu−µσ )
Φ( xu−µσ )

)2]
/n

Alternative hypotheses Rejection criteria

H1: µT 6= θ zT0>−zα/2 or zT0<zα/2

H1: µT > θ zT0>zα

H1: µT < θ zT0<−zα

4.5.2 Variance Unknown

As shown in Fig. 4.7, the random variable
√
n
(
XT − µT

)
/ST has an

approximate normal distribution or an approximate t distribution, depending on a

sample size. By referring to Sections 4.4.3, we develop hypothesis tests on the

truncated mean with unknown variance as shown in Tables 4.7 and 4.8, respectively.
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Table 4.7. Hypothesis tests with unknown variance when n is large

Null hypothesis H0: µT = θ

Test statistic ZT0 =
√
n(XT−θ)
sT

=
√
n(XT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2

Alternative hypothesis Rejection criteria

H1: µT 6= θ zT0>−zα/2 or z<zα/2

H1: µT > θ zT0>zα

H1: µT < θ zT0<−zα

Table 4.8. Hypothesis tests with unknown variance when n is small

Null hypothesis H0: µT = θ

Test statistic TT0 =
√
n(XT−θ)
sT

=
√
n(XT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2

Alternative hypothesis Rejection criteria

H1: µT 6= θ tT0>−tα/2 or tT0<tα/2

H1: µT > θ tT0>tα

H1: µT < θ tT0<−tα

4.6 Development of P-values for the Mean of a TND

In Sections 4.6.1 and 4.6.2, we develop the P -values for the truncated mean

when variance of a population distribution is known and unknown.

4.6.1 Variance Known

4.6.1.1 P-values for the Mean of a Doubly TND

For the foregoing test from a doubly truncated normal distribution, it is
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relatively easy to interpret the P -values. If zT0 =
√
n (xT − θ) /σT is the computed

value of the test statistic when the sample size is large, the P -values are obtained as

P -value =



2
[
1− Φ

(∣∣∣zT0 =
√
n(xT−θ)
σT

∣∣∣)] =

2

1− Φ


∣∣∣∣∣∣∣∣∣∣
zT0 =

√
n(xT−θ)

σ

√[
1+
−
xl−µ
σ

φ

(
xl−µ
σ

)
+ xu−µ

σ
φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
−φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

))2]
∣∣∣∣∣∣∣∣∣∣




for a two-tailed test underH1: µT 6=θ,

1− Φ
(
zT0 =

√
n(xT−θ)
σT

)
=

1− Φ

zT0 =
√
n(xT−θ)

σ

√[
1+
−
xl−µ
σ

φ

(
xl−µ
σ

)
+ xu−µ

σ
φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
−φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

))2]


for an upper-tailed test underH1: µT>θ,

Φ
(
zT0 =

√
n(xT−θ)
σT

)
=

Φ

zT0 =
√
n(xT−θ)

σ

√[
1+
−
xl−µ
σ

φ

(
xl−µ
σ

)
+ xu−µ

σ
φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
−φ( xu−µσ )

Φ( xu−µσ )−Φ
(
xl−µ
σ

))2]


for a lower-tailed test underH1: µT<θ.

4.6.1.2 P-values for the Mean of Singly TNDs

The P -values for the means of left and right truncated normal distributions

(LTND and RTND) are shown in Table 4.9.
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Table 4.9. P -values under the left and right truncated normal distributions

LTDN P -value =



2
[

1− Φ
(∣∣∣zT0 =

√
n(xT−θ)
σT

∣∣∣)] = 2

1− Φ


∣∣∣∣∣∣∣∣∣∣
zT0 =

√
n(xT−θ)

σ

√[
1+

xl−µ
σ

φ

(
xl−µ
σ

)
1−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
1−
(
xl−µ
σ

))2]
∣∣∣∣∣∣∣∣∣∣




for a two-tailed test underH1: µT 6=θ,

1− Φ
(
zT0 =

√
n(xT−θ)
σT

)
= 1− Φ

zT0 =
√
n(xT−θ)

σ

√[
1+

xl−µ
σ

φ

(
xl−µ
σ

)
1−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
1−
(
xl−µ
σ

))2]


for an upper-tailed test underH1: µT>θ,

Φ
(
zT0 =

√
n(xT−θ)
σT

)
= Φ

zT0 =
√
n(xT−θ)

σ

√[
1+

xl−µ
σ

φ

(
xl−µ
σ

)
1−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
1−
(
xl−µ
σ

))2]


for a lower-tailed test underH1: µT<θ.

RTDN P -value =



2
[

1− Φ
(∣∣∣zT0 =

√
n(xT−θ)
σT

∣∣∣)] = 2

1− Φ


∣∣∣∣∣∣∣∣∣∣
z =

√
n(xT−θ)

σ

√[
1−

xu−µ
σ

φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

) −

(
φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

))2]
∣∣∣∣∣∣∣∣∣∣




for a two-tailed test underH1: µT 6=θ,

1− Φ
(
zT0 =

√
n(xT−θ)
σT

)
= 1− Φ

zT0 =
√
n(xT−θ)

σ

√[
1−

xu−µ
σ

φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

) −

(
φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

))2]


for an upper-tailed test underH1: µT>θ,

Φ
(
zT0 =

√
n(xT−θ)
σT

)
= Φ

zT0 =
√
n(xT−θ)

σ

√[
1−

xu−µ
σ

φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

) −

(
φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

))2]


for a lower-tailed test underH1: µT<θ.

4.6.2 Variance Unknown

Tables 4.10 and 4.11 show the associated P -values when variance is unknown.
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Table 4.10. P -values with unknown variance when n is large

P -value =



2
[
1− Φ

(∣∣∣z =
√
n(xT−θ)
ST

∣∣∣)] = 2

1− Φ

∣∣∣∣∣∣z =
√
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2

∣∣∣∣∣∣


for a two-tailed test underH1: µT 6=θ,

1− Φ
(∣∣∣z =

√
n(xT−θ)
ST

∣∣∣) = 1− Φ

∣∣∣∣∣∣z =
√
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2

∣∣∣∣∣∣


for an upper-tailed test underH1: µT>θ,

Φ
(∣∣∣z =

√
n(xT−θ)
ST

∣∣∣) = Φ

∣∣∣∣∣∣z =
√
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2

∣∣∣∣∣∣


for a lower-tailed test underH1: µT<θ.

Table 4.11. P -values with unknown variance when n is small

P − value =



2
[
1− P

(
|tT0 | ≤

√
n(xT−θ)
ST

)]
= 2

1− P

|tT0 | ≤
√
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2


for a two-tailed test underH1: µT 6=θ,

1− P
(
tT0 ≤

√
n(xT−θ)
ST

)
= 1− Φ

t ≤ √
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2


for an upper-tailed test underH1: µT>θ,

P
(
tT0 ≤

√
n(xT−θ)
ST

)
= Φ

t ≤ √
n(xT−θ)√

[1/(n−1)]
∑n

i=1(xTi−xT )2


for a lower-tailed test underH1: µT<θ.

4.7 Numerical Example

In this section, we provide a numerical example to illustrate the proposed

confidence intervals, hypothesis tests, and P -values. Let XT1 , XT2 , . . . , XTn be

independent, identically distributed, and assume the truncated normal random

sample with xl = 6, xu = 14, σT=2.158, n = 35, xT = 10.3 and α = 0.05. Using Eqs.

(27), (28) and (29), the results based on the symmetric doubly truncated normal

distribution are shown in Table 4.1. First, the 100(1− α)% two-sided confidence
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interval for µT is obtained as [10.3− 1.96× 2.158/
√

35, 10.3 + 1.96× 2.158/
√

35] =

[9.585, 11.015]. Second, the 100(1− α)% one-sided confidence interval with the

lower bound for µT is given by [10.3− 1.65× 2.158/
√

35, 14] = [9.698, 14]. Finally,

the 100(1− α)% one-sided confidence interval with the upper bound for µT is

expressed as [6, 10.3 + 1.65× 2.158/
√

35] = [6, 10.902]. Table 4.12 shows the

confidence intervals for µT under the four different truncated normal distributions.

Fig. 4.8 shows the corresponding the confidence intervals for µ where its probability

density function is fX(t) =
(
1/4
√

2π
)
e−

1
2( t−10

4 )2

, −∞ ≤ t ≤ ∞. It is our finding

that the confidence intervals for a truncated normal population are always smaller

than the ones for a untruncated normal population.

Table 4.12. Confidence intervals (α=0.05 )
Mean SD 100(1-α)% CI 100(1-α)% LCI 100(1-α)% UCI

ND 10 4 [8.975, 11.625] [9.184, ∞] [-∞, 11.415]

Symmetric DTND 10 2.158 [9.585, 11.015] [9.698, 14] [6, 10.902]

Asymmetric DTND 11.425 2.118 [9.585, 11.015] [9.709, 14] [6, 10.891]

LTND 11.150 3.174 [9.248, 11.351] [9.414, 14] [6, 11.185]

RTND 8.847 2.975 [9.248, 11.351] [9.414, 14] [6, 11.185]

Two-sided 100(1-α)% CIs One-sided 100(1-α)% LCI One-sided 100(1-α)% UCI
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Figure 4.8. Comparisons of the confidence intervals

83



For the doubly truncated normal distribution, consider the null hypothesis,

H0 :µT = 10, and the significant level 0.05. Then, the statistic

ZT0 =
√
n
(
XT − θ

)
/σT shown in Table 4.13 will be applied as since the sample size

is large and the variance is known. Consequently, under the alternative hypothesis

H1 :µT 6= 10, there is no strong evidence that µT is different from 10.3 since the

value of zT0(= 0.822) does not fall in the rejection region [−1.96, 1.96]. When the

alternative hypothesis is H1 : µT < 10, there is also no strong evidence that µT is

less than 10.3 because zT0 > −1.64.

Table 4.13. Hypothesis tests with variance known under the doubly truncated
normal distribution

Null hypothesis H0 :µT = 10

Test statistic ZT0 =
√
n
(
XT−θ

)
σT

=
√
n
(
XT−θ

)
σ

√
1+
−
xl−µ
σ

φ

(
xl−µ
σ

)
+ xu−µ

σ
φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

)
−Φ
(
xl−µ
σ

) −

(
φ

(
xl−µ
σ

)
−φ
(
xu−µ
σ

)
Φ
(
xu−µ
σ

)
−Φ
(
xl−µ
σ

))2

zT0 =
√

35(10.3−10)
2.158 =0.822

Alternative hypothesis Rejection criteria

H1 : µT 6= 10 zT0>-1.96 or zT0<1.96

H1 : µT > 10 zT0>1.64

H1 : µT < 10 zT0<-1.64

The P -values are then obtained as
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P -value =



2
[
1− Φ

(∣∣∣zT0 =
√
n(XT−θ)
σT

∣∣∣)] = 2
[
1− Φ

(∣∣∣zT0 =
√

35(10.3−10)
2.158

∣∣∣)] = 2 [1− Φ (0.822)] = 0.412

for a two-tailed test underH1: µT 6=10,

1− Φ
(
zT0 =

√
n(XT−θ)
σT

)
= 1− Φ

(
zT0 =

√
35(10.3−10)

2.158

)
= 1− Φ (0.822) = 0.206

for an upper-tailed test underH1: µT>10,

Φ
(
zT0 =

√
n(XT−θ)
σT

)
= Φ

(
zT0 =

√
35(10.3−10)

2.158

)
= Φ (0.822) = 0.794

for a lower-tailed test underH1: µT<10.

4.8 Conclusions and Future Work

In many quality and reliability engineering problems, specifications are

implemented on products, and hence the resulting distributions of conforming

products are truncated. However, the current statistical inference typically does not

incorporate a random sample from a truncated distribution into hypothesis testing.

This research has provided the mathematical proofs of the Central Limit Theorem

within a truncated environment and also verified the theorem through simulation.

Based on the Central Limit Theorem, we have then developed the new one-sided

and two-sided z-test and t-test procedures, including their test statistics, confidence

intervals, and P -values, using appropriate truncated test statistics. As a future

study, the work done in this dissertation can be extended to several different areas.

Statistical inference on a population proportion is one example. Inference on

population means for two samples with variances known and unknown can also be

developed by extending the truncated statistics. The sample size determination

associated with the probability of type II error is another fruitful future research

area.
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CHAPTER FIVE 

 

DEVELOPMENT OF STATISTICAL CONVOLUTIONS OF TRUNCATED NORMAL 

AND TRUNCATED SKEW NORMAL RANDOM VARIABLES WITH 

APPLICATIONS 

 

 

As discussed in Chapter 2, several crucial contributions to the literature on 

convolutions that have not been explored previously is offered in Chapter 5. 

Convolutions are analogous to the sum of random variables and are critical concepts in 

multistage production processes, statistical tolerance analysis, and gap analysis. More 

specifically, the focus is on the convolutions resulting from double and triple truncations 

associated with symmetric and asymmetric normal and skew normal distributions under 

three types of quality characteristics, such as nominal-the-best type (N-type), smaller-the-

better type (S-type), and larger-the-better type (L-type). The convolutions of the 

combinations of truncated normal and truncated skew normal random variables have 

never been fully explored in the literature. This is a critical issue because specification 

limits on a process are implemented externally in most manufacturing and service 

processes, which implies that the product is typically reworked or scrapped if its 

performance does not fall in the range of the specifications. As such, the actual 

distribution after inspection becomes truncated. In Section 5.1, we first provide notations 

of four cases of truncated normal and six cases of truncated skew normal random 

variables. Then, the convolutions of truncated normal and truncated skew normal random 

variables on doubly truncations is investigated. We extend the convolution on triple 

truncations in Section 5.2. Finally, numerical examples for statistical tolerance analysis 

and gap analysis follow in Section 5.3.  
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5.1      Development of the convolutions of truncated normal and truncated skew  

normal random variables on double truncations 

 

In the convolution theorem, the order of truncated random variables does not 

affect the probability density function of the sum of those random variables. In this paper, 

truncated normal and truncated skew normal random variables are considered 

independent but are not necessarily identically distributed. By using truncated normal and 

skew normal distributions, we can design various cases of the sums on double 

truncations. As shown in Figure 3, four types of a truncated normal distribution and six 

types of a truncated skew normal distribution are categorized. In the notation of the 

truncated normal distribution, ‘Sym’ and ‘Asym’ denote symmetric and asymmetric, 

respectively, and TN stands for ‘truncated normal.’ Similarly, for the truncated skew 

normal distribution, ‘+’ indicates a positive value which means the untruncated original 

distribution is positively skewed. In contrast, ‘−’ means that   is negative and the 

untruncated original distribution is negatively skewed, and TSN denotes ‘truncated skew 

normal.’ 

This section has three subsections. First, the sums of two truncated normal 

random variables are derived in Section 5.1. Second, the sums of two truncated skew 

normal random variables are examined in Section 5.2. Finally, in Section 5.3, we 

investigate the sums of truncated normal and truncated skew normal random variables. 
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Truncated normal distributions Truncated skew normal distributions 

          
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

 Notation         

(a) ypeSym N tTN 
 A symmetric doubly truncated    

normal distribution 
(e) ypeN tTSN 

  
A doubly truncated positive 

skew normal distribution 

(b) ypeAsym N tTN 
 An asymmetric doubly truncated 

normal distribution 
(f) ypeN tTSN 

  
A doubly truncated negative 

skew normal distribution  

(c) ypeL tTN 
 A left truncated normal        

distribution 
(g) ypeL tTSN 

  
A left truncated positive skew 

normal distribution  

(d) ypeS tTN 
 A right truncated normal 

distribution 
(h) ypeL tTSN 

  
A left truncated negative skew 

normal distribution 

   (i) ypeS tTSN 

  
A right truncated positive skew 

normal distribution 

   (j) ypeS tTSN 

  
A right truncated negative skew 

normal distribution 

 

Figure 5.1. Ten cases of truncated normal and truncated skew normal random variables 

and notation 

 

 

5.1.1      The convolutions of truncated normal random variables on double  

  truncations          

                       

To develop the sums of two independent truncated normal random variables, we 

consider the following two truncated normal random variables, 
1TX  and 

2TX , where those 

probability density functions are 
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Let 2Z  be 
1 2T TX X . Based on the convolution theorem, the probability density function 

of the sum of the above two truncated normal random variables is obtained as: 

2 2 1

2 2

2 1

2 1

2 2

2 1

2 12 1

2 1

2 2 1 1

1 1

2 2

2 1

1 1

2 2

2 1
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2 2
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Note that 
2 2

[ , ] ( )
l ux xI z x  can be expressed as 

2 2
[ , ] ( )

u lz x z xI x   since z x y  . Ten cases of 

the sums of two truncated normal random variables are illustrated in Figure 4. The 

distributions, means and variances of the sums of truncated normal random variables are 

also shown in Table 2, where  2E Z  is equal to the sum of  
1 1T TE X   and 

 
2 2

,T TE X   and  2Var Z is equal to the sum of  
1 1

2

T TVar X   and  
2 2

2 .T TVar X   

In Figure 5.2, we assume that 
1 2 8    and 

1 2 2.   In addition, the lower and 

upper truncation points are considered according to different types of truncation as shown 

in Table 5.1. 

Table 5.1.  Lower and upper truncation points based on a TNRV 

Type LTP UTP Type LTP UTP 

typeSym NTN 
 6.5 9.5 typeAsym NTN 

 7.5 10 

typeLTN 
 7 ∞ typeSTN 

 -∞ 9 
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Figure 5.2. Ten different cases of the sums of two TNRVs 

 

5.1.2    The convolutions of truncated skew normal random variables on double  

truncations          

                       

The convolutions of the sums of two independent truncated skew normal random 

variables, 
1TSY  and 

2TSY , are developed in this section as follows 

Case 

# 1TX  

2TX  

1 22 T TZ X X   

Case 

# 1TX  

2TX  

1 22 T TZ X X   

1 

typeNSym TN 
 

typeNSym TN 
  

2 

typeNAsym TN 
 

typeNAsym TN 
  

 

1 1

28.00, 0.70T T    
 

2 2

28.00, 0.70T T    
 

2 2

216.66, 1.19Z Z    
 

1 1

28.66, 0.49T T    
 

2 2

28.66, 0.49T T    
 

2 2

217.32, 0.98Z Z    

3 

typeLTN 
 

typeLTN 
  

4 

typeSTN 
 

typeSTN 
  

 

1 1

29.02, 1.94T T    
 

2 2

29.02, 1.94T T    
 

2 2

218.04, 3.88Z Z    
 

1 1

26.98, 1.94T T    
 

2 2

26.98, 1.94T T    
 

2 2

213.96, 3.88Z Z    

5 

typeNSym TN 
 

typeNAsym TN 
  

6 

typeNSym TN 
 

typeLTN 
  

 

1 1

28.00, 0.70T T    
 

2 2

28.66, 0.49T T    
 

2 2

216.66, 1.19Z Z    
 

1 1

28.00, 0.70T T    
 

2 2

29.02, 1.94T T    
 

2 2

217.02, 2.64Z Z    

7 

typeNSym TN 
 

typeSTN 
  

8 

typeNAsym TN 
 

typeLTN 
  

 

1 1

28.00, 0.70T T    
 

2 2

26.98, 1.94T T    
 

2 2

214.98, 2.64Z Z    
 

1 1

28.66, 0.49T T    
 

2 2

29.02, 1.94T T    
 

2 2

217.68, 2.43Z Z    

9 

typeNAsym TN 

ypeL tTN 
 

typeSTN 
  

10 

typeLTN 
 

typeSTN 
  

 

1 1

28.00, 0.70T T    
 

2 2

26.98, 1.94T T    
 

2 2

214.98, 2.64Z Z    
 

1 1

29.02, 1.94T T    
 

2 2

26.98, 1.94T T    
 

2 2

216.00, 3.88Z Z    
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2 2
[ , ] ( )

l uy yI z x  can be given by 
2 2

[ , ] ( )
u lz y z yI x  . Twenty-one cases of the sums of two 

truncated skew normal random variables are listed in Figure 5.3. It is assumed that the 

parameters, 
1  and 2  are 8, and the parameters, 1  and 2  are 4. In addition, the shape 

parameter  discussed in Section 2.2.3, and the lower and upper truncation points are 

utilized according to six different types of truncation as shown in Table 5.2. 

 

 

Case 

# 1TX  

2TX  

1 22 T TZ X X   

Case 

# 1TX  

2TX  

1 22 T TZ X X   

1 

typeNTSN 


 

typeNTSN 


  

2 

typeNTSN 


 

typeNTSN 


  

 

1 1

210.69, 3.79T T    
 

2 2

210.69, 3.79T T    
 

2 2

221.38, 7.59Z Z    
 

1 1

25.31, 3.79T T    
 

2 2

25.31, 3.79T T    
 

2 2

210.62, 7.59Z Z    

3 

typeLTSN 


 

typeLTSN 


  

4 

typeLTSN 


 

typeLTSN 


  

 

1 1

211.18, 6.32T T    
 

2 2

211.18, 6.32T T    
 

2 2

222.36, 12.64Z Z    
 

1 1

25.46, 4.29T T    
 

2 2

25.46, 4.29T T    
 

2 2

210.92, 8.58Z Z    

5 

typeSTSN 


 

typeSTSN 


  

6 

typeSTSN 


 

typeSTSN 


  

 

1 1

210.54, 4.29T T    
 

2 2

210.54, 4.29T T    
 

2 2

221.08, 8.58Z Z    
 

1 1

24.82, 6.32T T    
 

2 2

24.82, 6.32T T    
 

2 2

29.64, 12.63Z Z    
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Case 

# 1TX  

2TX  

1 22 T TZ X X   

Case 

# 1TX  

2TX  

1 22 T TZ X X   

7 

typeNTSN 


 

typeNTSN 



 

 

8 

typeNTSN 


 

ypeL tTSN 


  

 

1 1

210.69, 3.79T T    
 

2 2

25.31, 3.79T T    
 

2 2

216.00, 7.59Z Z    
 

1 1

210.69, 3.79T T    
 

2 2

211.18, 6.32T T    
 

2 2

221.87, 10.11Z Z    

9 

typeNTSN 


 

typeLTSN 


  

10 

typeNTSN 


 

typeSTSN 


  

 

1 1

210.69, 3.79T T    
 

2 2

25.46, 4.29T T    
 

2 2

216.15, 8.08Z Z    
 

1 1

210.69, 3.79T T    
 

2 2

210.54, 4.29T T    
 

2 2

221.23, 8.08Z Z    

11 

typeNTSN 


 

ypeS tTSN 


  

12 

typeNTSN 


 

typeLTSN 


  

 

1 1

210.69, 3.79T T    
 

2 2

24.82, 6.32T T    
 

2 2

215.51, 10.11Z Z    
 

1 1

25.31, 3.79T T    
 

2 2

211.18, 6.32T T    
 

2 2

216.49, 10.11Z Z    

13 

typeNTSN 


 

typeLTSN 


  

14 

typeNTSN 


 

typeSTSN 


  

 

1 1

25.31, 3.79T T    
 

2 2

25.46, 4.29T T    
 

2 2

210.77, 8.08Z Z    
 

1 1

25.31, 3.79T T    
 

2 2

210.54, 4.29T T    

 

 

2 2

215.85, 8.08Z Z    

15 

typeNTSN 


 

typeSTSN 


  

16 

typeLTSN 


 

typeLTSN 


  

 

1 1

25.31, 3.79T T    

 

 

2 2

24.82, 6.32T T    
 

2 2

210.13, 10.11Z Z    
 

1 1

211.18, 6.32T T    
 

2 2

25.46, 4.29T T    
 

2 2

216.64, 10.61Z Z    

17 

typeLTSN 


 

typeSTSN 


  

18 

typeLTSN 


 

typeSTSN 


  

 

1 1

211.18, 6.32T T    
 

2 2

210.54, 4.29T T    
 

2 2

221.72, 10.61Z Z    
 

1 1

211.18, 6.32T T    
 

2 2

24.82, 6.32T T    
 

2 2

216.00, 12.64Z Z    

19 

typeLTSN 


 

typeSTSN 


  

20 

typeLTSN 


 

typeSTSN 


  

 

1 1

25.46, 4.29T T    
 

2 2

210.54, 4.29T T    
 

2 2

216.00, 8.58Z Z    
 

1 1

25.46, 4.29T T    
 

2 2

24.82, 6.32T T    
 

2 2

210.28, 10.61Z Z    
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Figure 5.3. Twenty-one different cases of the sums of truncated skew NRVs 

 

Table 5.2. Shape parameter and lower and upper truncation points  

Type    LTP UTP Type   LTP UTP 

ypeN tTSN 

  3 7 15 ypeN tTSN 


 -3 1 9 

ypeL tTSN 


 3 7   ypeL tTSN 


 -3 1   

ypeS tTSN 


 3 -  15 ypeS tTSN 


 -3 -  9 

 

 

5.1.3    The convolutions of the sum of truncated normal and truncated skew normal  

random variables on double truncations          

                       

An example of the sum of  independent truncated normal and a truncated skew 

normal random variables is shown in Figure 5.4, where the sum of a doubly truncated 

skew normal random variable 
1TX  and a doubly truncated normal random variable

2TX  is 

illustrated.   

  
Figure 5.4. Illustration of a sum of truncated normal and truncated skew normal 

random variables on double truncations 

 

Case 

# 1TX  

2TX  

1 22 T TZ X X   

    

21 

typeSTSN 


 

typeSTSN 


  

 

   

 

1 1

210.54, 4.29T T    
 

2 2

24.82, 6.32T T    
 

2 2

215.36, 10.61Z Z    

   



 95 

The probability density function of the sum of truncated normal and truncated skew 

normal random variables is derived as follows 
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 

 
 
 



  


) .x dx

 

 

2 2
[ , ] ( )

l uy yI y  can be written as 
2 2

[ , ] ( )
u lz y z yI x   since z x y  . 

Twenty-four cases of the sums of truncated normal and truncated skew normal 

random variables are listed in Figure 5.5. We assume that 
1 2 8   , 

1 2   and 
2 4.   
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As shown in Table 5.3, the shape parameters and the lower and upper truncation points 

are utilized. It is noted that the shape parameters are zero when truncated normal 

distributions are considered. 

 

 

Case 

# 1TX  

2TX  

1 22 T TZ X X   

Case 

# 1TX  

2TX  

1 22 T TZ X X   

1 

ypeN tSymTN 
 

ypeN tTSN 


 

 

2 

ypeN tSymTN 
 

ypeN tTSN 


  

 

1 1

28.00, 0.70T T    
 

2 2

210.69, 3.79T T  

 

 

2 2

218.69, 4.49Z Z  

 

 

1 1

28.00, 0.70T T    
 

2 2

25.31, 3.79T T    
 

2 2

213.31, 4.49Z Z    

3 

ypeN tSymTN 
 

ypeL tTSN 


  

4 

ypeN tSymTN 
 

ypeL tTSN 


  

 

1 1

28.00, 0.70T T    
 

2 2

211.18, 6.32T T    
 

2 2

219.18, 7.02Z Z    
 

1 1

28.00, 0.70T T    
 

2 2

25.46, 4.29T T    
 

2 2

213.46, 4.99Z Z    

5 

ypeN tSymTN 
 

ypeS tTSN 


  

6 

ypeN tSymTN 
 

ypeS tTSN 


  

 

1 1

28.00, 0.70T T    
 

2 2

210.54, 4.29T T    
 

2 2

218.54, 4.99Z Z    
 

1 1

28.00, 0.70T T  

 

 

2 2

24.82, 6.32T T    
 

2 2

212.82, 7.02Z Z    

7 

ypeN tAsymTN 
 

ypeN tTSN 



typeSTN 
 

 

8 

ypeN tAsymTN 
 

ypeN tTSN 


  

 

1 1

28.66, 0.49T T  

 

 

2 2

210.69, 3.79T T    
 

2 2

219.35, 4.28Z Z  

 

 

1 1

28.66, 0.49T T  

 

 

2 2

25.31, 3.79T T    
 

2 2

213.97, 4.28Z Z    

9 

ypeN tAsymTN 
 

ypeL tTSN 


  

10 

ypeN tAsymTN 
 

ypeL tTSN 


  

 

1 1

28.66, 0.49T T  

 

 

2 2

211.18, 6.32T T    
 

2 2

219.84, 6.81Z Z    
 

1 1

28.66, 0.49T T    
 

2 2

25.46, 4.29T T    
 

2 2

214.12, 4.78Z Z    

11 

ypeN tAsymTN 
 

ypeS tTSN 


  

12 

ypeN tAsymTN 
 

ypeS tTSN 


  

 

1 1

28.66, 0.49T T  

 

 

2 2

210.54, 4.29T T    
 

2 2

219.20, 4.78Z Z    
 

1 1

28.66, 0.49T T  

 

 

2 2

24.82, 6.32T T    
 

2 2

213.48, 6.81Z Z    
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Figure 5.5. Twenty four different cases of sums of TN and truncated skew NRV 

 

 

 

 

 

Case 

# 1TX  

2TX  

1 22 T TZ X X   

Case 

# 1TX  

2TX  

1 22 T TZ X X   

13 

ypeL tTN 
 

ypeN tTSN 


 

 

14 

ypeL tTN 
 

ypeN tTSN 


  

 

1 1

29.02, 1.94T T  

 

 

2 2

210.69, 3.79T T    
 

2 2

219.71, 5.73Z Z    
 

1 1

29.02, 1.94T T    
 

2 2

25.31, 3.79T T    

 

 

2 2

214.33, 5.73Z Z    

15 

ypeL tTN 
 

ypeL tTSN 


  

16 

ypeL tTN 
 

ypeL tTSN 


  

 

1 1

29.02, 1.94T T    

 

 

2 2

211.18, 6.32T T    
 

2 2

220.20, 8.26Z Z    
 

1 1

29.02, 1.94T T    
 

2 2

25.46, 4.29T T    
 

2 2

214.48, 6.23Z Z    

17 

ypeL tTN 
 

ypeS tTSN 


  

18 

ypeL tTN 
 

ypeS tTSN 


  

 

1 1

29.02, 1.94T T    
 

2 2

210.54, 4.29T T    
 

2 2

219.56, 6.23Z Z    
 

1 1

29.02, 1.94T T    
 

2 2

24.82, 6.32T T    
 

2 2

213.84, 8.26Z Z    

19 

ypeS tTN 
 

ypeN tTSN 

   

20 

ypeS tTN 
 

ypeN tTSN 


  

 

1 1

26.98, 1.94T T    
 

2 2

210.69, 3.79T T    
 

2 2

217.67, 5.73Z Z     

1 1

26.98, 1.94T T  

 

 

2 2

25.31, 3.79T T    
 

2 2

212.29, 5.73Z Z    

21 

ypeS tTN 
 

ypeL tTSN 


  

22 

ypeS tTN 
 

ypeL tTSN 


  

 

1 1

26.98, 1.94T T    
 

2 2

211.18, 6.32T T    
 

2 2

218.16, 8.26Z Z    
 

1 1

26.98, 1.94T T    
 

2 2

25.46, 4.29T T    
 

2 2

212.44, 6.23Z Z    

23 

ypeS tTN 
 

ypeS tTSN 


  

24 

ypeS tTN 
 

ypeS tTSN 


  

 
1 1

26.98, 1.94T T    
 

2 2

210.54, 4.29T T    
 

2 2

217.52, 6.23Z Z    
 

1 1

26.98, 1.94T T    
 

2 2

24.82, 6.32T T  

 

 

2 2

211.80, 8.26Z Z    
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Table 5.3. Shape parameter   and lower and upper truncation points based on a 

truncated skew normal random variable 
 

Type    LTP UTP Type   LTP UTP 

ypeN tSymTN 
 0 6.5 9.5 ypeN tAsymTN 

 0 7.5 10 

ypeL tTN 
 0 7   ypeS tTN 

 0 -  9 

ypeN tTSN 

  3 7 15 ypeN tTSN 


 -3 1 9 

ypeL tTSN 


 3 7   ypeL tTSN 


 -3 1   

 

 

 

5.2      Development of the convolutions of the combinations of truncated normal  

            and truncated skew normal random variables on triple truncations 

 

In this section, we develop the convolutions of the sums of independent truncated 

normal and truncated skew normal random variables on triple truncations. First, the sums 

of three truncated normal random variables are discussed in Section 5.2.1. Second, the 

sums of three truncated skew normal random variables are then examined in Section 

5.2.2. Finally, in Section 5.2.3, the sums of the combinations of truncated normal and 

truncated skew normal random variables on triple truncations are studied.  

5.2.1    The convolutions of truncated normal random variables on triple  

            truncations         

                       

The probability density function of 
3TX is defined as 

2

3

3

2
3 3 3

3

3 3

3

1

2

3
[ , ]

1

2

3

1
exp

2
( ) ( )

1
exp

2

T l u

u

l

k

X x x
v

x

x

f k I k

dv









 

 

 
  

 

 
  

 





. 

Denoting 3Z  = 
3 1 22 2 where ,T T TZ X Z X X   the probability density function of Z3 is 

then given by  
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3 23

( ) ( ) ( )
TZ X Zf s f s z f z dz




   

2

3

3

2
23 3

3

3 3

3

1

2

3
[ , ]

1

2

3

1
exp

2
( ) ( )

1
exp

2

l u

u

l

s z

x x Z
v

x

x

I s z f z dz

dv









 

 

  
  

 

 
  

 





 


  

2 2

3 2

3 2

2 2
3 3

3 2

23 23

23

2

1

1

2

1

1

1 1

2 2

3 2
[ , ]

11

22

23

1

2

1

1

2

1

1 1
exp exp

2 2
( )

11
expexp

22

1
exp

2

1
exp

2

l u

uu

ll

l

s z z x

x x
v p

xx

xx

x

h

x

I s z

dpdv

 

 

 











   

  

 

 

      
    

   

    
    

  

 
  

 

 
  

 

 

 





  





 

2 2 1 1

1

1

[ , ] [ , ]( ) ( )
u l l u

u

z x z x x x

x

I x I x dx dz

dh

 











 

2 2

3 2

3 2

2 2

3 2

23 23

23

2

1

1

2
1 1

1

1 1

1

1 1

2 2
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2 2 3 3
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It is noted that 
3 3

[ , ] ( )
l ux xI s z  can be written as 

3 3
[ , ] ( )

u ls x s xI z  . Twenty cases for triple 

convolutions of the combinations of truncate normal and truncated skew normal random 

variables are listed in Table 5.4. The values of parameters and lower and upper truncation 
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points in Section 5.1.1 are utilized. Also, illustrations of the probability densities of 3Z  

are shown in Figure 5.6. 

Table 5.4. Twenty different cases based on a TNRV 

Case  

# 1TX  

2TX  

3TX  

Case  

# 1TX  

2TX  

3TX  

1 typeNSym TN 
 

typeNSym TN 
 

typeNSym TN 
 2 typeNAsym TN 

 

typeNAsym TN 
 

typeNAsym TN 
 

3 typeLTN 
 

typeLTN 
 

typeLTN 
 4 typeSTN 

 

typeSTN 
 

typeSTN 
 

5 typeNSym TN 
 

typeNSym TN 
 

typeNAsym TN 
 6 typeNSym TN 

 

typeNSym TN 
 

typeLTN 
 

7 typeNSym TN 
 

typeNSym TN 
 

typeSTN 
 8 typeNAsym TN 

 

typeNAsym TN 
 

typeNSym TN 
 

9 typeNAsym TN 
 

typeNAsym TN 
 

typeLTN 
 10 typeNAsym TN 

 

typeNAsym TN 
 

typeSTN 
 

11 typeLTN 
 

typeLTN 
 

typeNSym TN 
 12 typeLTN 

 

typeLTN 
 

typeNAsym TN 
 

13 typeLTN 
 

typeLTN 
 

typeSTN 
 14 typeSTN 

 

typeSTN 
 

typeNSym TN 
 

15 typeSTN 
 

typeSTN 
 

typeNAsym TN 
 16 typeSTN 

 

typeSTN 
 

typeLTN 
 

17 typeNSym TN 
 

typeNAsym TN 
 

ypeL tTN 
 18 typeNSym TN 

 

typeNAsym TN 
 

ypeS tTN 
 

19 typeNSym TN 
 

typeLTN 
 

ypeS tTN 
 20 typeNAsym TN 

 

typeLTN 
 

ypeS tTN 
 

 

Case 

# 1 22 T TZ X X   
1 2 33 T T TZ X X X    Case 

# 1 22 T TZ X X   
1 2 33 T T TZ X X X    

1 

 

2
16.66Z   

2

2 1.19Z   

 

3
24.66Z   

3

2 1.89Z   2 

 

2
17.32Z   

2

2 0.98Z   

 

3
25.98Z   

3

2 1.47Z   

3 

 

2
18.04Z   

2

2 3.88Z   

 

3
27.06Z   

3

2 5.82Z   4 

 

2
13.96Z   

2

2 3.88Z   

 

3
20.94Z   

3

2 5.82Z   

5 

 

2
16.00Z   

2

2 1.40Z   

 

3
24.66Z   

3

2 1.89Z   6 

 

2
16.00Z   

2

2 1.40Z   

 

3
27.02Z   

3

2 3.34Z   

7 

 

2
16.00Z   

2

2 1.40Z   

 

3
22.98Z   

3

2 3.34Z   8 

 

2
17.32Z   

2

2 0.98Z   

 

3
25.32Z   

3

2 1.68Z   

9 

 

2
17.32Z   

2

2 0.98Z   

 

3
26.34Z   

3

2 2.92Z   10 

 

2
17.32Z   

2

2 0.98Z   

 

3
24.30Z   

3

2 2.92Z   
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Case 

# 1 22 T TZ X X   
1 2 33 T T TZ X X X    Case 

# 1 22 T TZ X X   
1 2 33 T T TZ X X X    

11 

 

2
18.04Z   

2

2 3.88Z   

 

3
26.04Z   

3

2 4.58Z   12 

 

2
18.04Z   

2

2 3.88Z   

 

3
27.70Z   

3

2 4.37Z   

13 

 

2
18.04Z   

2

2 3.88Z   

 

3
25.02Z   

3

2 5.82Z   14 

 

2
13.96Z   

2

2 3.38Z   

 

3
21.96Z   

3

2 4.58Z   

15 

 

2
13.96Z   

2

2 3.38Z   

 

3
22.62Z   

3

2 4.37Z   16 

 

2
13.96Z   

2

2 3.38Z   

 

3
22.98Z   

3

2 5.82Z   

17 

 

2
18.66Z   

2

2 1.19Z   

 

3
27.68Z   

3

2 3.13Z   18 

 

2
18.66Z   

2

2 1.19Z   

 

3
25.64Z   

3

2 3.13Z   

19 

 

2
17.02Z   

2

2 2.64Z   

 

3
24.00Z   

3

2 4.58Z   20 

 

2
17.68Z   

2

2 2.43Z   

 

3
24.66Z   

3

2 4.37Z   

 

Figure 5.6. Twenty different cases of the sums as listed in Table 5.4 

 

5.2.2    The convolutions of truncated skew normal random variables on triple  

            truncations         

                       

The probability density function of 
3TSY is defined as 
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. 

By denoting 
3TSZ  = 

2 3TS TSZ Y where  
2TSZ = 

1 2
,TS TSY Y the probability density function of 

3TSZ  is obtained as 
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Since ,s z k 
3 3

[ , ] ( )
l uy yI s z  can be written as 

3 3
[ , ] ( ).

u ls y s yI z   Fifty-six cases are 

presented in Table 5.5 and Figure 5.7. The values of parameters and lower and upper 

truncation points utilized in Section 5.1.2 are applied 

 

Table 5.5.  Fifty six different cases based on a TN and truncated skew NRV 

Case  

# 1TX
 

2TX
 

3TX
 

Case  

# 1TX
 

2TX
 

3TX
 

1 ypeN tTSN 


 

ypeN tTSN 


 

ypeN tTSN 


 

2 ypeN tTSN 


 

ypeN tTSN 


 

ypeN tTSN 


 

3 ypeL tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 4 ypeL tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 

5 ypeS tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 6 ypeS tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 

7 ypeN tTSN 


 

ypeN tTSN 


 

ypeN tTSN 


 8 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 

9 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 10 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 

11 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 12 ypeN tTSN 


 

ypeN tTSN 


 

ypeN tTSN 


 

13 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 14 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 

15 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 16 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 

17 ypeL tTSN 


 

ypeL tTSN 


 

ypeN tTSN 


 

18 ypeL tTSN 


 

ypeL tTSN 


 

ypeN tTSN 


 

19 ypeL tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 20 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

21 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 22 ypeL tTSN 


 

ypeL tTSN 


 

ypeN tTSN 


 

23 ypeL tTSN 


 

ypeL tTSN 


 

ypeN tTSN 


 24 ypeL tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 

25 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 26 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

27 ypeS tTSN 


 

ypeS tTSN 


 

ypeN tTSN 


 

28 ypeS tTSN 


 

ypeS tTSN 


 

ypeN tTSN 


 

29 ypeS tTSN 


 

ypeS tTSN 


 

ypeL tTSN 


 30 ypeS tTSN 


 

ypeS tTSN 


 

ypeL tTSN 


 

31 ypeS tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 32 ypeS tTSN 


 

ypeS tTSN 


 

ypeN tTSN 


 

33 ypeS tTSN 


 

ypeS tTSN 


 

ypeN tTSN 


 34 ypeS tTSN 


 

ypeS tTSN 


 

ypeL tTSN 


 

35 ypeS tTSN 


 

ypeS tTSN 


 

ypeL tTSN 


 36 ypeS tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 

37 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 38 ypeN tTSN 


 

ypeN tTSN 


 

ypeL tTSN 


 

39 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 40 ypeN tTSN 


 

ypeN tTSN 


 

ypeS tTSN 


 

41 ypeN tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 42 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

43 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 44 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

45 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 46 ypeN tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


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Case  

# 1TX
 

2TX
 

3TX
 

Case  

# 1TX
 

2TX
 

3TX
 

47 ypeN tTSN 


 

ypeL tTSN 


 

ypeL tTSN 


 48 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

49 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 50 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

51 ypeN tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 52 ypeN tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 

53 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 54 ypeL tTSN 


 

ypeL tTSN 


 

ypeS tTSN 


 

55 ypeL tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 56 ypeL tTSN 


 

ypeS tTSN 


 

ypeS tTSN 


 

 

Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

1 

 

2
21.38Z   

2

2 7.59Z   

 

3
32.07Z   

3

2 11.38Z   2 

 

2
10.62Z   

2

2 7.59Z   

 

3
15.93Z   

3

2 11.38Z   

3 

 

2
22.36Z   

2

2 12.63Z   

 

3
33.54Z   

3

2 18.95Z   4 

 

2
10.92Z   

2

2 8.58Z   

 

3
16.38Z   

3

2 12.87Z   

5 

 

2
21.08Z   

2

2 8.58Z   

 

3
31.62Z   

3

2 12.87Z   6 

 

2
9.64Z   

2

2 12.63Z   

 

3
14.46Z   

3

2 18.95Z   

7 

 

2
21.38Z   

2

2 7.59Z   

 

3
26.69Z   

3

2 11.38Z   8 

 

2
21.38Z   

2

2 7.59Z   

 

3
32.56Z   

3

2 13.90Z   

9 

 

2
21.38Z   

2

2 7.59Z   

 

3
26.84Z   

3

2 11.88Z   10 

 

2
21.38Z   

2

2 7.59Z   

 

3
31.92Z   

3

2 11.88Z   

11 

 

2
21.38Z   

2

2 7.59Z   

 

3
26.20Z   

3

2 13.90Z   12 

 

2
10.62Z   

2

2 7.59Z   

 

3
21.31Z   

3

2 11.38Z   

13 

 

2
10.62Z   

2

2 7.59Z   

 

3
21.80Z   

3

2 13.90Z   14 

 

2
10.62Z   

2

2 7.59Z   

 

3
16.08Z   

3

2 11.88Z   

15 

 

2
10.62Z   

2

2 7.59Z   

 

3
21.16Z   

3

2 11.88Z   16 

 

2
10.62Z 

 

2

2 7.59Z   
 

3
15.44Z   

3

2 13.90Z   
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Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

17 

 

2
22.36Z 

 

2

2 12.63Z 

  

3
33.05Z   

3

2 16.43Z   18 

 

2
22.36Z   

2

2 12.63Z   

 

3
27.67Z   

3

2 16.43Z   

19 

 

2
22.36Z   

2

2 12.63Z   

 

3
27.82Z   

3

2 16.92Z   20 

 

2
22.36Z   

2

2 12.63Z   

 

3
32.90Z   

3

2 16.92Z   

23 

 

2
10.92Z   

2

2 8.58Z   

 

3
16.23Z   

3

2 12.37Z   24 

 

2
10.92Z   

2

2 8.58Z   

 

3
22.10Z   

3

2 14.90Z   

25 

 

2
10.92Z   

2

2 8.58Z   

 

3
21.46Z   

3

2 12.87Z   26 

 

2
10.92Z   

2

2 8.58Z   

 

3
15.74Z   

3

2 14.90Z   

27 

 

2
21.08Z   

2

2 8.58Z   

 

3
31.77Z   

3

2 12.37Z   28 

 

2
21.08Z   

2

2 8.58Z   

 

3
26.39Z   

3

2 12.37Z   

29 

 

2
21.08Z   

2

2 8.58Z   

 

3
32.26Z   

3

2 14.90Z   30 

 

2
21.08Z   

2

2 8.58Z   

 

3
26.54Z   

3

2 12.87Z   

31 

 

2
21.08Z   

2

2 8.58Z   

 

3
25.90Z   

3

2 14.90Z   32 

 

2
9.64Z   

2

2 12.63Z   

 

3
20.33Z   

3

2 16.43Z   

33 

 

2
9.64Z   

2

2 12.63Z   

 

3
14.95Z   

3

2 16.43Z   34 

 

2
9.64Z   

2

2 12.63Z   

 

3
20.82Z   

3

2 18.95Z   

35 

 

2
9.64Z   

2

2 12.63Z   
 

3
15.10Z   

3

2 16.92Z   36 

 

2
9.64Z   

2

2 12.63Z   

 

3
20.18Z   

3

2 16.92Z   

37 

 

2
16.00Z   

2

2 7.59Z   
 

3
27.18Z   

3

2 13.90Z   38 

 

2
16.00Z   

2

2 7.59Z   
 

3
21.46Z   

3

2 11.88Z   

39 

 

2
16.00Z   

2

2 7.59Z   
 

3
26.54Z   

3

2 11.88Z   40 

 

2
16.00Z   

2

2 7.59Z   
 

3
20.82Z   

3

2 13.90Z   

41 

 

2
21.87Z   

2

2 10.11Z 

 
 

3
27.33Z   

3

2 14.40Z   42 

 

2
21.87Z   

2

2 10.11Z 

 
 

3
32.41Z   

3

2 14.40Z   
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Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

Case 

# 1 22 T TZ Y Y   

1 2 33 T T TZ Y Y Y    

43 

 

2
21.87Z   

2

2 10.11Z   
 

3
26.69Z   

3

2 16.43Z   44 

 

2
16.15Z   

2

2 8.08Z   
 

3
26.69Z   

3

2 12.37Z   

45 

 

2
16.15Z   

2

2 8.08Z   
 

3
20.97Z   

3

2 14.40Z   46 

 

2
21.23Z   

2

2 8.08Z   
 

3
26.05Z   

3

2 14.40Z   

47 

 

2
16.49Z   

2

2 10.11Z   
 

3
21.95Z   

3

2 14.40Z   48 

 

2
16.49Z   

2

2 10.11Z 

  

3
27.03Z   

3

2 14.40Z   

49 

 

2
16.49Z   

2

2 10.11Z   
 

3
21.31Z   

3

2 16.43Z   50 

 

2
10.77Z   

2

2 8.08Z   
 

3
21.31Z   

3

2 12.37Z   

51 

 

2
10.77Z   

2

2 8.08Z   
 

3
15.59Z   

3

2 14.90Z   52 

 

2
15.85Z   

2

2 8.08Z   
 

3
20.67Z   

3

2 14.90Z   

53 

 

2
16.64Z   

2

2 10.61Z   

 

3
27.18Z   

3

2 14.90Z   54 

 

2
16.64Z   

2

2 10.61Z   
 

3
21.46Z   

3

2 16.92Z   

55 

 

2
21.72Z   

2

2 10.61Z   
 

3
26.54Z   

3

2 16.92Z   56 

 

2
16.00Z   

2

2 8.58Z   
 

3
20.82Z   

3

2 14.90Z   

 

Figure 5.7. Fifty-six cases of the sums as listed in Table 5.5 

 

5.2.3    The convolutions of the combinations of truncated normal and truncated  

skew normal random variables on triple truncations          

                       

Figure 5.8 illustrates an example of the sum of truncated normal and truncated 

skew normal random variables on triple truncations. The mean and variance of 

1 2 3T T TX X X   are the sums of means and variances of 
1TX , 

2TX  and  since 
1TX , 

2TX  and 

3TX  are independent of each other.   
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Figure 5.8. Illustration of a sum of truncated normal and truncated skew normal 

random variables on triple convolutions 

 

In this section, we have two subsections. First, the sums of two truncated normal 

random variables and one truncated skew normal random variable are examined in 

Section 5.3.1. Second, the sums of one truncated normal random variable and two 

truncated skew normal random variables are investigated in Section 5.3.2. We provide 

only cases of the sums without the properties such as distributions, means and variances 

of the sums because cases are too many to discuss. In Section 6.1, however, we will 

discuss a numerical example. 

5.2.3.1      Sums of two truncated NRVs and one truncated skew NRV 

Let 2Z  and 3Z  be 
1 2T TX X  and 

32 ,TSZ Y  respectively. Therefore, the 

probability density function of 3Z  is obtained as 
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Sixty cases are summarized in Table 5.6. 

Table 5.6. Sixty different cases based on two TNRVs and one truncated skew NRV 

Case  

# 1TX
 

2TX
 

3TSY
 

Case  

# 1TX
 

2TX
 

3TSY
 

1 typeNSym TN 
 

typeNSym TN 
 

ypeN tTSN 


 

2 typeNAsym TN 
 

typeNAsym TN 
 

ypeN tTSN 


 

3 typeLTN 
 

typeLTN 
 

ypeN tTSN 


 

4 typeSTN 
 

typeSTN 
 

ypeN tTSN 


 

5 typeNSym TN 
 

typeNAsym TN 
 

ypeN tTSN 


 

6 typeNSym TN 
 

typeLTN 
 

ypeN tTSN 


 

7 typeNSym TN 
 

typeSTN 
 

ypeN tTSN 


 

8 typeNAsym TN 
 

typeLTN 
 

ypeN tTSN 


 

 



 109 

Case  

# 1TX
 

2TX
 

3TSY
 

Case  

# 1TX
 

2TX
 

3TSY
 

9 typeNAsym TN 
 

typeSTN 
 

ypeN tTSN 

  10 typeLTN 
 

typeSTN 
 

ypeN tTSN 

  

11 typeNSym TN 
 

typeNSym TN 
 

ypeN tTSN 


 12 typeNAsym TN 

 
typeNAsym TN 

 
ypeN tTSN 


 

13 typeLTN 
 

typeLTN 
 

ypeN tTSN 


 14 typeSTN 

 
typeSTN 

 
ypeN tTSN 


 

15 typeNSym TN 
 

typeNAsym TN 
 

ypeN tTSN 


 16 typeNSym TN 

 
typeLTN 

 
ypeN tTSN 


 

17 typeNSym TN 
 

typeSTN 
 

ypeN tTSN 


 18 typeNAsym TN 

 
typeLTN 

 
ypeN tTSN 


 

19 typeNAsym TN 
 

typeSTN 
 

ypeN tTSN 


 20 typeLTN 

 
typeSTN 

 
ypeN tTSN 


 

21 typeNSym TN 
 

typeNSym TN 
 

ypeL tTSN 


 22 typeNAsym TN 

 
typeNAsym TN 

 
ypeL tTSN 


 

23 typeLTN 
 

typeLTN 
 

ypeL tTSN 


 24 typeSTN 

 
typeSTN 

 
ypeL tTSN 


 

25 typeNSym TN 
 

typeNAsym TN 
 

ypeL tTSN 


 26 typeNSym TN 

 
typeLTN 

 
ypeL tTSN 


 

27 typeNSym TN 
 

typeSTN 
 

ypeL tTSN 


 28 typeNAsym TN 

 
typeLTN 

 
ypeL tTSN 


 

29 typeNAsym TN 
 

typeSTN 
 

ypeL tTSN 


 30 typeLTN 

 
typeSTN 

 
ypeL tTSN 


 

31 typeNSym TN 
 

typeNSym TN 
 

ypeL tTSN 


 32 typeNAsym TN 

 
typeNAsym TN 

 
ypeL tTSN 


 

33 typeLTN 
 

typeLTN 
 

ypeL tTSN 


 34 typeSTN 

 
typeSTN 

 
ypeL tTSN 


 

35 typeNSym TN 
 

typeNAsym TN 
 

ypeL tTSN 


 36 typeNSym TN 

 
typeLTN 

 
ypeL tTSN 


 

37 typeNSym TN 
 

typeSTN 
 

ypeL tTSN 


 38 typeNAsym TN 

 
typeLTN 

 
ypeL tTSN 


 

39 typeNAsym TN 
 

typeSTN 
 

ypeL tTSN 


 40 typeLTN 

 
typeSTN 

 
ypeL tTSN 


 

41 typeNSym TN 
 

typeNSym TN 
 

ypeS tTSN 


 42 typeNAsym TN 

 
typeNAsym TN 

 
ypeS tTSN 


 

43 typeLTN 
 

typeLTN 
 

ypeS tTSN 


 44 typeSTN 

 
typeSTN 

 
ypeS tTSN 


 

45 typeNSym TN 
 

typeNAsym TN 
 

ypeS tTSN 


 46 typeNSym TN 

 
typeLTN 

 
ypeS tTSN 


 

47 typeNSym TN 
 

typeSTN 
 

ypeS tTSN 


 48 typeNAsym TN 

 

typeLTN 
 

ypeS tTSN 


 

49 typeNAsym TN 
 

typeSTN 
 

ypeS tTSN 


 50 typeLTN 

 

typeSTN 
 

ypeS tTSN 


 

51 typeNSym TN 
 

typeNSym TN 
 

ypeS tTSN 


 52 typeNAsym TN 

 

typeNAsym TN 
 

ypeS tTSN 


 

53 typeLTN 
 

typeLTN 
 

ypeS tTSN 


 54 typeSTN 

 

typeSTN 
 

ypeS tTSN 


 

55 typeNSym TN 
 

typeNAsym TN 
 

ypeS tTSN 


 56 typeNSym TN 

 

typeLTN 
 

ypeS tTSN 


 

57 typeNSym TN 
 

typeSTN 
 

ypeS tTSN 


 58 typeNAsym TN 

 

typeLTN 
 

ypeS tTSN 


 

59 typeNAsym TN 
 

typeSTN 
 

ypeS tTSN 


 60 typeLTN 

 

typeSTN 
 

ypeS tTSN 


 

 

5.2.3.2      Sums of one truncated NRVs and two truncated skew NRVs 

Denoting 2Z  be 
1 2TS TSY Y  and 3Z  be 

1 2 3TS TS TY Y X  , 3Z  can be expressed as 

32 TZ X . Therefore, the probability density function of 3Z  is expressed as 
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There are eighty-four cases for the combinations of one truncated normal and two 

truncated skew normal random variables, which is listed in Table 5.7. 

Table 5.7. Eight four different cases based on one TNRVs and one truncated skew NRVs 
Case  

# 1TSY  
2TSY  

3TX  
Case  

# 1TSY  
2TSY  

3TX  

1 ypeN tTSN 

  ypeN tTSN 

  typeNSym TN 
 2 ypeN tTSN 


 

ypeN tTSN 


 

typeNSym TN 
 

3 ypeL tTSN 


 

ypeL tTSN 


 

typeNSym TN 
 4 ypeL tTSN 


 

ypeL tTSN 


 

typeNSym TN 
 

5 ypeS tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 6 ypeS tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 

7 ypeN tTSN 

  ypeN tTSN 


 

typeNSym TN 
 8 ypeN tTSN 

  ypeL tTSN 


 

typeNSym TN 
 

9 ypeN tTSN 

  ypeL tTSN 


 

typeNSym TN 
 10 ypeN tTSN 

  ypeS tTSN 


 

typeNSym TN 
 

11 ypeN tTSN 

  ypeS tTSN 


 

typeNSym TN 
 12 ypeN tTSN 


 

ypeL tTSN 


 

typeNSym TN 
 

13 ypeN tTSN 


 

ypeL tTSN 


 

typeNSym TN 
 14 ypeN tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 

15 ypeN tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 16 ypeL tTSN 


 

ypeL tTSN 


 

typeNSym TN 
 

17 ypeL tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 18 ypeL tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 

19 ypeL tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 20 ypeL tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 

21 ypeS tTSN 


 

ypeS tTSN 


 

typeNSym TN 
 22 ypeN tTSN 

  ypeN tTSN 

  typeNAsym TN 
 

23 ypeN tTSN 


 

ypeN tTSN 


 

typeNAsym TN 
 24 ypeL tTSN 


 

ypeL tTSN 


 

typeNAsym TN 
 

25 ypeL tTSN 


 

ypeL tTSN 


 

typeNAsym TN 
 26 ypeS tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 

27 ypeS tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 28 ypeN tTSN 

  ypeN tTSN 


 

typeNAsym TN 
 

29 ypeN tTSN 

  ypeL tTSN 


 

typeNAsym TN 
 30 ypeN tTSN 

  ypeL tTSN 


 

typeNAsym TN 
 

31 ypeN tTSN 

  ypeS tTSN 


 

typeNAsym TN 
 32 ypeN tTSN 

  ypeS tTSN 


 

typeNAsym TN 
 

33 ypeN tTSN 


 

ypeL tTSN 


 

typeNAsym TN 
 34 ypeN tTSN 


 

ypeL tTSN 


 

typeNAsym TN 
 

35 ypeN tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 36 ypeN tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 

37 ypeL tTSN 


 

ypeL tTSN 


 

typeNAsym TN 
 38 ypeL tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 

39 ypeL tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 40 ypeL tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 

41 ypeL tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 42 ypeS tTSN 


 

ypeS tTSN 


 

typeNAsym TN 
 

43 ypeN tTSN 

  ypeN tTSN 

  typeLTN 
 44 ypeN tTSN 


 

ypeN tTSN 


 

typeLTN 
 

45 ypeL tTSN 


 

ypeL tTSN 


 

typeLTN 
 46 ypeL tTSN 


 

ypeL tTSN 


 

typeLTN 
 

47 ypeS tTSN 


 

ypeS tTSN 


 

typeLTN 
 48 ypeS tTSN 


 

ypeS tTSN 


 

typeLTN 
 

49 ypeN tTSN 

  ypeN tTSN 


 

typeLTN 
 50 ypeN tTSN 

  ypeL tTSN 


 

typeLTN 
 

51 ypeN tTSN 

  ypeL tTSN 


 

typeLTN 
 52 ypeN tTSN 

  ypeS tTSN 


 

typeLTN 
 

53 ypeN tTSN 

  ypeS tTSN 


 

typeLTN 
 54 ypeN tTSN 


 

ypeL tTSN 


 

typeLTN 
 

55 ypeN tTSN 


 

ypeL tTSN 


 

typeLTN 
 56 ypeN tTSN 


 

ypeS tTSN 


 

typeLTN 
 

57 ypeN tTSN 


 

ypeS tTSN 


 

typeLTN 
 58 ypeL tTSN 


 

ypeL tTSN 


 

typeLTN 
 

59 ypeL tTSN 


 

ypeS tTSN 


 

typeLTN 
 60 ypeL tTSN 


 

ypeS tTSN 


 

typeLTN 
 

61 ypeL tTSN 


 

ypeS tTSN 


 

typeLTN 
 62 ypeL tTSN 


 

ypeS tTSN 


 

typeLTN 
 

63 ypeS tTSN 


 

ypeS tTSN 


 

typeLTN 
 64 ypeN tTSN 

  ypeN tTSN 

  typeLTN 
 

65 ypeN tTSN 


 

ypeN tTSN 


 

typeSTN 
 66 ypeL tTSN 


 

ypeL tTSN 


 

typeSTN 
 

67 ypeL tTSN 


 

ypeL tTSN 


 

typeSTN 
 68 ypeS tTSN 


 

ypeS tTSN 


 

typeSTN 
 

69 ypeS tTSN 


 

ypeS tTSN 


 

typeSTN 
 70 ypeN tTSN 

  ypeN tTSN 


 

typeSTN 
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Case  

# 1TSY  
2TSY  

3TX  
Case  

# 1TSY  
2TSY  

3TX  

71 ypeN tTSN 

  ypeL tTSN 


 

typeSTN 
 72 ypeN tTSN 

  ypeL tTSN 


 

typeSTN 
 

73 ypeN tTSN 

  ypeS tTSN 


 

typeSTN 
 74 ypeN tTSN 

  ypeS tTSN 


 

typeSTN 
 

75 ypeN tTSN 


 

ypeL tTSN 


 

typeSTN 
 76 ypeN tTSN 


 

ypeL tTSN 


 

typeSTN 
 

77 ypeN tTSN 


 

ypeS tTSN 


 

typeSTN 
 78 ypeN tTSN 


 

ypeS tTSN 


 

typeSTN 
 

79 ypeL tTSN 


 

ypeL tTSN 


 

typeSTN 
 80 ypeL tTSN 


 

ypeS tTSN 


 

typeSTN 
 

81 ypeL tTSN 


 

ypeS tTSN 


 

typeSTN 
 82 ypeL tTSN 


 

ypeS tTSN 


 

typeSTN 
 

83 ypeL tTSN 


 

ypeS tTSN 


 

typeSTN 
 84 ypeS tTSN 


 

ypeS tTSN 


 

typeSTN 
 

 

5.3      Numerical Examples 

Results of the convolutions developed in this paper are applied to two key 

application areas: statistical tolerance analysis and gap analysis. In Section 5.3.2, we 

provide an example, of the sum of one truncated normal and two truncated skew normal 

random variables being related to Section 5.2.3.2. 

5.3.1      Application to statistical tolerance analysis 

In assembly design, as shown in Figure 5.9, the width of component 1 is a normal 

random variable 1X  and the width of component 2 is a positively skew normal random 

variable 2Y . Similarly, the width of component 3 is a negatively skew normal random 

variable
3.Y  Suppose that the parameters, 1,  2 ,  and 3 , of 1X , 2Y  and 3Y  are 10, 8 and 

16, and the parameters, 1,  2 ,  and 3 ,  of 1X , 2Y  and 3X  are 3, 4 and 4, respectively. 

We also assume that the random variable 1X  is doubly truncated at the lower and upper 

truncation points, 7 and 13, respectively, the random variable 2Y  is left truncated at 7, and 

the random variable 3Y  is right truncated at 17. Since 2Y  and 3Y   are negatively and 
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positively skew, respectively, we consider the shape parameters of  2Y  and 3Y  as 3 and -3, 

respectively. 

 

 

Figure 5. 9. Assembly design of statistical tolerance design for three truncated 

components  

 

Let 
1 22 .T TSZ X Y   By referring to equations in Section 5.1.3, the probability 

density function of the sum of the above two truncated normal random variables is 

expressed as 
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Furthermore, the mean and variance of 2Z  are obtained as 21.18 and 7.63, respectively. 

In a similar fashion, let 3Z  be 
1 2 3T TS TSX Y X  . Based on equations in Section 6.3.2, the 

probability density function of 3Z  is then obtained as 

3 23

( ) ( ) ( )
TZ X Zf s f s z f z dz




   

2

2

2

2

2

2
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2

1 16 16 1
3

2 4 4 2

1 16 16 1
17 3
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1 8 8 1
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2 1 1

4 2 2

2 1 1
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2 1 1
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2 1 1
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Finally, the mean and variance of 3Z  are obtained as 34.00 and 15.25, respectively. 

Figure 5.10 shows the properties of 
1 2 32, , , ,T TS STX Y Z Y  and 3Z . 

1TX  
2TSY  

1 22 T TSZ X Y   
3TSX  

1 2 33 T TS TSZ X Y X    

ypeN tSym TN 
 

 
1 1

210.00, 2.62T T    

ypeS tTN 
 

 
2 2

211.18, 6.32T T    

 

 
2 2

221.18, 8.94Z Z    

 

 
3 3

212.82, 6.32T T    

 

 
3 3

234.00, 15.25Z Z    
 

Figure 5.10. The statistical tolerance analysis example 
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5.3.2      Application to gap analysis 

Gap is defined as G = XA – XC1i – XC2j – XC3k for i = 1, 2, 3, j = 1, 2, and k = 1, 2, 

3, where XA, XC1i, XC2j and XC3k are the dimension of an assembly and a respective 

dimension of components. Suppose that the truncated mean of XA is 41. Nine different 

distributions of assembly components are illustrated in Table 8, and the means and 

variances of G are shown in Table 9 and Figure 13. 

 

Table 5.8. Gap analysis data set 1 

 Type       LTP UTP 
Truncated  

mean 
Truncated 
variance 

11CX   typeNSym TN 
 0 15 2 13.5 16.5 15.0000 0.6953 

12CX  typeLTN 
 0 15 2 13.5 ∞ 15.7788 2.2254 

13CX  typeSTN 
 0 15 2 -∞ 16.5 14.2212 2.2254 

21CX  ypeL tTSN 


 5 10 1.5 10.2 ∞ 11.3533 0.7478 

22CX  ypeS tTSN 


 5 10 1.5 -∞ 12.0 10.8336 0.3514 

31CX   typeNSym TN 
 0 12 3 11.0 13.0 12.0000 0.3284 

32CX   typeLTN 
 0 12 3 11.0 ∞ 13.7955 3.9808 

33CX  typeSTN 
 0 12 3 -∞ 13.0 10.2045 3.9808 

AX  typeNSym TN 
 0 41 1 40.5 41.5 41.0000 0.0806 

 

 

Table 5.9.  Mean and variance of gap for data set 1 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
1CX  2CX  3CX  AX  G   2

G  

1 11CX  21CX  31CX  AX  2.6467 1.8522 

2 11CX  21CX  32CX  AX  0.8512 5.5046 

3 11CX  21CX  33CX  AX  4.4422 5.5046 

4 11CX  22CX  31CX  AX  3.1664 1.4558 

5 11CX  22CX  32CX  AX  1.3709 5.1082 

6 11CX  22CX  33CX  AX  4.9618 5.1082 

7 12CX  21CX  31CX  AX  1.8679 3.3822 

8 12CX  21CX  32CX  AX  0.0725 7.0346 
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Figure 5.11.  95% CI of means of gap using data set 1 when the number of sample size 

for assembly product is large 

 

Note that dimensional interference occurs when the gap becomes negative (i.e., XA < XC1 

+ XC2 + XC3) which often results in assembled products being scrapped or reworked. The 

 
1CX  2CX  3CX  AX  

G   2

G  

9 12CX  21CX  33CX  AX  3.6634 7.0346 

10 12CX  22CX  31CX  AX  2.3876 2.9858 

11 12CX  22CX  32CX  AX  0.5921 6.6382 

12 12CX  22CX  
33CX  AX  4.1831 6.6382 

13 13CX  
21CX  

31CX  AX  3.4255 3.3822 

14 13CX  21CX  32CX  AX  1.6300 7.0346 

15 13CX  
21CX  

33CX  AX  5.2209 7.0346 

16 13CX  22CX  
31CX  AX  3.9451 2.9858 

17 13CX  22CX  32CX  AX  2.1497 6.6382 

18 13CX  22CX  33CX  AX  5.7406 6.6382 
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convolutions developed in this paper could be an effective tool to help predict the 

dimensional interference. Now assuming that the truncated mean of XA is 39, nine 

different distributions of assembly components are illustrated in Table 5.10, and the 

means and variances of G are shown in Table 5.11. In this particular example, there are 

six cases where the mean of gap is negative, creating the extreme dimensional 

interference. This highlights the importance of using truncated normal and skew normal 

distributions in gap analysis. 

Table 5.10.  Gap analysis data set 2 

 Type       LTP UTP 
Truncated  

mean 

Truncated 

variance 

11CX   typeNSym TN 
 0 15 2 13.5 16.5 15.0000 0.6953 

12CX  typeLTN 
 0 15 2 13.5 ∞ 15.7788 2.2254 

13CX  typeSTN 
 0 15 2 -∞ 16.5 14.2212 2.2254 

21CX  ypeL tTSN 


 5 10 1.5 10.2 ∞ 11.3533 0.7478 

22CX  ypeS tTSN 


 5 10 1.5 -∞ 12.0 10.8336 0.3514 

31CX   typeNSym TN 
 0 12 3 11.0 13.0 12.0000 0.3284 

32CX   typeLTN 
 0 12 3 11.0 ∞ 13.7955 3.9808 

33CX  typeSTN 
 0 12 3 -∞ 13.0 10.2045 3.9808 

AX  typeNSym TN 
 0 39 1 38.5 39.5 39.0000 0.0806 

 

 

Table 5.11.  Mean and variance of gap for data set 2 
 

 

 

 

 

 

 

 

 

 

 

 
1CX  2CX  3CX  AX  G   2

G  

1 11CX  21CX  31CX  AX  0.6467 1.8522 

2 11CX  21CX  32CX  AX  -1.1488 5.5046 

3 11CX  21CX  33CX  AX  2.4422 5.5046 

4 11CX  22CX  31CX  AX  1.1664 1.4558 

5 11CX  22CX  32CX  AX  -0.6291 5.1082 

6 11CX  22CX  33CX  AX  2.9618 5.1082 
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Figure 5.12.  95% CI of means of gap using data set 2 when the number of sample size 

for assembly product is large 

 
1CX  2CX  3CX  AX  

G   2

G  

7 12CX  21CX  31CX  AX  -0.1321 3.3822 

8 12CX  21CX  32CX  AX  -1.9275 7.0346 

9 12CX  21CX  33CX  AX  1.6634 7.0346 

10 12CX  22CX  31CX  AX  0.3876 2.9858 

11 12CX  22CX  32CX  AX  -1.4079 6.6382 

12 12CX  22CX  33CX  AX  2.1831 6.6382 

13 13CX  21CX  31CX  AX  1.4255 3.3822 

14 13CX  21CX  32CX  AX  -0.3700 7.0346 

15 13CX  21CX  33CX  AX  3.2209 7.0346 

16 13CX  22CX  31CX  AX  1.9451 2.9858 

17 13CX  22CX  32CX  AX  0.1497 6.6382 

18 13CX  22CX  33CX  AX  3.7406 6.6382 
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5.5      Concluding Remarks 

            

Chapter 5 laid out the theoretical foundations of convolutions of truncated normal 

and skew normal distributions based on double and triple truncations. Convolutions of 

truncated normal and truncated skew normal random variables were highlighted. The 

cases presented in this chapter illustrate the possible types of convolutions of double 

truncations. This includes the sum of all the possible combinations containing two 

truncated random variables with normal and skew normal probability distributions. 

Numerical examples illustrate the application of convolutions of truncated normal 

random variables and truncated skew normal random variables to highlight the improved 

accuracy of tolerance analysis and gap analysis techniques. New findings have the 

potential to impact a wide range of many other engineering and science problems such as 

those found in statistical tolerance analysis, more specifically, tolerance stack analysis 

methods. By utilizing skew normal distributions in tolerance stack analysis methods this 

allows the tolerance interval to be covered more precisely, allowing for a more accurate 

understanding of the variation in the gap.  
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CHAPTER SIX 

 

CONCLUSION AND FUTURE STUDY 

 

 

For solving engineering problems including truncation concepts, many quality 

practitioners have used untruncated original distributions to analyze testing and 

inspection procedures in production or process according to the computational 

complexity and the pursuit of easy usefulness. There are researchers who have made an 

effort to improve the accuracy of methods of maximum likelihood and moments, to 

examine methods of analyzing order statistics and regression, and to develop statistical 

inferences based on truncated data and distributions. However, much room for research in 

order to enhance by using truncated normal and truncated skew normal distributions still 

exists. The objective of this research was to pioneer in a particular area of research and 

contribute to the research community. In Chapter 3, the standardization of a truncated 

normal distribution which is different from a traditional truncated standard normal 

distribution was established theoretically by proposing theorems. Its cumulative table will 

be very useful for practitioners. Then, as an extension of the standardization, the new 

one-sided and two-sided z-test and t-test procedures including their associated test 

statistics, confidence intervals and P-values were developed in Chapter 4. Since the 

specific formulas or equations based on four different types of a truncated normal 

distribution were suggested to apply by quality practitioners.  

Mathematical convolution was another important concept within the truncated 

normal environment. In Chapter 5, a mathematical framework for the convolutions of 
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truncated normal random variables under three different types of quality characteristics 

was developed. One of the critical contribution is to provide closed forms of density for 

the sums of two truncated normal random variables regardless of four different types of a 

truncated normal distribution. Extension to truncated skew normal random variables was 

performed with proposed general forms of probability density function for the sums of 

two and three truncated normal and truncated skew normal random variables. The 

successful completion of this research will help obtain a better understanding of the 

integrated effects of statistical tolerance analysis and gap analysis, ultimately leading to 

process and quality improvement. This research also advances the state of knowledge of 

the inherent complexities arising from issues related to prediction of system performance. 

Although this research will primarily focus on statistical tolerance analysis and gap 

analysis, the results have the potential to impact a wide range of tasks in many 

engineering problems, including process control monitoring.  
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A: Derivation of Mean and Variance of a TNRV for Chapter 3
A.1 Mean of a DTRV, XT in Figure 2.1

Each Sections 3.1.1, 3.1.2, and 3.1.3 provides a proposed theorem to prove the fact
that the variance of the truncated normal random variable is smaller than the variance
of the original normal random variable. Double, left and right truncations of a normal
distribution are applied in Sections 3.1.1, 3.1.2, and 3.1.3, respectively.
By definition, the mean of XT is written as

E(XT ) = µT =
ˆ ∞
−∞

x fXT (x)dx

=
ˆ ∞
−∞

x

1√
2πσe

− 1
2(x−µ

σ )2

´ xu
xl

1√
2πσe

− 1
2( y−µ

σ )2

dy
dx wherexl ≤ x ≤ xu

=
´ xu
xl
x · 1√

2πσe
− 1

2(x−µ
σ )2

dx
´ xu
xl

1√
2πσe

− 1
2( y−µ

σ )2

dy
.

Let A =
´ xu
xl

1√
2πσe

− 1
2( y−µ

σ )2

dy. Then we have

µT = 1
A
·
ˆ xu

xl

x · 1√
2πσ

e−
1
2(x−µ

σ )2

dx

= 1
A
·
[ˆ xu

xl

µ

σ

1√
2π
e−

1
2(x−µ

σ )2

dx+
ˆ xu

xl

(
x− µ
σ

) 1√
2πσ

e−
1
2(x−µ

σ )2

dx

]
.

By letting z = x−µ
σ

, σdz = dx. Thus,

µT = 1
A
·

µ ˆ xu−µ
σ

xl−µ
σ

1√
2π
e−

1
2 z

2
dz +

ˆ xu−µ
σ

xl−µ
σ

z
1√
2π
e−

1
2 z

2
σdz


= 1

A
·

µA+ σ

ˆ xu−µ
σ

xl−µ
σ

1√
2π
z e−

1
2 z

2
dz


= µ− σ

A

1√
2π

e−
1
2 z

2
∣∣∣∣xu−µ

σ
xl−µ
σ

.

Notice thatA can be expressed as
´ xu
xl

1√
2πσe

− 1
2( y−µ

σ )2

dy =
´ xu−µ

σ
xl−µ
σ

1√
2πe
− 1

2 s
2
ds = Φ

(
xu−µ
σ

)
−

Φ
(
xl−µ
σ

)
. Therefore, the mean of XT , µT , is obtained as
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µ+ σ ·
φ
(
xl−µ
σ

)
− φ

(
xu−µ
σ

)
Φ
(
xu−µ
σ

)
− Φ

(
xl−µ
σ

) .
A.2 Variance of a DTRV, XT in Figure 2.1

By definition,

E(X2
T ) =

ˆ ∞
−∞

x2 fXT (x)dx

=
ˆ ∞
−∞

x2 · 1√
2πσ e

− 1
2 ( x−µ

σ )2

´ xu
xl

1√
2πσ e

− 1
2 ( y−µ

σ )2
dy
dxwherexl ≤ x ≤ xu

=

´ xu
xl

x2 · 1√
2πσ e

− 1
2 ( x−µ

σ )2
dx

´ xu
xl

1√
2πσ e

− 1
2 ( y−µ

σ )2
dy

= 1
A

[ˆ xu

xl

σ

(
x2 − 2µx+ 2µx− µ2 + µ2

σ2

)
1√
2π
e−

1
2 ( x−µ

σ )2
dx

]
= 1

A

[ˆ xu

xl

σ

(
x2 − 2µx+ µ2

σ2

)
1√
2πσ

e−
1
2 ( x−µ

σ )2
dx+

ˆ xu

xl

σ

(
2µx− µ2

σ2

)
1√
2π
e−

1
2 ( x−µ

σ )2
dx

]
= 1

A

[
σ

ˆ xu

xl

(
x− µ
σ

)2 1√
2π
e−

1
2 ( x−µ

σ )2
dx+ 2µ

ˆ xu

xl

x√
2πσ

e−
1
2 ( x−µ

σ )2
dx

−µ2
ˆ xu

xl

1√
2πσ

e−
1
2 ( x−µ

σ )2
dx

]
.

Since z = x−µ
σ

and σdz = dx,

E(X2
T ) = 1

A

σ ˆ xu−µ
σ

xl−µ
σ

z2 1√
2π
e−

1
2 z

2
σdz + 2µ

´ xu
xl

x√
2πσ e

− 1
2 ( x−µ

σ )2
dx

A
A− µ2

ˆ xu

xl

1√
2πσ

e−
1
2 ( x−µ

σ )2
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
= 1

A

[ˆ xu−µ
σ

xl−µ
σ

σ2
√

2π
z2e−

1
2 z

2
dz + 2µµTA− µ2A

]

In the meantime, d
dz

(
− z√

2πe
− 1

2 z
2
)

= − 1√
2πe
− 1

2 z
2 + z2

√
2πe
− 1

2 z
2 . Thus, z2

√
2πe
− 1

2 z
2 =

d
dz

(
− z√

2πe
− 1

2 z
2
)

+ 1√
2πe
− 1

2 z
2 . After taking the integral in the above equation, we

obtain
´ xu−µ

σ
xl−µ
σ

z2
√

2πe
− 1

2 z
2
dz = − z√

2πe
− 1

2 z
2
∣∣∣∣xu−µ

σ
xl−µ
σ

+
´ xu−µ

σ
xl−µ
σ

1√
2πe
− 1

2 z
2 . Therefore,

E(X2
T ) = 1

A

[
σ2
(
− z√

2π
e−

1
2 z

2
∣∣∣∣xu−µ

σ
xl−µ
σ

+ 1√
2π
e−

1
2 z

2
)

+ 2µµTA− µ2A

]

= 1
A

[
−σ2

(
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σ
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2π
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1
2(xu−µ

σ )2

+ σ2
(
xl − µ
σ

) 1√
2π
e−

1
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+σ2A+ 2µµTA− µ2A
]
.

The variance of XT , σ2
T , is represented as

V ar(XT ) = E(X2
T )− E(XT )2

= 1
A

[
−σ2

(
xu − µ
σ

) 1√
2π
e−

1
2(xu−µ
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]
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σ
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]
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T
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(
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(
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(
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A
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(
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(
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(
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A

2 .
As a result, the variance of XT , σ

2
T , is obtained as

σ2
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· φ
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σ

)
− xu−µ

σ
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(
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Φ
(
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− Φ

(
xl−µ
σ

) −
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(
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Φ
(
xu−µ
σ

)
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(
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B: Supporting for R Programing code for Chapter 4 

B.1      R simulation code for the Central Limit Theorem by samples from the 

truncated normal distribution with sample size, 30 in Figure 4.4 

 

# Call up required packages or libraries in R 

require(truncnorm) 

 

# (a) Symmetric DTND 

x_double <- rtruncnorm(10000,a=6,b=14,mean=10,sd=4) 

par(mfrow=c(1,4)) 

hist(x_double,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(1)",col="gray"

,cex.main=2.5) 

axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

sampmeans <- matrix(NA,nrow=1000,ncol=1) 

for (i in 1:1000){ 

  samp <- sample(x_double,30,replace=T) 

  sampmeans[i,] <- mean(samp) 

  }  

hist(sampmeans,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(2)",col="gra

y",cex.main=2.5) 

  axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

 plot(ecdf(sampmeans),xlab="",main="(3)",cex.main=2.5) 

 z<-(sampmeans-mean(x_double))/sd(x_double)*sqrt(30) 

 qqnorm(z, lty=1,xlab="",ylab="",main="(4)",cex.main=2.5) 

 

# (b) Asymmetric DTND 

x_asym_double <- rtruncnorm(10000,a=8,b=16,mean=10,sd=4) 

par(mfrow=c(1,4)) 

hist(x_asym_double,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(1)",col=

"gray",cex.main=2.5) 

axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

sampmeans <- matrix(NA,nrow=1000,ncol=1) 

for (i in 1:1000){ 

  samp <- sample(x_asym_double,30,replace=T) 

  sampmeans[i,] <- mean(samp) 

  }  

hist(sampmeans,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(2)",col="gra

y",cex.main=2.5) 

  axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

 plot(ecdf(sampmeans),xlab="",main="(3)",cex.main=2.5) 

 z<-(sampmeans-mean(x_asym_double))/sd(x_asym_double)*sqrt(30) 

 qqnorm(z, lty=1,xlab="",ylab="",main="(4)",cex.main=2.5) 
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# (c) LTND 

x_left <- rtruncnorm(10000,a=6,mean=10,sd=4) 

par(mfrow=c(1,4)) 

hist(x_left,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(1)",col="gray",ce

x.main=2.5) 

axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

sampmeans <- matrix(NA,nrow=1000,ncol=1) 

for (i in 1:1000){ 

  samp <- sample(x_left,30,replace=T) 

  sampmeans[i,] <- mean(samp) 

  }  

hist(sampmeans,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(2)",col="gra

y",cex.main=2.5) 

  axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

 plot(ecdf(sampmeans),xlab="",main="(3)",cex.main=2.5) 

 z<-(sampmeans-mean(x_left))/sd(x_left)*sqrt(30) 

 qqnorm(z, lty=1,xlab="",ylab="",main="(4)",cex.main=2.5) 

 

# (d) RTND 

x_right <- rtruncnorm(10000,b=14,mean=10,sd=4) 

par(mfrow=c(1,4)) 

hist(x_right,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(1)",col="gray",c

ex.main=2.5) 

axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

sampmeans <- matrix(NA,nrow=1000,ncol=1) 

for (i in 1:1000){ 

  samp <- sample(x_right,30,replace=T) 

  sampmeans[i,] <- mean(samp) 

  }  

hist(sampmeans,xlab="",ylab="",ylim=c(0,2800),yaxt="n",xaxt="n",main="(2)",col="gra

y",cex.main=2.5) 

  axis(2,at=c(0,1400,2800),labels=c(0,0.5,1)) 

 plot(ecdf(sampmeans),xlab="",main="(3)",cex.main=2.5) 

 z<-(sampmeans-mean(x_right))/sd(x_right)*sqrt(30) 

 qqnorm(z, lty=1,xlab="",ylab="",main="(4)",cex.main=2.5) 

 

 

 

 

 

 

 

 

 



 128 

C: Supporting for Maple code for Chapter 5 

C.1      Maple code for the statistical analysis example in Figure 5.10 

 

C.1.1   Maple code captured for a DTNRV 

# Probability density function of 
1TX :  

1 ( ) ( )
XTf xf x 

 

                            Result:     

1( ( ))XTsimplify f x  

                                 
# Mean of 

1TX :  

 

 
1TE X   

                                                       

                                 Result:                 10 

 

# Variacne of 
1TX :  

 
1TVar X 

 
 

                                 Result:                 2.6207 
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C.1.2   Maple code for a left truncated positive skew NRV 

# Probability density function of 
2TSY :  

2
( )

YSTff y  (2*(1/4))*exp(-(1/2)*((y-8)*(1/4))^2)*(int(exp(-(1/2)*t^2)/sqrt(2*Pi), t = -

infinity .. 3*((y-8)*(1/4))))*piecewise(y < 7, 0, 7 <= y, 

1)/(sqrt(2*Pi)*(int((2*(1/4))*exp(-(1/2)*((h-8)*(1/4))^2)*(int(exp(-(1/2)*t^2)/sqrt(2*Pi), 

t = -infinity .. 3*((h-8)*(1/4))))/sqrt(2*Pi), h = 7 .. infinity))) 

                                            

                 Result:

 
 

 

# Mean of 
2TSY :  

 
2TSE Y  int((1/4)*y*exp(-(1/2)*((1/4)*y-2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(y-

8)))*piecewise(y < 7, 0, 7 <= y, 1)*sqrt(2)/(sqrt(Pi)*(int((1/4)*exp(-(1/2)*((1/4)*h-

2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), y = 7 .. 

infinity) 

              

                 Result:                           11.18015321 

 

# Variacne of 
2TSY :  

 
2TSVar Y  int((1/4)*(y-11.18015321)^2*exp(-(1/2)*((1/4)*y-

2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(y-8)))*piecewise(y < 7, 0, 7 <= y, 

1)*sqrt(2)/(sqrt(Pi)*(int((1/4)*exp(-(1/2)*((1/4)*h-2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(h-

8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), y = 7 .. infinity) 

 

                 Result:                           6.317101607 

 

C.1.3   Maple code for a right truncated negative skew NRV 

# Probability density function of 
3TSY :  

3
( )

YSTff y  (2*(1/4))*exp(-(1/2)*((k-16)*(1/4))^2)*(int(exp(-(1/2)*t^2)/sqrt(2*Pi), t = -

infinity .. -3*((k-16)*(1/4))))*piecewise(k <= 17, 1, 17 > k, 

0)/(sqrt(2*Pi)*(int((2*(1/4))*exp(-(1/2)*((h-16)*(1/4))^2)*(int(exp(-

(1/2)*t^2)/sqrt(2*Pi), t = -infinity .. -3*((h-16)*(1/4))))/sqrt(2*Pi), h = -infinity .. 17))) 
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                 Result:

 

 

 

# Mean of 
3TSY :  

 
3TSE Y  int((1/4)*y*exp(-(1/2)*((1/4)*y-2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(y-

8)))*piecewise(y < 7, 0, 7 <= y, 1)*sqrt(2)/(sqrt(Pi)*(int((1/4)*exp(-(1/2)*((1/4)*h-

2)^2)*(1/2+(1/2)*erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), y = 7 .. 

infinity) 

              

                 Result:                           12.81984679 

 

# Variacne of 
3TSY :  

 
3TSVar Y  int((1/4)*(k-12.81984679)^2*exp(-(1/2)*((1/4)*k-4)^2)*(1/2-

(1/2)*erf((3/8)*sqrt(2)*(k-16)))*piecewise(k <= 17, 1, k < 17, 

0)*sqrt(2)/(sqrt(Pi)*(int((1/4)*exp(-(1/2)*((1/4)*h-4)^2)*(1/2-(1/2)*erf((3/8)*sqrt(2)*(h-

16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 17))), k = -infinity .. 17) 

 

                 Result:                           6.31710160

 

 

C.1.4   Maple code for 
1 22 T TSZ X Y   

# Probability density function of 2Z :  

2
( )Zf z  int(piecewise(z-y < 7, 0, z-y < 13, (1/6)*exp(-(1/18)*(z-y-

10)^2)*sqrt(2)/(sqrt(Pi)*erf((1/2)*sqrt(2))), 13 <= z-y, 0)*piecewise(y < 7, 0, 7 <= y, 

(1/8)*exp(-(1/32)*(y-8)^2)*(1+erf((3/8)*sqrt(2)*(y-8)))*sqrt(2)/(sqrt(Pi)*(int((1/8)*exp(-

(1/32)*(h-8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity)))), y = -

infinity .. infinity)

 

               

   Result: piecewise(z < 14, 0, z < 20, int((1/24)*exp(-(1/18)*(z-y-10)^2)*exp(-

(1/32)*(y-8)^2)*(1+erf((3/8)*sqrt(2)*(y-8)))/(Pi*erf((1/2)*sqrt(2))*(int((1/8)*exp(-

(1/32)*(h-8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), y = 7 .. 

z-7), 20 <= z, int((1/24)*exp(-(1/18)*(z-y-10)^2)*exp(-(1/32)*(y-

8)^2)*(1+erf((3/8)*sqrt(2)*(y-8)))/(Pi*erf((1/2)*sqrt(2))*(int((1/8)*exp(-(1/32)*(h-

8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), y = z-13 .. z-7)) 

 

plot(f( 2Z ),  z=12 .. 26, color = blue, thickness = 5) 
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C.1.5   Maple code for 
1 2 33 T TS TSZ X Y X    

# Probability density function of 3Z :  

3
( )Zf s  int(piecewise(s-z < 7, 0, v-z < 13, (1/6)*exp(-(1/18)*(s-z-

10)^2)*sqrt(2)/(sqrt(Pi)*erf((1/2)*sqrt(2))), 13 <= s-z, 0)*piecewise(z < 24, 

(1/32)*(int(exp(-(1/16)*x^2+(1/16)*z*x-(1/32)*z^2-(1/2)*x+z-

10)*(1+erf((3/8)*sqrt(2)*(-z+x+16)))*(1+erf((3/8)*sqrt(2)*(x-8))), x = 7 .. 

infinity))/(Pi*(int(-(1/8)*exp(-(1/32)*(h-16)^2)*(-1+erf((3/8)*sqrt(2)*(h-

16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 17))*(int((1/8)*exp(-(1/32)*(h-

8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), 24 <= z, 

(1/32)*(int(exp(-(1/16)*x^2+(1/16)*z*x-(1/32)*z^2-(1/2)*x+z-

10)*(1+erf((3/8)*sqrt(2)*(-z+x+16)))*(1+erf((3/8)*sqrt(2)*(x-8))), x = z-17 .. 

infinity))/(Pi*(int(-(1/8)*exp(-(1/32)*(h-16)^2)*(-1+erf((3/8)*sqrt(2)*(h-

16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 17))*(int((1/8)*exp(-(1/32)*(h-

8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity)))), z = -infinity .. 

infinity)

 

               

   Result: piecewise(s < 31, (1/192)*sqrt(2)*(int(exp(-(1/18)*(s-z-10)^2)*(int(exp(-

(1/16)*h^2+(1/16)*z*h-(1/32)*z^2-(1/2)*h+z-10)*(1+erf((3/8)*sqrt(2)*(-

z+h+16)))*(1+erf((3/8)*sqrt(2)*(h-8))), h = 7 .. infinity)), z = -13+s .. -

7+s))/(Pi^(3/2)*erf((1/2)*sqrt(2))*(int(-(1/8)*exp(-(1/32)*(h-16)^2)*(-

1+erf((3/8)*sqrt(2)*(h-16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 17))*(int((1/8)*exp(-

(1/32)*(h-8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), v < 37, 

(1/192)*sqrt(2)*(int(exp(-(1/18)*(v-z-10)^2)*(int(exp(-(1/16)*h^2+(1/16)*z*h-

(1/32)*z^2-(1/2)*h+z-10)*(1+erf((3/8)*sqrt(2)*(-z+h+16)))*(1+erf((3/8)*sqrt(2)*(h-8))), 

h = 7 .. infinity)), z = -13+v .. 24)+int(exp(-(1/18)*(v-z-10)^2)*(int(exp(-

(1/16)*h^2+(1/16)*z*h-(1/32)*z^2-(1/2)*h+z-10)*(1+erf((3/8)*sqrt(2)*(-

z+h+16)))*(1+erf((3/8)*sqrt(2)*(h-8))), h = z-17 .. infinity)), z = 24 .. -

7+s))/(Pi^(3/2)*erf((1/2)*sqrt(2))*(int(-(1/8)*exp(-(1/32)*(h-16)^2)*(-

1+erf((3/8)*sqrt(2)*(h-16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 17))*(int((1/8)*exp(-

(1/32)*(h-8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 .. infinity))), 37 <= v, 

(1/192)*sqrt(2)*(int(exp(-(1/18)*(v-z-10)^2)*(int(exp(-(1/16)*h^2+(1/16)*z*h-

(1/32)*z^2-(1/2)*h+z-10)*(1+erf((3/8)*sqrt(2)*(-z+h+16)))*(1+erf((3/8)*sqrt(2)*(h-8))), 

h = z-17 .. infinity)), z = -13+s .. -7+s))/(Pi^(3/2)*erf((1/2)*sqrt(2))*(int(-(1/8)*exp(-

(1/32)*(h-16)^2)*(-1+erf((3/8)*sqrt(2)*(h-16)))*sqrt(2)/sqrt(Pi), h = -infinity .. 

17))*(int((1/8)*exp(-(1/32)*(h-8)^2)*(1+erf((3/8)*sqrt(2)*(h-8)))*sqrt(2)/sqrt(Pi), h = 7 

.. infinity))))

 

 

plot(f( 3Z ),  s=17 .. 51, color = red, thickness = 5) 
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