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ABSTRACT 

 

Heart valve disease often progresses asymptomatically until valve damage has 

advanced to the point where replacement is unavoidable. Unfortunately, current valve 

replacements - including mechanical, bioprosthetic and autografts - have serious 

drawbacks, which often require replacement surgeries or lifelong anticoagulant therapy. 

The field of tissue engineering aims to overcome these drawbacks by combining scaffolds, 

stem cells, and chemical and physical stimuli to produce living tissues. The aortic heart 

valve has a unique structure composed of three discrete layers – fibrosa, spongiosa, and 

ventricularis - that work together in concert with the resident valvular interstitial cells to 

maintain a functioning valve. As a result, current tissue-engineered heart valves miss the 

mark for successful aortic valve replacement in one of two ways: either by being too weak 

to endure the stresses of the aortic environment or by being insufficiently recellularized 

and incapable of self-repair. 

The primary focus of this research was to create a functional heart valve 

replicating the unique trilayer structure developed by nature. We showed that valves can 

be modeled from medical imaging data, 3D printed, and used as molds to create patient-

specific heart valves. The valve scaffolds supported cell attachment, growth, and 

proliferation.  
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Porous, dry scaffolds were effectively glued together to form one cohesive trilayer 

scaffold. These scaffolds resemble the human valve’s unique histoarchitecture. A meta-

analysis of literature defined maximum normal stresses and strains experienced by the 

native valve; providing a target set of mechanical properties to be replicated by the tissue-

engineered valve. Increasing porosity and microneedle rolling treatments produced 

scaffolds with excellent mechanical strength that were more than strong enough to 

function in physiological conditions. 

A novel cell seeding technique was developed to rapidly seed porous and 

microneedle treated fibrous scaffolds; resulting in full-thickness cell seeding.  Functional 

heart valves were made using a crush-mounting system. This system allowed for rapid 

and reproducible production of valves for in vitro testing. A comparison between 

mechanical, bioprosthetic, and trilayer valves revealed outstanding hemodynamic 

performance of trilayer valves. These valves functioned well for three weeks in a heart 

valve bioreactor. This research produced functional, tissue-engineered heart valves with 

excellent mechanical and hemodynamic properties. 
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CHAPTER 1: REVIEW OF LITERATURE 

 
1.1 Aortic Valve Structure and Function  

The aortic valve is located between the left ventricle and aorta. It is a passive tissue 

whose movement is controlled by blood flow. When the heart contracts during systole, 

blood flows from the left ventricle, through the aortic valve, and into the aorta. During 

diastole, backpressure closes the aortic valve, preventing oxygenated blood from flowing 

back into the left ventricle. The aortic valve is made of three cusps, Left and Right coronary 

cusps, behind which the coronary arteries originate, and the non-coronary cusp. The 

cusps are subjected to transvalvular pressures that change from 10 to 120 mmHg is less 

than one tenth of one second after systole1. An average adult heart will beat nearly 3 

billion times, placing a significant mechanical load on the aortic heart valve with every 

beat. For this reason, the aortic heart valve is considered the most mechanically stressed 

tissue in the body2.  

 

1.1.1 The Importance of Trilayer Structure for Aortic Valve 

Function 

The aortic valve thickens over time, averaging 0.67mm thick in those under 20 

years of age and 1.42mm in those over 603. This size is remarkably thin considering the 

stresses placed upon the tissue. The aortic valve has developed a highly-organized trilayer 

structure capable of coping with the myriad of forces placed upon it while remaining thin 
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and flexible enough to open and close properly (Fig 1.1). It  is composed of three distinct 

layers - fibrosa, spongiosa, and ventricularis - each with unique structures and functions4. 

The fibrosa is closest to the outflow tract and is largely comprised of circumferentially 

aligned collagen fibers. It provides the majority of the strength required to maintain 

coaptation despite the high forces developed in diastole. Below the fibrosa sits the 

spongiosa – a highly hydrated, gel-like layer comprised primarily of glycosamingoglycans 

(GAGs) - which functions as a stress dampening layer,5 allowing the fibrosa and 

ventricularis layers to locally shear during normal valve movement thus reducing overall 

valve stresses6. The ventricularis layer, located on the valve’s inflow side, is mainly 

comprised of radially-aligned elastin fibers7. The ventricularis allows for swift radial 

retraction of the cusps during valve opening8 and aids in recoil during systole9. Working 

together, these three individual layers act as one unit to ensure proper blood flow 

through the heart10.  
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1.1.2 Aortic Heart Valve Cells 

The two main cell types in the aortic valve are aortic valve interstitial cells (AVICs) 

and aortic valve endothelial cells (AVECs). AVICs function to repair and remodel the valve 

matrix as small damages are accumulated through constant mechanical loading11. These 

cells can synthesize collagen, elastin, and proteoglycans at a rapid rate12. AVICS 

dynamically adopt a wide variety of phenotypes, and most commonly resemble 

fibroblasts, smooth muscle cells, or myofibroblasts1314. Because of the changing 

characteristics, markers, and behaviors of AVICs, an exact cell phenotype is not easily 

defined. Gotlieb et al have proposed a classification of these cells into five distinct 

phenotypes (Fig 1.2). The three phenotypes most pertinent to this discussion are qVICs 

(quiescent), aVICs (activated), and obViCs (osteoblastic). qVICs are fibroblast-like cells 

Figure 1.1. (A) Cross sectional diagram of aortic heart valve leaflet showing 

trilayered structure85 (B) Radial cross section of the human aortic heart valve 

stained with Movat’s Pentachrome showing the fibrosa (f), spongiosa (s), and 

ventricularis (v) depicting collagen in yellow, elastin fibers in black, and nuclei 



4 

 

that maintain valve structure in the normal valve. They are positive for vimentin while 

expressing very low levels of α smooth muscle actin (αSMA) and MMPs15.  

.

 

Figure 1.2 The five AVIC phenotypes proposed by Gotlieb et al.14 Solid lines represent 

widely accepted transitions while hatched lines indicate transitions without sufficient 

evidence. 

 

 aVICs arise in response to injury, disease, or altered hemodynamic stress. These 

cells are contractile myofibroblasts, the hallmark of which is the expression of αSMA16. 

An upregulation of the aVIC phenotype produces increased ECM secretion, matrix 

metalloproteinase (MMP) expression, and tissue inhibitors of MMPs (TIMPs) which all 

work together to remodel the valvular tissue17. When the aVIC wound healing response 

is concluded, clearance of aVICs by apoptosis takes place. If this apoptotic removal does 
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not occur as intended, prolonged aVIC function may lead to valvular disease, mediated by 

the chronic inflammatory response, such as calcification, and fibrosis. Thus aVICs are 

important in repair and remodeling, but have the potential to cause severe pathological 

compilations if their activation is uncontrolled.  

The final phenotype of note is the obVIC. Osteoblastic differentiation of qVICs can 

be induced in-vitro through the addition of organic phosphate, bone morphogenic 

proteins (BMPs), and tissue growth factor (TGF-β)18. The hallmark of this change is the 

expression of alkaline phosphatase, the activity of which is greatly enhanced during 

mineralization. obVIC activation can lead to calcification and valve stiffening. 

The aortic valve has a distinct populations of endothelial cells; whereas vascular 

endothelial cells align parallel with blood flow, AVECs align perpendicular19. These cells 

perform the typical vascular endothelial functions; acting as a semi-selective barrier, 

providing cell signals to interstitial cells, and preventing thrombosis. Endothelial cells on 

the inflow surface are exposed to higher shear stresses than those on the outflow surface. 

Damage to the endothelial lining is a precursor to common valve disease processes 

including inflammation and calcification20. An intact endothelium is therefore an 

important component of a properly functioning valve. 

1.2 Aortic Valve Disease and Prevalence 

Aortic valve disease (AVD) is the cause of 370,000 yearly valve replacements 

worldwide21. Due to both increasing and aging populations, this is projected to increase 
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to 850,000 annual replacements by 205022. Aortic stenosis, the main pathology behind 

valve replacement, occurs slowly as calcium deposits thicken the valve leaflets. Left 

ventricular hypertrophy often accompanies valve stenosis. This disease may progress 

asymptomatically for many years; when symptoms do occur, valve replacement is 

required within 3 to 5 years21. 

 

1.3 Valve Replacement Options 

The first prosthetic heart valve to see widespread use was the ball and cage valve. 

This valve, first implanted in 1960, consists of a silicone ball that moves inside a metal 

cage. The tilting disc valve was introduced in 1970 and consisted of a circular disc 

supported by metal struts that pivoted to open and close23. This valve was eventually 

removed from the market due to repeated mechanical failures at the supporting strut24. 

The next major advance in mechanical heart valve technology was the bileaflet 

mechanical valve. This valve was introduced in 1979 and consisted of two semicircular 

pyrolytic carbon leaflets that rotate about struts mounted in the main valve body25. This 

basic design has not been drastically changed, and is currently the most common valve 

replacement in the world, with over 600,000 implanted26. 

Mechanical valves require a life-long regiment of anticoagulant therapy. To 

circumvent the negative side effects of anticoagulants, the biological prostheses was 

developed. The first bioprosthetic valve was introduced in 1965 and consisted of a porcine 
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aortic xenograft fixed in formaldehyde27. Due to poor valve durability, the fixative was 

changed to glutaraldehyde in 196828. In 1971, the Ionescu-Shiley pericardial xenograft 

was introduced, using pericardial tissue mounted to a rigid stent to form a valve29. With 

the exception of minor stent modifications, suturing patterns, and anti-calcification 

treatments, currently available prosthetic valves do not differ from those developed in 

the 60s and 70s30 (Fig. 1.3). 

 

Figure 1.3. Artificial heart valves. Caged Ball (A), Hinged Leaflets (B), Stented Bovine 

Pericardium (C), Stented Porcine Valve (D), Stentless Porcine Valve (E), and Stentless 

Porcine Valve (F). From: Simionescu D, “Artificial Heart Valves”, Wiley Encyclopedia of 

Biomedical Engineering, 2006. (A, C, F) Copyright Edwards Lifesciences,  Inc. 2005  

and (B, D, E) St. Jude Medical,  Inc. 2005  All rights reserved31 
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1.3.1 Limitations of Current Valve Replacement Options 

Current prosthetic heart valves fall into two categories: mechanical and biological 

valves; while both valve types are effective in treating AVD, they have significant 

limitations.  Mechanical valves are very durable, but require life-long warfarin therapy32 

and are prone to pannus tissue overgrowth and thrombosis33. When a bileaflet 

mechanical valve is open, the two leaflets present a free edge normal to the flow of blood. 

This causes a layer of high shear stress across the leaflet surface, leading to blood trauma 

and cell rupture. Ruptured red blood cells release tissue factor34, initiating the extrinsic 

blood coagulation pathway that leads to the formation of a thromboembolism32.  

Biological valves are constructed of non-viable, glutaraldehyde-fixed animal 

tissues. These valves do not develop the high shear stresses seen in mechanical valves 

and thus do not require warfarin therapy35. However, biological valves have a limited 

lifespan of 15-20 years in adult patients due to calcification and structural valve 

degeneration (SVD)36–38. Adult patients face a difficult choice between accepting the risk 

of a major bleeding event inherent with mechanical valves (which increases from 30% to 

55% from age 50 to 75) and the risk of reoperation due to SVD inherent in bioprosthetic 

valves (which decreases from 45% to 10% as age increases from 50 to 75).  This choice is 

especially difficult for a 55 year old patient, who faces nearly identical risks of major 

bleeding or reoperation depending on which valve is implanted39. 
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1.3.2 Patient Populations with Unmet Needs 

There are two main patient populations that have no ideal heart valve 

replacement. The first population is pregnant women, or women who wish to become 

pregnant in the future. The majority of births are had by women between the ages of 20 

and 3440. Due to the limited lifespan of bioprosthetic valves, this age range almost 

exclusively receives mechanical valves41. However, mechanical valves require warfarin 

therapy, which is linked to a 70% failure rate in pregnancies42, making mechanical valves 

a poor solution for potential mothers. Bioprosthetic valves have a 50% freedom from SVD 

12 years post-implantation for 25 year old patients43. Therefore, a woman who opted for 

a bioprosthetic valve at a young age to avoid increased risk of a failed pregnancy would 

be facing multiple reoperations throughout her lifetime39. 

Pediatric populations are also underserved by current heart valve replacements. 

Bioprosthetic valves have a short lifespan in pediatric and young adult patients due to 

increased immunological activity37 and high levels of circulating calcium44. Additionally, 

both mechanical and bioprosthetic valves valves lack the ability to grow with a developing 

patient, making them unsuitable long-term options for children454647. 

 

1.4 The Ideal Tissue Engineered Valve 

The ideal valve replacement is nonthrombogenic, does not degenerate over time, 

possesses excellent hemodynamics, and is capable of somatic growth and remodeling48. 
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A tissue engineered aortic valve replacement has the potential to meet these criteria. 

Living tissue will be able to resist degeneration, repair accumulated damage from applied 

mechanical stresses and has the potential for somatic growth in younger patients. 

Additionally, due to suitable hemodynamics, no anticoagulant therapy is required for 

tissue-engineered valves. Finally, tissue-engineered valves may resist calcification due to 

the absence of devitalized cells, a known nidus for calcification4950. 

 

1.5 Approaches to Tissue Engineering the Heart Valve 

There are currently multiple strategies for producing tissue-engineered heart 

valves. All methods involve the creation of a scaffold and population of that scaffold with 

cells. The methods vary in the way the scaffolds are produced and how cells are 

incorporated. At this time, a wide variety of scaffolds are being investigated including 

synthetic polymers,51525354 decellularized whole xenografts,555657and gel based biological 

scaffolds such as fibrin5859 and collagen gels6061. Synthetic scaffolds have several 

advantages; they are quickly repopulated with cells62, have a lack of immunogenic 

epitopes63, and can be readily shaped into different geometries64. However, mechanical 

properties change as the polymer degrades. If implanted, the timescale of synthetic 

scaffold degradation must be carefully balanced with the cell-produced matrix that is 

taking the scaffold’s place. If degradation outpaces cellular re-modelling, valve failure 

may occur. Xenogenic tissue scaffolds are one of the most promising areas of research 
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due to their inherent mechanical robustness. However, it is difficult to repopulate these 

scaffolds with cells, leading most studies to rely only on surface endothelialization instead 

of on full cellular revitalization656667686970. When tested in animal models, these scaffolds 

are often repopulated with host cells7172. However, a recent human study has shown that 

decellularized xenografts are not repopulated with cells and long term outcomes are 

poor73. Therefore, we hypothesize that the success of tissue-engineered heart valves 

cannot be based on host revitalization with cells and must instead be repopulated with 

host cells prior to implantation. An in-depth look at the five major approaches to tissue 

engineering the aortic valve is herein presented. 

 

1.5.1 Approach 1: Scaffold Creation with In-Vitro Cell Seeding 

This approach starts with a biological, polymer, or gel scaffold. The scaffold is then 

seeded in-vitro with interstitial or stem cells and possibly conditioned in a bioreactor prior 

to implantation in-vivo. The goal of this approach is to create a functional, cell-seed 

scaffold prior to implantation.  The most common biological scaffold used in this approach 

is a detergent decellularized pulmonary valve. Full thickness in-vitro cell repopulation of 

pulmonary valves is challenging, therefore these scaffolds are often surface seeded with 

endothelial cells. A study by Lichtenburg et al. seeded autologous jugular veins 

endothelial cells onto a pulmonary valve before orthotopic implantation in sheep. After 3 
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months they observed a functional monolayer of endothelial cells and interstitial 

repopulation of the full thickness of the valve with host cells74. 

Biodegradeable polymeric scaffolds represent an attractive scaffold due to their 

ability to be formed into complex shapes and lack of xenoantigens. Shinoka et al. created 

a nonwoven, Poly-glycolic acid (PGA) fiber scaffold seeded with fibroblasts and 

endothelial cells. This valve was implanted for 8 weeks in lambs. Control leaflets (without 

cells) completely degraded while autologous cell-seeded scaffolds generated a functional 

matrix after 8 weeks in-vivo52. Composite PGA/PLLA nonwoven scaffolds have similarly 

been seeded, implanted in sheep 4 months with good result54. However, several studies 

report that scaffolds become increasingly regurgitant after 8-12 weeks in-vivo. 

Mesenchymal stem cells were isolated from neonatal sheep bone marrow and seeded 

onto a bioresorbable scaffold. After 4 weeks of culture, valved conduits were implanted. 

After 12 weeks of in vivo testing, valved conduit cusps were increasingly attenuated and 

regurgitant75. The polymeric valve that has been most studied is made by Hoerstrup’s 

group. It consists of a biodegradeable synthetic scaffold composed of nonwoven PGA dip-

coated with poly-4-hydroxybutyrate. Heating allows the scaffold to be molded and 

integrated into a self-expanding nitinol stent. The scaffold is next seeded with autologous 

myofibroblasts and endothelial cells, cultured for two weeks in a pulse-duplicating 

bioreactor, and implanted transapically through a catheter. Initially, valves showed 

escellent function, but long term testing resulted in thickened tissue containing cells 

positive for αSMA76. 
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The third major type of scaffold used in this approach is fibrin gel. These valves 

are constructed by encapsulating dermal fibroblasts in fibrin gel. The gel is injected into a 

valve-shaped mold and polymerizes into a solid. During in-vitro culture, dermal fibroblasts 

replaced the fibrin matrix with endogenous tissue. When implanted in-vivo a compromise 

of function was seen at 4 weeks with complete loss of functionality observed by 8 

weeks77. Valves thickened, lost flexibility, and demonstrated insufficiency. This was 

attributed to the use of fibroblasts which continued to produce collagen and contract in-

vivo, eventually leading to valve failure5878. 

 

1.5.2 Approach 2: Scaffold Creation with In-Vitro Cell Seeding, 

Remodeling, Decellularization, and Re-Cellularization 

This approach is sometimes referred to as the “de-cell re-cell” technique. It was 

designed to prevent tissue contraction seen in polymer and fibrin valves by removing 

contractile cells after the endogenously produced matrix has been layed down59. This 

technique has been applied to both fibrin and polymeric valves, successfully removing 

contractile cells and replacing them with mesenchymal stem cells. Long term in-vivo 

performance of these valves has yet to be shown. 
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1.5.3 Approach 3: Scaffold Creation, Implantation and In-Vivo 

Cell Infiltration 

This approach produces an acellular scaffold and relies on circulating host cells to 

repopulate the implanted valve. This is the only approach to be implanted in human 

subjects, and is therefore the closest to becoming a widespread clinical reality. The first 

human use of this approach was based on a proprietary cell removal technique developed 

by Crylife called synergraft. This technique was first used to decellularize pulmonary 

homograft valves. One patient who received this valve died 5 weeks post-op. Histological 

examination of the homograft showed superficial neutrophil and macrophage 

infiltration79. Another valve was analyzed after  

two years, also showing no full-thickness repopulation by host cells80. Despite the lack of 

host cell infiltration, synergraft homograft valves performed well. Synergraft technology 

was later used to decellularize xenogenic pulmonary valves with disastrous results. 

Implanting these valves in children and young adults lead to massive immune response, 

failure of valves, and deaths. Further investigation showed that some porcine cells had 

not been removed by synergraft treatment, leading to valve failure81.  

This approach was recently replicated by a German company called Autotissue 

using their matrix P Decellularized xenogenic porcine valves. While these valves have not 

shown the spectacular failure of the synergraft valves, they are not performing well. Early 

results have shown leaflet thickening, fibrosis, and severe inflammation73. The hypothesis 
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that the human body will repopulate an acellular biological matrix has been disproven 

multiple times. Long term studies on human allograft valves have shown that host cells 

do not repopulate the valve, which actually become acellular after implantation82. Despite 

this, the allograft valves perform remarkably well, often lasting 15-20 years without 

complications83. 

Biological scaffolds have not shown significant repopulation by hosts. However, 

studies with synthetic scaffolds have shown repopulation of implanted scaffolds in as little 

as five hours and full repopulation including a functional, intact endothelium were 

observed after eight weeks62. This remarkably quick repopulation has only been observed 

in the sheep model. The sheep model is known to have severe fibrotic responses and to 

readily repopulate valve matrices with cells. However, prolonged in-vivo testing has 

shown that these valves are still susceptible to leaflet contraction and insufficiency 

(Figure 1.4). 
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Figure 1.4. Leaflet contraction over time of acellular synthetic scaffolds implanted in 

the pulmonary position of sheep.  

 

1.5.4  Approach 4: De Novo Scaffold Creation 

Cell sheet engineering utilizes specially coated culture plates to allow for removal 

of cells without degrading the ECM holding them together. Cell sheets are thin, delicate 

structures, but they can be stacked and fused to form thicker, more robust tissues. Work 

by Tremblay et al. used dermal fibroblasts to create single cell sheets after 26 days of 

culture. Four of these sheets were stacked and cultured for an additional three weeks. 

Next, two of these stacks were fused for an additional five months, producing a single flat 

collagen scaffold used for creating a heart valve. The valve showed good function in a 
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pulse-duplicating bioreactor84. This approach is very time consuming, taking seven 

months of culture to produce a single valve. 

1.6 Conclusions 

Heart valve tissue engineering is a pressing problem that has the potential to 

revolutionize therapy for children, young women, and even adults. There are many 

approaches to heart valve tissue engineering, all of which are in different stages of 

progress. The most advanced valves, and the only approach to reach human use, is the 

implantation of acellular biological matrices. Results of this technique are mixed, with 

decellularized homografts showing the most success. However, no implanted biological 

scaffold has fulfilled the promise of becoming fully repopulated with host cells. Therefore, 

we hypothesize that the success of tissue-engineered heart valves cannot be based on 

host revitalization with cells and must instead be repopulated with host cells prior to 

implantation. The approach of using robust, proven biological scaffolds that are re-

populated with autologous stem cells prior to implantation builds upon the most 

successful techniques, and is therefore the most promising avenue for the development 

of a tissue engineered valve for human use. 

We hypothesize that the unique, trilayer structure developed by nature is 

essential to proper aortic valve function. Our aim is to create a tissue-engineered heart 

valve that uses explicitly-designed collagen scaffolds joined together to reproduce all 

three native valve layers. This valve will be fully populated with stem cells and conditioned 
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in a bioreactor, producing a valve capable of maintaining homeostasis and responding to 

accumulated injuries obtained during normal valve function. 
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CHAPTER 2: PATIENT-SPECIFIC TRILAYER 

HEART VALVES 
 

2.1 Introduction 

2.1.1 Research Motivation and Aim 

Heart valve disease often progresses asymptomatically until valve damage has 

advanced to the point where replacement is unavoidable. Unfortunately, current valve 

replacements - including mechanical, bioprosthetic and autografts - have serious 

drawbacks, which often require replacement surgeries or lifelong anticoagulant therapy. 

The field of Tissue Engineering aims to overcome these drawbacks by combining scaffolds, 

stem cells, and chemical and physical stimuli to produce living tissues. The aortic heart 

valve has a unique structure composed of three discrete layers – fibrosa, spongiosa, and 

ventricularis - that work in concert with the resident valvular interstitial cells to maintain 

a functioning valve. As a result, current tissue-engineered heart valves miss the mark for 

successful aortic valve replacement in one of two ways: either by being too weak to 

endure the stresses of the aortic environment or by being insufficiently recellularized and 

incapable of self-repair. Our long-term goal is to create a living, non-thrombogenic, tissue-

engineered aortic heart valve capable of ongoing remodeling and injury repair. 
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The current tissue engineering paradigm (Fig 2.1 - green) starts and ends with the 

patient. First, a patient’s cells are harvested and used with minimal processing or 

expanded in-vitro. A scaffolds is then seeded with patient stem cells and matured in a 

bioreactor before being implanted back into the patient. This valve can be considered 

patient-specific because it contains autologous cells. However, the tissue-engineered 

construct’s shape is not specific to the individual’s unique anatomy. The aim of this 

research was to add onto this paradigm by creating a valve with patient-specific shape 

(Fig 2.1 - blue). Medical imaging data is acquired via CT scan, modeled, and 3D-printed to 

produce patient-specific molds. These molds are used to shape the scaffold into a custom, 

patient-specific shape. 

 

Figure 2.1. Current tissue engineering paradigm shown in green. Patient-specific 

shapeing steps shown in blue. Adapted from1. 
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2.1.2 Valve Geometry and Prosthesis-Patient Mismatch 

The aortic valve, while performing a seemingly simple function of opening and 

closing, contains a complex geometry that can vary widely from patient to patient. 

Current prosthetic heart valves come in sizes commonly ranging from 19 to 29mm in 

increments of 2mm. 

 

Fig 2.2. A, Three-dimensional arrangement of the aortic root, which contains 3 circular 

“rings,” but with the leaflets suspended within the root in crown-like fashion. B, The 

leaflets have been removed from this specimen of the aortic root, showing the location 

of the 3 rings relative to the crown-like hinges of the leaflets. VA indicates 

ventriculoarterial; A-M, aortic-mitral.2 

A one-shape fits all approach may lead to prosthesis‐patient mismatch (PPM); if 

the implanted prosthesis is too small, higher than normal pressure gradients will arise3. 

Resistance to flow is described by the following equation, where R is resistance, � is blood 

viscosity, L is length, and r is valve radius: 

� ∝  
� ∗ �

�	
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From this equation, it is clear that implanting a smaller valve will cause an exponential 

increase in resistance to flow. Various studies have shown the incidence of moderate PPM 

to be 20 to 70% and severe PPM to occur in 2 to 11% of cases3–7. Native valve geometry 

is specially designed to produce proper blood flow and hemodynamics8. Abnormalities or 

deviations from original geometry produce improper mechanical loading and may lead to 

pathological conditions in the valve leaflets9.  

Several efforts have been made to model and produce a patient-specific valve10,11. 

Previous work in our lab used silicone molds of a porcine aorta to shape scaffolds (Fig 

2.4). Other groups have used micro CT data or several anatomical landmarks to shape 

valves. While successful in creating a functional valve, these methods do not translate 

well to the clinic. Micro CT scans and silicone molding require the removal of the valve 

root as the first step of modeling. A true model of the patient aortic valve - based on 

readily available medical imaging data - has not been previously used to produce a tissue 

engineered valve. The method presented in this chapter is based on non-invasive 

techniques and could be used in the clinic. This work aims to produce a trilayer tissue-

engineered heart valve made of a cell-seeded hydrogel spongiosa layer surrounded by a 

fibrous collagen scaffold representing fibrosa and ventricularis layers. This scaffold will be 

shaped to patient anatomy to eliminate the chance of patient-prosthesis mismatch. 
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Fig 2.4 Assembly of scaffold-based heart valves. (A–D) Silicone molds were prepared 

from porcine heart valves. RC, right coronary; LC, left coronary; a, b, and c, the three 

leaflets. (E–I) Fibrous scaffolds were dried onto molds and PGG treated. (J–M) Valve-

shape constructs were assembled by overlapping two identical fibrous scaffolds using 

BTglue and sutures placed at the level of valve wall, sinuses, and cusp insertion points. 

*Depicts the area between two fibrous scaffolds where the stem cell-seeded spongiosa 

was inserted12. 

 

2.2 Materials and Methods 

2.2.1 Materials 

Aortic valve molds were printed in a 3D Systems ProJet SD3000 printer using 

multijet technology to produce parts from an ABS-like plastic photopolymer - VisiJet 

SR200 and VisiJet s100 support material from 3D systems (Rock Hill, SC). Pericardial 

tissues were obtained from Animal Technologies, Inc. (Tyler, TX). Thiol-modified 
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hyaluronan, Thiol-reactive Polyethylene (glycol) Diacrylate (PEGDA), Thiol-modified 

collagen, and degassed, deionized water were obtained from Glycosan Biosystems 

(Alameda, CA). High-purity 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG) was a 

generous gift from N.V. Ajinomoto OmniChem S.A. (Wetteren, Belgium). StemPro low-

passage human adipose derived stem cells, MesenPro RS cell culture medium, Quant-iT 

PicoGreen dsDNA assay kit, and Alexafluor 647 Phalloidin were from Invitrogen (Carlsbad, 

CA). Pronectin - a Fibronectin-like Engineered Protein Polymer - and all other chemicals 

were of highest purity available and were obtained from Sigma-Aldrich Corporation 

(Lakewood, NJ).  

2.2.2 Modeling of Aortic Heart Valve Cusps 

Computed tomography angiography (CTA) heart imaging and ascending aorta in 

DICOM (Digital Imaging and Communications in Medicine) format was imported into 

medical 3D modeling software (Mimics Research v17.0, Materialise). DICOM images were 

512x512 pixels, taken with a 180 mm field of view and a gantry tilt of 0°. Distances 

between planar slices was 0.75 mm. A profile line was then drawn across the abdominal 

aorta. Radiodensity was analyzed along this line and used to identify the range of 

Hounsfield units that represented the blood volume. Next, a thresholding operation was 

used to create a mask of the blood volume by selecting hounsfield units in the range 

specified by the profile line. The left ventricle and ascending aortic blood volumes were 

separated. Next, the soft tissue of the heart was thresholded into a separate mask. A 

Boolean subtraction of the aortic and left ventricle masks from the soft tissue mask 
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yielded an aortic valve mask, and used to generate a 3D model. The aortic valve model 

was then exported to computer aided design (CAD) software (3-Matic Research v9.0, 

Materialise).; a wrapping operation was done to close small holes in the model. Next, the 

sinus portion of the model was marked and removed. The three cusps were marked and 

separated into different parts and smoothed. The curve that defined the leaflet 

attachment to the left ventricular outflow tract was isolated and used to create an 

attachment point the leaflets. This attachment point was integrated into a circular mount 

that fit into the heart valve bioreactor and was used for functional testing. Files were then 

exported in stereolithography format to a ProJet SD3000 3D printer which built the parts 

by laying down a thin layer of photopolymer, curing that layer with UV light and repeating 

the process until the final shape is formed. Wax support material was melted away for 

four hours at 60ºC to yield finished parts. 

2.2.3 Fibrous Scaffold Preparation 

Fibrous collagen scaffolds were prepared following a previously-published 

protocol, with slight modifications13. Fresh tissues were received and cleaned, of 

peripheral attached fat and loose connective tissue, over wet ice. Tissue were placed in 

hypotonic conditions in pure, double-distilled water for 24 hours at 4ºC for cell lysis. 

Tissues were rinsed with double-distilled water and transferred to a sterile bottle. All 

further steps were done with sterile solutions with aseptic techniques. To remove cellular 

remnants, tissues were treated with 1 L of detergent solution consisting of 50mM Tris, 

0.15% v/v Triton x-100, 0.25% Deoxycholic acid-sodium salt. 0.1% EDTA, and 0.02% 
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Sodium Azide for three days at room temperature on a shaker plate. The detergent 

solution was replaced and the tissues were treated for an additional three days. Tissues 

were then washed to remove the detergent solution. All washes were performed at room 

temperature on a shaker plate for 30 minutes. Two washes with double-distilled water 

were followed by two washes in 70% ethanol. Tissues were then washed twice more with 

double-distilled water. Removal of residual nucleic acids was achieved by treatment for 

24 hours at 37ºC with 360 mUnits per mL of both deoxyribonuclease and ribonuclease 

dissolved in phosphate buffered saline containing 5 mM MgCl at a pH of 7.5. Tissues were 

washed as previously: twice with double-distilled water, 70% ethanol, and double-

distilled water again. Tissues were stored at 4ºC in PBS with 0.02% sodium azide until use. 

2.2.4 PGG Treatment of Fibrous Scaffolds 

Acellular, fibrous scaffolds were treated with 0.075% PGG in a standard 9g/L saline 

solution containing 50mM Sodium Phosphate dibasic. Tissues were treated, while 

protected from light, at room temperature on a shaking plate overnight. Tissues were 

then washed three times for 30 minutes per wash in PBS. All solutions were sterile and 

aseptic technique was used throughout. 

2.2.5 Cell Culture 

Human, adipose-derived stem cells (StemPro, Life Technologies) were obtained 

and expanded in media (MesenPro, Life Technologies) specially formulated to preserve 

the stemness of hADSCs while increasing cell division rate. Media was supplemented with 



35 

 

1% L-glutamine and 1% antibiotic/antimycotic solution. hADSCs were grown T-175 tissue 

culture polystyrene flasks and subcultured with Trypsin-EDTA (Corning-Cellgro). Cells 

were used at passage 3 to 5.  

2.2.6 Static Cell Seeding on PGG-Fixed Fibrous Scaffold 

Surfaces 

Prior to use, PGG-fixed fibrous scaffolds were washed three times in double-

distilled water, shaking, for 30 minutes. Scaffolds were then incubated overnight in a 1:1 

ratio of DMEM:FBS. hADSCs were expanded in MesenPro medium and seeded in DMEM 

containing 10% FBS and 1% Ab/Am. Scaffolds were cut into circular sections, placed in 12-

well plates, and seeded with hADSCs at a density of 8x105 cells/cm2. Scaffolds for 

histological analysis were fixed in 4% paraformaldehyde and paraffin embedded.  

2.2.7  Creation of Cell-Seeded Hydrogel Spongiosa Scaffold 

The HyStem-C hydrogel system was used according to the provided protocol. All 

procedures were performed aseptically. Thiol-modified hyaluronan, thiol-reactive PEGDA 

crosslinker, and thiol-modified collagen, and degassed, deionized (DG) water vials were 

heated to 37˚C. 1 mL of DG water was added to the thiol-modified hyaluronan and thiol-

modified collagen vials. Vials were placed on a shaking plate at 37˚C for 30 minutes to 

allow the solids to dissolve. Next, 0.5 mL of DG water was added to the thiol-reactive 

PEGDA vial, which was dissolved by inverting several times. Pronectin was added to the 

vial containing the thiol-modified components at 50μg/mL followed by 200 µL of hADSCs 
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at a concentration of 1x107 cells/mL to yield a final concentration of 2x106 cells/mL gel. 

Thiol-reactive PEGDA crosslinker was added in a 1:4 ratio causing gelation in 

approximately 20 minutes. 

2.2.8 Assembly of Patient-Specific Trilayer Heart Valves 

Decellularized, PGG-treated scaffolds were Pericardium (white) wrapped around 

the plastic valve mold (yellow). The top of the pericardium was cut away and the mold 

was removed, leaving a void. The cusp was positioned inside the mounting ring (pink) and 

secured by threading sutures through the holes in the mounting ring. Cell-seeded 

hydrogel (blue) was injected into the void between pericardial layers - through the edge 

nearest the mounting ring - to form the spongiosa layer. The assembled valve sat inside 

the bioreactor mounting ring. 

2.2.9 Bioreactor Testing of Trilayer Valves 

 Immediately after construction, cell-seeded trilayer heart valves were mounted 

in an early version of the heart valve bioreactor. The bioreactor was filled with 750mL of 

DMEM containing 10%FBS, 2%Ab/Am, and 0.1% Gentamycin, and placed in a standard 

cell-culture incubator at 37°C with 5% CO2 and a humidified environment. Pressure was 

monitored in real time at points both above and below the valve. A custom LabView 

program displayed and recorded all information. A webcam with an LED light was 

attached to the top of the bioreactor and focused on the outflow side of the valve, 
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allowing for visualization of valve movement. Valves were conditioned for 14 days at a 

pressure of 15/2.5mmHg.  

2.2.10 Creation and Testing of Trilayer Valves with Simplified 

Geometry for Hydrogel Durability Analysis 

Decellularized, PGG-treated pericardium was wrapped around a mold with 

simplified geometry. The scaffold was trimmed to shape and the mold removed. The edge 

of the scaffold was closed with a running suture (4-0 prolene Ethicon, Somerville, NJ). Cell-

seeded hydrogel was injected into the void where the mold was removed. The bioreactor 

was filled with 750mL of DMEM containing 10%FBS, 2%Ab/Am, and 0.1% Gentamycin and 

placed in a standard cell-culture incubator at 37°C with 5% CO2 and a humidified 

environment. Pressure was monitored in real time at points both above and below the 

valve. A custom LabView program displayed and recorded all information. A webcam with 

an LED light was attached to the top of the bioreactor and focused on the outflow side of 

the valve, allowing for visualization of valve movement. Valves were conditioned for 14 

days at a pressure of 15/2.5mmHg.  

2.2.11 Histology and Fluorescent Imaging 

Thin 5µm sections of paraffin-embedded samples were washed in xylene and 

rehydrated through a series of alcohol washes ending in deionized water. These sections 

were stained with hematoxylin and eosin (Richard-Allen Scientific, Thermo Scientific) to 

show general scaffold morphology and to identify cell location. Digital images of these 
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slides were obtained at various magnifications (25X to 100X) on a Zeiss Axiovert 40CFL 

microscope using AxioVision software (Carl Zeiss MicroImaging, Inc. Thornwood, NY). For 

en face surface imaging fibrous scaffolds were washed twice with 37˚C PBS then fixed in 

4% PFA for 1 hr at room temperature. Samples were then extracted with 0.1% Triton X-

100 in PBS for 5 minutes, then washed two more times with PBS, incubated in 1% BSA for 

20 minutes, and washed again. Alexafluor 647 Phalloidin was applied for 20 minutes to 

stain actin filaments. Samples were washed twice and imaged with a Nikon Eclipse Ti 

confocal microscope (Nikon Instruments, Melville, NY). Images are presented as 

flattened, maximum-intensity renderings of a stack of images. 

Cell viability of hADSCs encapsulated in Hystem-C hydrogels was evaluated using 

the Live/Dead Viability Assay Kit (Life Technologies).  

 

2.3 Results 

2.3.1 Cell Seeded Scaffolds 

Static seeding studies of hADSCs on PGG-fixed fibrous scaffolds showed 

attachment and proliferation over a four week time course. Actin staining showed 

increased cell coverage after 7 and 28 days. DNA content also increased at both 7 and 28 

day time points, indicating proliferation of attached cells. (Fig 2.5).  
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Figure 2.5. Cell proliferation on PGG-treated fibrous scaffolds. Immunofluorescence 

staining for actin (red) and fibrous scaffold (green autoflourescence) shows cell 

coverage at 1 (A), 7 (B), and 28 (C) days. DNA content of seeded scaffolds over the 

same time course (D). 

 

Cells encapsulated in hydrogels showed good viability after 7 weeks of static 

seeding. Gels with the synthetic protein polymer pronectin added began to spread out 

through the gel with a longer and thinner morphology, while cells in pronectin-negative 

gels remained in a rounded, punctate morphology (Fig 2.6). 
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Figure 2.6. Live/Dead staining (green = live cells, red = dead cells) of hADSCs 

encapsulated in hydrogels with (A) and without (B) pronectin.  

 

2.3.2 Aortic Heart Valve Modeling 

Initial efforts in creating a tissue-engineered heart valve centered on re-creating 

patient-specific anatomy to produce a valve with optimal functionality. This was 

accomplished by modeling the aortic valve from medical imaging data. The Mimics 

Innovation Suite (Materialise, Belgium) was used to create masks of the aortic and left 

ventricular blood volumes (Fig 2.7). Subtracting these volumes from a mask of the soft 

tissue between them resulted in a mask containing the aortic valve anatomy. A 3D model 

of the valve surface and surrounding geometry was created (Fig 2.8).  

The end goal of this modeling was to produce a unique mold for each valve cusp. 

To this end, the model was exported to 3-matic (Materialise, Belgium), where the three 

cusps were marked and separated into individual parts. The soft tissue modeling 

A B 
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operation included the sinus of valsalva and a portion of the ascending aorta. These 

portions were removed from the model, resulting in three cusp models consisting of 

surfaces defined by a network of triangles. Each vertex of each triangle was a defined 

coordinate in a three-dimensional space. The final mold quality depended on the number 

and quality of triangles – more triangles gave a smoother and more accurate surface. 

Triangle count and quality was optimized to produce three cusp models that were ready 

for export to the 3D printer (Fig 2.9).  
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Fig 2.7. Selection and masking of blood volumes from CTA image data. A Profile line 

(A) is drawn across the blood volume in the transverse plane. Radiodensity is analyzed 

across the line and reported in Hounsfield units (B). The peak representing contrast-

enhanced blood volume is selected and highlighted in pink on a histogram of the CT 

data set (C). The blood-volume is selected and masked off. Data from transverse 

planes is reconstructed in the sagittal plane showing the blood volume mask (D). The 

blood volume mask is separated into Aorta (blue) and heart (yellow) masks (E). 

A 

B 

C 

D 

E 



43 

 

Figure 2.8. Aorta and heart masks are modeled in 3D (A). The aortic valve is located 

in the empty space between the two blood volumes, shown in tan (B). To generate the 

aortic valve model, the soft tissue of the heart was thresholded into a separate mask 

(C) which contained artifacts located in the blood volumes. A Boolean subtraction of 

the aorta and heart blood volume masks from the soft tissue mask yielded a mask of 

the aortic valve (D).  

A B 

C D 
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Figure 2.9. Individual cusps are separated in 3-matic CAD software. The aortic valve 

model is imported into 3-matic (A). A cusp is marked and separated into a new part 

(B). The process is repeated for the remaining cusps and excess aortic anatomy is 

removed to yield 3D models of each cusp. 

 

2.3.3 Patient-Specific Valve Production and Testing 

Patient-specific valves were produced by wrapping 3D printed molds with PGG-

fixed fibrous scaffolds and allowing them to dry. The mold was removed and a cell-seeded 

hydrogel was injected into the void. Patient-specific valve shape was successfully 

replicated by securing the cusps to a custom mounting system designed for functional 

testing in the heart valve bioreactor (Fig 2.10). During bioreactor testing, a “ballooning” 

of the cusps was observed during systole (data not shown) where the space in the middle 

of the fibrous scaffold would fill with water, expanding like a balloon. We hypothesized 

that there was a failure at the interface between fibrous scaffold and hydrogel due to the 

mechanical forces placed upon the valve during multiple open/close cycles. To test this 

theory, a valve with simple geometry was created and tested. 

A B C 
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Figure 2.10. Cusps molds (A) are printed out of an ABS plastic-like material (3D 

systems Visijet SR200) on a rapid prototyper (3D Systems ProJet SD3000). Gray Plane 

(B) represents cross sectional view through cusp mold. Pericardium (white) is wrapped 

around the plastic valve mold (yellow) (C). The top of the pericardium is cut away and 

the mold is removed, leaving a void. The cusp is positioned inside the mounting ring 

(pink) (D). The cusp is secured by threading sutures through the holes in the mounting 

ring. Cell-seeded hydrogel (blue) is injected into the void between pericardial layers - 

through the edge nearest the mounting ring - to form the spongiosa layer (E). The 

assembled valve sits inside the bioreactor mounting ring (F). Cross-sectional view 

stained with H&E. 
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C D E 

F G 



46 

 

 

2.3.4 Trilayer Valves with Simplified Geometry for Hydrogel 

Durability Analysis      

The valve with simplified geometry contained flat cusps, with a smooth interface 

between fibrous scaffolds and hydrogel. Valves were constructed from these cusps and 

tested in the heart valve bioreactor for 14 days. A similar “ballooning” of the cusps was 

observed in valves with simplified geometry. Histological analysis showed a break in the 

middle of the hydrogel, not at the hydrogel-tissue interface as hypothesized (Fig 2.11 B). 

Live/Dead staining of hydrogel removed from the valve showed viable cells after 14 days 

of bioreactor conditioning (Fig 2.11 C). 
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Figure 2.11. Simplified cusp geometry with blunt needle used to inject cusp with 

hydrogel (A). Hematoxylin and Eosin (H&E, dark purple = nuclei, pink = background 

substance) staining of trilayer scaffolds after 14 days in bioreactor (B). Live/Dead 

staining (green = live cells, red = dead cells) of gel extracted from the spongiosa 

layer after 14 days in bioreactor. 

 

2.4 Discussion 

The aortic valve has developed a specific geometry and a highly-organized internal 

trilayer structure that allows the thin tissue to maintain proper function in a mechanically-

dynamic environment. Successfully replicating both valve geometry and internal structure 

would produce an ideal tissue-engineered heart valve. We developed an approach to 

reproduce both of these important features. Valve geometry was modeled from clinically-

A 

C B 
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relevant medical imaging data. Other valve geometry replication techniques rely on 

micro-CT scans10 or a set of planar measurements11 to produce custom valves, but 

obtaining a micro-CT scan of the valve is not an option clinical scenarios; our method of 

CTA scan-based geometry creation can be readily translated into clinical use. 

Tissue-engineered scaffolds must allow for cell attachment and growth. In this 

study, fibrous scaffolds were treated with PGG, a naturally-derived collagen-binding 

polyphenol,14 to assist in maintaining their molded geometry. Cells seeded on PGG 

treated scaffolds showed attachment, good viability, and replication over time. The 

fibrous scaffolds were robust enough to function in a heart valve bioreactor without 

complications. These finding are in agreement with the results of previous studies utilizing 

PGG treated scaffolds12,13.  

A hydrogel containing hyaluronic acid and gelatin was chosen to serve as the 

spongiosa layer. The native aortic valve spongiosa layer is largely composed of GAGs, such 

as hyaluronic acid, and collagen15. The Hystem gel was of similar composition to the native 

spongiosa, and therefore a logical representation. Hystem hydrogels have supported 

viable hADSCs at ten weeks in an in-vivo rabbit model, allowing cells to adopt an 

elongated fibroblast-like appearance16. hADSCs viability was confirmed by cell 

encapsulation and culture for seven days, confirmed by Live/Dead analysis. The cell 

seeding end goal was to have the resident stem cells interact with and remodel the gel in 

which they are seeded. Early studies showed a rounded cell morphology that was not 
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indicative of cell-gel interaction. The amino acid sequence RGD present in many ECM 

proteins binds to a wide variety of integrins17, and is important to cell attachment and 

proliferation18. Pronectin - a synthetic polypeptide containing repeated RGD sequences19 

– was added to increase cell-gel interactions and promote cell integration into the 

scaffold.  

Histological analysis of patient-specific valves showed a cohesive trilayer 

structure, with good connection between gel and fibrous scaffolds. However, when valves 

were tested in a pulse-duplicating bioreactor, a “ballooning” effect was observed. We 

hypothesize that shear forces placed on the valve during normal function disrupted 

hydrogel integrity. To further investigate the mode of failure, a new valve was constructed 

with simplified geometry; this valve had a flat, uniform interface between scaffolds, 

without the complicated patient-specific geometry. These valves did not withstand the 

bioreactor’s forces. Further histological inspection revealed the presence of a thin 

hydrogel layer containing viable cells. These finding indicate that the spongiosa hydrogel’s 

integrity was disrupted, and not the interface between gel and fibrous scaffold. A more 

mechanically-robust spongiosa was required for valve functionality. 

2.5 Conclusions 

This study demonstrated that CTA scans can be modeled, 3D printed, and used to 

create patient-specific heart valves. The valve scaffolds supported cell attachment, 

growth, and proliferation. The addition of pronectin to the spongiosa hydrogel had 
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significant effect on cell morphology. Functional testing revealed insufficiently-robust 

spongiosa scaffolds to be the cause of mechanical failure. Further studies into robust, 

moldable scaffolds shaped using the modeling process described could produce a 

mechanically-viable patient-specific heart valve. 
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CHAPTER 3: DEVELOPMENT AND 

CHARACTERIZATION OF TRILAYER 

SCAFFOLDS FOR HEART VALVE TISSUE 

ENGINEERING 

 
3.1 Introduction 

3.1.1 Research Motivation and Aim 

Due to its mechanically-demanding environment, the aortic valve has a highly- 

organized structure capable of coping with the myriad of forces placed upon it. The aim 

of this research is to replicate the trilayer structure of native valves. Biological scaffolds 

were used to recreate the native structure of the valve - consisting of fibrosa, spongiosa, 

and ventricularis layers. Decellularized porcine pericardium (fibrous scaffold) was used 

for the fibrosa and ventricularis layers, while the spongiosa layer was created from 

decellularized, elastase-treated porcine pulmonary artery (spongy scaffold). The scaffolds 

were rendered porous (and thus more readily recellularized) through treatment with 

acetic acid followed by lyophilization. The trilayer structure of the valve was then 

recreated by gluing the fibrous and spongy scaffolds with bovine serum albumin-

glutaradehyde (BSAG) glue will be used to join the three scaffold layers to form single 

cohesive valve scaffold. 
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A previous iteration of the trilayer scaffold failed during functional testing due to 

insufficient mechanical strength of the spongiosa layer. This research presents a new 

spongy scaffold and assembly technique that results in a robust, trilayer scaffold. 

 

3.2 Materials and Methods 

3.2.1 Materials 

Cusp molds were printed using a 3D Systems ProJet SD3000 printer using multijet 

technology to produce parts from an ABS-like plastic photopolymer - VisiJet SR200 and 

VisiJet s100 support material from 3D systems (Rock Hill, SC). Thick pericardial tissues 

were obtained from Animal Technologies, Inc. (Tyler, TX). Thin pericardial tissues and 

porcine pulmonary arteries were obtained from Tissue Source LLC (Lafayette, IN). Porcine 

hearts were a generous gift from snow creek meat processing (Seneca, SC). High purity 

porcine elastase was supplied by elastin products company (Owensville MO). Micro 

needle rollers were manufactured by Melodysusie (Newark, CA). All other chemicals were 

of highest purity available and were obtained from Sigma-Aldrich Corporation (Lakewood, 

NJ).  

 

3.2.2 Fibrous Scaffold Preparation 
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Fibrous scaffolds were prepared following a decellularization protocol consisting 

of detergent and nuclease treatments as previously described, with minor modifications6 

as described in section 3.2.3.  

3.2.3 Spongy Scaffold Preparation. 

Spongy collagen scaffolds to be used as the spongiosa layer of the cusp were 

prepared following a previously published protocol, with slight modifications67. Briefly, 

Fresh tissues (Tissue Source) were received as intact pulmonary arteries approximately 8 

cm in length starting from the pulmonary valve and ending near the first branches of the 

artery. Tissues were cut lengthwise and laid flat to form a rectangular scaffold. Tissue 

were placed in hypotonic conditions in pure, double-distilled water for 24 hours at 4ºC 

for cell lysis. Tissues were rinsed with double-distilled water and transferred to a sterile 

bottle. All further steps were done with sterile solutions with aseptic techniques. To 

remove cellular remnants, tissues were treated with one liter of detergent solution 

consisting of 50mM Tris, 0.15% v/v Triton x-100, 0.25% Deoxycholic acid-sodium salt. 

0.1% EDTA, and 0.02% Sodium Azide for 3 days at room temperature on a shaker plate. 

The detergent solution was replaced and the tissues were treated for an additional 3 days. 

Tissues were then washed to remove the detergent solution. All washes were performed 

at room temperature on a shaker plate for 30 minutes. Two washes with double-distilled 

water were followed by two washes in 70% ethanol. Tissues were then washed twice 

more with double-distilled water. Removal of residual nucleic acids was achieved by 

treatment for 24 hours at 37ºC with 360 mUnits per mL of both deoxyribonuclease and 
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ribonuclease dissolved in phosphate buffered saline containing 5 mM MgCl at a pH of 7.5. 

Tissues were washed as previously; twice with double-distilled water, 70% ethanol, and 

double-distilled water again. Next, an elastase solution was applied to degrade elastin 

fibers and create more hydrated scaffold. The elastase solution consisted of 10 units/mL 

elastase in a 50 mM Tris buffer containing 1 mM CaCl2, and 0.02% NaN3 at a pH of 8.0. 

Porcine pulmonary arteries were treated for six days at 37°C. Elastase solution was 

changed after 3 days. Finally, tissues were washed as previously; twice with double-

distilled water, 70% ethanol, and double-distilled water again and stored at 4°C in PBS 

with 0.02% sodium azide. 

3.2.4 Preparation of Human Heart Valve Tissue 

A human heart was provided through the national disease research interchange 

(NDRI Philadelphia, PA). The heart was not diseased and was from a 68 year old Caucasian 

male who died of multisystem organ failure. The heart was delivered in DMEM + 

antibiotics. Upon receiving, the heart was washed in PBS and fixed in 10% neutral 

buffered formalin. Valves were dissected and processed for histology as described in 

section 3.2.9. 

3.2.5 Bovine Serum Albumin Glue Preparation 

Bovine serum albumin (BSA) was obtained at a concentration of 45%. BSA 

concentration was increased to 55% by slowly adding dry BSA powder while gently stirring 

to dissolve BSA without causing excess frothing of the solution. The 55% BSA solution was 
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sterile filtered using a Steriflip (EMD Millipore) and kept at 4°C until use. 50% biological 

grade glutaraldehyde was diluted to 10% with double-distilled water and sterile filtered 

prior to use.  

3.2.6 Increasing Porosity of Fibrous and Spongy Scaffolds 

Scaffold porosity was increased to allow for effective gluing and cell infiltration. 

Scaffolds were first washed to remove residual sodium azide indouble-distilled water 

three times, shaking, for ten minutes at room temperature. Poration was achieved 

following a protocol similar to that used by Chang et al8,9. Briefly, glacial acetic acid was 

diluted to 0.2M. Scaffolds were treated with 0.2M acetic acid for 1 hour at room 

temperature under gentle agitation. Scaffolds were removed and placed in petri dishes, 

these dishes were placed in a sterile bag and then immediately moved to a -80°C freezer 

and allowed to freeze overnight. A lyophilization flask was sterilized and fitted with a 

sterile filter between the flask and the tube leading to the vacuum chamber. Petri dishes 

containing frozen scaffolds were transferred to the flask under aseptic conditions. The 

scaffolds were lyophilized for 72 hours with a collector temperature of -48°C and a 

vacuum below 0.080 mBar. 

3.2.7 Assembly of Trilayer Scaffolds 

Trilayer scaffolds were assembled in two ways; with dry scaffolds and with wet 

scaffolds. Both methods were done according to the following protocol. However, wet 

assembled scaffolds were first rehydrated in PBS before being cut and glued together. 
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Fibrous porous scaffolds (both wet and dry) were folded around a cusp-shaped mold 

designed to mimic the cusp shape in the Edwards Perimount valve. The fibrous scaffold 

was trimmed along the edge of the mold, the mold was removed, and the scaffold was 

layed flat. Porous, spongy scaffolds were trimmed using the same mold, but were not 

folded over the mold. Instead the mold was placed on top of the spongy scaffold and a 

scalpel was used to trim the scaffold to shape. Next, 55% BSA was pipetted onto the dry 

fibrous scaffold at 10µL per cm2. The edge of the pipette was used to spread the BSA 

evenly across the surface of the scaffold. Immediately after application of BSA, 10% 

glutaraldehyde solution was misted onto the fibrous scaffold. The spongy scaffold was 

quickly set into place and the fibrous scaffold was folded in half and pressed firmly in 

place for 30 seconds. Dry trilayer scaffolds were then rehydrated in PBS.  

3.2.8 Micro Needle Roller Treatment. 

Micro needle roller treatments were done to allow seeded cells access to the 

interior of the scaffolds. Trilayer scaffolds were treated with acetic acid as described in 

section 3.2.5. However, the acetic acid treatment was used to swell the tissues, not to 

cause further poration. Accordingly, trilayer scaffolds were immersed in 0.2M acetic acid 

for 20 minutes. Tissues were frozen and lyophilized as previously described. All 

techniques were done aseptically. Dry trilayer scaffolds were removed from the 

lyophilizer and placed on a self-healing cutting mat (Harris). Micro needle rollers 

consisting of 540 stainless steel needles uniformly arranged around a polystyrene drum 

were used to create many small punctures through the scaffold surface.  
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3.2.9 Histology 

Thin 5µm sections of paraffin-embedded samples were washed in xylene and 

rehydrated through a series of alcohol washes ending in deionized water. These sections 

were stained with hematoxylin and eosin and Mason’s Trichrome (Richard-Allen 

Scientific, Thermo Scientific) to show general scaffold morphology and to identify cell 

location. Digital images of these slides were obtained at various magnifications (25X to 

200X) on a Zeiss Axiovert 40CFL microscope using AxioVision software (Carl Zeiss 

MicroImaging, Inc. Thornwood, NY).  

3.2.10 Scanning Electron Microscope Imaging 

To prepare for SEM imaging samples were fixed overnight in Karnovsky’s; a 

solution of 2% paraformaldehyde and 2.5% glutaraldehyde buffered in 0.2M cacodylic 

acid. Samples were than dehydrated in a graded series of ethanol moving from 35%, 50%, 

70%, 95%, and 100% each for 30 minutes. Samples were then placed in pure 

Hexamethyldisilazane (HMDS). HMDS was allowed to fully evaporate in a fume hood. 

Samples were then mounted on metal stubs with double sided tape and sputter coated 

with platinum. Scaffolds were imaged with a Hitachi TM3000 tabletop backscatter SEM 

using a 15kV beam. 

3.2.11 Mechanical Testing 
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Fibrous scaffolds were assumed to be isotropic and were cut into 10x20 mm 

sections without regard to collagen fiber orientation. Fresh porcine hearts were obtained 

from snow creak meat processing. Fresh aortic valves were excised from the heart and 

tested immediately. Aortic valves were cut into 10x10 mm strips, with only one section 

harvested per cusp. Cusps were sectioned in both radial and circumferential directions. 

Samples were clamped into a MTS load frame (MTS system Corp. Eden Prarie, MN) and 

wetted with PBS throughout testing. Uniaxial tensile tests were performed by preloading 

the scaffolds to 0.01N and extending to failure at a rate of 5mm/min using a 100N load 

cell. Results were collected in Testworks 4 software (MTS system Corp.) and exported for 

analysis as comma delimited files. 

3.2.12 Statistical analysis 

Results are expressed as means ± standard deviations (SD). For normally 

distributed data with equal variances, unpaired t-tests were used to compare means. 

Welch’s correction was applied to means with different variances. To compare multiple 

means, a one-way analysis of variance was performed (ANOVA) with Tukey’s multiple 

comparison test using multiplicity adjusted P values. P values less than 0.05 were 

considered statistically significant. Statistical significance is indicated as follows, ns if P > 

0.05, * if P ≤ 0.05, ** if P ≤ 0.01, *** if P ≤ 0.001, and **** if P ≤ 0.0001. Analysis was 

carried out in GraphPad Prism 6 (Graphpad Software, La Jolla, CA).  
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3.3 Results 

3.3.1 Fibrous and Spongy Scaffold Characterization 

Decellularization and poration steps produced robust, flat, fibrous sheets of 

collagen (Fig. 3.1A) to be used as fibroas and ventricularis layers. After treatment with 

elastase, spongy scaffolds were highly hydrated, gel-like structures that resulted in 

extremely porous collagen scaffolds when dried (Fig 3.1B). Histological analysis of fibrous 

scaffolds shows complete removal of cells from both scaffolds after decellularization 

steps. The fibrous scaffold consists of thick, rope-like collagen fibers with little spacing 

between them. Elastase treatment of spongy scaffolds results in a loose network of fine 

collagen strands without any of the elastic fibers (red) seen in the fresh tissue. Poration 

produces a fibrous scaffold that still contains rope-like collagen fibers, but has large pores 

distributed throughout the scaffold. Porous spongy scaffolds contain very fine collagen 

fibers and large, empty pores (Fig 3.2). 

 

Figure 3.1. Fibrous Scaffolds (A) Nonporous on the left and porous on the right. 

Spongy scaffolds (B) from left to right fresh, Decellularized and elastase treated, and 

porous. 

 

A B 
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Figure 3.2. Mason’s Trichrome (Nuclei =black, Cytoplasm and intercellular fibers = 

red, collagen = blue) images of fibrous (top row) and spongy (bottom row) scaffolds. 

Fresh (A,D) Decellularized (B,E) and porous (C,F) scaffolds are shown. 

 

3.3.2 Trilayer Cusp Creation 

Trilayer cusps were produced by gluing a spongy scaffold between a folded fibrous 

scaffold with 55% BSA adhesive. The resulting cusp has three layers. The fibrosa and 

ventricularis portions, made of fibrous scaffold, and the middle spongiosa layer made of 

spongy scaffold (Fig 3.3).  

Applying BSA to a dry scaffolds allows the glue to partially infiltrate the scaffolds 

being joined, allowing for a strong bond that will not shear apart under physiological 

mechanical loads. Mason’s trichrome shows regions of red and blue overlap where the 

A B C 

D E F 
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BSA glue (red) has bound tightly to collagen fibers (blue) in adjacent regions of both 

fibrous and spongy scaffolds (Fig 3.4). 

Cross sectional SEM images show the importance of assembling the scaffolds 

while dry. BSA glue (Fig 3.5A – white arrow) is applied as a liquid to the dry porous scaffold 

and can infiltrate the pores immediately adjacent to the interface between scaffolds, 

allowing for a strong bond. Achieving the same effect with wet scaffolds would require 

the glue to displace the water in the adjacent pores, which does not occur. Instead, a flat 

plane of glue forms a weak bond with adjacent scaffolds, leading to separation between 

layers (Fig 3.5B – white arrow).  

The goal of using two separate scaffolds to create three layers was to mimic the 

histoarchitecture of the native valve. When stained with Mason’s Trichrome and viewed 

side by side (Fig 3.6) the structural similarities between trilayer scaffolds and the human 

valve are apparent. Both are of similar thickness, with a fibrosa composed of rope-like 

collagen fibers. Both scaffolds contain a hydrated, porous spongiosa layer in the middle. 

The human valve has a ventricularis composed of collagen and elastin, while the trilayer 

valve’s ventricularis layer is purely collagen. 
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Figure 3.3. Plastic mold (A) used to shape fibrous (B) and spongy scaffolds (C). The 

scaffolds are glued together to for a trilayer cusp (D). Resulting trilayer construct (E) 

is shown stained with Mason’s Trichrome (Collagen = blue, BSA glue = red). 

 

A B C D 
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Figure 3.4. Trilayer constructs (A,B) are shown in Mason’s Trichrome stain (Collagen 

= blue, BSA glue = red). Boxes indicate magnified regions. Regions of red and blue 

overlap (indicated by black arrows) show BSA glue infiltrating both adjacent scaffolds 

to produce one cohesive trilayer structure (C,D). 

 

 

Figure 3.5. Cross sectional SEM images of trilayer scaffold glued while dry (A) and 

wet (B). White arrows indicate interfaces between fibrous and spongy scaffolds. 

 

 

 

A  
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Figure 3.6. Structural similarities between trilayer scaffold (A,C) and adult human 

aortic heart valve (B,D) stained with Mason’s Trichrome. 

 

3.3.3 Physiologically Relevant Mechanical Loading Conditions 

UTS, peak modulus, and strain at break values provide useful information about 

the mechanical behavior of biological tissues. However, these values all occur well outside 

of physiologically relevant conditions. Maximum in-vivo stresses and strains during a 

normal cardiac cycle have been calculated by several groups. A meta-analysis of these 

studies provided a range of maximum physiological stresses and strains in a normally 

functioning aortic valve. Circumferential stress values ranged from 118kPa to 930kPa10,11. 

However, most studies have reported values between 400kPa and 550kPa12–16. Normal 

maximum circumferential strains lie between 5% and 16%14,16–19. Radial strains have been 

reported in the range of 15%-27%10,18,19. Stradins et al. performed uniaxial tensile tests in 

A B 

C D 
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both circumferential and radial directions on aortic valves harvested from 11 healthy 

cadaveric hearts (Figure 3.9)20. The bounds of normal physiological stress and strain 

ranges from the meta-analysis have been reconciled with the Stradins curves to produce 

a theoretical normal physiological range of stresses and strains in both circumferential 

(Fig 3.9 – red box) and radial (Fig 3.9 – green box) directions. This data provides target 

mechanical propertied for tissue engineered valves to replicate. 

 

Figure 3.7. Stress-Strain behavior of human aortic valve cusps in circumferential 

(A1) and Radial (A2) directions. Boxes represent normal physiological maximum 

stress-strains in circumferential (red) and radial (green) directions. Adapted from20. 

 

3.3.4 Mechanical Analysis of Fresh Aortic Valves 

Uniaxial tensile testing showed distinct anisotropic properties in fresh porcine 

aortic heart valves. Representative stress/ strain curves for samples cut in both radial and 
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circumferential directions are shown (Fig 3.8). Circumferential samples show relatively 

little stress in the initial stain range of 0-10%. There is a transition period between 10-15% 

strain after which the stress rises rapidly from 15% strain until break. Radially aligned 

samples experienced significantly less stress at the same strains. Circumferential samples 

had significantly higher ultimate tensile strength, peak modulus, and secant modulus at a 

strain of 10% and a lower strain at break than radial samples (Fig 3.9). 
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Figure 3.8. Fresh porcine aortic valve (A) used for mechanical testing. Strips were cut 

in circumferential and radial directions (B). Representative stress-strain curves for 

circumferential and radial samples are shown in (C) with maximum physiological 

boundaries for circumferential (red box) and radial (green box) shown. 
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Figure 3.9. Tensile testing confirmed the anisotropic properties of native heart valves. 

Ultimate tensile strength (A), strain at break (B), peak modulus (C), and secant 

modulus at a strain of 10% (D) are shown for circumferential and radial samples. 

 

3.3.5 Mechanical Analysis of Fibrous Scaffolds 

Uniaxial tensile testing was performed on fibrous scaffolds to assess the impact of 

increasing porosity and microneedle rolling on fibrous scaffold mechanical properties. 

Representative stress/ strain curves for decellularized (NonPorous), porous, porous rolled 

6 times (6 Roll), porous rolled 14 times (14 Roll), and trilayer scaffolds are shown (Fig 

3.11). Results for ultimate tensile strength (UTS), elongation at break, peak modulus, and 

secant modulus at a strain of 10% are depicted in the following figures. Tukey’s multiple 
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comparison test with multiplicity adjusted P values gives an exact P value for each 

comparison between means. These P values are shown in the tables below each graph 

(non-significant differences = red, significant differences = light green). 

Increasing scaffold porosity did not significantly lower UTS. However, microneedle 

roller treatment did significantly lower the UTS of fibrous scaffolds. Trilayer scaffolds had 

a significantly lower UTS than all other scaffolds (Fig 3.12). Porous scaffolds had 

significantly higher strain at break values than nonporous scaffolds. Microneedle rolling 

of porous scaffolds did not significantly increase strain at break. There was no significant 

difference between trilayer and nonporous scaffold strain at break values (Fig 3.13). 

Poration and microneedle rolling treatments both caused significant reductions in peak 

modulus values. Trilayer scaffolds had a significantly lower peak modulus when compared 

to nonporous scaffolds and no difference when compared to porous and microneedle 

rolled scaffolds (Fig 3.14). Secant modulus at 10% strain is an indication of scaffold 

stiffness at a physiologically relevant strain. Nonporous and trilayer scaffolds were not 

significantly stiffer when directly compared, and were significantly stiffer than both 

porous and microneedle rolled scaffolds (Fig 3.14).  
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Figure 3.11. Representative stress-strain curves for fibrous scaffolds. Maximum 

physiological boundaries for circumferential (red box) and radial (green box) shown 
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  Porous Porous 6 Roll Porous 14 Roll Trilayer 

NonPorous ns 0.0003 < 0.0001 < 0.0001 

Porous   0.0469 < 0.0001 < 0.0001 

Porous 6 Roll     0.1091 0.0005 

Porous 14 Roll       0.0846 
 

Figure 3.12. Ultimate tensile strength of fibrous scaffolds (top). P values for 

comparison between means (bottom). 
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  Porous Porous 6 Roll Porous 14 Roll Trilayer 

NonPorous 0.0012 < 0.0001 < 0.0001 0.4416 

Porous   0.14 0.1982 < 0.0001 

Porous 6 Roll     0.9982 < 0.0001 

Porous 14 Roll       < 0.0001 
 

Figure 3.13. Strain at break of fibrous scaffolds (top). P values for comparison 

between means (bottom). 
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  Porous Porous 6 Roll Porous 14 Roll Trilayer 

NonPorous 0.0004 < 0.0001 < 0.0001 < 0.0001 

Porous   0.1993 0.0118 0.0601 

Porous 6 Roll     0.7762 0.948 

Porous 14 Roll       0.9973 
 

Figure 3.14. Peak modulus of fibrous scaffolds (top). P values for comparison between 

means (bottom). 
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  Porous Porous 6 Roll Porous 14 Roll Trilayer 

NonPorous < 0.0001 < 0.0001 < 0.0001 0.555 

Porous   0.9682 0.9474 < 0.0001 

Porous 6 Roll     > 0.9999 < 0.0001 

Porous 14 Roll       < 0.0001 
 

Figure 3.15. Secant modulus at strain=10% of fibrous scaffolds (top). P values for 

comparison between means (bottom) 

 

3.4 Discussion 

The results presented in this chapter demonstrate the successful development of 

a trilayer scaffold that replicates the native histoarchitecture of the aortic valve while 

maintaining robust mechanical properties. The scaffold presented in chapter two 

incorporated patient-specific design and a trilayer structure, but was unable to remain 

intact when subjected to functional testing. The new scaffold was developed with 
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mechanical strength and resistance to internal delamination of layers as primary 

considerations.  The most notable differences in this new scaffold are the use of a 

biological spongiosa scaffold, BSA glue to bind layers, and the introduction of porosity and 

microneedle treatments. A full characterization of the scaffold with emphasis placed on 

the rationale behind implementing these differences is presented. The effect of 

microneedle rolling on cellular repopulation of the valve will be discussed in further detail 

in chapter four. 

3.4.1 Increasing Porosity and Dry Assembly of Scaffolds 

Porcine pericardium is a widely used and well researched scaffold for prosthetic 

heart valve creation21. This tissue is available in flat collagenous sheets of near uniform 

thickness and has excellent mechanical strength while remaining thin and flexible22. These 

properties make it an excellent choice for the outer layers of the trilayer scaffold.  

The primary role the pericardium is to maintain a thin layer of lubricating 

pericardial fluid around the heart. The dense collagenous composition of the pericardium 

is responsible for its excellent mechanical strength and impermeability to fluids23. 

However, this same dense structure causes difficulties in binding scaffold layers together 

and prevents cells from rapidly repopulating the scaffold in-vitro. The same issues are 

present in the porcine pulmonary artery, the source for the spongiosa scaffold.  

The scaffolds forming the trilayer leaflets are glued together with a thin layer of 

55% BSA crosslinked with 10% glutaraldehyde. Decellularized porcine pericardium 
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presents a nearly un-broken, dense sheet of collagen on its surface, specifically designed 

to prevent liquids from penetrating. Applying BSA to this surface results in a weak bond 

due to poor integration into the scaffold. The process of swelling, freezing, and drying the 

scaffold creates a surface that BSA glue will infiltrate, leading to a strong bond between 

scaffolds.  

Collagen swells in acetic acid24, loses fibrillary appearance and may partially 

dissolve to yield a viscous solution25.  Increasing H+ ions allows water to access the 

collagen fibers. This water is held in by electrostatic forces between charged polar groups 

(electrostatic swelling) or by hydrogen bonding between uncharged polar groups and 

negative atoms (lyotropic hydration)26. The end result of the acetic acid treatment is a 

disruption of interchain collagen binding, causing the scaffold to swell. The swollen shape 

is then “locked” into place by freezing. Lyophilization removes the volatile acetic acid, 

leaving a porous, dry scaffold behind.  

Mason’s trichrome colors collagen fibers a dark blue and BSA glue a deep red. 

Scaffolds assembled and glued while dry show overlap of glue and collagen fibers. 

Scaffolds assembled and glued while wet result in almost no overlap of glue and scaffold, 

leading to delamination under functional testing conditions. SEM imaging of dry-

assembled scaffolds shows BSA glue infiltrating adjacent layers, creating a single, cohesive 

trilayer scaffold. A void space is observed between layers when wet, porous scaffolds are 

glued together. 
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Comparing trilayer scaffolds to human valves highlights the similarities between 

the two. Both trilayer scaffolds and human valves are of similar thicknesses. Both tissues 

show three distinct layers, with a thick collagen fibrosa layer at the top, a porous 

spongiosa, and a denser ventricularis at the bottom.  

3.4.2 Mechanical Properties of Porcine Aortic Valves 

Obtaining healthy human aortic valve tissue is challenging. These tissues are in 

high demand for use as allografts in young adult patients27. However, porcine aortic tissue 

is readily available and similar in mechanical properties to human valves28. Analysis of ten 

studies provided normal physiological maximum stress-strains in circumferential and 

radial directions. Interestingly, the stress-strain curves generated by Stradins et al. fell 

almost exactly in the center of the ranges described by the meta-analysis. Mechanical 

testing of PAVs resulted in stress-strain curves that passed through the normal 

physiological ranges for human valves. Therefore, the mechanical properties of PAVs can 

be used as a valid comparison in place of human valves. 

The anisotropic mechanical behavior of aortic valves has been well documented29. 

Tensile tests showed significant differences between circumferential and radial samples 

in all tests. PAVs show higher UTS, modulus, and secant modulus than radial samples 

while radial samples break at a larger strain value. 

Secant modulus at a strain of 10% is reported as a metric of scaffold stiffness. 

While modulus also represents scaffold stiffness, the modulus values reported occur at 
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supra-physiological strains. Therefore, reporting the secant modulus of scaffolds is a way 

of comparing physiologically relevant stiffness.  

3.4.3 Impact of Increasing Porosity and Microneedle Rolling on 

Scaffold Mechanical Properties 

Increasing scaffold porosity, drying, and microneedle treatment were required to 

produce a robust scaffold capable of cellular in-growth. However, it is important to 

determine the effect of these procedures on scaffold mechanical properties.  UTS was not 

significantly lowered by increasing scaffold porosity. Dermaroller treatment caused a 

significant drop in UTS of fibrous scaffolds. Trlayer scaffolds composed of porous, rolled 

scaffolds displayed the lowest UTS; but still failed at a stress much higher than would ever 

be experienced in physiological conditions. Increasing porosity significantly increased 

stain at break whereas microneedle rolling did not have a significant effect on strain at 

break. Trilayer scaffolds had significantly lower strain at break; most likely due to the BSA 

glue’s stiffening of the interfaces between layers. Modulus decreased with both increased 

porosity and microneedle treatment. Secant modulus of nonporous and trilayer scaffolds 

were not different from one another; and were significantly higher than porous and 

microneedle treated scaffolds. Nonporous and trilayer scaffolds had mechanical 

properties that resembled those of the circumferentially tested aortic valve. Porous and 

micro needle treatments changed scaffold mechanical properties to more closely 

resemble radially tested aortic valves. 
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3.5 Conclusion 

The results presented in this chapter show that porous, dry scaffolds can be 

effectively glued together to form one cohesive trilayer scaffold. These scaffolds resemble 

the human valve’s unique histoarchitecture. A meta-analysis of literature defined 

maximum normal stresses and strains experienced by the native valve; providing a target 

set of mechanical properties to be replicated by the tissue-engineered valve. Increasing 

porosity and microneedle rolling treatments produced scaffolds with excellent 

mechanical strength. The application of these scaffolds to create a functional, tissue 

engineered heart valve is discussed in the following chapter. 
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CHAPTER 4: CONSTRUCTION, STEM CELL 

SEEDING, AND EVALUATION OF TRILAYER 

HEART VALVES 

 
4.1 Introduction 

4.1.1 Research Motivation and Aim 

We hypothesized that the unique, trilayer structure developed by nature is 

essential to proper aortic valve function. Data presented in chapter 3 has shown that 

fibrous and spongy biological scaffolds can be assembled to form trilayer structures that 

mimic the native valve’s histoarchitecture.  The aim of this project is to use these trilayer 

structures to create a tissue-engineered heart valve. This valve will be fully populated with 

stem cells and matured in a heart valve bioreactor. 

Trilayered heart valve scaffolds were rendered porous during construction, 

treated with microneedle rollers, and seeded while dry to allow for capillary action to 

draw cells throughout the entire structure. Once seeded, valves were conditioned for 

three weeks in a heart valve bioreactor, capable of recreating physiological conditions. 

 

4.2 Materials and Methods 

4.2.1 Materials 
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StemPro low passage human adipose derived stem cells, MesenPro RS cell culture 

medium were from Invitrogen (Carlsbad, CA). Thin pericardial tissues and porcine 

pulmonary arteries were obtained from Tissue Source LLC (Lafayette, IN). Thick 

pericardial tissues were obtained from Animal Technologies, Inc. (Tyler, TX). Edwards 

Perimount valves were a generous gift from Dr. Williams and the Bon Secours St. Francis 

Health System. St. Jude Medical Regent heart valves were generously donated by St. Jude 

Medical (St. Paul, MN). 3D printed parts were made from Digital ABS II (Stratasys, Eden 

Prairie, MN) and produced on an ObJet Eden 350V 3D printer (Stratasys, Eden Prairie, 

MN). Thin pericardial tissues and porcine pulmonary arteries were obtained from Tissue 

Source LLC (Lafayette, IN). Micro needle rollers were manufactured by Melodysusie 

(Newark, CA). Nitinol stents were a gift from Dr. George Lutter at the University of Kiel, 

Germany. All other chemicals were of highest purity available and were obtained from 

Sigma-Aldrich Corporation (Lakewood, NJ).  

4.2.2 Fibrous and Spongy Scaffold Preparation 

Fibrous and spongy scaffolds were prepared following a decellularization protocol 

consisting of detergent and nuclease treatments as previously described, with minor 

modifications1 as described in sections 3.2.3 and 4.2.3.  

4.2.3 Poration of Fibrous and Spongy Scaffolds 

Scaffolds were porated as described in section 4.2.6 with the exception of spongy 

scaffolds used in initial seeding experiments. Briefly, these scaffolds were treated with 
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0.2M acetic acid for 1 hour at room temperature under gentle agitation. Scaffolds were 

removed and placed in petri dishes. Liquid nitrogen was poured into the petri dishes to 

snap freeze the scaffolds. Frozen scaffolds were immediately transferred to a 

lyophilization flask and dried for 72 hours with a collector temperature of -48°C and a 

vacuum below 0.080 mBar. 

4.2.4 Assembly of Trilayer Scaffolds 

Trilayer scaffolds were assembled in the same manner as described in section 

4.2.7. Trilayer cusps were assembled with dry tissue only.  

4.2.5 Micro Needle Roller Treatment 

Trilayer scaffolds were once again treated with acetic acid. However, the acetic 

acid treatment was used to swell the tissues, not to cause further poration. Accordingly, 

trilayer scaffolds were immersed in 0.2M acetic acid for 20 minutes. Tissues were frozen 

overnight at -80°C and lyophilized for 72 hours. Dry trilayer scaffolds were removed from 

the lyophilizer and placed on a self-healing cutting mat (Harris). Micro needle rollers 

consisting of 540 stainless steel needles uniformly arranged around a polystyrene drum 

were used to create many small punctures through the scaffold surface. Two needle 

length were used, 0.25mm to allow cells into the fibrous scaffolds, and 0.5mm to 

penetrate into the spongiosa layer. The Micro needles were rolled forward across the 

scaffold and back; this was considered one roll. Scaffolds were rolled in 4 directions, each 

time moving 45° clockwise. 
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4.2.6 Cell Culture 

Human adipose derived stem cells (StemPro, Life Technologies) were obtained 

and expanded in media (MesenPro, Life Technologies) specially formulated to preserve 

the stemness of hADSCs while increasing cell division rate. Media was supplemented with 

1% L-glutamine and 1% antibiotic/antimycotic solution. hADSCs were grown T-175 tissue 

culture polystyrene flasks and subcultured with Trypsin-EDTA (Corning-Cellgro). Cells 

were used at passage 3-5. 

4.2.7 Cell Seeding of Fibrous and Spongy Scaffolds 

Fibrous and Spongy scaffolds were removed from the lyophilizer and used dry, 

with the exception of the nonporous scaffolds which were rehydrated in PBS prior to use. 

hADSCs were expanded in MesenPro medium and seeded in DMEM containing 10% FBS 

and 1% Ab/Am. For cell seeding studies, scaffolds (n=4) were cut into square sections 1cm 

in length and placed in 12 well plates. A cell suspension of 1E6 hADSCs in 200µL DMEM 

was added to the top of the scaffold. Due to the hydrophobic nature of the collagen 

scaffolds and the surface tension of the media, a bead was formed on top of the scaffolds. 

Care was taken to prevent the bead of suspended cells from rolling off the scaffold onto 

the TCPS. Cells were left to soak into the dry scaffolds for 45 minutes. After 45 minutes, 

DMEM was added and the samples were cultured for 3 days. 

4.2.8 Analysis of Cell Distribution in Fibrous Scaffolds 
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Histological sections stained with DAPI were imported into ImageJ (National 

Institutes of Health, Bethesda, MS) image analysis software. First, the scale bar was used 

to determine the number of pixels per µm. Next, color images were converted to 8 bit 

grayscale. Images were then rotated and cropped so the top of the scaffold was aligned 

horizontally at the topmost portion of the image (y=0). Images were thresholded using 

the “Li” method to select the stained nuclei. A watershed algorithm was used to separate 

nuclei that were very close or overlapping. The analyze particles feature was used with 

the settings: size 10-infinity, circularity 0.2-1, record starts. This feature counts all cell 

nuclei and reports the y-start value as the topmost portion of the counted region. The y-

start value was used to determine cell infiltration depth. 

4.2.9 Cell Seeding of Trilayer Cusps 

Trilayer were removed from the lyophilizer and used dry. Dry trilayer cusps were 

placed in a petri dish and seeded with a cell suspension of 4E6 hADSCs in 400µL DMEM 

was added to the top of the cusp. Care was taken to prevent the cell suspension from 

rolling off the cusp onto the TCPS. Cells were left to soak into the dry cusps for 20 minutes. 

After 20 minutes, scaffolds were flipped over cell seeding was repeated on the other side 

of the cusp. DMEM was added and the cells were allowed to attach overnight. 

4.2.10 Designing the Crush Mounting System 

The Edwards perimount bioprosthetric valve was chosen as a model because it is 

considered to be the gold standard in longevity and hemodynamics. A sealed 29mm valve 
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was opened and removed from the glutaraldehyde storage solution. Due to the symmetry 

of the valve, only a 60° section starting at the middle of one flexible stent post and ending 

in the middle of the cusp needed to be modeled. Calipers were used to measure the x and 

y location of marked points along the rigid stent edge of the valve. Points were measured 

along planes in the z direction every 1 mm. Solidworks CAD software (asdasd) was used 

to create the valve model. Briefly, z planes were created every 1 mm and the measured 

points were placed in a sketch on each plane. Next, a 3D spline was made to pass through 

each point. The spline was mirrored once to create one 120° section of the stent. Next, a 

rounded rectangular sketch was swept around the 3D sketch to form the outer portion of 

one cusp. This sweep feature was then mirrored twice to create the perfect 120° 

symmetry observed in the bioprosthetic valve. The curve was extruded up and pockets 

representing the sinus of Valsalva were added. Next, evenly spaced holes were made to 

allow scaffolds to be sutured to the top of the crush mount. Finally, the edge of the stent 

was replicated to form the bottom part of the crush mount. A groove for an o-ring was 

placed in the top portion of the crush mount to hold the mount together when fully 

assembled. 

4.2.11 Producing the Crush Mount 

Solidworks files were exported in stereolithography format to an ObJet Eden 350V 

3d printer which built the parts by laying down a thin layer of photopolymer (Digital ABS 

II), curing that layer with UV light and repeating the process until the final shape is formed. 
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The majority of support material was removed via water jet. Parts were then cleaned 

overnight in 1% sodium hydroxide and washed in distilled water. 

4.2.12 Constructing the Crush Mounted Valve for Bioreactor 

Testing 

The top of the crush mount was placed upside down on a sterile field. Trilayer 

cusps were placed on the edge of the crush mount and attached to the crush mount with 

a surgeon’s knot using size 4-0 prolene sutures (Ethicon, Somerville, NJ). Cusps were kept 

in media until use and were periodically wetted with media throughout assembly. When 

all three cusps were attached and aligned properly, an o-ring was inserted into the groove 

and the two pieces of the crush mount were pressed firmly together, sealing the edges of 

the cusps between them. 

4.2.13 Bioreactor Testing and Maturation of Trilayer Heart Valves 

Immediately after construction, cell-seeded trilayer heart valves were mounted in 

the heart valve bioreactor. The bioreactor was filled with 750mL of DMEM containing 

10%FBS, 1%Ab/Am, and 0.1% Gentamycin. The bioreactor was placed in a standard cell-

culture incubator at 37°C with 5% CO2 and a humidified environment. Supplemental 

antibiotics (1%Ab/Am, and 0.1% Gentamycin) were introduced after three days of culture. 

Media was changed every seven days, with supplemental antibiotics being added three 

days after each media change. Pressure was monitored in real time at points both above 

and below the valve. A flow meter recorded the volume of media pumped through the 
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system with each stroke. A custom LabView program displayed and recorded all 

information. A webcam with an LED light was attached to the top of the bioreactor and 

focused on the outflow side of the valve, allowing for visualization of valve movement. 

Initial pressure and flow was set to low levels (2/0 mmHg, stroke volume below 

measurement threshold) to allow further cell attachment. Pressures were slowly 

increased so as not to dislodge cells. Pulmonary conditions of 22/10 mmHg and 

55mL/stroke were reached after 1 week and maintained for an additional two weeks.  

4.2.14 Constructing the Nitinol Stent Mounted Valve 

Nitinol stent mounted valves were made on the benchtop as a proof of concept, 

aseptic technique was not used. Fibrous and porous scaffolds were cut according to 3D 

printed molds designed to produce a 22mm heart valve. The fibrous scaffold was made 

with two regions to serve different functions. The first region was made to provide a skirt 

below the valves that would seal to the outer wall of the placement site. The second 

region was made to be folded around the spongiosa scaffold to create the trilayer cusps. 

Spongy scaffolds were cut into individual, cusp-shaped sections. 55% BSA glue was 

applied at 10µm/cm2 and spread evenly across the fibrous scaffold. 10% glutaraldehyde 

was then sprayed over the glue, spongy scaffolds were quickly placed in position and 

folded into place. The resulting scaffold was rectangular in shape with a length equal to 

the circumference of the inside of the nitinol stent. The bottom of the valve consisting of 

the fibrous scaffold skirt was first sutured to the stent posts with 4-0 silk braided sutures 

(specific brand). Next, the trilayer potion of the valve was sutured to the stent following 



93 

 

the edge of the cusps. This allowed the individual trilayer cusps to coapt while keeping 

the lower portion of the valve sealed to the stent. 

4.2.15 Geometric Orifice Area Measurement  

Mechanical (Masters Series, St. Jude, St. Paul, MN), trilayer, and bioprosthetic 

(Perimount Aortic, Carpentier-Edwards, Irvine, CA) valves were mounted in the heart 

valve bioreactor. Valves were placed under pulmonary conditions consisting of a pressure 

of 25/10 mmHg with a stroke volume of 70mL and a stroke rate of 70.58 peats per minute. 

The trilayer valve was conditioned for 5 days prior to testing. Videos were taken of each 

valve at 240 frames per second and at a resolution of 320 by 240 pixels. Effort is made to 

remove bubbles from the system and videos are the length of several extra beats to 

ensure that three clean cycles can be used for analysis. Video editing software (Free 

Studio v. 6.4) is used to convert every frame of the video to its own numbered image file. 

The sequence of images are imported into ImageJ. The scale is set for the sequence by 

tracing a line of known distance (the outer diameter of the metal bracket or crush mount) 

and defining its length and the appropriate units.  The threshold is adjusted so that the 

open orifice is clearly defined from the leaflet tissue, and the sequence is converted to 

binary, rendering the orifice black and the leaflets white. The orifice is then selected using 

the Wand (tracing) tool, and the area measured. The orifice area for each frame is 

manually selected and measured in this way for three cycles of open and close beginning 

at least 20 frames before the start of opening and ending at least 20 frames after the end 

of close.  The area of one pixel is selected and used a place holder for frames where there 
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is no orifice visible.  The shape of the orifice must be periodically checked visually against 

the corresponding unaltered frame as artifacts such as bubbles may affect the measured 

area. The cycles are aligned so that the start of the valve opening is on the same frame in 

the cycle. Both Bioprosthetic and Trilayer valves were 29mm. The mechanical valves was 

27mm. Therefore the mechanical valve GOA was multiplied by (29/27) to control for valve 

size. 

4.2.16 Scanning Electron Microscope Imaging 

To prepare for SEM imaging samples were fixed overnight in Karnovsky’s; a 

solution of 2% paraformaldehyde and 2.5% glutaraldehyde buffered in 0.2M cacodylic 

acid. Samples were than dehydrated in a graded series of ethanol moving from 35%, 50%, 

70%, 95%, and 100% each for 30 minutes. Samples were then placed in pure 

Hexamethyldisilazane (HMDS). HMDS was allowed to fully evaporate in a fume hood. 

Samples were then mounted on metal stubs with double sided tape and sputter coated 

with platinum. Scaffolds were imaged with a Hitachi TM3000 tabletop backscatter SEM 

using a 15kV beam. 

4.2.17 Histology 

Thin 5µm sections of paraffin-embedded samples were washed in xylene and 

rehydrated through a series of alcohol washes ending in deionized water. These sections 

were stained with hematoxylin and eosin and Mason’s Trichrome (Richard-Allen 

Scientific, Thermo Scientific) to show general scaffold morphology and to identify cell 
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location. Digital images of these slides were obtained at various magnifications (25X to 

200X) on a Zeiss Axiovert 40CFL microscope using AxioVision software (Carl Zeiss 

MicroImaging, Inc. Thornwood, NY).  

4.2.18 Statistical Analysis 

Results are expressed as means ± standard deviations (SD). For normally 

distributed data with equal variances, unpaired t-tests were used to compare means. 

Welch’s correction was applied to means with different variances. To compare multiple 

means, a one-way analysis of variance was performed (ANOVA) with Tukey’s multiple 

comparison test using multiplicity adjusted P values. For non-parametrically distributed 

data, the Kruskal-wallis one-way analysis of variance with Dunn’s multiple comparison 

test was used. P values less than or equal to 0.05 were considered statistically significant. 

Statistical significance is indicated as follows, ns if P > 0.05, * if P ≤ 0.05, ** if P ≤ 0.01, *** 

if P ≤ 0.001, and **** if P ≤ 0.0001. Analysis was carried out in GraphPad Prism 6 

(Graphpad Software, La Jolla, CA).  

4.3 Results 

Cells drop seeded onto nonporous fibrous and spongy scaffolds formed a 

monolayer on the scaffold surface. Poration and microneedle rolling techniques were 

used to increase cell infiltration into scaffolds.  

4.3.1 Spongy Scaffold Seeding 
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Initial cell seeding studies were done on snap-frozen and lyophilized spongy 

scaffolds. A monolayer of cells formed on the surface of nonporous spongy scaffolds while 

cells infiltrated dry, porous spongy scaffolds. Decellularized (nonporous) scaffolds showed 

an increased thickness after poration and drying, which was reversed upon rehydration 

with cells suspended in media (Fig 4.1). 
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Figure 4.1. Non-porous spongy scaffolds seeded wet (A,B) and porous spongy 

scaffolds seeded dry (C,D). DAPI (A,C) (nuclei = blue). Hematoxylin and Eosin (B,D) 

(H&E, dark purple = nuclei, pink = background substance). Scaffold thickness is 

measured throughout the process of drying and rehydrating (E). 
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Fibrous scaffolds are largely composed of thick sheets of collagen, which remain 

intact after scaffold porosity is increased. Microneedle rolling treatment (Fig 4.2A-B) 

provided access to the porous scaffold interior. When cut obliquely and imaged with a 

scanning electron microscope, the topmost collagen sheet of the fibrous scaffold is shown 

as a barrier preventing access to the porous scaffold below (Fig 4.2C). A schematic 

diagram of the results of cell seeding on nonporous, porous, and microneedle porous 

scaffolds (Fig 4.2D-F) is shown. Mason’s Trichrome stain of the fibrous scaffold showing 

collagen in blue (Fig 4.2G) illustrates the unbroken collagen sheet on top of the fibrous 

scaffold that prevents cellular infiltration (indicated by black arrow). The resultant cellular 

access points (indicated by black arrow) created by microneedle rolling are shown in Fig 

4.2H. Cells are seen moving into the scaffold through the access point crated by 

microneedle rolling in Fig 4.2I. En face and cross sectional SEM imaging of fibrous 

scaffolds shows the effects of microneedle rolling (Fig 4.3). 
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Figure 4.2. Microneedles (A) rolled across the scaffold in the pattern shown in (B). 

SEM of trilayer scaffold cut obliquely showing unbroken surface and porous interior 

(C). Schematic of fibrous scaffolds showing cell distribution for seeding on nonporous 

(D), porous (E), and porous, microneedle rolled (F) scaffolds. Mason’s trichrome 

(collagen=blue) of porous fibrous scaffolds showing unbroken collagen surface (G – 

arrow) and result of microneede treatment (H – arrow). Hematoxylin and Eosin stain 

showing cell infiltration into scaffold through a microneedle-produced break in the 

scaffold (I). 

 

  I 



100 

 

 

Figure 4.3. En face imaging of fibrous scaffolds showing unbroken collagen surface 

(A) and microneedle-produced holes (B – arrows). Cross sectional view of microneedle 

rolled scaffold (C) and porous, non-rolled scaffold (D).  

 

Cell infiltration into the deeper potions of fibrous scaffolds increases with poration 

and microneedle rolling. The percent of total cells at a given distance away from the 

scaffold surface is shown. 97% of total seeded cells were located in the first 50µm of 

nonporous fibrous scaffolds. Porated scaffolds showed a shift of cells inwards with 56% 

of cells in the first 50µm, 21% located in the 50-100µm region, and 10% in 50-100µm. 

Microneedle rolled scaffolds contain an even greater percentage of cells located in the 
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inner portion of the scaffold. Approximately 35% of cells infiltrated over 200µm into the 

porous scaffold treated with 14 microneedle rolling applications. DAPI images converted 

to grayscale (Nuclei = white) and stitched together show 3cm long representative sections 

of seeded fibrous scaffolds. Cell distribution shifts to the interior of the scaffold in porous 

and microneedle rolled scaffolds (Fig 4.5). Hematoxylin and Eosin staining shows similar 

cell infiltration results. Cells can be seen in close proximity to collagen fibers, not 

unattached in the central region of pores, indicating cell attachment to the scaffold (Fig 

4.6). 
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Figure 4.4. Cell distribution throughout scaffolds. DAPI staining (Grayscale, Nuclei = 

white) of nonporous (A), porous (B), porous 6 rolled (C), and porous 14 rolled (D) 

scaffolds. 
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Figure 4.5. Hematoxylin and Eosin stain (dark purple = nuclei, pink = background 

substance) of nonporous (A), porous (B), porous 6 rolled (C), and porous 14 rolled (D) 

scaffolds. 

 

4.3.3 Assembly and Function of Trilayer Valves 

The crush mounting system was used to reliable create uniformly shaped trilayer 

heart valves. A trained operator can assemble a heart valve from three cell-seeded cusps 

in approximately 45 minutes (Fig 4.8). The crush mount fit directly into the heart valve 

bioreactor developed in our lab by Lee Sierad2 (Fig 4.9). Trilayer valves possess excellent 
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hemodynamics and toughness. The trilayer valve withstood sustained pressures of 

900/800 mmHg and flows over 150mL/stroke without failure (data not shown). 

High speed video of mechanical, trilayer, and bioprosthetic heart valves loaded 

under pulmonic pressures and flows were recorded. Still images representing 0, 25, 50, 

75, and 100% of maximum GOA in both opening and closing movements were extracted 

from the videos (Fig 4.10). Bioprosthetic valves open uniformly with each cusp opening 

at the same rate. In contrast, trilayer valves open one cusp after another until maximum 

GOA is reached. Mechanical valve cusps open and close with near perfect symmetry.  

GOA data was split into three phases; opening, open, and closing. The opening 

phase lasted from the first observed increase in GOA until maximum GOA was reached. 

The open phase lasted until GOA began to rapidly decline. The closing phase started 

immediately where the open phase ended and continued until GOA reached 0cm2. 

Bioprosthetic valves had the largest maximum GOA of all valves tested. Trilayer valves 

have a significantly larger maximum GOA than mechanical valves. However, this GOA 

peak occurs at the beginning of the open phase as the ends of the cusps flare outwards. 

Immediately after this flare, the belly of the cusps protrude inward, lowering the trilayer 

valve’s GOA. The same behavior is observed in the bioprosthetic valve. When the open 

phase GOAs are averaged, the mechanical and trilayer valves show no significant 

difference (Fig 4-10C). The trilayer valve took the longest time to reach maximum GOA, 
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likely due to the cusps opening one at a time (Fig 4-10D). Mechanical valves closed rapidly 

while trilayer and bioprosthetic valves closed in same amount of time (Fig 4-10E). 

 

 

Figure 4.8. A 29mm Edwards Perimount valve was measured to attain the geometry 

of the annulus, shown as a dashed blue line in (A). The annulus geometry was then 

modeled in Solidworks (B) and used as the basis for shaping valves for in-vitro testing. 

The crush mount pieces are pressed together and an O-ring set in the groove (C - 

indicated by black arrow) holds the system together. Leaflets (D - yellow arrow) are 

held tightly between the two pieces of the crush mount. Cusps are sutured to the top 
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(E), the o-ring is places and the two pieces are pressed together (F). Inflow side of the 

valve (G) before being placed in the heart valve bioreactor (H). 

 

Figure 4.9. The conditioning system (A) consists of a three-chambered heart valve 

bioreactor (1), an optional pressurized compliance tank (2), a reservoir tank (3) with 

sterile filter (4) for gas exchange, one-way valves (5), resistance valves (6), pressure 

transducers (7), a flow meter, a webcam (8), and an air supply. External LabView 

software and custom hardware (B) monitor and control the system. Control of pressure 

C 

D 
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and flow coupled with the webcam video data allow for the valve to be tested and 

observed under a wide range of conditions (C). Cross sectional view of bioreactor 

showing function (D). Curtesy Lee Sierad. 
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Figure 4.10. Representative images of mechanical (A), trilayer (B), and bioprosthetic (C) valves at 0, 25, 50, 75, and 

100% of maximum GOA    for both opening and closing movements.
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Figure 4.11. Average GOA of bioprosthetic, trilayer, and mechanical valves through 

one open and closing cycle (A). Maximum GOA reached (B) and average GOA of 

valves while open (C). Time for valves to transition from closed to open (D) and 

open to closed (E). 

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

G
O

A
 (

cm
2
)

Time (ms)

GOA vs Time

Bioprsothetic

Trilayer

Mechanical

A 

B C 

Valve Opening Time

Mechanical Trilayer Bioprosthetic
0

50

100

150
***

**
****

D Valve Closing  Time

Mechanical Trilayer Bioprosthetic
0

50

100

150

****

***

E 



110 

 

 

4.3.4 Bioreactor Maturation of Trilayer Heart Valves  

Trilayer valves maintained excellent hemodynamics throughout the three week 

conditioning period. Gross analysis of valves showed no tearing or damage after 

conditioning. Cusps remained in excellent condition without any signs of “ballooning” as 

seen in valves made with hydrogels (Fig 5-11).  

Bioreactor conditioning produced significant changes in scaffold mechanical 

properties (Fig 4.12). Mechanical properties are compared to fresh porcine aortic valve 

samples taken in the circumferential direction. Unconditioned trilayer valves had 

significantly lower UTS and strain at break values than PAV tissues, which changed to no 

statistical difference after bioreactor conditioning (Fig 4.12B-C). Bioreactor conditioning 

decreased the stiffness of trilayer valves, lowering both peak and secant modulus values 

(Fig 4.12D-E). 
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Figure 4.12. Cell seeded trilayer heart valve after 3 weeks of bioreactor conditioning 

in diastole (A) and systole (B). Outflow (C) and inflow (D) sides of the valve after being 

removed from the bioreactor. A trilayer cusp removed from the crush mount after 

bioreactor conditioning (E). 
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Figure 4.13. Comparison between mechanical properties of trilayer scaffolds before 

(t=0), after (t=3 wk) three weeks of bioreactor conditioning, and circumferential 
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samples of PAV cusps. Representative stress-strain curves; boxes represent normal 

physiological maximum stress-strains in circumferential (red) and radial (green) 

directions (A), UTS (B), Strain at break (C), Peak Modulus (D), and Secant modulus at 

a strain of 10% (E).  

 

4.3.5 A Nitinol Stent-Mounted Trilayer Valve 

The crush mounting system was created to allow for easily repeatable in-vitro 

testing of valves. However, this system would not be useful for in-vivo studies. The trilayer 

cusp is produced from flat sheets of scaffold, and can therefore be shaped to fit a wide 

variety of applications. A proof of concept valve was produced to fit into the same 22mm 

nitinol scaffold used by other groups in large animal testing (Fig 4.13).  
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Figure 4.14. Assembly of stented trilayer valve. Dry, porous scaffolds (A) are cut to 

shape following a template (Fb= fibrous scaffold, Sp=Spongy scaffold). BSA glue and 

glutaraldehyde are applied and the scaffolds are folded to form three trilayer cusps 

and a single layer cuff region (B). The folded trilayer scaffold is sutured inside a 

collapsible nitinol stent (C-D). 
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4.4 Discussion  

The results presented here introduce a novel cell seeding technique for rapid full-

thickness seeding of biological scaffolds. Early cell seeding efforts produced a mono-layer 

of cells on the fibrous scaffold surface. The thick, non-porous collagen scaffold produced 

by decellularizing pericardium down not promote cellular infiltration3. Two treatments 

were employed to allow for rapid cellular infiltration. First, scaffolds were rendered 

porous and dry by acetic acid treatment and lyophilizaiton. This technique has been used 

to create myocardial scaffolds that performed well in a rat model of ischemic heart 

disease456.  A cell suspension is placed on these scaffolds and allowed to soak into the 

tissue. This process takes approximately 45minutes. The dry scaffold draws the cell 

suspension in, allowing cells to repopulate the outermost portion of the scaffold.  Cell 

seeding on these scaffold showed that cells will infiltrate readily into the first 150µm of 

the scaffold. Much recent research has been done on the use of microneedles to deliver 

drugs and vaccines into the dermal layer of skin7–11. However, these systems are designed 

for the delivery of very small molecules, not cells. In this study microneedle rolling was 

used to provide access through the dense, outer sheets of collagen, into the porous 

interior of the scaffolds. These access sites allowed cell suspensions to soak into the dry 

scaffolds, yielding increased population of the interior portions of the scaffold. This is the 

first example of an in-vitro cell seeding technique that can rapidly populate a biological 

matrix with cells. 
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Fibrous and spongy scaffolds were assembled into valves and functionally tested 

in a bioreactor. The mechanical testing data presented in chapter three showed that 

trilayer scaffolds possessed more than sufficient mechanical strength to function in a 

physiologically relevant system of forces. However, the mechanical properties of a 

scaffold are not the sole determinant of proper valve function. Many scaffolds, including 

hydrogels12–15,  have been proposed for use in heart valve tissue engineering. The 

effectiveness of these scaffolds as functional valves cannot be proven until a valve is 

constructed form them and a rigorous analysis of valve function is produced. To this end, 

trilayer valves were tested and compared with bioprosthetic and mechanical valves. The 

primary testing criteria was geometric orifice area (GOA). This measurement provides a 

cross sectional area of the valve available for blood to move through. Clinically, cardiac 

magnetic resonance (CMR) planimetry can be used to obtain a GOA value16. However, the 

most common metric of valve function is effective orifice area (EOA)17. EOA is measured 

by determining the location where the cross-section area of the jet produced by blood 

moving through the valve is at a minimum, measured by Doppler echocardiography. The 

bioreactor used in the study allows for precise, high-speed videos to be captured allowing 

GOA to be analyzed throughout opening and closing cycles.  

GOA data showed that the no significant difference between trilayer and 

mechanical average open GOA values. While the trilayer valve was slower to open then 

both prosthetic valves, there was no difference between closing times when comparing 
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bioprosthetic and trilayer valves. Trilayer valves showed excellent hemodynamics, 

proving their readiness for longer term testing in the bioreactor. 

Pre-conditioning valves prior to implantation is a common strategy in heart valve 

tissue engineering218–23. Determining the effect of mechanical forces on the valve prior to 

using an animal model is advantageous. A three week study of cell-seeded trilayer valves 

was performed. Valves functioned well throughout the test, with no tearing or failures 

observed. Mechanical testing showed that trilayer cusps significantly changed in 

mechanical properties, behaving more like native tissue tested in the circumferential 

direction. Unfortunately, no cells were able to be located in the valve, therefore for cell 

phenotype was not investigated.  

The trilayer valves tested in the bioreactor were formed in the crush mounting 

system. This system was developed and used to provide rapid, reproducible assembly of 

heart valves from scaffolds. The crush mount system would not translate to the clinical 

environment as it is not able to be implanted. Therefore, the same trilayer scaffold 

production technique used in the bioreactor valve was applied to create a nitinol stent-

mounted valve. Collapsable stent valves are currently being used as a delivery system for 

TAVI procedures and for several tissue engineered valves24–29. This proof-of concept 

shows the trilayer method of valve creation can be formed into a system that is ready for 

in-vivo testing. 
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4.5 Conclusion 

A novel cell seeding technique on porous and microneedle treated fibrous 

scaffolds shows rapid, full-thickness cell seeding of scaffolds. Functional heart valves were 

made using a crush-mounting system. This system allowed for rapid and reproducible 

production of valves for in vitro testing. A comparison between mechanical, bioprosthetic, 

and trilayer valves revealed excellent hemodynamic performance of trilayer valves. These 

valves functioned well for three weeks in a bioreactor. A collapsible stent-mounted 

trilayer valve was produced as a proof of concept for further in-vivo testing. 
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CHAPTER 5: CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

 

 
5.1 Conclusions 

Aortic valve disease (AVD) is the cause of 370,000 yearly valve replacements 

worldwide1. Due to both increasing and aging populations, this is projected to increase to 

850,000 annual replacements by 20502. Currently, there are good valve replacements 

available, but they still come with serious drawbacks. Young patients are faced with the 

choice of repeat operations or lifelong anticoagulant therapy. Tissue engineering has the 

potential to produce the ideal valve replacement; with long term durability, excellent 

hemodynamics, and the potential for growth in young patients. The three primary goals 

of this research were to create a valve with patient-specific shape, to create a robust 

trilayer scaffold with mechainical properties tuned to perform under physiological 

conditions, and to use these scaffolds to create a cell-seeded valve with excellent 

hemodynamic properties. 

We showed that valves can be modeled from medical imaging data, 3D printed, 

and used as molds to create patient-specific heart valves. The valve scaffolds supported 

cell attachment, growth, and proliferation. However, functional testing revealed shearing 

of the spongiosa, likely due to insufficiently-robust spongiosa scaffolds. Further studies 
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into robust, moldable scaffolds shaped using the modeling process described could 

produce a mechanically-viable patient-specific heart valve. 

In chapter 3 porous, dry scaffolds were effectively glued together to form one 

cohesive trilayer scaffold. These scaffolds resemble the human valve’s unique 

histoarchitecture. A meta-analysis of literature defined maximum normal stresses and 

strains experienced by the native valve; providing a target set of mechanical properties 

to be replicated by the tissue-engineered valve. Increasing porosity and microneedle 

rolling treatments produced scaffolds with excellent mechanical strength that were more 

than strong enough to function in physiological conditions. 

A novel cell seeding technique was developed to rapidly seed porous and 

microneedle treated fibrous scaffolds; resulting in full-thickness cell seeding.  Functional 

heart valves were made using a crush-mounting system. This system allowed for rapid 

and reproducible production of valves for in vitro testing. A comparison between 

mechanical, bioprosthetic, and trilayer valves revealed excellent hemodynamic 

performance of trilayer valves. These valves functioned well for three weeks in a 

bioreactor. A collapsible stent-mounted trilayer valve was produced as a proof of concept 

for further in-vivo testing. 
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5.2 Recommendations for Future Work 

5.2.1 Assessment of Stem Cell Phenotype in Bioreactor 

Conditioned Valves at Pulmonic and Aortic Conditons. 

Trilayer valves will be constructed and cell seeded as described in chapter 4. A 

bioreactor study as described in section 4.2.13 will be performed. Trilayer valves have 

been tested well beyond physiological forces; being subjected to 900mmHg of pressure 

without any adverse consequences. Therefore, it is reasonable to assume they will 

withstand 3 weeks of conditioning at aortic pressures of 120/80 mmHg and 70mL stroke 

volume. Concurrently, a valve will be tested under pulmonary conditons of 20/10mmHg 

and 70mL stroke volume. 

To assess mechanical properties, 10x20 mm sections will be cut in both 

circumferential and radial directions. Samples will be clamped into a MTS load frame (MTS 

system Corp. Eden Prarie, MN) and wetted with PBS throughout testing. Uniaxial tensile 

tests will be performed by preloading the scaffolds to 0.01N and extending to failure at a 

rate of 5mm/min using a 100N load cell.  

To assess scaffold morphology, histological techniques of mason’s trichrome and 

H&E will be used. Von Kossa staining will reveal the extent of any calcification formed. 

IHC for vimentin, αSMA, and vWF will provide information on the phenotype of the 

interstitial cells. 
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5.3 Further Mechanical Analysis of Trilayer Scaffolds 

5.3.1 Flexural Testing of Trilayer scaffolds 

During normal movement, heart valves experience rapid flexural deformations3. 

Flexural testing and comparison of both the porcine aortic valve and the trilayer scaffold 

will produce a useful comparison. Thin strips of tissue will be mounted between two bars. 

One bar is fixed while the other bar (bending bar) applies a load directed towards the 

other bar, causing the tissue to bend. Markers will be placed on the tissue and tracked 

with a camera. Analyzing the position of these markers as force is applied provides a value 

for curvature change (Δκ) vs. applied load.  The axial force being applied is then used to 

calculate a value for moment (M). A graph of Δκ vs M will be prepared for both trlayer 

scaffolds and PAVs.  

5.3.2 Viscoelastic Analysis through Incremental Loading 

Native aortic valves show a hysteresis effect under incremental loading4. 

Therefore, it is sensible to also investigate the response of trilayer scaffolds to 

incremental loading. Thin strips of trilayer scaffolds will be produced and mounted in the 

load frame (MTS system Corp. Eden Prarie, MN) as described in section 3.2.11. Ultimate 

tensile tests have provided a maximum load for trilayer scaffolds. Scaffolds will be loaded 

to 8 different maximums, starting at 10% of UTS and increasing an additional 10% until 

80% UTS is reached. Test will be cyclic, loading to the prescribed maximum, then returning 
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to 0% load. Recoverability – the area beneath the loading curve divided by the area 

beneath the unloading curve - will then be calculated for each maximum. 

5.3.3 Testing Trilayer Valves in a Large Animal Model 

Trilayer valves to will be produced and cell seeded as described. These valves will 

be mounted in collapsible nitinol stents donated by our collaborators at the University of 

Kiel, Germany as described in figure 4.16. Our collaborators in Kiel implantat valves using 

the following technique. Sheep receive Ketanest (2%) and Propofol (2%) for sedation, 

then Cefuroxime (100 mL), Heparin (5000 IU), and Protamin (5000 IU) during implantation 

and Rimadyl (1 mL) at the ending of the study. The antibiotic Baytril (10%) was given on 

the following five days for prevention of infection.The size of the native valve was 

measured before implantation using angiography. The transventricular implantation 

procedure was done through 4th and 5th intercostal space. For implantation, the valved 

stent was crimped carefully and inserted into a special delivery system. The 20-French 

delivery system was inserted to the chest and the autologous tissue-engineered valved 

stent was successfully positioned in the pulmonary annulus under fluoroscopic control. 

Three months after implantation, animals underwent re-angiography with subsequent 

euthanasia and heart explantation followed by postmortem investigation. Surgical 

description curtesy Jessica Boldt5–7. 
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In vivo  valve performance will be assessed by measuring arterial, right ventricular, 

and pulmonary artery pressure at time points throughout the study (t=0, and 1,2, and 3 

weeks). 

After retrieval of the valve, histological techniques of mason’s trichrome and H&E 

will reveal scaffold structure and cell infiltration. Von Kossa staining will reveal the extent 

of any calcification formed. IHC for vimentin, αSMA, vWF, and CD68 will provide 

information on what phenotype the interstitial cells are expressing, and if there is an 

inflammatory infiltrate. 
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