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ABSTRACT 

Rational design of nanoparticle surface chemistry offers the ability to control 

nanoparticle characteristics such as size, polydispersity, shape, dispersibility in various 

solvents, functionality and end fate. Ligand exchange has proved to be is a versatile 

method for modifying the surface of plasmonic nanoparticles. Ligand exchange has 

provided a “green” alternative to traditional biphasic syntheses that require large amounts 

of phase transfer catalysts. Ligand exchange can also be used to reduce the amount of 

post synthesis processing and waste when it is conducted on nanoparticles that have been 

synthesized with a method that affords control over nanoparticle size and polydispersity. 

Ligand exchange is also an important reaction to consider when determining the end fate 

of nanomaterials due to the fact that when nanoparticles enter the natural environment, 

they will be exposed to a variety of natural ligands and electrolytes. We have conducted a 

comprehensive review of ligand exchange literature and used isothermal titration 

calorimetry to investigate ligand binding and exchange on gold nanoparticles 

experimentally. We have also investigated the impact that citrate and natural organic 

matter surface chemistries have on the transport properties of silver nanoparticles. This 

work has led to a greater understanding of the influencing factors on the mechanism of 

nanoparticle ligand binding and exchange. 



iii 

DEDICATION 

I would like to dedicate this dissertation to the people who sparked my interest in 

science, chemistry, and engineering; Jack Starr, Sean Muller and Tray Sleeper. Without 

their encouragement and drive to make a difference in a young woman’s life, I would not 

have had the motivation to complete this dissertation. Thank you for always challenging 

me and providing me with the experiences that have made me the scientist I am today. 



iv 

ACKNOWLEDGEMENTS 

I would first like to thank my family for providing the support I needed get 

through graduate school. To my mother, you are my rock. You are always there to give 

me advice  when I needed it most. To my father, thank you for telling me “just get it 

done.” And finally to my brothers, thank you for giving me the motivation to get better 

grades than you simply by telling me I would be “the smartest doctor at McDonalds.” I 

love all of you!  

Second, I would like to thank Max, my best friend and partner in life. I wouldn’t 

have stayed sane throughout the past 4 years with you. Thank you for your support, 

encouragement and most of all your patience, I love you. 

Dr. Christopher L. Kitchens, I would like to thank you for giving me the 

opportunity to be a part of your research group, you have been an inspiring adviser. 

Thank you for your guidance, direction and patience with me as I like to leave things to 

the last possible moment! I would especially like to thank your for standing by me when 

my heart wasn’t in it and for giving me the encouragement to keep going.  

 I would like to thank my dissertation committee, Dr. Powell, Dr. Mefford, Dr. 

Bruce and Dr. Roberts, for taking the time to read my dissertation and providing feedback 

on my work. 

To my lab mates, past and present, Fiaz for telling me to be confident in myself, 

Jose for always having a snack ready for me, I would also like to thank the people who 

started this journey called graduate school with me; Nolan Wilson and Jesse Kelly.  



v 

I would like to thank of my collaborators; Hilary Emerson thank your for talking 

through problems with me and helping me come up with solutions, Kathleen Davis thank 

you for lending me lab supplies and helping me with my review paper. I would also like 

to thank Dr. Powell and Dr. Mefford for giving me unlimited access to your labs and for 

your guidance in my projects. 

Lastly, I would like to acknowledge all of the people who have helped me in 

various ways during my time in graduate school including (but not limited to) Serita 

Aker, Bethany Carter, Dan D’Unger, Roland Stone, Steven Saville, Shanna Estes, Sam 

Gorosh, Scott Cole, and Elizabeth Amaddio. 



vi 

TABLE OF CONTENTS 

Page 

TITLE PAGE .................................................................................................................... i 

ABSTRACT ..................................................................................................................... ii 

DEDICATION ................................................................................................................ iii 

ACKNOWLEDGEMENTS ............................................................................................ iv 

LIST OF TABLES ........................................................................................................... x 

LIST OF FIGURES ........................................................................................................ xi 

CHAPTER 

1. INTRODUCTION AND BACKGROUND .................................................. 1 

Dissertation Outline ............................................................................... 12 

References .............................................................................................. 15 

2. LIGAND BINDING AND EXCHANGE KINETICS ON THE

SURFACE OF PLASMONIC NANOPARTICLES ................................... 21 

Abstract .................................................................................................. 21 

Introduction ............................................................................................ 22 

Background ............................................................................................ 24 

Applications of Nanoparticle Ligand Exchange ........................ 29 

Mechanisms of Nanoparticle Ligand Exchange ........................ 33 

Methods to Monitor Nanoparticle Ligand Exchange ................. 37 

Fluorescence Spectroscopy ............................................ 37 

UV-Vis Spectroscopy .................................................... 41 

Fourier Transform Infrared Spectroscopy ..................... 42 

NMR/HNMR ................................................................. 43 

Electron Paramagnetic Resonance ................................. 44 

Surface Enhanced Raman Spectroscopy ........................ 45 

X-ray Photoemission Spectroscopy ............................... 46 

Isothermal Titration Calorimetry ................................... 47 

MALDI .......................................................................... 48 



vii 

TABLE OF CONTENTS (Continued) 

Page 

Chromatography ............................................................ 49 

Methods to Calculate Rate Constants ........................................ 49 

Factors Effecting Ligand Binding and Exchange .................................. 49 

Nanoparticle Effects................................................................... 52 

Size and Surface Affects ................................................ 52 

Oxidation State and Charge ........................................... 54 

Age ................................................................................. 55 

Nanoparticle Environment ......................................................... 56 

pH, Salt Type and Ionic Strength ................................... 56 

Ligand Properties ....................................................................... 57 

Ligand Structure; Multidentate, Chain Length, Branching, 

Chirality ......................................................................... 57 

Ligand Chemistry....................................................................... 60 

End Group ...................................................................... 60 

Head Group .................................................................... 61 

Conclusions ............................................................................................ 62 

References .............................................................................................. 64 

3. INVESITGATION OF LIGAND BINDING AND EXCHANGE ON GOLD

NANOPARTICLES WITH ISOTHERMAL TITRATION

CALORIMETRY ......................................................................................... 85 

Abstract .................................................................................................. 85 

Introduction ............................................................................................ 86 

Experimental .......................................................................................... 88 

Nanoparticle Synthesis............................................................... 88 

Nanoparticle Characterization ................................................... 88 

Isothermal Titration Calorimetry ............................................... 89 

Calculation of Binding Sites ...................................................... 89 

Modeling .................................................................................... 91 

Results and Discussion .......................................................................... 93 

Polyethylene Glycol-Thiol Titrations ........................................ 93 

Bare GNPs ..................................................................... 93 

Citrate-Stabilized GNPs ................................................. 97 

PEG-NH2-Stablized GNPs ........................................... 100 

PEG, PEG-NH2, PEG-COOH and Citrate Titrations with 

BGNPs ..................................................................................... 101 



viii 

TABLE OF CONTENTS (Continued) 

Page 

Conclusions .......................................................................................... 102 

References ............................................................................................ 105 

4. NATURAL ORGANIC MATTER AND ELECTROLYTES AFFECT

MOBILITY, DISSOLUTION AND SORPTION OF SILVER

NANOPARTICLES ................................................................................... 109 

Abstract ................................................................................................ 109 

Introduction .......................................................................................... 110 

Experimental ........................................................................................ 112 

Nanoparticle Synthesis............................................................. 112 

Column Experiments ............................................................... 113 

Batch Dissolution ..................................................................... 115 

Results and Discussion ........................................................................ 116 

Citrate-Stabilized Silver Nanoparticles .................................... 116 

NOM Passivated Silver Nanoparticles ..................................... 123 

Column Segmentation .......................................................................... 124 

Batch Dissolution ................................................................................. 125 

Conclusions .......................................................................................... 127 

References ............................................................................................ 128 

5. REVERSE MICELLY SYNTHESIS OF SILVER NANOPARTICLES IN

GAS EXPANDED LIQUIDS .................................................................... 134 

Abstract ................................................................................................ 134 

Introduction .......................................................................................... 135 

Experimental ........................................................................................ 138 

Materials .................................................................................. 138 

Particle Synthesis ..................................................................... 138 

Characterization ....................................................................... 139 

Results .................................................................................................. 139 

Nanoparticle Synthesis with W = 40 ....................................... 139 

Nanoparticle Synthesis with W = 20 ....................................... 143 

Discussion ............................................................................................ 144 

Conclusions .......................................................................................... 150 

References ............................................................................................ 151 



ix 

TABLE OF CONTENTS (Continued) 

Page 

6. CONCLUSIONS AND RECOMMENDATIONS .................................... 154 

Conclusions .......................................................................................... 154 

Recommendations ................................................................................ 157 

References ............................................................................................ 161 

APPENDICES ............................................................................................................. 162 

A: ADDITIONAL ITC DATA AND TEM IMAGES ..................................... 163 

B: TRANSMISSION ELECTRON MICROSCOPY PROCEDURES ........... 166 

Initial Procedures ................................................................................. 166 

TEM Alignment ................................................................................... 166 

C: IMAGEJ ANALYSIS ................................................................................. 167 

D: ISOTHERMAL TITRATION CALORIMETRY....................................... 171 

Ampule Preparation ............................................................................. 171 

Preparing the Syringe ........................................................................... 172 

Dynamic Calibration ............................................................................ 173 

Running a Titration Experiment .......................................................... 174 

E: INDUCTIVELY COUPLED PLASMA-MASS SPECTROSCOPY.......... 179 

Getting Started ..................................................................................... 179 

ICP Tuning Procedure.......................................................................... 179 

F: PROTONIC HYPΔH MODELLING SOFTWARE ................................... 180 



x 

LIST OF TABLES 

Page 

Table 2-1: Pseudo 1st order rate constants determine from ligand exchange of 

phenylethylenethiol with various bifunctional ligands in Murrays study……...........36 

Table 2-2: First order rate constants determined for ligand exchange of 

phenylethylenthiol with various bifunctional ligand on small and large GNPs in Guo's 

study…………………………………………………………………………….…….37 

Table 2-3: First and second order rate constants determined in Rotello’sstudy. Stuctures 

of the incoming ligands are presented in Figure 2-6…………………………………...39 

Table 2-4: Rate constants of ligand exchange with multidentate ligands calculated with 

biexponential and Langmuir models in Graf's study…………………………………..41 

Table 2-5: First and second order rate constants of ligand exchange of 6-mercaptopurine 

(6MP) with 11-mercaptoundecanoic acid (MUA) as a function of the ratio incoming to 

outgoing ligand monitored by UV-Vis spectroscopy………………………………….42 

Table 2-6: Kinetic rate constants of ligand exchange of triphenyl phosphine with bis-

nitroxide disulfide on gold nanoparticles, performed by Zachary et al. and monitored by 

EPR…………………………………………………………………………………….45 

Table 2-8: Charge dependent first and second order rate constants of ligand 

exchange………………………………………………………………………………..54 

Table 2-9: Second order rate constants determined from ligand exchange of 

phenylethylenethiol with various bifunctional ligands in Donkers’ study…………….61 



xi 

LIST OF TABLES (Continued) 

Page 

Table 3-1: Nanoparticle diameter and surface are determined by TEM and calculated 

concetrations of binding sites………………………………………………………….91 

Table 3-2: Thermodynamic and kinetic parameters of PEG-SH titrations as determined 

by HypDeltaH software…………………………………………………………………95 

Table 3-3: Summary of characterization by UV-Vis spectroscopy and Zeta potential 

measurements………………………………………………………………………..….99 

Table 4-1: Spike volumes and concentrations…………………………………………115 

Table 4-2: Mass balances of each column. Recoveries were also normalized to the total 

recovery of Ag in each column to column to column comparison……………………122 

Table 4-3: Characterization of AgNPs via UV-Vis and DLS…………………………126 

Table 5-1: Summary of results for TEM size results…………………………………..141 

Table 5-2: Calculated solvent Properties for n-hexane/CO2 GXL by the PT-EOS……148 

LIST OF FIGURES 

Figure 1-1: Schematic and demonsions of lysimeters used in the study by Emerson et 

al…………………………………………………………………………………………...6 

Figure 1-2: Transport profiles for SR-NOM (red) and citrate (blue) capped AgNPs……..8 



xii 
 

LIST OF FIGURES (Continued) 

 

Page 

Figure 1-3: Digital images of lysimeter sources of A.) SR-NOM, and B.) Citrate capped 

AgNPs ……………………………………………………………………………………..9 

Figure 2-1: Schematic of the interaction energy potentials for soft, spherical molecules 

with repulsive overlap and attractive dispersion forces………………………………….25 

 

Figure 2-2: Representative structures of molecules commonly found in nature………...28 

 

Figure 2-3: Schematic of biphasic ligand exchange of aqueous citrate stabilized AgNPs 

with dodecanethiol in an organic phase………………………………………………..30 

 

Figure 2-4: Flow diagram of the possible mechanisms of ligand exchange adapted from 

Chechik et al. IA and Id denote interchange associative and interchange dissociative 

mechanisms, resepectively……………………………………………………………..34 

 

Figure 2-5: Schematic of Forester resonant energy transfer. When incident light hits a 

fluorescent molecule on a GNP surface energy is transferred to the gold core and 

fluorescence is quenched………………………………………………………………39 

 

Figure 2-6: Structures of the ligands used in Rotello's work studying ligand exchange 

with fluorescence spectroscopy………………………………………………………..40 

 

Figure 2-7: Hofmeister series of electolyte solutions………………………………….57 

 

Figure 2-8: Structures of ligand used in Rotello's study………………………………59 

 

Figure 3-1: Raw heat flow data for 3 replicates of PEG-SH titrated into freshly 

synthesized BGNPs, (A-C) and their corresponding dilution corrected binding isotherms 

(D-F). Dots represent observed integrated heats and lines represent calculated heats…94 

 

file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287343
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287343
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287345
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287345
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287346
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287346
file:///F:/Dissertation%20stuff/DISSERTATION/CHAPTER%20TWO%20AH%20edit%20(chris%20kitchens's%20conflicted%20copy%202014-05-19)%20(Repaired).docx%23_Toc388287346


xiii 

LIST OF FIGURES (Continued) 

Page 

Figure 3-2: Raw heat flow data for 3 replicates of PEG-SH titrated into aged BGNPs, (A-

C) and their corresponding dilution corrected binding isotherms (D-F). Dots represent 

observed integrated heats and lines represent calculated heats…………………………97 

Figure 3-3: TEM images of A) freshly synthesized BGNPs, B) aged GNPs and C) aged 

BGNPs after titration with PEG-SH……………………………………………………98 

Figure 3-4: Raw heat flow data for 3 replicates of PEG-SH titrated into freshly 

synthesized citrate stabilized GNPs, (A-C) and their corresponding dilution corrected 

binding isotherms (D-F). Dots represent observed integrated heats and lines represent 

calculated heats…………………………………………………………………………99 

Figure 3-5: Raw heat flow data for 3 replicates of PEG-SH titrated into aged citrate 

stabilized GNPs, (A-C) and their corresponding dilution corrected binding isotherms (D-

F). Dots represent observed integrated heats and lines represent calculated heats……..100 

Figure 3-6: Raw heat flow data for 3 replicates of PEG-SH titrated into PEG-NH2 

stabilized GNPs, (A-C) and corresponding, dilution corrected binding isotherms (D-F). 

Dots represent observed integrated heats and lines represent calculated heats………101 

Figure 3-7: Heat flow data for A) PEG, B) PEG-COOH, C) PEG-NH2 and D) citrate 

titrated into BGNPs………………………………………………………………….…103 

Figure 4 -1: TEM imaged of A) citrate stabilized AgNPs and B) NOM capped 

AgNPs…………………………………………………………………………………..113 

Figure 4-2: The Concentration of silver in column effluent was normalized to spike silver 

concentrations and plotted vs displaced pore volume on a log-log scale; A) Ag-Citrate 

and B) Ag-NOM NPs…………………………………………………………………...117 



xiv 

LIST OF FIGURES (Continued) 

Page 

Figure 4-3: Plot of the ratio of chloride ions to silver ions as a function of pore volume in 

column A………………………………………………………………………………..119 

Figure 4-4: Speciation diagram of AgCl as a function of ionic silver and ionic chloride 

concentration……………………………………………………………………………120 

Figure 4-5: Plots of normalized concentration of silver in effluent vs. displaced pore 

volumes in the regions of ionic strength flushes:  A) Ag-Citrate in 0.001M NaCl, B) Ag-

Citrate in 0.001M NaClO4……………………………………………………………...121 

Figure 4-6: Plot of the concentration of silver recovered from column packing as a 

function of height……………………………………………………………………….125 

Figure 4-7: Plot of the extent of AgNP ionization after 24 hours………………………127 

Figure 5-1: TEM images and particle size distribution histograms for silver nanoparticles 

synthesized with W = 40 at (A) ambient pressure, (B) 6.9 bar, (C) 13.8 bar, (D) 20.7 bar, 

(E) 27.6 bar, (F) 34.5 bar and (G) 41.4 bar………………………………………...142-143 

Figure 5-2:  TEM images and particle size distribution histograms for silver nanoparticles 

synthesized with W = 20 at (A) ambient pressure, (B) 6.9 bar, (C) 13.8 bar, (D) 20.7 bar, 

(E) 27.6 bar, (F) 34.5 bar and (G) 41.4 bar………………………………………146-147 



1 

CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

The earliest, commonly accepted definition of nanotechnology, as defined by Eric 

Drexler, stated that nanotechnology is the study of precisely manipulating atoms and 

molecules for the fabrication of “nanomachines”.
1
 Drexler stated that “[nanomachines]

will change our world in more ways than we can imagine.”
1
 The National

Nanotechnology Initiative subsequently established a more generalized description which 

defined nanotechnology as the understanding and control of matter with at least one 

dimension of size 1 to 100 nanometers.
2
 The unique properties of nano-materials arise

from quantum and physical effects.
3
 Quantum-mechanical rules predicted that

nanoparticles in the diameter range of 1-10 nm would display electronic band structures 

resulting in properties that their bulk counterparts do not display.
4
 The behavior of

nanoparticles strongly depends on particle size, shape, interparticle distance and the 

nature of the nanoparticle surface chemistry.
5
 In this dissertation, we will focus on how

nanoparticle surface chemistry can be modified and its effects on nanoparticle properties 

and the overall impact of nanomaterials. We will also present a green, novel technique to 

synthesize nanoparticles of controllable size and discuss the implications of materials 

used during synthesis, purification and processing on the overall impact of nanomaterials. 

In order to fully understand the influence of surface chemistry on nanomaterial properties 

we will first present the use of nanomaterials throughout history.  
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Nano-materials and processes naturally occur in the environment and in the body. 

Most biological processes occur at the nanoscale and give scientists a template to 

fabricate new processes and materials for the advancement of many technological fields.  

Examples of Nanotechnology have been found throughout history, as early as the 4
th

century. The Lycurgus Cup from Roman times contains colloidal silver and gold to look 

green when lit from the outside, and red when lit from the inside.
3
 Soluble gold was used

to treat various ailments throughout the middle ages as detailed in what is considered the 

first book on colloidal gold written by Francisci Antonii in 1618.
6
  Silver has been used

for centuries to treat burns and chronic wounds.
7
  By 1718 Hans Heinrich Helcher

discovered the importance of surface chemistry when he stated that the use of boiled 

starch in drinkable gold preparation enhanced its stability.
8
 In 1857, Michael Faraday

demonstrated that nano-gold dispersions could produce different colored solutions at 

certain lighting conditions.
9

Scientists have been able to design and control nanoparticles in order to take 

advantage of size
10

, shape,
11

 and morphology
12

 and dependent properties that can vary

greatly from bulk material. Silver and gold nanoparticles exhibit a localized surface 

plasmon resonance, LSPR, which their bulk counter parts do not. This phenomenon 

exists when photons of incident light match the natural frequency of surface electrons on 

nanoparticles. This causes plasmonic nanoparticles to exhibit a strong extinction band in 

the UV-vis spectrum that is not present in the spectrum of their bulk materials. The 

wavelength of this strong extinction band will shift depending on nanoparticle size, 

shape, dispersing media and surface chemistry.
13,14

 In fact, the surface chemistry
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dependent shift of the LSPR of nanoparticles has been used to investigate the kinetics and 

thermodynamics of ligand exchange.
15,16

 The plasmonic properties of gold and silver

nanoparticles have made them attractive in sensing,
17

 and targeting applications.
18-20

Silver nanoparticles are used widely in many consumer products such as cosmetics, 

paints, cleaning supplies, and clothing, which take advantage of silver’s antimicrobial 

properties.
7,21

 Gold nanoparticles (GNPs) are utilized in catalysis
22-24

 and biomedical

applications
25-27

 that include drug delivery,
19,28-31

 sensing, and bioimaging.
32-36

Nanoparticle surface chemistry will also have a significant impact on nanoparticle 

properties such as size, shape, function, and dispersity in various solvents. Many 

synthesis methods employ the use of a sacrificial ligand that allows for better control of 

nucleation and growth. The sacrificial ligand can then be displaced with a ligand 

possessing more desirable properties for the applications listed above. This surface 

modification procedure is commonly known as ligand exchange. Ligand exchange allows 

for the use of molecules that are not compatible with synthesis conditions such as heat or 

the presence of strong reducing agents. Ligand exchange can also be used as a green 

alternative to biphasic synthesis methods by eliminating the need for a phase transfer 

catalyst which is usually toxic and required in large quantities.
37,38

 While ligand exchange

provides a facile method of nanoparticle surface modification, there are many factors that 

must be taken into account that will affect the kinetics and extent of ligand exchange. 

Chapter 2 of this dissertation reviews the factors that affect ligand exchange such as 

nanoparticle size, shape, surface effects, age and ligand structure as well as others. This 
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chapter will also review applications of and methods to monitor and quantify ligand 

exchange.  

With the increase in research and application of silver and gold nanoparticles, the 

risk of these materials must be evaluated.  The increase in interest of these materials led 

to the publication of a book in 2012 by the National Research Center, outlining a research 

plan to determine the environmental and biological impact of nanomaterials. Two 

important contributing factors to the risk of nanoparticles are toxicity and exposure. 

While the use of gold and silver nanoparticles in biomedical applications is promising, 

the toxicity of these materials must be determined before they can be used in practical, 

real-world examples. Catherine Murphy and Michael Wyatt have  studied the effect of 

surface chemistry, cetyltrimethylammonium bromide (CTAB) in particular, size,
39

 shape

(gold nanorods)
40

 and exposure
41

 of gold nanoparticles on their toxicity. The findings of

these studies summarized that gold nanoparticle cores, regardless of size or shape, are not 

the cause of toxicity, but the precursors of the nanoparticle synthesis and the nanoparticle 

surface chemistry is responsible for the toxicity. In another study, the effect of aspect 

ratio of gold nanorods on the toxicity in human colon carcinoma cells was investigated.
40

This study demonstrated that while surface chemistry of gold nanoparticles may not 

directly affect toxicity, it will affect the amount of nanoparticle uptake in cells, and this 

has been demonstrated by other groups as well.
42

 The charge of a gold nanoparticle,

which is also determined by nanoparticle surface chemistry, can have a significant effect 

on their toxicity. Rotello et al demonstrated that cationic GNPs are moderately toxic 

while anionic GNPs are non-toxic. 
43

 The increased toxicity was due to the electrostatic
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interactions between cationic GNPs and the anionic lipid bilayer of cell walls, which 

increased GNP uptake.
43

  One aspect of the cytotoxicity of gold nanoparticles that 

requires further investigation is determining if a change in surface chemistry of the 

particles occurs once they have been taken up by a cell. This would require an 

investigation of the binding strengths of various functional groups in order to determine if 

a change in surface chemistry can take place. In Chapter 3 of this dissertation we 

investigate the binding strengths of thiol, amine, and carboxylic acid functionalized 

polyethylene glycol in order to develop a hierarchy of binding strengths. Polyethylene 

glycol was chosen as the ligand back bone due to its ease of fabrication, control over 

molecular weight and end group, and because of its stability in biological fluids.  

It is well known that silver exhibits antimicrobial properties, and as stated above, has 

been used throughout history as a disinfectant for food and in healing purposes. More 

recently, silver nanoparticles have emerged as useful antimicrobial agents because of 

their high surface area to volume ratio.  This has led to the emergence of numerous 

consumer products containing nano-silver and concurrently concern over the 

environmental impact of nano-silver when these products reach their end of life.
21

 Silver 

sulfadiazine is a broad spectrum antibiotic because the silver ions bind to base pairs in 

DNA and inhibits transcription. 
44

 Silver released into the environment has the potential 

to bind to the DNA in microbes in the natural environment and subsequently affect an 

entire ecosystem. Several reviews
31,45,46

 (and references within) have called for a better 

understanding of the environmental impact of nano-silver. Silver nanoparticles are not as 

stable as gold nanoparticles, which have metal bond dissociation energies of 160 ± 3.4 



6 

kJ/mol and 218 ± 6 kJ/mol, respectively.
47

 Therefore, silver nanoparticles are more prone

to dissolution. While there is still debate on whether silver nanoparticles themselves or 

their released ions cause toxicity, it is more likely that the ions are responsible. Steve 

Klaine’s group at Clemson University conducted a study on the effect of natural organic 

matter on the dissolved ion concentration of silver nitrate (AgNO3) and AgNPs with gum 

Arabic (AgGA), polyethylene glycol (AgPEG), and polyvinylpyrrolidone (AgPVP) 

surface chemistries and the toxicity to Daphnia magna.
48

 The results of this study

demonstrated that silver nitrate (AgNO3) was the most toxic and silver nanoparticles 

coated with polyvinylpyrrolidone (PVP) were the least toxic. Other surface chemistries 

studied were gum arabic (GA) and polyethylene glycol (PEG). The toxicity of AgNO3 

and GA and PEG coated nanoparticles also decreased when Suwannee River natural 

organic matter (NOM) was present in solution, while the toxicity of PVP coated AgNPs 

was unchanged. This study provided evidence  

Figure 1-1: Schematic and demonsions of lysimeters used in the study by Emerson et al.
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that the toxicity and antimicrobial activity of silver is a function of silver ion 

concentration and that the extent of AgNP dissolution can be controlled with surface 

chemistry and the presence of NOM.
48

 NOM reduces the toxicity of silver by binding to 

Ag
+ 

but will also bind to and enhance the transport of AgNPs, increasing their exposure 

potential. These two outcomes can have opposite impacts on toxicology.   

Few studies on AgNPs transport have been conducted under environmentally 

relevant conditions, which is the next step in determining their environmental impact. In 

collaboration with Brian Powell’s group at Clemson University we conducted an 

intermediate scale field transport study on the physical transformations of silver and iron 

oxide nanoparticles in Savannah River Site sandy loam soil. 
49

  Lysimeters, which are 

field testing apparatuses used to test contaminant transport under environmentally 

relevant conditions, were used in this study to examine silver nanoparticle fate, Figure 1-

1.  Lysimeters were spiked with AgNPs stabilized by citrate, Suwanee River natural 

organic matter (SR-NOM), or dodecanethiol and exposed to environmental conditions for 

1 year. The AgNP spiked and control lysimeters were then cored into 1 cm segments and 

each segment was analyzed for silver content on inductively coupled plasma-mass 

spectroscopy, ICP-MS. The results of this study demonstrated that in unsaturated 

conditions, 99 % of the silver nanoparticles travelled less than 5 cm from the nanoparticle 

source, Figure 2-2. 
49
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Figure 1-2: Transport profiles for SR-NOM (red) and citrate (blue) capped AgNPs

The most notable NP transformations observed were homoaggregation of the particles 

themselves and heteraggregation of the particles with colloidal-sized soil particles, Figure 

1-3.

A significant finding of this work was the heterogeneity of the AgNPs after 1 

year, as the source was originally homogenous. Figure 1-3 portrays digital images of the 

AgNP sources taken during the coring procedure. Nanoparticles may undergo a number 

of transformations including sorption, complexation, aggregation, oxidation/reduction 

reactions, and dissolution/precipitation when exposed to different conditions. Conditions 

in the lysimeters were largely unsaturated as only 5.2 pore volumes of liquid passed 

through the column over 1 year’s exposure, which complicates the system further with  
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Figure 1-3: Digital imaged of lysimeter sources of A.) SR-NOM, and B.) Citrate capped 

AgNPs 

additional transformations including capture by air–water interfaces
50

  and 

agglomeration due to drying.
51,52

 

Drastic changes in pore water chemistry caused by intermittent drying and 

rehydrating of soils can enhance the interactions expected under saturated conditions due 

to pH, ionic strength, and counter ion concentrations. In order to understand these 

transformations, it is necessary to isolate and test the factors that influence each type of 

transformation. Chapter 4 of this dissertation isolates the effects of SR-NOM and 3 

different electrolytes (NaCl, NaClO4, and (CH3)4NClO4) on the mobility, sorption and 

dissolution of citrate stabilized AgNPs in saturated quartz columns. 

Implications of materials used during synthesis, purification and processing is 

another aspect to consider when assessing the impact of nanomaterials. In order to reduce 

the environmental impact of nanomaterials, safe synthesis and processing procedures 

must be investigated and implemented.  Size dependent properties of nanoparticles 
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require narrow size distributions with standard deviations of less than 5 %. A common 

synthesis protocol for hydrophilic spherical silver and gold nanoparticles was developed 

by Turkevich.
53

 An adaptation of this method produces relatively monodispersed

populations of nanoparticles, in which the surface chemistry can be easily modified. In 

this method, aqueous metal salts are added to hot or boiling solutions of trisodium citrate 

and varying the reaction time offers control over nanoparticle size.
53

 Varying the ratio of

metal salt to citrate also provides control over nanoparticle size and the addition of 

reducing agents such as sodium borohyrdide (NaBH4) allows for rapid nucleation.
54

While these methods afford control over size, only microgram quantities of nanoparticle 

can be produced.
53

 A protocol for synthesizing milligram quantities of  spherical gold and

silver nanoparticles is the Brust method.
37

 On the other hand this method does not offer

as much control over size as the Turkevich method and hence requires post synthesis 

processing to achieve very narrow size distributions. In this synthesis, metal salt 

dissolved in an aqueous phase and stirred vigorously with a solution of 

tetraoctylammonium bromide (TOAB), a phase transfer catalyst, in chloroform or toluene 

until all of the metal ions are transferred to the organic phase. An alkyl-thiol is then 

added to the organic phase, and this phase is stirred rapidly with an aqueous solution of 

sodium borohydride to facilitate the nucleation of nanoparticles.
37

Surfactant-mediated methods for producing hydrophobic nanoparticles are also 

prevalent and afford control over nanoparticle size and surface chemistry.   In particular, 

the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) is used in concentrations 

such that a reverse micelle water-in-oil microemulsion is formed.
55

  The AOT reverse
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micelle system has been used widely for the synthesis of metallic nanoparticles including 

silver. Synthesis variables in the system that have been investigated include the type and 

concentration of surfactant, metal precursor, and reducing agent, as well as the 

temperature, pH, bulk solvent and water-to-surfactant molar ratio (W-value). This 

method usually leads to excess surfactant in the final nanoparticle product and post 

synthesis processing is needed for purification and further reduction in nanoparticle 

polydispersity.  

A common post synthesis processing method for removing excess surfactants and 

precursors and for isolating nanoparticles of a particular size is the utilization of recursive 

antisolvent addition and centrifugation steps.
56

 For example, toluene/ethanol or 

chloroform/ethanol solvent/antisolvent pairs are used to purify and fractionate gold and 

silver nanoparticles. Increasing the composition of antisolvent in nanoparticle dispersions 

weakens the solvent strength and induces nanoparticle precipitation. Since larger particles 

have greater van der Waals forces of attraction, these particles will precipitate first, and 

subsequent additions of antisolvent induces the precipitation of smaller nanoparticles.
37

 

While this process is common due to its simplicity, it is typically, time, solvent and 

energy intensive. To purify and fractionate 214 mg of Brust method prepared gold 

nanoparticles would require over 800mL of ethanol in addition to multiple 

centrifugations step, and it not easily scalable. As nanoparticles become more attractive 

for consumer product applications, the need for a scalable, rapid, and environmentally 

friendly method to synthesize nanoparticles of controllable size and polydispersity 

becomes more apparent. 
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 Recently, CO2 has been employed as an effective antisolvent for hydrophobically 

stabilized nanoparticles. CO2 is a weak, non-polar solvent that will readily dissolve into 

and change the properties of organic solvents (toluene, hexane, pentane, etc.). The 

solvent properties change as a function of CO2 composition i.e. pressure and as the CO2 

composition increases, the liquid volume also increases creating a system known as gas 

expanded liquids, GXLs.
57

 Mcleod et al. utilized GXLs to facilitate the fractionation of 

polydispersed dodecanethiol stabilized silver nanoparticles using CO2 expanded 

hexane.
58

  These advances led to the investigation of tuning solvents properties of an 

AOT reverse micelle microemulsion with CO2 to control the size of nanoparticles in-situ 

and this work constitutes Chapter 5 of this dissertation.
59

 This synthesis method 

essentially combines nanoparticle synthesis and processing into a single step. 

The primary objective of the work presented in this dissertation was to determine 

the influence of nanoparticle surface chemistry in order to better predict and design how 

nanoparticles will behave during their intended application, end fate and overall impact. 

Another objective was to provide a technique to synthesize nanoparticles of controllable 

size that would have less impact on the environment than traditional methods. This work 

is motivated by the constant increase in interest of gold and silver nanoparticles and the 

lack of definitive knowledge of nanoparticle fate and impact.  

Dissertation Outline 

 Nanoparticle surface chemistry has a significant impact on how these materials 

behave during their intended function and at their end of life. The primary motivation of 
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this dissertation is to provide insight on the interactions between ligands and 

nanoparticles in order to assess the fate of nanoparticles of these materials. In Chapter 2, 

we provide a comprehensive review of literature on ligand exchange and binding. This 

work aimed to consolidate current research on ligand exchange mechanisms and kinetics 

and extrapolate trends from the data. This work also aimed to identify areas of research 

that are lacking and provide recommendations to fill these gaps. 

 In order to fill the gaps in research on ligand exchange and binding, understanding 

of how various functional groups will bind to nanoparticles, in this case, gold 

nanoparticles. Chapter 3 of this dissertation discusses how isothermal titration 

calorimetry is used to probe the binding of functionalized polyethylene glycol to bare, 

citrate stabilized, and polyethylene glycol-amine stabilized gold nanoparticles. Age must 

be taken into account when assessing risks of nanomaterials as nanoparticle age also 

affects nanoparticle behavior such as binding, reactivity, aggregation potential and 

dissolution. These effects are potentially important for applications in catalysis, drug 

delivery, sensing and others. By understanding the mechanism and strength of 

nanoparticle-ligand interactions, nanoparticle systems can be designed to perform desired 

functions while reducing adverse effects.  

When a nanomaterial has performed its intended function, reached its end of life, 

and is ultimately disposed of, these materials will come into contact with a wide range of 

natural molecules and electrolytes in the ecosystem. As motivated by the collaboration 

with Hilary Emerson and Dr. Powell in the EE&S department at Clemson University, 
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Chapter 4 describes how natural organic matter and electrolytes (sodium chloride, sodium 

perchlorate, and tetramethylsodium perchlorate) affects the mobility, dissolution and 

sorption of silver nanoparticles.  

 Adverse environmental effects can arise not only from nanomaterials themselves, 

but from synthesis and processing materials as well. A secondary motivation of this 

dissertation was to design a method to synthesize nanoparticles of controllable size with 

minimal effects on the environment. As stated previously, synthesis methods for 

organically stabilized nanoparticles require time, solvent, waste and energy intensive post 

synthesis processing to obtain monodispersed nanoparticle populations. Chapter 5 of this 

dissertation describes the use of gas expanded liquids to control the size of dodecane 

stabilized silver nanoparticles in-situ.  

 Finally, in Chapter 6 the conclusions of this dissertation are made along with 

recommendations of future work. The most important conclusion of this dissertation is 

that nanoparticle surface chemistry, age and synthesis conditions has a profound effect on 

nanoparticle stability, function and overall environmental impact. 
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CHAPTER TWO 
 

LIGAND BINDING AND EXCHANGE KINETICS ON THE SURFACE OF 

PLASMONIC NANOPARTICLES 

Abstract 

Ligand exchange is a versatile method for modifying the surface of plasmonic 

nanoparticles. A detailed understanding of the influencing factors on the mechanism of 

nanoparticle ligand binding and exchange is pertinent for the robust design of 

nanoparticles. This chapter reviews the work of several research groups in order to 

compile the work done to date on nanoparticle ligand binding and exchange to make 

conclusions about the overall mechanism of ligand exchange and to build a hierarchy of 

functional groups in order of preferential binding. Nanoparticle properties that affect 

ligand binding and exchange include size, shape, crystalline structure, charge, oxidation 

state and age. Ligand properties that affect ligand exchange and binding include structure, 

i.e. multivalent ligands, chain length, extent of branching and chirality, and chemistry; 

end group and perhaps most importantly head group, through which ligands bind to 

nanoparticle surfaces. A major conclusion from this work suggests that the mechanism of 

ligand exchange is an SN2, associative mechanism in which an incoming ligand binds to a 

nanoparticle surface while an outgoing ligand desorbs from the surface in a simultaneous 

process. Ligand binding and exchange is initiated and occurs rapidly at highly reactive 

defect sites and then slows as defect site-bound ligands migrate to less reactive terrace 

sites to allow more ligands to bind. 
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Introduction 

Applications of plasmonic nanoparticles have expanded across a plethora of 

research areas and emerging technologies; becoming materials of opportunity with size 

dependent properties that differ from those of their bulk materials. 
1-4

 With each of these 

applications, a nanoparticle core material may be chosen based on the inherent properties 

of that nanomaterial of a given size, shape, or composition.  For example, nanomaterials 

have found extensive applications in catalysis, targeted drug delivery, cell targeting, 

sensors, and optics.
2,5

 Particle size,
6,7

 shape,
2,8

 and morphology
1,9,10

 all influence the 

inherent nanomaterial properties. In order to fully exploit these desirable properties it is 

necessary to impart specific functionality into the engineered nanomaterials, which is 

achieve through the design of surface ligand chemistry.
11

  A primary role of the 

nanoparticle ligand is to provide stability in a colloidal dispersion, suspension, powder or 

composite.  Preservation of the nanoscale dimensions and prevention of irreversible 

agglomeration or other destructive phenomena that results in the loss of desired nanoscale 

features and hence, unique properties, is imperative. Furthermore, ligand chemistry can 

be used to tailor the surface properties of nanomaterials, rendering them hydrophobic
12-16

 

or hydrophilic; anionic
17-19

, cationi 
20-22

, nonionic 
23,24

, or zwitterionic 
24-31

; or 

combinations of the above in patchy particles.
2
  In biomedical therapeutic and diagnostic 

applications, specific surface functionalities can impart biocompatibility or selective 

binding sites for cellular or extracellular proteins, peptides, DNA, etc.
32-34

  In 

nanocomposite and nanofluidic applications, the ligand provides compatibility with the 

dispersing media.
2
  In catalysis, ligand functionality provides preferential binding while 
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leaving specific catalytic sites exposed
35

 and chiral ligands afford chiral chemistry in 

chemical production.
12

 In other applications, ligand functionality can provide control of 

ionic release in anti-microbial activity, and chelating chemistry in environmental 

remediation.
36

 Ligands can also impart functionality that is desired for interfacial 

phenomena such as the air/water interface and immiscible fluids i.e. nanoparticle 

stabilized-emulsions, pickering emulsions and oil recovery.
37-41

  

Ligand properties can be used to control the size,
42,43

 shape,
44

 and 

polydispersity
45,46

 of synthesized nanoparticles; however a ligand that can control size, 

shape or polydispersity during synthesis may be incompatible with the desired end 

application.  For example, high-yield gold nanorod synthesis can be achieved using a 

cetyltrimethyl ammonium bromide (CTAB) surfactant, but if these nanorods are to be 

used for biomedical applications, the cytotoxicity of the CTAB is an issue.
47

  Thus, 

extensive post-synthesis purification may be necessary to remove the synthesis ligand or 

isolate the nanoparticles of desired size or shape.
13

  A common nanoparticle synthesis 

approach is to employ 1) a sacrificial ligand that can either be displaced by a new ligand 

with desired functionality using a post-synthesis ligand exchange reaction or 2) a reactive 

ligand that provides sites for reactive modification, via grafting-to or -from the 

nanoparticle surface by interfacial polymerization,
48-51

 click chemistry
52,53

 or layer by 

layer deposition.   The former approach has the benefit of higher yields of nanomaterials 

with desired nanoscale morphology and inherent material properties. A fundamental 

understanding of ligand exchange is pertinent in order to take advantage of these benefits. 

The focus of this review is to compile the experimental methods and results obtained in 
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recent studies that will help enhance our fundamental understanding of nanoparticle – 

ligand interactions and the implications ranging from nanomaterial synthesis to 

application. 

Background 

In this review, we intend to focus our investigation on silver and gold 

nanoparticles due to their wide use in consumer products and research in biomedical 

applications, as well as their characteristic optical properties
54-56

 that facilitate the study 

of interfacial reactions and interactions.   Silver nanoparticles are used widely in many 

consumer products such as cosmetics, paints, cleaning supplies, and clothing.
57,58

  Gold 

nanoparticles (GNPs) are utilized in catalysis
59-61

 and biomedical applications
62-64

 that 

include drug delivery,
32,65-68

 sensing, and bioimaging.
12,69-72

   

Nanoparticles have a tendency to aggregate in solution, thus it is important to 

design a surface chemistry that provides repulsion forces strong enough to overcome Van 

der waals or magnetic forces of attraction. The Derjaguin, Landau, Verwey and 

Overbeek, (DLVO)  theory 
73

 is a useful tool to model the interparticle interaction forces 

and dispersion phenomena. 
74-78

 The particle-particle interaction potential is calculated by 

summing the potentials of van der Waals forces of attraction, Va, with the potentials of 

electrostatic, Ve,  repulsions, Eq 1.  
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Figure 2-1: Schematic of the interaction energy potentials for soft spherical 

molecules with repulsive overlap and attractive dispersion forces 
 

According to the DLVO theory, colloidal stability is determined by balancing the double 

layer repulsion with van der Waals attraction. Double layer repulsion increases 

exponentially with increasing distance between particles, Figure 2.1.  

 By varying the factors that contribute to these forces, the interactions between 

particles can be controlled.
77-79

 One way to alter interparticle interactions is through the 

use of stabilizing ligands. Ligands provide two mechanisms of repulsion to prevent 

aggregation, steric and electrostatic, or a combination of both. Charged ligands, such as 

sodium citrate,
80

 provide electrostatic repulsion that  inhibit coalescence of particles when 
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their surfaces to collide. Electrostatic repulsion can come from positive, negative, or 

zwitterionic ligands such as polyethyleneimine,
21

 triphenyl phosphine,
81

 or a zwitterionic 

disulfide, 
27

 respectively. Electrostatic stabilization is import for particles that are 

dispersed in a dielectric (polar) solvent. Some ligands, such as polyelectrolytes, 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or natural organic matter provide both 

steric and electrostatic stabilization. Steric repulsion occurs when the outer segments of a 

ligand on the surface of a nanoparticle begin to overlap when two particles get closer than 

a few radii of gyration. This leads to a repulsive osmotic force due to the unfavorable 

entropy associated with compressing the chains between the particles.
82-84

 Large ligands 

such as 10,000 MW PEG-SH or the previously mentioned CTAB provide this type of 

stabilization.  

Ligands not only provide a mechanism of stabilization to nanoparticles but can 

also impart functionality to the surface of nanoparticles.  Ligand tails determine the 

hydrophobicity of a nanoparticle and may contain an active functional group to provide 

additional functionality to the nanoparticle surface. Bifunctional ligands typically have 

one polar end and one non-polar end. Sulfur preferentially binds to gold through a 

nonpolar thiol group and
85

 therefore it is advantageous to use a bifunctional ligand with a 

thiol 
86

 head group and a polar –X end group (X-R-SH) that could be –COOH, -OH, etc 

especially for biological applications that require the nanoparticles to be stable in aqueous 

dispersions. End groups may also be non-polar, such as to impart specialized 

functionality in non-polar solvents.  End group functionalities also determine the binding 

capabilities of nanoparticles with other molecules while the thiol head group maintains a 
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strong bond to the nanoparticle surface, ensuring that the ligand is not displaced. 

Examples of bifunctional ligands include (but are not limited to) bovine serum albumin 

(BSA) or single stranded DNA.
87,88

  PEG-thiol ligands 
65,89-92

 can be used to disperse 

thiol stabilized GNPs in water instead of using a weaker ligand such as citrate which can 

easily be destabilized. Targeting ligands are bifunctional ligands that are attached to the 

surface of nanoparticles to ensure that the particles are directed to a specific environment 

or cell. A common approach is to functionalize GNPs with a folic acid-PEG-thioctic acid 

conjugate to selectively target and destroy cancer cells. 
48

  Cancerous cells require 500+ 

times more folate than healthy cells and express this great need in the amount of folate 

receptors on the cell surface. Thus it is postulated that the folate conjugated GNPs 

preferentially target cancerous cells over healthy ones. 
48,93-100

 Ligands also can be 

described as synthetic, natural, or biological molecules.  Synthetic or engineered ligands 

are designed in a laboratory for a specific function, such as the folic acid-PEG-thioctic 

acid conjugate mentioned above. Natural ligands are molecules found in the natural 

environment that are capable of binding to and stabilizing nanoparticles.  For example, 

humic acid, Figure 2-2, which is a model form of natural organic matter, (NOM) is found 

in soil and the sediment of natural waters. Biological ligands are molecules found in the 

body, i.e. proteins, enzymes, peptides, DNA, etc.  
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Figure 2-2: Representative structures of molecules commonly found in nature 

 

Methods to modify the surface of nanoparticles with the aforementioned ligands 

include; in-situ ligand introduction, ligand exchange, which will be the focus of this 

review,
101,102

 atom transfer radical polymerization, (ATRP),
87,103-110

 reversible-addition-

fragmentation chain-transfer, (RAFT),
72,111

 click chemistry
52,53,112-115

 EDC coupling,
116

 

layer by layer (LBL) deposition,
80,117

 as well as other methods not mentioned. Ligand 

exchange is a versatile method of surface modification because it allows for the rapid 

alteration of chemical functionality and solubility of nanoparticles, without changing 

particle size or shape.
16,118,119

 Since the unique properties of nanoparticles come from 

their shape, size and polydispersity, it is important to be able to modify the surface 

without compromising these properties. Ligand exchange is a simple process that 

involves rapid mixing of a ligand-nanoparticle complex with a free ligand in solution that 
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has a higher affinity to the nanoparticle surface than the original ligand. The original 

ligand is displaced on the nanoparticle surface by the free ligand in solution.   

Applications of Nanoparticle Ligand Exchange 

One robust technique for controlling surface chemistry is through the use of 

multiphase ligand exchange, depicted in Figure 2-3.
120-122

 Processing of nanoparticles in 

non-polar solvents is usually much easier than in polar solvents, due to low interfacial 

energies in non-polar organic solvents, and allows for longer term storage.
122

 In 

multiphase ligand exchange, nanoparticles are synthesized in an aqueous or high polarity 

solvent with a polar ligand, due to the solubility of common metal salt precursors and 

reducing agents.  Following nanoparticle synthesis, the polar ligand is then displaced by a 

non-polar ligand and the nanoparticles subsequently transfer to the non-polar phase. This 

technique is advantageous because there are numerous methods to synthesize water-

soluble nanoparticles of various shapes and sizes that cannot be achieved in non-polar 

media synthesis. One example is the commonly used and robust citrate synthesis of GNPs 

originally developed by Turkevitch,
123

 which produces nanoparticles with relatively low 

size polydispersity. Frens 
124

 modified Turkevitch’s method to obtain nanoparticles of 

different sizes (16-147nm) by adjusting the molar ratio of sodium citrate to gold salt.  

Other researchers have adapted this method to produce nanoparticles of silver, iron and 

other metal cores. 
17,18,125

 Nanoparticle syntheses in non-polar solvents often require a 

phase transfer catalyst to transfer metal ions to the non-polar phase.  Phase transfer 

catalysts are expensive, typically toxic, and potentially harmful to the environment and  
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can cause complications during synthesis and processing. Ligand exchange can be 

implemented as a greener alternative to non-polar solvent syntheses. 
126

 For example, 

citrate coated GNPs can be synthesized via the reduction of gold salt with either sodium 

borohydride or heat in the presence of trisodium citrate. The sacrificial citrate ligand can 

then be displaced with more desirable surface chemistry in an organic phase through a 

ligand exchange process without the use of a harsh phase transfer catalyst. 
119,127-129

 

White et al. used this method to obtain 3.9 ± 0.7 nm stearylamine capped GNPs in 

toluene. 
130

  Direct synthesis of stearylamine GNPs would require a biphasic synthesis 

and a phase transfer catalyst to transfer the gold ions into an organic phase. 
126

  Biphasic 

synthesis methods do not always produce nanoparticles with narrow size distributions 

whereas the citrate synthesis is a robust synthesis technique with narrow size 

distributions. In another example, Lennox et al. synthesized citrate stabilized GNPs and 

SNPs in water with diameters ranging from 3 to 100 nm. The solubility of these NPs was 

Figure 2-3: Schematic of biphasic ligand exchange of aqueous citrate 

stabilized AgNPs with dodecanethiol in an organic phase 
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then altered via ligand exchange with polystyrene-thiol, PS-SH in an acetone/water 

mixture. The PS-SH nanoparticles were then precipitated out of solution and easily 

dispersed into non-polar solvents.
119

   

In contrast, multiphasic ligand exchange can also be performed to transfer particles 

from non-polar to polar solvents.
131,132

 Aqueous-based synthesis of metallic nanoparticles 

is typically performed in low concentrations to overcome aggregation/precipitation 

problems associated with ionic interactions. By synthesizing metallic nanoparticles in 

non-polar media, larger concentrations can be obtained, however the hydrophobicity of 

these particles limit their used in biomedical applications.
121,122

 Hydrophobic 

nanoparticles can be ligand exchanged to allow for dispersions in polar or aqueous media 

in higher concentrations and this has been crucial for the widespread use of quantum 

dots.
133-135  Schmid et al. was one of the first groups to attempt the phase transfer of 

GNPs from an organic phase to an aqueous phase with ligand exchange. 

Triphenylphosphane chloride was exchanged with 12Ph2PC6H4SO3Na of the surface of 

GNPs. They found that the GNPs were more stable in the aqueaous phase due to the high 

ionic charge of 12Ph2PC6H4SO3Na.
136

 Later Rotello et al. exchanged octanethiol (OT) 

stabilized GNPs with 11-thioundecanoic acid to create water soluble particles with mixed 

monolayers.
137,138

 Mixed monolayer stabilized GNPs feature a wide range of 

functionality that has potential use in a variety of applications. 

Mixed Monolayer GNPs are used in many applications such as nanomedicine,
138-

140
 nanoelectronics

141
 and interfacial phenomena.

37,38
 Ligand exchange is a facile method 
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to obtain nanoparticles with mixed monolayers, as introducing a mixture of ligands 

during synthesis can compromise the size distribution.
16,142-145

   Zambori fabricated vapor 

sensing flexible films with mixed monolayer GNPs by first synthesizing particles with a 

modified Brust method to control NP size.
126,141

 Ligand exchange was then used to 

incorporate conductive polymer linkers to provide bridges for electron tunneling.
141

  

Sandhu synthesized mixed monolayer GNPs to transfect DNA as a method for gene 

transfer.
145

 Murray and coworkers also used GNPs with mixed monolayers of 

tiopronin/ethidium and trimethyl-(mercaptoundecyl)- ammonium/ethidium to bind the 

NPs to DNA.
146,147

  These methods are advantageous because of the ease of fabrication of 

GNPs versus complex high-generation dendrimers and the reduced risk of cytotoxicity 

and immune responses.
148

  GNPs for use in coatings were produced by first synthesizing 

GNPs using the Brust method with hexanethiolate as the original ligand, then 

incorporating mercaptoundecanoic acid and 4-aminothiolphenol onto the GNP surface 

with ligand exchange. The mixed monolayer GNPs were then attached to a glass surface 

functionalized with 3-mercaptopropyl trimethoxy silane, again using ligand exchange to 

create a GNP coating.
149

    

Ligand exchange has also made it possible to modify nanoparticle surface 

chemistry with molecules that could not be introduced during nanoparticle synthesis 

because of chemical incompatibility, harsh synthesis conditions, or without 

compromising the size distribution. In this case, a sacrificial ligand is used during 

nanoparticle synthesis and then the surface chemistry is modified via ligand exchange to 

incorporate reactive molecules on the surface. One example is “click chemistry” reactions 
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which typically call for reactive azide molecules that would reduce to amine groups in the 

presence of NaBH4 or other strong reducing agents. Therefore, the ligand exchange is 

necessary to introduce azide functionality post synthesis as a reactive platform for click-

chemistry.   Kadnikova’s group used this method to modify GNPs with  an azidothiol 

group as a precursor for a “click” reaction with good reproducibility.
53

 Ketones are 

another functional group that will react with strong reducing agents to form alcohols and 

ligand exchange makes ketone surface chemistry possible. Kell saw this in his work 

investigating ligand exchange dependence on nanoparticle size.
150

   

Control over ligand chirality can also be achieved with ligand exchange. Burgi 

and co-workers found that chiral inversion of thoil ligands on GNP surfaces reverses the 

optical activity in metal-based electronic transitions, MBET.
12

 Chiral nanoparticles have 

potential applications in heterogeneous enantioselective catalysis,
151

 

enantiodiscriminiation,
152

 enantioselective crystallization,
153

 liquid crystal displays 
154

 

and in optics.
12

 

Mechanisms of Nanoparticle Ligand Exchange 

Mechanistic studies have been conducted
16,49,107,155-157

 and the fundamental 

mechanisms of nanoparticle ligand exchange are still being investigated.  A 

comprehensive review written by Chechik and Caragheorgheopol on the mechanism of 

ligand exchange on GNPs summarized the potential pathways for ligand exchange.
16

 

They used classic inorganic chemistry to describe the ligand exchange process as 

associative, dissociative, or interchange mechanisms, which are shown in Figure 2-4 and 
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possess distinctions first suggested by Langford and Gray. 
43

  In an associative 

mechanisms exchange occurs in one step where the incoming binds and the outgoing 

ligand desorbs in a simultaneous process, and this type of mechanism is generally used to 

describe ligand exchange. In a dissociative mechanism the outgoing ligand desorbs 

before the incoming ligands coordinated in the associative mechanism and the outgoing 

ligand is dissociated in the dissociative mechanism. These mechanisms of ligand 

exchange tend to be rapid processes. Chechik and Caragheorgheopol described the 

interchange mechanism as a concerted, one-step process that is subdivided into 

“intimate” mechanisms; interchange associative (Ia) and interchange dissociate (Id).  In 

the Ia mechanism, an intermediate is formed in which the incoming ligand is bound 

strongly to the NP surface while the outgoing ligand is weakly bound, then eventually 

desorbs. In an Id mechanism, both the incoming and outgoing  

 

 
Figure 2-4: Flow diagram of the possible mechanisms of ligand exchange 

adapted from Chechik et al. IA and Id denote interchange associative and 

interchange dissociative mechanisms, resepectively 
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ligands are weakly bound to the surface and the incoming ligand can bind strongly only 

when the outgoing ligand has completely desorbed.   

Traditional organic SN2 and SN1 type reaction mechanisms have also been used to 

describe ligand exchange with similarities to associative, dissociative and interchange 

mechanisms.
16

 In an SN2 mechanism, one bond if formed while a preexisting one is 

broken simultaneously while in and SN1 these 2 processed occur separately.  Ligand 

exchange on GNPs is generally considered to be an associative, SN2 mechanism in which 

an incoming ligand attaches to a GNP surface and the bound ligand leaves the surface in 

a simultaneous process.
6,155,158,159

   In general, nanoparticle surfaces contain more 

vertices, edges, defect sites and grain boundaries than flat surfaces, which increase 

electron density and reactivity.
115,157,160,161

 Edges and vertices are also less sterically 

hindered making these sites more accessible for the incoming ligand and facilitating 

exchange, especially for bulky molecules. 
14,162,163

 The reactivity and steric accessibility 

of these sites makes an associative mechanism possible, 
107,155

 although associative 

reactions can be inhibited by tight packing on the nanoparticle surface. 
7
 Ligand exchange 

is initially rapid at these core defect sites, followed by the migration of these bound 

species to terrace site allowing for more ligand to bind at the defect sites. This migration 

becomes harder further away from defect sites and subsequently slows the exchange 

reaction as it progresses. This process is consistent with a second order, associative 

mechanism. 
142,157

 Murray and coworkers used HNMR to study the effect of particle size 

on the mechanism of exchange. Phenylethanethiolate was exchanged with p-substituted 

arylthiols (p-X-PhSH) where X = NO2, Br, CH3, OCH3 or OH on Au38 and Au140 GNPs.  
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Table 2-1: Pseudo 1st order rate constants determine from ligand exchange of 

phenylethylenethiol with various bifunctional ligands in Murrays study 

NO2pHSH BrPhSH CH3PhSH OCH3PhSH 

 (M) 

K1,  

(s-1)*10^-4  (M) 

K1,  

(s-1)*10^-4  (M) 

K1, (s-

1)*10^-4  (M) 

K1, (s-

1)*10^-4 

0.0089 1.02 ± 0.06 0.0201 0.64 ± 0.04 0.0272 0.49 ± 0.03 0.0126 0.32 ± 0.02 

0.0185 1.75 ± 0.09 0.0309 1.05 ± 0.05 0.0378 0.64 ±0.04 0.0202 0.51 ± 0.03 

0.0234 2.28 ± 0.11 0.0395 1.41 ± 0.10 0.0485 0.77 ± 0.03 0.0265 0.63 ± 0.04 

0.028 2.80 ± 0.14 0.0435 1.48 ± 0.10 0.059 0.91 ± 0.06 0.0399 0.91 ± 0.06 

 

The results of this investigations demonstrated that the first-order rate constants for the 

first 25% of ligand exchange varied linearly with the incoming arylthiol concentration, 

suggesting an overall second-order reaction mechanism as seen in Table 2-1. 
163

 These 

results showed that the second-order rate constants for the initial stages of exchange of 

the both Au38 and Au140 were very similar, Table 2.2. On the other hand, later stages of 

exchange were slower on Au140 particles due to a higher terrace site concentration on 

Au140 particles. 
163

 Murray also studied the reverse exchange reactions to further 

characterize the mechanism of exchange. Rate constants determined for both forward and 

reverse exchanges were very similar, suggesting a concurrent bonding of both in-coming 

and out-going ligands to the GNP surface providing evidence of an associative 

mechanism.
163

 The effect of end group on the rate of exchange will be discussed later. A 

dissociative mechanism is proposed for ligand exchange with disulfide molecules for 

weakly bound ligands such as short-chain alkylthiols, amines and sulfides.
156,157

  The 

presence of molecular oxygen in solution can create a competing dissociative pathway for 

ligand exchange that most likely involves the formation of Au(I) thiolate species in 

solution. 
157
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Table 2-2: First order rate constants determined for ligand exchange of 

phenylethylenthiol with various bifunctional ligand on small and large GNPs in Guo's 

study 

MPC 

Incoming 

ligand Ratio 

kPE(I) (10-3 

M-1 s-1) 

Au38(SC2Ph)24 NO2pHSH 4.2:1 8.5 

BrPhSH 6.7:1 1.8 

CH3PhSH 4.3:1 1.1 

CH3OPhSH 4.0:1 1.3 

HOPhSH 7.1:1 1 

Au140(SC2Ph)53 NO2pHSH 1.3:1 1.7 

BrPhSH 2.2:1 0.6 

CH3PhSH 3.3:1 0.6 

 

Methods to Monitor Nanoparticle Ligand Exchange 

Analytical techniques can be used to monitor ligand exchange and binding processes, 

determining extent of ligand exchange, surface composition, mechanisms, and kinetics 

and binding strengths. Here we will describe how to monitor ligand exchange with 

various techniques that include, but are not limited to; fluorescence 

spectroscopy,
14,88,107,164,165

 electron paramagnetic resonance spectroscopy (EPR),
156,166

 

UV-vis spectroscopy,
104,105,167,168

 NMR,
104,120,141,150,157,163,169-175

 surface enhanced raman 

spectroscopy (SERS),
176,177

 Fourier transform infrared spectroscopy (FTIR),
6,120,155,168

 

isothermal titration calorimetry(ITC), and x-ray photoemission spectroscopy (XPS).
178,179

 

Fluorescence Spectroscopy 

Fluorescence spectroscopy is a popular technique to monitor ligand exchange on GNPs 

because the exchange reactions can be observed in real time without perturbing the 

experiment 
14,88,104,164,165,180

 because GNPs quench the fluorescence of fluorescent dye 
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molecules, a phenomenon known as Forester resonant energy transfer, FRET, Figure 2.5. 

107,181,182
 The use of fluorescence allows for a sensitive measurement of ligand exchange 

on the surface of GNPs. This method is convenient because ligands and GNPs can easily 

be functionalized with fluorescent molecules and real time measurements can be 

obtained. An experimental scenario begins with GNP’s functionalized with a fluorescent 

dye molecule, such as fluorescein or a fluorescently tagged ligand, FL-ligand. When a 

fluorescent molecule is bound to the particle, the gold core absorbs the photons emitted 

by the dye molecule. When a new non-fluorescent ligand binds to the particle surface and 

subsequently displaces a dye molecule, the fluorescence is no longer quenched. The 

reverse scenario can also be used where FL-ligands are titrated into a solution of non-

labeled GNPs and the intensity will decrease as the FL-ligands displace the non-tagged 

ligands, and are quenched by the gold core. A scenario with multiple ligands tagged with 

different dyes can be also used to investigate ligand exchange. In this case two dyes can 

be bound to the nanoparticle and an untagged ligand would be titrated into the NP 

solution in order to demonstrate competitive displacement of one ligand over another. 

Alternatively, one FL- ligand can also be used to displace a different FL-ligand and the 

fluorescence intensity for the unbound ligand would decrease as the intensity for the 

bound ligand increased as the reaction progressed.  Rotello and coworkers employed 

these methods to study the exchange alkanethiols tagged with tryptophan, dithiothreitol 

(DTT), dihydrolipoic acid (DHLA), and glutathione (GSH), which are the most abundant 

thiols in living cells. 
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Figure 2-5: Schematic of Forester resonant energy transfer. When incident light hits 

a fluorescent molecule on a GNP surface energy is transferred to the gold core and 

fluorescence is quenched 
 

The fluorescence of tryptophan tagged ligands originally bound to GNPs is quenched 

until displaced by another, non-tagged ligand. As more tryptophan was released, 

fluorescence intensity increased over time until equilibrium was reached.  

Table 2-3: First and second order rate constants determined in Rotello’sstudy. 

Stuctures of the incoming ligands are presented in Figure 2-6. 

Original 

Ligand Rate Constants 

Incoming Ligand 

DDT DHLA GSH 

NP-Sec 
k1 (10

-2
 min

-1
) 2.86 ± 0.25 2.19 ± 0.02 0.33 ±0.02 

k2 (dm
3 
mol

-1
 min

-1
) 28.6 ± 2.5 21.9 ± 0.2 0.66 ± 0.04 

NP-Nor 
k1 (10

-2
 min

-1
) 2.38 ± 0.13 1.96 ± 0.11 0.18 ± 0.02 

k2 (dm
3 
mol

-1
 min

-1
) 23.8 ± 1.3 19.6 ± 1.1 0.36 ± 0.04 

NP-Iso 
k1 (10

-2
 min

-1
) 1.76 ± 0.09 1.57 ± 0.07 0.11 ± 0.04 

k2 (dm
3 
mol

-1
 min

-1
) 17.6 ± 0.9 15.7± 0.7 0.22 ± 0.08 
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The  

Figure 2-3: Structures of the ligands used in Rotello's work studying ligand exchange 

with fluorescence spectroscopy 
 

kinetic rate constants calculated by the Stern Volmer equation for this experiment can be 

seen in Table 2-3.
183

 The reaction rates of the incoming ligands decrease in the order of 

DTT > DHLA >> GSH.  The explanation of this trend is due to the fact that DTT and 

DHLA carry two mercapto groups and will interact more strongly with GNPs that GSH, 

which only carries one mercapto group.  Graf and coworkers also used fluorescence 

spectroscopy to investigate the effect of multidentate ligands on ligand exchange kinetics 

with monothiols on different size GNPs. Kinetic rate constants for this investigation are 

listed in Table 2-4.
165

  Results from this study demonstrated that multidentate ligands 

exchange on the surface much more rapidly that monodentate ligands. Results also 

showed that multidentate ligands exchanged more rapidily on medium sized (3.2nm) than 

small (2.2nm) GNPs because of their steric bulk. 
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Table 2-4: Rate constants of ligand exchange with multidentate ligand calculated 

with biexponential and Langmuir models in Graf's study 

Size 
(nm) Model 

Rate 
Constant 

1,1,1-
tris(mercaptom
ethyl) nonane 

2-
octylpropane

-1,3-thiol Dodecanthiol 

3.2 ± 0.7 Biexponential k1*10-3 (s-1) 5.75±0.85 5.25±0.35 2.55±0.56 

k2*10-5 (s-1) 11.20±2.02 6.45±3.14 5.30±1.47 

Langmuir kL*10-3 (s-1) 61.5±5.8 50.8±7.7 34.7±3.6 

2.2 ± 0.4 Biexponential k1*10-3 (s-1) 0.85±0.07 3.93±0.63 0.94±0.03 

k2*10-5 (s-1) 5.58±1.28 15.80±2.45 9.0±0.82 

Langmuir kL*10-3 (s-1) 22.7±2.8 66.3±8.4 29.4±1.2 

 

UV-Vis spectroscopy 

Plasmonic nanoparticles exhibit a strong UV-visible extinction band that is not 

present in the spectrum of bulk materials. The extinction band occurs when the frequency 

of incident light matches the natural frequency of surface electrons on nanoparticles, and 

this is known as the localized surface plasmon resonance, LSPR. The peak wavelength of 

the LSPR spectrum is dependent on size, shape, core material, surface chemistry and 

local environment of a nanoparticle.
166,184-188

 Time studies can be conducted to monitor 

the kinetics of exchange and can be fit with a Langmuir isotherm to obtain binding 

constants. Reyes et al. used UV-Vis spectroscopy to monitor the exchange of 6-

mercaptopurine (6MP) with 11-mercapto-1-undcanol (MUA).
168

  The change in the 

LSPR peak was monitored over time as the exchange reaction progressed.  Kinetics were 

investigated as a function of the ratio of incoming to outgoing ligand. The first and 

second order rate constants of this experiment can be found in Table 2.5.
168
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Table 2-5: First and second order rate constants of ligand exchange of 6-

mercaptopurine (6MP) with 11-mercaptoundecanoic acid (MUA) as a function of the 

ratio incoming to outgoing ligand monitored by UV-Vis spectroscopy 

[MUA]/[6MP] k1 (s
-1*102) k2 (s

-1*103) 

55:27.2 1.8 2.44 

50:39.4 2.5 2.96 

45:42.0 3.5 4.1 

 

These results indicated a second-order mechanism due to the fact that the constants 

increased linearly with an increase in the incoming to outgoing ratio. 

Other groups have used similar experiments to monitor ligand exchange either to 

determine if ligand exchange took place and/or to determine exchange kinetics. 
105,167

 

Kumar et al. used UV-Vis spectroscopy to determine if ligand exchange reactions could 

occur between alylamine molecules. Laurylamine protected GNPs were mixed with 

ethylenediamine in chloroform. The diamine was chosen because if ligand exchange 

occurred, the diamine stabilized GNPs would crosslink and cause a visible change in 

optical properties. Broadening in the plasmon band indicated aggregation caused by 

crosslinking, confirming that the amine-amine exchanges are possible. 
189

 UV-vis can be 

particularly useful in biphasic ligand exchange due to the transfer of color from one phase 

to the other. 
190

 

FTIR 

FTIR analysis is a method commonly employed to monitor and confirm ligand 

exchange on gold nanoparticle surfaces.
191-193

 Like other spectroscopic techniques, 

exchange of ligands on nanoparticles is investigated by observing changes in IR peaks 
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over time. Reyes et al. used FTIR in addition to UV-Vis, to monitor the exchange of 6-

mercaptopurine (6MP) stabilized GNPs with 11-mercaptoundecanoic acid (MUA) and 

11-mercapto-1-undecanol (MUOH) as a function of the ration of incoming to outgoing 

ligand concentration and nanoparticle size.
168

 The IR peak for 6MP was monitored to 

study the kinetics and extent of the exchange reaction. Results showed that exchange 

reactions were slower on larger GNPs and on 2D surfaces indicating that nanoparticle 

defect sites are responsible for higher reactions rates.
168

   

NMR/HNMR 

NMR and HNMR have been used by many groups studying ligand exchange. 

104,150,163,194
 NMR can confirm that an exchange has taken place and the composition of 

surface chemistry however, real time data is often difficult to obtain. Early methods 

involved isolating and purifying the exchanged nanoparticles at specific time intervals 

and then determining the monolayer composition by NMR.
169,174

 Sharma characterized 

the kinetics and mechanism of deuterated triphenylphosphine exchange on  

triphenylphosphine capped GNPs.
169

 The exchange kinetics were monitored by obtaining 

HNMR spectra at various time intervals and the average rate constant was calculated by 

plotting the normalized intensity peaks of each ligand over time. The average rate 

constant obtained for the exchange was 0.17 ± 0.04 min
-1

 and the data obtained suggested 

a dissociative mechanism for exchange.  As mentioned earlier Murray and coworkers 

studied the effect of particle size and ligand end group
163

 on the rate and mechanism of 

ligand exchange.
157

 These studies enabled researchers to obtain information about ligand 
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exchange in-situ by selecting ligands that have NMR peaks that don’t overlap for the 

exchange process.
163

  

Electron Paramagnetic Resonance spectroscopy 

 Electron Paramagnetic Resonance spectroscopy, EPR is a technique where an unbound 

ligand is functionalized with a spin label. 
156,166

 The EPR peaks from the spin label will 

disappear as the spin labeled-ligand replaces the bound ligand on the GNP surface. This 

method can also provide real time information about ligand exchange. Caragheorgheopol 

et al. used EPR to monitor the exchange of n-butanethiol-protected GNPs with a diradical 

disulfide to determine the mechanism of exchange.
156

  They first obtained EPR spectra of 

the original nanoparticles then added the disulfide and additional spectra were obtained 

after 4, 8, 14, 21, 29, and 60 minutes after mixing. Decreasing height, then disappearance 

of peaks from the disulfide indicated ligand exchange was occurring. This experiment 

was performed to determine the mechanism of ligand exchange with disulfide molecules. 

From the EPR data, they proposed a zeroth order mechanism in which the disulfide bond 

is broken and the molecule binds to the GNP as two separate ligands.
156

  Chechik 

performed the same experiment to determine how aging effects the kinetics of ligand 

exchange and found that ligand exchange occurs much more slowly on aged GNPs.
166

 

Zachary et al. discovered that thiols can hop from one GNP to another using spin labeled 

molecules and calculated rate constants for exchange of spin labeled ligands with 

octanethiol, Table 2.6, which also provided evidence that the exchange follows a 

dissociative mechanism.
195
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Table 2-6: Kinetic rate constants of ligand exchange of triphenyl phosphine with bis-

nitroxide disulfide on gold nanoparticles, performed by Zachary et al. and monitored by EPR 

Ratio of Spin labeled 
octanethiol (mM:mM) 

Rate 
constant, k, 

(s-1*10-4) 
Extent of 

Reaction, % 

0.01:0.07 1.1 18.4 

0.01:0.1 1.1 20.2 

0.01:0.2 1.4 17.2 

0.014:0.1 1.2 24.7 

0.01:0.1 1.4 24.2 

0.005:0.1 1.6 21.8 

 

Surface enhanced Raman spectroscopy 

Surface enhanced raman spectroscopy (SERS) is a technique where the Raman 

signal of a molecule is enhanced when it is bound to a metal surface. 
196-198

 The 

enhancement gained from GNPs allows SERS to detect single molecules on their surface. 

199,200
 Feng et al. utilized SERS to investigate the mechanism exchange of citrate on GNP 

with 3 different ligands; naphthalenethiol, 22’-bipyrdine, and octanethiol. 
177

 Control 

experiments in the study demonstrated that citrate is SERS inactive and an increase in 

intensity of the Raman peak of the incoming ligand of interest gradually increased as the 

exchange reaction was carried out.  The SERS peak of naphthalenethiol and 22’-

bipyrdine increased occurred rapidly in the first 15 minutes of exchange and then 

continued to gradually increase after the first 15 minutes. This indicated a two-step 

exchange process where ligands initially bind to the surface at highly reactive sites, and 

then when the ligand density at these sites reaches a critical value the ligand would 

migrate and reorganize to allow more ligands to bind. 
177

 Ansar et al. used SERS to 

determine the binding affinity, packing and conformation of mercaptobenzimidazole 
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(MBI) thiolate (S
-
), thiol (SH) and thione (S) ligands exchanged onto citrate stabilized 

GNPS.
176

 The different forms of MBI were produced by changing the pH of the solution; 

thiolate at pH 7.9 and 12.5, thione at pH 1.4. From the SERS spectra the thiol 

conformation was not dominant in these experiments.
176

 A disadvantage of using SERS 

for quantitative measurements is that aggregation can enhance signal intensity 

disproportionally and care must be taken to ensure that signal enhancement is due 

molecules on the nanoparticle surface and not due to aggregation.
201,202

 

X-Ray Photoemission Spectroscopy 

X-ray photoemission spectroscopy, XPS, is generally not used to monitor ligand 

exchange but can measure binding energies of functional groups to the surface of gold 

nanoparticles. This analytical technique can identify elemental composition, 

stoichiometry, chemical and electron state of molecules bound to gold and iron oxide 

surfaces. 
203-205

 XPS spectra are obtained by irradiating a material with X-rays and 

measuring the kinetic energy and the number of electrons that are emitted from the top 1-

10nm of the surface being analyzed, therefore, this technique is suitable for measuring 

the binding energy of ligands bound to GNPs. The binding energy is proportional to the 

difference in energy of the X-ray irradiation and electrons emitted from the surface of the 

GNP. XPS can ensure that ligand exchange has taken place and determine the extent of 

ligand displacement. Brown et al. used XPS to monitor and determine the extent of 

exchange of phosphine stabilized GNPs with octadecanethiol. 
206

 The binding energy for 

thiol was found to be 163.3 to 163.9 eV
206

 which agreed with other values reported in 
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literature.
207,208

 Lee et al. used XPS to determine the binding energy and stability of 

multidentate thiols exchanged for citrate on GNPS. 
127

 In this study citrate was exchanged 

with hexadecanethiol (n-C16), 2,2-dimethylhexadecane-1-thiol (DMC16), 2-

tetradecylpropane-1,3-dithiol (C16C2), 2-methyl-2-tetradecylpropane-1,3-dithiol 

(C16C3), or 1,1,1-tris-(mercaptomethyl)pentadecane (t-C16) and the binding energies of 

these compounds to GNPs was measured with XPS to be 162 eV regardless of chain 

structure.  Results also showed that C16C2, C16C3, and t-C16 ligands enhanced the stability 

of 50 nm GNPs in toluene more effectively than the other ligands studied.
127

 Kumar et al. 

measured the binding energies of alkylamines to GNPs and found that amines can bind to 

gold surfaces in two different modes; an electrostatically and a through a stronger, near 

covalent bond.
209

  

Isothermal Titration Calorimetry 

Isothermal titration calorimetry, ITC, has been very useful in studying the 

thermodynamics  of binding  in biological systems such as protein-protein interactions,
210

 

protein-DNA interactions, 
211

 and protein-lipid interactions. 
212,213

 Recently, this method 

had been used to study ligand binding to the surface of nanoparticles due to the 

temperature sensitivity of this technique as ITC can detect nanoWatts of heat change. ITC 

can be used to study ligand binding and exchange by titrating a known concentration of 

unbound ligand into a solution of nanoparticles of known concentration. The 

binding/exchange reaction will evolve heat which is measured by ITC as a function of the 

amount of ligand added and then this data is modelled thermodynamically to  determine a 
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binding constant and heats of binding.  Sastry et al. use ITC to determine the heat of 

binding of lysine and aspartic acid to bare GNPs at different pH’s, and discovered that 

amino acids bring more strong to GNPs when they are unprotonated.
178

 Sastry also 

observed that PNA monomers bind much more strongly to GNPs than DNA bases and 

require a concentration 10 times less than DNA bases to reach saturation of the GNP 

surface. The strength of interaction of the PNA bases increased in the order thymine < 

adenine < guanine < cytosine.
214

  

MALDI 

Matrix-assisted laser desorption/ionization, MALDI, is a soft ionization form of mass 

spectroscopy that allows for the analysis of large organic molecules that tend to be fragile 

when ionized. MALDI can be used to determine distribution and composition of ligands 

in a mixed monolayer on GNPs, however, fragmentation may occur.
215,216

  Murray and 

coworkers used MALDI to monitor ligand exchange and determine the binding 

conformation of multidentate thiols with monovalent thiols on GNPs. 
217

  A laser pulse 

intensity threshold approach was used to avoid fragmentation in a trans-2-[3-(4-tert-

butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB)35 matrix.
218

 Low 

concentrations were used to slow the reaction and the progress was monitored by 

measuring samples at various times intervals. Results indicated that dithiols replace 2 

monothiols. The mass spectrums obtained suggest that chelation is the major binding 

mechanism for multidentate ligands on NP surfaces. Products were assigned as dithiols 

that bind to adjacent GNP-bound dithiols to create a semi-ring around the nanoparticle.
217
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A downside to using MALDI to monitor ligand exchange is that in-situ observations are 

not possible. 

Chromatography: GPC/GC 

Chromatography is a facile method to study ligand exchange reactions where 

there are differences in ligand structure. Lennox et al. used this technique to investigate 

the exchange of decanethiol with dodecanethiol. 
219

 Ligand exchange was studied by 

adding small aliquots of dodecanethiol to decanethiol coated GNPs, precipitating the NPs 

after each addition with ethanol and centrifugation, then analyzing the supernatant on GC 

to determine the ligand concentrations in solution. The presence of decanethiol in the 

supernatant indicated ligand exchange had occurred. The results quantified surface 

coverage which was modeled with a second order diffusion limited Langmuir isotherm to 

determine the binding constant for thiol bound to a GNP to be 0.0137 ± 0.0006 s
-1/2

. 
219

  

Murray and coworkers also used this technique to examine ligand exchange reaction 

products to determine the surface coverage and extent of ligand exchange as a function of 

chain length. 
155

 This study demonstrated that ligand exchange proceeds through an 

associative pathway and the rate of exchange decreases with increasing chain length of 

the initially bound ligand. 
155

 While chromatography is a facile method to monitor ligand 

exchange, it does not provide in-situ observations of the process.  

Methods to Calculate Rate Constants 

Many groups monitor ligand exchange reactions simply to confirm that the 

reaction occurred. Research is lacking in the area of investigating rate and binding 
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constants of exchange of specific functional groups, especially for competitive binding. 

In this section we discuss methods to determine kinetic rate constants of ligand exchange. 

The methods discussed in this paper are the most common and convenient ones to 

calculate rate constants in conjunction with traditional instrumental methods. 

The Langmuir isotherm model is based on the assumptions in the Langmuir 

model of adsorption. To describe the model, consider adsorption of a monatomic ideal 

gas in equilibrium onto a solid substrate. The surface has a certain number of equivalent 

sites and only one adsorbate can bind on each site. The model also assumes that the 

molecules bound to the surface do not interact. Lennox et al. used a second order 

diffusion limited form of the Langmuir model to fit kinetic data of the exchange of 

decanethiol with dodecanethiol  and obtained a second order rate constant of  

0.013±0.008*10
-6

 s
-1

.
 219 

The Stern-Volmer model is used in conjunction with fluorescence spectroscopy. 

The model describes kinetics of intermolecular deactivation, for example; when one 

chemical species, Q, is in the presence of another species in an excited state, A*; Q 

becomes activated, and A is deactivated: 

          

In order to monitor ligand exchange via fluorescence spectroscopy, a ligand with is 

labeled with a fluorescent dye, and then bound to a GNP. When the labeled ligand is 

replaced with a new ligand through an exchange reaction, the dye will fluoresce and 

intensity is measured. The fluorophore is quenched by gold, and therefore it does not 
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fluoresce until it breaks off. This is a phenomena know as fluorescence resonance energy 

transfer, FRET.  Intensity is plotted against ligand concentration or surface coverage and 

the date is fit to the following equation; 

 

  
 

  
            

 

Where   
  is the intensity of fluorescence without a quencher,    is the intensity with a 

quencher,    is the quencher rate coefficient,    is the fluorescence lifetime of A and [Q] 

is the concentration of the quencher. A plot of    [
  
    

  
] vs.        will determine the 

binding constant, Kb (intercept) and the number of binding sites, n (slope). 

        

 

   [
  
    

  
]                

 

A second order mechanism has been adopted by many groups to describe ligand 

exchange. 
155,157,163,168,174,183

 This mechanism describes ligand exchange as a 2-step 

process in which the incoming ligand attached to the surface, rearrangement of the 

ligands takes place and then the original bound ligand is then desorbed from the surface. 

The rate constants in this model are strongly dependent on the incoming ligand 

concentration.
220

  Graf and coworkers took the presence of defect sites on a GNP surface 

into account when studying ligand exchange. As discussed before, ligand exchange 

occurs more rapidly at defect sites then on smooth surfaces. This discovery motivated the 
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development of a biexponential model that describes two distinct kinetic processes in 

ligand exchange, the rapid exchange at defect sites and the subsequent exchange at the 

remaining non-defect sites.  Fluorescence spectroscopy was used to monitor ligand 

exchange and a modified version of the biexponential was employed to model kinetic 

data. Graf found that the biexponetial model fit experimental data much better than 

monoexponetial models and rate constants obtain with this model can be found in Table 

2-4.
220

  

Factors Affecting Nanoparticle Ligand Exchange 

Nanoparticle Properties 

Size and Surface Effects 

Nanoparticles are largely not perfectly spherical, but have both flat terraces, and 

defect sites; edges, vertices, and grain boundaries.
115,160,161,221

 The defect sites have 

different electron densities and steric accessibilities that can affect the rate of 

exchange.
14,162,163,222,223

 Defect sites are more reactive than smooth surfaces and therefore 

ligand exchange occurs rapidly at these sites then slows as bound ligands migrate from 

the defect sites to smooth terrace sites. This migration is slow and becomes increasingly 

more difficult father away from defect sites.
150

 This can lead to incomplete exchange on 

larger particles.  Kell et al. found that the relative number of edge and vertex sites is 

proportional to the number of terrace sites and therefore dependent on size.
150

 But since 

very small particles have very high surface curvatures, and a large number of atoms with 

incomplete valence shells, ligand exchange cannot reach equilibrium on these surfaces.  
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Kell found that ligand exchange rates increase and reach equilibrium faster as particle 

size increases up to 5 nm in diameter.
150

 Graf et al. also observed this trend, stating the 

number of defect sites is size dependent, and smaller particles have a higher ratio of 

defect sites to non-defect sites than larger particles due to higher surface curvature.
165

 As 

the size continues to increase above 5nm, terrace sites start to greatly outnumber defect 

sites and ligand exchange rates decrease along with the extent of reaction. Larger 

nanoparticles have tighter packing arrangement of ligands on the surface due to smaller 

surface curvature and more terrace sites.
165

  Tighter packing on terrace surfaces will 

restrict ligand exchange, but will also make the destabilization of surrounding bound 

ligands by an incoming ligand easier. Surface curvature plays an important role in ligand 

exchange. Smaller particles are less tightly packed due to high surface curvature, and this 

can increase the rate and extent of ligand exchange.
150

 Nanorods are a good example of 

this trend. Different exchange rates have been observed on the sides and ends attributed 

to differing surface curvature.
44,224

   

The structure of crystalline faces also affects the rate of exchange and strength of 

binding. As stated previously nanoparticles are not perfectly spherical and can be 

synthesized in a variety of shapes including blocks, cubes and tetrapods.
47

 Gold has a 

face-centered cubic (FCC) structure which has 3 faces, 100, 110, and 111. 
225

 Preference 

for a given crystal face is based on steric accessibility and the size of the binding group 

compared interatomic spacing.
11,226

 Murphy found that head group size on CTAB, a 

common surfactant used in the synthesis of gold nanorods, is more comparable to side 

faces, 110 or 100 therefore promoting the growth of the nanorod shape.
44

 Gold atoms are 
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too closely packed in the 111 face for larger head groups to bind and this finding had 

been reported by other groups as well for gold
227

 and for silver.
60,61,226

 

Oxidation State and Charge 

The oxidation state and charge of both the nanoparticle core and ligand can affect 

ligand exchange kinetics and binding strength. For gold nanoparticles, ligand exchange is 

accelerated by the oxidative charging of gold nanoparticle surfaces.
157

 This charging can 

be achieved electrochemically
174

 or by admitting dioxygen.
228

 Song and Murray studied 

the effect of nanoparticle core charge and observed that a positive charge placed on the 

surface with electrolysis increased both the initial rate and extent of reaction, Table 2-8 as 

both the first and second order rate constants increased with an increase in nanoparticle 

charge.
174

 This work was significant because charged nanoparticle cores have the 

potential for use as electron donors or acceptors in capacitor applications 
229

 and the 

chemical consequences of nanoparticle charging are relatively unknown. 
174

 Porter et al. 

showed that thiolate ligands can be desorbed when a sufficiently negative potential is 

applied to flat gold surfaces. This work was done in order to quantify surface coverage 

thiolates on GNPs.
230

 This finding also explains why ligand exchange of thiols occurs 

more rapidly at electron dense defect sites.
174

 

Table 2-7: Charge dependent first and second order rate constants of ligand exchange 

Original 

ligand 
Rate contant 

Charge 

As Prep 0 1 3 

Hexanethiol 

K1 (S
-1

) 0.00012 0.00014 0.00015 0.0002 

K2, (M
-1

 S
-1

) 0.0071 0.0082 0.0088 0.014 
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Nanoparticle Age 

Research has shown that nanoparticles can change size and shape with age 
231

 and 

that their reactivity can also be altered with age. Chechik et al. 
166

  showed that age will 

all affect the reactivity of nanoparticles due to changes in surface morphology.  The 

changes in surface morphology and chemistry can be monitored by size exclusion 

chromatography, SEC, and atomic force microscopy, AFM. 
232,233

 This is confirmed by a 

number of experiments, EPR to monitor reaction kinetics, TGA to determine the 

degradation temperature of bound ligands, and UV-vis spectroscopy to measure the max 

absorbance wavelength. The kinetic profiles obtained from EPR demonstrated that ligand 

exchange reactions took longer to come to completion on aged nanoparticles. 

Nanoparticle age may also result in poor reproducibly of ligand exchange experiments in 

the same batch of nanoparticles; however nanoparticles with the same aging history 

showed good reproducibility. UV-Vis spectrum analysis showed that spectra of fresh and 

aged GNPs had similar shape, but the plasmon peak for aged particles underwent a 

substantial red-shift. Thermal gravimetric analysis showed that decomposition of aged 

nanoparticles happened at a slightly higher temperature than fresh nanoparticles, 

indicating that ligands are more strongly bound to aged particles. Chechik concluded that 

the decrease in reactivity is due to the annealing
234

 or stabilization of high-energy defect 

sites on the particle surface. The change in morphology can be attributed to the high 

surface mobility of thiol bound Au atoms, 
235

 which is confirmed by AFM 

measurements.
233
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Nanoparticle Environment 

Depending on the end fate of nanoparticles, they will be exposed to different 

conditions. Nanoparticles may be exposed to various temperatures, pH’s, salts, ionic 

strengths, and natural and biological molecules, all of which could impact nanoparticle 

stability and rates of ligand exchange.  

pH, Salt Type and Ionic Strength 

The effect of pH on nanoparticle ligand exchange is ligand dependent. An overall trend to 

remember is that the bonds of certain functional groups will change depending on the pH 

of solution, therefore altering the binding strength of the ligand to the particle surface. 

Woehrle et al. showed that ligand exchange reactions must occur in a solution with a pH 

at which the head groups are ionized, and the binding group is deprotonated. 
236

  X-ray 

photoemission spectroscopy, XPS, work performed by Sastry et al. showed that at a pH 

of 7, lysine binds weakly to GNPs, but at a pH of 11, strong binding occurred.
178

  The pI 

of lysine is 9.4 and therefore, at a pH of 7, lysine would be protonated, making binding to 

gold difficult.  

Salt type also influences the speed and strength of binding in ligand exchange 

reactions.
88

 Rothberg et al.
88

 studied the effect of salt type on the exchange of citrate with 

single stranded DNA (ssDNA).  Rothberg hypothesized that the binding of the amine 

group in ssDNA is affected more by the DNA/solvent interactions than the amine/surface 

interactions. In this regard, the binding rate is related to the average number of water 

molecules hydrated each of the bases in the DNA molecule, which is termed the  
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Figure 2-7: Hofmeister series of electolyte solutions 
 

hydration number.  The hydration number affects the secondary structure of ssDNA, and 

this structure affects the binding of ssDNA to GNPs. The salt type in an electrolyte 

solution will influence the hydration number of ssDNA, and therefore the binding rate to 

GNPs.  Rothberg found that in the Hofmeister series of electrolyte solutions; cations high 

in the series increase binding rates and anions high in series decrease binding rates, 

Figure 7 due to their ionic charge.  They also showed that chaotropic anions resulted in 

faster binding and strongly hydrated kosmotropic anions slowed reactions down. 
88

   

Ligand Properties: 

 Ligand Structure; Multivalency, Chain length, Branching and Chirality 

Multidentate ligands bind to a nanoparticle surface at multiple binding sites and 

tend to have bulkier headgroups, which leads to more complex interactions with the 

nanoparticle surface than monovalent ligands. Many biological molecules, DNA, BSA, 

proteins, and carbohydrates and many polymers have multiple binding groups and behave 

like multivalent ligands. Multivalent ligands are known to have much stronger 

interactions with nanoparticles than monovalent ligands because of an entropy-driven 
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chelating effect. 
127,175,183,203,237

 Increased spacing between the tail groups of multivalent 

ligand allows for more conformational freedom, better solvation of the tails, and 

contributes to the strong interaction between ligand and nanoparticle.
127

 Multivalent 

ligands effective in dispersing larger particles and binding to them during ligand 

exchange due to their strong interaction with GNPs through multiple functional groups. 

127,217,238
 Multivalent ligands also exhibited higher extents of ligand exchange than 

monovalent ligand on large (>15nm) GNPs. The extent of multivalency will also affect 

the rate of ligand exchange. Exchange rates of trivalent ligands are similar or lower than 

divalent ligands due to steric hindrance of the bulky molecule.
165

  Since small particles 

have smaller areas of smooth terraces and edges are shorter, the complete binding of 

multivalent ligands may not be possible.
165

  Multivalent ligands provide numerous 

binding sites, but the number of ligand tails in solution to maintain dispersibility is a 

fraction of the number of binding sites and the enhanced spacing between ligand tails  on 

very large (>50nm) particles can reduce their stability.
237

 

Chain length has a significant effect on the rate of exchange. Longer chains 

behave similarly to multivalent ligands in that conformational changes may be required in 

order for binding to occur.  Ingram et al.
171

 investigated the effect of chain length on 

ligand exchange by exchanging thiol groups of five different chain lengths ranging from 

C8 to C16. They discovered that longer chains will displace short chains, but short chains 

will not displace long chains. This is due to entropic effects and additional steric 

stabilization provided by longer chains that short chains do not offer. 
171

  Rotello’s group 

14
 studied the effect of branching and chirality on ligand exchange on GNPs, Figure 2-8.  
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Figure 2-4: Structures of ligand used in Rotello's study 
 

Group A consisted of primary, secondary and tertiary thiols, Group B included 

linear and branched thiols and Group C investigated thiol chirality. Rotello discovered 

that primary thiols are more successful at exchanging onto GNPs surfaces than secondary 

and tertiary thiols due to steric hindrance by branched chains. Conversely, they found that 

a thiol group with a one carbon branch was more active than a linear thiol group with the 

same molecular weight.  They hypothesized that branched thiols may pack better and 

form a more stable monolayer on the surface.  The branched thiol may also occupy more 

space than a linear chain, which allows it to destabilize surrounding bound thiol more 

easily. A branched carbon chain may also provide more steric protection of defect sites. 

They also found that even very subtle changes in the ligand structure can dramatically 

change the rate of ligand exchange. Exchange by racemic thiol mixture was significantly 
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faster than with a homochiral thiol, which may also be due to better packing on the 

surface. 
14

 

Ligand Chemistry: End group 

A multitude of ligand variations exist for nanoparticle surface modification, which 

can include the ligand head group chemistry and end group chemistry. While the ligand 

head group determines the mechanism and strength of binding, the end group can have an 

impact on the rate and extent of exchange depending on its electronic characteristics. In 

the study conducted by Guo et al. mentioned earlier, phenylethanethiolate was exchanged 

with various p-X-substituted arylthiols, (X = NO2, Br and CH3) and the NMR peak for 

phenylethanethiolate was used to study exchange kinetics.
163

 As the exchange reaction 

progressed phenylethanethiolate was liberated and the growth of its NMR peak relative to 

a ferrocene tracer was used to determine exchange kinetics, rate constants can be found in 

Table 2.1. The exchange rates differed for each of the p-X-substituted arylthiols with 

exchange rates increasing in the following order; k(CH3) < k(Br) < k(NO2). While these initial 

rates differed, equilibrium rate constants for each X-substituent were the same implying 

that ligand binding is not affected by X- groups rather there is an activation barrier to 

initiate exchange that is dependent on X.
163

 This trend was also seen in an earlier study 

conducted by Donkers et al. demonstrated that the extent of ligand exchange is higher for 

thiol ligands with electron donating substituents, Table 2.9.
157
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Table 2-8: Second order rate constants determined from ligand exchange of 

phenylethylenethiol with various bifunctional ligands in Donkers’ study 

Incoming Ligand 

KP-E, 

 (M
-1

 s
-1

) 

SH-R-NO2 0.014 

SH-R-CN 0.009 

SH-R-Br 0.006 

SH-R-CH3 0.004 

SH-R-OCH3 0.004 

SH-R-OH 0.004 

 

Ligand Head Group 

Ligands bind to nanoparticles through their head groups and these groups have the 

largest impact on ligand binding and exchange reactions.  Two common methods to 

modify the surface of NPs are physical and chemical adsorption. Certain functional 

groups, such as thiols that bind chemically will displace other groups, such as citrate, 

which binds physically, to the surface of GNPs very easily.  The reverse reaction will not 

take place. The advantage of chemical over physical binding is the strength of binding to 

the particle. The heat of adsorption of a chemical bond is -40 to -1000kJ/mol, while the 

heat of adsorption for a physical bond is only -10 to -40 kJ/mol. 
239

 This is an area of 

research that is not fully understood and in which information is lacking.  Gold 

preferentially binds to soft ligands such as sulfur and phosphines. 
184,221,240

 The sulfur-

gold bond is considered nearly covalent. Competitive binding experiments have shown 

that thiols preferentially bind to gold surfaces. 
241,242

  Work done with self-assembled 

monolayers on flat surfaces (2D SAMs) has described the Au-S bond as polar or slightly 

ionic.
230,243

  Density-functional theory, DFT, modelling performed by Andreoni et al. 
244
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estimated the Au-S bond strength on Au(111) faces to be 37 to 55 kcal/mol, which 

compares to the bond energy calculated Nuzzo et al. of 45 kcal/mol.
207

 Landman et al. 

also estimated the Au-S bond energy in Au38 nanocrystals to be ~32 to 50 kcal/mol.
222

 

The bond energy of disulfides to gold was also studied by Andreoni. Disulfides bond 

weakly in dimer form, about 20 kcal/mol, whereas when the S-S bond dissociates, the 

Au-S bond energy was calculated to be ~38 kcal/mol.
244

 There is debate on whether 

disulfides bind to gold in the dimer or dissociated form,
245,246

 nonetheless experimental 

evidence supports the claim that disulfides bind to gold in the dissociated form. 

207,222,244,247
 High resolution XPS results did not distinguish between SAMs formed from 

disulfide or thiols. 
207,241

 Amines are another functional group that has strong interactions 

with gold. The amine-gold bond is charge neutral and can be described as weakly 

covalent in non-polar solvents. 
248

 In highly polar solvents such as ethanol, the interaction 

of gold with amines must compete with the solvent – amine interaction. 
249

 This suggests 

that amines need to be deprotonated in order to bind to strongly to gold.
250

  Leff et al. 

described the amine-gold bond is predominantly kinetic and nanoparticle size dependent 

in nature. 
248

 Phosphine groups can be used as precursors for ligand exchange with thiol 

ligands. 
167,179,251

  Citrate, another common ligand, binds weakly to gold through an 

electrostatic attraction. 
252

 

Conclusions 

In this review, we have summarized applications, methods to perform and 

analyze, and effects on ligand exchange and binding. Ligand exchange has proved to be a 

B 

A 
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versatile and robust method for modifying nanoparticle surfaces regardless of core 

material. Overall, a SN2, associative mechanism in which an incoming ligand binds to a 

nanoparticle surface while an outgoing ligand desorbes from the surface in a 

simultaneous process; can be used to describe ligand exchange on gold nanoparticles with 

thiols and amines.  A dissociative mechanism describes ligand exchange involving 

disulfides or when molecular oxygen is present. In both cases ligand binding and 

exchange is initiated and occurs rapidly at highly reactive defect sites and then slows as 

defect site-bound ligands migrate to less reactive terrace sites to allow more ligands to 

bind. Many factors contribute to the strengths and kinetics of ligand binding and 

exchange. Nanoparticle properties that affect ligand binding and exchange include size, 

shape, crystalline structure, charge, oxidation state, and age. Ligand properties that affect 

ligand exchange and binding include structure, i.e. multivalency, chain length, extent of 

branching and chirality, and chemistry; end group and perhaps most importantly head 

group, through which ligands bind to nanoparticle surfaces. Thiols preferentially bind to 

GNPs but amines, phosphines and carboxylic acids are other common functional groups 

that bind to GNPs. 
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CHAPTER THREE 
INVESITGATION OF LIGAND BINDING AND EXCHANGE ON GOLD 

NANOPARTICLES WITH ISOTHERMAL TITRATION CALORIMETRY 

Abstract 

Isothermal titration calorimetry is a highly sensitive tool for measuring 

thermodynamic and kinetic aspects of molecular interactions and is a powerful tool to 

probe ligand-nanoparticle interactions. Knowledge of ligand binding is essential in the 

design of and prediction of the function and end fate of nanomaterials.  In this study, 

isothermal titration calorimetry was used to measure the binding strengths of 1kDa 

polyethylene glycol end functionalized with thiol, amine, and carboxylic acid functional 

groups to the surface of freshly synthesized bare, citrate stabilized gold nanoparticles, and 

polyethylene glycol-amine stabilized gold nanoparticles. The effect of particle age on the 

heat of binding was also studied with bare and citrate stabilized gold nanoparticles. In the 

report, we demonstrate that thiols have higher heats (>100 kJ/mol) of binding than what 

has been reported for 2-dimensional gold surfaces. Polyethylene glycol-thiol exhibited a 

heat of binding to bare gold nanoparticles of -304kJ/mol. We also demonstrate that age 

affects the heat and extent of binding of thiols to gold nanoparticle surfaces. Aged bare 

gold nanoparticles exhibited a heat of binding of with polyethylene glycol-thiol of -205 

kJ/mol.  Citrate and polyethylene glycol-amine stabilized gold nanoparticles were also 

investigated and exhibited a heats of binding with polyethylene glycol-thiol of 252 
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kJ/mol and -200kJ/mol, respectively. These results also provide evidence of an 

associative, SN2 mechanism of binding and exchange. 

Introduction 

Gold nanoparticles (GNPs) have been of increased interest due to their stability, 

optical properties and low toxicity. GNPs are small enough including individual cells and 

organelles; which makes them attractive for biomedical applications in targeting and drug 

delivery. GNPs can be functionalized with a variety of ligands; therefore it is important to 

be able to predict how GNPs will interact with a variety of functional groups. Many 

studies on the interaction of thiols 
1-6

 and amines 
7-9

 with GNPs have been conducted, but 

few provide real-time, quantitative information on ligand binding. Numerous studies have 

been conducted on the exchange of thiol-functionalized ligands on GNPs, which provide 

insight into the GNP-ligand interactions but do not provide quantitative information on 

the binding strengths to GNP surfaces. 
10-16

 Studies on the bond strength of sulfur groups 

to 2D surfaces of gold 
17,18

 provide data that is not completely analogous to the sulfur-

gold bond strength on a GNP. This is due to the fact that gold is an inherently crystalline 

material and therefore, GNPs will not be perfectly spherical and have a high surface 

curvature. Gold nanoparticles are comprised of a combination of crystalline faces, 

whereas most studies of 2D gold measure isolate a specific crystalline face to study. 

Different crystalline faces exhibit different interatomic spacing and there for have 

difference steric accessibilities to functional groups of different sizes.
19

 Due to the 

inherent crystallinity and high surface curvature of GNPs, their surfaces will contain 
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defect sites, such as edges and vertices, along with smooth terrace sites. Defect sites are 

more electron-dense and sterically accessible and therefore more reactive than terrace 

sites.
20-22

 Density functional theory calculations have been used to calculate the 4f 

binding energies of surface atoms relative to bulk atoms in GNPs of various sizes. The 

simulations concluded that lower coordinated gold atoms, such as corners and edges, 

have lower Au-Au 4f binding energies and therefore will be more susceptible to ligand 

binding and exchange in order to complete their valence shell. 
23

 As GNPs age, surface 

atoms will rearrange causing a change in surface morphology, and the number of reactive 

defect sites decreases. Chechik investigated this surface reconstruction, or annealing, and 

found that the reactivity of GNPs is reduced as they age. 
24

 In this study, the effect of 

GNP age on polyethylene glycol-thiol, PEG-SH, binding is investigated with isothermal 

titration calorimetry, ITC. ITC is a temperature sensitive technique that can detect 

nanoWatts of heat change evolved from a reaction of one molecule titrated against 

another. ITC has been very useful in studying the thermodynamics of binding  in 

biological systems such as protein-protein interactions,
25

 protein-DNA interactions, 
26

 

and protein-lipid interactions.
27

 Recently, this method had been used to study ligand 

binding to the surface of  gold nanoparticles, but few have investigated the effect age or 

competitive binding with ITC.
8,28

 The objective of this study was to use ITC to determine 

the effect of age and surface chemistry on PEG-SH binging to gold nanoparticles. UV-

Vis spectroscopy and dynamic light scattering were also used to characterize binding.  
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Experimental 

Nanoparticle Synthesis 

Bare gold nanoparticles, BGNPs, were synthesized by adapting Turkevich’s 

method described previously.
29

 In short, 0.165 mL of an iced aqueous solution of 0.1M 

sodium borohydride, NaBH4 (Alfa Aeser, 99.9%) was added drop wise to a 5 mL 

solution of 0.25mM HAuCl3, (Alfa Aeser, 99.0%), while rapidly stirring. It is important 

to note that while these nanoparticles are described as “bare” it is likely that boron is 

adsorbed to the surface and provides stabilization. Citrate stabilized gold nanoparticles 

were synthesized in a similar fashion by first preparing a 20 mL solution of 0.25 mM 

trisodium citrate dihydrate, (Alfa Aeser, 99.0%) and 0.25 mM HAuCl3.  Then, 0.1 mL of 

a 0.1M solution of iced, aqueous NaBH4 was added drop wise while rapidly stirring. 

Polyethylene glycol-amine, PEG-NH2, (Laysan Bio) stabilized GNPs were similarly 

synthesized by reduction with NaBH4, however the pH needed to be adjusted above the 

pKa of PEG-NH2. Studies have shown that amines need to be unprotonated in order to 

bind to GNPs.
7,8,30

 The 10mL, 0.25mM PEG-NH2 and HAuCl3 solutions were pH 

adjusted to 10 with nitric acid. Then, while stirring rapidly, 50µL of 0.1M NaBH4 was 

added drop-wise.  

Nanoparticle Characterization 

All nanoparticle samples were filtered with 0.2 µm PFTE syringe filters (VWR), 

and then degassed with a vacuum pump and characterized via a Hitachi 7600 

transmission electron microscope, TEM, and images were analyzed with ImageJ 
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software. Further characterizations performed were UV-Vis spectroscopy on a Varian 

Cary 50 Bio UV-Vis spectrophotometer and dynamic light scattering and zeta potential 

measurements with a Malvern Zetasizer. Characterization was performed before and after 

titration experiments. 

Isothermal Titration Calorimetry 

A TA instruments TAM III microcalorimeter was used to perform titrations with 

various ligands into solutions of GNPs. In short, 0.8mL of gold nanoparticle (GNP) 

solution was loaded into the sample cell to be placed into the calorimeter. 10 µL of 

0.25mM ligand solution was injected into the reaction cell every 20 minutes a total of 20 

times while the nanoparticle solution was stirred at 120 rpm at 25 °C. Hastelloy samples 

cells and a gold propeller were used. Each experiment was performed in triplicate and 

dilution titrations were performed to correct each titration for heat of mixing and dilution 

affects. 

Calculation of Binding Sites 

In a study recently conducted by Hinterwirth et al. GNPs stabilized with various 

thiol ligands were synthesized then analyzed via inductively coupled plasma-mass 

spectroscopy to determine the surface coverage of thiols. 
2
 The surface coverage was 

determined by the gold to sulfur ratio, (Au/S) and size-independent but ligand chain 

length-dependent ligand densities were reported. The ligand density used in this study is 

4.29 S/nm
-2

 as this value was reported in Hinterwirth’s study for GNPs stabilized with 

500 MW PEG-SH, which is similar to the ligand used in this study. Hinterwirth also 
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reported that ligand density decreases linearly with an increase in chain length;
2
 therefore 

it is important to note that a ligand density of 4.29 S/nm
-2

 represents the maximum 

possible surface coverage.  

The concentration of binding sites (µmol/L) was calculated using the average 

surface area of the GNP distribution obtained by TEM and a surface coverage of 4.29 

sulfur atoms per nm
2
.
2
 First, the number of sites per GNP was calculated by multiplying 

the average GNP surface area by the expected surface coverage of sulfur; 

                                             
∑  

    
 

 

     
                                            (1) 

The concentration of binding sites (µmol/L) was calculated by multiplying the number of 

sites per GNP by the concentration of GNPs in solution; 

                           [             ]   

         
[  ]

     
   

    

 

  
                                (2) 

Table 3.1 summarizes information about the size and surface area determined by TEM, 

and concentration of binding sites in each GNP solution. 
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Table 3-1: Nanoparticle diameter and surface are determined by TEM and calculated 

concetrations of binding sites 

GNP Trial # 

Average 

Diameter, 

nm 

Average 

Surface 

Area, nm
2 

Binding 

Sites, 

(umole/L) 
Bare 1 6.7 ± 1.9 152.3 13.9 

2 6.4 ± 3.34 148.5 11.0 
3 7.0 ± 1.9 165.4 13.4 

Aged 

Bare 

1 9.7 ± 2.7 316.7 10.0 
2 11.3 ± 1.8 366.2 10.1 
3 11.8 ± 3.1 390.3 9.2 

Citrate 1 5.9 ± 4.1 224.0 9.5 
2 5.7 ± 2.0 113.8 15.3 
3 5.5 ± 2.6 114.2 13.7 

Aged 

Citrate 

1 5.1 ± 1.4 89.7 17.9 
2 5.2 ± 1.4 83.6 21.1 
3 5.1 ± 1.3 89.7 17.9 

PEG-

NH2 

1 6.84 ± 1.7 156.2 13.9 
2 6.84 ± 1.7 156.2 13.9 
3 6.84 ± 1.7 156.2 13.9 

 

Modeling 

Each peak, Figure 3.1, in raw heat flow data from each titration was integrated and 

plotted to create a binding isotherm and then modelled with Protonic HypΔH software. 

This software performs up to 1000 iterations of a non-linear least squares fit of a system 

of equations described below. 
31

The heat evolved in each reaction step is calculated using 

equation 3; 

                                    ∑                                               (3) 



92 
 

Where Q is the heat evolved,    in the change in the number of moles of a particular 

reactant, and    is the enthalpy of binding. Each cumulative equilibrium constant may 

be defined by Eq 4; 

                                           
[    ]

[ ] [ ] 
                       (4) 

 Where A is the component in the reaction cell, B is the titrant and β is the equilibrium 

constant. This software models ITC data as though a titration step takes place in 3 stages. 

In stage (1), an aliquot of titrant volume, νB, is added to the reaction solution of νA 

without mixing, and is considered athermic. In stage (2) the solutions of A and B are 

mixed without chemical reaction, the volume changes and the equilibrium concentrations 

of A and B change, and heat is evolved from mixing, Eq 5. Finally, in stage (3) a 

chemical reaction takes place without a change in volume and the heat evolved is 

calculated using Eq 6;
31

  

                          ∑     [    ]      [    ]                                       (5) 

                                     ∑ [    ]    [    ]                                           (6) 

A mass balance is then conducted to solve for [A] and [B] by solving Eq 4-6 

simultaneously, and the enthalpies of formation are calculated by minimizing the 

objective function, U, Eq 7, with a linear least-squares fit because the calculated heat in 

each stage is a linear function of enthalpy.
31

 

  ∑             
  (7) 
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Where,       is the observed reaction heat that has been corrected for non-chemical heat 

contributions such as stirring, dilution and friction.  This software determines formation 

enthalpies, binding constants and surface coverage from the calorimetric data and allows 

for simultaneous fitting of multiple curves.  Inputs required to model the binding 

isotherms include raw integrated heat data, volume of GNP solution, concentration and 

volume of ligand solution for each injection and the total number of GNP binding sites.  

Results and Discussion 

Polyethylene glycol-thiol Titrations: 

Bare GNPs 

The heat of binding of PEGSH to bare gold nanoparticles, BGNPs, was 

investigated with ITC, raw heat signal curves for freshly synthesized BGNPs is show in 

Figure 1. Titrations were performed in triplicate to ensure reproducibility of the data. 

Each positive peak shown in the heat signal curves indicates an exothermic process, 

which represents the heat released in one injection of aqueous PEG-SH into the GNP 

solution as a function of time. The exothermicity of these peaks is to be due to the strong 

interaction between thiols and GNPs.  Ligand binding and exchange is generally 

considered to follow an associative SN2 pathway in which binding and exchange is 

initiated and occurs rapidly at reactive defect sites, then reaction rates slow as bound 

ligand migrates from defect sites to terrace sites to allow further binding onto defect 

sites.
32-35

 Evidence of this type of mechanism is seen in this study from the raw heat flow 

diagrams resulting from the titration of PEG-SH into BGNPs, Figure 3.1 A-C. 
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Figure 3-1: Raw heat flow data for 3 replicates of PEG-SH titrated into freshly 

synthesized BGNPs, (A-C) and their corresponding dilution corrected binding isotherms 

(D-F). Dots represent observed integrated heats and lines represent calculated heats 

 

The heat signal is initially high and decreases rapidly as the number of defect sites is 

consumed and saturated and binding eventually reaches equilibrium. Plots of dilution 

corrected integrated heat values vs. accumulated ligand volume correspond to binding 

isotherms of PEG-SH to a GNP surface, Figure 1D-F. Control experiments were 

conducted to in order to subtract heat from non-chemical reactions such as mixing, 

dilution and friction from the integrated heats from titrations with GNPs. Thermodynamic 

modeling of the binding isotherms for freshly synthesized BGNPs resulted in an enthalpy 

of -304 ± 7 kJ/mol, and a binding constant of 7.0*10
5
.  This enthalpy value is slightly 

higher than what is reported in literature for 2D SAMs (-130 -230kJ/mol) 
36-38

 and this is 

due to the fact that nanoparticles have reactive defect sites such as corners and vertices 



95 
 

whereas 2D surfaces do not.  Because of the enhanced reactivity of these sites due to 

incomplete valance shells, binding reactions may be more exothermic at these sites. UV-

vis characterization fresh BGNPs before and after PEG-SH titrations, resulted in a 7nm 

blue shift in the localized surface plasmon resonance, LSPR, peak indicating a change in 

surface chemistry. GNPs are plasmonic and their characteristic LSPR will shift 

depending on size, shape and surface chemistry.
39-41

  The zeta potential of BGNPs 

decreased in magnitude from -40.6 to -27.2 mV after titration with PEG-SH. Since PEG-

SH is uncharged, when it binds to the surface of BGNPs the zeta potential should 

decrease in magnitude. The surface coverage of PEG-SH on BGNPs was estimated by the 

HypDeltaH software to be 93.4 %, indicating near complete binding.  This reaction 

exhibited an entropy value of -0.908 kJ/K mol which is calculated using the relationship 

between enthalpy and Gibbs free energy, Eq 8.  

                    

Table 3-2: Thermodynamic and kinetic parameters of PEG-SH titrations as determined 

by HypDeltaH software 

GNP 
ΔH, 

kJ/mol Logβ K 
ΔS, 

kJ/K·mol 
ΔG, 

kJ/mol NPSH, % 
Bare -304.11 5.845 7.00E+05 -0.908 -33.526 93.5 

Aged Bare -205.33 5.559 3.63E+05 -0.582 -31.894 88.7 
Citrate -252.9 5.712 5.15E+05 -0.73 -35.36 90.5 

Aged Citrate -244.2 5.929 8.49E+05 -0.7 -35.6 92.7 
PEGNH

2
 -204.6 5.826 6.70E+05 -0.58 -31.76 92.0 

 

Table 3.2 summarizes the modeling results for each ligand/GNP pair investigated. 

From Figure 3.1, we show that the data obtained from these titrations is reproducible, as a 

(8) 
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new batch of BGNPs was synthesized for each replicate and the 3 binding isotherms were 

modeled simultaneously. 

After performing titrations with freshly synthesized BGNPs, the remaining nanoparticle 

solutions were aged in a dark, room temperature environment for 3 months. The solutions 

remained bright red in color and no precipitates were formed. Characterization with UV-

vis spectroscopy, DLS and Zeta potential measurements verified that the aged particles 

were still stable, Table 3.3.  The raw heat flow data and corresponding binding isotherms 

of PEG-SH titrated into aged BGNPs are shown in Figures 3.2 A-C and 3.2 D-E, 

respectfully. The resulting enthalpy for aged BGNPs was significantly lower than freshly 

synthesized particle, -205 ± 5 kJ/mol. This value is closer to what is reported in literature 

for 2D gold surfaces and indicates a change in GNP surface morphology. As stated 

previously, GNPs undergo surface annealing over time, and the number of reactive defect 

sites decreases
24

 and this is evidenced by the rapid decrease and saturation of enthalpy. 

TEM analysis after titration revealed that aggregates present before titration were broken 

apart upon the addition of PEG-SH, Figure 3.4, which provides evidence that PEG-SH 

interacts strongly with aged BGNPs. The surface coverage was estimated at 88.75 %, 

which is similar to the surface coverage of PEG-SH on fresh BGNPs. The entropy of this 

system was calculated to be -0.582 kJ/K mol, which is lower in magnitude than the 

entropy of PEG-SH binding to fresh GNPs. Table 3 summarizes the heats of binding, 

binding constants and surface coverage for each system investigated in the study.  
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Figure 3-2: Raw heat flow data for 3 replicates of PEG-SH titrated into aged BGNPs, 

(A-C) and their corresponding dilution corrected binding isotherms (D-F). Dots represent 

observed integrated heats and lines represent calculated heats 

 

Citrate-stabilized GNPs 

Figure 5 depicts the heat flow data, A-C and binding isotherms, D-E, for freshly 

synthesized citrate GNPs. The enthalpy of PEG-SH binding to freshly synthesized citrate 

GNPs was calculated to be -252.9  kJ/mol, and the surface coverage was determined to be 

90.5%. Carboxylic acid groups in citrate bind to GNPs weakly though an electrostatic 

interaction; therefore citrate should not have a large effect on the binding of thiols to the 

surface of GNPs. While citrate molecules are easily displace by thiols, some amount of 

heat is taken up by the desorption of citrate, which explains the ~50 kJ/mol difference 

between the heat of binding of PEG-SH BGNP and citrate stabilized GNPs. The energy 
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of a physical bond typically has a magnitude of 10-40 kJ/mol, and because citrate can 

potentially bind to GNPs through 3 COOH groups a bond energy of 50 kJ/mol is a 

reasonable value. A 26.9 nm blue shift was seen for citrate GNPs after titration with 

PEG-SH also indicating PEG-SH binding. The zeta potential measured for citrate GNPs 

decreased from -41.7 mV to -9.7 mV after titration which indicated  

 

Figure 3-3: TEM images of A) freshly synthesized BGNPs, B) aged GNPs and C) aged 

BGNPs after titration with PEG-SH 

that the GNP surface chemistry was now PEG-SH with a surface coverage of 90.5%. 

Surprisingly, the effect of age was not seen in citrate stabilized GNPs. Heat flow data and 

binding isotherms for these titrations are shown in Figure 6. An explanation for this could 

be that citrate preserves the reactivity of GNP surfaces as they age. The surface coverage 

of these particles after titration with PEG-SH was calculated to be 92.67 %, which is 

similar to the surface coverage of fresh citrate stabilized GNP. The entropy for freshly 

synthesized and aged citrate stabilized GNPs were very similar, with values of -0.73 and -

0.7 kJ/k mol. These values are only slightly lower in magnitude than that of fresh 

BGNPs, indicating that citrate does not contribute entropic effects to the binding of  
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Figure 3-4: Raw heat flow data for 3 replicates of PEG-SH titrated into freshly 

synthesized citrate stabilized GNPs, (A-C) and their corresponding dilution corrected 

binding isotherms (D-F). Dots represent observed integrated heats and lines represent 

calculated heats 

PEG-SH to the surface of GNPs. The reproducibility of ITC data with citrate stabilized 

GNPs, freshly synthesized and aged, is lower than that of BGNPs. This may be due to 

differences in surface coverage between batches of citrate GNPs.  

Table 3-3: Summary of characterization by UV-Vis spectroscopy and Zeta potential 

measurements 

GNP 
LSPR (λ) nm Zeta Potential (ζ) mV 
As 

Synthesized 
After 

titration 
As 

Synthesized 
After 

titration 
Bare 506.9 513.9 -40.6 -27.2 

Aged Bare 506.9 513.9 -45 -19.1 
Citrate 529.9 519.9 -41.7 -9.7 

Aged Citrate 529.9 519.9 -39.7 -11.2 
PEGNH

2 506.9 519.9 -18.7 -0.05 
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PEG-NH2 stabilized GNPs 

 

Figure 3-5: Raw heat flow data for 3 replicates of PEG-SH titrated into aged citrate 

stabilized GNPs, (A-C) and their corresponding dilution corrected binding isotherms (D-

F). Dots represent observed integrated heats and lines represent calculated heats 

Raw heat flow data and corresponding binding isotherms of this system are shown in 

Figure 7. The resulting heat of binding of PEG-SH to PEG-NH2 stabilized GNPs was -

204.6 kJ/mol. In order to bind to the GNP, PEG-SH has to overcome the steric hindrance 

of PEG-NH2, which may decrease the heat of binding.  PEG-NH2 must desorb from the 

surface, and this is an endothermic process, in order for PEG-SH molecules to bind; 

therefore the heat of binding will be the combination of energy taken up by the 

desorption process and given off during the binding process. We can then infer that the 

heat of binding for PEG-NH2 is equal to the difference in the heat of binding of PEG-SH 

to BGNPs and to PEG-NH2 stabilized GNPs, which is 100.5 kJ/mol, which is indicative 
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of a chemical bond.
42

  The heat flow diagrams for these titrations also provide evidence 

of an associative, SN2 mechanism due to the high initial value and rapid decrease of heat 

signal. These particles underwent a 7nm blue shift of the SPR peak after titration with 

PEG-SH and the zeta potential of these particles remained about the same before and 

after titration because both molecules have PEG chains.  The surface coverage of PEG-

SH on the surface of the particles was calculated to be 92 %, which suggested near 

complete exchange.  These particles are relatively small, 5 – 10nm, thus high extents of 

exchange would be expected. As stated in Chapter 2 of this dissertation, small particles 

exhibit high extents of reaction.  

 

Figure 3-6: Raw heat flow data for 3 replicates of PEG-SH titrated into PEG-NH2 

stabilized GNPs, (A-C) and corresponding, dilution corrected binding isotherms (D-F). 

Dots represent observed integrated heats and lines represent calculated heats 
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PEG, PEG-NH2, PEG-COOH and Citrate Titrations with GNP 

 Heat flow diagrams of titrations with unfunctionalized PEG, PEG-COOH, PEG-

NH2 and citrate into BGNPs do not indicate binding, as shown in Figure 8A, B, C, and D 

respectively. Unfunctionalized PEG was titrated into GNPs as a control to ensure that 

PEG chain was not contributing entropic effects to the heat of binding and that the OH 

groups were not interacting with GNPs. PEG-NH2 solutions were adjusted to a pH of 10 

to ensure that the amine was unprotonated in order to bind to the GNPs, which were also 

of pH 10. Very little heat is evolved during this titration and there is no decay in heat 

flow, which would indicate the consumption of binding sites. PEG-COOH titrations also 

lacked strong heat signals. While it is well established that carboxylic acids and amines 

bind to GNPs and gold surfaces, they do not bind covalently. This indicated that ITC may 

not be able to detect heats of electrostatic or physical binding since these mechanisms 

have binding strengths of only -10 to -40 kJ/mol.
43

 On the other hand, a lack of ITC 

signal does not indicate a lack of ligands on the GNP surface. Joshi et al. were faced with 

this issue in their study of the binding of amino acids to GNPs and used XPS and gel 

electrophoresis to prove that while there was no ITC signal, amino acid were indeed 

bound weakly to the GNP surface.
8
 Citrate was also titrated into BGNPs, Figure 8D, and 

exhibited very little heat signal, but a 23nm red shirt in the UV-Vis spectrum which 

indicated that citrate is bound to the surface.  
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Figure 3-7: Heat flow data for A) PEG, B) PEG-COOH, C) PEG-NH2 and D) citrate 

titrated into BGNPs 

Conclusions 

We have demonstrated that isothermal titration calorimetry is a useful technique 

for studying ligand-nanoparticle interactions. We have demonstrated that thiols exhibited 

a heat of binding of 304kJ/mol which is >100kJ/mol higher than the heat of binding of 

thiols to 2D gold surfaces. We have shown that aging reduces the reactivity of bare gold 

nanoparticles, as the heat of binding of PEG-SH to aged BGNPs is 100 kJ/mol lower than 

the heat of binding to freshly synthesized BGNPs. On the other hand, a difference is 

surface coverage between fresh and aged BGNPs was not seen due to the small size of 

these GNPs. Our studies demonstrate that the presence of citrate on the surface of GNPs 

does not inhibit the binding of thiols. A 50kJ/mol decrease in the heat of binding of PEG-

SH to citrate stabilized GNPs demonstrates that citrate interacts with GNPs through a 

physical bond. Surprisingly, citrate seems to preserve the reactivity of GNPs by possibly 
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preventing the reorganization of surface atoms. Titrations of PEG-SH into PEG-NH2 

stabilized GNPs resulted in a heat of binding of 204 kJ/mol, and from the difference in 

heats of binding of PEG-SH to BGNPs, we can infer that PEG-NH2 bind to GNPs 

chemically with a bond strength of approximately 100kJ/mol. From the results in this 

study we can elucidate the following trend in binding affinities of the functional groups 

tested; SH >> NH2 > COOH.  Future work in this study includes the investigation of the 

effect of nanoparticle size and shape and ligand structure (chain length, multivalency) on 

ligand binding.  
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CHAPTER FOUR 

NATURAL ORGANIC MATTER AND ELECTROLYTE EFFECTS ON THE 

MOBILITY, DISSOLUTION AND SORPTION OF SILVER NANOPARTICLES 

Abstract 

The growing development and application of nanomaterials will inevitably lead to 

engineered nanoparticles in the environment. As a result, concern of the environmental 

fate and implications of these materials becomes imperative.  In this study, the transport 

of silver nanoparticles was monitored through IOTA standard high purity quartz powder 

using miscible displacement column and batch nanoparticle dissolution experiments. 

Suspensions of nanoparticles stabilized with citrate or Suwanee River natural organic 

matter were introduced as a finite step of one column volume, followed by electrolyte 

solutions of 0.001M NaCl, (CH3)4NClO4, or NaClO4 at pH 6. The concentration of silver 

in the column effluent was monitored via inductively couple plasma mass spectroscopy. 

Results for citrate-stabilized silver nanoparticles with the NaCl electrolyte solution 

exhibited an initial breakthrough curve followed by a second breakthrough, which is 

attributed to enhanced nanoparticle dissolution by chloride ions. Similar experiments 

with citrate-stabilized silver nanoparticles in (CH3)4NClO4, or NaClO4 did not display a 

second breakthrough curve. No second break through curve was seen in the results of 

columns spiked with natural organic matter passivated silver nanoparticles in NaCl or 

(CH3)4NClO4. Batch studies revealed that the studied concentrations, 20 % of citrate-

stabilized silver nanoparticles in the absence of electrolytes is in the form of silver ions. 

In the presence of NaCl, 75% of these free ions form insoluble AgCl. Batch studies also 
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indicated that the release of ions from natural organic matter stabilized silver 

nanoparticles (2% Ag
+
) was significantly lower than that of citrate stabilized silver 

nanoparticles, (20% Ag
+
).  Results from this study suggest that nanoparticle dissolution 

occurs for citrate stabilized silver nanoparticles in NaCl and the presence natural organic 

matter inhibits dissolution enhancement and the formation of free silver ions.  

Introduction 

The Project on Emerging Nanotechnologies at the Woodrow Wilson Center for 

Scholars reported, as of October 2013, 1628 consumer products containing 

nanomaterials, with 410 containing silver nanomaterials.[1] These products include 

textiles, cosmetics, paints, cleaners and plastics.[2, 3] Piccino reported that 55 tons of 

silver nanomaterials are produced worldwide each year.[4]   Several reviews have called 

for a better understanding of the fate and transport properties of nano-materials in order 

to better assess the risk to human and environmental health.[5-10]  Environmental 

systems are dynamic and heterogeneous, which greatly complicates the understanding of 

the risks associated with engineered nanoparticles (ENPs) released into the environment.  

ENPs have the potential to undergo many transformations in the environment such as 

reactions with biomacromolecules, redox reactions, aggregation, and dissolution 

depending on the exposure to environmental conditions.[7, 11]  Furthermore, each of 

these occurrences can affect stability and aggregation potential of ENPs.[6, 7, 12-14] 

Organic macromolecules are commonly used to coat nanoparticles and provide enhanced 

colloidal stability over the metal core alone.    Increased stability is achieved by 
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electrostatic, steric, or electrosteric stabilization (a combination of both) in which surface 

molecules provide enhanced colloidal stability and prevent irreversible aggregation for a 

diversity of applications.[15, 16]  

Natural organic matter, NOM, is a class of natural organic macromolecules, 

ubiquitous in nature and typically present in concentrations that are orders of magnitude 

higher than the potential concentration of engineered nanoparticles in natural waters.[7]  

NOM has a complex molecular structure that contains many functional groups such as 

alcohols, hydroxyls, aldehydes, ketones, and thiols; all having the ability to serve as 

binding and reduction sites for nanoparticles and metal ions.  NOM has the potential to 

substantially modify ENP toxicity[17-23] by blocking oxidation sites[24] and 

complexing with released metal ions.[25]   NOM can also alter fate and transport of 

ENPs by enhancing the colloidal stability and reducing aggregation and deposition.[20, 

26] Most nanoparticles are prone to NOM adsorption, including gold,[27] iron,[12, 28]  

titanium dioxide,[29, 30]  aluminum oxide,[31, 32] carbon nanotubes,[33, 34] and boron 

nanoparticles.[35]  Furman et al. reported that steric stabilization by NOM may play an 

important role in AgNP transformations and mobility because this mechanism of 

stabilization provides resistance against nanoparticle aggregation and dissolution when 

exposed to natural salts.[20] They demonstrated that higher molecular weight NOM had a 

higher affinity to AgNP surfaces than lower molecular weight NOM and was more 

effective at stabilizing AgNPs over a range of pH and ionic strength.[20]  This increased 

stability leads to enhanced silver nanoparticle mobility in natural waters, making them 

more bioavailable to aquatic organisms.[2, 20]  NOM can also reduce Ag+ and form 
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AgNPs at room temperature over a period of days. [21, 36] Nanoparticle dissolution is a 

key component in determining the toxicity, transport properties, and ultimately the end 

fate of these materials.  In recent years, there has been a large body of work focused on 

the impacts of nanoparticle dissolution on AgNP toxicity; however there is little work 

focused on how these factors impact nanoparticle transport.   Furthermore, because of 

highly variability of environmental systems, a study that investigates the nanoparticle 

dissolution and fundamental transport properties under ideal conditions is needed in order 

to better design and predict the outcome of environmentally relevant experiments. This 

study investigates the dissolution and transport and of silver nanoparticles stabilized with 

citrate or NOM in the presence of variable electrolyte solutions in ultrapure quartz 

columns. This study also outlines an experimental procedure that can be used for various 

types of nanomaterials and environmental settings. This work is significant due to the 

length of the column experiments performed, over 100 pore volumes, which a provided 

insight on the long term effects of silver nanoparticles 

 Experimental 

Nanoparticle Synthesis 

Silver nanoparticles stabilized by citrate, (citrate AgNPs), were synthesized using 

methods described previously.[37, 38] In short, a 50 mL solution of 0.25mM silver 

nitrate (99.95% purity, Alfa Aesar) and 0.25mM trisodium citrate dihydrate (99% purity, 

Alfa Aesar) was prepared in DDI water. While mixing, 0.5 mL of 0.05M aqueous sodium 

borohydride (EMD chemicals) was added drop wise to the silver salt/citrate solution. The 
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resulting bright yellow solution and was mixed for 15 minutes, then dialyzed in DDI 

H2O, with 3000 MW cellulose acetate dialysis tubing for 24 hours to remove excess 

reactants.  Suwanee River NOM stabilized particles, (NOM AgNPs), were synthesized by 

the same method with the addition of NOM to the nanoparticle solution after dialysis in a 

ratio of 3g of NOM per gram of silver. The nanoparticles were characterized by 

transmission electron microscopy, Figure 4-1, using a Hitachi 7600 TEM, and by UV-Vis 

spectroscopy on a Varian Cary 50 spectrophotometer. 

Column Experiments 

An 8.3 cm long, 0.5 cm inner diameter, polycarbonate column was assembled and 

packed with ultra-pure quartz powder (IOTA-STD, Unimin Corp, Spruce Pine, NC) 1 cm 

at a time, tapping the column to ensure tight packing. The powder was chosen because of 

its minimal  

 

Figure 4 -1: TEM imaged of A) citrate stabilized AgNPs and B) NOM capped AgNPs 
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interaction with most substances and high purity.  Type 13 Masterflex C-type tubing was 

used to introduce the flush solution into the column.  The pore volumes of each 

experiment were determined by weighing the dry packed column then weighing the 

column after being saturated with nanoparticle free electrolyte solution for 12 hours.  A 

flow rate of 0.1 mL/min (Masterflex digital pump) was used to obtain a residence time of 

approximately one hour. Effluent samples were analyzed by inductively coupled plasma 

mass spectroscopy (ICP-MS, Thermo Scientific X Series II) to determine Ag 

concentration. Pore volumes for each column were 6.5 to 7mL depending on the porosity 

of the column and spike volumes were approximately 7 mL. Each AgNP spike solution 

was prepared to be 3500 to 4500ppb Ag then ionic strength adjusted to 0.001M 

electrolyte. The pH of each spike solution was adjusted to 6 with dilute HNO3 to ensure a 

negative surface charge on the silver nanoparticles. This was done in order to decrease 

NP-NP and NP-packing interactions. Each spike solution also contained 10ppb of 

rhenium as a tracer to characterize residence time and flow. Exact pore volumes and 

spike concentrations can be found in Table 1.After saturating each column with 

nanoparticle free electrolyte solution, the tubing leading into the column was flushed with 

the AgNP spike solution in order to achieve equilibrium adsorption of silver on the tube 

walls. This was done in order to achieve a high recovery of silver from each experiment. 

One pore volume of spike at the same ionic strength as the electrolyte solution was then 

introduced onto the column as a finite step followed by at least 125pore volumes of 

nanoparticle free electrolyte solution.  Electrolytes used to adjust ionic strength were 

0.001M NaCl, tetramethylammonium perchlorate, TMAP, or NaClO4. The columns will 
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be referred to with the following notation; (A) citrate AgNPs in NaCl, (B) citrate AgNPs 

in TMAP, (C) citrate AgNPs in NaClO4, (D) NOM AgNPs in NaCl and (E) NOM AgNPs 

in TMAP.  After approximately 120 pore volumes, each column was flushed with one 

pore volume of DDI water, followed by 3 pore volumes of electrolyte solution, then with 

a high ionic strength solution, 0.1M NaCl, for columns A and D, or a change in 

electrolyte, 0.001M NaCl in the case of columns B, C and E.  Ionic strength flushes were 

performed to study the effect of ionic strength and electrolyte type on nanoparticle 

solubilization. Following nearly 125 pore volumes, each column was segmented into 1 

cm portions. Each portion was digested in 2% nitric acid (BDH Falcon Aristar Plus) over 

night and the liquid phase was analyzed for silver content three times on the ICP-MS.   

Table 4-1: Spike volumes and concentrations 

NP 
Electrolyte, 

0.001M, 

pH 6 

[Ag]
Spike, 

(ppb) 

Pore 

Volume, 

PV 

Spike 

Volume, 

V
s
 

Ag-Citrate NaCl 3440 6.55 6.7 
   TMAP 4277 7.25  7.9 
  NaClO

4
 4640 7.03 7.07 

Ag-NOM NaCl 3190 6.84  6.8 

 
TMAP 4655 6.96 7.4 

 

Batch Dissolution 

Batch dissolution experiments were performed on model spike solutions to 

determine the chemical state of silver in each spike solution. Citrate and NOM coated 

AgNPs in the absence of electrolytes were used as a control. Each NP solution was 

prepared at approximately 3500 ppb Ag, and then adjusted to 0.001M ionic strength for 
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the electrolytes used in the column experiments.  After 24 hours of mixing, 4mL of each 

solution was immediately centrifuged at 8000 rpm in 3kDa MW cut off polysulfone 

centrifuge filters (Millipore Corp) to separate soluble Ag ions/species from AgNPs. Each 

sample was first centrifuged for 3 minutes, to let 1mL pass through and saturate the filter. 

The filtrate was discarded and the remaining 3 mL of solution were centrifuged at 

8000rpm for 45 minutes until all of the liquid passed through the filter. The silver 

concentration in the filtrate was measured on ICP-MS.  

Results and Discussion 

Citrate-stabilized Silver Nanoparticles 

There are four distinct transport regions in column A, which was spiked with 

citrate-stabilized AgNPs in a 0.001M NaCl electrolyte solution, Figure 4-2a. The first 

region is the initial peak, which is the nearly unretarded transport of NPs through the 

column during the first 3 pore volumes. We know that the silver eluting from the column 

is in the form of nanoparticles because the effluent is yellow in color. This peak 

accounted for 32 % of the silver in the spike, with a retardation factor of 1.23.  This 

retardation factor indicated that the nanoparticles were relatively mobile, but it is 

important to note that it applies to only the 32% of the total silver that eluted off the 

column in the initial peak. This region is followed by a diffusion tail, which is the second 

transport region and accounts for 7 % of the total silver. Ag
0
 has a tendency to oxidize 

and complex with Cl
-
 ions and form AgCl precipitates that have a significantly lower 

solubility than Ag
+
 ions.[39] AgCl has a Ksp of 1.8*10

-10
 at 25 °C, which results in AgCl 
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precipitation when the Ag concentration is greater than 19.4 ppm in the presence of 

0.001M Cl. [39]   Speciation calculations indicate that  insoluble silver chloride is present 

in the spike solution prior to introduction to the column. The silver concentration in the 

spike was measured at 3438 ppb, and with a Cl
-
 concentration of 0.001M, solid AgCl 

may form, since the solubility limit of AgCl at 25 ºC is 475.7ppb.[39] These precipitates 

would likely follow a more tortuous pathway through the column packing and thus elute 

from the column more slowly than dispersed AgNPs, as dissolved AgCl. Therefore it is 

likely that both AgNPs and AgCl are eluting from the column in the diffusion tail. The 

third transport region is a second breakthrough, starting at the 20
th

 pore volume. There 

are two possible explanations of the second breakthrough curve; speciation calculations 

indicate that solid AgCl may have been present in the spike solution before this solution  

 

Figure 4-2: The Concentration of silver in column effluent was normalized to spike 

silver concentrations and plotted vs displaced pore volume on a log-log scale; A) Ag-

Citrate and B) Ag-NOM NPs 
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was introduced to the column, and these particles may have taken a more torturous 

pathway through the quartz powder and thus eluted after the nanoparticles. When the 

solid precipitates exit the column, they encounter a concentration gradient and solubilize. 

This region accounted for 55 % of the silver in the spike, a significant amount. Li et al. 

showed that a layer of AgCl can from on the surface of AgNPs that will inhibit NP 

dissolution at low [Cl
-
]/[Ag

+
] ratios.

40
  The second breakthrough of silver in column A 

may also be due to the kinetics of the formation and dissolution of an AgCl layer on 

AgNPs adsorbed to the quartz powder, since higher [Cl
-
]/[Ag

+
] would be necessary for  

dissolution of the AgCl layer.  This region accounted for 55 % of the silver in the spike, a 

significant amount.  Figure 3 depicts a plot of [Cl
-
]/[Ag

+
] as a function of pore volume 

for column A. Brown et al.  investigated the effect of Cl
-
 on AgNP dissolution rates and 

demonstrated that as the [Cl
-
]/[Ag

+
] increases, the formation of soluble AgClx

(x-1)- 
is 

thermodynamically favorable.[40] A [Cl
-
]/[Ag

+
] of 2383 represents the solubility limit of 

AgCl for the conditions in column A, which is indicated by the red line in Figure 4-4. 

Ratios above this limit result in the formation of soluble AgClx
(x-1)- 

 species. Ratios below 

this limit result in the formation of zero-valent silver, which may be in the form of 

nanoparticles or solid AgCl. Figure 5 depicts a speciation diagram of silver as a function 

of chloride ion concentration with data points from column A.  Many points from the 

initial spike fall in the zero-valent silver phase, supporting that silver was in nanoparticle 

or solid AgCl form, while the other points fall in the soluble AgCl phase, the red line in 

this plot also represents the solubility limit of AgCl, while black lines represent phase 

boundaries.  Similar speciation diagrams have been used by other research groups as 
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well.[40] Data points from the diffusion tail and second breakthrough curve fall in the 

soluble AgCl phase, which is consistent with the column results. In the fourth transport 

region the column was flushed with one pore volume of DDI water, 3 pore volumes of 

electrolyte solution, and then one pore volume of 0.1M NaCl, Figure 4-5. 

 

 

 

Figure 4-3: Plot of the ratio of chloride ions to silver ions as a function of pore volume in 

column A. 

 

In the fourth transport region the column was flushed with one pore volume of 

DDI water, 3 pore volumes of electrolyte solution, and then one pore volume of 0.1M 

NaCl, Figure 4-5. When DDI water is passed through column A, the silver concentration 

decreased slightly; Figure 5a, section 1.  Had these concentrations of silver been in the 

form of NPs, lowering the ionic strength should increase the double layer thickness and 

this would theoretically enhance NP transport; thus increasing the silver concentration in 
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the effluent.  This suggests that the silver at this point in the column was in the form of 

AgCl and not nanoparticles. An observed 2 orders of magnitude increase in silver 

concentration in the effluent with increased NaCl concentration,  

 

Figure 4-4: Speciation diagram of AgCl as a function of ionic silver and ionic chloride 

concentration 

 

Figure 5a, section 2, supports the argument that soluble AgClx
(x-1) – 

species are present. 

The data points from the ionic strength swing with 0.1M NaCl, fall in the AgCl2 phase 

providing evidence that soluble AgClx
(x-1) – 

species are indeed forming.   

Tetramethyl ammonium perchlorate, (CH3)4NClO4, or TMAP, was chosen as a 

second electrolyte due to perchlorate’s (ClO4
-
) weak oxidation potential. The central 

chlorine in a perchlorate anion is a closed shell atom and is well protected by the four 

oxygen atoms. Hence, perchlorates do not react with silver ions as chloride anions do.  

The results from column B, Figure 4-2a, display an initial breakthrough curve that is 
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broader than the initial breakthrough curve in column A accounting for 94 % of the 

recovered, and a diffusion tail, accounting for only 4.4 % of the recovered silver. The 

retardation factor for column B was calculated to be 1.39, which is slightly higher than  

 

Figure 4-5: Plots of normalized concentration of silver in effluent vs. displaced pore 

volumes in the regions of ionic strength flushes:  A) Ag-Citrate in 0.001M NaCl, B) Ag-

Citrate in 0.001M NaClO4 

 

the retardation factor for column A, but this retardation factor is skewed by the higher 

percentage of silver in the first break though curve.  A higher recovery of silver in the 

initial breakthrough curve is expected since no Cl
-
 is present to form AgCl precipitates. 

The results do not show a second breakthrough curve, which confirms the conclusions 

from column A. Since there are no Cl
-
 ions to complex with silver from the AgNPs, and 

the lack of reactivity of perchlorate, AgNP dissolution and AgCl dispersion or 

solubilization do not occur, which explains the lower recovery of silver in the diffusion 

tail. Table 4-2 summarizes the mass balances and retardation factors for each column, 

with recoveries of silver from each transport region. Per cent recoveries were calculated 
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with respect to total concentration of silver in the spike solution, and per cent of total 

recoveries were calculated with respect to the amount of silver recovered from each 

column. Column B was also subjected to ionic strength flushes; however there was no 

change in the effluent silver concentration with either flush.  

Table 4-2: Mass balances of each column. Recoveries were also normalized to the total 

recovery of Ag in each column to column to column comparison 

  
 

 Initial Break 

through Diffusion Tail 
Second 

Break 

through  

Quartz 

Powder  

Total 

Recover

y 

Column 
R % % of 

total % % of 

total % % of 

total % % of 

total   % 

A 1.23 32 32.3 7 7.1 55 55.9 4.9 4.9 98.9 
B 1.39 81 94.2 3.8 4.4 - - 0.48 0.56 86.0 
C 1.49 61.9 97.5 1.73 3.1 - - 0.41 0.65 63.5 
D 1.08 59 95.5 2.7 4.4 - - 0.85 1.4 61.9 
E 1.36 70 86.2 2.3 2.8 - - 0.48 0.59 81.2 

 

  Sodium perchlorate, NaClO4, was also used as an electrolyte with citrate-

stabilized AgNPs, column C.  The effluent concentrations of this column are shown in 

Figure 4-2a. This column also exhibits an initial breakthrough curve that accounted for 98 

% of the total silver recovered, and diffusion tail, accounting for 3.1 % of the total silver 

recovered.  Similar to column B, no second breakthrough curve was observed due to the 

lack of Cl
-
. Column C was also subjected to ionic strength flushes; DDI H2O and 0.001M 

NaCl.  0.001M NaCl was used instead of 0.1M to limit the changes to the experiment. 

The concentration of silver increased by 2 orders of magnitude during the flush with DDI 

water, suggesting that this silver is in the form of NPs. Flushing the column with DDI 

water may have increased the double layer thickness of the nanoparticles, facilitating the 
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desorption of AgNPs from the quartz powder and enhancing mobility through the 

column. A change in Ag concentration was not seen when column C was flushed with 

0.001 M NaCl.  

NOM-Passivated Silver Nanoparticles 

The transport of AgNPs passivated with Suwanee River natural organic matter, 

NOM, was investigated in 0.001M NaCl (column D), and TMAP (column E). The results 

from column D, Figure 4-2b, portray a large initial peak, and long diffusion tail, but do 

not display a second breakthrough curve.  NOM is a large multifunctional molecule that 

adheres to most surfaces; including nanoparticles where it provides enhanced electrostatic 

and steric stabilization to AgNPs. 95.5 % of the total recovery of silver is accounted for 

in the initial breakthrough, with a retardation factor of 1.08, and 4.4 % of the recovered 

silver is accounted for in the diffusion tail. This column resulted in the smallest 

retardation factor, indicating that these particles were the most mobile relative to the 

other columns, and that NOM is enhancing AgNP mobility. The lack of a second 

breakthrough curve indicates that NOM is shielding the AgNPs from dissolution caused 

by NaCl that was seen in column A. NOM prevents dissolution by blocking the oxidation 

sites on the AgNP surface. [24] The total recovery of silver that eluted from the column 

was 61.9%.  The decrease in total recovery for this column relative to the other columns 

is likely due to incomplete equilibrium adsorption of silver to the tubing leading to the 

column. If this tubing was not flushed with nanoparticle solution long enough prior to the 

experiment, some of the silver in the spike would adsorb to the tubing and subsequently 

not enter the column.   
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The results for column E, NOM-AgNPs with TMAP are also shown in Figure 4-

2b. 86.2 % of the recovered silver eluted from the column in the initial breakthrough and 

exhibited a retardation factor of 1.36. TMAP may be interfering with the NOM coated 

AgNPs and causing them to elute more slowly from the column.   2.8 % of the recovered 

silver eluted from the column in the diffusion tail. There was also no second 

breakthrough of silver in column E, which was expected since there was no free chloride 

in solution to interact with the nanoparticles.  After at least 120 pore volumes, columns D 

and E were both flushed with one pore volume of DDI water, 3 pore volumes of 

background solution, then with 0.1M NaCl in column D and 0.001M NaCl in column E. 

Neither column displayed a trend with these flushes. This suggests that the presence of 

NOM is effectively screening the ionic interactions.  There are few points that are higher 

concentrations of silver above 100 pore volumes in column D and E that can be explained 

by small concentrated pockets of silver nanoparticles in the column packing that were 

released towards the end of the experiment.  

Column Segmentation 

The electrolyte solutions were stopped in each column after the ionic strength 

flushes and 125 pore volumes. Each column was segmented into 1cm sections of quartz 

powder, washed with 2% HNO3 for 24 hours, and analyzed for silver content on ICP-MS 

to determine the total remaining concentration and concentration profile of silver in each 

column. Figure 5 displays the mass of silver in each column as a function of column 

height. The recovery of silver in column A, citrate-stabilized AgNPs in 0.001M NaCl, 

was 4.9%.   The silver left in column A is likely due to residual insoluble AgCl 
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precipitates on the quartz powder.  The residual silver in the other columns was 

significantly lower at 0.48% in column B and 0.41 % in column C. 

 

Figure 4-6: Plot of the concentration of silver recovered from column packing as a 

function of height 

 

The absence of free chloride in columns B and C, reinforces the conclusion that the 

remaining silver is in the form of AgCl precipitates.  Columns D and E, NOM-AgNPs in 

0.001M NaCl and 0.001M TMAP, respectively, contained 0.73% and 0.46% of the spike 

silver in the quartz powder, respectively.  This provides evidence that NOM inhibits 

AgNP adsorption to quartz powder. 

Batch Dissolution
 

Batch dissolution experiments were conducted on each spike solution to determine the 

extent of ionization in each 0.001M electrolyte solution, as well as an electrolyte free 
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control, after 24 hours. Results from this study, Figure 6,  revealed that electrolyte free 

citrate AgNP contained about 20 % of silver in ionic form, and citrate AgNPs in NaCl  

Table 4-3: Characterization of AgNPs via UV-Vis and DLS 

NP 

Electrolyte 

Solution, pH 6, 

0.001M 

Maximum 

Wavelength, 

(nm) 
Z-Avg 

R
h
, (nm) 

Zeta 

Potential, 

ζ, (mV) 
Ag-Citrate Control 406.1 35.2 -34.3 

NaCl 404.1 45.09 -25.2 
TMAP 405.0 58.68 -26.7 
NaClO

4
 408.9 53.33 -21.5 

Ag-NOM Control 408.0 30.3 -31.7 
NaCl 405.0 70.55 -30.8 

TMAP 403.0 52.64 -29.7 
NaClO

4
 418.2 61.93 -22.6 

 

contained less than 5 % ionic silver. Speciation calculations indicated, at the 

concentrations of Ag
+
 and Cl

-
 in the solution, the formation of insoluble AgCl. As stated 

previously the Ksp of AgCl in water at 25 C is 1.8*10
-10

,[39] and the molar solubility at 

these conditions is 475.7 ppb. Therefore at 0.001M Cl
-
, concentrations of silver above 

19.4 ppb Ag
+
 would result in the formation of AgCl. The concentration of Ag

+
 in the 

Citrate AgNP/NaCl batch solution was 1200 ppb, therefore AgCl would form at 

concentration above the solubility limit. Filtration experiments indicated that insoluble 

AgCl would pass through the filters. Citrate AgNP in 0.001 M TMAP or NaClO4 both 

contained a higher percentage of ionic silver than electrolyte free citrate AgNPs. Citrate 

AgNPs in 0.001M TMAP contained about 33% silver in the form of ions and about 27% 

in 0.001M NaClO4. While perchlorate ions are unlikely to complex with silver ions in 

solution, they could potentially destabilize the nanoparticle–ligand shells allowing for a 
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higher degree of AgNP dissolution compared to electrolyte free AgNPs. These ions 

would not form insoluble precipitates, therefore a second breakthrough of silver would  

 

Figure 4-7: Plot of the extent of AgNP ionization after 24 hours 

 

not occur in the column study. The zeta potential of citrate AgNPs decreased from -34.3 

mV in the control to -25.2 mV, Table 3, when TMAP was present, indicating that TMAP 

is indeed destabilizing the AgNPs. NOM AgNP were not as effected by electrolyte 

solutions and exhibited lower extents of dissolution than the citrate AgNP electrolyte 

solution.  This indicated that NOM is inhibiting AgNP dissolution by provide greater 

stabilization than citrate and screening ionic interactions. NOM can also chelate any free 

silver ions in solution; therefore these ions would not pass through the filter because of 

the molecular weight of NOM.  

Conclusions 
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We have investigated the influence of NOM and electrolyte type and 

concentration on the mobility of silver nanoparticles through ultrapure quartz powder. 

We established that even under ideal conditions, AgNPs will interact with a solid phase. 

In the presence of NaCl, AgNPs will dissolve and from AgCl.  Column A, citrate AgNPs 

in 0.001 M NaCl, exhibited a narrow initial breakthrough curve with a low recovery of 

silver, then a second breakthrough curve due to the slower elution of AgCl. Our results 

indicated that when exposed to high ionic strengths (0.1M) of NaCl, soluble AgClx
(x-1)- 

formed. Further evidence of the formation of AgCl precipitates is provided when this 

column was segmented and 4.5% of the initial silver was recover from the packing. 

Perchlorate electrolytes do not interact with AgNPs to the extent of chloride electrolytes 

due to its weak oxidation potential. This was demonstrated in columns B and C, which 

had higher recoveries of silver their initial breakthroughs and neither column had a 

second breakthrough curve. We have also demonstrated that NOM plays an important 

role in the fate and transport of AgNPs. NOM effectively shields AgNPs from ionic 

interactions and inhibits the deposition of AgNPs onto quartz powder, as seen in column 

D. This column had a high recovery of silver in its initial breakthrough and no second 

breakthrough curve, providing evidence that NOM is shielding AgNPs from chloride ion 

attack and only 0.7% of the initial silver was recovered from the column packing. Our 

batch dissolution experiments also demonstrate that NOM inhibits the dissolution of 

AgNPs. After 24 hours of exposure to electrolytes, NOM-passivated AgNPs released less 

than 5% of the total silver concentration in ionic form. These findings are import in 

determining the environmental implications of silver nanoparticles. Every body of water 
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will have a significant amount of sodium chloride, whether natural or sea water. Natural 

organic matter is an abundant material in natural waters and has the potential for being 

carried to sea water, especially when bound to mobile particulate matter.  Studying the 

effects of NaCl, as well as other electrolytes, and NOM on nanoparticle transport is 

quintessential in determining the environmental fate of these materials. Future work for 

this study would include investigating other environmental conditions such as the effect 

of nanoparticle age, and futher investigation of the effect of NOM by incorporating NOM 

into the column packing before spiking the column with nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 
 

 

 

References 

1. Scholars, W.W.I.C.f. Consumer Products Inventory. The Project on Emerging 

Nanotechnologies 2014; Available from: http://www.nanotechproject.org/cpi/. 

 

2. Mueller, N.C. and B. Nowack, Exposure Modeling of Engineered Nanoparticles 

in the Environment. Environmental Science & Technology, 2008. 42(12): p. 

4447-4453. 

 

3. Benn, T.M. and P. Westerhoff, Nanoparticle Silver Released into Water from 

Commercially Available Sock Fabrics. Environmental Science & Technology, 

2008. 42(11): p. 4133-4139. 

 

4. Fabiano Piccinno, F.G., Stefan Seeger, Bernd Nowack, Industrial production 

quantities and uses of ten engineered nanomaterials in Europe and the world. 

Journal of Nanoparticle Research, 2012. 14. 

 

5. Nel, A., et al., Toxic Potential of Materials at the Nanolevel. science, 2006. 

311(5761): p. 622-627. 

 

6. Levard, C., et al., Environmental Transformations of Silver Nanoparticles: Impact 

on Stability and Toxicity. Environmental Science & Technology, 2012. 46(13): p. 

6900-6914. 

 

7. Lowry, G.V., et al., Transformations of Nanomaterials in the Environment. 

Environmental Science & Technology, 2012. 46(13): p. 6893-6899. 

 

8. Yu, S.-j., Y.-g. Yin, and J.-f. Liu, Silver nanoparticles in the environment. 

Environmental Science: Processes & Impacts, 2013. 15(1): p. 78-92. 

 

9. Wiesner, M.R., et al., Assessing the Risks of Manufactured Nanomaterials. 

Environmental Science & Technology, 2006. 40(14): p. 4336-4345. 

 

10. Andrew D. Maynard, R.J.A., Tilman Butz, Vicki Colvin, Ken Donaldson, Günter 

Oberdörster, Martin A. Philbert, John Ryan, Anthony Seaton, Vicki Stone, Sally 

S. Tinkle, Lang Tran, Nigel J. Walker & David B. Warheit, Safe handling of 

nanotechnology. Nature materials, 2006. 444: p. 267-269. 

 

11. Liu, J., et al., Chemical Transformations of Nanosilver in Biological 

Environments. ACS Nano, 2012. 6(11): p. 9887-9899. 

http://www.nanotechproject.org/cpi/


131 
 

 

12. Baalousha, M., Aggregation and disaggregation of iron oxide nanoparticles: 

Influence of particle concentration, pH and natural organic matter. Science of 

The Total Environment, 2009. 407(6): p. 2093-2101. 

 

13. Dobias, J. and R. Bernier-Latmani, Silver Release from Silver Nanoparticles in 

Natural Waters. Environmental Science & Technology, 2013. 47(9): p. 4140-

4146. 

14. Dunphy Guzman, K.A., M.P. Finnegan, and J.F. Banfield, Influence of Surface 

Potential on Aggregation and Transport of Titania Nanoparticles. Environmental 

Science & Technology, 2006. 40(24): p. 7688-7693. 

 

15. Badawy, A.M.E., et al., Impact of Environmental Conditions (pH, Ionic Strength, 

and Electrolyte Type) on the Surface Charge and Aggregation of Silver 

Nanoparticles Suspensions. Environmental Science & Technology, 2010. 44(4): 

p. 1260-1266. 

 

16. Hotze, E.M., T. Phenrat, and G.V. Lowry, Nanoparticle aggregation: Challenges 

to understanding transport and reactivity in the environment. Journal of 

environmental quality, 2010. 39(6): p. 1909-1924. 

 

17. Fabrega, J., et al., Silver nanoparticles: Behaviour and effects in the aquatic 

environment. Environment International, 2011. 37(2): p. 517-531. 

 

18. Fabrega, J., et al., Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, 

Concentration, and Organic Matter. Environmental Science & Technology, 2009. 

43(19): p. 7285-7290. 

 

19. Wang, J., C.P. Huang, and D. Pirestani, Interactions of silver with wastewater 

constituents. Water Research, 2003. 37(18): p. 4444-4452. 

 

20. Furman, O., S. Usenko, and B.L.T. Lau, Relative Importance of the Humic and 

Fulvic Fractions of Natural Organic Matter in the Aggregation and Deposition of 

Silver Nanoparticles. Environmental Science & Technology, 2013. 47(3): p. 

1349-1356. 

 

21. Adegboyega, N.F., et al., Interactions of Aqueous Ag+ with Fulvic Acids: 

Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. 

Environmental Science & Technology, 2012. 

 

22. Aiken, G.R., H. Hsu-Kim, and J.N. Ryan, Influence of Dissolved Organic Matter 

on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environmental 

Science & Technology, 2011. 45(8): p. 3196-3201. 

 



132 
 

23. Sotiriou, G.A., et al., Quantifying the Origin of Released Ag+ Ions from 

Nanosilver. Langmuir, 2012. 28(45): p. 15929-15936. 

 

24. Liu, J. and R.H. Hurt, Ion Release Kinetics and Particle Persistence in Aqueous 

Nano-Silver Colloids. Environmental Science & Technology, 2010. 44(6): p. 

2169-2175. 

 

25. Mansoori, G.A., K.S. Brandenburg, and A. Shakeri-Zadeh, A Comparative Study 

of Two Folate-Conjugated Gold Nanoparticles for Cancer Nanotechnology 

Applications. Cancers, 2010. 2(4): p. 1911-1928. 

 

26. Sagee, O., I. Dror, and B. Berkowitz, Transport of silver nanoparticles (AgNPs) 

in soil. Chemosphere, 2012. 88(5): p. 670-675. 

 

27. Stankus, D.P., et al., Interactions between Natural Organic Matter and Gold 

Nanoparticles Stabilized with Different Organic Capping Agents. Environmental 

Science & Technology, 2010. 45(8): p. 3238-3244. 

 

28. Johnson, R.L., et al., Natural Organic Matter Enhanced Mobility of Nano 

Zerovalent Iron. Environmental Science & Technology, 2009. 43(14): p. 5455-

5460. 

 

29. Thio, B.J.R., D. Zhou, and A.A. Keller, Influence of natural organic matter on the 

aggregation and deposition of titanium dioxide nanoparticles. Journal of 

Hazardous Materials, 2011. 189(1–2): p. 556-563. 

 

30. Domingos, R.F., N. Tufenkji, and K.J. Wilkinson, Aggregation of Titanium 

Dioxide Nanoparticles: Role of a Fulvic Acid. Environmental Science & 

Technology, 2009. 43(5): p. 1282-1286. 

 

31. Wang, C., et al., Retention and Transport of Silica Nanoparticles in Saturated 

Porous Media: Effect of Concentration and Particle Size. Environmental Science 

& Technology, 2012. 46(13): p. 7151-7158. 

 

32. Huynh, K.A. and K.L. Chen, Aggregation Kinetics of Citrate and 

Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent 

Electrolyte Solutions. Environmental Science & Technology, 2011. 45(13): p. 

5564-5571. 

 

33. Mukherjee, B. and J.W. Weaver, Aggregation and Charge Behavior of Metallic 

and Nonmetallic Nanoparticles in the Presence of Competing Similarly-Charged 

Inorganic Ions. Environmental Science & Technology, 2010. 44(9): p. 3332-

3338. 

 



133 
 

34. Lecoanet, H.F., J.-Y. Bottero, and M.R. Wiesner, Laboratory Assessment of the 

Mobility of Nanomaterials in Porous Media. Environmental Science & 

Technology, 2004. 38(19): p. 5164-5169. 

 

35. Dixit, V., et al., Synthesis and grafting of thioctic acid-PEG-folate conjugates 

onto Au nanoparticles for selective targeting of folate receptor-positive tumor 

cells. Bioconjugate Chemistry, 2006. 17(3): p. 603-609. 

 

36. Akaighe, N., et al., Humic Acid-Induced Silver Nanoparticle Formation Under 

Environmentally Relevant Conditions. Environmental Science & Technology, 

2011. 45(9): p. 3895-3901. 

 

37. Brown, K.R., Walter, D. G., Natan, M. J., Seeding of Colloidal Au Nanoparticle 

Solutions. 2. Improved Control of Particle Size and Shape. Chemical Materials, 

2000. 12: p. 306-313. 

 

38. Jana, N.R., Gearheart, L., Murphy, C. J. , Seeding Growth for Size Control of 5-40 

nm Diameter Gold Nanoparticles. Langmuir, 2001. 17: p. 6782-6786. 

 

39. Weast, R.C., Handbook of Chemistry and Physics. 57 ed1976, Cleveland: CRC 

Press. 

 

40. Levard, C., et al., Effect of Chloride on the Dissolution Rate of Silver 

Nanoparticles and Toxicity to E. coli. Environmental Science & Technology, 

2013. 47(11): p. 5738-5745. 

 

 



134 
 

CHAPTER FIVE 

REVERSE MICELLE SYNTHESIS OF SILVER NANOPARTICLES IN GAS 

EXPANDED LIQUIDS 

 

Abstract 

The tunable solvent properties of gas expanded liquids (GXLs) have been 

previously used for the fractionation and separation of polydispersed ligand-stabilized 

metal nanoparticles into distinct monodispersed fractions. This work employs CO2 

expanded hexane for silver nanoparticle synthesis within an AOT reverse micelle system 

where the tunable GXL solvent properties are used to control the nanoparticle size and 

polydispersity. The objective of this project is to answer two questions: (1) can 

nanoparticles with narrow and well-defined size distributions be synthesized in GXLs? 

and (2) how do the solvent properties impact the resulting nanoparticle size? In the 

reverse micelle synthesis, the AOT surfactant provides a nano-scale aqueous micelle core 

for nanoparticle nucleation, as well as, acts as a nanoparticle stabilizing ligand. 

Increasing the CO2 partial pressure in a GXL impacts the surfactant–solvent interaction 

and results in the synthesis of different sized nanoparticles. At ambient pressures, the 

mean particle diameter synthesized was 6.1 ± 2.1 nm with W = 40 and 5.4 ± 2.0 nm with 

W = 20, where W is the molar ratio of water to AOT. At CO2 partial pressures of 6.9 and 

13.8 bar, there was no significant change in particle size, but decreases in the size 

distributions were observed. At CO2 partial pressures ranging from 20.7 to 41.4 bar, 

steady decreases in the mean particle diameter and size distribution were observed with 

values of 4.0 ± 0.8 for W = 40 and 4.1 ± 1.0 for W = 20 at 41.4 bar. This demonstrates 
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some degree of nanoparticle size tunability within the GXL solvent, where smaller 

particle diameters and size distributions are achieved at higher CO2 compositions. 

Introduction 

Nanotechnology is based on materials built from particles less than a critical 

length. In the case of metallic nanoparticles, the unique chemical, optical, and physical 

properties depend heavily on size, shape, and polydispersity. [1,2] Preparation of 

monodispersed populations is often required to employ size-dependent properties, and 

many methodologies require post synthesis processing to obtain the desired size 

monodispersity. The objective of this work is to use tunable solvents to synthesize 

monodispersed popu-lations of silver nanoparticles of a controllable size. Traditional 

silver nanoparticle synthesis methods can produce nanoparticles with wide size 

distributions or are limited in the tunability on the synthesized particle size. Since size 

greatly impacts nanoparticle properties, it is imperative to (1) control the synthesized 

nanoparticle size or (2) fractionate the synthesized nanoparticles into monodispersed 

populations. There are several post-synthesis methods to narrow size polydispersity and 

obtain a specific particle size fraction including liquid anti-solvent precipitation, [3–5] 

chromatography techniques, [6] and isoelectric focusing [7] Sigman et al. used an 

ethanol/chloroform anti-solvent/solvent pair and centrifugation to size selectively 

precipitate and separate a polydispersed population of silver nanoparticles capped with 

dodecanethiol ligands into monodispersed particle fractions. [5] The addition of anti-

solvent results in poorer solvent conditions and reduces the favorable solvent–ligand 

interactions and leads to nanoparticle precipitation. The reduced ability of the 



136 
 

solvent/anti-solvent mixture to disperse the particles is due to the decreased steric 

repulsion of the ligands and inability to overcome the van der Waals attraction between 

particles. Larger particles have greater van der Waals attractive forces, and as a result, 

precipitate first upon increasing anti-solvent concentration. [8,9] Further additions of 

anti-solvent and subsequent centrifugation to provide an external force to accelerate 

precipitation leads to smaller particles precipitating out of solution. Successive 

incremental additions of anti-solvent can lead to narrow size fractions with standard 

deviations less than 5%. Although the use of liquid anti-solvents for size fractionation 

will produce very narrow size distributions, copious amounts of anti-solvents are used, 

and the required centrifugation is time and energy intensive and not easily scalable. This 

leads to a large amount of waste and energy usage. [3–5] There is motivation then to 

develop greener techniques to obtain nanoparticle populations with narrow size 

distributions. Previous work using compressed and supercritical fluid solvents has shown 

that pressure and temperature tunable solvent properties can be used to control the size of 

dispersed nanoparticles during synthesis and post synthesis processing. [10] Shah et al. 

utilized the tunable density of supercritical ethane to obtain a size-selective dispersion of 

dodecanethiol coated nanoparticles. [10,11] This work illustrated that by changing 

solvent density, the dispersible particle size could be controlled where the largest 

particles were dispersed at the highest pressure. Ethane, for example, requires high 

pressures above 500 bar to synthesize and disperse copper nanoparticles of 3.4 nm in 

diameter. [9] Roberts et al. used the tunable solvent properties of GXLs to fractionate a 

polydispersed solution of silver Brust particles. [12,13] CO2 partial pressure was used to 
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tune the solvent strength of solution for nanoparticles, and narrow size distributions were 

obtained at different CO2 pressures. CO2 is used as an anti-solvent because it dissolves 

easily into organic solvents and expands their volume; therefore changing the solvent 

mixture properties. [12,14] For example, the composition of CO2 in gas-expanded n-

hexane can be adjusted from zero mole percent at ambient conditions to 81 mol% at 49.4 

bar. CO2 is a good choice for GXLs because it is a weak solvent, even at high pressures 

[15] and has no dipole moment and a very low refractive index. [10] GXLs provide a 

wide range of tunability with adjustments in pressure, which affords control over the size 

of nanoparticles achieved in post synthesis processing. [9–12,16–19] Nanoparticle size 

control can also be achieved using surfactant-mediated reverse microemulsion 

techniques, in particularly the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) 

in pro-portions such a reverse micelle water-in-oil microemulsion is formed. [2,20–23] 

The AOT reverse micelle system has been used widely for the synthesis of metallic 

nanoparticles including silver. Synthesis variables in the system that have been 

investigated include the type and concentration of surfactant, metal precursor, and 

reducing agent, as well as the temperature, pH, bulk sol-vent and water-to-surfactant 

molar ratio (W-value). [2,20,22] CO2 has been used as an effective anti-solvent to recover 

nanoparticles synthesized via a reverse micelle method. [18,19,24,25] This work explores 

the use of GXLs as a tunable fluid medium for the reverse micelle synthesis of silver 

nanoparticles. It was our hypothesis that the nanoparticle–surfactant–solvent interactions 

can be adjusted by tuning the solvent strength with GXLs in order to control nanoparticle 

size and polydispersity. We were able to synthesize particles of controlled sizes using the 
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pressure-tunable solvent properties of GXLs where the particle size decreases with 

increasing CO2 partial pressure. As a result, GXLs provide a greener alternative to 

control the size of synthesized nanoparticles. 

Experimental 

Materials 

The surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was obtained from 

Fisher Scientific and used without further purifi-cation. 98% n-hexane was purchased 

from Sigma Aldrich, sodium borohydride from EMD Chemicals, and 99.995% silver 

nitrate from Alfa Aesar. Industrial grade CO2 was purchased from National Welders 

Supply. 

Particle synthesis  

The method for the synthesis silver nanoparticles via the AOT reverse micelle 

synthesis has been discussed previously. [13,26] In short, 4.80 ml of 0.1 M AOT in n-

hexane was combined with 0.10 ml of 0.01 M aqueous silver nitrate (W = [H2O]/[AOT] 

= 40) in a custom pressure cell. For a W-value of 20, 5.55 ml of 0.1 M AOT in hexane 

was combined with 0.10 ml of 0.01 M silver nitrate in water. The cell was sealed and 

pressurized. The CO2 partial pressures used in this study were 6.9, 13.8, 20.7, 27.6, 34.5 

and 41.1 bar and ambient conditions as a control. The pressure was controlled using a 

Teledyne ISCO D-Series Model 500HP syringe pump. 0.25 ml of 0.10 M (W = 40) or 

0.10 ml of 0.25 M (W = 20) of aqueous sodium borohydride was then injected at constant 
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pressure through a Valco VICI W type injection loop. The pressure cell was vented to 

create laminar flow to ensure that all of the NaBH4 solution entered the cell. Following 

the reaction and nanoparticle synthesis, 0.10 ml of dodecanethiol was injected in the 

same fashion through an additional injection loop after 15 min of stirring via magnetic 

stir bar. The system was then depressurized, and a cloudy brown solution was removed 

from the pressure cell. The nanoparticles were crashed out of solution with ethanol, 

centrifuged, redispersed in 10 mL of fresh n-hexane containing 0.1 ml of dodecanethiol.  

Characterization 

Nanoparticle samples were deposited on copper grids (Ted Pella), and TEM 

images were obtained on a Hitachi 7600 TEM. The particle diameters were determined 

using ImageJ software and reported as the Max Feret and Min Feret (the maximum and 

minimum diameters of a given particle). Histograms were created using Origin 7, and 

statistical analysis was performed using Minitab 16. 

Results 

Nanoparticle Synthesis with W = 40 

A mean particle size of 6.1 ± 2.1 nm was synthesized with a W-value of 40 and 

ambient pressure, while particles with diameters of 5.9 ± 2.0 nm, 6.1 ± 1.4 nm, 5.3 ± 1.4 

nm, 4.7 ± 1.2 nm, 4.6 ± 1.4, and 4.0 ± 0.8 nm were obtained with CO2 partial pressures 

of 6.9 bar, 13.8 bar, 20.7 bar, 27.6 bar, 34.5 bar, and 41.4 bar respectively. Table 5-1 

summarizes the results for both W-values with the mean particle size and the standard 
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deviation for both the Max Feret (maximum diameter) and Min Feret (minimum 

diameter) for each particle, as determined by ImageJ. Differences between the Max Feret 

and Min Feret are indicative of the particle sphericity. The reported particle diameter 

error is representative of the distribution of measured particle diameters within the 

population and is determined from the standard deviation with a 90% confidence integral. 

Fig. 1 shows representative TEM images and particle diameter histograms for the seven 

different reaction pressures at W = 40. From the results it can be seen that the AOT 

reverse micelle synthesis in gas expanded hexane does indeed produce particles of lower 

polydispersity and smaller diameters with increasing CO2 partial pressure at a W-value of 

40. ANOVA with the Tukey’s method was performed to determine if the mean particle 

size measured for each CO2 pressure demonstrated statistical independence. It should be 

noted that the Tukey’s method tests the hypothesis that the mean particle diameters being 

tested for each sample within the population are independent, thus determining if 

statistically significant differences exist between samples. This is opposed to inferring if 

statistical differences exist from overlap of the particle size distribution standard 

deviation, which is indicative of the distribution of sizes and not error in the particle size 

measurement. Tukey’s test demonstrated that within a 95% confidence interval, the mean 

particle diameters for the ambient, 6.9 bar and 13.8 bar samples were not significantly 

different. Nanoparticle samples synthesized at 20.7 bar and 27.6 bar were significantly 

different from the lower pressures but not from one another. The nanoparticle samples 

synthesized at 34.5 bar and 41.4 bar were significantly different from each other as well 

as all other samples synthesized with W = 40. 



141 
 

 

Table 5-1: Summary of results for TEM size results 

Pressure 

(bar) 

W-

Value 

Max 

Diameter 

(nm) 

Min 

Diameter 

(nm) 

Particle 

Counted 

Ambient 20 5.4 ± 2.0 4.3 ± 1.7 675 

6.9 20 5.6 ± 1.5 4.2 ± 1.1 665 

13.8 20 5.4 ± 1.4 4.1 ± 1.1 384 

20.7 20 5.1 ± 1.3 3.9 ± 1.1 383 

27.6 20 5.0 ± 1.3 3.8 ± 1.0 463 

34.5 20 4.6 ± 1.0 3.4 ± 0.8 425 

41.4 20 4.1 ± 1.0 2.0 ± 0.9 502 

     Ambient 40 6.1 ± 2.1 4.8 ± 1.8 544 

6.9 40 5.9 ± 2.0 4.7 ± 2.1 290 

13.8 40 6.1 ± 1.4 4.4 ± 1.3 574 

20.7 40 5.3 ± 1.4 3.8 ± 1.1 396 

27.6 40 4.7 ± 1.2 3.7 ± 1.1 529 

34.5 40 4.6 ± 1.4 3.4 ± 1.0 584 

41.4 40 4.0 ± 0.8 3.1 ± 0.7 445 
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Figure 5-1: TEM images and particle size distribution histograms for silver nanoparticles 

synthesized with W = 40 at (A) ambient pressure, (B) 6.9 bar, (C) 13.8 bar, (D) 20.7 bar, 

(E) 27.6 bar, (F) 34.5 bar and (G) 41.4 bar. 
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Nanoparticle synthesis with W = 20 

The decreasing trend in synthesized mean particle size and size distribution with 

increasing CO2 partial pressure is also seen with particles synthesized with a W-value of 

20. The mean particle size synthesized with a W-value of 20 at ambient pressure was 5.4 

± 2.0 nm and 5.6 ± 1.5 nm, 5.4 ± 1.4 nm, 5.1 ± 1.3 nm, 5.0 ± 1.3 nm, 4.6 ± 1.0, and 4.1 ± 

0.7 nm at pressures of 6.9 bar, 13.8 bar, 20.7 bar, 27.6 bar, 34.5 bar, and 41.4 bar 

respectively. Fig. 2 shows representative TEM images of these particles and the size 

Figure 5-1. (Continued) 
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distribution histograms for each of the pressures investigated with W = 20. ANOVA with 

Tukey’s test demonstrated that within 95% confidence interval that the mean particle 

diameters for the ambient, 6.9 bar and 13.8 bar samples were also not significantly 

different from one another but were significantly different from the same pressures with 

W = 40. Nanoparticles synthesized at 20.7 bar were significantly different from all other 

pressures at W = 20, nanoparticles synthesized at 27.6 bar and 35.4 bar were significantly 

different from other pressures but not from one another, and nanoparticles synthesized at 

41.4 bar were significantly different from all other samples synthesized with W = 20. The 

nanoparticles synthesized at each of the pressures above 13.8 bar were not significantly 

different based on the W-value. It should be noted that all of the particle size distributions 

were skewed right but based on the large sample populations; it was assumed that the 

ANOVA results are relevant. Kruskal–Wallis test confirmed this assumption. 

Discussion 

In order to elucidate the governing factors that dictate nanoparticle size control, we must 

consider each of the influencing variables. The first and most obvious factor to consider 

is the W-value, which determines the size of the reverse micelles. Eastoe et al. used small 

angle neutron scattering (SANS) to determine the size of AOT reverse micelles and 

found that micelles with W-values of 20 and 40 have diameters of 6.58 nm and 11.64 nm, 

respectively. [27] When we consider the nanoparticle sizes synthesized at ambient 

pressure and W = 20, the micelle size correlates well with the synthesized nanoparticle 

diameter. This supports a theory of a micelle template governing the resulting particle 
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size, however this theory does not hold true for the W = 40 results, and it is not expected 

that the addition of CO2 partial pressure will impact the micelle size, assuming an 

incompressible water core. It can be argued that the solvent property changes with the 

addition of CO2 will impact properties such as the critical micelle concentration or 

relative solubility of water in the bulk or CO2 in the micelle core; however, it is unlikely 

that any of these factors will significantly impact the micelle size. [25,28] The presence 

of CO2 will make a significant effect on the pH of the micelle core [29]; however the 

most significant pH changes would likely occur between the ambient condition and the 

lowest pressure investigated. There is an effect of W-value and CO2 pressure on the pH of 

the aqueous micelle core, but it is not that significant over the pressures investigated. [29]   
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Figure 5-2:  TEM images and particle size distribution histograms for silver 

nanoparticles synthesized with W = 20 at (A) ambient pressure, (B) 6.9 bar, (C) 13.8 bar, 

(D) 20.7 bar, (E) 27.6 bar, (F) 34.5 bar and (G) 41.4 bar. 

 

An alternative theory is that particle size is governed by a directed assembly 

process where the colloidal phenomena of the AOT surfactant dictates the nanoparticle 

size. [8,9] The formation of this theory would be based on the AOT surfactant acting as a 

nanoparticle stabilizing ligand, and the surfactant–solvent interactions would be the 
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limiting factor that governs the synthesized particle size. Prior work by Han and co-

workers has demonstrated that CO2 can be used to size selectively precipitate metallic 

nanoparticles from an AOT reverse micelle system, where increasing pressure yields the 

recovery of smaller nanoparticles. [18,19,24] Furthermore, Roberts and co-workers found 

that 5.7 nm dodecanethiol-capped silver nanoparticles precipitated at 37.9 bar and 3.4 nm 

particles at 44.8 bar. [12] White et al. investigated nanoparticle dispersibility in GXLs 

with small angle neutron scattering (SANS) to determine solvation of ligand tails as a 

function of CO2 pressure. [30] They showed that upon pressurization with CO2, the 

ligand length and solvation of dodecane-capped silver nanoparticles decreases with 

increasing CO2 pressure. As the CO2 pressure increases, the molar composition of CO2 

dissolved in gas-expanded hexane increases, and a critical CO2 composition exists where 

the dodecane ligand begins to collapse onto the nanoparticle surface. It is conceivable 

that a comparable CO2 pressure exists for AOT and is impacted by the system W-value.  

  Table 5-2: Calculated solvent Properties for n-hexane/CO2 GXL by the PT-EOS 

Bar 

XCO2 

% 

Density, 

g/cm3 

% Vol 

Expansion 

0.0 0 0.767 0 

8.0 8 0.768 1 

14.3 16 0.77 6 

20.4 24 0.773 11 

28.1 36 0.775 21 

31.3 42 0.776 27 

40.3 60 0.774 63 

45.5 72 0.766 113 

49.4 81 0.75 190 
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Table 2 shows the composition of CO2 and solvent density as a function of CO2 

pressure, calculated with the Patel–Teja equation of state (PT-EOS) [30–32]. The CO2 

mol-fraction compositions were estimated by the PT-EOS to be 5% at 6.9 bar, 17% at 

13.8 bar, 28% at 20.7 bar, 40% at 27.6 bar, 51% at 34.5 bar, and 63% at 41.4 bar. As the 

CO2 mole fraction increases in gas-expanded hexane, the local solvent environment 

around the ligand tails changes. With respect to density, small changes are predicted over 

the composition range indicating little effect on particle dispersibility. Each of these 

studies demonstrates that a critical CO2 com-position exists for the dispersion of a 

nanoparticle with a given size, depending on the nanoparticle composition, ligand 

chemistry, and bulk solvent. Assuming that colloidal stabilization by the AOT surfactant 

is a controlling factor in the synthesized particle size, it is conceivable that at the lower 

pressures investigated, the solvent–surfactant interactions are not the primary factor 

governing the synthesized particle size. At pressures of 13.8 bar and below, there is no 

effect of pressure but there is a slight effect of W-value. This may be due to concentration 

differences. While the overall moles of Ag ions and NaBH4 are constant, the amount of 

water in the system does change, thus impacting the concentration within the micelle. 

Based on the theory of particle nucleation kinetics and growth, the concentration 

differences could result in the differences in particle size observed for the two W-values 

investigated at the low pressures. At pressures above 13.8 bar, the impact of W-value is 

not observed, but an effect of CO2 partial pressure is observed. It is conceivable that 

under these conditions, the surfactant–solvent inter-actions become the limiting factor 

that dictates the synthesized nanoparticle size. In this scenario, it is possible that an 
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equilibrium particle size is reached or that the AOT-stabilized nanoparticles precipitate 

from solution once a critical size is reached. The fact that the GXL solution remains 

colored suggests the former. 

Conclusions 

Gas expand liquids provide a wide range of solvent tunability by simply adjusting 

CO2 partial pressure. The tunability of CO2 expanded n-hexane was implemented to 

control the size of silver nanoparticles synthesized within the AOT reverse micelle 

system with a W value of 20 and 40. Above a critical CO2 pressure, a decrease in 

synthesized particle size and size distribution was observed. We propose a scenario by 

which a directed assembly mechanism is deterministic of the synthesized nanoparticle 

size where the surfactant–solvent interactions are the primary influencing factor. Future 

work in this area will include, thermodynamic modeling to gain a better understanding of 

the fundamental mechanisms that correlate bulk solvent properties with synthesized 

nanoparticle size and size distribution control. Furthermore, a wide range of system 

parameters are available to tune the particle size, which include the nanoparticle core 

material, surfactant, organic solvent, and temperature. In order to maintain the GXL 

system, the pressure is limited to pressures below the vapor pressure of CO2, unless one 

wishes to explore the supercritical regime at higher temperatures and pressures. With this 

system, one could envision a wide range of tunable solvent properties that may be used to 

synthesize nanomaterials of a desired size and size distribution for a multitude of 

applications. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

In this dissertation, we have summarized applications, methods to perform and 

analyze, and effects on ligand exchange and binding. Ligand exchange has proved to be a 

versatile and robust method for modifying nanoparticle surfaces regardless of core 

material. Overall, a SN2, associative mechanism in which an incoming ligand binds to a 

nanoparticle surface while an outgoing ligand desorbs from the surface in a simultaneous 

process; can be used to describe ligand exchange on gold nanoparticles with thiols and 

amines.  We have concluded through review of recent literature that ligand binding and 

exchange is initiated and occurs rapidly at highly reactive defect sites and then slows as 

defect site-bound ligands migrate to less reactive terrace sites to allow more ligands to 

bind. We have discussed the many factors contribute to the strengths and kinetics of 

ligand binding and exchange. Nanoparticle properties that affect ligand binding and 

exchange include size, shape, crystalline structure, charge, oxidation state and age. 

Ligand properties that affect ligand exchange and binding include structure, i.e. 

multivalency, chain length, extent of branching and chirality, and chemistry; end group 

and perhaps most importantly head group, through which ligands bind to nanoparticle 

surfaces. We have also concluded from literature that thiols preferentially bind to GNPs 

followed by amines, phosphines and carboxylic acids.  

We have demonstrated experimentally with isothermal titration calorimetry that 

thiols exhibit a heat of binding of 304kJ/mol which is >100kJ/mol higher than the heat of 
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binding of thiols to 2D gold surfaces. A significant conclusion of this work is that aging 

significantly reduces the reactivity of bare gold nanoparticles, as the heat of binding of 

PEG-SH to aged BGNPs decreased to 200 kJ/mol. Our studies demonstrate that the 

presence of citrate on the surface of GNPs does not inhibit the binding of PEG-SH, which 

was expected. A 50kJ/mol decrease in the heat of binding of PEG-SH to citrate stabilized 

GNPs demonstrates that citrate interacts with GNPs through a physical bond. 

Surprisingly, citrate seems to preserve the reactivity of GNPs by possibly preventing the 

reorganization of surface atoms. Titrations of PEG-SH into PEG-NH2 stabilized GNPs 

resulted in a heat of binding of 204 kJ/mol.  From the difference in the heats of binding of 

PEG-SH to BGNPs and PEG-NH2 stabilized GNPs we can infer that PEG-NH2 binds to 

GNPs chemically with a bond strength of approximately 100kJ/mol. From the results in 

this study we can elucidate the following trend in binding affinities of the functional 

groups tested; SH >> NH2 > COOH.  

We have investigated the influence of NOM and electrolyte type and 

concentration on the mobility of silver nanoparticles through ultrapure quartz powder. In 

the presence of NaCl, AgNPs will dissolve and from AgCl and we have demonstrated 

that this will largely affect the transport properties of silver nanoparticles. This study 

demonstrated that when AgNPs are in the presence of NaCl,  they will exhibit 2 different 

breakthroughs when passed through a quartz column. This work is significant because of 

the length of the experiments, over 120 pore volumes, without which we would have not 

observed the second breakthrough of silver when silver nanoparticles are exposed to 

NaCl. We also demonstrated that when exposed silver nanoparticles are exposed to high 
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ionic strengths (0.1M) of NaCl, soluble AgClx
(x-1)- 

will form. Perchlorate electrolytes do 

not interact with AgNPs to the extent of chloride electrolytes due to its weak oxidation 

potential. We have also demonstrated that NOM plays an important role in the fate and 

transport of AgNPs. NOM effectively shields AgNPs from ionic interactions and inhibits 

the deposition of AgNPs onto quartz powder, thereby enhancing AgNP mobility. NOM 

was also found to inhibit AgNP sorption as less than 1 % of the initial silver in the 

column studies was recovered from the column packing. Our batch dissolution 

experiments also demonstrate that NOM inhibits the dissolution of AgNPs. After 24 

hours of exposure to electrolytes, NOM-passivated AgNPs released less than 5% of the 

total silver concentration in ionic form. These findings are import in determining the 

environmental implications of silver nanoparticles. Every body of water will have a 

significant amount of sodium chloride, whether natural or sea water. Natural organic 

matter is an abundant material in natural waters and has the potential for being carried to 

sea water, especially when bound to mobile particulate matter.  This work has also raised 

a question on the long term impacts of AgNPs stabilized by NOM, as these particles will 

be more bioavailable to organisms in ecosystems. 

Lastly we have presented a facile synthesis of AgNPs of controllable size. The 

tunability of CO2 expanded n-hexane was implemented to control the size of silver 

nanoparticles synthesized within the AOT reverse micelle system with a W value of 20 

and 40. We have proposed a scenario by which a directed assembly mechanism is 

deterministic of the synthesized nanoparticle size where the surfactant–solvent 

interactions are the primary influencing factor. We have demonstrated that a wide range 
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of system parameters are available to tune the particle size, which include the 

nanoparticle core material, surfactant, organic solvent, and temperature. With this system, 

one could envision a wide range of tunable solvent properties that may be used to 

synthesize nanomaterials of a desired size and size distribution for a multitude of 

applications. Since this method requires a simple change in pressure to change synthesis 

conditions we hope that this technique can be used to synthesis industrial quantities of 

nanomaterials of controllable size. 

Recommendations 

 One of the questions that arose during the work in this dissertation was how to 

quantity the amount of ligand displaced during ligand exchange reactions. Quantifying 

the extent of ligand exchange will allow a more accurate estimation of binding strengths. 

While the use of various binding isotherms, such as the Langmuir isotherm can estimate 

the surface coverage of molecules they do not always provide accurate results. A 

proposed solution is to use radio-label ligands during the synthesis of GNPs, then 

exchange the radio-labeled (C
14

) ligands with non-radio ligands. After isolating the 

ligand-exchanged nanoparticles with antisolvent and centrifugation, the supernatant could 

then be analyzed via inductively coupled plasma-mass spectroscopy (ICP-MS) to 

quantify the amount of radio-ligand that was displaced from the nanoparticle surface. 

ICP-MS is a sensitive technique that is capable of distinguishing between different 

isotopes of carbon. The difficulty of this method is that even after purification of 

nanoparticles, an equilibrium will exist between ligands on the nanoparticle surface 
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surface and in solution. Recursive washing with antisolvent addition and centrifugation 

has shown to strip ligands from the surface of nanoparticles. Chromatography is a 

possible solution to isolate radio-labeled nanoparticles from excess ligand. After washing 

particles with an antisolvent/centrifugation method and dispersing the particles in a 

“neat” solvent, the solution would be passed through a column packed with polystyrene 

beads. This would facilitate the separation of nanoparticles and excess ligand due to the 

fact that the nanoparticles and free ligand would elute from the column at different rates.  

 I also believe that further investigation of ligand binding and exchange with 

isothermal titration calorimetry would increase the understanding of binding and 

exchange mechanisms. This would include the investigation of ligand binding to 

nanoparticles of various sizes and the investigation of the effect of ligand structure, i.e. 

chain length and multivalency. By varying ligand chain length and multivalency, we 

could potentially determine if and what entropic affects contribute to or inhibit ligand 

binding and exchange. We were unable to measure the heat of binding of amine 

functionalized ligand to gold nanoparticle and it would be possible to measure the heat of 

binding of amine functionalized ligands by increasing the concentration of ligand titrated 

into a gold nanoparticle solution. 

 The work performed investigating the mobility, dissolution and sorption 

properties of silver nanoparticles as affected by natural organic matter and electrolytes 

provides a technique to study a wide range of environmental conditions.  I would 

recommend studying the effect of age on nanoparticle transport in order to better access 
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long term impacts of nanoparticles on the environment. I would also recommend 

studying the effect of natural organic matter the transport properties of various 

hydrophobically stabilized nanoparticles under saturated flow conditions. I believe that 

with sufficient concentrations of natural organic matter, hydrophobically stabilized 

nanoparticle would be mobilized and become bioavailable in the environment. 

Another fundamental question that arose after finishing this dissertation was how 

surfactant-solvent interactions in GXLs affect particle size during synthesis. A proposed 

solution is to determine the surfactant structure and solvation via small-angle neutron 

scattering and apply this data to thermodynamic interaction energy modelling to gain a 

better understanding of the fundamental mechanisms that correlate bulk solvent 

properties with synthesized nanoparticle size and size distribution control. Interaction 

energy modeling used to predict the dispersibility of hydrophobically stabilized metal 

nanoparticles often over predicts the mean particle size dispersed at a given solvent 

composition and these models require an accurate description of the nanoparticle ligand 

structure.
1,2

 White et al. utilized small-angle neutron scattering (SANS) to obtain in-situ 

ligand solvation measurements in GXLs by contrasting hydrogenated nanoparticle 

ligands with deuterated solvents.
3
 The same technique could be applied here by utilizing 

deuterated hexane, hydrogenated sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-

sulfonate (AOT) and D2O for contrast matching to determine the solvation of AOT. The 

Flory-Huggins interaction energy model could then be applied to determine the 

surfactant-solvent interactions. I hypothesize that AOT surfactant tails collapse in gas 

expanded hexane as the partial pressure of CO2 is increased and that this inhibits 
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intermicellar exchange, which is the mechanism of nanoparticle growth in surfactant-

mediated microemulsion nanoparticle syntheses.
4
 Another explanation of the change in 

particle size with increased CO2 partial pressure is that the solvent strength is not 

sufficient enough to disperse particles with diameters greater than a critical length.  
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APPENDIX A 

ADDITIONAL ITC AND TEM DATA 

Figure A1: ITC heat signals of titrations performed for dilution corrections, of PEG-SH 

into; A. DDI H20, B. 0.25mM citrate, C. 0.25mM PEG-NH2, pH 10.

Figure A2: TEM Images and histograms for freshly synthesized BGNPs A) before 

titration and B) after titration with PEG-SH 
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Figure A3:TEM Images and histograms for aged BGNPs A) before titration and B) after 
titration with PEG-SH 
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Figure A4: TEM Images and histograms for freshly synthesized citrate stabilized GNPs 

A) before titration and B) after titration with PEG-SH

Figure A5: TEM Images and histograms for aged citrate stabilized GNPs A) before 

titration and B) after titration with PEG-SH
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APPENDIX B 

TRANSMISSION ELECTRON MICROSCOPY PROCEDURES 

Initial Procedures 

1. Verify that the liquid nitrogen traps near the condenser stage and on the rear of the

instrument are full and refill if necessary. The trap levels should be checked at least every

hour and topped off if need be.

2. Set the accelerating voltage to at least 100 kV, this voltage was used to the images

obtained for this dissertation.

3. Turn on the filament, ensuring the filament bias is on.

4. Insert prepared TEM grid into the sample holder and load into the scope at the “standby”

position.

TEM Alignment 

1. Ensure that the beam is on.

2. Press the LENS PRESET button  on the top of the left hand panel to ensure the

instrument is at the lowest magnification setting

3. Verify that the objective and diffraction apertures are in the out position

4. Press the beam horizontal position, BH, then adjust brightness until you locate the beam

and it is in a small focused spot.

5. Use the xy knobs to center the brightly focused beam, and adjust the beam to ensure that

it is moving in a concentric fashion (in and out)

6. If the beam is not spherical, or does not move in a concentric fashion, use the condenser

aperture knobs to center and make the beam symmetrical

7. Press CS above multifunction knobs, and use MF knobs to make beam perfectly round

a. Adjust brightness to ensure rounded shape

8. Change to mid-magnification and repeat

9. Fully load the sample holder into the chamber and align the beam at high magnification

with the digital camera by using the following functions;

a. WOBL – adjust knob under sample holder until there is no movement in the

picture

b. MODL – use MF knobs so that the sample moves in and out on itself and does

not move side to side

10. Put sample back in standby position with camera still on and press IN/OUT button to

insert the aperture.

11. Click corrections and acquire a background by adjusting the brightness until the

histogram is centered, click ok.

12. Click button for live image and being taking images with the AMT camera.
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APPENDIX C 

IMAGEJ ANALYSIS 

1. Open ImageJ and select an image for analysis.

2. Set scale;

a. Zoom in on the scale bar and draw a line along the length of it

b. Analyze - Set Scale -

i. Input the length of the scale bar

ii. Click “Global if all of your images are at the same magnification.

c. Press OK
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3. Crop your image so that just the nanoparticles show.

a. Image – Crop

4. Maximize the Bright/Contrast;

a. Image – Adjust - Brightness/Contrast

5. Adjust the Threshold of the image

a. Zoom in on a good part of the image.

b. Image – Adjust - Threshold

c. Hit apply and the red spots will turn black.
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6. Set measurements

a. Analyze - Set Measurements

7. Analyze Partcles;

a. Analyze - Analyze Particles

b. Set the circularity limits to 0.6 to 1.0 and ensure that the “Show” Tab says

outlines.
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c. A list of measurements will then pop up and you can copy and paste the results

into a statistical analysis program to obtain a histogram and average size.
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APPENDIX D 

ISOTHERMAL TITRATION CALORIMETRY 

Ampule Preparation 

 Ensure that the O-rings on the central shaft are lubricated with vacuum grease 

 Wet the central shaft by slowly pushing 10 mL of DDI water into the plastic tube 

connected to the upper part of the ampule with a syringe, then push 20 mL of air through 

the ampule to remove excess water. 

 Use a kim wipe to remove any water droplets from the stirring shaft and the bottom of the 

ampule 

 Ensure that the propeller is clean and dry. This may require sonication and acid washing 

with 5 % HCl, then thoroughly rinsed with DDI water and dried with a kim wipe 

 Install the propeller on the bottom end of the central stirring shaft, and ensure that its 

position is adjusted so that it is fully submerged in the liquid that is to be placed in the 

ampule. 

 Insert the cannula into the ampule until the tip is seen above the propeller while 

submerged in liquid.  

 

  Pipette 0.8 mL of nanoparticle sample into the ampoule; rinse it using sample liquid first 

if the ampoule is not dried.  

o The nanoparticle solution should be degassed for at least 30 minutes in advance 
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 Ensure the green O-ring is properly greased, then slide on the sample ampoule and click

the cir-clip into place using the plier provided to secure the ampoule.

 The reference ampoule should also be prepared as stated above, but this ampoule does

not contain a stirrer or cannula.

 The ampoules can now be inserted into the instrument by first installing the circular

locking ring onto the calorimeter by screwing the lower part.

 Place the stirrer motor onto the top of the sample ampoule accessory, and rotate it until it

locks in place.

 Insert the both of ampoule accessories into the calorimeter through the circular locking

ring, until the second lowest heat sink is half way in then tighten the upper part of the

circular locking ring to hold the ampoule accessories in position.

 Lower the ampoule accessories step by step at 10-15 min intervals

 When the ampoule is lowered to the second to last step, insert the cannula so that the tape

is about 1 inch from the top of the ampoule

 After the ampoule accessories are both completely in the calorimeter, tighten both

circular locking rings.

 Allow the instrument to equilibrate for 3-4 hours.
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Preparing the syringe 

 Ensure that the titrant solution has been degassed in advance and that the syringe and

plunger are properly cleaned and dried in advance.

 Remove the plunger and load titrant into the glass syringe using a larger plastic syringe

that is connected to a plastic tube.

 Ensure there are no bubbles inside the syringe once it is loaded and push the plunger to

ensure that the cannula is completely filled. The syringe should be rinsed with titrant at

least once and refilled.

 Place the syringe in the pump system so that the plunger and the flange of the syringe fit

in the respective slots.

 Dispense liquid by pushing the feed button until air free droplets can be seen at the tip of

the cannula, removing the droplets using kim wipe.
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Dynamic Calibration 

 Dynamic calibration should be performed before each titration once the calorimeter has 

reached equilibrium and the change in heat flow is less than 50 nW 

 Within the calorimeter controller interface, choose the calorimeter you want to use: 

o CLICK – Control - Perform full dynamic calibration  

 Record the parameters of calibration, including gain, τ1+τ2, τ1τ2, and experimental 

parameters 

 

 

Running a titration experiment 

 Within the calorimeter controller interface; 

o  Click the wizard icon and choose “Experiments” to open new experiment wizard, 

then follow the instructions on the screen to set titration parameters, including 

calorimeter ID, pump ID, number of injections, injection volume, injection duration, 

interval between injections, etc. 
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o Choose the calorimeter and pump ID being used in the experiment
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o Enter the solution IDs, concentrations and volumes; 

 
 

o Enter the number of injections desired, 20 injections were used for experiments in 

this dissertation and the injection duration was set to 10 seconds 
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o Enter the time to reach baseline between injections, 20 minutes was selected for the

experiments in this dissertation, and ensure that “Dynamic correction” is check

o Press start experiment to run the titration
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Identifying Suitable Experimental Conditions 

 I looked in the literature to get a ballpark range for the concentrations of reactants

o For my system I started with 0.25mM GNP solution (moles of gold) and

2.5mM Ligand solution.

 If the initial concentration is too high, the heat flow will saturate in the first injection,

if this happens try decreasing your concentration by one order of magnitude

 The time between injections should be long enough for the instrument to reach

baseline before another injection is perform.

o If the baseline is not straight, or there is a lot of “noise” between injections,

increase the time between injections.

o I increased the time between injections by 5 minutes until I obtained a stable

baseline
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APPENDIX E 

INDUCTIVELY COUPLED PLAMSA –MASS SPECTROSCOPY 

Getting Started 

 Ensure that the chiller is on and that the argon gas pressure is between 85 and 95 psi 

 Ensure that the feed lines are in 2 % HNO3 to flush the tubing  

 Turn the instrument on and allow the ICP to warm up for at least 30 minutes 

 Prepare and save an experiment file. The sample list should contain standards for 

calibration ranging from 0.01 ppb to 100ppm, and wash cycles every 10 to 15 samples, to 

ensure that sample material is not being carried over from one sample to the next 

 Ensure that the samples are listed in the correct rack positions and that the instrument is 

set to the type of rack you are using 

 

ICP Tuning Procedure 

 Place both feed tubes into the high purity tuning solution and allow the ICP to intake the 

solution for about 5 minutes 

 Perform a 1X Daily test  

 Turn on He gas to 3.5 mL/min 

 Tune: 

o Set Pole Bias to -14 V 

o Set Hexapole Bias to -8 V 

o Set the Focus to 1 

o Set D1 to -48 V 

 Ensure that the counts from the tuning solution are high enough 

 Place sample feed tube into autosampler 

 Place internal standard feed into high purity standard solution 

 Click “Queue” 

 Append: vacuum  

 When experiment finished be sure to release tubing and place into 2 % HNO3 wash 

solution and dispose of waste 
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APPENDIX F 

PROTONIC HYPΔH MODELLING SOFTWARE 

 Integrated heat data from ITC experiments should be converted to .txt files in order to be

imported into modelling software

 Open HypDeltaH software and click “create new project”

 Enter a unique project title

 Click  “Copy model from HQD file” and select the model you will use

 Click “Experimental data file” and select the .txt file with calorimetry data you are

trying to model

 Click “Create”

o A window will pop up that says “Check all default (zero or blank) values”, click

“OK”

 Ensure that the units selected match the data you are modelling. In this dissertation, units

of J, mJ, µmol, and µL were used.

 Click “Add reagent” to input the reactants. In this dissertation, NP was added to represent

nanoparticle binding sites, and SH to represent the thiol ligand molecule

 Enter an initial guess for Beta. Log(Beta) = K. The initial guess should be close to what

the actual value should be
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 Click the “Titration data” tab and enter a unique titration curve title for the data set

already imported into the software, and enter the experimental parameters
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 Click “Import+Add” to import additional data sets for simultaneous modelling, and 

repeat previous step 

 Once all data sets are imported and experimental parameters are entered, click the 

Green and red circle at the top of the screen 

 

 A window should pop up with the calculated beta and enthalpy values: 

 

 Click “ Manual fit” in order to view plots of the modelled data; 
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 Reduce the rms error by adjusting the Beta value.

 Once the rms error is minimized, export the data by click the “DeltaH and

Concentrations” button. It looks like an empty table.
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 Click “Copy to clipboard” and copy the data into excel or another data analysis program.

This should be done for each curve fitted
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